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ABSTRACT

VEHICLE TRACKING BASED ON HISTORICAL INTERSECTION OVER UNION

by Shuai Hua

Multi-object tracking (MOT) could be applied to many video analysis scenarios, such

as vehicle speed estimation, vehicle re-identification, and vehicle abnormal behavior

detection. A tracking task can be formulated as a data association problem, for which

there exist many different types of solutions. Track-by-detection is one of the most

common approaches for the MOT task. In this paradigm, the tracking algorithm relies on

the detection results to decide whether detected vehicles in sequential frames belong to

the same track. In our work, we developed a reliable vehicle tracker following this

paradigm, while considering the balance between tracking efficiency and tracking

performance. Our algorithm extends the existing intersection over union (IOU) tracker

and improves upon it by fusing historical tracking information. In addition, our tracker

allows tuning certain hyperparameters that lead to improved results, including the

minimum confidence score, the maximum confidence score, the IOU threshold, and the

length of a candidate track. We demonstrated the effectiveness and efficiency of our

approach using the UA-DETRAC benchmark dataset. Our proposed approach runs at an

average speed of 28 frames per second (fps), which is 16 faster than one of the baselines

but 24 times slower than the other. With regard to effectiveness, however, our approach

outperforms both baseline methods by more than 20% in most of the tracking

performance metrics and achieves a 60% performance improvement in certain cases. We

conclude that our tracker, which balances running speed and performance, could be useful

for applications running in a real-time environment.
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1 INTRODUCTION

Image processing and data analysis technologies emerged and became mature many

decades ago. However, it is rare to see those two approaches used together to solve

practical problems, usually due to the lack of data, which greatly affects the final results.

The inadequacy of computing ability has also played a critical role in limiting the

application of this technology to practical problems. The maturity of the Internet and

hardware breakthroughs have recently made it possible to apply machine-learning

technology to industry applications. These advancements have brought researchers and

industry together to reconsider how to utilize existing data and develop novel algorithms

that can train a machine to think and act like a human being.

The first priority in training a machine to act like a human is to teach the machine to

recognize as many objects as possible. Recently, object detection has become one of the

most popular domains in machine learning. Many researchers have achieved success by

using different methods to recognize (i.e., detect) diverse objects, e.g., cats, books,

computers, people, and vehicles. At the same time, much research has been launched to

follow (i.e., track) moving objects, including vehicles and pedestrians. There are many

practical scenarios to which vehicle tracking can be applied. Autonomous driving systems,

for instance, require the vehicle to have the capability to identify and track objects. Traffic

surveillance systems also depend on vehicle detection and tracking algorithms to help a

police officer analyze traffic conditions so as to control traffic flow. A fast running and

highly accurate tracker can also be used to infer movement statistics for vehicles from

video data, such as the current speed of cars on the road; the officer would be able to

supervise traffic conditions by means of this information. In recent years, researchers have

also tried to improve the accuracy of object detectors with the help of tracking

information.
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Generally, a tracking algorithm is given as input a segment of video data; it analyzes

the video, and then generates the tracking results by associating a unique ID to the same

vehicle in each of the video frames the vehicle is found in. The sequence of vehicle

positions in frames for a uniquely identified vehicle is also known as a track. A candidate

track that may only contain a subset of the vehicle positions or possibly a subsequence of

the track is called a tracklet. There is exactly one vehicle in a track or a tracklet. Ideally,

we expect the ID to stay unchanged for the same vehicle, from the first frame in which it

emerges in the video to the end of the last, when it disappears from the video.

The tracker should be able to assign different IDs to different vehicles in the video.

Obviously, vehicle tracking is a complicated problem. We normally solve this problem by

comparing and matching the unique features of each vehicle across the video frames. We

expect that the same vehicle will still have the same unique features across multiple

frames, which can be used to differentiate it from other vehicles. We also make the

assumption that the vehicle moves at a constant speed, and the location will not change

abruptly between consecutive frames. However, in reality, there are still many challenges

to overcome in tracking algorithms, since keeping features unchanged across frames is

nearly impossible. Common features that an algorithm may use to detect recurring

vehicles are the color of the object and the shape and size of the object. Unfortunately,

because of lighting conditions (illuminations), camera rotation, or vehicles changing

direction of travel, most of the time these features are not constant across frames.

Moreover, the point of view of the camera plays a big role in how a vehicle is perceived.

For example, one can easily imagine that the size of the vehicle gets smaller and the color

usually becomes unstable when the vehicle moves away from the camera, towards the

horizon.

Another critical problem that the tracking algorithm should deal with is the occlusion

caused by other vehicles and non-vehicle objects. This issue is especially prominent when

2



traffic is heavy: one vehicle is hidden in some frames by another vehicle that is driving

closely in front of it and then appears again later. We expect the tracker to have the

capability to identify these types of scenarios and correctly track the vehicle, even if it is

lost in traffic for some time. Even when using a static camera recording traffic in the same

position and rotation over time, the quality of the tracking result could vary greatly under

different weather conditions. In general, a tracker will likely perform better on sunny days

than in rainy conditions. Our aim is to develop a tracker that works well in all normal

weather conditions.

Many classical approaches used for tracking, such as particle filters [1], Kalman

filters [2]–[5], and Bayesian filters [6], [7], have had some success in solving the problem.

Those formulations belong to track-by-estimation methodology. However, in recent years,

deep learning methods have been shown to greatly outperform these classic approaches.

The success of deep convolutional neural network (DCNN) methods in the vehicle

detection task makes it possible to build an object tracking approach on top of the object

detector. This methodology is also known as track-by-detection. The track-by-detection

pipeline works as follows: the detector first predicts the location of each object,

represented as an in-frame bounding box and the confidence score of the detection; then,

the tracker uses the detection results as input and generates the associated tracklets.

Following this approach, the main task of a tracking algorithm is to consistently associate

the bounding box with the correct ID for each vehicle across frames.

In reality, the detector does not always provide completely correct predictions,

especially in situations when the vehicle becomes (partially) occluded by other vehicles or

objects in the scene (e.g., light poles). A higher accuracy of the detector will lead to better

tracking performance. On the other hand, a good tracker should be able to reduce the

effects of interference in two ways. It should mitigate the effects (1) of false positive

detections, i.e., objects reported by the detector as being vehicles that are not actually

3



vehicles, and (2) of false negative detections, i.e., vehicles that the detector failed to

detect, which often happens due to occlusion scenarios.

It is insufficient to evaluate tracking performance solely by relying on detection

metrics, since the performance of different trackers varies given the same detection result.

The evaluation protocol should have the ability to judge the overall results of detection

and tracking, and to indicate the weaknesses and strengths of a tracker. In our work, we

used a state-of-the-art tracking evaluation protocol designed for the UA-DETRAC

tracking challenge [8]. This protocol analyzes tracking performance by combining both

the detection and tracking performance results. We compared the performance of our

tracker against two baseline methods, the intersection over union (IOU) tracker described

by Bochinski et al. [9], a naı̈ve vehicle tracker which only considers the overlap of

localization bounding boxes between the current and previous frames in the video signal,

and a tracker based on the Markov decision process (MDP), the MDP tracker, created by

Xiang et al. [10]. While the algorithms behind these two trackers are different, both of

them highly rely on the detection, since they are implemented following the

track-by-detection paradigm. Our research contributions in this work include,

∙ we trained the well-known YOLO [11] object detector as a general vehicle detector

and measure its effectiveness on the UA-DETRAC dataset,

∙ we evaluated the tracking efficiency and effectiveness of two recent tracking

algorithms on the dataset – the IOU [9] and the MDP [10] trackers,

∙ we developed a novel tracker that extends the IOU tracker by taking into

consideration historical IOU data, and

∙ we show that our tracker achieves a good balance of tracking effectiveness and

efficiency performance compared to the baselines.
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2 LITERATURE REVIEW

In the computer vision domain, the task of object detection and tracking has become

very popular in recent years, in part due to recent advances in computation speeds and a

boost in availability of quality data. Many researchers have published their achievements

in this area, and many engineers in industry have applied these algorithms to solve

practical problems.

The problem of vehicle tracking is usually formulated as follows: vehicle tracking is

initiated by finding the location of and assigning an identifier (ID) to every vehicle in the

first frame; then, the method must find the locations of each vehicle in the following

consecutive frames, adding new vehicles to the list of tracked vehicles as they enter the

frame. In this section, we are going to focus on reviewing some prediction-correction and

track-by-detection approaches. Although there are some differences between these

methods, the idea behind the two paradigms is similar: they both treat the tracking

problem as a data fusion problem.

