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ABSTRACT 

Predicting Off-Target Potential of CRISPR-Cas9 Single Guide RNA 

 

With advancements in the field of genome engineering, researchers have come up with potential 

ways for site-specific gene editing. One of the methods uses the Clustered Regularly Interspaced 

Short Palindromic Repeats - CRISPR-Cas technology. It consists of a Cas9 nuclease and a single 

guide RNA (sgRNA) that cleaves the DNA at the intended target site. However, the target genome 

could contain multiple potential off-target sites and cleaving an off-target site can have deleterious 

effects in case of gene editing in humans.  

Lab based assays have been developed to test the off-target effects of guide RNAs. However, it is 

not feasible to scale these assays for reasons related to cost and labor. The use of Machine Learning 

models to compute the off-target potential makes these calculations cheaper and scalable. Both, 

classification as well as regression, can be used to solve this problem. In this project, we explore 

three classification models - Support Vector Machines (SVM), Logistic Regression and 

Convolutional Neural Networks (CNN).  
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CHAPTER 1 - INTRODUCTION 

 

The discovery of the double helix structure of the DNA led to research in site-specific gene editing. 

Consequentially, the last half century has seen many advances in the field of Genome Engineering. 

Genome Engineering deals with modification, replacement, deletion or insertion of DNA in the 

genome of a living organism. The natural DNA repair mechanisms existing in organisms like yeast 

and bacteria showed that cells have ways to repair double stranded DNA breaks (DSB).  The earlier 

methods to achieve DNA cleaving at a particular target used base pair recognition by 

oligonucleotides, a polynucleotide that contains a relatively small number of nucleotides [1]. These 

methods, while not robust, created the path for further experiments in targeted DNA cleaving. 

1.1 Targeted Genome Editing 

The first step in targeted genome editing is creating a DNA double stranded break (DSB). These 

DSBs can be repaired in two ways: 

i. Non-homologous end joining (NHEJ) 

ii. Homology directed repair (HDR) 

In NHEJ, there is no homology template and the break ends are directly joined which can lead to 

indels of varying lengths causing frameshifts. HDR can be used by the cell only when the nucleus 

contains a homologue piece of DNA. It can be used to introduce point mutations or to insert 

specific sequences through the recombination of the target site with externally supplied DNA 

donor templates. Figure 1 illustrates the working of the two break repair methods. 
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Figure 1. Double-strand Break Repair [2] 

 

 

1.2 CRISPR-Cas System 

In mid 2000s, researchers began to study Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR), a naturally occurring DNA sequence found in some bacteria and archaea. The 

CRISPR array consists of repeaters interspaced with spacers. Cas (CRISPR-associated) is a 

collection of genes responsible for the functioning of CRISPR as a DNA cleaving tool. It was 

discovered that the CRISPR-Cas system may be responsible for adaptive immunity in bacteria 

which is achieved by cleaving the DNA of the attacking phage. The ability of the Cas9 system to 

bind to DNA at sites defined by the guide RNA and the PAM is an important attribute. This made 
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researchers consider the possibility of using the CRISPR-Cas system in other fields of genetics 

such as agriculture and human gene therapy.  

 

1.3 CRISPR-Cas System for Adaptive Immunity 

The CRISPR-Cas system occurs naturally in some bacteria and archaea and provides adaptive 

immunity. CRISPR acts against invading genetic elements in the following three stages [2]: 

A. Adaptation 

Adaptation is the first stage of adaptive immunity. It involves three steps: 

1. The bacterium is attacked by a foreign DNA 

2. Cas genes bind to a part of the attacking DNA 

3. A part of the attacking viral DNA is incorporated into the CRISPR array as a spacer flanked 

by the repeaters. 

B. crRNA biogenesis 

This stage is triggered by the host being attacked again. The CRISPR array is transcribed into a 

long precursor RNA in this step. The precursor is processed by a combination of Cas9, tracrRNA 

and RNaseIII to form a dsRNA, which is cleaved at one end by the RNaseIII. This releases the 

crRNAs from the precursor and produces Cas9 molecules that are ready to search invading DNA 

for targets. 

