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Species traits shape the relationship between local and regional
species abundance distributions
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Abstract. The species abundance distribution (SAD) depicts the relative abundance of species within a
community, which is a key concept in ecology. Here, we test whether SADs are more likely to either follow a
lognormal-like or follow a logseries-like distribution and how that may change with spatial scale. Our results
show that the shape of SADs changes from logseries-like at small, plot scales to lognormal-like at large, land-
scape scales. However, the rate at which the SAD’s shape changes also depends on species traits linked to the
spatial distribution of individuals. Specifically, we show for oligophagous and small macro-moth species that
a logseries distribution is more likely at small scales and a lognormal distribution is more likely at large scales,
whereas the logseries distribution fits well at both small and large scales for polyphagous and large species.
We also show that SAD moments scale as power laws as a function of spatial scale, and we assess the perfor-
mance of Tchebichef moments and polynomials to reconstruct SADs at the landscape scale from information
at local scales. Overall, the method performed well and reproduced the shapes of the empirical distributions.
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INTRODUCTION

The species abundance distribution (SAD)
describes the relative abundance of species
within a community, which is a central concept
in ecology and essential for theories on biodiver-
sity and biogeography (McGill et al. 2007, Mat-
thews and Whittaker 2014, Arellano et al. 2017).
Analyses of SADs that enable the identification
of patterns in both commonness and rarity of
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species can also be useful in applied ecology and
biodiversity management (Matthews and Whit-
taker 2015). As such, both theoretical and empir-
ical studies have examined the influence on
SADs of several environmental and biological
variables, such as elevational and latitudinal
gradients, niche differentiation, dispersal, and
ecological disturbance (Whittaker 1975, Hub-
bell 1979, 2001, Magurran 2004, Arellano et al.
2017).
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Species abundance distributions—the distribu-
tion of species into abundance classes—can take
a variety of shapes. Fisher et al. (1943) first
derived the logseries distribution to fit the SAD
of an abundance data set of Lepidoptera, thus
implicitly stating that it was a monotonically
decreasing distribution, with the maximum fre-
quency for the singleton class. This was chal-
lenged by Preston (1948, 1962) who pointed out
that his data on bird species abundance led to a
SAD that had a bell-shaped curve with the maxi-
mum no longer occurring for the singleton class,
the rarest species. Furthermore, he pointed out
that this maximum for intermediate classes was
progressively revealed as more data were being
collected, that is, the concept of the veil line, in
the process revealing the tail of rare species.
Therefore, Preston clearly acknowledged that the
shape of SADs was a function of the sample size,
and he suggested that SADs converge on a log-
normal distribution as sample size increases. The
veiling line can arise for several reasons. One is
that some species may first go undetected and an
increase in sampling effort may reveal more spe-
cies; Chao et al. (2015) have suggested methods
to deal with this issue. Another reason is that
species are not present everywhere, often show-
ing some degree of aggregation, and hence, an
increase in the size of the sampled area leads to
an increase in the number of species and, obvi-
ously, of individuals. In this paper, we deal solely
with the latter issue.

The unveiling process results from increasing
sampling. Since collecting data to construct
large-scale SADs is a time-consuming and eco-
nomically expensive endeavor, it remains elusive
what the true shape of the SAD is for very large
samples, such as entire biogeographical (meta)-
communities (but see ter Steege et al. 2006 and
Hubbell et al. 2008). It is a major challenge in
ecology to describe the regional SAD using sam-
ples characterized by a relatively small number
of individuals or with data that cover only small
areas relatively to the extent of the entire com-
munity. A key point that will move the study of
regional SADs forward is understanding how
SADs in general are affected by spatial scale
(McGill et al. 2007). Some studies have focused
on downscaling (i.e., how species aggregation
affects the shape of local SADs within a region;
Dewdney 1998, Green and Plotkin 2007), while
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others have focused on upscaling, trying to pre-
dict the regional SAD from SADs obtained at
smaller scales using various methods, such as
maximum-entropy and Bayesian methods
(Magurran 2004, Harte et al. 2009, Zillio and He
2010). The method that we apply here, devel-
oped by Borda-de-Agua et al. (2012), uses the
raw moments of SADs (see Eq. 1 below) to
describe the scaling properties of the SAD fol-
lowed by the application of the discrete Tchebi-
chef moment and polynomial method to
reconstruct it at large scales.