2.1 The Prediction-Correction Algorithm

The prediction-correction formulation is usually based on statistical estimation and

assumption. One of the most typical approaches is based on the theory of Kalman filters,

which has seen wide use in many real-world applications [1]–[6]. However, most of the

authors derive this algorithm by using complex mathematical representations that are

sometimes too complicated for the novice to understand. In this section, we are going to

review papers by Pei et al. [3] and Faragher [4]. The former presents an in-depth

explanation of Kalman filters, while the latter provides an example of the Kalman

filter-based movement model, which helps the reader to understand how this algorithm

can be used in our problem domain. Pei et al. gave a straightforward definition of Kalman

filtering: it is an algorithm that combines two imprecise estimations together, one which

comes from the prediction, and the other which is generated by the measurement. The
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algorithm fuses these two estimations linearly to obtain a more precise result. In order to

help the reader understand this abstract concept, Pei et al. presented the analogy of

purchasing an estate, and then further explained this example from a statistical viewpoint.

The authors of this paper successfully answered the question of how to fine-tune the

unknown parameter in order to optimize the linear equation. In the second part of this

paper, Pei et al. reviewed statistical concepts such as the mean, variance (and co-variance),

and the Gaussian distribution. The authors initially explained these concepts with a simple

scalar format, and then extended to a slightly more complicated vector and matrix format.

One advantage of this article is that it derives a complex mathematical theory from simple

concepts, helping readers that do not have a strong mathematical background better

understand Kalman filtering. In the third and fourth sections of the article, the authors

posed a good question about what optimize means in the framework of this problem, and

then finally gave the detailed solution. Based on this knowledge, the authors then showed

the reader how Kalman filters can be applied in a practical application example. We are

thus able to understand that the prediction task is formulated as a linear equation, in

which the measurement is injected to help correct the prediction, and the Kalman gain is

used to represent the optimized coefficient of this linear fusion.

In the second article [4], Faragher presented the reader with an example that

demonstrates the simple and intuitive idea behind deriving the the Kalman filter.

Faragher’s publication is especially targeted for the reader who does not have a strong

mathematical background. Similarly to the article of Pei et al., Faragher also formulated

the Kalman filters as a data fusion problem and optimized this problem by using the

Gaussian distribution. But, unlike other articles, Faragher used car movement as his

practical example, which is pertinent to our research domain. Readers that have a basic

understanding of Newtonian movement should be able to quickly grasp the Kalman filter

approach via this simple example.
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2.2 The Track-by-Detection Algorithm

Advances in object detection technology provide another approach to solve the object

tracking problem, through a method known as track-by-detection. This method has been

mainly used in the tracking of pedestrians and vehicles. Much research has been

published on the problem of object detection. Farhadi and Redmon [11] improved upon

an earlier state-of-the-art detector, called you only look once (YOLO). They obtained a

faster and more accurate detector to generate decent boxes for instances by using

multi-scale predictions without specifying the anchor boxes. Fergus and Zeiler [12]

presented a way to visualize and understand convolutional neural networks (CNNs),

which are the core of most deep learning-based detection algorithms. Ahmed et al.

proposed a CNN to solve the image re-identification problem [13].

Object tracking research has also gained popularity recently. Bochinski et al.

published an intuitive idea for the vehicle tracking problem, known as the IOU tracker [9].

There have been two achievements that merit mentioning in this publication. Firstly, this

model outperforms others with regards to efficiency, resulting in very high vehicle

tracking speeds, in the order of 100,000 frames per second (fps). Secondly, the algorithm

is implemented without considering image information, making it easy to adopt by the

novice who has little computer vision knowledge. The authors mainly used the bounding

box information provided by the detector to track the vehicle. This benefits efficiency and

makes it possible to be used in a variety of pragmatic applications. This thesis will use

this algorithm as one of the comparison baselines and we describe the method in detail in

Section 4.

Bewley et al. implemented a simple online and real-time tracking algorithm based on

the IOU tracker, called SORT [14]. The tracking algorithm follows a similar

track-by-detection framework and identifies the tracking problem as a data association

problem. In the SORT algorithm, tracked features include the central point of the
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bounding box, the ratio between the bounding box width and height, as well as the object

movement speed, which is usually assumed to be constant. Bewley et al. paid more

attention to developing a fast tracker, without considering common tracking issues such as

occlusions. In their proposal, SORT formulates the object movement as a linear model,

similar to the Kalman filter models, and predicts the location in the new frame based on

the position estimate of the model. This paper uses the FrRCNN [15] detector. Bewley et

al. used the IOU distance to fuse the prediction and measurement results. The authors

computed the optimal model parameters using the Hungarian algorithm [16] developed by

Kuhn. Moreover, they note that their method is able to implicitly solve some of the

short-term occlusion problems because the tracker will track occluded objects as well.

Xiang et al. formulated the tracking problem as a decision making problem [10]. The

authors relied on the Markov decision process to solve the problem. Hence, they named

their method the MDP tracker. This thesis will also use this algorithm as one of our

baselines and we describe the method in detail in Section 5.

Kalal et al. proposed a tracking algorithm called median flow (MF) [17]. The authors

used the forward-backward error (FB error) algorithm to detect the failure in the tracking

task. The FB error approach is based on the assumption that two tracking results should

be very close to each other no matter whether the tracking starts from the first frame or

from the opposite direction. The terms forward tracking and backward tracking are used

to indicate the starting point. The former means that tracking happens starting with the

first frame, while the latter indicates that tracking begins from the last frame and happens

in reverse. For instance, a tracker can obtain two similar trajectories by starting from two

opposite points. If a significant difference exists between these two trajectories, then the

forward trajectory should be marked as an error. In this paper, the authors first explained

the general idea and gave the mathematical derivation for the FB error. Then, the authors

started to demonstrate the idea by tracking a single point and then extended to tracking
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multiple points. Particularly, the authors built their model based on the MF tracker, which

was itself originally invented based on the Lucas-Kanade tracker [18]. On the basis of the

Lucas-Kanade tracker, the MF tracker requires the FB error of the points between two

consecutive frames to be less than a threshold, which is normally 50%, as the median flow

name indicates. Points with an error rate greater than this threshold will be removed.

Kalal et al. also developed a novel tracking-learning-detection framework on the

detection and tracking task, known as TLD [19]. As indicated in the paper title,

“Forward-Backward Error: Automatic Detection of Tracking Failures,” the authors pointed

out that there have to be three independent components to successfully build a TLD

tracking algorithm: the tracker, the learner, and the detector. One of the creative

contributions in this paper is the idea of positive-negative (P-N) learning for the detection.

The authors used two “experts” to help detect and solve the false positive and the false

negative errors. The P-expert is used to identify the false negative error; while the

N-expert is responsible for observing the false positive error. In this paper, Kalal et al.

used the random forest classifier to simulate the P-N learner. The tracker in TLD is based

on the MF results, which they improved by adding a failure detection algorithm to reliably

tackle the fast occlusion problem which commonly happens in object tracking. Moreover,

they used the FB error to identify the failure of a trajectory.

In addition to the tracking algorithms, many researchers also worked on the evaluation

of tracking performance. Bashir and Porikli [20] presented a metric to evaluate object

detection and tracking systems in early 2006. Bernardin and Stiefelhagen [21] also

developed the evaluation for the Multi-object tracking (MOT) system, which is known as

the CLEAR metric. Wen et al. described the state-of-the-art MOT system protocol in their

publication [8], which they called the UA-DETRAC MOT benchmark. We evaluated the

performance of the baseline trackers and our method by using this protocol.
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2.3 The UA-DETRAC Benchmark Dataset

An MOT benchmark should consist of an annotated dataset as well as the evaluation

metric to verify the performance of the entire MOT system. In this section, we focus on

reviewing the UA-DETRAC benchmark for vehicle tracking and evaluation.

Wen et al. released the UA-DETRAC annotated traffic dataset, which they described

in their “UA-DETRACK: A new benchmark and protocol for multi-object detection and

tracking” article [8], and they also introduced a new protocol to evaluate the MOT system,

which they called the UA-DETRAC MOT protocol. They provided an implementation of

the protocol in Matlab and C++, which currently can be run under the Windows and

Linux platforms. The dataset they provided includes a total of 10 hours of video segments

recorded at 24 different locations in China, with a resolution of 960×540 and a speed of

25 fps. The total number of annotated objects is 1.21 million, consisting of 140,000

frames and 8,250 vehicles. In the UA-DETRAC dataset, the authors labeled four types of

objects, including car, bus, van, and other, where “other” represents some low-resolution

regions existing in the image. According to the weather conditions, illuminations,

occlusions, and traffic conditions, the dataset is also partitioned into three different levels:

easy (10 sequences), medium (20 sequences), and hard (10 sequences). We illustrate the

snapshot of the UA-DETRAC benchmark in Fig. 1.

