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ABSTRACT

MACHINE LEARNING METHODS FOR KIDNEY DISEASE SCREENING

by Rathna Ramesh

The number of people diagnosed with advanced stages of kidney disease has been

rising every year. Early detection and constant monitoring are the only way to prevent

severe kidney damage or kidney failure. Current test procedures require expensive

consumables or several visits to the doctor, which results in many people foregoing

regular testing. To address this problem, we propose a cost-effective teststrip-based testing

system that can facilitate kidney health checks from the comfort of one’s home by using

mobile phones. The specially designed teststrip facilitates a colorimetric reaction between

alkaline picric acid and creatinine in a blood sample that has been applied to the teststrip.

Our system uses state-of-the-art deep learning localization models to capture quality

images of the teststrip using a cell phone, and then processes them using computer vision

and machine learning techniques to predict the concentration of creatinine in the sample

based on the change in color. The predicted creatinine concentration is then used to

classify the severity of the kidney disease as normal, intermediate risk, or kidney failure.

We thoroughly evaluate the effectiveness of our models, both in the localization and

classification tasks, and find that our histogram of color-based, hybrid nearest neighbor

methods outperform alternatives and exhibit good overall prediction performance.
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1 Introduction

Between 8 and 10 percent of the world’s adult population have some form of kidney

damage, and every year millions die prematurely of complications related to chronic

kidney diseases (CKD) [1]. Luckily, with early diagnosis and treatment, it is possible to

slow or stop the progression of kidney disease. However, even the most basic kidney

screening tests available, such as the blood urea nitrogen (BUN)/creatinine ratio test, cost

$25 or more [2]. The high cost affects the frequency of testing among the lower income

population, making early detection less likely. Patients get tested only after they start

experiencing symptoms and, by then, it is already too late for treatment to be effective. To

address these issues, in this thesis, we present a novel kidney health screening system that

is affordable and easy-to-use. Our system uses state-of-the-art computer vision-based

machine learning techniques on a mobile phone to analyze a picture of a teststrip and

predict the status of kidney health.

Creatine is a compound formed during the protein metabolism. It is a source of energy

for muscles. The by-product waste substance created when muscles break down creatine

is called creatinine. The kidneys are tasked with filtering almost all of the creatinine from

the blood and releasing it into urine. This makes blood creatinine levels a good indicator

of kidney health. Most kidney health clinical testing use Jaffe’s reaction, a colorometric

reaction of creatinine and picric acid in an alkaline solution, to measure the levels of

creatinine in blood and urine. When picric acid and creatinine react, they form a

yellowish red compound. Max Jaffe observed that the color change that occurs is directly

proportional to the concentration of creatinine. Our system also makes use of Jaffe’s

reaction to estimate the creatinine concentration. We use the predicted creatinine

concentration to compute a generalized kidney health indicator, called the estimated

glomerular filtration rate (eGFR). In our research, the modification of diet in renal disease

(MDRD) equation, proposed by Levey et al. [3] is used to determine the eGFR value. The
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MDRD equation accounts for factors such as age, gender and ethnicity, which results in a

better estimate of effective renal function. The equation gives a value in the range of

0–150, where 60 and above indicate a healthy kidney, and patients with values between

0–15 require immediate dialysis or kidney transplant.

The current creatinine concentration measuring methods, such as absorbance

spectrometry [4], require expensive devices and expertise in handling the instruments. Our

research aims to lower the cost of kidney health checks, which would allow for more

frequent testing and could potentially save lives. The testing procedure is designed to be

simple and does not require expensive specialized equipment. We are developing a smart

phone application, Kidney Health Monitor (KHM), and specially designed cost-effective

teststrips, which would lead to a potential cost of less than $2 per test. Although in this

work we have tested our system using only synthetic creatinine compounds and did not

use human blood for carrying out experiments, the system design and teststrip

construction will not change significantly in a human trial, keeping the cost relatively

similar.

Our kidney health monitoring system employs several novel techniques for taking

quality pictures of teststrips and analyzing them. The application uses deep learning-based

object localization techniques to ensure the quality of the captured teststrip image that

will be used in further analysis. The application only captures the image of the teststrip

when the teststrip has been correctly positioned and oriented. Machine learning regression

models are then used to predict the level of creatinine based on the color pixels captured

in the image. Based on the eGFR value determined from the creatinine prediction, the

application displays a color indicative of the user’s kidney health. The colors green,

yellow, and red are used to indicate healthy kidneys, presence of kidney disease, and need

for immediate medical attention, respectively. The main contributions of this research are

as follows:

2



∙ We designed a novel end-to-end system that uses computer vision techniques and

machine learning to estimate kidney health from the color change in a teststrip.

∙ The system uses object detection and localization models to capture quality pictures,

eliminating the need for external, more costly devices.

∙ A novel hybrid regression model is introduced that first estimates the range of

creatinine concentration and then predicts the actual creatinine concentration value

using specialized functions.

3



2 Literature Review

Blood creatinine concentrations continuously change throughout the day in a healthy

adult. The test methods we are developing are designed to act as an early warning system,

by letting the user know when creatinine levels in the blood are high. This would prompt

the user to seek medical advice early on and avoid allowing the disease to progress

unnoticed. To keep the cost as low as possible, we eliminated the need for a smartcard

device that attaches to the mobile phone. Instead, our system uses teststrip detection and

localization to guide the user in positioning and orienting the teststrip, which will ensure

that quality pictures are taken that can result in accurate classification of disease

progression. This section discusses current kidney disease screening technologies,

state-of-the-art object detection and localization methods, and image processing and

machine learning techniques that informed the choice of our regression models.

2.1 Kidney Disease Screening Technologies

Jaffe’s reaction is still the most prevalent method to measure creatinine concentration

in blood/urine sample in laboratories. Otto Folin, in his 1916 Lab Manual of Biological

Chemistry [5], formalized using Jaffe’s reaction in clinical and laboratory testing. To

measure creatinine concentration, the Centers for Disease Control and Prevention [4]

recommend charting absorbance of a precise volume of the sample infused into an

alkaline picrate solution. Absorbance readings are taken at 520 nm between 19 and 25

seconds after sample injection. Over the years, laboratories world-wide have automated

many analytical processes and developed systems to analyze the samples in bulk, which

helped reduce the overall testing cost.

Despite being the most prevalent form of medical diagnostic testing, centralized

testing is inconvenient for many patients. The testing and consultation process are often

not provided as a combined service in one visit, making a second trip necessary to

complete each assessment. In particular, those with a chronic disease require regular

4



monitoring and laboratory testing. This has led to growth in self-monitoring point-of-care

testing (PoCT), which brings medical diagnostic testing to the patients at the time and

place of care. The healthcare sector has been making huge strides towards PoCT, partly as

a result of economic pressures of high testing fees [2], and also to make healthcare less

fragmented and more patient-centered [6]. However, the PoCT devices currently available

on the market are expensive, making their utility limited. With the advent of artificial

intelligence, PoCT researchers have turned to machine learning for building robust

systems that can perform to laboratory standards for a fraction of the cost.

StatSensor [7], a point-of-care whole blood creatinine and eGFR testing device

recently launched by Nova Biomedical, has gained wide popularity among medical

practitioners. It incorporates multi-well technology adapted from their hospital glucose

monitoring system [8]. Like most of the glucose meters, StatSensor uses an

electrochemical reaction to measure creatinine concentration using the coulometric

method [9]. Teststrips contain a capillary that absorbs a small amount of blood. The

creatinine in the blood reacts with an enzyme electrode containing creatinine oxidase.

When the assay on the electrode is reduced, it generates an electric current to re-oxidize

the compound. The oxidized creatinine is directly proportional to the total charge passing

through the electrode. Despite its mobility and ease of use, the high cost of the device has

restricted its popularity with consumers.

Table 1 summarizes specifications of prominent PoCTs currently available in the

market for measuring blood creatinine concentrations, as first presented by Shephard [10].

All of these devices require expensive single use consumables, in addition to custom

concentration measuring hardware, making them very expensive for frequent domestic

use.
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Table 1
Non-analytical Specifications of PoCT Devices

Device iSTAT ABL 800 Flex Reflotron StatSensor
Price $14,925.77 [11] $8,500.00 [12] NA $4,080.66 [13]

Method Enzymatic Enzymatic Enzymatic Enzymatic
Principle Amp biosensor Amp biosensor Dye reflectance Amp biosensor

Consumable Cartridge Sensor cassette Dry strip Dry strip
Time for result 2 min 1 min 2 min 0.5 min

Range 0.20-20 mg/dL 0.11-22.62 mg/dL 0.51-10 mg/dL 0.30-11.95 mg/dL
Size Hand held Bench top Bench top Hand held

Weight 0.7 kg 33 kg 5 kg 0.4 kg

2.2 Object Detection and Localization Models

The object localization techniques have evolved, starting with gradient based

localization [14], all the way to region proposal-based localization techniques. In these

region proposal-based systems, the method looks for presence of an object in certain

regions of the image. The regional convolutional neural networks (R-CNN) method by

Girshick et al. [15], the first method to achieve mAP of 53.3% on the VOC 2012 dataset

for object detection and localization, used the region recognition method proposed by Gu

et al. [16] to extract around 2000 bottom-up region proposals. For each of the region

proposals, features are computed using a large convolutional neural network, after which

each region is classified using class-specific linear SVMs. The Fast R-CNN method,

devised by Girshick [17] improved upon its predecessor by using selective search for

region proposals. This allowed 9× faster training on large datasets and 213× faster

testing than R-CNN. Hosang et al. further improved on the method by adding a region

proposal network (RPN) to propose fewer higher quality regions in Faster R-CNN [18].

The RPN network ranks pre-defined region boxes and proposes the ones most likely to

contain the object. This drastically reduces the number of regions proposed and thus

reduces the time taken to classify and allows testing 5 frames per second on a GPU. A

comprehensive literature survey and comparison between different state-of-the-art object

proposal methods is provided by Hosang et. al. [19], [20].
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For our system, the speed of prediction and ability to use the method in the memory-

and computation-constrained space of mobile applications were the primary factors we

considered when choosing the method for teststrip detection and localization. As the

method needs to run on a smart phone, it needs to be light-weight, as well as accurate. A

state-of-the-art fast method that meets these requirements is the Redmon et al. YOLO

deep neural network model [21]. The model produces all of the detections in only one

pass of the image (hence the name, ”You Only Look Once”). The input image is logically

divided into S×S grids. Each grid cell predicts B bounding box coordinates and box

confidence scores for the object whose center is likely to be within the grid. That is, if the

model is trained to localize C different objects, then the model would generate

S×S×(B×5+C) bounding box proposals and would provide a confidence level for the

likelihood of each bounding box containing the sought-after object.

