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ABSTRACT

Smartphone Gesture-Based Authentication

by Preethi Sundaravaradhan

In this research, we consider the problem of authentication on a smartphone

based on gestures, that is, movements of the phone. Accelerometer data from a

number of subjects was collected and we analyze this data using a variety of machine

learning techniques, including support vector machines (SVM) and convolutional

neural networks (CNN). We analyze both the fraud rate (or false accept rate) and

insult rate (or false reject rate) in each case.
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CHAPTER 1

Introduction

Authentication is an integral part of security to any digital system to provide

privacy and protection. Several methods of authentication have evolved over years.

The most ubiquitous form of user authentication is passwords. Another form of

authentication is using the biometric features of users. These features must be

distinguishable and unique to the user. Biometric authentication can be divided into

two categories based on whether the users are identified by their physical features

or their behavioral patterns [2]. According to Liu et al., a new type of behavioural

biometric authentication system inspired from handwritten cheques evolved. This

system involves signing gestures in the air similar to drawing signatures with pen.

One such system named OpenSesame claims to achieve a high-level of security

and robustness with a mean false positive rate of 15% and false negative rate of 8% [3].

Opensesame evaluates the hand gesture actions of users without any restrictions.

Thus, it does not take into account the scenario where an intruder observes the hand

movements, and imitates the movements to gain access to system. This scenario is

similar to signature forging in cheques.

Several machine learning techniques have been experimented in the past to

recognize a user signature from accelerometer sensor data. Most commonly used

techniques include Hidden Markov Model (HMM) [4] [5], Support Vector Machine,

Recurrent Neural Networks, and Dynamic Time Wrapping (DTW) [6] [7]

This research explores and compares the effectiveness of gesture-based authenti-

cation system under unrestricted and forging scenarios. Effectiveness is measured in

terms of accuracy of user identification and intruder detection. Also, this research

explores convolutional neural networks and principal component analysis for analysis

accelerometer data. The idea to use convolutional neural networks is inspired from a
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previous work that deploys this technique to authenticate a user using pressure sensor

data [8]. Most research in gesture-based authentication systems focuses on detecting

the shape and stroke of the pattern [9]. This research also explores other statistical

features such as mean, median, and magnitude without explicitly identifying the shape

of the signature.

The report is structured in the following manner. Chapter 2 gives a background

on available authentication systems, machine learning techniques used for gesture

recognition, details on working of these techniques, and data collection setup. Chapter 3

gives a detailed explanation on the experiments and results of this research for

classifying user signatures. Chapter 4 discusses the most effective techniques and

features found, and finally discusses the future scope of this research.
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CHAPTER 2

Background
2.1 Authentication systems

In this section, various methods used to authenticate a user to a computer system

are discussed. A machine can authenticate a user by means of something they know,

such as password, or by something they have such as an RFID (radio-frequency

identification), or by biometric features unique to the user such as fingerprint. These

are popularly summarized in the security domain as ‘something you know, something

you have or something you are’ [10].

Widely used authentication systems are the knowledge-based mechanisms like

PIN and password [11]. This system involves the user to record numeric or alpha-

numeric characters of significant length in a suitable keypad. This system is easy to

implement since authentication is a simple string comparison of the existing password

to the provided value. This ease of implementation and cost of computation is the

reason for the popularity and wide usage of password based authentication system.

Another approach to authentication is using users biometric features. This can

be categorized into physical biometrics and behavioural biometrics.

Physical biometrics allow verifying the user with regard to what he/she is. Some

of the popular physical biometric features include iris, fingerprint, hand geometry, and

face. Authentication involves scanning the biometric feature of the user and matching

this image to a user.

Behavioral biometrics, also known as physiological biometrics, allow verifying the

user with regard to how he/she behaves [9]. According to Liu et al., these features

depend on upon the knowledge and/or habits of the user. An example of knowledge

based physiological attribute is handwritten signatures, that are captured as images

and image-based pattern recognition techniques are used to authenticate users [4].
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An example of habit based physiological attribute is, keystroke dynamics. Keystroke

dynamics is based on the assumption that, the time taken to type two different keys

is unique for each user [12]. This system involves time-series analysis of timing data

between pre-recorded timings and current timings of typing each key in a keyboard.