Sunny Sunny Cloudy Cloudy

Rainy Rainy NightNight 

Fig. 1. The UA-DETRAC Benchmark. An example of the dataset under different
conditions.
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Similar to other tracking datasets, the UA-DETRAC dataset is divided into a training

and a test set with a ratio of 6:4. The training videos are captured at different locations

and under different traffic conditions, and the authors ensured that the test set has a

similar distribution of traffic conditions as the training set.

2.4 The UA-DETRAC Evaluation Protocol

Despite the significant progress that has already been achieved in object detection and

tracking, researchers must still rely on the classical approach to evaluate the system, in

which the detector and the tracker is judged separately. For the interested reader,

traditional evaluation approaches are summarized well by Bashir and Porikli [20]. The

most widely accepted method was to evaluate different trackers under the same detector.

Ideally, a perfect metric to rank a tracker should be a score that represents the

comprehensive performance of the tracking algorithm. Comprehensive here means

considering the accuracy of the detector along with the accuracy of the tracker. Wen et al.

proposed an approach that jointly evaluates the detector and the tracker and generates

scores indicating the overall performance of the MOT system [8]. This has been widely

known as the UA-DETRAC benchmark. The authors not only contributed the annotated

benchmark already mentioned, but also provided an MOT system ranking protocol which

has demonstrated significant impact. In the following section, we first review the metrics

for detection and tracking separately, then learn how to generate the overall rank score by

combining the two metrics.

2.4.1 Detector Evaluation

The UA-DETRAC protocol uses the precision versus recall (PR) curve to learn the

performance of the detector. The PR curve is created by measuring precision and recall at

increasing levels of detection confidence. Another metric that could be used to measure

detection performance is average precision (AP). The higher the AP score is, the better

the detector’s performance is as well.
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2.4.2 Tracker Evaluation

There are different indicators describing the performance of the tracker from variable

viewpoints. We will explain the details of each metric in this section.

∙ Mostly Track. Mostly track (MT) is a number used to count the ratio between the

ground truth tracks and the predicted tracklets with a length of at least m% of the

length of the predicted track. Obviously, the greater the MT, the better the tracker. In

our work, we set m = 80.

∙ Mostly Lost. Similar to the MT, mostly lost (ML) represents the total number of

trajectories in which the percentage of the track that is correctly predicted by some

tracklet is less than l%, where l = 20 in our work.

∙ Identity Switches. Ideally, the tracker will assign a unique ID to each object, and this

ID will be kept unchanged across the entire trajectory of the object. However, in

some cases, such as due to occlusion, it is possible that the tracker will assign a

different ID to the same object after some time. Identity switches (IDS) is a number

used to count the ID changes. A perfect tracker should have IDS=0.

∙ Fragmentation of the Trajectory. During tracking, fragmentation (FM) will happen if

the tracked object disappears in some frames and re-appears again, resulting in the

discontinuity of the trajectory. The FM score is defined as the percent of tracks that

were fragmented.

∙ False Positive. Considering the example of a car detector, the false positive (FP) rate

indicates the percentage of cars that the detector fails to correctly detect across all

frames.

∙ False Negative. Continuing our car detector example, the false negative (FN) rate

describes the situation in which the detector makes errors in predicting other objects

as cars.
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∙ Multi-Object Tracking Accuracy. Multi-object tracking accuracy (MOTA) of a

certain sequence is defined as

MOTA = 100×
(

1− ∑t(FNt +FPt + IDSt)

∑t GTt

)
, (1)

where t represents a certain frame, and FNt and FPt are the false negative and false

positive rates for that frame, respectively. GTt represents the number of ground truth

instances in that frame. Particularly, by analyzing the fraction term, one can see that

it is a ratio that accounts for all potential errors during the tracking. Notably, if IDS

is greater than 0, the ratio may be greater than 1 and, therefore, the MOTA value

may be less than 0 in some cases. If evaluating the tracker performance on multiple

sequences, MOTA is defined as

MOTA = 100×
(

1− ∑v ∑t(FNv,t +FPv,t + IDSv,t)

∑v ∑t GTv,t

)
, (2)

where v indicates that the score will be accumulated across all videos.

∙ Multi-Object Tracking Precision. Multi-object tracking precision (MOTP) is defined

as

MOT P =
∑i,t di

t

∑t ct
, (3)

where t represents a certain frame, c is the total number of matching bounding boxes,

and d denotes the difference between the predicted object i with the ground truth

object. This metric does not provide information about the tracker; it only indicates

the performance of the detector.

∙ False Alarm Rate. False alarm rate (FAR) is defined as

FAR =
FP

T P+FP
. (4)
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2.4.3 Comprehensive Evaluation

As mentioned in the previous section, the goal of the evaluation is to find a way to

consider the detection and tracker results jointly. Using one of the above metrics alone is

not enough. The UA-DETRAC protocol joins the PR curve detector metrics with the

tracking metrics to generate a comprehensive evaluation result. Typical UA-DETRAC

metrics include the PR-MOTA score, the PR-MOTP score, the PR-IDS score, the PR-MT

score, the PR-ML score, the PR-FM score, the PR-FP score, and the PR-FN score. We are

particularly interested in the PR-MOTA curve, which can be used to evaluate the overall

performance among trackers. A typical PR-MOTA curve is shown in Fig. 2. In this figure,

the red curve is the PR-MOTA curve, while the blue curve is the precision-recall curve

used to rank the performance of the detector.

Ω-
1

MOTA

PR-MOTA curve

PR curve

Precision10

Recall

Ω*= Ω  - Ω+         -

+Ω

Fig. 2. PR-MOTA curve. Ω* is a value describing the overall performance of the MOT
system.
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3 VEHICLE DETECTION BY YOLO

We have to train a detector to predict the vehicles in order to implement a tracker

following the track-by-detection paradigm. We used the YOLO algorithm [11] as our

vehicle detector, which we will introduce in this section.

3.1 Training Data and Test Data

As mentioned in Section 2.3, we used the UA-DETRAC dataset [8] for training and

testing. The UA-DETRAC benchmark mainly targets multi-vehicle detection and tracking.

There are a total of 100 sequences in this benchmark, and the number of training

sequences and test sequences are 60 and 40, respectively. The dataset is split into 3

different levels based on the weather condition (sunny, cloudy, rainy, and night) in which

those videos have been recorded. The weather condition mainly affects the illumination of

the scene. An image taken on sunny days should be clear and much easier to be analyzed,

while night-time images may be affected by blur, which may reduce the performance of

the detector. Considering that the annotated test sequences are not publicly available, we

can only rely on the training sequences for our training and evaluation purposes.

In our experiment, we used the annotated UA-DETRAC training set as input for the

YOLO detector, which we then split into training and test sets with a ratio of 8:2 samples.

Both the baseline trackers and our tracker used the same detection results as input for

predicting tracks. In order to equally evaluate the performance of the detector, we

intentionally kept a similar distribution of weather conditions in our training and test sets.

Our training dataset includes 48 sequences with 67,745 images. Since the IOU-tracker

and our tracker only depend on the detection result, we could apply the remaining 12

sequences to these two trackers. Unfortunately, there are some frames missing in 3 of

these 12 sequences. Therefore, while we used these 12 sequences to evaluate the

performance of the detector, we ignored the 3 sequences with missing data (39781, 40152,

and 63544) from our tracking test dataset.
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As Xiang et al. suggested [10], the MDP tracker depends not only on the detection

output, but also on the dataset to train the tracker; consequently, we had to reserve nearly

half of the test data (4 sequences) to train the MDP tracker and the remaining 4 sequences

were used to evaluate the tracker. Considering the above factors, the final test set used to

compare the two baseline trackers and our tracker contained 4 sequences.

The training sequences used for the MDP tracker are listed in Table 1 and the test

sequences used for all trackers are listed in Table 2. The complete list of training

sequences used in our experiments are available in Appendix A. For all sequences, we

also provide summary statistics, including number of frames, number of bounding boxes,

number of vehicles in each category (cars, vans, buses, and other), and the weather

conditions when the video was recorded.