The single-shot detection (SSD) method by Lin et al. [22] is another viable option

which also provides multiple box prediction in only one pass, similar to YOLO. It is more

accurate than YOLO and is comparable to slower techniques that perform explicit region

proposals and pooling (e.g., Faster R-CNN). In SSD, the input image is split into default

bounding boxes of various sizes with aspect ratios and feature map scale values, rather

than grids. At prediction time, the network generates confidence scores for the presence of

each object category in each default box and produces adjustments to the box, such as

scaling, to better fit the object. However, preparing the data for training and decoding the

prediction output is a complex task. The generated output bounding boxes need to be

mapped to the default boxes in the region by applying size adjustment transformations

predicted from the aspect ratio and scale parameters. This makes the adoption of the SSD

neural network structure in other artificial intelligence frameworks difficult.

A number of improvements were introduced in YOLO version 2 [23], including

pre-computing anchor aspect ratio priors using k-means clustering, adding a pass-through
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layer from an earlier layer at 26×26 resolution to the fine-grained feature maps, and

augmenting images during training. These changes make the network aware of multiple

object scales and lead to improved overall effectiveness. In our work, we adopted YOLO

version 2 due its simplicity, effectiveness, and wide usage in mobile-based applications. In

the future, we intend to expand our research to combine concentration prediction and

teststrip detection in one model, and YOLO’s network architecture makes it possible to

make such additions in the prediction outputs.

2.3 Image Processing

Image processing consists of techniques that are applied to images in order to enhance

discriminative features for different tasks important in computer vision applications.

Noise and unwanted information are generally removed from a processed image. Then,

features are sought that can exacerbate similarities and differences between images. The

colorspace the image will be represented in and feature extraction techniques are chosen

to accommodate the specific application the images is being processed for. The colorspace

defines how the colors in the pixels of an image are represented as numbers, generally in

a vector or matrix form. The computer can then use the vectors in developing machine

learning models, or functions, that can answer real world questions, such as the presence

or absence of a cat in a picture. Our application domain requires detecting subtle

differences in color as the creatinine in the blood reacts with the picric acid solution in the

teststrip.

Many computer vision applications, such as the famous Viola-Jones real-time face

detection [14], use grayscale images in their methods to reduce computation and memory

cost. Grayscale images encode only one color, instead of three, and thus require less

resources to process. Information such as gradient and focus, which are crucial for pattern

recognition problems, can be easily extracted from grayscale images through simple

differencing operations. However, our problem is centered around color changes between
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images, rather than patterns found within an image. Thus, grayscale images will not be

suitable for our application.

Since the popularization of color triangles through photography experimentations by

James Clerk Maxwell in the 1860s, colors have been represented as chromatic triplets for

use in television and photographic technologies. The most widely used colorspace, RGB,

is obtained by linearly combining the values of red (R), blue (B), and green (G) present in

the sample. Both chrominance (color information) and luminance (intensity of incident

light/exposure) values are combined in the RGB representation. Instead, the HSV color

encoding [24] provides more distinction between the chrominance and luminance values.

It has a cylindrical representation system where hue (H) is the angular component,

encoding the color spectrum as angles between 0°and 360°, and saturation (S) denotes the

intensity of the color radially increasing outwards. The value component (V) encodes

brightness, ranging from completely dark (0) to intense coloring (255). In our research,

we have extracted features from both the RBG and HSV colorspaces to train our machine

learning models.

A histogram of colors extracted from the RGB colorspace image representation has

been successfully used to index images for image retrieval applications [25]. However,

color histograms obtained from RGB are susceptible to light intensity and exposure

changes, limiting their application in our research. Color constancy approaches depend on

statistics of outputs of linear [26] and non-linear filters [27], [28]. Convolutional neural

network-based methods have been proven to be much more effective than statistical

methods in achieving color constancy [29]–[31], though the representation of colors in

deep neural networks is still poorly understood [32]. In our application, it is also

important that the reason behind the output classification decision can be easily

understood by the user, if they choose to know.
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2.4 Classification and Regression Models

One closely related system that predicts continuous values for color change observed

in the reaction between urine and picric acid solutions is the homemade spectrometer by

Debus et al. [33]. The system uses a laptop screen and a mobile phone to capture the

absorbance spectrum in a strictly light controlled setup. Images of the absorbance

spectrum are used to find the creatinine concentration using a Matlab program. Despite

being a low cost system, the setup requires technical acumen and the detection is time

consuming. We did not find any machine learning system that predicts the amount of

color change as continuous values. Almost all of the previous works use a classification

model to solve their respective problems.

One of the early experiments to classify images based on color from a camera feed

was conducted by Lalanne and Lempereur [34]. They used a supervised algorithm based

on Bayesian statistics and a two layer neural network to classify the temperature of

thermal paints based on their color. More recently, Paulraj et al. used a 5 hidden layered

artificial neural network to predict the ripeness of a banana with an accuracy of 96% [35].

In their experiment, each of the red, blue and green color channels were converted into a

three binned histogram, which was given as input to the neural network. Our project

focuses on identifying different shades in a smaller color range than in the experiments

conducted to decide the ripeness of a banana, and using histogram of RGB color channels

image representations may not work as well in our application.

10



3 Chemical Experiment Design

This project is a collaboration between the department of Biomedical Engineering and

the department of Computer Engineering at San José State University. We collaborated on

designing the experiment by verifying that the color change is prominent enough for the

image processing techniques to differentiate the minutest change in concentration values.

We tested for different concentrations of picric acid, dimensions of the detection zone,

light intensities, and distances from the camera to perform the experiments. Our primary

responsibility, and the subject of this thesis, was to use the images captured throughout

the chemical experiments to develop machine learning models that can predict the amount

of creatinine in a blood sample. In contrast, our collaborators, Dr. Alessandro Bellofiore

and his student Ragwa Elsayed, executed the chemical experiments and did not participate

in processing images or learning prediction models. This section discusses the teststrip

design and the data collection process.

3.1 Teststrip Design

The teststrip design is inspired by the simplicity and cost-effectiveness of

over-the-counter pregnancy tests. The design is similar to that of lateral flow assays (LFA).

LFAs are simple paper-based devices intended to detect the presence (or absence) of a

target compound in a liquid sample without the need for specialized and costly equipment.

Fig. 1 shows the typical components of an LFA [36].

Sample
pad

Conjugate
pad

Membrane

Test line Control line

Absorbent
pad

Direction of flow

Fig. 1. Lateral flow assay teststrip design.
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The sample pad is made up of an absorbent material, which ensures that the applied

liquid sample spreads evenly and in controlled amounts onto the conjugate pad. The

activated analyte from the conjugate pad migrates along the strip into the porous

membrane called the detection zone. There, the analyte whose presence is to be detected

in the sample reacts with the reagent in the membrane, producing a colorimetric response.

The control line is an optional component and indicates proper liquid flow through the

strip. The pad at the other end of the membrane absorbs any extra fluid that flows out of

the membrane.

Since the teststrip acts as a reaction bed that facilitates Jaffe’s reaction to quantify the

color change, we do not need both the control and test lines in our experiment. The

membrane in the detection zone is pretreated with picric acid. The reaction between picric

acid (reagent) and creatinine (analyte) in the blood sample creates a color change in the

detection zone. The concentration of creatinine in the blood sample is predicted from the

degree and direction of the color change observed in the detection zone. Fig. 2 shows

three example teststrips on which different creatinine concentrations were applied.

Figures in this thesis are best viewed in color. The color difference between the first and

the third teststrips, which have had 1.0 mg/dL and 20.0 mg/dL creatinine solutions

applied, respectively, is evident even with the naked eye. However, the difference in color

is not noticeable between the first and second teststrips, which differ in concentration by

only 1.0 mg/dL. This indicates that the feature extraction and prediction models we

develop must be able to capture discriminative features humans may not be able to detect.

Fig. 3 shows a large number of the teststrips that were used in our experiments.

As this is a preliminary study meant to validate the design of our kidney disease

prediction system, we used a synthetic creatinine solution to create our dataset, rather

than human or human-analog blood. When the creatinine solution is applied to the sample

pad, the solution flows through it into the detection area. There is no conjugate pad in this
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Fig. 2. Example teststrips with different creatinine concentrations.

Fig. 3. Testrips created and used in our experiment.

teststrip design as the creatinine solution does not need to be filtered from blood in our

experiments. In the next stage of the project, a conjugate pad which separates the red

blood cells from the sample will be added to make the teststrip ready for experiments

with blood samples.

3.2 Data Collection

The presence of kidney disease and its progression can be determined using the eGFR

scale, as shown in Fig. 4. In our study, we use the MDRD equation [3] to determine the
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eGFR value from the creatinine concentration, which is defined as

eGFR = 175×S−1.154
Cr × age−0.203 ×0.742 if female×1.212 if African born, (1)

where SCr is the creatinine concentration in the blood sample, measured in mg/dL.

Analyzing the formula, we can see that the eGFR value is inversely proportional to

creatinine concentration to the power of 1.154. The changes in factor contributed by

different creatinine concentration in the eGFR equation is shown in Fig. 5. We can see

that drastic changes occur in the factor for small changes in creatinine concentrations

between 0–2 mg/dL. Beyond 4 mg/dL, the factor is very close to zero. Thus, the precision

of the creatinine concentration predicting regression model between 0–4 mg/dL is crucial

to ensure good overall kidney health prediction.

0

Intermediate CKD

15 30 45 60 75  90 115 120

Healthy kidneysCritical
CKD

eGFR values

Fig. 4. Kidney disease progression given different eGFR values.

The eGFR values of 15, 30, 60 and 90 are considered critical, as they differentiate

between different stages of kidney disease (Fig. 4). To determine the range of creatinine

concentrations that give these critical boundary eGFR values, we plotted a graph between

the creatinine concentration and the age of the patient for each of the critical eGFR values.

To capture the variance introduced by gender and ethnicity, we plotted four functions in

the graph, one for each combination of gender and ethnicity noted in the equation. Fig. 6

shows our generated plots for each of the eGFR boundaries. The plots indicate that, for the

majority of age groups, creatinine concentrations between 0.4 mg/dL and 10 mg/dL lead

to critical kidney health conditions. It is thus essential that we capture the color change
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Fig. 5. Variation of the eGFR creatinine factor given different creatinine concentrations
(Scr).

observed in creatinine concentrations in smaller steps in this range, to provide machine

learning models with enough data to accurately predict the patient’s kidney health.