C. Interference 

The final stage involves the Cas:crRNA complex binding to the invading protospacer and cleaving 

the invading DNA.  
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Figure 2 shows the aforementioned steps involved in adaptive immunity [3]. Labels ‘A’, ‘B’ and 

‘C’ demonstrate the first step - Adaptation; ‘D’, ‘E’, ‘F’ and ‘G’ demonstrate the second step - 

crRNA biogenesis; and ‘H’ and ‘I’ demonstrate the final step - Interference. 

 

Figure 2. Adaptive Immunity [3] 

The next chapter dives into more details of site specific editing. 
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CHAPTER 2 - SITE SPECIFIC EDITING 

 

Four classes of customizable DNA have been developed so far to achieve site-specific gene 

editing [4]. These classes are: 

i. meganucleases 

ii. transcription activator-like effectors (TALEs) 

iii. zinc finger (ZF) nucleases 

iv. RNA guided Cas9 from type II CRISPR 

Meganucleases, TALEs and ZF identify target sites through protein-DNA interactions. However, 

each has the following unique limitations: 

i. Meganucleases aren’t widely used due to lack of clear correspondence between meganuclease 

protein residue and their target DNA sequence specificity. 

ii. ZF domains tend to have context-dependent binding preference due to crosstalk between 

adjacent modules when combined into an array 

iii. TALE monomers can suffer from context-dependent specificity and construction of arrays is 

costly and labor intensive due to their repetitive sequences. 

The Cas9 nuclease is guided by a guide RNA that is just 20-nt long. The guide RNA uses 

Watson-Crick base pairing to identify the target site. 

 

2.1 CRISPR-Cas9 for site-specific gene editing 

Editing using CRISPR-Cas requires only two components - Cas nuclease and a guide RNA. The 

guide sequence typically corresponds to the phage sequences but can be replaced by any 
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sequence of interest. The target site has the protospacer adjacent motif (PAM) at the 3’ end. The 

PAM sequence in Streptococcus pyogenes is 5’-NGG-3’. 

2.2 Single guide RNA (sgRNA) 

The Cas nuclease is guided to the target site by a single guide RNA. The guide RNA is 100-nt 

long but by altering 20 nucleotides towards its 5’ end, it can be targeted towards complementary 

genomic sequence[5]. It is created from a tracrRNA:crRNA complex. The crRNA defines the 

target for Cas9 while the tracrRNA acts as a scaffold linking the crRNA to Cas9 and facilitates 

processing of mature crRNAs from pre-crRNAs. This creation of one complex makes 

experimental design simple. Figure 3 shows a schematic of Cas9 nuclease and the single guide 

RNA. 

 

Figure 3. Cas9 nuclease and single guide RNA [3] 

 

2.3 Off-target 

An important factor when using CRISPR-Cas9 as a gene editing tool and when designing guide 

RNAs is the extent of off-target effects [6],[7]. The guide RNA sequence is designed to be 

complementary to the target site sequence. However, there can be multiple sites on the genome 
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with a similar sequence (with some mismatches) where the guide RNA can bind. Some 

applications of genome engineering have a higher tolerance for off-target effects. However, 

applications like gene therapy in humans have a much lower tolerance for the same and off-

target activities can have deleterious effects [7]. 

The next chapter explains the existing implementations of quantifying off-target effects to evaluate 

single guide RNAs. 
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CHAPTER 3 - EXISTING IMPLEMENTATIONS 

 

The existing implementations to calculate off-target effects or potential of guide RNAs use lab 

based approaches as well computational methods using Machine Learning. This chapter details the 

various methodologies. 

 

3.1 CHOP CHOP [8] 

CHOP CHOP is a web tool that was developed to aid the designing of sgRNAs. It uses Bowtie 

sequence alignment to map candidate target sites into a sub region of the target site. The sgRNA 

pairs are then ranked based on the following factors: 

i. number of off-targets in the genome 

ii. number of mismatches within the off-target 

iii. GC content 

iv. presence of guanine at position 20 in the target site. 

Target sites that receive the same score are further ranked according to their position in the gene 

where 5’ gets higher preference. 