Table 1
Training Sequences for MDP Tracker

Sequences Frames Boxes Cars Vans Buses Other Weather Track length
20011 664 7,655 7,053 296 95 211 sunny 53
39771 570 3,605 2,933 161 511 0 night 27
40141 1,600 6,222 4,916 1,306 0 0 cloudy 33
63521 2,055 15,088 11,806 962 2,099 221 rainy 90
Total 4,889 32,570 26,708 2,725 2,705 432 - 203

Table 2
Test Sequences for HIOU, IOU, and MDP Tracker

Sequences Frames Boxes Cars Vans Buses Other Weather Track length
20012 936 8,608 6,481 790 1,337 0 sunny 42
39801 885 4,853 4,828 0 0 25 night 43
40131 1,645 15,324 12,117 969 2,238 0 cloudy 67
63525 985 3,470 2,097 212 1,161 0 rainy 32
Total 4,451 32,255 25,523 1,971 4,736 25 - 184

3.2 Training Data Format

It is necessary to provide the dataset and the label when training a model with a

supervised learning approach. While training our detection model, we simply put all

training data into one folder and renamed all image files with their sequence name plus a
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5-digit frame number (e.g., 40201 img00803.jpg), indexing from 1. For each image, we

created one text file with the same name but “.txt” extension which contained ground

truth annotations. An example of such a ground truth file is given in the Table 3. Each line

of this file is used to indicate one object and contains 5 columns separated by a space.

The first column represents the vehicle type, including car, van, bus, and other. The

vehicle type is represented by a number starting from 0. The last four columns are used to

store the 2D coordinate of the bounding box of that object, including the top-left corner

coordinates, the width, and the height of a bounding box, relative to the size of the image

in pixels.

Table 3
2D Ground Truth Label File

Frame Top Left Width Height
0 0.96 0.29 0.049 0.087
0 0.87 0.24 0.044 0.078
1 0.77 0.29 0.057 0.091
1 0.27 0.30 0.069 0.091

3.3 Training YOLO

We trained our YOLO detection model using an NVIDIA Titan Xp GPU. We used the

darknet53.conv.74 model weights as an initial starting point for our model training.

Training time took 50 hours. We set the maximum number of iterations to 50,000 and

saved the model weights every 10,000 iterations. We used the final model, saved after

50,000 training iterations, in our experimental evaluation.

3.4 Pre-processing the Detection Result

For each input image, the prediction output is a text file in JSON format containing

the confidence score, the object class and its bounding box. When setting the confidence

threshold to 0.0, the size of the prediction output is approximately 42 GB. We found that

this result includes an excessive number of false alarms, which in turn have very small
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confidence scores and significantly slow down tracking. We chose to reduce the false

positive results, by ignoring those results with confidence below a minimum confidence

level, in order to increase tracking efficiency. We chose a minimum confidence score of

0.0001 to approximate the ideal threshold 0.0, which reduced the total size of the

detection result to only 1.3 GB.

3.5 Preparing for Precision and Recall

As shown in Fig. 2, the UA-DETRAC MOT metric is highly dependent on the

precision-recall curve to evaluate the performance of the tracker. We generated the

precision-recall curve by evaluating the training sequences, test sequences, and track

sequences. We iterated all sequences for different thresholds, and counted the true positive

and false positive detections by comparing the prediction bounding box with the ground

truth bounding box. According to the UA-DETRAC MOT metric, we set the IOU

between the prediction and ground truth bounding box to 0.7. We plotted the

precision-recall curve to help us understand the performance of the detector. We generated

this curve by changing the threshold of the confidence score, ranging from 0.0 to 1.0, in

increments of 0.1. Each curve was plotted using 11 different precision-recall pairs. Fig. 3

shows the precision-recall curves among the training sequences (left), test sequences

(middle), and track sequences (right). Fig. 4 depicts an example of the detection and

ground truth bounding boxes. In this figure, we plotted the detected vehicles with their

type and confidence score on the top-right side of the bounding box in red and the ground

truth vehicle type on the top-left side of the bounding box in green.
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Fig. 3. Precision-recall curve under different weather conditions.
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Fig. 4. An example of the visualization of the YOLO detection results versus ground truth
annotation under different weather conditions.
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4 VEHICLE TRACKING USING THE IOU TRACKER

As its name (intersection over union) indicates, Bochinski et al. [9] mainly used the

IOU between bounding boxes in two consecutive frames to associate the objects in their

algorithm. They assumed that the detector is able to perform well in each frame. In this

situation, it is reasonable to assume that two bounding boxes belonging to the same object

in two consecutive frames will have a high IOU score. Given a certain IOU threshold σ

during the tracking, the tracker computes the IOU between two bounding boxes — one is

in the new frame and the other is from the previous frame — and identifies the target by

looking at the best match IOU above the threshold. The IOU score is computed as

IOU(a,b) =
Area(a)∩Area(b)
Area(a)∪Area(b)

. (5)

Bochinski et al. also proposed other parameters to further improve the performance of the

tracker. These parameters include the maximum confidence score α , the minimum

confidence score β , and the shortest tracklet length γ . Because the authors did not

consider any image information in their algorithm, the method is able to outperform

others by its simplicity, resulting in very high tracking speeds.

4.1 Maximum Confidence Score

One of the hyper-parameters in this approach is the maximum confidence score α .

With this hyperparameter, at least one detection in a tracklet should have a confidence

score greater than this threshold. The authors used this parameter to guarantee that at least

one detection in the track is the true positive detection. We applied different maximum

confidence scores in our experiment, ranging from 0.0 to 0.9, in increments of 0.1.

4.2 Minimum Confidence Score

Similar to the maximum confidence score described above, the authors used the

minimum confidence score β to filter out false alarms. All detections in the tracklet
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should have a confidence score which is greater than this threshold. In our experiment, we

ranged the minimum score from 0.0 to 0.9, in increments of 0.1.

4.3 Shortest Tracklet Length

The authors used the length of the tracklet to indicate the number of consecutive

frames in which a particular vehicle has been successfully tracked. In any tracking

problem, the minimum tracklet length γ should be 1 frame. In our work, we fixed this

value to be 2.

4.4 IOU Between Two Consecutive Frames

As the authors introduced in the paper “High-Speed Tracking-by-Detection Without

Using Image Information” [9], the value of the IOU score plays a key role in this tracking

algorithm. It can be used to find out the same instance of a vehicle between two

consecutive frames by assuming spatial invariance. We ranged the IOU threshold from 0.3

to 0.8 in our experiments, in increments of 0.1.
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5 VEHICLE TRACKING BY MARKOV DECISION PROCESS

Xiang et al. formulated the MOT task as a decision making problem in their paper

“Learning to Track: Online Multi-Object Tracking by Decision Making” [10] and used the

Markov Decision Processes (MDPs) to solve this problem. The authors associated an

object with different states in its lifetime and linked a certain policy in each state so that

the model could transition from one state to another. One of the targets of this model is to

learn the polices for all possible state transitions. The authors partitioned the lifetime of

an object into four states, which they named “active,” “tracked,” “inactive,” and “lost.”

The active state is the initial state of each object. The algorithm initiates an object with

the active state when it was first predicted by the detector. Depending on the confidence

score, the method could transition the object either to the inactive state or to the tracked

state. If the confidence score is greater than a certain threshold, it indicates that this is a

true positive prediction, so the method assumes that this object should be tracked and sets

the state of the object to tracked. Otherwise, this was a false alarm and the method marks

the state of the object as inactive. Ideally, an object in a tracked state will continue to be

tracked until it leaves the video frame or moves far enough away from the camera to no

longer be detectable. However, occlusions are likely in the real world. Thus, if an object is

no longer being detected and it did not exit the video frame, the method sets the state of

the object as lost. If an object goes missing for a certain number of frames and then

re-appears, it should be tracked again. In this case, the method transitions the object state

back to tracked. Otherwise, if the object is in the lost state for too many frames, the

method will terminate the tracking by changing its state to inactive. We illustrate this state

transition process in Fig. 5.

23



Active

Tracked InactiveLost

Policy_1 Policy_2

Policy_3

Policy_4

Policy_5

Policy_6

Policy_7

initial state

Fig. 5. The MDP state transition.

5.1 Policy in Active State

Xiang et al. developed two options when an object is in its active state. They may

change it to a tracked state or move it to an inactive state. In this framework, Xiang et al.

trained a binary support vector machine (SVM) [22] to help make the decision. The

authors chose two types of datasets to train the binary classifier. They selected the noise

detections for one dataset, in which the confidence score was smaller than a certain

threshold, and they used the true positive prediction as another dataset. The authors

normalized the values of the top-left, width, height, confidence score for the feature vector

in an effort to improve classification accuracy.

5.2 Policy in Tracked State

Xiang et al. formulated the MDP tracker to have the ability to make decisions under

the tracked state. The authors utilized the appearance model to help the MDP tracker

make decisions with regards to changing the state of the object. By comparing the

appearance similarity of targets between the new frame and the previous frame, as long as

the target can be seen in a new frame, their method assigns this object to the tracked state.

In this framework, the authors combined some relatively expensive metrics, such as the
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FB error [17], with some light-weight features, such as bounding box overlap and

confidence score, to build the appearance template.

