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ABSTRACT

LENSTRA-HURWITZ CLIQUES IN REAL QUADRATIC FIELDS

by Daniel S. Lopez

Let K be a number field and let OK denote its ring of integers. We can define a

graph whose vertices are the elements of OK such that an edge exists between two

algebraic integers if their difference is in the units O×K . Lenstra showed that the

existence of a sufficiently large clique (complete subgraph) will imply that the ring

OK is Euclidean with respect to the field norm. A recent generalization of this work

tells us that if we draw more edges in the graph, then a sufficiently large clique will

imply the weaker (but still very interesting) conclusion that K has class number

one. This thesis aims to understand this new result and produce further examples of

cliques in rings of integers. Lenstra, Long, and Thistlethwaite analyzed cliques and

gave us class number one through a prime element. We were able to extend and

generalize their result to larger cliques through prime power elements while still

preserving our desired property of class number one. Our generalization gave us

that class number one is preserved if the number field K contained a clique that is

generated by a prime power.



DEDICATION

I dedicate my work to my mother, my family and my community. We all belong

in math.

v



ACKNOWLEDGEMENTS

First I would like to thank my advisor Dr. Jordan Schettler for his endless

support, patience, and mentoring through my endeavors here at San José State

University. I am more than honored to have him solidify what it is to be a

mathematician, an educator and a friend. I’d also like to thank Dr. Wasin So and
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The classification of quadratic fields having a Euclidean ring of integers is a major

unsolved problem in number theory. Weinberger showed back in 1973 that, assuming

the generalized Riemann hypothesis, a quadratic number field which has infinitely

many units in its rings of integers is in fact Euclidean if and only if it is a principal

ideal domain. However, since there are principal ideal domains which are not norm-

Euclidean, then there should be examples of rings of integers which are just Euclidean

and not norm-Euclidean. The first such known example was Q(
√

69). This opened

the exploration to finding more quadratics which satisfy this property.

Lenstra and Hurwitz made some remarkable contributions in number theory by

looking for new techniques to show when a given field is Euclidean. Hurwitz toyed

with the idea of a field being Euclidean with the sufficient condition that its ring of

integers must contain many elements, all of whose difference are units. In [Len77],

Lenstra showed that we could view these sets as graphs where the points would

connect if the difference is a unit in its respected ring of integers. Lenstra’s major

result involves a condition on the size of the subgraph in this graph, which allowed

for a new technique of proving fields to be Euclidean.

From here, Long and Thistlethwaite [LT16] built on the work of Lenstra to show

that a less constrained condition can be used to prove that the quadratic field has
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class number one. This analysis is promising in the study of finding quadratic fields

of class number one since we believe that there is an infinite number of real quadratic

fields with class number one as conjectured by Gauss [Neu99].

1.2 Background

In this section, we introduce basic concepts in group theory, field theory, number

theory and graph theory. More importantly, we familiarize ourselves with some of

the important objects, notations and examples that help us throughout the course of

the thesis.

1.2.1 Group Theory

A non-empty set G with an associative binary operation, where there is an identity

and every element has an inverse is called a group. An abelian group has the added

structure of also being commutative.

Example 1 (General Linear Group). The following collection of matrices is a group

under matrix multiplication:

GL(n,R) = {n× n invertible matricies}.

More specifically we can look at

GL(2,R) =


 a b

c d

 |a, b, c, d ∈ R, ad− bc 6= 0

 .

Both of these sets can be shown to be groups; however, neither of them are abelian

groups. We are at liberty to choose the following set of numbers apart from R and

preserve the group structure of GL: Q,C, or ,Zp where p is a prime number.

If H is a subset of G and H itself is a group under the operation of G then we

say that H is a subgroup of G. An important type of subgroup is one called normal.

Normal subrougs happen when the left and right cosets are the same (aH = Ha) for

all a in G, this is denoted by H / G.
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Example 2 (Special Linear Group). In our previous example we claimed that GL(n,F)

is a group, where F is any of the fields mentioned above; now we look at one of its

most important subgroups:

SL(n, F ) = {n× n matrices with determinant 1}.

We will now show that SL(n,R) / Gl(n,R).

Proof. First we need to show that SL(n,R) is a subgroup. Let A,B ∈ SL(n,R), we

have that

det(A) = det(B) = 1. (1.1)

Now in order for AB ∈ SL(n,R), it must be that det(AB) = 1.

Indeed:

det(AB) = det(A) det(B) = 1. (1.2)

Similarly, we need for A−1 ∈ SL(n,R):

det(A−1) = det(A)−1 = 1. (1.3)

Since all matrices in SL(n,R) are invertible, then we observe that it is a subgroup of

GL(n,R).

Now, all that is left to show is that it SL(n,R) normal. It suffices to show that

the conjugate ABA−1 is in SL(n,R) when A ∈ GL(n,R) and B ∈ SL(n,R). Since,

matrix multiplication is closed, we have that

det(ABA−1) = det(A) det(B) det(A)−1 = det(B) = 1. (1.4)

Therefore, SL(n,R) /GL(n,R)

1.2.2 Algebraic Number Theory

From the study of groups, we naturally will progress to the study of rings and

furthermore fields. A ring is a nonempty set with two binary operations, such that

for all a, b, c in R:
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(1) a+ b = b+ a,

(2) (a+ b) + c = a+ (b+ c),

(3) There is an additive zero.