In their paper, Liu et al., discusses another example of habit based attribute namely,

gait authentication systems [13]. These systems leverage the speed and motion pattern

of users.

An interesting and novel user authentication system based on gestures captured

using accelerometer sensor was proposed by Huang [9]. This system comes under

the category of both knowledge and habit based behavioural biometrics. Here, the

3D accelerations are captured when the user waves a device containing the sensor

in air/space. The sensor data is a sequence of 𝑥, 𝑦, and 𝑧 acceleration values. This

sequence is then associated to the user using pattern matching techniques.

2.2 Comparison of authentication techniques

The knowledge-based systems using passwords and PINs suffer from issues such

as usability [10]. Humans can find remembering passwords difficult. Also, the basic

assumption of password-based system is that, passwords cannot be duplicated or

stolen [14]. But in reality, this assumption does not hold well. Other issues with

passwords include misuse, that is, users can pass off copies to others intentionally.

Above all, this system works only when, keyboards or other devices are available

to capture the password characters. In small devices like IoT wearables and smart

watches, this type of authentication is not user-friendly [14].

Physical biometrics like fingerprint, will need special sensors to capture the input.

For face recognition, high precision cameras may be needed and are not usable in

poorly lit environments. In addition to hardware cost, computational costs of these

4



techniques are also high [3].

Physiological biometrics such as keystroke dynamics and gait based authentica-

tion techniques are heavily criticized by several literature for being error-prone and

demonstrated to be not useful for real world authentication [4] [9].

Gesture-based authentication requires only an accelerometer and most modern

smart devices have built-in accelerometer. Also, this sensor is cheap, light-weight and

does not boost the cost of the whole device. Finally, this is computationally 10-times

cheaper than face-recognition and other similar types of physical biometrics [9]. This

is suitable for small devices such as smart watches.

2.2.1 Error evaluation in biometric authentication

Two types of errors can occur in authentication systems. The rate at which an

intruder may be erroneously recognized as an authentic user is referred to as fraud

rate. An authentic user may be incorrectly rejected as an intruder. The rate at which

this type of misauthentication happens is the insult rate [10]. In machine learning

terminology, the fraud rate is referred to as false acceptance rate (FAR). Similarly,

insult rate is referred to false reject rate (FRR).

The confusion matrix for the user and intruder classification is in Figure 1, from

which the FAR and FRR formulas can be derived as

FAR = FPR = FP/(FP + TP)

and
FRR = FNR = 1− TPR = TP/(TP + FN)

There is a trade off between the fraud rate and the insult rate wherein, decreasing

the fraud rate would lead to increase in insult rate and vice versa. The equal error

rate (EER) is the rate at which the fraud rate and the insult rates are balanced. This

is a measure of effectiveness of biometric systems. A low equal error rate implies that
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Figure 1: Confusion matrix

the system has higher accuracy [15].

The ERR can be derived from ROC easily by tracing the point where the values

of FPR and (1-TPR) are equal. This method is depicted in Figure 2 [16].

Figure 2: Derivation of ERR from ROC

2.3 Machine learning techniques

Most biometric systems need to approximate the biometric feature observations

using various pattern matching or machine learning techniques. Gesture-based authen-

tication is also one such system which needs the aid of machine learning algorithms

to closely approximate the signatures.
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2.3.1 Convolutional neural networks

Convolutional neural networks (CNNs) is a type of deep neural network that

makes an explicit assumption that the input will be an image and structures the

network weights accordingly. Because of this property, CNNs have been applied

successfully in image classification and numerous other pattern recognition tasks with

exceptionally high accuracy [17]. The hidden layers in CNNs are a series of convolution

layers, pooling layers and fully connected layers. The functions of these layers are

explained as follows [18].

• Convolution layer collects the information from the local region of the image.

• Pooling layer down samples the image so as to reduce the number of parameters

and computations in the network.