5.3 Policy in Lost State

The authors assumed that, if an object was in the lost state, it could be switched to an

inactive state, tracked state, or a lost state. Setting the object to an inactive state was based

on the count of the number of frames that the object was not found in. If they found the

object lost for some number of frames greater than a certain threshold, then they assumed

the object to be in an inactive state. However, it is a little challenging to differentiate

whether, when an object re-appears, it is indeed a new object or an old object recovering

from a lost state. The authors viewed this problem as a data association problem and

solved it using an SVM binary classifier. They trained the binary classifier to have the

ability to generate a value indicating the probability that these two detections are linked,

when providing the similarity of these two detections.
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6 VEHICLE TRACKING BY HISTORY-BASED IOU TRACKER

Motivated by the IOU tracker mentioned above, we developed a history-based IOU

(HIOU) tracker, which has the capability to overcome the detection of false alarms.

Bochinski et al. [9] used the overlap between two consecutive frames to associate a new

detection with an object in the previous frame if their overlap is greater than a threshold.

This algorithm works well if the detector is able to generate high accuracy predictions;

however, their approach becomes ineffective when there is interference. We show two

common interference conditions during tracking in Fig. 6.

Frame: 188
Sequence: 40131

Frame: 122
Sequence: 40131

Frame: 282
Sequence: 40131

Tracked, ID = 9

Hidden

Re-appear, ID is 
changed to 32

Frame: 16
Sequence: 39801

Frame: 21
Sequence: 39801

Frame: 29
Sequence: 39801

Tracked, ID = 2

Occluded 

Lost, ID is 
changed to 5

Fig. 6. Two common occlusions.
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In Fig. 6, the left 3 images demonstrate the scenario in which a tracked vehicle

(original ID is 9) is temporarily hidden by a bus later re-detected. We expect that the

tracker is smart enough to assign the same ID to these two cars because they are in fact

the same exact car. Unfortunately, both the IOU tracker and the tracker we implemented

(HIOU) are unable to handle this type of noise, because they lack image information. Our

HIOU tracker’s advantages over the IOU tracker is in its ability to deal with the

interference of non-vehicle occlusions. We show this situation in the right side of Fig. 6.

In this case, although the detector made a mistake to predict one vehicle as two because

of the occlusion (pole), our algorithm is still able to work correctly since our design

considers tracking history.

We mainly use the IOU to associate the bounding boxes and do not introduce any

image information in our proposal; therefore, we can also simplify the complicated

vehicle tracking task to a bounding box association problem. We differentiate our

algorithm with the IOU tracker by adding the tracking history. Similar with the IOU

tracker, we only track those detections in which the confidence scores are above a certain

threshold. We use this way to prevent adding false alarms to the tracker and increase

tracking accuracy. For the IOU tracker, the author assigned a new ID to the detection

immediately when they found that the overlap is less than the threshold. This might lead

to some mistakes in some circumstances such as occlusions, or detection deviations,

meaning a detector may only predict part of the object. These two interference scenarios

will cause the overlap between two consecutive frames to drop slightly below the

threshold; consequently, the IOU tracker will separate the track into two or more tracks.

Moreover, it is common to have false detections, such as those shown in Fig. 6. In this

case, the IOU tracker is unable to realize the detection failure and will split a track into

multiple tracks. Fortunately, our algorithm is able to fix these issues. When there is a car

that failed to be detected in a previous frame, or that has an overlap score slightly below
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the threshold, our method will continue to compare the target frame with at most η

historical frames to see if it is possible to link the current detection with some detections

in the earlier frames. To ensure robustness, our method slightly decreases the IOU

threshold proportional with the history distance (number of intermediate frames) between

the current frame and the historical frame being searched, as follows:

θ
′
= θ −0.1, where min

θ
≥ 0.3. (6)

Our method assumes that the value of the IOU score varies linearly, and that very

small overlap (below 0.3 in our experiments) may not indicate a good match. We

illustrated our algorithm in Algorithm 1 and implemented it in Python 3.5 without any

special optimization. In Algorithm 1, we use DJ
i to indicate one of the detections, where i

represents the frame ID, beginning from 0, and J indicates the total number of detections

within that frame. Similarly, the jth object in frame i is denoted as d j
i , where d j

i is made

up of the bounding box, the confidence score, and the vehicle id, which are aggregated as

(b j
i , s j

i , id
j
i ).

Next, we will provide more details about our algorithm. Note that we initialize the

hyper-parameters of our tracker in lines 2−5. When processing the first frame, our

method also assigns unique IDs to the detections in that frame. It is then reasonable to

start tracking from the second frame. The method first iterates across each detection to

compute the overlap with all detections in the previous frame and tries to associate the

best matched bounding box among the ones being compared. If it is unable to find a

matched detection among previous detections, it will store this detection in a cache called

untrack (lines 10−13). After finishing this stage, if there exist any bounding boxes in

untrack, the method starts the trace back process by looking at the historical frames (lines

14−16). Finally, if it is still unable to match the bounding box with one in earlier frames,

it assigns a new ID to the detection.
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Algorithm 1 HIOU Tracker

1: Input
2: D = {DI

0, DJ
1, ..., DK

F−1} =
3: {{d0

0 , d1
0 , ..., dI−1

0 }, ..., {d0
F−1, d1

F−1, ..., dK−1
F−1}} , where d j

i = (b j
i , s j

i , id j
i )

4: α ← max confidence score, β ← min confidence score, γ ← min track length
5: η ← max backward frame, θ ← min IOU, ID← 1
6: for d j

0 ∈ DI
0 do

7: id j
0 = ID and ID← ID + 1 only when s j

0 > β

8: End
9: Start

10: for f = 1 to F-1 do
11: for d j

f ∈ DJ
f do

12: for di
f−1 ∈ DI

f−1 and s j
f ≥ β do

13: id j
f ← idi

f−1, if IOU(bi
f−1, b j

f ) ≥ θ ; otherwise, d j
f → untrack

14: if length(untrack) > 0 then
15: for dm

f ∈ untrack and max(0, f-η-1) ≤ η
′ ≤ f-2 do

16: try to match dm
f with historical frame η

′

17: if length(untrack) > 0 then
18: for dm

f ∈ untrack do
19: assign new ID: idm

f ← ID, ID← ID + 1

20: for f = 0 to F-1 do
21: aggregate di

f by the id and save to tracki

22: for tracki, where i ∈ [1, max(ID)] do
23: if max score(tracki) < α then
24: remove tracki

25: if length(tracki) < γ then
26: remove tracki

27: End

We further improve the performance of our tracker with two more other parameters.

We can tune the length of the tracklet γ to get rid of some false alarms. For example, it is

meaningless to have a tracklet with a length of less than 2 frames in reality. In order to

increase the quality of the track, we can also use the maximum confidence score α and

minimum confidence score β to filter out false alarms.
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7 EXPERIMENTS AND RESULTS

The pipeline of our experiment is shown in Fig. 7. We used YOLO to localize vehicles

in the UA-DETRAC benchmark dataset. We described the dataset partition and the

training details in Section2.3. We executed the model training and vehicle prediction on a

server equipped with an Intel i7 2.8 GHz CPU, 16 GB memory, and an NVIDIA Titan Xp

GPU. It took our method approximately 50 hours to finish the training for the entire

dataset. Additionally, the method spent about 50 hours generate the predictions for all 48

training sequences, and another 11 hours to generate vehicle detections for the 12 test

sequences. All of these predictions were done using a confidence score threshold of 0.0.

UA-DETRAC: 
train dataset

Preprocess:
Verify data integrity

Reformat dataset

Training 
(YOLO)

Generate 
model

Prediction 
result

Postprocess:
Reduce data size

Visualization on 
detection result

UA-DETRAC:
test dataset

Visualization on data 
distribution

Feed IOU tracker
Evaluation:

UA-DETRAC metric

Postprocess:
Reformat tracking 

result

obtain PR-Curve

Visualization on 
tracking result

Produce track result

Visualization on 
tracker performance

Fig. 7. Pipeline of IOU tracker by YOLO detection.

We used another server equipped with 2 Intel(R) Xeon(R) E5-2680 v3 CPUs and 384

GB memory to run all the tracking experiments for our method and the two baseline

trackers. We compared the performance in all tracking experiments using the same video
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sequences and detection results. The test sequences we used in our experiments are listed

in Table 2.

Both the IOU tracker and HIOU tracker are developed in Python, while the MDP

tracker is implemented using Matlab. Note that the authors of the MDP tracker evaluated

their algorithm using the MOT benchmark [23], which was introduced by Leal-Taixé et al.

and mainly focuses on pedestrian tracking. However, we believe that this algorithm is able

to be used for vehicle tracking as well.