(4) There is an additive inverse.

(5) a(bc) = (ab)c,

(6) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

A field has more structure than a ring. A field is a commutative ring with unity (a

multiplicative identity) where every non zero element is a unit, i.e., has a multiplica-

tive inverse.

Example 3. A basic example of a field Q is

Q =
{a
b

: a, b ∈ Z & b 6= 0
}

.

Definition 4. If K is a field containing the subfield F , then K is said to be and

extension of F and is denoted as K/F .

Definition 5. A number field K is a finite extension of Q.

Example 6. One of the basic number fields that we are familiar with are the Gaussian

Integers which is the rational numbers adjoined with i (the imaginary unit):

Q(i) = {a+ bi : a, b ∈ Q}.

Definition 7. More generally, another example of a number field is the quadratic

field denoted as followed

K = Q(
√
d) = {a+ b

√
d : a, b ∈ Q and d is a square-free integer}.
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Now, for a ring we look at a special case called the ring of integers denoted as

OK ; which is given by a number field K. This ring is defined as the set of elements

α ∈ K such that α satisfies a monic polynomial with coefficients in Z or equivalently,

there exists a monic f(x) ∈ Z[x] such that f(α) = 0. For an α ∈ OK , there is a

unique monic polynomial with integers coefficients, called the minimal polynomial,

which divides every f(x) ∈ Z[x] for which α is a root. As an abelian group

OK ∼= Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
n times

,

where n = [K : Q] is the degree of the number field (see [Neu99]).

Definition 8. An embedding of a number field K is a injective ring homomorphism

ϕ : K → C. We say an embedding ϕ is real (resp. complex ) if ϕ(K) ⊆ R (resp.

ϕ(K) 6⊆ R). The complex embeddings come in complex conjugate pairs, and we call

a real embedding (resp. a pair of complex embeddings) a real place (resp. complex

place). Since the number of embeddings of K is the same as its degree n = [K : Q],

we have

n = r + 2s,

where r = #real places and s = #complex places.

Example 9. Let K = Q( 3
√

2). Then f(x) = x3 − 2 is the monic polynomial satisfied

by 3
√

2. However, when we look at all the possible solutions of f(x) in C we get the

added roots:

α1 = 3
√

2, α2 = ω 3
√

2, α3 = ω2 3
√

2 where ω = e2πi/3

The embeddings are generated by:

σ1 : α 7→ 3
√

2 σ2 : α 7→ ω 3
√

2 σ3 : α 7→ ω2 3
√

2



6

Notice that α2 and α3 are conjugate pairs so we get two embeddings one real and

one complex. Since the degree of the minimal polynomial is 3 the statement above

n = 3 = 1 + 2(1) holds.

Definition 10. Given a number field K of degree n, let {σ1, . . . , σn} be the set of

embeddings and choose a Z-basis {α1, α2, . . . , αn} of OK . The discriminant of K is

defined as

∆K = (det(M))2,

where M is the n × n matrix whose entry in the ith row and jth column is σi(αj).

This ∆K is independent of the choice of Z-basis {α1, . . . , αn}. We also get a field

norm NK/Q : K → Q defined by

α 7→
n∏
i=1

σi(α).

Note that if α ∈ OK , then NK/Q(α) ∈ Z (See Chapter 6 on [Neu99]).

In addition, to the additive structure of the ring of integers OK of a number field

K, it is also important to look at the group of units of OK denoted as O×K . There is

an associated structure theorem here as well.

Theorem 11 (Dirichlet). For a number field K, we have

O×K ∼= Zr+s−1 ⊕ T ,

where r = #real places, s = #complex places, and the torsion part T is isomorphic

to µ(K), the (finite) group of roots of unity in K.

Example 12. Let K be a quadratic number field, i.e., [K : Q] = 2. Then K = Q(
√
d)

for some squarefree integer d 6= 1. If d > 0, then K = Q(
√
d) ⊆ R and we say that K
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is real. If d < 0, then K = Q(
√
d) ⊆ Ri and we say K is imaginary. It can be shown

(see Chapter 13 in [IR90]) that

Rd := OK =


Z
[
−1+

√
d

2

]
if d ≡ 1 (mod 4)

Z[
√
d] if d ≡ 2 or 3 (mod 4)

and

∆K =


d if d ≡ 1 (mod 4)

4d if d ≡ 2 or 3 (mod 4).