Given our analysis results, we designed our experiment to collect data in steps of

0.1 mg/dL between 0 mg/dL to 3.9 mg/dL of creatinine concentration, so that we could

capture the minutest differences in color. For higher creatinine concentrations, the

differentiation between kidney disease severity codes involves wider concentration ranges,

which we uniformly sample using wider steps. We tested concentrations between 4 mg/dL

and 7.5 mg/dL in steps of 0.5mg/dL, between 8 mg/dL and 19 mg/dL in steps of 1 mg/dL,

and between 20 mg/dL and 60 mg/dL in steps of 10 mg/dL. Moreover, we prepared 4

teststrips for each concentration and took pictures of each strip at 5 different stages of

applying the creatinine solution, namely

∙ stage 0: before applying the creatinine solution,

∙ stage 1: 2 minutes after applying the creatinine solution,
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Fig. 6. Creatinine concentrations (Scr) vs. age at critical eGFR values.

∙ stage 2: 12 minutes after applying the creatinine solution,

∙ stage 3: 22 minutes after applying the creatinine solution, and

∙ stage 4: 32 minutes after applying the creatinine solution.

The stages were chosen with the knowledge that, as time progresses and the teststrip dries,

the saturation and intensity of the color on the teststrip may also change. One of the goals

in our experiment is to find a time segment after which the color changes are significant

enough for all concentrations of creatinine so that machine learning algorithms can

differentiate between them and learn from them. We created 4 teststrips to test the

repeatability of the chemical experiment per concentration. Thus, a total of 260 teststrips

were prepared for this experiment, as summarized by Table 2. For each stage of the
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experiment, except stage 0, we captured two pictures of each teststrip, to ensure that at

least one high quality picture existed for each chemical experiment data point.

Table 2
Distribution of Tested Creatinine Concentrations

Concentration No. of No. of
range Steps concentrations samples

0–3.9 mg/dL 0.1 mg/dL 40 160
4–7.5 mg/dL 0.5 mg/dL 8 32
8–19 mg/dL 1 mg/dL 12 48
20–60 mg/dL 10 mg/dL 5 20

In the current research, our goal is to validate the idea of using image processing and

artificial intelligence on a smart phone to predict kidney health. In this preliminary study,

we eliminated several sources of error that could potentially affect the effectiveness of our

prediction models. As changes in ambient light can affect the color being perceived by

cameras, we used a light box to avoid external light interference. Moreover, even though

our project involves designing methods to aid users in taking quality pictures of the strips,

we took all pictures from a fixed distance, using fixed focus and aperture settings on the

camera. Additionally, while we developed models for localizing the teststrip in an image

taken by the camera, we used manually annotated bounding boxes in training and testing

our prediction models. Successful prediction in this setting will signal that our kidney

health monitoring system may also work in general lighting conditions and using the

localization model to extract the detection zone from the teststrip.

The light box we used in the experiment has a black exterior to keep external light

from the sample and a silver interior reflects the light within the light box. An array of

white chromatic LEDs attached to the roof are the only source of illumination within the

light box. Controls are provided to adjust the intensity of the light within the light box.

The light box has a small opening in its roof, big enough for a camera to capture images

of objects placed inside it. The teststrips are placed at a distance of 10 cm from the roof

of the light box, which ensures that the intensity of the light incident on the teststrips
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remains constant throughout the data collection. The teststrips were placed on a black

background, which we found gave a better contrast, allowing easier detection and

localization of the teststrips.
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4 Methodology

To combine the image capture and prediction, we have designed an iOS application

that

∙ detects the presence of the custom teststrip in the camera frame and localizes it,

∙ captures a high quality picture of the teststrip and localizes the detection zone,

∙ processes the color change in the detection zone and directly gives a color coded

indication of kidney health.

In this section, we discuss the methods that we designed for teststrip localization,

prediction of creatinine concentration, and eGFR-based classification of kidney health.

From a picture of teststrip, the patient’s kidney health is predicted as healthy,

intermediate risk, or critical. To determine the appropriate category, we use the MDRD

equation noted in Equation 1 to compute the glomerular filtration rate from the predicted

creatinine concentration. The eGFR value is influenced not only by the concentration of

creatinine in blood but also by age, ethnicity, and the gender of the patient, which makes

classifying kidney disease stages impossible from the teststrips directly. As an example, a

20 year old African born male whose blood creatinine concentration is 3.1 mg/dL has

moderate renal function with an eGFR value of 31.289 mL/min/1.73m2. However, a 70

years old non-African woman is at high risk of kidney failure for the same blood

creatinine concentration, with an eGFR value of 14.854 mL/min/1.73m2. Accurate

creatinine concentration predictions are essential to correctly classify renal function. Thus,

we used machine learning to build regression models that can accurately predict blood

creatinine concentration. The predicted creatinine concentration value is then used in the

MDRD equation to compute the predicted eGFR value for a specific patient and classify

the intensity of the kidney disease into the three stages.

In this section, we discuss the design of Kidney Health Monitor (KHM), the mobile

application we designed to capture quality teststrip images and predict kidney health.
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First, we discuss the localization model we developed to enable KHM to capture quality

pictures. Next, we discuss the various feature extraction techniques we developed to

enable our machine learning models to make accurate predictions. We then discuss the

various baseline machine learning models we used to predict the concentration of

creatinine in the teststrip. Finally, we introduce our hybrid concentration-based binned

regression models for predicting the creatinine concentration from teststrip images.

4.1 KHM Application Design

Kidney Health Monitor (KHM) is designed to predict the state of a patient’s kidney

health in real-time using on-device machine learning models. Until recently, Apple’s

Metal library [37] was the only means to run machine learning models on an iOS device.

Metal provides application programming interfaces (APIs) to access the built-in GPUs in

Apple devices. This requires writing complex code to control different aspects of an

application, such as distributing and collecting data, work load balancing, communication

between cores, check pointing, and so on. The alternative would be to design a distributed

application. The data from the application can be sent to a remote system that can run the

machine learning model and send back the results. This requires a robust system that can

scale seamlessly to service a large amount of requests in parallel. This may increase the

cost of the analysis for users, both due to data transmission costs and the service cost

needed to cover the server maintenance.

The recently released Apple Core ML framework for machine learning [38],

customized for on-device GPU, supports extensive deep learning models along with

standard machine learning models, such as support vector machines and generalized

linear model [39]. It is built on top of native low-level libraries, such as Metal and

Accelerate, and is capable of optimal power and efficiency for Apple devices. We used the

Core ML framework to run our localization and regression machine learning models. To

enable the Core ML framework to run the model, the weights from other frameworks
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Fig. 7. Kidney Health Monitor application.

need to be converted to the mlmodel format expected by Core ML. The teststrip

localization YOLO model was converted from the weights format used in darknet [40],

which YOLO was designed to run on, to the keras-tensorflow supported h5 format using

YAD2K (Yet Another darknet 2 Keras tool) [41]. Then, the h5 weights were converted to

mlmodel format using Core ML tools [42].

We chose to build our app in the Swift 4 programming language. The various online

resources made available by educational institutions, Apple, and the community have

been very helpful in building the application [43], [44]. Applications written for iOS

devices are required to follow strict guidelines on modularity, data and control

distinctions, and data persistence. The readily available APIs, the type-written nature of
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the swift language, and the implicit data corruption checks, make it easy to develop iOS

applications, despite the restrictions.

The application captures the camera feed at 15 frames per second. We resized these

frames to 416×416 pixels, as required by the YOLO model that we trained to detect and

localize the teststrip. The bounding box coordinates predicted by the localization model

are used to check if the dimensions of the teststrip are as expected. If the ratio between

the length and width of the teststrip do not fall under expected values, the user is

prompted to re-orient the teststrip. If the length is longer, or shorter, than the expected

range, the user is prompted to move the teststrip farther, or closer, accordingly. After the

dimensions are verified, the application auto-focuses on the teststrip to get the best picture

clarity and stores the image along with the user’s name and the capture timestamp.

The localized image of the teststrip is further processed to identify the detection zone

within the teststrip. Specifically, the detection zone is identified as the region containing a

high concentration of yellow pixels, where yellow is defined by a range of hue and

saturation values in HSV colorspace. From the detection zone, features are extracted and

fed to machine learning models, which then predict the creatinine concentration in the

sample and the associated eGFR value. The images captured, along with the predictions,

are stored in the file system automatically. The user can choose to view or delete them

from the history screen.

4.2 Teststrip Localization

We used the YOLO [23] deep neural network model to detect and localize the

teststrips in our application. The network has 24 convolutional layers, followed by 2 fully

connected layers. The output is optimized for the sum of squares error with a differential

confidence scoring scheme for grid cells with and without objects. As each grid cell is

responsible for predicting B bounding boxes, there could be a few box predictions without

an object within the grid. The sum of squares error for such cells can push the overall
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confidence score of the grid cell to be very low. To remedy that, different multiplying

factors, λcoord and λnoob j are used to calculate the error for predictions with and without

an object, respectively, within each grid cell. In YOLO version 2, λcoord is set to 5 and

λnoob j to 0.5. To make the model aware that error in prediction bounding boxes of a

smaller object is more costly than that of a larger object, YOLO outputs the square of the

width and height of objects internally. This enforces higher penalties for errors when

predicting smaller objects, improving the quality of localization for both smaller and

larger objects.

As discussed in Section 2.2, YOLO splits the input images into 7×7 grid cells. For

each cell, 5 bounding box coordinates and associated confidence scores are predicted for

an object whose center is likely to be within the grid. In the darknet framework, the

bounding box coordinates of grids with confidence above a set threshold are returned as

detections. Since we need to localize only one teststrip at a time, we chose the bounding

box coordinates predicted by the grid with the highest confidence to localize the teststrip.

Fig. 8. Teststrip localization by the YOLO model in the darknet framework.
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4.3 Feature Extraction

In our system, to predict the creatinine concentration from the images of teststrips, we

use machine learning techniques applied to features extracted from the detection zone. To

give our learning models the best chance at prediction, we manually annotated the

detection zones for all teststrip images from the concentration prediction dataset. The

BBox-Label-Tool [45] was used to identify the detection zone bounding box coordinates.

For each of the images in the dataset, the image is cropped to contain only the

detection zone given by the appropriate bounding box coordinates using OpenCV library

functions [46]. These cropped images are then used to extract features for the learning

models. In the remainder of this section, we discuss the three types of features that we

extract from the cropped images of the detection zones.