The description of a SAD based on its
moments was first applied to data on tree and
shrub species in a 50-ha plot of tropical rainforest
(Borda-de-Agua et al. 2012). By testing the
method within the 50-ha plot and then extrapo-
lating the SAD for areas up to 5 km?, the authors
demonstrated the advantages of the Tchebichef
moment method over other upscaling methods.
The basic idea of this method is to describe the
SAD shape at different scales using the (raw)
moments of the SAD (the more the better): The
first raw moment is the mean, the second raw
moment is related to the variance, and the third
and fourth raw moments are related to the skew-
ness and the kurtosis, respectively. When using
this method, we are not concerned with the SAD
at one spatial scale but, instead, with how the
moments change as a function of the size of the
area sampled and, especially, at the patterns
exhibited by the moments as a function of the
size of the area sampled. Previous work has
shown that the moments have a power law
behavior as a function of area size (Borda-de-A
gua et al. 2012, 2017). If the moments exhibit a
pattern, then their values can be extrapolated for
larger areas and the reconstruction of the SAD
for hitherto unsampled area sizes. Different alter-
natives exist for the reconstruction of a distribu-
tion using (some) of its moments. Here, we use a
method based on discrete Tchebichef moments
and polynomials (Mukundan et al. 2001, Borda-
de-Agua et al. 2012). In summary, our approach
consists of calculating the raw moments of the
SADs at different scales, determining which ten-
dencies the moments exhibit when plotted as a
function of the sampled area, extrapolating the
moments’ values for larger areas, and then using
the discrete Tchebichef moments and polynomi-
als to reconstruct the SAD.
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Actually, the above approach is closely
related to the one which is often adopted by
ecologists studying the species—area relationship
(SAR). These studies typically focus on how the
number of species changes as a function of
area, a relationship that is well characterized by
a power law. While the SAR relates to one sin-
gle variable—the number of species—and is
described by a single curve, for the description
of the evolution of the SAD across scales, we
need to describe the evolution of a distribution
function. Because a distribution is characterized
by its moments, such as the mean and variance,
we need a curve to describe the evolution of
each moment: one to describe the evolution of
its mean, another to describe the evolution of
its variance, and so on. Thus, we use several
raw moments, and in analogy with SAR stud-
ies, we plot the raw moments of the SAD as a
function of area. Our emphasis is on how the
SAD changes as a function of area and not on
which distribution gives the best fit of the SAD
at all scales. Because moments describe any dis-
tribution, our approach provides a continuous
description of the progression of any empirical
SAD across different area sizes.

Here, we test whether SADs are more likely to
follow lognormal-like or logseries-like distribu-
tions, and whether this is affected by scale. By
logseries-like, we mean distributions that are
monotonically decreasing functions, and by log-
normal-like, we mean distributions that when
plotted on a logarithmic scale exhibit a maxi-
mum for intermediate classes and are approxi-
mately bell-shaped; hereafter, we refer to these
distributions as logseries and lognormal, respec-
tively. The logseries SAD implies that most indi-
viduals belong to a few species and that most
species are represented by a few individuals,
whereas the lognormal SAD implies a higher
number of species with intermediate abundance
and smaller numbers of rare and abundant spe-
cies (Magurran 2004). Also, since some species
traits (e.g., mobility, niche preference) are linked
to the spatial distribution of individuals, we test
whether and how such traits affect the scale
dependency of SADs. Moreover, we analyze how
SAD moments relate to spatial scale, and we
assess the performance of the Tchebichef
moments and polynomials to reconstruct SADs
from the local plot scale to the landscape scale.

ECOSPHERE *%* www.esajournals.org

DANTAS DE MIRANDA ET AL.