The 2 embeddings of Q(
√
d) are just inclusion map Q ↪→ C and the ’conjugate

embedding’ map a+ b
√
d 7→ a− b

√
d. This conjugate embedding map is just complex

conjugation for an imaginary quadratic number field. So there are either exactly two

real places and no complex places (when d > 0) or exactly one complex place and no

real places (when d < 0). The field norm can be written explicitly here as

NQ(
√
d)/Q(a+ b

√
d) = a2 − db2

for any a, b ∈ Q. If α ∈ Rd, then α ∈ R×d is and only if

NQ(
√
d)/Q(α) = ±1,

but this has only finitely many solutions for imaginary quadratic number fields. In

fact, we have R×−1 = {±1,±i}, R×−2 = {±1}, R×−3 = {±1,±ω,±ω2}, and R×d = {±1}

for d < −3. This ties back in with Dirichlet’s theorem since the Z-rank of R×d should

be r + s − 1 = 0 + 1 − 1 = 0. On the other hand, for real quadratic number fields,

there are always infinitely many units since r+ s− 1 = 2 + 0− 1 = 1, and, moreover,

µ(Q(
√
d)) = {±1} (for d > 0),

so

R×d = {±εn : n ∈ Z},
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where the fundamental unit ε is the unique smallest unit u > 1 such that u = a+b
√
d

and a, b > 0.

Definition 13. We say that an integral domain R is a unique factorization domain or

UFD, if every non-zero element may be factored uniquely as a product of irreducible

elements, up to ordering and associate (i.e., differ by a unit multiple).

Just as groups have the notion of normal subgroups (which allow the definition of

quotient groups), rings R have certain subrings we call ideals, the analog of a normal

subgroup. A subring I in R is an ideal if rx, xr ∈ I for all r ∈ R and x ∈ I. If

an ideal J of a given ring R is generated by a single element a ∈ R we say that J

is a principal ideal generated by a and write J = (a). The structure of ideals and

principal ideals in a ring R is intimately related to the ring being a UFD or not, as

we will see below.

Example 14. It turns out that if given a ring R is a UFD, then its polynomial ring

R[x] in one variable is also a UFD. Looking at the ring Z of integers, which is a UFD

(by the fundamental theorem of arithmetic), its polynomial ring is given as follows:

Z[x] =

{
anx

n + · · ·+ a1x+ a0 =
n∑
i=0

aix
i : ai ∈ Z for all i

}
.

In this case, Z[x] being a UFD means that any non-zero polynomial with integer

coefficients can be factored uniquely (up to order) into a product of monic irreducible

polynomials. However, unlike the integers Z in which every ideal is principal, there

are ideals which require more than one generator; for instance, the ideal (2, x) is

a non-principal prime ideal. Note that rings of integers OK in a number field can

can be encoded as quotients of Z[x]. For example, Z[x]/(x2 + 1) ∼= Z[i] = R−1 and

Z[x]/(x2 + x+ 1) ∼= Z[ω] = R−3.
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If we have an integral domain R in which every ideal is principal, then R is called

a principal ideal domain or PID. A very important result is that if a ring R is a PID,

then it is also a UFD. The proof is omitted here, but see, for example, Chapter 8,

Section 3 in [DF91]. The main tool for proving that an integral domain R is a PID

is to establish a “division algorithm” for R in which the remainder is controlled by

some notion of size in the ring.

Definition 15. R is said to be a Euclidean domain if there exists a function f from

the nonzero elements of R to the non-negative integers {0, 1, 2, 3, . . . } such that if

a, b ∈ R with b 6= 0, then there are q, r ∈ R such that a = qb+ r and either r = 0 or

f(r) < f(b).

From here we get a few strong and important results.

Theorem 16. If R is a Euclidean domain, then R is a PID. (Chapter 8 section 3 in[DF91])

Remark 17. Even though Euclidean implies PID, there are number rings which are

PIDs that are not Euclidean, e.g., R−19.

Theorem 18. Let R be a PID and a, b ∈ R. Then a and b have a greatest common

divisor d (unique up to unit multiple) and the ideal (a, b) generated by a, b is equal to

(d).(Chapter 8 section 2 in [DF91])

Corollary 19. If R is a PID and p ∈ R is irreducible, then p is prime.

Remark 20. It is also true that irreducible implies prime in a UFD. In fact, if R

is a Noetherian [i.e., every ideal is finitely generated] integral domain in which every

irreducible is prime, then R is a UFD.

For the ring of integers OK in a number field K, it can be shown that OK is a

UFD if and only if it is a PID.(Chapter 1 in [Neu99]) When looking at quadratic
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number fields K, we have the option to choose the real or imaginary. The real case

turns out to be more interesting since there are only finitely Rd with d < 0 which

are UFDs, but Gauss conjectured (and numerical evidence supports) that there are

infinitely many Rd with d > 0 which are UFDs:

d = 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 22, . . .

The conjecture remains open, but we think roughly 76% of primes p ≡ 1 (mod 4)

have Rp a UFD. Among these, which are Euclidean? Dedekind showed that Rd is

norm- Euclidean (i.e., Rd is a Euclidean domain with respect to N , the absolute value

of the field norm) for

d = −11,−7,−3,−2,−1, 2, 3, 5, 13.

In 1927, Dickson claimed that this list is actually complete. However, Perron ob-

served that Dickson’s argument worked only for imaginary quadratic fields. Over the

next twenty years, the quadratic number rings which are norm-Euclidean were then

completely characterized for the list above plus the following:

d = 6, 7, 11, 17, 19, 21, 29, 33, 41, 57, 73.

From here, Weinberger showed that, assuming some strong but widely believed con-

jectures, if the ring of integers OK of an number field K contains infinitely many

units, then OK is Euclidean if and only if it is a PID. The emphasis then is on general

Euclidean domains which are not norm-Euclidean since there are examples of real

quadratic number rings which are Euclidean and not norm-Euclidean one of these

is R69[Cla97]. In fact, according the conjecture of Gauss, there should be infinitely

many such examples.