4.3.1 RGB Pixel Values

In the RGB representation, each pixel in an image is expressed as a vector of three

integers, one for each of the red (R), green (G), and blue (B) color channels, with values

in the range of (0,28). To extract RGB features, we first extract the detection zone images

as 3-dimensional matrices of red, green and blue channels. However, the cropped

detection zone images are each of different sizes. Further, since the detection zones were

manually annotated, there is a good chance of annotating areas outside the color change,

introducing noise in the pixels, as shown in the left image in Fig. 9.

We further crop the image to the center 64×64 pixels within the bounding box. This

solves both the problem of irregular size and unintentional noise introduced in the feature

vector. Fig. 9 (right) shows the centrally cropped image used to create our RGB feature

vector. The RGB color values for each pixel in the cropped region are concatenated to

create a single vector.
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Fig. 9. Image of detection zone cropped using the bounding box annotations (left) and an
image further cropped to the central 64×64 pixels (right).

4.3.2 Histogram of Colors

One drawback of using the RGB vector representation is that, if the reaction does not

happen uniformly throughout the central part of the detection zone, different sections of

the RGB vector may have deviations from the color representative of the creatinine

concentration. To alleviate this problem, we devised histogram of colors (HOC) feature

vectors, which represent the image as a distribution of colors they contain, rather than a

sequence of colors contained in the image pixels. A histogram is a representation of

distribution of elements within a set of values. An equal width histogram splits the range

of the set into bins of equal sizes and counts the number of elements that fall into each

bin. Normalizing these counts gives the distribution of the elements in the set.

For our data, we choose to calculate the color distribution based on the HSV color

space values. In the HSV colorspace, the effect of change in lighting conditions on the

color is captured by the value (V) channel, independent of the hue (H) and the saturation

(S) channels. This gives images better color constancy than in the RGB representation,

where the color and brightness information are held by all the three channels. In the HSV

colorspace, the hue (H) represents the color spectrum information and saturation (S)

encodes the intensity of coloring. The brightness, encoded by the value (V) component, is
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not significant for our application. Therefore, we created histograms to represent the

distribution of only the hue and saturation values.

We apply the histogram on the cropped images of detection zones. Since the color

change observed in Jaffe’s reaction takes place in a particular range of yellow, pixels

belonging to all the other colors are irrelevant to our analysis. Thus, we mask the hue and

saturation values that are not encountered in our experiments, leaving an additional small

buffer at each extremity. After experimenting with values in the range of [0, 45] for hue

and [0, 255] for saturation, we chose the ranges [20, 35] and [100, 255] for masking the

hue and saturation, respectively. Fig. 10 and 11 (left) show example images of detection

zones before and after masking. From these masked images, histograms are computed.

To compute the histograms, we split the hue and saturation ranges into α and β

equal-width buckets, respectively, creating a total of α ×β buckets. These buckets make

up the feature space for representing our image. Each bucket will record the number of

pixels (excluding the masked pixels) whose hue and saturation fall in the range

represented by the bucket. We then compute the similarity between two images as the

cosine similarity between their respective HOC vectors, which is defined as

Cos(x,y) =
xT y

‖x‖2 ‖y‖2
,

where xT y is the dot-product of the two vectors and ‖x‖2 is the L2-norm of the vector x.

Cosine similarity measures the angle between the two vectors and is invariant to vector

scaling, since the angle does not change when changing the length of the vector.

Therefore, as a way to improve computation efficiency, we normalize the feature vectors

using the L2-norm, which scales the vectors to unit length and reduces the computation of

cosine similarities to just finding the dot-product between the vectors. Fig. 10 and 11

(right) show example normalized HOC vectors extracted from the images of the teststrips

depicted in the two figures.
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Fig. 10. Cropped detection zone (left), image after masking pixels (center), and the
histogram of colors (right) of teststrip before application of creatinine solution.
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Fig. 11. Cropped detection zone (left), image after masking pixels (center), and histogram
of colors (right) of teststrip 32 minutes after application of creatinine solution.

4.3.3 Histogram of Gradients

Similar to the HOC features, the histogram of gradients (HOG) features are created as

L2-normalized histogram counts of features. However, the features being tracked are

gradient orientations in localized portions of the image. To find these features, small

portions of the image are multiplied by the kernel (-1,0,1) in both the horizontal and

vertical directions. We use the HOG descriptor function from the OpenCV library, which

uses sliding windows to extract these features. Fig. 12 shows an example of the sliding

27



windows concept. Using sliding windows, gradients are extracted and counted from a

section of the image, before moving on to the next section, which overlaps the first by a

small margin. The extracted gradient feature counts from each section are concatenated

into a single HOG feature vector, which is then L2-normalized.

Fig. 12. Sliding windows with window size 3×3 and stride 1×1.

4.4 Baseline Prediction Models

For each of the feature extraction techniques used, we built regression models, one for

each of the four time points we captured images at after adding the creatinine solution to

the teststrip. In the remainder of this section, we provide a description of each of the

baseline models that we used in our research. We did not apply neural network models, as

the number of data points we had was limited and insufficient for learning the large

number of weights in a neural network without over-fitting.

4.4.1 Linear Regression

The linear regression algorithm fits the data into a straight line equation y = aT x+b,

where x is the feature vector, and a and b are meta-parameters, such that most of the data

points lie on (or close) to the line. The meta-parameters are learned iteratively, with a goal

to reduce the cost of prediction given by a chosen cost function. We use the root mean
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squared error (RMSE) as the chosen optimization cost function for the linear regression

model. Given n samples, the RMSE can be computed as

RMSE =
1
n

(
n

∑
i=1

(y′i − yi)
2

)1/2

,

where y′i is the predicted creatinine concentration and yi is the actual creatinine

concentration for the ith sample.

4.4.2 Support Vector Regression

The support vector regression (SVM) algorithm, which is based on the support vector

machines (SVM) [47] method, uses the features in data to learn a hyperplane that all

samples lie on or are close to. The model can predict the values of new query points by

computing the hyperplane equation, which is a function on the query features. In

kernelized SVM, the input data is mapped into a higher dimensional space using a kernel

function, which allows the samples to be more easily aligned to the hyperplane. The

parameters of the kernel are learned such that the data mapped into the new feature space

can be linearly represented.

4.4.3 Nearest Neighbor Regression

The nearest neighbor regression (NNR) algorithm is a non-parametric method

introduced by N. S. Altman [48]. Unlike the previously discussed methods, it does not

make any assumptions about the distribution of data (e.g., LR assumes that the data is

distributed approximately along a straight line). Instead, at prediction time, the algorithm

finds the closest k neighbors in the training set for each query sample and predicts the

regression value as a function of the actual regression values of the identified neighbors.

The NNR implementation in the sklearn library, which we used in our experiments,

allows for three different ways to combine the regression values of neighbors. Uniform

weighting assigns all the neighbors the same weight, computing the query regression
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value as the mean of all k neighbor regression values. Distance-based weighting uses the

inverse of distance from query of each neighbor as coefficients for the neighbor regression

values. This results in neighbors closer to the query influencing the predicted query

regression value much more than other neighbors. The third option is to provide a custom

weight distribution vector to the algorithm. Finally, the proximity between points can be

measured using different functions, such as the L2 distance or cosine similarity. In the

case of a similarity proximity function, similarity values, which range between 0 and 1,

are transformed into distances by subtracting them from 1.

4.5 Hybrid Prediction Models

In Section 3.2, we established that creatinine concentrations between 0 and 4 mg/dL

result in major changes in eGFR values (Fig. 5). Also, the critical eGFR values of 15, 30,

and 60 fall in the creatinine concentration range of 0.4–3.5 mg/dL for all age, ethnicity

and gender combinations (refer Fig. 6). We hypothesize that we can improve eGFR

classification performance by splitting the regression prediction task among several

concentration ranges. For each range, we build specialized prediction models that focus

on a subset of the samples with creatinine concentrations in the given range. In our

experiments, we built regression models for four different concentration bins, choosing

the same ranges as the ones used during data collection. When a new query sample is

received, it is first classified into one of the four concentration bins. Then the specific

regression model for that bin is used to predict the creatinine concentration. Finally, the

MDRD equation is used to determine the eGFR classification given the predicted

creatinine concentration.

We experimented with three different classification algorithms, support vector

classification, nearest neighbor classification, and logistic regression classification, to find

the classifier-regression combination that gives the least error for each time point. The
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three regression algorithms from the baseline methods are used to train for the

concentration bin-specific regression models.

4.5.1 Support Vector Classifier

The support vector classifier (SVC) uses the SVM algorithm to find a hyper plane

which maximizes the distance between the closest points belonging to different classes.

For a two class classification problem, the support vectors are made up of the positive and

negative class objects closest to the separating boundary. A hyperplane that maximizes the

distance between the support vectors is the optimal choice for a decision boundary that

can distinctively separate the two classes. For a dataset with more than two classes, a

one-versus-all approach is often used, where objects of one class are considered positive

and objects of all other classes are considered negative. A different model is learned for

predicting each class. At prediction time, the class of the class-specific model with the

highest confidence is chosen.

4.5.2 Nearest Neighbor Classifier

The concept behind the nearest neighbor classification (NNC) algorithm is the same

as that of the nearest neighbor regression detailed in Section 4.4.3. After the k neighbors

are found, the final class is decided based on the votes of each of the neighbors. Generally,

the class represented by the majority of the neighbors is predicted as the class of the query.

This method of choosing the prediction class is called majority voting. Alternatively, the

query class can be computed as the linear combination of the neighbor classes and a

weight vector consisting of the similarities between the query and the neighbors.

4.5.3 Logistic Regression Classifier

Logistic regression (LR) is a classification algorithm that predicts, for each query

sample, the probability that it belongs to each of the predefined classes. In most cases, the

model learns the hyper-parameters of a linear equation, as in the case of a linear
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regression model. The regression values are then transformed using the logistic sigmoid

function to a range of 0 to 1. Functions with a characteristic S-curve are termed as

sigmoid functions. The sigmoid function used for logistic regression is given by,

S(x) = 1/(1+ e−x),

where x is the input regression value.
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5 Experiment Design

5.1 Data

We have created and used two datasets in this project. The localization dataset

consists of 1121 images of teststrips taken in different backgrounds and lighting

conditions. The images are 416×416 pixels in dimension and are in JPEG format. The

concentration prediction dataset contains images from the chemical experiments

conducted to capture the magnitude of color change observed in Jaffe’s reaction. For each

of the 65 test creatinine concentrations we identified in Section 3.2, the experiment was

carried out using four different teststrips. For each teststrip, an image was captured before

applying the creatinine solution to the teststrip. Subsequently, two images were captured

2, 12, 22, and 32 minutes after the application of the solution. Table 3 summarizes the

distribution of the collected creatinine teststrip samples. Images in the concentration

prediction dataset are in PNG format, have a resolution of 3024×4032 pixels, and each

takes up 15.5 MB of storage.