We do so using a nested multi-site design in
three multi-habitat landscapes. Our focus is on
the species-rich group of macro-moths, which
allows us to test the effect of two traits linked to
spatial distribution: body size and host-plant
specialization.

METHODS

Study area and sampling

We gathered species abundance data on
macro-moths in the Castro Laboreiro area (ap-
proximately 42°2' N, 8°10' W) within the
Peneda-Geres National Park, NW Portugal
(Fig. 1). The landscape within our study area
consists mainly of scrub (78.4%), forest (10.5%),
and meadows (9.8%). Sampling was conducted
in three 1.6-km® multi-habitat landscapes that
differed in dominant habitat type: a meadow-
dominated, scrub-dominated, and forest-domi-
nated landscape. For each landscape, 28 fixed
light-trap sites were selected using a semi-
nested design with four levels, each corre-
sponding to a different spatial scale (Proenca
and Pereira 2013; Fig. 1). This sampling design
follows an almost fractal arrangement: There is
a trap-level scale of ~20 x 20 m (i.e., based on
an attraction-to-light radius of ~10 m; Merckx
and Slade 2014; then there are four of these
samples forming a 80 x 80 m?, ie, 4 x 20,
which is nested in a 320 x 320 m?, i.e., 4 x 80,
and this arrangement is then embedded in a
1280 x 1280 m?, i.e., 4 x 320; Fig. 1). Hence-
forth, expressions such as “we sampled (extrap-
olated to) an area of size X” are shorthand for
“we sampled (extrapolated to) a set of plots
with total area corresponding to the total area
of the sampling traps, following a design as
shown in Fig. 1, and whose corners form a
square of area X.”

During both 2011 and 2012, macro-moths were
light-trapped between May and September,
using identical equipment (i.e., heath pattern 6W
actinic light traps). Each of the 84 sites was sam-
pled three times per year, resulting in a total of
six samples per site over both years. Per sam-
pling night seven sites were simultaneously sam-
pled so that they were sampled under identical
weather conditions, covering three spatial scales:
(1) trap-level scale, (2) 80 x 80 m, and (3)
320 x 320 m (Fig. 1). Moreover, all 84 sites (i.e.,
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Fig. 1. Location of the study area in Peneda-Gerées National Park, Northern Portugal. Eighty-four fixed light-
trap sampling sites (~400 m?) were part of a semi-nested (80 x 80 m, 320 x 320 m) sampling design in three

multi-habitat study landscapes (1280 x 1280 m).

twelve sampling nights) were sampled in as
short a period as possible so as to avoid seasonal
differences in species composition, while the
overnight sampling only took place during
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weather conditions favorable for moth flight
activity (i.e., minimum night temperature >10°C;
maximum wind speed <20 km/h; no persistent
rain; see Merckx et al. 20124, b).
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Species abundance distribution models

For each sampling site, which corresponds to
the trap-level scale, macro-moth abundance data
were lumped and then fitted to histogram-type
data with logseries and truncated lognormal dis-
tributions using maximum likelihood. For the
next spatial scale (i.e.,, 80 x 80 m), we lumped
all sampling sites within these areas and fitted
logseries and lognormal distributions for each
area. This procedure was repeated three more
times for the other spatial scales (i.e.,
320 x 320 m, 1280 x 1280 m, and the sum of
the three 1280 x 1280 m landscapes). Because
we were merely interested in assessing the rela-
tive quality of fit among the logseries and lognor-
mal distribution across scales, we used corrected
Akaike information criteria (AIC.) in order to
select the best-fitting model. Specifically, we cal-
culated the difference between the AIC. values
(AAIC,) corresponding to the lognormal and the
logseries distributions, using the threshold of
AAIC, > |2| to establish whether both distribu-
tions are significantly different (Burnham and
Anderson 2002, Slik et al. 2015). Accordingly, the
lognormal SAD model is considered to provide a
better fit when AAIC. < —2 while AAIC.>2
indicates a better fit for the logseries model.
Models characterized by —2 < AAIC. <2 were
classified as intermediate ones, with both the log-
normal and logseries having a similar level of
support. We then created ordinal logistic regres-
sion models (Guénette and Villard 2004, Ruther-
ford et al. 2007) to test the relation between
spatial scale (In (area)) and the probability for
these lognormal, intermediate, and logseries
SADs. Next, we evaluated the goodness of fit
and deviance. The strength of the association
(McFadden’s R?*) was calculated as 1 — (Lyod/
Lpun), where Ly,oq4 is the log-likelihood value for
the fitted model and L, is the log-likelihood for
the null model which includes only an intercept.