Definition 21. For a number field K, the fractional ideal generated by α, β ∈ K is
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defined by

(α, β) := {αx+ βy : x, y ∈ OK}.

We say that a fractional ideal (α, β) is principal if (α, β) = (γ) := γOK for some

γ ∈ K.

Theorem 22. Let K be a number field. Then the set JK of fractional ideals is a

group under multiplication defined by

I · J =

{
m∑
k=1

ikjk : ik ∈ I, jk ∈ J

}
.

Moreover, the subset PK ⊆ JK of principal fractional ideals is a subgroup.

Definition 23. Given a number field K, we define the class group CK of K as

the quotient group CK = JK/PK . The class number of K is then defined as the

cardinality hK = |CK | (which turns out to be finite, Chapter 12 [IR90]).

Theorem 24. [Neu99] The following are equivalent for a number field K:

(1) the class number of K is trivial, i.e. hK = 1,

(2) JK = PK ,

(3) every ideal in OK is principal,

(4) OK UFD.

Definition 25. If K/Q is a Galois extension |Aut(K/Q)| = [K : Q], and α ∈ K,

then the field norm of α is the product of all the Galois conjugates of α:

NK/Q(α) =
∏

g∈Gal(K/Q)

g(α).
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Example 26. Consider the quadratic field Q(
√

2). We can quickly recall that the

Galois group K over Q has order d = 2 and is generated by the function that sends
√

2 to −
√

2. Thus

NK/Q(1 +
√

2) = (1 +
√

2)(1−
√

2) = −1.

Remark 27. When the number field K is clear from context, we write N for the

absolute value of the field norm and also to denote the norm of an integral ideal:

N(I) = |OK/I|. With this notation, we have N((α)) = N(α) (i.e., the norm of a

principal ideal is the absolute value of the field norm of any generator.)

Comment: note that some number rings are Euclidean with respect the absolute

value N of the field norm, while there are some which are Euclidean but not norm-

Euclidean R14

Definition 28. Let K be a number field of degree n. The Minkowski constant for K

is defined as

MK :=
n!

nn

(
4

π

)s√
|∆K |, (1.5)

where s is the number of complex places of K and ∆K is the discriminant of OK/Z.

Theorem 29. Let K be a number field. Then for every ideal class c ∈ CK, there is

an integral ideal I ∈ c such that

N(I) ≤MK .

Corollary 30. For a number field K, the class group CK is finite and is generated

by the prime ideals of norm at most MK.

Example 31. Consider K = Q(
√
−5). ThenOK = Z[

√
−5] and ∆K = 4(−5) = −20,

so

MK =
√

20

(
4

π

)1
2!

22
≈ 2.847.
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There is only one prime ideal with norm less than 3, namely the ideal

P = (1 +
√
−5, 2),

which lies above 2. This ideal is not principal, but P2 = (2), so

CK ∼= Z/2Z.

1.2.3 Graph Theory

The big purpose of all our algebraic structure is to unravel a connection between

graphs and the issue with class number one. To further give a pictorial view of the

results it is important that we understand the foundations and language of graph

theory. This will give an actual visual representation of the relationship between one

another.

Definition 32. A Graph G is a triple consisting of a Vertex set V (G), an Edge set

E(G) and a relation that associated with each edge two vertices’s (not necessarily

distinct) and its endpoints.

In the following three examples we will see how a few graphs interact through

their vertices and edges. We will see a directed graph (Figure 1.1), a labeled simple

graph (Figure 1.2) and unlabled simple graph (Figure 1.3).

Example 33.

V1(G) = {1, 2, 3, 4}, E1(G) =
{

(1, 2), (2, 1)(2, 3), (3, 2), (3, 1), (3, 4), (4, 3), (4, 4)
}
.
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3

2

1

4

Figure 1.1: A Directed Graph

This graph has a couple of different features in the sense that we have edges going

in two directions i.e. 1 7→ 2 and 2 7→ 1

Example 34.

V2(G) = {a1, a2, a3, a4, a5}, E2 =
{
{a1, a2}, {a2, a3}, {a3, a4}, {a4, a2}, {a1, a5}

}
.

α1

α2

α3

α4

α5

Figure 1.2: A Labeled Simple Graph

Graphs will not always show a labeling; however, one can choose the proper

labeling to define both a vertex set and edge set, as shown below:
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Figure 1.3: An Unlabeled Simple Graph

The main difference between Figure 1.1 and Figure 1.2 is the type of graphs; the

first one is a more general graph that includes bidirectional edges. While the second

one is what we call a Simple graph where it has no loops or multiple edges. We usually

define a simple graph by treating the edge set as a set of unordered pairs of vertices

{a1, a2} = {a2, a1}. We will from now on make the following assumptions that all the

graphs we will be dealing with are simple. In addition, we will also refer to the edge

as product of two vertices instead of an unordered pair i.e. α1α2 = α2α1 ∈ E(G).