• Fully connected layer computes the class scores. The number of neurons in this

layer must be equal to number of categories of images

Though the gestures are real-valued tri-axial data points, they can be transformed

to images by concatenating the acceleration values from raw accelerometer along the

3 axes [19]. Then, the image is constructed by normalizing the values and mapping

them to series of color codes for each pixel in the image [8]. To save these pixels as

an image, a python library for imaging is used [20].

2.3.2 Principal component analysis

Principal component analysis (PCA) is a mathematical technique used to trans-

form a complex data to a lower dimensional space called principal components. These

principal components hold the compressed and important information from the higher

dimensional space. The first principal component holds the data with maximum

variability, and next principal component accounts for the remaining variability and

so on. Since in-air signatures have features like direction of movement and acceleration,
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the principal component analysis is an interesting technique to explore in this research.

Figure 3 shows the principal components in a scatter plot of multivariate Gaussian

distribution. Here the arrows represent the direction of two principal components or

eigenvectors, with the length of the arrow equal to its respective eigenvalues [21].

PCA is sometimes used for visualization of the data by projecting the magnitude

of the first two principal components i.e., the eigenvalues in the 𝑥-axis and 𝑦-axis

respectively [22].

Figure 3: An overview of PCA

2.3.3 Support vector machines

Support vector machine is a supervised learning technique which separates two

classes by constructing an optimal hyperplane. This technique operates by projecting

the data in higher dimensional space [23]. Figure 4 shows a hyperplane separating

two classes in higher dimension, the dots represent one class and squares represent

another class. Here, the hyperplane, which is shown as a line, separates these classes.

SVM is originally designed for binary classification. It can be extended to multiclass

classification by using the "OneVsRest" strategy [24]. The one-vs-rest is a heuristic
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where one classifier is trained per class and each of these one-class classifiers are fitted

against all the other classes.

Figure 4: An overview of SVM [1]

2.4 Attacks on gesture-based techniques

Attacks on any authentication system start with stealing the unique token that

authenticates the user. In the case of password based authentication, attacks will be

to steal and use the password. In the case of biometric authentication, attacks involve

copying the biometric features [25]. However, forging any biometric token such as

fingerprint or facial feature has proved to be hard. The gesture-based authentication

scheme using accelerometer pattern, is harder to tamper than the facial recognition.

This difficulty to tamper is due to the search space of the pattern [4]. According to

Guse., in addition to knowing the pattern itself, the imposter needs to know the angle,

speed, and relative area in which the pattern is drawn. His research assumes that

nobody can copy the signature [25] [13].

2.5 Accelerometer data

The accelerometer is a sensor in smartphone, that can capture the gesture i.e.,

waving action of the user. Accelerometer measures the movements of the phone,

in terms of acceleration relative to freefall along the 𝑥, 𝑦 and 𝑧 axes. The unit of
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measurement is 𝑔, where
𝑔 = 9.8𝑚/sec2

on earth. For example, if the smartphone is placed flat on the ground, the accelerometer

will read 0𝑔 along the 𝑥 and 𝑦 axis and 1𝑔 along the 𝑧 axis [26].

When the device is moved, the acceleration along the three axes are measured as

a sequence of tri-axial data points represented by

(𝑥𝑡, 𝑦𝑡, 𝑧𝑡),

where 𝑥, 𝑦, and 𝑧 represents the acceleration along these axes and 𝑡 denotes the time.

Typically, accelerometers allow the sampling time to be user defined. In our research,

the sampling rate is fixed at 50ms. This means, every 50ms the acceleration of 𝑥, 𝑦

and 𝑧 axis will be recorded. Thus, if a gesture lasts for 2 seconds, the accelerometer

records 40 data points represented as a collection

{(𝑥0, 𝑦0, 𝑧0), . . . , (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), . . . , (𝑥39, 𝑦39, 𝑧39)}

This signature is formally defined as [3]

𝑆 = {(𝑥𝑡0 , 𝑦𝑡0 , 𝑧𝑡0), (𝑥𝑡1 , 𝑦𝑡1 , 𝑧𝑡1), . . . , (𝑥𝑡𝑛 , 𝑦𝑡𝑛 , 𝑧𝑡𝑛)}

On connecting the signature datapoints in 3D space, the shape of the signature

pattern can be reconstructed. The Figure 5 depicts a signature shaped like an 'S' drawn

in air.