 

3.2 Cutting Frequency Determination (CFD) [9] 

Doench et. al. targeted a library containing the coding sequence of human and mouse CD33 with 

all single guide RNAs regardless of PAM. For all sites with the canonical NGG PAM, three types 

of mutations were added - 1 nucleotide deletions, 1 nucleotide insertions and 1 nucleotide 

mismatches. These mutations, in addition to complete match single guide RNAs, generated a 

library with 28,897 unique single guide RNAs. 
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CFD score is calculated by using percentage activity values. It is based on Naive Bayes, albeit 

with three assumptions. Given the equation: CFD º 𝑃(𝑌 = 1|𝑋( = 1)(Î{(|+,-.}  

where Y = 1 or 0 (active or inactive pair), 

Xi = 1 or 0 (one hot encoding of features), the three assumptions are as follows: 

i. conditioned on a guide RNA being active, features Xi are independent 

ii. features are marginally independent 

iii. P(Y=1|Xi=0) = 1. 

 

3.3 DeepCRISPR[10] 

Chuai et al. [10], created a hybrid neural network consisting of two parts - a pre trained deep 

convolutional de-noising neural network (DCDNN) based network and a convolutional neural 

network. The output from DCDNN was sent to the CNN. Each gRNA-target pair was encoded in 

two parts and one pair from each gRNA was treated as the sample locus. Each part of the sample 

was fitted into the pre trained DCDNN model and the outputs were combined channel wise for 

the CNN classifier. The training procedure learned weights for the classifier as well as fine-tuned 

weights for the parent network. An anti OT score was calculated at the end for each gRNA as: 

S = 01	(.	3	4
(56,))

01 7
 

where OTi is the occurrence probability of target site i. 

The gRNAs are ranked in descending order of score. 

 

3.4 Elevation[7] 

Listgarten et al. developed the tool “Elevation” as an improvement over CFD. The tool uses 

Machine Learning to evaluate guide RNAs and consists of three basic steps: 
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1. Elevation Search - search and filter genome wide for potential target sites for one single guide 

RNA. It uses two tandem seeds and an extension to find potential target sites which are then 

organized into a tree data structure. 

2. Elevation Score - score each potential target for activity. It is a two layer model. The first layer 

considers single mismatches in each sgRNA-target pair and the second layer combines the results 

from the first layer. The first layer uses Gradient Boosted Regression Trees and the second layer 

uses L1-regularized Linear Regression. The results are passed through a Logistic Regression 

model for calibration. 

3. Elevation Aggregate - aggregate scores from step 2 into a single off-target prediction value to 

assess the single guide RNA. It uses the results from Elevation Score and combines them to 

produce a final score for each sgRNA. This layer uses Gradient Boosted Regression Trees to 

compute the aggregate score. 

Elevation uses the GUIDE-Seq [11] dataset for training and validation. 

The next chapter introduces the machine learning and deep learning techniques used in this project. 
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CHAPTER 4 - MACHINE LEARNING MODELS 

 

Machine Learning is the study of algorithms and statistical models that computer systems use to 

improve their performance. Machine learning algorithms create a mathematical model using a set 

of data called “training data” to make predictions or decisions on a different set of data called “test 

data” without being explicitly programmed to do so. Deep Learning is a part of Machine Learning 

based on learning data representations. There are three types of learning algorithms - supervised, 

unsupervised and reinforcement. This project utilizes and compares two Machine Learning models 

- Support Vector Machines and Logistic Regression, and one Deep Learning model - 

Convolutional Neural Networks. All three models classify as supervised learning. 

 

4.1 Support Vector Machines (SVM) 

Support Vector Machines are supervised learning models that are used for classification and 

regression[12]. This project uses SVM as a classifier. The SVM classifier aims to construct a 

hyperplane or a set of hyperplanes that separates the data points into the two classes (in case of 

binary classification, as in this project), while maximizing the margin between both classes. Figure 

4 shows a hyperplane separating two classes while maximizing the minimum distance from each 

class. 
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Figure 4. SVM Classification with Hyperplane[12] 

 

4.2 Logistic Regression 

Logistic Regression is a form of binomial regression [13]. It involves estimating the parameters 

of a logistic model. It has been used in biological sciences as well as social sciences. Logistic 

Regression can be used when the output is categorical, hence also functioning as a binary 

classifier[14]. It uses the sigmoid function to compute the probability of the data belonging to 

either class. The sigmoid function is given as: S(x) = .
.3	489

 . Figure 5 shows the graph of a 

sigmoid function. 
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Figure 5. Graph of a Sigmoid Function [15] 

 

4.3 Convolutional Neural Networks (CNN) 

A Convolutional Neural Network is a Deep Learning algorithm that can be used for classification 

[16]. CNNs classify as a supervised learning algorithm. They can take an image, in the form of a 

matrix, as an input and assign importance to different features. CNNs are modeled after the 

neuron connectivity in human brain. They consist of multiple layers connected to each other. The 

following subsections describe the different types of layers and functions that are commonly 

used in CNNs. 