Figure 1.4: Complete Graphs on 3, 4, 5 Vertices

Definition 35. A Complete graph is a graph where all vertices are pairwise adjacent.

Geometrically, all vertices have one edge between each other. As seen on Figure 1.4
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Definition 36. The complement G of a simple graph G is the simple graph with the

vertex set V (G) and the edge set uv ∈ E(G) if and only if uv /∈ E(G).

Definition 37. A clique in a graph is a set of pairwise adjacent vertices. An in-

dependent set in a graph is a set of pairwise nonadjacent vertices. We will denote

the clique of a graph as c(G) and the clique number to be the size of c(G) namely

ω(G) = |c(G)|. It is important to notice that a given clique is also a complete sub-

graph of G. In addition, cliques are not unique as you will see on Figure 1.5. Another

key feature is that a maximal clique of G, is the set of points in which produces the

largest complete subgraph of G as we will see in Figure 1.5.

Example 38. Consider the following:

V (G) = {u, v, w, x, y}, E(G) = {uv, uy, vw,wx, xy, xu},

E(G) = {uw, vx, vy, wy}.

u

v

wx

y

u

v

wx

y

Figure 1.5: A Simple Graph with its clique and its Complement

We can now see the following:

c(G) = {u, x, y}, c(G) = {u, x} or {v, y}

Thus we have that ω(G) = 3 while ω(G) = 2.
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Definition 39. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and

E(H) ⊆ E(G). On the other hand, an induced subgraph is a subgraph obtained by

deleting a set of vertices Denoted as G[T ].

Example 40. We will see the difference between the induced subgraph (Figure 1.8)

and a subgraph (Figure 1.7) of the Petersen graph (Figure 1.6).

1

23

4 5

6

78

9 10

Figure 1.6: Peterson graph

6

78

9 10

Figure 1.7: Subgraph H where V (H) ⊂ V (G) and E(H) ⊂ E(G)

,
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6

78

9 10

Figure 1.8: Induced subgraph where V (K) = {6, 7, 8, 9, 10}.

The big difference between the two types of subgraphs is that the verticies of the

induced subgraph must connect in the same fashion as they did in the original graph

G. Whereas, the subgraph just need to include some subset of the edge set. [Wes01]

In addition, to graphs with a finite vertex set there are sets where the vertex set

is infinite.

Definition 41. If a graph G has a vertex set N = {1, 2, 3, 4 . . . } then we refer to this

graph as countably infinite. If each vertex in the graph has a finite amount of edges

coming out, then we call the graph locally finite.

The graphs we will be looking at will be countably simple graphs that are locally

finite, this allows us to use all of our properties, definitions and examples on a local

level.[Wil96]. Two of the more common examples are of the Infinite Ladder graph

(Figure 1.9) and of the Infinite path graph (Figure 1.10)

Example 42.

V (G) =
{
vi, uk, v

′
j, u
′
l such that i, k, j, l ∈ N

⋃
{0}, and j, l 6= 0

}

E(G) =



(vi, vk) or (ui, uk) if k = i+ 1

(v′j, u
′
l) or (vi, uk) if i = k or j = l

(v′j, v
′
l) or (u′j, u

′
l) if j = l + 1

(v0, v
′
1), (u0, u

′
1).
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Figure 1.9: Infinite Ladder Graph

Example 43.

V (G) = Z = {· · · − 3,−2,−1, 0, 1, 2, 3 . . . }

E(G) = {(i, j) : if |i− j| = 1, where i, j ∈ Z}

. . . . . . -2 -1 0 1 2 . . . . . .

Figure 1.10: Infinite Path Graph
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CHAPTER 2

UNIT CLIQUES, PRIME CLIQUES, AND CLASS NUMBER 1

2.1 Lenstra’s Paper

In his famous 1997 paper [Len77], Hendrik Lenstra did some rigorous analysis on

number fields K to establish some sufficient conditions for the ring of integers OK to

be Euclidean. The foundation of his work came from the ideas of Hurwitz [Hur19].

The method Lenstra used is based on exploiting the algebraic structure of a field. In

essence, Lenstra’s method arose to a sufficient condition of the number field K and

its ring of integers OK to contain elements where the differences of them are actually

units.

Definition 44. We define a graph UK from the ring of integers OK as follows. The

vertex set of UK is just OK and elements α, β ∈ OK are connected by an edge if and

only if α− β ∈ O×K . We call UK the unit graph for OK . Let ω(UK) denote the clique

number of this graph, i.e., the size of any maximal clique.

Lemma 45. Suppose K is a number field and let M be a rational integer greater than

the Minkowski constant MK. Fix any subset {α1, α2, . . . , αM} ⊆ OK. Then for every

ξ ∈ K, there is a τ ∈ OK such that

N((αi − αj)ξ − τ) < 1

for some distinct i, j ∈ {1, 2, . . . ,M}.