2.6 Data collection

Data collection in smartphone is required for the two platforms: Android and

iOS. This is done to maximize the ease of the data collection process independent

of smartphone platform. For Android platform, a custom application was created.

This application automatically uploads data to a cloud-based database namely Google

Firebase [27].
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Figure 5: 3D acceleration space of authentic user

Sample data and database interface of collected data is shown in Figure 6. The

data is stored in JSON (JavaScript Object Notation) format. Here, the timestamp at

which the signature collection is started, forms the root of the JSON tree and every

tri-axial data point recorded in the 50ms interval forms the children of this tree.

Figure 6: Screenshot of Firebase database with sample data
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For the iOS platform, a publicly available application named Accelerometer is

used [28]. A screenshot of the application is shown in Figure 7. The signature is

plotted as a time series curve. Here acceleration along each axis is represented along

the 𝑦-axis and time along the 𝑥-axis of the graph. Accelerometer values in the 3D

𝑥-axis represented by green curve, 𝑦-axis by the red curve and 𝑧-axis by the blue

curve.

Figure 7: An iOS application for data collection
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During the data collection process, user performs the following steps.

• Click the ’Start measuring’ button on the app (The start button toggles to stop

and records the acceleration).

• Move the smartphone in air to draw the signature or gesture

• Click on ’Stop measuring’ button.

The above step records and loads the data to the database in cloud in JSON

format.

Data is collected from 102 users and divided into two sets. A smaller dataset

with 10 user data and the larger dataset containing all the user data.

2.7 Data preprocessing

In this research, small dataset containing 10 users data is used. Here, the user 0

is an authentic user. Other 9 users generated 20 samples of unrestricted gestures

(Type 1) and 20 samples of gestures imitating the user 0 (Type 2).

• Type 1: An unrestricted pattern chosen by the user which is a unique signature

for the user.

• Type 2: A common pattern that the users observe and forge.

2.7.1 Features

The following statistical and structural features of the tri-axial data from ac-

celerometer are considered in our experiments [29] [30].

• Mean: The mean values of the data for each of the three axes is calculated and

this is done for every signature of a user. This gives us three mean values for

each signature over three dimensions.

• Median: The median values of the data for each of the three axes is calculated

similar to mean. Consequently, this gives us three median values for each

signature over three dimensions
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• Magnitude: The magnitude of a signature is the average of the root mean square

of the tri-axial data [31]. The magnitude 𝑚 is calculated as

𝑚 =

(︂ 𝑠∑︁
𝑘=1

√︁
𝑥2
𝑘 + 𝑦2𝑘 + 𝑧2𝑘

)︂⧸︁
𝑠

where 𝑠 is the signature length.

• Velocity: The velocity of the smartphone is calculated as the difference of

consecutive data points along each of the three axes.

speed[𝑥][𝑖] = data[𝑥][𝑖]− data[𝑥][𝑖− 1]

speed[𝑦][𝑖] = data[𝑦][𝑖]− data[𝑦][𝑖− 1]

speed[𝑧][𝑖] = data[𝑧][𝑖]− data[𝑧][𝑖− 1]
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CHAPTER 3

Experiments and Results

The process of authentication can be viewed as two classification challenges. First,

from the unrestricted signature dataset, the machine learning techniques should be able

to distinguish the users. Thus, it is a multiclass classification problem where number

of classes is equal to number of users. Secondly, in the forging scenario, one user

must be classified as real user and the rest as intruders. This is a binary classification

problem. We consider the accuracy for the two categories of data mentioned above

and compute the equal error rate for the machine learning technique with highest

accuracy.