Table 3
Images Collected as Part of Our Experiment

Conc. bin Conc. gap # Strips # Time points # Duplicates Total
per teststrip per time point

0-4 mg/dL 0.1 mg/dL 41 4 2 369
4.5-8 mg/dL 0.5 mg/dL 8 4 2 72
9-20 mg/dL 1 mg/dL 12 4 2 108
30-60 mg/dL 10 mg/dL 4 4 2 36

All 2340 teststrip images from the concentration prediction dataset were converted

into three feature matrices using the feature extraction methodologies described in

Section 3.2. The number of features resulting from each of the three feature extraction

methods is given in Table 4.

In our paper, we use the term sample to refer to an image with a unique teststrip

number, creatinine concentration, and taken at a particular time point after applying the
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Table 4
Types of Features Extracted from Teststrip Images

Feature type Number of features per image
Histogram of colors 375

Histogram of gradients 325
RGB pixels 12288

creatinine solution. We partitioned our concentration prediction datasets into 5 groups for

each time point, where the first four groups use data from each of the four teststrip sets

and the fifth combines all of the data from all four teststrips. We trained all models using

each group of teststrips. Fig. 13 shows the different combinations of experiments possible

given our data grouping, feature, and model selection choices. Overall, we have trained

480 different models for different combinations of data groups (5), time points (4), and

regression algorithms (12).

5.2 Teststrip Localization

For training and testing the YOLO model, we created a dataset of 1211 images of size

416×416 pixels. To ensure the robustness of the model, we took pictures of teststrips with

different creatinine concentrations in various lighting and orientation conditions, while

posing the samples on a variety of backgrounds. As suggested by Nils et al. in [49], all

the images were annotated using the BBox-Label-Tool [45], a Python graphical user

application that stores the bounding boxes drawn on the images as pixel coordinates in

individual text files. YOLO learns the center coordinates, height, and width of a

prediction object as ratios of dimensions of the image. As an example, an object of

dimensions (10×40) pixels with center at (10, 10) in a (100×200) image will be

localized within the bounding box coordinates (0.1, 0.05, 0.1, 0.2).

We trained and tested the model using the CUDA enabled darknet framework [40].

Instead of using random initial weights, we initialized the model using pre-trained

ImageNet classification weights provided by the creators of darknet [50]. The data were
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Fig. 13. Logical flow for model selection in our experiments.

split into training and test sets using the ratio 80:20. We further split the training set into

train and validation, using the ratio 90:10, and used the validation dataset to tune

parameters during the training. The darknet framework provides a configuration file to

define the inputs and tune the parameters when training. The network was trained in

batches of 64 images with a learning rate of 1E−5. Model training reached an RMSE loss

of 2.56 in 900 iterations.

We tested our model on both the train and test datasets, which had 938 and 183

samples, respectively. As our tests were performed on only positive images, i.e., the
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teststrip was always present in the image, we chose F1 score as our prediction

performance measure, as it is well suited for imbalanced data.

In order to measure localization performance, we compute the intersection over union

(IOU) score between the ground truth and predicted bounding boxes. The IOU is

computed as the ratio of the area of overlap between the predicted and the actual

bounding boxes and the union area of the two boxes. In our experiment, the predictions

with an IOU score greater than or equal to 0.5 are classified as true positives (Tp). All

other predictions are classified as false positives (Fp). Since we trained the model to

detect presence of only one class of objects (teststrip), and we did not test the system with

images that do not contain the teststrip, there are no false negatives (Fn). We computed

precision, recall and F1 score for the predictions using the formulae,

Precision(P) = Tp/(Tp +Fp),

Recall(R) = Tp/(Tp +Fn),

F1score(F1) = 2*P*R/(P+R).

5.3 Execution Environment

All experiments were executed on a server with two 12-core 2.5 GHz Intel Xeon

E52680 v3 (Haswell) processors and 384 GB RAM. While all algorithms employed in

our analysis were implemented as serial methods in their respective Python and OpenCV

packages, we used naı̈ve parallelization techniques to execute up to 24 experiments at the

same time. This allowed efficient execution of all experiments and multiple iterations over

the machine learning experimental design.

5.4 Machine Learning Model Validation

We applied 10-fold cross-validation for all prediction models. This technique allows

all the samples to be used for both training and validation, and ensures that each sample is

validated only once. The technique helps verify whether a model will be generalizable,
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even in the absence of a large number of test samples. During 10-fold cross-validation,

the dataset is randomly shuffled and split into 10 equal groups. For each iteration, the ith

group of samples is considered as the test set and the other nine groups are combined to

make up the training set. The RMSE of all the predictions is used as the performance

measure of the algorithm applied to the dataset.

For each model, we tuned meta-parameters using the GridSearchCV function from the

sklearn [51] library. It performs an exhaustive search of the parameter space, finding the

set of parameters that best fit the training samples for all our classification and regression

models. To tune our support vector regression (SVR) models, we optimize the choice of

kernel functions among the sigmoid, radial basis and polynomial kernels, and the

prediction penalty, C, testing values from the set {2−4,2−2,20,22,24}. In addition, for our

support vector classification (SVC) models, we tuned the kernel coefficient, γ , testing

values from the set {1E−4,1E−2,1E+0,1E+2,1E+4}. For the nearest neighbor

models, we chose the best number of neighbors closest to the query, k, in the search space

of {1, 2, 3, 4, 5} neighbors. For the logistic regression classifier models, we tested

different optimization algorithm, such as newton-cg, liblinear, and lbfgs, and tuned the

inverse regularization factor, C, testing values in {2−4,2−2,20,22,24}.

To understand the impact of the errors in our prediction models, we computed eGFR

values for each of the predicted and actual creatinine concentration values and classified

them as critical, intermediate and healthy. The accuracy of this classification shows the

effectiveness of our mobile application in guiding our patients. To compute the eGFR

values using the MDRD equation, we need to know the gender, ethnicity and age of

patients. For this experiment, we assigned gender, ethnicity and age values for each

sample in the dataset, distributed based on the US census reports for gender, population

and ethnicity distributions from the year 2016 [52], [53]. Table 5 summarizes the
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population distributions and associated number of samples that were assigned to each

population segment in our dataset.

Table 5
Distribution of Age, Gender and Ethnicity in the U.S. Population and the Number of

Teststrips Associated with Each Population Segment

Male, African Female, African Male, non-African Female, non-African
Age group % pop. # strips % pop. # strips % pop. # strips % pop. # strips

0-15 1.37 18 1.31 17 8.93 116 8.56 111
16-30 1.40 18 1.34 17 9.12 119 8.74 114
31-45 1.28 17 1.28 17 8.33 108 8.36 108
46-60 1.30 17 1.36 18 8.49 110 8.84 115
61-75 0.89 12 1.00 13 5.79 75 6.52 85
76-90 0.29 4 0.40 5 1.87 24 2.62 34
0-15 0.02 0 0.06 1 0.16 2 0.37 5
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6 Results and Discussions

In this section, we present and comment upon the results of the experiments. First we

discuss the results of our localization model and the viability of using this model in KHM

to position and orient the teststrips. Next, we discuss the results of the experiments

conducted on various baseline and regression models to find the best performing feature

extraction technique, time point, and regression model for our dataset. Finally, we discuss

the reproducibility of the chemical experiments conducted to validate the robustness of

the kidney health monitoring system we are proposing.

6.1 Localization Effectiveness

Table 6 summarizes the experimental results obtained for our YOLO model trained to

detect and localize the teststrips. The model has achieved a high F1 score of 0.972 on

both the test and train sets.

Table 6
Teststrip Localization Results Using YOLO Model

Test set Train set
No. of samples 183 938
True positives 173 887
False positives 10 51

Precision 0.94535 0.94562
Recall 1.0 1.0

F1 score 0.97191 0.97205

We classified predictions with an intersection over union (IOU) of 0.5 or above as true

positives and the rest as false positives in our experiment. Fig. 14 shows the variation of

the IOU scores for the sample distribution. We can observe that more than 85% of the

samples have an IOU score above 0.85, making the model consistent in its prediction.

However, there is a steep decline in the IOU scores in the tail end of the distribution. This

could be due to underrepresentation of several backgrounds in the training set. Overall,

the performance of the localization model is satisfactory. This model is expected to

perform well in detection and localization of teststrips in various background and lighting
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conditions. Using this model, our application will be able to guide the user in placing the

teststrip at an optimal distance and orientation that will lead to quality image captures.
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Fig. 14. Intersection of Union (IOU) of predicted and actual bounding boxes for test and
train samples.

When using our localization model on an iPod Touch device, it exhibits an efficiency

of one frame every 7 seconds, which is much slower than the minimum frames per second

required for the human eye to perceive motion (12–15 frames per second). In the future,

we plan to optimize model execution on mobile devices by using network sparsification

and integer-based modeling techniques. We expect that these optimizations can achieve a

localization efficiency of up to 45 frames per second on consumer GPUs and 10–15

frames per second on Apple devices with built-in GPUs.

6.2 Regression and Classification Experiments

Experiments were conducted to identify the best feature extraction method, image

capture time point, and prediction model combination that consistently give high

performance. We executed experiments using the different training data groups discussed

in Section 5.1. First, we identified the feature extraction technique that best captures color
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changes in the detection zone. Then, for those type of features, we analyzed the

performance of different machine learning models at different time points following the

application of the creatinine solution to the teststrip. Appendix A summarizes the results

of the creatinine concentration prediction and eGFR range classification experiments on

which we base the conclusions drawn in this section.

6.2.1 Best Performing Features

To gauge whether the features extracted have been effective in representing the

creatinine concentrations, we performed t-tests for the hypothesis that the predicted results

are similar to those of randomly chosen floating point values in the same range as our test

sample predictions. Here, we present significance values for models built using each

feature type, based on the best performing regression algorithm for each feature type. The

hypothesis is considered invalid for a p-value less than 1E−4. From Table 7, we can see

that all three models are significant, as the p-values are well below the chosen threshold.

Thus, we conclude that our feature extraction techniques are statistically significant.

Table 7
T-test Results for Best Models of Different Feature Types

t-statistic p-value
HOC 7.4399 1.7773E−11
HOG 7.4824 1.4271E−11
RBG 8.1241 4.9891E−13

To find the best performing feature type, we compared the average eGFR accuracy

across all the time points, regression models, and data groups for each feature type. We

observed that the HOC features obtain the highest average accuracy, 74.04%. Table 8

shows the average eGFR accuracies for all three feature types.