 

4.3.1 Convolutional Layer 

This layer consists of one or more filter matrices which can be applied to the input matrix to 

obtain a convoluted matrix. Different filters are available in the model to cater to different 

features. 

 

4.3.2 Activation Function 



	

	

14	

Activation function decides the output of the node for the given input. There are multiple 

activation functions that cater to different types of problems. 

4.3.3 Batch Normalization Layer 

Batch Normalization layer normalizes the inputs of each layer such that mean activation value is 

0 and standard deviation is 1. 

 

4.3.4 Max Pooling Layer 

It partitions the input matrix into a set of non overlapping rectangles and outputs the maximum 

for each region. It helps reduce the spatial size of the image representation. 

 

4.3.5 Dense Layers 

Dense layers are fully connected layers where the neurons in each layer are connected to all 

activations in the previous layer. 

 

4.3.6 Dropout Layer 

The dropout layer is a regularization layer, connected to the dense layers. It is used to avoid 

overfitting. 

 

4.3.7 Softmax Function 

This function calculates the probability of each target class over all possible target classes. These 

probabilities are later used to find the target class for the image. Softmax function can be given 

mathematically as: s(z)j = 4(:;)

4<=>
=?@

   for j = 1,2,...,K 

The next chapter explains the data collection and feature extraction process. 
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CHAPTER 5 - DATA COLLECTION AND FEATURES 

 

5.1 Data Collection 

Tsai et al. [11] developed the GUIDE-Seq database using lab based experiments combined with 

Burrows Wheeler Alignment. They filtered out off-target cleavage sites with more than six 

mismatches. The GUIDE-Seq pipeline was performed on U2OS and HEK293 cells and the 

resulting dataset contains the identified off-target sites. 

Listgarten et al. [7] used the GUIDE-Seq dataset to build their tool “Elevation” and further added 

sequences from human and mouse CD33. They also introduced mutations to the CD33 dataset in 

three ways - 1 nucleotide insertions, 1 nucleotide deletions and 1 nucleotide mismatches generating 

an extensive dataset with CD33 guides and identified off-targets. 

This project uses the Elevation dataset, consisting of the CD33 sequences to train the models. This 

dataset contains 40,270 records with both human and mouse targets with 78 unique human targets 

and 20 unique mouse targets. The models are tested on the CRISPOR [17] dataset. 

Since all datasets contain only identified off-target sites, the training data was imbalanced. To 

create a balanced dataset, the non off-target sites were found by scanning the genomes. For each 

target site, the target genome was scanned for 20 nucleotide long sites that had more than 6 

mismatches to the intended target site. These sequences were then collected and added to the 

dataset to balance it. 

 

 

5.2 Features 

There are mainly two types of features that are extracted from the sgRNA-target site pair: 
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i. positions of mismatch 

ii. identity of mismatch 

Identity of a mismatch can take two values - transition or transversion, represented as 1 and 2 

respectively, with 0 representing no mismatch. 

For the Support Vector Machine and the Logistic Regression models, each sgRNA-target pair is 

one hot encoded as a vector of length 40. The first 20 features correspond to each position in the 

sequence and a ‘1’ indicates a mismatch. The last 20 features correspond to each position in the 

sequence and ‘1’ indicates a transition and ‘2’ indicates a transversion at the site of a mismatch. 

For Convolutional Neural Networks, the sgRNA-target pair is encoded as a matrix and logical OR 

is performed between both matrices to obtain a single matrix containing the mismatch as well as 

identity of the mismatch. 

The next chapter details the methods used in this project. 
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CHAPTER 6 - METHODS 

 

6.1 Support Vector Machines (SVM) 

6.1.1 Training Data 

The CD33 data from the Elevation [7] paper was used as training data. Feature extraction, as 

described in the previous chapter, was performed on each sgRNA-target pair. For each pair, a 

feature vector of length 40 was obtained. Figure 6 shows a sample feature vector. 