This chapter uses the following techniques to analyze the usability of the features

discussed in Chapter 2, and discusses the results for the above two scenarios:

• Support vector machines

• Principal component analysis

• Convolutional neural networks

3.1 Support vector machines

The visualizations of mean values of 9 signatures along the 𝑥, 𝑦 and 𝑧 axes are

shown in Figure 8, by plotting mean values on 𝑥-axis and sample id in 𝑦-axis. Each

user is assigned a unique color. The results show that, mean values along 𝑥-axis are

different for the two users (dark-blue and purple) and shows considerable overlap for

the remaining users. Mean values along 𝑧-axis is similar to 𝑥-axis showing significant

difference for two users (light-blue and purple). Furthermore, mean values of 𝑦-axis

show the largest difference among at-least four users (dark-blue, light-blue, yellow,

and purple).

Combining these tri-axial mean values as features, a SVM is trained to fit this

data. SVM is implemented using sklearn python library [32]. On using SVM multiclass
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classification [33], on all the user signatures we get a mean training accuracy of 64%.

The ROC curve for this set is shown in Figure 9. Accuracy values for individual

users from ROC curve, reflects the observations from the tri-axial dataset. Thus, we

can infer that signatures of the user dark-blue and user purple highly different from

other users. Thus, they have an average accuracy of 100%. Moreover, user lightgreen

and user dark-green had significant overlap in mean values along all the three axes.

Thereby, making their ROC values similar. This pattern can also be related to user

orange and user blue. Thus, observing the diagonal from top left to bottom right

corners of the ROC curve, the equal error rate from this system for user aqua is

highest and the users dark-blue and purple have lowest EER. Hence, SVM is capable

of constructing separable hyperplanes among users fairly well.

Figure 8: Mean of 𝑥, 𝑦 and 𝑧 axes for type 1 data

Similarly, median values of type 1 data across the 𝑥, 𝑦 and 𝑧 are visualized

in Figures 10, 11 and 12. The same users (user dark-blue and user purple) who

were distinguished using the mean were also classified correctly using median. The

corresponding ROC curves are shown in Figures 13. Also, observing the diagonal of

the ROC curve, user orange has highest EER, and users dark-blue and purple have

lowest EER. The mean accuracy taken for all users is 61%. Thus, median feature

gives 3% lesser accuracy compared to mean.

We repeat the same experiments for forged signatures (type 2) by the 9 users.
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Figure 9: ROC for SVM on mean of type 1 data

Figure 10: Median of type 1 data along 𝑥-axis

Figure 11: Median of type 1 data along 𝑦-axis

Visualizations of mean values across 𝑥, 𝑦 and 𝑧 axes are shown in Figure 14. Here we

can visually distinguish only user orange and user green, along the 𝑦-axis. Users are

not distinguishable in 𝑥 and 𝑧 domains, as there is considerable overlap. On using
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Figure 12: Median of type 1 data along 𝑧-axis

Figure 13: ROC for SVM on median on type 1 data

SVM, we observe the same. The ROC for the mean values on type 2 data is shown in

Figure 15. The EER for dark-blue is observed to be highest. Here, the accuracy for

the user orange and user green are 100%. However, the mean accuracy of identifying

the forged signatures is 54%. This is lower compared to the accuracy on type 1 data.

Figure 14: Mean of type 2 data across 𝑥, 𝑦 and 𝑧 axes
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Figure 15: ROC for SVM on mean values of type 2 data

Similarly visualizations for median values across 𝑥, 𝑦 and 𝑧 axes on type 2 data

are shown in Figures 16, 17 and 18. Again SVM classifies the 2 users (user orange

and user green) with AUC of 100%, which is same as the results from mean. SVM

gives an average accuracy of 56%. This is lower than the accuracy of type 1 data.

The ROC for the median values of type 2 data is shown in Figure 19

Figure 16: Median of type 2 data along 𝑥 axis

It is observed that accuracy of classifying unrestricted signatures is better than

the accuracy on signatures which were forged. Also, it is difficult to conclude whether

mean or median is a better feature. Overall the features mean and median produce

less than 70% accuracy. This is lower than any of the previous research explored in

the previous chapter.
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Figure 17: Median of type 2 data along 𝑦 axis