HOG features primarily hold information about spatial distribution of color intensities.

The poor performance of HOG features in the experiments prove that spatial spread of

color intensities is not a significant factor in predicting the concentration of creatinine.
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Table 8
Average eGFR Accuracies for Different Feature Types

Feature Type Average eGFR Accuracy
HOC 74.04%
HOG 39.02%
RBG 60.04%

Table 9
Average eGFR Accuracies and Standard Deviation for Different Teststrip Groups

Feature Type Average eGFR Accuracy Standard deviation
All 75.85% 14.5115

Strip 1 74.82% 13.1612
Strip 2 70.97% 12.5995
Strip 3 72.63% 14.4157
Strip 4 75.95% 13.8433

The prediction RMSE and eGFR accuracy of models using RGB features are better than

those of models using HOG features, but are not on par with those using HOC features.

This could be because all the information available in the RGB channels has been made

available to the models without filtering out unnecessary features. RBG channels encode

both lighting and color information linearly, making it difficult to distinguish the color

changes introduced by brightness and saturation changes. In the remainder of our analysis,

we consider only the results of using HOC features as input to the different models.

We repeated each experiment four times, creating four teststrips for each

concentration. To test the repeatability of experiments, we fit the regression models to

each of these four teststrip groups. We noted some irregularities in the performance of the

models across the groups, which is further discussed in Section 6.3. Table 9 captures the

average eGFR accuracies and the standard deviations of the predictions.

Upon close inspection, we found that there were visible differences in the color

observed in the detection zone of some teststrips even before application of the creatinine

solution. Fig. 15 shows the color of the reagent, picric acid, before the creatinine solution

was introduced. We see that there is a visible difference in coloring of the detection zone,
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where both the teststrips are expected to display the same coloring for the same

concentration of picric acid solution. This could be a possible reason for the difference in

prediction accuracies between the four teststrip groups. We decided to use the results

from teststrip group 4 for further analysis, as it has the best average accuracy and

comparatively less standard deviation (Table 9).

Fig. 15. Difference in detection zone color in two teststrips before adding the creatinine
solution.

6.2.2 Best Time Point Identification

To find the time point at which the models perform the best, we compared the eGFR

accuracy and prediction RMSE for all the regression models fit to teststrip 4 samples.

Fig. 16 and 17 show the eGFR accuracy and RMSE values for each of the four time

points for the different regression algorithms applied. Eight of the twelve models perform

their best in eGFR classification at 12 minutes. Thus, the patient has to wait for 12

minutes before the system can accurately predict their blood creatinine levels and kidney

health. This is a considerably higher wait time than usually needed when using PoCTs

available in the market, which take a maximum of 2 minutes to predict the creatinine

concentration (Table 1). In a future study, we will further investigate the optimal wait

time, which may be between 2 and 12 minutes.

To further understand the effect of time on HOC features, we analyzed images taken

of a teststrip with creatinine concentration of 1.5 mg/dL at the four time intervals. Fig. 18
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Fig. 16. Performance of eGFR classification models at four time points.

Fig. 17. Performance of regression models at four time points.
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(a)

(b)

(c)

(d)

Fig. 18. Image of detection zone (left), after masking pixels (center), and the histogram of
colors (right) of a teststrip at (a) 2 minutes, (b) 12 minutes, (c) 22 minutes, and (d) 32
minutes.

shows the histogram of a teststrip taken at the four time points. It is evident that, at 2

minutes, the color distribution is wider, 95% of pixels being spread between buckets 260

to 295. However, at 12 minutes, the majority of the pixels fall in the smaller bucket range
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of 255 to 270. The distribution narrows further as time increases to 22 minutes and 32

minutes, with buckets 255 to 260 holding 95% of the pixels. This slow change in color

could be attributed to the strength of the chemicals used or the drying of the picric acid

solution. We need to experiment more with different concentrations of picric acid

solutions and teststrip drying pre-processing time.

6.2.3 Best Performing Regression Model

To determine the best performing prediction model for our data, we analyzed the

performance of the baseline and hybrid models at different time points for models trained

using HOC features. Fig. 16 shows that the support vector classification hybrid model

combined with nearest neighbor regression (SVC + NNR) and nearest neighbor

classification hybrid model combined with nearest neighbor regression (NNC + NNR)

give the best eGFR accuracy of 98.30%. T-tests performed on both the SVC + NNR and

NNC + NNR model results returned p-values of 1.78E−11 each, which are well below

the 1E −4 threshold for rejecting the null hypothesis.

Results show that the baseline linear regression model achieves the lowest RMSE of

2.78. However, the eGFR accuracy for that model is 74.57%. On the other hand, both the

SVC + NNR and NNC + NNR models obtained a higher RMSE of 4.04, but much better

eGFR accuracies of 98.30%. This shows that the approach adopted in the hybrid model,

that is, estimating the range of creatinine concentration first and then predicting the

creatinine concentration value using specialized models performs better in the task of

eGFR classification. While the classification performance is better in the hybrid models,

the actual regression value prediction is, in general, slightly worse. This could be because

the number of training samples in some of the concentration bins is small (e.g.,

concentration bin 30 - 60 mg/dL has only four training samples), leading to more

regression prediction errors. This affects the creatinine concentration value predictions
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and the RMSE negatively, but it does not affect the eGFR accuracy. Given more data, we

anticipate the hybrid model would have lower RMSE than the baseline model.

6.3 Repeatability of Chemical Experiments

To test the repeatability of the chemical experiments, we computed the similarity of

pairs of teststrip images, using the cosine similarity proximity function and HOC features,

in two scenarios. First, we used pairs of images captured from the same teststrip, which

we expect will display very high similarity in general. Second, we computed similarities

of different teststrips that had the same creatinine solution applied to them. Given the

same amount of picric acid in the teststrip and the same concentration in the creatinine

solution, we expect that the teststrips would exhibit the same level of colorometric change.

Fig. 19 plots the distribution of similarity values obtained in both cases.
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Fig. 19. Pairwise cosine similarity of teststrips.

It is evident that, while images of the same teststrip do indeed have very high

similarities, as expected, different teststrips have much lower similarities in general.
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Almost 50% of the teststrips with the same creatinine concentration have a similarity

below 0.8, and almost 20% have a similarity below 0.5. The results imply that the

chemical experiments are not robust and do not always produce consistent results for the

same creatinine concentration. Low similarities between different teststrips with the same

creatinine concentrations could be due to variations in delay of starting the creatinine

experiments after application of picric acid solution to the detection zone. Another cause

for the divergent similarities could be the existence of impurities in the teststrip materials

or the chemical substances used in the chemical experiment. Finally, it is possible that the

amount of picric acid applied to each teststrip was not consistent, leading to variability in

the subsequent chemical reactions. As an example that motivates this hypothesis, Fig. 15

shows the visible difference in color between the pictures of two teststrips taken before

applying the creatinine solution. The difference in color, which can be clearly seen with

the naked eye, can only be attributed to differences in the experiment setup, not the

amount of creatinine applied to the teststrip.
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7 Future Work

While the models we trained on teststrip samples created with synthetic creatinine

have been able to give an accuracy of up to 98.30% for eGFR range classification, further

work is needed before the technology could be used to help humans monitor kidney

function. A necessary next step in the research involves confirming that our methods

would work using blood samples. The tests can first be done using human-analog porcine

blood samples mixed with creatinine solution, before moving on to human trials.

In the current experiment, we eliminated certain potential sources of error in order to

first validate whether computer vision techniques could be used to classify kidney health

stages. Our images were captured using consistent light warmth and brightness levels to

avoid changes in color due to ambient light. The histogram of color features extracted in

this work partially addresses this issue. However, the robustness of these features to

changes in light conditions needs to be further investigated.

In the current work, we did not experiment with deep neural network techniques for

feature extraction and regression models. This was due to the limited number of samples

that we had available, which could overfit deep learning models and lead to poor

generalization. Given additional chemical experiment results, multi-task deep neural

networks that localize and predict the concentration at the same time would be another

interesting area to explore.
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8 Conclusions

The prevalence of chronic didney disease is estimated to increase from 13.2% in 2014

to 14.4% in 2020 and 16.7% in 2030 in adults of 30 years of age or older [54]. The best

way to slow this trend is early detection and constant monitoring of the disease. Our

research proposes and validates a mobile phone-based system for monitoring kidney

health from our homes.

We proposed a mobile phone-based system that helps users capture quality images of

teststrips using a deep neural network model, and several feature extraction and kidney

health stage prediction methods that rely on computer vision and machine learning

techniques. We conducted experiments in a light-controlled environment, using synthetic

creatinine solution on custom teststrips specially designed for our study. Our models

classify the severity of the kidney disease as normal, intermediate risk, or kidney failure

based on the prediction of the concentration of creatinine in the sample. The histogram of

colors features, constructed using range-constrained hue and saturation values for pixels

in the image, have achieved RMSE of 4.05 and eGFR range classification accuracy of

98.30% on a randomized population assignment that simulates the U.S. population

distribution.

Overall, our experiments confirm that mobile phone-based kidney health monitoring

systems are feasible. However, more work is needed to develop robust models that can be

used by the general public in a variety of settings.
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Appendix A

Baseline and Hybrid Model Prediction Results

In this appendix, we present prediction results from each of our baseline and hybrid

models and for each tested feature type, for both the classification and regression tasks.