Theorem 46. Let K be a number field of degree n. Suppose that

ω(UK) > MK

where MK is the Minkowski constant for K as in Equation 1.5. Then OK is norm

Euclidean.
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Proof. Take ω = ω(UK) and let {α1, α2, . . . , αω} be a maximum clique in UK . Let

ξ ∈ K be arbitrary. To show that OK is norm Euclidean, it suffices (since N is

multiplicative) to prove that N(ξ − q) < 1 for some q ∈ OK . Since ω > MK , we may

apply Lemma 45 to get N((αi − αj)ξ − τ) < 1 for some τ ∈ OK and some distinct

i, j ∈ {1, 2, . . . , ω}. Here αi − αj ∈ O×K since {α1, α2, . . . , αω} is a clique in UK , so

N(αi − αj) = 1 and (αi − αj)−1 ∈ OK . Together, this implies

1 > N((αi − αj)ξ − τ) = N(αi − αj)N(ξ − τ(αi − αj)−1) = N(ξ − q)

with q = τ(αi − αj)−1 ∈ OK as needed.

Remark 47. If one is interested in showing class number 1 in a particular example,

then there are drawbacks to Lenstra’s approach. In particular, there are Euclidean

number rings that are not norm Euclidean; there are only finitely many quadratic

number fields which are norm Euclidean. Nevertheless, there should be infinitely

many quadratic number fields with class number 1 [Neu99] .

2.2 Work of Long and Thistlethwaite

Darren Long and Morwen Thistlethwaite built on the findings of Lenstra in [LT16].

Their key insights included (1) formally viewing the UK as a graph (and drawing more

edges to get larger clique sizes) and (2) establishing a more relaxed sufficient condition

to show K has class number one (i.e., OK is a PID, not necessarily norm-Euclidean).

In order to achieve this less restricted condition we have to allow more edges on our

graph, which is done by letting the difference of elements be either units or certain

prime elements:

Definition 48. Let K be a number field and ρ be a prime element in OK . We say

that ρ is a Lenstra-Hurwitz prime if the natural map OK → OK/(ρ) = F restricts to

a surjection O×K → F× on units. We define a supergraph LK of UK as follows. The
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vertex set of LK is still just OK , but now elements α, β ∈ OK are connected by an

edge if and only if α− β ∈ O×K or α− β is a Lenstra-Hurwitz prime. We call LK the

Lenstra-Hurwitz graph for OK . Again, let ω(LK) denote the clique number of this

graph.

Long and Thistlethwaite give a generalization of Lemma 45 for the graph LK .

Lemma 49. Suppose K is a number field and that {α1, α2, . . . , αM} ⊆ OK forms a

clique in LK where M > MK. Then there is a finite set of units {u1, u2, . . . , uT} such

that for every ξ ∈ K, there is a τ ′ ∈ OK where either

N(ξ − τ ′) < 1

or

N((αi − αj)(ξ − τ ′)− ut) < 1

for some distinct i, j ∈ {1, 2, . . . ,M} and some t ∈ {1, 2, . . . , T}.

Proof. Let ξ ∈ K. By Lemma 45, we can find an integer τ ∈ OK such that N((αi −

αj)ξ − τ) < 1 for some distinct i, j ∈ {1, 2, . . . ,M}. Since {α1, α2, . . . , αM} forms a

clique in LK , we know that αi − αj is either a unit or a Lenstra-Hurwitz prime. If

αi − αj ∈ O×K , then N((αi − αj)−1) = 1, so we could quickly deduce:

N(ξ − τ(αi − αj)−1) = N((αi − αj)−1)N((αi − αj)ξ − τ) = N((αi − αj)ξ − τ) < 1

Now setting τ ′ = τ(αi − αj)−1 ∈ OK gives the first conclusion.

Now assume αi − αj = ρ is a Lenstra-Hurwitz prime. Consider the projection

π : OK → OK/(ρ) = F . This leads us to two cases: where τ lies in the kernel (i.e.,

π(τ) is zero) or where π(τ) is not zero.

Case 1: Suppose that π(τ) is 0, which implies that τ = ρτ ′ for some τ ′ ∈ OK . Then

we get

1 > N(ρξ − τ) = N(ρξ − ρτ ′) = N(ρ)N(ξ − τ ′) > N(ξ − τ ′),
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so again this gives the first conclusion.

Case 2: If π(τ) is not 0, then π(τ) ∈ F× since F is a field. Since ρ is a Lenstra-Hurwitz

prime, we know that the map π : O×K → F× is onto. Thus π(τ) = π(u) for some unit

u ∈ O×K . Then we get that τ = u+ ρτ ′ for some τ ′ ∈ OK . We can now proceed

1 > N(ρξ − τ) = N(ρξ − (u+ ρτ ′)) = N(ρ(ξ − τ ′)− u)

which gives us the second conclusion. The finite list of {u1, . . . , uT} is provided by

choosing a transversal of units of each of the homomorphism OK → OK/(ρ) and

taking the union of this collection.

Theorem 50. Let K be a number field. If ω(LK) > MK, then K has class number

one.