 

Figure 6. Sample Feature Vector 

 

6.1.2 SVM Classifier 

This project uses the SVC classifier in the scikit-learn package to classify the data. SVC is used 

with the default parameters. Additionally, “probability” is set to “True” and “kernel” is changed 

to “linear” to allow Recursive Feature Elimination (RFE). 
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6.1.3 Training the Classifier 

The training data was split into training and validation data. Model accuracy was improved using 

Recursive Feature Elimination (RFE). RFE involved finding coefficients for each feature. In each 

iteration, the feature with the lowest coefficient is eliminated till model accuracy stops increasing. 

Figure 7 shows the process of training the classifier. 

 

Figure 7. SVM Classifier Training 
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6.1.4 Aggregate Score Calculation 
%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22%22%20style%3D%22shape%3Dprocess%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3BbackgroundOutline%3D1%3BstrokeWidth%3D2%3Bsize%3D0.24629640932436342%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%2245%22%20y%3D%22267%22%20width%3D%22540%22%20height%3D%2280%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E 
For each test sgRNA, 20 nucleotide sites are found on the target genome. Feature extraction is 

performed on each sgRNA-target pair and passed to the trained model. The model classifies each 

site as either off-target (1) or not off-target (0). The probabilities of all sites classified as off-target 

are then used to calculate the aggregate score for the sgRNA. 

The aggregate score for each sgRNA is calculated using the formula used by Chuai et al. for 

DeepCRISPR[10]: 

S = ln (1 + 𝑒 B,) / ln 2 

where pi is the probability of each target site classified as an off-target, being an off-target site. 

Figure 8 shows the process involved in aggregate score calculation using SVM classifier. 

 

Figure 8. Using Support Vector Machines to Calculate Off-target Score 

 



	

	

20	

6.2 Logistic Regression 

6.2.1 Training Data 

The Logistic Regression model is also trained on the CD33 data that was generated by the 

Elevation [11] paper. Feature extraction was performed as described in the previous chapter and 

illustrated in Figure 6. 

 

6.2.2 Logistic Regression Model 

This project uses Logistic Regression available in the scikit-learn package to build the model. The 

model is built with the default scikit-learn parameters. 

 

6.2.3 Aggregate Score Calculation 

For each test sgRNA, 20 nucleotide sites are found on the target genome. Feature extraction is 

performed on each sgRNA-target pair and passed to the trained model. The model classifies each 

site as either off-target (1) or not off-target (0). The probabilities of all sites classified as off-target 

are then used to calculate the aggregate score for the sgRNA. 

The aggregate score for each sgRNA is calculated using the formula used by Chuai et al. for 

DeepCRISPR[10]: 

S = ln (1 + 𝑒 B,) / ln 2 

where pi is the probability of each target site classified as an off-target, being an off-target site. 

Figure 9 illustrates the process involved in aggregate score calculation using Logistic Regression 

for binary classification. 
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Figure 9. Logistic Regression to Calculate Off-target Score 

 

6.3 Convolutional Neural Networks (CNN) 

6.3.1 Training Data 

The CD33 data from the Elevation [7] paper is used as training data. The input data is transformed 

into a 20x4 matrix before being passed to the model for training. Each sgRNA-target pair is one 

hot encoded individually into a 20x4 matrix. Logical OR is performed on both matrices to get a 

final input matrix for each pair, encoding the position as well as identity of the mismatch. Figure 

10 illustrates the input matrix generation for a sample sgRNA-target pair. 
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Figure 10. Same Input Matrix for CNN 
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6.3.2 Model Architecture 

Figure 11 depicts the architecture of the CNN model used for this project. 

 
 

Figure 11. CNN Architecture 

The different layers of the model are built using Keras [19]. There are three convolutional layers 

with the following properties: 

i. The first convolutional layer contains 10 filters with kernel size 1x4. 

ii. The second convolutional layer contains 10 filters with kernel size 2x4. 

iii. The third convolutional layer contains 10 filters with kernel size 3x4. 

Each filter has one of its dimensions set as 4 to maintain base-pair integrity of the input sgRNA-

target pair. The three convolutional layers use the 30 filters to extract features from the input 

matrix. Each convolutional layer uses ‘ReLU’ as the activation function. ReLU stands for 

rectified linear unit and is given by the equation y = max(0,x). Figure 12 shows the graph for the 

ReLU funtion. 