Figure 18: Median of type 2 data along 𝑧 axis

Figure 19: ROC for SVM on median values of type 2 data

Next, we consider the magnitude as a feature described in Chapter 2. Figure 20

shows a comparison of magnitudes of both types of signatures. The magnitude of most

users are similar. Difference between the magnitudes of users 1, 2, 6, 8 and 9 is less
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than 10. This is very less to be able to differentiate the users. Also, the magnitude

difference between type 1 and type 2 data is not co-related. That is, user 1 has the

same magnitude for both type 1 and type 2 data. User 3 has higher magnitude for

type 2 data. And finally, user 6 has slightly lower magnitude for type 2 data. Though

this implies users are not able to imitate the magnitude of a real user, this observation

also means the real user cannot be distinguished from intruders. Observing this trend,

we conclude that the magnitude of tri-axial data is not a distinguishing feature of

users and this feature is not explored further.

Figure 20: Magnitude of type 1 and type 2 data

Lastly, to use the velocity as a feature, the principal components of the accelerome-

ter data is extracted using PCA. This method gives us the eigenvalues and eigenvectors

for each signature. The top two maximum eigenvalues of the corresponding principal

components extracted from the signatures are plotted along the 𝑥-axis and 𝑦-axis

respectively. The ratio of magnitude of principal component vectors of each users is

clustered together as observed in the Figures 21 and 22. SVM is used to classify the

users using this eigenvalues. This approach gives us an average accuracy of 87.8% on

type 1 data and 65% on forged type 2 data. Clearly, the SVM continues to perform

bad in identifying forged signatures.
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Figure 21: Principal components of type 1 data

Figure 22: Principal components of type 2 data

The confusion matrix shows the various user signatures predicted by SVM versus

the true user in Figure 23. Here user 1, user 2 and user 3 has a consistent signature

and is predicted correctly for 5 test dataset. The other users are misclassified atleast

once. The values along diagonals have higher votes, this implies users are classified

correctly most of the times. The prediction is based on maximum voting strategy. If

a test data gets equal votes for all classes, then it is not classified into any category.

The confusion matrix in Figure 24 shows the forged signatures predicted by SVM

versus the true user. Here user 0 is the real user and all other users are imitating

user 0. Attempts of user 4, and user 6 are classified as real user. This implies these
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Figure 23: Confusion matrix of SVM on type 1 data

users are able to break the system.

Figure 24: Confusion matrix of SVM on type 2 data

Support vector machines are then used to classify users based on velocity without

reducing the dimensionality by PCA. This is done by concatenating the 𝑥, 𝑦 and 𝑧

axis data into one feature vector. This give 99.7% accuracy for type 2 data and 100%

accuracy for type 1 data on the small dataset of 10 users. On repeating the same

experiment with large dataset of 102 users, we get 100% on both type 1 and type 2

data.
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3.2 Convolutional neural networks

Velocity is the best performing feature so far as shown in Section 3.1. Considering

this result, we do not explore mean, median, magnitude any further and explore

only velocity. We convert the tri-axial data to image as discussed in 2. Figure 25

shows sample images from 7 user signatures of Type 1 data. Here all the images

are easily distinguishable, implying the users are distinguishable. Figure 26 shows

sample images from 7 user signatures of forged signatures. Here though the images

are distinguishable, a white streak in the central part of the image is common to 6 of

7 users. We can assume that these users able to forge some features of the signature.

CNN is used to classify the users on both the types of data and analyze if we can

support this assumption.

Figure 25: Sample images of different user signatures

Figure 26: Sample images of forged signatures

The architecture of CNN used for image classification is shown in Figure 27. It

has 3 convolution layer, each followed by a max-pool layer and finally a fully connected

layer [34]. Keras framework on python is used for implementaion of this CNN [35].
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Figure 27: CNN architecture

For uniquely identifying the users, which is a multiclass classification problem,

the CNN consists of 9 nodes in the fully-connected dense layer. The number of nodes

in the dense layer must be equal to the number of classes or users. For this experiment,

the dataset is split into training set and validation set. Training data set consists of

17 images from each user and the validation data set consists of 3 images from each

user. On training the CNN with this training dataset, an average accuracy of 97% is

obtained. On testing the model using the validation set, we get the results as shown

in the ROC curve in Figure 28. Here, 5 users are classified with an accuracy of 100%

and the least accuracy for a user is 88%. This shows CNN performs better than SVM.