A.1 HOC Results

Table 10
Baseline eGFR Accuracy Using HOC

Features

Strip Time SVR NNR LR
all 2 57.0866 90.9449 54.3307

1 2 50.8475 76.2712 62.7119
2 2 44.0678 79.6610 55.9322
3 2 40.6780 72.8814 42.3729
4 2 45.7627 86.4407 50.8475

all 12 66.9291 90.9449 35.8268
1 12 47.4576 88.1356 72.8814
2 12 50.8475 88.1356 57.6271
3 12 47.4576 79.6610 52.5424
4 12 49.1525 94.9153 77.9661

all 22 62.2047 92.1260 54.7244
1 22 55.9322 81.3559 44.0678
2 22 54.2373 77.9661 49.1525
3 22 52.5424 84.7458 52.5424
4 22 52.5424 91.5254 54.2373

all 32 67.3228 90.9449 44.0945
1 32 52.5424 93.2203 61.0169
2 32 47.4576 93.2203 71.1864
3 32 49.1525 96.6102 72.8814
4 32 49.1525 89.8305 86.4407

Table 11
Baseline Regression RMSE Using HOC

Features

Strip Time SVR NNR LR
all 2 13.1615 5.8486 >100

1 2 13.8943 7.4015 12.4347
2 2 14.2259 8.3555 10.4507
3 2 13.9656 7.4649 12.4208
4 2 14.3553 7.3045 13.6604

all 12 11.4706 2.4535 >100
1 12 11.8072 5.4156 4.5515
2 12 12.1980 4.7204 6.4438
3 12 11.8950 4.4214 4.2341
4 12 12.3671 5.5044 2.7876

all 22 9.3536 2.4385 >100
1 22 9.8538 5.0899 6.3018
2 22 8.7003 4.1025 5.6368
3 22 9.6625 4.4202 5.5128
4 22 8.7187 4.7848 5.6042

all 32 11.5707 3.4556 >100
1 32 11.8623 4.7485 6.4007
2 32 12.2381 5.7777 3.2636
3 32 11.9201 3.7668 2.1868
4 32 12.4375 5.0630 5.4708
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Table 12
Hybrid eGFR Accuracy Using HOC Features

Strip Time SVC+
SVR

SVC+
NNR

SVC+
LR

NNC+
SVR

NNC+
NNR

NNC+
LR

LC+
SVR

LC+
NNC

LC+
LR

all 2 76.4479 88.8031 72.5869 75.6757 88.4170 72.5869 66.4093 83.3977 67.5676
1 2 62.7119 84.7458 71.1864 64.4068 86.4407 74.5763 57.6271 79.6610 66.1017
2 2 55.9322 71.1864 67.7966 57.6271 72.8814 67.7966 50.8475 67.7966 66.1017
3 2 52.5424 77.9661 66.1017 61.0169 81.3559 69.4915 52.5424 76.2712 67.7966
4 2 61.0169 81.3559 76.2712 64.4068 84.7458 81.3559 52.5424 72.8814 69.4915

all 12 86.1004 89.5753 63.7066 86.4865 89.1892 63.7066 85.7143 89.1892 62.1622
1 12 71.1864 91.5254 79.6610 69.4915 89.8305 81.3559 64.4068 84.7458 77.9661
2 12 69.4915 84.7458 83.0508 69.4915 86.4407 83.0508 64.4068 83.0508 77.9661
3 12 71.1864 79.6610 67.7966 69.4915 79.6610 67.7966 64.4068 76.2712 62.7119
4 12 74.5763 98.3051 83.0508 76.2712 98.3051 83.0508 71.1864 96.6102 81.3559

all 22 78.7645 91.5058 60.6178 78.7645 91.5058 61.3900 72.5869 86.4865 59.4595
1 22 71.1864 81.3559 84.7458 69.4915 79.6610 83.0508 57.6271 72.8814 74.5763
2 22 72.8814 86.4407 84.7458 69.4915 83.0508 81.3559 52.5424 67.7966 67.7966
3 22 77.9661 88.1356 84.7458 79.6610 89.8305 86.4407 64.4068 77.9661 72.8814
4 22 77.9661 89.8305 83.0508 72.8814 83.0508 77.9661 59.3220 74.5763 71.1864

all 32 87.6448 92.2780 67.1815 88.8031 92.2780 68.3398 88.4170 92.6641 67.1815
1 32 74.5763 93.2203 93.2203 74.5763 93.2203 93.2203 71.1864 89.8305 89.8305
2 32 71.1864 86.4407 72.8814 71.1864 89.8305 76.2712 67.7966 84.7458 71.1864
3 32 79.6610 94.9153 88.1356 81.3559 94.9153 89.8305 71.1864 89.8305 86.4407
4 32 77.9661 91.5254 76.2712 77.9661 91.5254 76.2712 69.4915 88.1356 71.1864

Table 13
Hybrid regression RMSE Using HOC features

Strip Time SVC+
SVR

SVC+
NNR

SVC+
LR

NNC+
SVR

NNC+
NNR

NNC+
LR

LC+
SVR

LC+
NNC

LC+
LR

all 2 6.3138 6.2177 87.2391 7.5043 7.4597 >100 8.6676 8.2170 >100
1 2 11.6947 11.1682 11.3136 11.4722 10.7639 10.4069 11.7237 11.1916 11.3578
2 2 12.5560 12.1704 12.1750 10.7634 10.1041 10.4526 11.9219 11.4316 11.6706
3 2 12.9296 12.2490 12.8142 7.5079 7.5539 8.1438 12.2782 11.7841 11.9912
4 2 12.4631 11.6458 11.7508 9.8408 8.5994 8.5852 11.9565 11.6471 11.7274

all 12 3.8395 2.6319 55.4155 3.8291 2.6500 46.1830 4.0122 2.8055 56.3161
1 12 4.9815 4.3750 4.7086 4.9922 4.3766 4.6875 8.8056 8.2281 8.9404
2 12 5.4167 5.9659 8.4094 5.6955 5.6162 8.1034 7.1017 7.1077 7.9951
3 12 3.9225 4.1410 4.8833 4.9599 4.2876 4.8743 8.7127 8.4605 9.0182
4 12 5.6096 4.0442 3.7601 5.6090 4.0471 3.7594 5.6361 4.0533 3.7676

all 22 3.0142 2.9948 >100 2.7905 2.8932 >100 5.1071 4.6870 >100
1 22 4.5031 4.7003 5.0424 5.5528 5.6619 5.8803 10.1574 9.4541 9.9533
2 22 4.7630 4.2806 3.7316 4.9731 4.4374 3.8974 8.9808 8.5276 9.1968
3 22 4.2862 3.7404 3.8296 3.9867 3.6062 3.6710 9.7162 9.3745 9.3679
4 22 6.4741 6.5613 6.2100 5.9871 6.3250 5.6095 10.0857 9.6157 9.6374

all 32 4.2686 3.0447 5.1313 4.4477 3.3105 5.1447 3.8282 2.9791 5.0045
1 32 6.6967 5.8110 5.8439 5.9618 5.6849 5.3879 9.7657 9.0184 9.4601
2 32 7.1546 5.6176 5.8667 5.6596 4.4605 3.2344 11.1022 9.9185 10.4837
3 32 4.9198 4.0607 3.9402 5.0787 3.1076 3.1901 9.6939 9.3067 9.2967
4 32 4.5142 6.3177 7.6672 5.4472 6.3448 6.6922 11.7922 11.2299 11.3988
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A.2 RGB Results

Table 14
Baseline eGFR Accuracy Using RGB

Features

Strip Time SVR NNR LR
all 2 43.6293 69.1120 57.9151

1 2 44.0678 69.4915 55.9322
2 2 37.2881 77.9661 67.7966
3 2 44.0678 76.2712 55.9322
4 2 44.0678 71.1864 69.4915

all 12 40.5405 81.4672 55.5985
1 12 30.5085 77.9661 64.4068
2 12 37.2881 77.9661 62.7119
3 12 42.3729 77.9661 54.2373
4 12 37.2881 69.4915 62.7119

all 22 41.6988 81.4672 60.2317
1 22 37.2881 67.7966 64.4068
2 22 37.2881 88.1356 74.5763
3 22 35.5932 77.9661 62.7119
4 22 27.1186 81.3559 67.7966

all 32 40.5405 74.1313 50.9653
1 32 38.9831 77.9661 62.7119
2 32 40.6780 77.9661 57.6271
3 32 42.3729 72.8814 52.5424
4 32 44.0678 67.7966 67.7966

Table 15
Baseline Regression RMSE Using RGB

Features

Strip Time SVR NNR LR
all 2 12.0285 6.9273 7.4511

1 2 12.3981 9.2034 9.1631
2 2 12.3446 9.1470 8.5776
3 2 12.4007 8.4141 10.5765
4 2 12.3838 9.7093 8.4687

all 12 12.0284 7.9747 8.3858
1 12 12.3981 9.8526 9.9319
2 12 12.3446 8.7157 9.7178
3 12 12.4007 9.3011 10.0161
4 12 12.3837 10.8724 9.6014

all 22 12.0284 8.3854 8.2785
1 22 12.3981 10.5345 9.1838
2 22 12.3446 10.9211 9.6532
3 22 12.4007 8.5961 8.8606
4 22 12.3837 10.4509 10.4343

all 32 12.0284 7.9345 8.1697
1 32 12.3981 10.4188 9.3923
2 32 12.3446 8.6192 9.1033
3 32 12.4007 7.6539 8.9335
4 32 12.3837 10.4224 10.0262

Table 16
Hybrid eGFR Accuracy Using RGB Features

Strip Time SVC+
SVR

SVC+
NNR

SVC+
LR

NNC+
SVR

NNC+
NNR

NNC+
LR

LC+
SVR

LC+
NNC

LC+
LR

all 2 64.9606 71.2598 72.8346 63.3858 68.8976 71.2598 41.7323 54.3307 60.6299
1 2 54.2373 59.3220 54.2373 57.6271 64.4068 59.3220 44.0678 50.8475 49.1525
2 2 59.3220 71.1864 72.8814 62.7119 72.8814 74.5763 42.3729 54.2373 55.9322
3 2 57.6271 59.3220 66.1017 66.1017 64.4068 72.8814 45.7627 49.1525 57.6271
4 2 62.7119 71.1864 81.3559 59.3220 64.4068 76.2712 38.9831 57.6271 67.7966

all 12 63.7795 79.9213 79.1339 61.8110 77.5591 77.1654 38.1890 61.0236 65.3543
1 12 52.5424 66.1017 64.4068 52.5424 66.1017 64.4068 28.8136 49.1525 45.7627
2 12 40.6780 62.7119 59.3220 44.0678 64.4068 59.3220 27.1186 50.8475 49.1525
3 12 52.5424 61.0169 62.7119 64.4068 74.5763 76.2712 33.8983 47.4576 52.5424
4 12 57.6271 66.1017 76.2712 59.3220 67.7966 77.9661 32.2034 45.7627 59.3220

all 22 66.9291 74.8031 79.1339 64.1732 74.0157 77.5591 39.3701 53.5433 59.4488
1 22 59.3220 64.4068 67.7966 59.3220 59.3220 64.4068 33.8983 38.9831 44.0678
2 22 57.6271 79.6610 69.4915 55.9322 77.9661 67.7966 32.2034 55.9322 45.7627
3 22 61.0169 59.3220 67.7966 61.0169 59.3220 67.7966 32.2034 37.2881 47.4576
4 22 62.7119 71.1864 76.2712 57.6271 67.7966 72.8814 28.8136 40.6780 47.4576

all 32 68.5039 75.1969 77.9528 66.5354 73.2283 75.9843 39.7638 53.9370 54.3307
1 32 72.8814 76.2712 77.9661 72.8814 76.2712 77.9661 42.3729 52.5424 54.2373
2 32 67.7966 72.8814 69.4915 66.1017 71.1864 67.7966 40.6780 54.2373 45.7627
3 32 66.1017 71.1864 72.8814 64.4068 71.1864 71.1864 42.3729 61.0169 57.6271
4 32 64.4068 67.7966 71.1864 64.4068 66.1017 71.1864 38.9831 52.5424 50.8475
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Table 17
Hybrid Regression RMSE Using RGB Features