	

	

24	

 

Figure 12. ReLU Function 

The convolutional layers are followed by a max pooling layer. The max pooling layer contains a 

filter of size 5x4 and helps in dimensionality reduction. The resultant matrix from the max 

pooling layer is passed to a flatten layer which turns the matrix into a 1D vector. The 1D vector 

is passed through two dense layers with 100 and 20 neurons each. The last layer contains 2 

neurons that use the Softmax function to give the probability of the site being an off-target or not 

an off-target. Figure 13 shows the output shape and number of parameters after each layer. 

 

Figure 13. CNN Model Summary 
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6.3.3 Training the CNN 

The CNN model was trained and validated using the CD33 data [7]. The mean squared error was 

used as the loss function and the Adam algorithm was used for optimization. The Adam 

algorithm maintains a learning rate for each network weight, which get separately adapted as the 

learning unfolds. 

 

6.3.4 Aggregate Score Calculation 

For each test sgRNA, 20 nucleotide sites are found on the target genome. Each sgRNA-target pair 

is encoded into a matrix, converted to the final matrix by performing a logical OR and passed to 

the trained model. For each pair the model returns the probability of the site being an off-target (1) 

and not an off-target (0). For each sgRNA, the probability of sites that return a higher probability 

of being an off-target are used to calculate the final score for the sgRNA. 

The aggregate score for each sgRNA is calculated using the formula used by Chuai et al. for 

DeepCRISPR[10]: 

S = ln (1 + 𝑒 B,) / ln 2 

where pi is the probability of each target site classified as an off-target, being an off-target site. 

The next chapter goes over the results of each of these methods. 
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CHAPTER 7 - RESULTS 

 

Each model was trained on the Elevation dataset and tested on the CRISPOR dataset. The 

Elevation dataset contains 6819 sgRNA-target pairs with 78 unique single guide RNAs from 

human and mouse CD33 genome, and the CRISPOR dataset consists of 720 sgRNA-target pairs 

with 31 unique single guide RNAs. Figure 14 shows the performance comparison of the three 

models. 

 

Figure 14. Performance Comparison of all Models 

The Support Vector Machine classifier gives an accuracy of 90.2%  and ROC-AUC of 0.85. Figure 

15 shows the ROC curve and the AUC for the SVM classifier. 
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Figure 15. ROC Curve for SVM Classifier 

Logistic Regression gives an accuracy of 97.77% and ROC-AUC of 0.90. Figure 16 shows the 

ROC curve for the Logistic Regression model. 

 

Figure 16. ROC Curve for Logistic Regression 
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The Convolutional Neural Network model gives an accuracy of 97.32% and ROC-AUC of 0.90 

over 10 epochs. Figure 17 shows the ROC curve for the CNN model. 

 

Figure 17. ROC Curve for Convolutional Neural Networks 

Figures 18-21 illustrate the training loss, training accuracy, validation loss and validation accuracy 

against the number of epochs for the CNN model. 
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Figure 18. Training Loss vs Epochs 

 

Figure 19. Training Accuracy vs Epochs 
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Figure 20. Validation Loss vs Epochs 

 

Figure 21. Validation Accuracy vs Epochs 

Table I contains the ROC-AUC values for the models presented in this project as well as an 

existing tool, CFD, when tested on the CRISPOR dataset. 
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TABLE 1 - MEAN ROC-AUC VALUES 

Model Mean ROC-AUC 

Support Vector Machine 0.85 

Logistic Regression 0.90 

Convolutional Neural Networks 0.90 

Cutting Frequency Determination 

(CFD) 
0.92 

 

As evident from Table I, CFD performs the best on the CRISPOR dataset. However, Convolutional 

Neural Networks and Logistic Regression give comparable performances. 
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CHAPTER 8 - CONCLUSION 

 

This project focused on classifying off-target sites for single guide RNAs and a target genome and 

calculating off-target scores for the guide RNAs using the probabilities obtained from the models. 

For the purpose of this project, only the Cas9 nuclease is considered. Three models were 

considered - Support Vector Machines, Logistic Regression and Convolutional Neural Networks. 

From the results, we can see that Convolutional Neural Networks and Logistic Regression achieve 

the highest accuracies, comparable to the existing tool CFD. 

For future work, the models proposed in this project can be extended to accommodate other 

CRISPR systems such as Cpf1 [20]. The solution could also be modified to consider structural and 

physical features of the sequences as well, in addition to the existing set of features. 
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