Proof. The proof of this theorem depends on a few important results. However,

Proposition 2.3 from [LT16] is the glue that holds the proof together. This proposition

is the following well-known fact:

K has class number one if and only if for each ξ ∈ K there is a matrix
A ∈ SL(2,OK) such that A · ξ =∞

Here the action is given by linear fractional transformations, i.e., if A = ( a bc d ) and

ξ = α/β where α, β ∈ OK , then

A · ξ =
aα + bβ

cα + dβ

The strategy for proving the theorem is now outlined as follows. First, note that0 −1

1 0

 · 0 =∞
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and 1 −α

0 1

 · α = 0

for any integer α ∈ OK . Thus it suffices to show that any ξ = α/β can be sent to a

field element γ/δ with a strictly smaller denominator: N(δ) < N(β). Now by Lemma

49, we have either

N(ξ − τ ′) < 1

or

N(ρ(ξ − τ ′)− u) < 1

for some integers τ ′, ρ ∈ OK and some unit u ∈ O×K . In the first case,0 −1

1 −τ ′

 · ξ =
−β

α− βτ ′

where

N(α− βτ ′) = N(β(ξ − τ ′)) < N(β)

as needed. In the second case,ρu−1 − 1 τ ′(ρu−1 + 1) + 1

ρu−1 −ρu−1τ ′ − 1

 · ξ
is the quotient of integers in OK with denominator ρu−1α− β(ρu−1τ ′ + 1) where

N(ρu−1α− β(ρu−1τ ′ + 1)) = N(β)N(ρu−1(ξ − 1τ ′)− 1)

= N(β)N(ρ(ξ − τ ′)− u) < N(β)

as needed here.

Example 51. [LT16] First consider Q(
√

5). We already know that this field is not

only a PID but infact Euclidean. Thus, we can find a maximum clique of size 4 in

UK namely:
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0, 1,

1 +
√

5

2
,
3 +
√

5

2

}
.

However, we can find a larger Lenstra-Hurwitz clique of size 16:{
0, 1,−1,−2, 1−

√
5,−1−

√
5, 2 +

√
5,−2−

√
5,

1

2
(−1−

√
5),

1

2
(−3−

√
5),

1

2
(3 +

√
5),

1

2
(−3− 3

√
5),

1

2
(−5− 3

√
5),

1

2
(−5−

√
5),

1

2
(−7− 3

√
5),

1

2
(−11− 5

√
5)

}
.
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CHAPTER 3

PRIME POWER CLIQUES AND AN EXPLICIT EXAMPLE

Definition 52. Let K be a number field. For each n ∈ N, we define the nth prime

power graph P(n)
K as follows. The vertex set of P(n)

K is OK , and elements α, β ∈ OK

are connected by an edge if and only if α − β is either a unit or generates an ideal

(αi − αj) = pm where p is a prime ideal in OK with m ≤ n. Further, we define the

nth Lenstra-Hurwitz graph L(n)
K as having vertex set OK again and where elements

α, β ∈ OK are connected by an edge if and only if α−β is either a unit or is an associate

of ρm, where ρ is a prime in OK with a surjective map on units O×K → (OK/(ρm))×

and m ≤ n.

Note, that this creates a hierarchy of cliques where the smallest correspond to

Lenstra’s unit graph:

ω(UK) ≤ ω(LK) ≤ ω(P(1)
K )

and

ω(L(n)
K ) ≤ ω(L(n+1)

K ) ≤ ω(P(n+1)
K ) ≤ ω(P(∞)

K )

for any positive integer n. The significance of the L(n)
K graph is that large cliques

will still imply class number one. We prove this here by establishing the following

generalization of Lemma 49.

Lemma 53. Suppose K is a number field and that {α1, α2, . . . , αM} ⊆ OK forms a

clique in L(2)
K where M > MK. Then there is a finite set of units {u1, u2, . . . , uT}

such that for every ξ ∈ K, there is a τ ′ ∈ OK such that either

N(ξ − τ ′) < 1

or

N(di,j(ξ − τ ′)− ut) < 1
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where di,j|αi−αj in OK for some distinct i, j ∈ {1, 2, . . . ,M} and some t ∈ {1, 2, . . . , T}.

Proof. Let ξ ∈ K. By Lemma 45, we can find an integer τ ∈ OK such that N((αi −

αj)ξ − τ) < 1 for some distinct i, j ∈ {1, 2, . . . ,M}. Since {α1, α2, . . . , αM} forms a

clique in L(2)
K , we know that αi−αj is either a unit or ρ or an associate of ρ2 for some

Lenstra-Hurwitz prime. The first two cases are already handled by Lemma 49, so we

assume αi − αj = µρ2 for some µ ∈ O×K where the map on units O×K → (OK/(ρ2))×

is onto. There are three subcases here. First, suppose ρ2|τ , i.e., τ = ρ2τ ′. Then

1 > N(µρ2ξ − ρ2τ ′) = N(ρ2)N(ξ − µ−1τ ′)

which gives the first conclusion. Now suppose ρ - τ . Then τ is a unit mod ρ2. So

τ = u + (αi − αj)τ ′ for some u ∈ O×K and some τ ′ ∈ OK , and this gives the second

conclusion. Finally, assume that ρ|τ but ρ2 - τ . Then τ = ρτ ′ where ρ - τ ′ ∈ OK . We

have surjection O×K → (OK/(ρ2))× → (OK/(ρ))×, so τ ′ = u+ τ ′′ρ, which gives

1 > N(µρ2ξ − ρ(u− τ ′′ρ)) > N(µρ(ξ − τ ′′µ−1)− u)

which gives the second conclusion with di,j = µρ|µρ2 = αi − αj.