We chose the UA-DETRAC MOT evaluation protocol to evaluate the tracking

performance among these three trackers. In order to learn how the hyper-parameters affect

the performance of the tracker, we ran the experiment multiple times. For the HIOU

tracker and the IOU tracker, we ranged the minimum confidence score between 0.0 and

0.9, the maximum confidence score between 0.5 and 0.9, and fixed the minimum track

length to 2 frames. For the MDP tracker, we ranged the confidence score between 0.0 and

0.9. For both trackers, we ranged the IOU score between 0.3 and 0.8, in increments of 0.1.

For the historical length parameter in our HIOU tracker, we tested with a length of 3

frames. We listed the range of the parameters in Table 4. In this table, we put a dash in

the cell to indicate that this parameter is not applicable for this tracker. We show a typical

tracking result for the HIOU tracker, the IOU tracker, and the MDP tracker in Fig. 8.

Fig. 9 gives an example of the capability of the trackers to overcome the non-vehicle

occlusion. In this figure, there is a non-vehicle occlusion, which is a pole. At the top of

the figure, we can see that the pole had little impact on our HIOU tracker (note the

vehicle with ID 124), while it caused the vehicle ID to change from 29 to 38 in the

middle figure, in which the vehicle was tracked using the IOU tracker. The bottom figures

demonstrate that the MDP tracker is able to overcome this type of occlusion as well (note

the vehicle with an ID 55).
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MDP tracker MDP tracker

IOU trackerIOU tracker

HIOU tracker HIOU tracker

Fig. 8. Visualization of the tracking results among three trackers.

Table 4
Range of the hyper-parameters Among HIOU, IOU, and MDP Tracker

Tracker IOU Max score Min score Track length Historical frame
HIOU 0.3 - 0.8 0.5 - 0.9 0.0 - 0.9 2 3

IOU 0.3 - 0.8 0.5 - 0.9 0.0 - 0.9 2 -
MDP 0.3 - 0.8 - 0.0 - 0.9 - -

32



occluded by a pole

occluded by a pole

Frame ID: 549
Sequence: 39801 

Frame ID: 549
Sequence: 39801 

Frame ID: 570
Sequence: 39801

Error! ID is changed from 29 to 38

Frame ID: 549
Sequence: 39801 

Frame ID: 570
Sequence: 39801

occluded by a pole

Success! ID unchanged

Success! ID unchanged

Frame ID: 570
Sequence: 39801

Fig. 9. The capability of trackers to overcome the non-vehicle occlusion (a pole).

33



In the rest of this section, we will describe two types of evaluation results. First, we

present results from joining the detector and the tracker together. Second, we list the

tracking results alone without considering the performance of the detector. In order to

obtain comprehensive scores, we first have to compute the precision-recall values by

changing the minimum confidence score threshold. Then, with these values, we are able

to generate comprehensive metrics by using the UA-DETRAC MOT evaluation toolkit. In

our experiments, we obtained multiple values by applying different hyper-parameters, and

we selected the best values for each method, which we include in Table 5. The values of

the hyper-parameters that lead to the best scores are shown in Appendix B.

Table 5
Comprehensive Performance of HIOU, IOU, and MDP Tracker

Tracker PR-MOTA PR-MOTP PR-MT PR-IDS PR-FM PR-MOTAL PR-ML
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 7.83 8.53 8.90 1.39 4.23 8.12 0.21
IOU 6.48 8.23 6.81 12.24 16.14 6.59 0.40
MDP 6.55 7.97 7.55 3.79 10.28 6.56 0.42

Sunny
HIOU 8.08 8.85 7.01 1.03 6.73 8.10 0.71
IOU 7.07 9.23 6.94 2.37 3.80 7.22 0.73
MDP 8.12 8.86 8.34 0.63 2.33 8.13 0.52

Night
HIOU 7.72 11.11 6.58 3.89 7.22 7.82 0.57
IOU 6.68 10.60 6.67 4.91 6.73 7.06 0.62
MDP 7.35 9.74 8.69 1.72 4.23 7.38 0.50

Cloudy
HIOU 6.21 6.49 6.81 0.51 3.07 6.23 0.17
IOU 5.31 6.34 6.82 3.91 4.73 5.47 0.19
MDP 4.65 6.27 6.65 0.93 3.07 4.65 0.34

Rainy
HIOU 10.21 10.61 10.95 0.34 4.40 10.24 0.27
IOU 9.24 10.64 6.46 1.58 1.50 9.37 0.45
MDP 10.07 10.26 8.30 0.37 1.18 10.08 0.40

We also used the metrics MT, MOTA, MOTP, IDS, FM, FAR, and ML without

considering the performance of the detector. We visualized the relationship between the

confidence score and the metric MT, MOTA and MOTP in Fig. 10. Additional results for

other metrics are included in Appendix C. In this figure, we fix the maximum confidence

scores of the HIOU tracker and the IOU tracker to 0.6. We varied the minimum

confidence scores for the HIOU tracker, the IOU tracker, and the MDP tracker. In this
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experiment, we only varied the IOU threshold from 0.5 to 0.8. Moreover, we were also

interested in how the IOU threshold affects these tracking metrics. We analyzed this

relationship in Fig. 11. We note that the IOU threshold affects result quality very little in

the MDP tracker, which is reasonable since the contribution of the overlap in this

algorithm is not too high; however, the overlap plays an important role in both the HIOU

tracker and IOU tracker. One should note that setting the IOU greater than 0.6 will drop

the most track (MT) performance.
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Fig. 10. The overall performance in 4 sequences among the HIOU tracker, the IOU tracker,
and the MDP tracker.
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Fig. 11. The overall performance in 4 sequences among the HIOU tracker, the IOU tracker,
and the MDP tracker.

The running speed is one of the most critical metrics to evaluate a tracker. We have to

balance the tracking accuracy and speed when we apply the algorithm in a practical

environment. The speed of the tracker is measured in processed frames per second (fps).

We compared the speed of the HIOU tracker with that of the two baseline trackers and

show these results in Table 6. Results show that the IOU tracker outperforms our tracker

and the MDP tracker with regards to effectiveness; however, our tracker is able to greatly

outperform the MDP tracker with regards to efficiency.
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Table 6
Running Speed (fps) of HIOU, IOU, and MDP Tracker

Trackers 20012 39801 40131 63525
Confidence score 0.0

HIOU 4.23 11.34 2.99 8.96
IOU 40.50 87.15 43.63 62.00
MDP 0.37 0.48 0.41 0.69

Confidence score 0.1
HIOU 557.73 950.40 347.85 2,382.62
IOU 1,647.13 2,280.29 1,512.48 3,336.67
MDP 2.66 3.26 2.39 7.31

Confidence score 0.2
HIOU 736.20 1,133.34 491.19 2,838.86
IOU 1,793.85 2,404.67 1,672.43 3,496.80
MDP 2.50 3.46 2.46 6.86

Confidence score 0.3
HIOU 857.64 1,324.41 665.77 3,066.27
IOU 1,910.51 2,486.94 1,764.37 3,506.06
MDP 2.74 3.59 2.59 7.40

Confidence score 0.4
HIOU 1,061.79 1,414.15 760.07 3,211.34
IOU 1,987.38 2,525.25 1,797.85 3,592.22
MDP 2.94 3.58 2.58 7.42

Confidence score 0.5
HIOU 1,162.15 1,558.61 890.23 3,285.86
IOU 1,973.97 2,607.94 1,870.67 3,623.36
MDP 2.74 3.79 2.58 7.37

Confidence score 0.6
HIOU 1,317.74 1,743.39 949.92 3,276.81
IOU 2,136.77 2,701.84 1,906.53 3,705.25
MDP 2.96 3.69 2.64 7.53

Confidence score 0.7
HIOU 1,398.67 1,917.88 1,109.91 3,414.49
IOU 2,187.37 2,758.00 1,990.79 3,782.72
MDP 3.00 3.86 2.64 7.83

Confidence score 0.8
HIOU 1,449.72 2,264.52 1,230.00 3,497.80
IOU 2,244.21 2,877.62 2,093.79 3,842.30
MDP 3.13 4.09 2.66 7.86

Confidence score 0.9
HIOU 1,762.25 2,709.34 1,477.01 3,636.81
IOU 2,446.64 3,154.73 2,246.79 3,936.80
MDP 3.32 4.73 2.75 8.29

Average speed
HIOU 40.81 106.21 28.88 87.32
IOU 342.80 670.78 359.89 537.52
MDP 1.71 2.22 1.69 3.77
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8 CONCLUSIONS

Our target was to develop a simple, yet fast, tracker with relatively high tracking

performance, and also make it easy to understand and usable in real MOT tasks. For this,

we implemented a history-based IOU tracker (HIOU), which is an extension and

optimization of the IOU tracker. We followed the track-by-detection methodology to

develop our tracking algorithm. Our HIOU tracker is able to overcome minor detection

false alarms by looking further back in history than the IOU tracker. Even without using

image information, our method achieved high tracking performance and relatively high

speed compared to two other baseline trackers.