Figure 28: ROC curve for type 1 data

For classifying type 2 data, the CNN architecture is reused with the last fully-
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connected layer replaced to have only 2 nodes, since this is a binary classification

problem. The training and validation set are split with the training set consisting of 5

images from 8 imposters and 15 images from real user, and validation data consisting

of 46 imposter user images and 6 real user images. The average training accuracy of

the model is 86%. The ROC curve for this experiments is shown in Figure 29. Here

the mean accuracy for the user is 83%.

Figure 29: ROC curve for type 2 data

The confusion matrix for the CNN classifier that compares the user and all

intruders is shown in Figure 30, where label 0 is the real user and label 1 is intruder.

From this figure, it is clear that a user false reject rate is 0% but false acceptance rate

is 7%.

CNN performs much better on distinguishing the users when the signatures are

distinct. Also, the average accuracy of the system is lower on type 2 data, implying

this system is slightly poor in detecting forged signatures.

3.3 Discussion

Since the dataset, and machine learning techniques are different from the previous

researches [3], we analyzed our models under both restricted and unrestricted signature

patterns to be able to compare the performance of our authentication system under
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Figure 30: Confusion matrix for CNN on type 2 data

the two scenarios. For the available data, SVM on accelerometer data gives best

results than the other techniques explored in this section. Average of mean, median

and magnitude are features that do not hold all the properties of the signatures. PCA

identifies the dominant plane in which the user has moved the most, thus it achieves

good results in identifying distinct signatures, but it is poor when the intruder has

observed the dominant plane and imitates the user. The accelerometer data in the

image domain holds the sequence of changes in velocity over smaller intervals and

preserves the pattern. This could explain the reason for good results with CNN. And

when using the same accelerometer data without any dimentionality reduction, SVM

achieves the best results.

Now that we have established velocity as a feature gives best results. The equal

error rate of CNN is found by observing the ROC curve in Figure 29. From the

discussions in Chapter 2, the EER is the point where the black dotted line intersects

the ROC curve. Hence EER for this system is 0.25. The results of all the experiments

conducted is summarized in Table 1

The results of these techniques are plotted in bar graph with accuracy along the

𝑥-axis. From the graph shown in Figure 31, SVM and CNN classifier on velocity has
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Table 1: Summary of experiments and results

Technique Feature Distinct signatures Forged signatures
SVM Mean 0.64 0.54
SVM Median 0.61 0.56
SVM Velocity 1.00 0.99

PCA+SVM Velocity 0.87 0.65
CNN Velocity 0.97 0.88

the highest accuracy.

Figure 31: Comparison of final results
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CHAPTER 4

Conclusion and Future Work

The aim of this project was to explore the effectiveness of accelerometer based in-

air signatures as a gesture based authentication mechanism. A smartphone application

was built and accelerometer tri-axial data was collected from users. Both the built

application and the user data can be reused for further experiments.

Of the several features explored, velocity of the user has been found to be the

most effective in differentiating users. Mean, median and magnitude of the sensor

data seems to be inefficient at differentiating users. Convolutional neural network

(CNN) was designed and trained to classify the user data. This technique is found be

a good classifier with a high accuracy of 97% at identifying users and 86% accuracy at

detecting imitations. The EER for this system was 0.25. Another technique explored

was SVM’s multiclass classifier. The accuracy of SVM with velocity is better than

CNN for identifying user and as well as detecting imitations. The equal error rate is 0

in this case. In all cases, the accuracy of identifying different patterns is better than

detecting imitations. From these experiments we can conclude that, identifying unique

user signature is feasible but the techniques and features explored in this research are

not enough to effectively identify imitations of signatures.

This research can be further expanded by collecting longer signatures, more

samples, and testing against the machine learning techniques experimented in Chap-

ter 3. In addition, the technique of extracting principal components and using the

eigenvalues as features in tri-axial data looks promising. Future research could explore

this further by using these features on other classification techniques like 𝑘-nearest

neighbors, 𝑘-means clustering or 𝑘-medoids clustering techniques.
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