By the same techniques used in the proof of Theorem 50, we get the following

corollary.

Corollary 54. Let K be a number field. If ω(L(2)
K ) > MK, then K has class number

one.

Long and Thistlethwaite prove the following result about clique sizes in real

quadratic fields.

Theorem 55. Let d ≥ 6 be a squarefree integer and set K = Q(
√
d). Then ω(P(1)

K ) ≤

8 when 2 remains prime in Rd and ω(P
(1)
K ) ≤ 4 when 2 splits or ramifies in Rd.



28

Example 56. Let K = Q(
√

173). To compute the Minkowski constant MK , we must

first find ∆K . Since 173 ≡ 1 (mod 4) we get ∆K = 173, so from here we can compute

MK =
2!

22

√
173 ≈ 6.58. This means that to establish class number one, it suffices to

find a clique in LK of size 7 or more. Long and Thistlethwaite give such a clique,

namely{
0,
−77 + 3

√
173

2
,−25 + 2

√
173,−12 +

√
173, 13−

√
173,

27 +
√

173

2
,
53−

√
173

2

}
.

Note that cliques are translation invariant so we can always assume that a clique

contains 0. This example is important since Q(
√

173) is not norm-Euclidean, so

Lenstra’s method would not work to show class number one here. It is not known if

there is clique in LK of size 8. However, one can find cliques of size eight in P(∞)
K .

We give an example here of a such a clique:{
0,

13 +
√

173

2
,
171 + 13

√
173

2
, 13 +

√
173,

355 + 27
√

173

2
,

197 + 15
√

173

2
, 434 + 33

√
173, 605 + 46

√
173

}

The code used to generate this example was written in SAGE and is included in our

Appendix.
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CHAPTER 4

CONCLUSION

The main body of our work was to further improve the methods implemented

by Lenstra, Long, and Thistlethwaite. In specific, Corollary 54, which we proved,

generalized all of the previously known results. Prior to this Lenstra, Long, and

Thistlethwaite had only proved that class number one was given only with unit cliques

or prime cliques, refer to Theorem 50. This new and very powerful result,that we

have proved, is useful in the computation of clique sizes for our prime power cliques.

Furthermore, the code we produced, as seen in Appendix A, allow us to produce,

compute, and verify the existence of these cliques. We could see the fruits of our code

in Example 56. It would be a long and tedious construction if we actually tried to

construct all of these computations by hand. The problems are that not only is it

hard to produce every prime ideal and prime power ideal for our real quadratic field

but having to check that the differences of each and every combination of elements

exist in one of these ideals is nearly impossible to do by hand.

We conclude our work by leaving the reader with a few open problems. Can we

generalize our work and preserve class number 1 if we allow ω(L(n)
K ) > MK for any

n > 2? One of the major unanswered questions is as to whether or not there are

infinitely many real quadratic fields of class number one. The framework to prove

this result, to which we contributed to in this thesis, is quite significant to solving

this previous conjecture. The conjecture is believed to be true and the creation of

our prime power cliques gives hope that it is.
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APPENDIX A

SAGE CODE

The following is the Sage code that was created for the computations of our prime

power cliques.

sage: K.<a> = QuadraticField(173)

sage: U=UnitGroup(K)

sage: U.gens_values()

[-1, 1/2*a + 13/2]

sage: E = 1/2*a + 13/2

sage: E.norm()

-1

sage: list = [E^n for n in range(-4,4)]

sage: list

[-2223/2*a + 29239/2,

85*a - 1118,

-13/2*a + 171/2,

1/2*a - 13/2,

1,

1/2*a + 13/2,

13/2*a + 171/2,

85*a + 1118]

sage: P=Primes()

sage: L=[]
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sage: for j in range(20):

... p = P.unrank(j);

... if kronecker(173,p)==-1:

... L = L+[p, p^2];

... else:

... b = Integer(Mod(173,p).sqrt());

... I = K.ideal([b+a,p]);

... J = K.ideal([b-a,p]);

... Igen = I.gens_reduced()[0];

... Jgen = J.gens_reduced()[0];

... L = L+[Igen, Igen^2, Jgen, Jgen^2];

sage: L = [1]+L

sage: M = []

sage: for j in L:

... M = M + [j*i for i in list]

sage: prematrix=[];

sage: for i in range(len(M)-1):

... row = [];

... for j in range(len(M)-1):

... if j <= i:

... row = row + [0];

... else:

... gen = M[i]-M[j];

... n = Integer(abs(norm(gen)));

... if n.is_prime_power():

... row = row + [1];
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... else:

... row = row + [0];

... prematrix = prematrix + [row];

...

sage: postmatrix = matrix(prematrix)

sage: AdjMat = postmatrix + postmatrix.transpose()

sage: G = Graph(AdjMat); G

Graph on 471 vertices

sage: G.clique_maximum()

[14, 22, 38, 46, 62, 222, 254, 286, 302, 318, 334]

sage: [0, M[5], M[6], M[13], M[94], M[109], M[158], M[166]]

[0,

1/2*a + 13/2,

13/2*a + 171/2,

a + 13,

27/2*a + 355/2,

15/2*a + 197/2,

33*a + 434,

46*a + 605]
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