We relied on the state-of-the-art UA-DETRAC dataset and its evaluation protocol to

evaluate our algorithm. We used the existing and well-known object detector YOLO to

predict vehicles. We found that the overall speed of our tracker is higher than that of the

MDP tracker, but lower compared to the IOU tracker. We obtained a relatively high

PR-MOTA metric over these 4 sequences compared to the IOU tracker and the MDP

tracker. It is significant to note that the overall ID switch score in our tracker is lower than

that of both baseline trackers.

We formulated a complicated vehicle tracking problem as a simple data association

task, without considering any image information. We hope this work will inspire others to

implement a faster, more accurate tracker that can be better used in solving real problems.

In addition, while convolutional neural networks have revolutionized object detection

technology in recent years, we hope this work will further motivate researchers to

improve the performance of object detectors, which will further improve our ability to

track objects.
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9 FUTURE WORK

Our work mostly considered the trade-off between tracking efficiency and accuracy.

We ultimately implemented an approach to solve the vehicle tracking task without adding

any image information. We improved the existing IOU algorithm by adding the history

tracking information, resulting in a tracker with better performance in speed and

comparable tracking accuracy as the baselines. Our model is able to handle occlusions

caused by detection false alarms; however, our model is unable to tackle occlusions

caused by another vehicle because it does not use image information. One possible future

improvement would be to create a new tracker that utilizes some image information, such

as the shape, color, and appearance of the vehicle. It would be interesting to see if this

could be used to solve such occlusion issues, and, at the same time, decrease the number

of ID switches. One will need to carefully choose image features that will not be

detrimental to the speed of the tracker.

We only relied on one well-known detector in our work. Therefore, we were unable to

evaluate the impact of that detector on the tracker. However, many research experiments

suggest that the quality of the detection will impact the performance of the

track-by-detection trackers. Consequently, it is possible to generate a higher quality

tracker by enhancing existing vehicle detection approaches. We plan to re-execute our

experiments with multiple detectors and quantify the effect of detection quality

improvement on tracking effectiveness.
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Appendix A

SUMMARY STATISTICS FOR SEQUENCES USED IN OUR

EXPERIMENTS

Table 7
Summary Statistics of Training Sequences

Sequences Frames Boxes Cars Vans Buses Other Weather
20033 784 5,274 4,188 759 327 0 sunny
20034 800 9,934 8,073 488 1,373 0 sunny
20035 800 11,855 10,396 1,459 0 0 sunny
20051 906 8,934 7,738 290 906 0 sunny
20052 694 8,359 6,982 683 694 0 sunny
20061 800 9,256 7,348 1,035 873 0 sunny
20062 800 4,462 3,049 725 501 187 sunny
20063 800 6,392 4,789 712 771 120 sunny
20064 800 14,184 13,478 465 241 0 sunny
20065 1,200 17,156 14,205 1,699 1,252 0 sunny
41063 1,505 10,048 8,447 1,338 76 187 sunny
41073 1,825 10,295 9,143 1,041 0 111 sunny
40871 1,720 36,625 29,634 5,271 1,720 0 rainy
63552 1,150 7,113 5,482 1,540 0 91 rainy
63553 1,405 10,775 9,208 1,338 167 62 rainy
63554 1,445 9,847 8,359 1,457 0 31 rainy
63561 1,285 9,803 8,578 1,007 0 218 rainy
63562 1,185 6,680 5,650 877 66 87 rainy
63563 1,390 9,564 8,322 1,053 31 158 rainy
39931 1,082 3,931 3,495 0 436 0 cloudy
40161 1,490 6,625 4,803 975 847 0 cloudy
40162 1,726 11,261 9,380 454 1,427 0 cloudy
40171 1,150 8,928 7,084 147 1,697 0 cloudy
40172 2,635 18,142 16,671 644 626 201 cloudy
40181 1,700 7,124 4,261 417 2,350 96 cloudy
40191 2,495 38,401 33,647 4,633 0 121 cloudy
40192 2,195 28,183 23,573 4,097 346 167 cloudy
40201 925 10,925 10,141 784 0 0 cloudy
40204 1,225 22,428 19,387 2,774 267 0 cloudy
40211 1,923 6,892 5,792 977 92 31 cloudy
40212 1,690 7,879 6,800 870 188 21 cloudy
40213 1,782 7,702 6,301 1,124 133 144 cloudy
40241 2,320 21,347 18,502 2,596 71 178 cloudy
40243 1,265 10,548 9,047 1,259 171 71 cloudy
40244 1,345 8,811 7,885 804 122 0 cloudy
39761 1,323 3,718 3,316 0 402 0 night
39811 500 599 599 0 0 0 night
39821 880 4,195 3,405 609 181 0 night
39851 1,286 5,126 4,007 342 777 0 night
39861 745 2,394 2,298 0 96 0 night
40732 2,120 11,512 10,154 276 730 352 night
40751 1,145 7,386 5,418 41 1,836 91 night
40752 2,025 16,852 14,529 1,647 479 197 night
40962 1,875 7,580 7,009 475 96 0 night
40963 1,820 11,639 9,906 1,007 726 0 night
40981 1,995 10,349 9,248 990 111 0 night
40991 1,667 4,482 4,482 0 0 0 night
40992 2,122 5,062 4,926 136 0 0 night
Total 67,745 516,577 439,135 51,315 23,205 2,922 -
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Appendix B

HYPERPARAMETER CHOICES FOR OUR MODELS

Table 8
Chosen Hyperparameters for the Best PR-MOTA Results (HIOU, IOU, and MDP

Trackers)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.7 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Sunny
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.7 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Night
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.6 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Cloudy
HIOU 0.7 0.9 0.0 - 0.9 2 3
IOU 0.7 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Rainy
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.6 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Table 9
Chosen Hyperparameters for the Best PR-MOTP Results (HIOU, IOU, and MDP

Trackers)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.8 0.9 0.0 - 0.9 2 3
IOU 0.8 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Sunny
HIOU 0.8 0.9 0.0 - 0.9 2 3
IOU 0.8 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Night
HIOU 0.8 0.9 0.0 - 0.9 2 3
IOU 0.8 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Cloudy
HIOU 0.8 0.9 0.0 - 0.9 2 3
IOU 0.8 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Rainy
HIOU 0.8 0.9 0.0 - 0.9 2 3
IOU 0.8 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

44



Table 10
Chosen Hyperparameters for the Best PR-MT Results (HIOU, IOU, and MDP Tracker)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.6 0.0 0.0 - 0.9 2 3
IOU 0.3 0.5 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Sunny
HIOU 0.6 0.0 0.0 - 0.9 2 3
IOU 0.3 0.5 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Night
HIOU 0.5 0.0 0.0 - 0.9 2 3
IOU 0.3 0.5 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Cloudy
HIOU 0.6 0.0 0.0 - 0.9 2 3
IOU 0.3 0.5 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Rainy
HIOU 0.6 0.0 0.0 - 0.9 2 3
IOU 0.3 0.5 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Table 11
Chosen Hyperparameters for the Best PR-IDS Results (HIOU, IOU, and MDP Tracker)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.5 0.9 0.0 - 0.9 2 3
IOU 0.4 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Sunny
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.5 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Night
HIOU 0.3 0.9 0.0 - 0.9 2 3
IOU 0.4 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Cloudy
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.4 0.9 0.0 - 0.9 2 -
MDP 0.6 - 0.0 - 0.9 - -

Rainy
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.5 0.9 0.0 - 0.9 2 -
MDP 0.6 - 0.0 - 0.9 - -
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Table 12
Chosen Hyperparameters for the Best PR-FM Results (HIOU, IOU, and MDP Tracker)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.5 0.9 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Sunny
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.6 0.9 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Night
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.4 0.9 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Cloudy
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.5 0.9 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Rainy
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.6 0.9 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Table 13
Chosen Hyperparameters for the Best PR-MOTAL Results (HIOU, IOU, and MDP

Tracker)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.7 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Sunny
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.8 0.8 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Night
HIOU 0.6 0.9 0.0 - 0.9 2 3
IOU 0.6 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Cloudy
HIOU 0.7 0.9 0.0 - 0.9 2 3
IOU 0.8 0.9 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Rainy
HIOU 0.6 0.8 0.0 - 0.9 2 3
IOU 0.7 0.6 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -
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Table 14
Chosen Hyperparameters for the Best PR-ML Results (HIOU, IOU, and MDP Tracker)