Strip Time SVC+
SVR

SVC+
NNR

SVC+
LR

NNC+
SVR

NNC+
NNR

NNC+
LR

LC+
SVR

LC+
NNC

LC+
LR

all 2 8.8023 7.9113 8.1289 9.1360 8.5098 8.6116 12.5706 12.0951 11.9170
1 2 10.3158 9.8864 9.7288 9.7796 8.9527 9.0818 12.8504 12.4217 12.4263
2 2 10.3019 10.2982 9.9282 9.4088 9.3076 8.9808 12.8010 12.4302 12.1947
3 2 12.0001 11.6569 11.6341 10.1528 10.2187 9.8516 12.8669 12.5698 12.3082
4 2 10.4241 9.9690 9.9406 10.9322 10.4899 10.5929 12.8473 12.2972 12.2880

all 12 9.0176 8.9742 8.7090 10.1062 9.6544 9.6933 12.5708 12.0193 11.9164
1 12 11.5392 11.1527 11.2374 11.2441 10.8338 10.9561 12.8504 12.4007 12.3714
2 12 12.3132 11.9502 11.9622 12.4836 12.9847 12.2407 12.8010 12.3576 12.3181
3 12 11.7542 11.4160 11.5352 9.5995 8.8766 9.2398 12.8669 12.4652 12.4356
4 12 11.1924 11.0731 11.0252 11.7282 11.5290 11.4750 12.8474 12.4091 12.2209

all 22 10.1613 10.0777 9.9379 10.1608 10.0451 9.9866 12.5707 12.0400 11.9940
1 22 10.5015 10.3261 10.1904 11.1377 11.2270 11.0318 12.8504 12.3734 12.3895
2 22 9.7444 9.8826 9.5927 12.9284 13.7450 12.8274 12.8010 12.2615 12.2670
3 22 10.2179 10.1773 10.1205 10.7202 10.5019 10.5328 12.8669 12.3365 12.3547
4 22 10.2528 10.1161 10.0851 10.3638 10.1352 10.1761 12.8474 12.5448 12.3417

all 32 9.0295 8.8945 8.7610 8.7895 8.3754 8.0130 12.5706 11.9546 12.1545
1 32 10.8048 10.2737 10.4706 11.2570 11.3484 10.9768 12.8504 12.3422 12.4521
2 32 9.1569 8.7134 9.0959 12.4061 11.5872 12.1727 12.8010 12.1716 12.3538
3 32 10.3839 10.2387 10.3192 9.7898 9.1023 9.5343 12.8669 12.3053 12.4497
4 32 10.3531 10.1723 10.1171 11.5039 11.3401 11.3592 12.8473 12.1305 12.4120

A.3 HOG Results

Table 18
Baseline eGFR Accuracy Using HOG

Features

Strip Time SVR NNR LR
all 2 47.1042 48.6486 37.0656

1 2 49.1525 44.0678 40.6780
2 2 37.2881 40.6780 32.2034
3 2 50.8475 55.9322 40.6780
4 2 42.3729 42.3729 38.9831

all 12 46.7181 46.7181 33.2046
1 12 30.5085 52.5424 50.8475
2 12 37.2881 38.9831 44.0678
3 12 44.0678 44.0678 45.7627
4 12 35.5932 40.6780 33.8983

all 22 44.0154 42.4710 35.9073
1 22 37.2881 45.7627 42.3729
2 22 33.8983 37.2881 45.7627
3 22 37.2881 49.1525 59.3220
4 22 30.5085 50.8475 38.9831

all 32 45.9459 41.6988 37.8378
1 32 37.2881 38.9831 50.8475
2 32 47.4576 44.0678 32.2034
3 32 45.7627 42.3729 32.2034
4 32 42.3729 42.3729 45.7627

Table 19
Baseline Regression RMSE Using HOG

Features

Strip Time SVR NNR LR
all 2 11.9252 11.0860 19.2557

1 2 12.3897 10.8365 11.8741
2 2 12.3448 13.2733 13.7704
3 2 12.3441 13.3836 12.7369
4 2 12.3455 12.6822 14.1027

all 12 11.8931 12.4661 18.4790
1 12 12.3318 11.1266 13.0855
2 12 12.3246 13.7684 13.8858
3 12 12.3553 12.4726 12.8478
4 12 12.3351 13.1251 15.1282

all 22 11.9872 10.6728 16.6677
1 22 12.3821 11.9671 14.7951
2 22 12.3279 13.1383 14.1922
3 22 12.3399 11.0031 8.5845
4 22 12.3751 11.9600 13.2331

all 32 11.9871 12.8449 16.5790
1 32 12.3802 14.3174 12.2513
2 32 12.3209 12.7902 12.3170
3 32 12.3874 12.3387 14.5297
4 32 12.3741 12.3036 12.1588
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Table 20
Hybrid eGFR Accuracy Using HOG Features

Strip Time SVC+
SVR

SVC+
NNR

SVC+
LR

NNC+
SVR

NNC+
NNR

NNC+
LR

LC+
SVR

LC+
NNC

LC+
LR

all 2 48.4252 50.0000 50.0000 47.6378 47.6378 48.4252 46.8504 47.2441 47.2441
1 2 44.0678 37.2881 44.0678 57.6271 50.8475 55.9322 45.7627 38.9831 45.7627
2 2 44.0678 33.8983 33.8983 45.7627 35.5932 37.2881 40.6780 30.5085 32.2034
3 2 44.0678 47.4576 44.0678 44.0678 49.1525 40.6780 44.0678 47.4576 44.0678
4 2 38.9831 44.0678 44.0678 32.2034 37.2881 38.9831 38.9831 44.0678 44.0678

all 12 38.5827 42.1260 33.8583 44.0945 46.8504 38.5827 43.3071 45.2756 37.0079
1 12 35.5932 38.9831 44.0678 33.8983 37.2881 40.6780 32.2034 35.5932 42.3729
2 12 28.8136 30.5085 25.4237 28.8136 32.2034 25.4237 30.5085 32.2034 27.1186
3 12 35.5932 38.9831 32.2034 35.5932 37.2881 33.8983 37.2881 40.6780 33.8983
4 12 33.8983 30.5085 28.8136 35.5932 33.8983 30.5085 35.5932 32.2034 30.5085

all 22 39.3701 39.3701 34.2520 40.1575 39.3701 35.4331 40.5512 40.1575 35.8268
1 22 33.8983 27.1186 40.6780 32.2034 28.8136 38.9831 33.8983 27.1186 40.6780
2 22 32.2034 25.4237 30.5085 30.5085 25.4237 32.2034 32.2034 25.4237 30.5085
3 22 30.5085 30.5085 23.7288 30.5085 30.5085 28.8136 30.5085 30.5085 23.7288
4 22 25.4237 28.8136 38.9831 25.4237 27.1186 35.5932 25.4237 28.8136 38.9831

all 32 39.3701 37.0079 36.6142 43.3071 41.3386 38.9764 39.7638 37.4016 36.2205
1 32 40.6780 40.6780 42.3729 42.3729 42.3729 42.3729 42.3729 42.3729 44.0678
2 32 40.6780 33.8983 33.8983 47.4576 42.3729 38.9831 40.6780 33.8983 33.8983
3 32 42.3729 42.3729 38.9831 45.7627 45.7627 44.0678 42.3729 42.3729 38.9831
4 32 37.2881 38.9831 42.3729 47.4576 47.4576 50.8475 38.9831 40.6780 42.3729

Table 21
Hybrid Regression RMSE Using HOG Features

Strip Time SVC+
SVR

SVC+
NNR

SVC+
LR

NNC+
SVR

NNC+
NNR

NNC+
LR

LC+
SVR

LC+
NNC

LC+
LR

all 2 11.2917 11.1785 11.1895 12.1786 11.9821 11.8843 11.5424 11.4240 11.3829
1 2 12.8481 12.7977 12.9626 10.3855 10.0281 10.1788 11.9631 11.6987 11.8974
2 2 12.8296 12.8325 12.8936 13.6958 13.1858 13.6855 12.9640 12.9214 12.9786
3 2 12.8640 12.4856 12.5645 12.8664 13.2698 12.8502 12.8640 12.4856 12.5645
4 2 12.8467 12.7271 12.6893 13.1791 13.2342 13.2744 12.8467 12.7271 12.6893

all 12 12.5097 12.3646 12.4136 12.9400 13.1032 12.9365 12.3277 12.3344 12.2385
1 12 13.5463 14.1514 13.6531 12.2196 12.0553 12.1247 12.5066 12.2924 12.3481
2 12 12.7947 12.6105 12.4919 14.7059 14.7361 14.5189 12.8230 12.6447 12.5347
3 12 12.8597 12.6407 12.5653 14.3422 13.9776 13.8143 12.8720 12.6335 12.5662
4 12 12.8514 12.7380 12.8605 13.0550 12.9666 13.0584 12.6963 12.3756 12.6556

all 22 12.5426 12.4571 12.5343 12.6650 12.6197 12.6185 12.4347 12.3525 12.4461
1 22 12.8445 12.7915 13.0277 12.2124 12.2386 12.3188 12.8445 12.7915 13.0277
2 22 12.7895 12.7197 12.6290 12.8791 12.8562 12.7575 12.7895 12.7197 12.6290
3 22 12.8614 12.7187 12.7783 13.3926 13.4966 13.2333 12.8614 12.7187 12.7783
4 22 12.8521 12.8389 12.9002 12.1879 12.1216 12.0527 12.8521 12.8389 12.9002

all 32 12.5771 12.4302 12.5087 12.9516 12.8909 12.9503 12.5238 12.3754 12.4631
1 32 12.9198 12.7827 12.8047 13.1691 13.0033 12.9842 12.8505 12.6969 12.6369
2 32 12.7947 12.7813 12.9575 11.7611 12.0477 11.9780 12.7947 12.7813 12.9575
3 32 12.8541 12.7771 12.8261 12.2356 12.1505 12.1831 12.8541 12.7771 12.8261
4 32 12.8470 12.7425 12.7084 12.8632 12.9512 13.3858 12.5774 12.5480 12.5845
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