Tracker IOU Max score Min score Track length Historical frames
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 0.6 0.2 0.0 - 0.9 2 3
IOU 0.5 0.6 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Sunny
HIOU 0.6 0.2 0.0 - 0.9 2 3
IOU 0.5 0.6 0.0 - 0.9 2 -
MDP 0.3 - 0.0 - 0.9 - -

Night
HIOU 0.6 0.4 0.0 - 0.9 2 3
IOU 0.5 0.6 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -

Cloudy
HIOU 0.7 0.4 0.0 - 0.9 2 3
IOU 0.8 0.7 0.0 - 0.9 2 -
MDP 0.7 - 0.0 - 0.9 - -

Rainy
HIOU 0.7 0.9 0.0 - 0.9 2 3
IOU 0.6 0.9 0.0 - 0.9 2 -
MDP 0.8 - 0.0 - 0.9 - -
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Appendix C

PERFORMANCE SCORES GIVEN DIFFERENT IOU AND MINIMUM

CONFIDENCE SCORES

Table 15
Tracking Performance of HIOU (left) and IOU (Right) Trackers on All Test Sequences

Given Different Min Confidence Scores, IOU=0.5, and Max Confidence Score=0.6

Score FAR IDS FM ML
0.0 3.67 533.00 461.00 2.19
0.1 1.53 88.00 208.00 2.19
0.2 1.28 83.00 212.00 2.19
0.3 1.12 82.00 229.00 2.73
0.4 0.98 78.00 245.00 2.73
0.5 0.88 81.00 286.00 3.28
0.6 0.76 96.00 391.00 3.28
0.7 0.63 96.00 478.00 4.92
0.8 0.49 121.00 497.00 5.46
0.9 0.33 134.00 552.00 7.10

Score FAR IDS FM ML
0.0 11.36 267.00 176.00 1.64
0.1 1.65 82.00 150.00 2.19
0.2 1.25 89.00 157.00 2.19
0.3 1.06 100.00 165.00 2.73
0.4 0.93 126.00 186.00 2.73
0.5 0.85 188.00 236.00 3.28
0.6 0.73 273.00 315.00 4.37
0.7 0.60 327.00 365.00 4.92
0.8 0.47 350.00 378.00 4.92
0.9 0.32 390.00 409.00 7.10

Table 16
Tracking Performance of MDP Tracker on All Test Sequences Given Different

Confidence Scores (IOU=0.5)

Score FAR IDS FM ML
0.0 8.47 521.00 310.00 4.37
0.1 1.66 42.00 102.00 2.73
0.2 1.38 40.00 112.00 2.73
0.3 1.21 42.00 95.00 2.73
0.4 1.05 49.00 99.00 3.28
0.5 0.95 40.00 88.00 4.37
0.6 0.84 46.00 95.00 4.37
0.7 0.68 55.00 104.00 4.37
0.8 0.58 45.00 107.00 5.46
0.9 0.41 17.00 109.00 6.56
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Table 17
Tracking Performance of HIOU (Left) and IOU (Right) Trackers on All Test Sequences

Given Different Min Confidence Scores, IOU=0.6, and Max Confidence Score=0.6

Score FAR IDS FM ML
0.0 2.20 200.00 204.00 2.73
0.1 1.47 166.00 213.00 2.19
0.2 1.27 161.00 229.00 2.19
0.3 1.13 158.00 251.00 2.73
0.4 1.00 153.00 263.00 2.73
0.5 0.90 151.00 301.00 3.28
0.6 0.77 157.00 406.00 3.28
0.7 0.64 151.00 489.00 4.37
0.8 0.50 168.00 512.00 4.92
0.9 0.34 170.00 562.00 6.56

Score FAR IDS FM ML
0.0 9.19 311.00 186.00 2.73
0.1 1.55 174.00 177.00 2.73
0.2 1.24 176.00 185.00 2.73
0.3 1.06 184.00 194.00 2.73
0.4 0.93 203.00 213.00 2.73
0.5 0.85 256.00 260.00 3.28
0.6 0.74 326.00 331.00 4.37
0.7 0.61 369.00 378.00 4.92
0.8 0.48 386.00 393.00 4.92
0.9 0.32 415.00 420.00 7.10

Table 18
Tracking Performance of MDP Tracker on All Test Sequences Given Different

Confidence Scores (IOU=0.6)

Score FAR IDS FM ML
0.0 5.77 52.00 141.00 3.28
0.1 1.62 52.00 95.00 2.19
0.2 1.37 61.00 118.00 2.73
0.3 1.18 62.00 112.00 2.73
0.4 1.01 29.00 88.00 3.28
0.5 0.93 37.00 92.00 4.37
0.6 0.79 28.00 89.00 3.83
0.7 0.66 34.00 99.00 4.37
0.8 0.54 46.00 106.00 5.46
0.9 0.39 16.00 117.00 6.56

Table 19
Tracking Performance of HIOU (Left) and IOU (Right) Trackers on All Test Sequences

Given Different Min Confidence Scores, IOU=0.7, and Max Confidence Score=0.6

Score FAR IDS FM ML
0.0 1.75 778.00 320.00 2.73
0.1 1.37 732.00 345.00 2.73
0.2 1.25 722.00 355.00 2.73
0.3 1.14 713.00 364.00 2.73
0.4 1.03 707.00 386.00 2.73
0.5 0.95 696.00 419.00 3.28
0.6 0.82 676.00 512.00 3.83
0.7 0.69 646.00 588.00 4.37
0.8 0.54 625.00 606.00 4.92
0.9 0.36 555.00 629.00 8.20

Score FAR IDS FM ML
0.0 6.51 841.00 325.00 2.73
0.1 1.46 736.00 322.00 2.73
0.2 1.23 733.00 328.00 2.73
0.3 1.09 734.00 332.00 2.73
0.4 0.98 743.00 349.00 2.73
0.5 0.90 774.00 390.00 3.28
0.6 0.78 815.00 453.00 4.37
0.7 0.66 835.00 493.00 4.92
0.8 0.52 810.00 498.00 4.92
0.9 0.35 741.00 494.00 8.74
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Table 20
Tracking Performance of MDP Tracker on All Test Sequences Given Different

Confidence Scores (IOU=0.7)

Score FAR IDS FM ML
0.0 5.17 65.00 152.00 3.28
0.1 1.58 32.00 90.00 2.19
0.2 1.33 34.00 96.00 2.19
0.3 1.11 30.00 91.00 2.73
0.4 0.98 36.00 95.00 3.28
0.5 0.89 37.00 93.00 3.83
0.6 0.76 30.00 91.00 4.37
0.7 0.63 51.00 103.00 4.37
0.8 0.54 34.00 115.00 5.46
0.9 0.38 20.00 127.00 6.56

Table 21
Tracking Performance of HIOU (Left) and IOU (Right) Trackers on All Test Sequences

Given Different Min Confidence Scores, IOU=0.8, and Max Confidence Score=0.6

Score FAR IDS FM ML
0.0 1.52 2,730.00 849.00 5.46
0.1 1.30 2,651.00 873.00 5.46
0.2 1.22 2,640.00 869.00 5.46
0.3 1.14 2,627.00 884.00 5.46
0.4 1.05 2,612.00 899.00 5.46
0.5 0.98 2,589.00 923.00 6.01
0.6 0.85 2,532.00 990.00 7.10
0.7 0.72 2,456.00 1,047.00 7.65
0.8 0.57 2,349.00 1,032.00 9.29
0.9 0.40 2,097.00 977.00 13.11

Score FAR IDS FM ML
0.0 3.73 2,598.00 909.00 5.46
0.1 1.34 2,530.00 910.00 5.46
0.2 1.18 2,522.00 915.00 5.46
0.3 1.07 2,521.00 918.00 5.46
0.4 0.98 2,522.00 930.00 5.46
0.5 0.92 2,529.00 956.00 6.01
0.6 0.80 2,511.00 999.00 7.65
0.7 0.68 2,472.00 1,013.00 8.20
0.8 0.54 2,361.00 983.00 9.29
0.9 0.38 2,122.00 902.00 13.11

Table 22
Tracking Performance of MDP Tracker on All Test Sequences Given Different

Confidence Scores (IOU=0.8)

Score FAR IDS FM ML
0.0 5.65 69.00 167.00 3.28
0.1 1.52 47.00 104.00 2.19
0.2 1.24 45.00 104.00 2.73
0.3 1.06 35.00 102.00 3.28
0.4 0.90 31.00 94.00 3.83
0.5 0.84 38.00 98.00 3.83
0.6 0.72 24.00 86.00 4.37
0.7 0.62 34.00 102.00 4.92
0.8 0.49 31.00 122.00 5.46
0.9 0.36 20.00 127.00 6.01
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