Ordinal logistic regression models too were
used to test how species traits (body size and
host-plant specialization) affect the SAD shape
probability (three classes: lognormal, intermedi-
ate, and logseries). Species-specific average
wingspan (mm) was used as a proxy for body
size (Hamback et al. 2007). Mean values were
obtained from www.lepidoptera.eu, topped up
with values from Manley (2009) for a few spe-
cies where information was missing. Species
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with average wingspan smaller than the overall
median (32.5 mm) were classified as small, the
others as large. Host-plant specialization was
classified into two classes: oligophagous spe-
cies, whose larvae only feed on plant species
from the same family, and polyphagous species,
whose larvae are able to feed on several plant
families. Data on host-plant specialization were
obtained from the same sources as above. An
overview of all species classifications can be
found in Appendix S1: Table S1. All statistical
analyses were run in the statistical software
environment R version 3.1.1 with packages
mass and sads (R Development Core Team
2014, Prado et al. 2018).

SAD raw moments, Tchebichef moments, and
Tchebichef polynomials

In principle, a probability distribution can be
reconstructed directly from its moments (Borda-
de-Agua et al. 2012). However, in practice this is
not viable because of the large number of
moments required and the numerical instabilities
associated with the high order moments. Thus,
other methods have to be sought (Mukundan
et al. 2001). Following Borda-de-Agua et al.
(2012), we reconstructed the probability density
function using the estimated discrete Tchebichef
moments and polynomials. Tchebichef moments
are a general non-parametric tool to describe the
shape of any distribution. The idea is to fit a his-
togram, f(x) with a sum of Tchebichef polynomials,
t,(x), weighed by the corresponding Tchebichef
moments, T, according to the formula

N-1
f(x) = Z Tnin(x)
n=0

In principle, we need as many Tchebichef
moments as the number of bins of the histogram.
Further information about discrete Tchebichef
moments and polynomials can be found in
Mukundan et al. (2001) and Borda-de-Agua
et al. (2012).

The Tchebichef moments are related to the raw
moments (Appendix S3). The raw moment of
order n of the SAD from a given community is
calculated as

| =

M, =

S
> 0
=1
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where S is the number of species, and x; is the
log,-transformed number of individuals of species
j. For each spatial scale, we calculated the average
of the moments obtained from each set of lumped
sampling sites and then plotted this average as a
function of the corresponding spatial scale. As
mentioned previously, the number of Tchebichef
moments is limited to the number of bins of the
histogram. Specifically, if the histogram has N
bins, then the maximum number of Tchebichef
moments is N and it requires the same number of
raw moments (Mukundan et al. 2001, Borda-de-
Agua et al. 2012). Although in our analysis the
number of moments varied between 0 and 11—
because there were 12 bins in the histogram of all
landscapes—we limited the number of moments
to 9, both separately for each landscape and for all
landscapes together, as the extrapolations
appeared sensitive for the highest two moments.
In practice, we observe that the calculation of
higher moments has numerical instabilities,
because of the very large numbers that result from
the large exponents involved in the computation
of higher order moments (Mukundan 2004). Thus,
the number of moments used has to be chosen
judiciously, often by trial and error, and currently,
there are no rules to determine the number of
moments to be used. However, these numerical
instabilities are very noticeable, leading to distri-
butions with large oscillations with negative val-
ues. In order to better quantify the best number of
moments to use, we determined the number of
moments that minimizes the sum of the difference
in the histogram of the real data and that obtained
with the Tchebichef method.

For each site, data were lumped. We calculated
the moments for each sampling site (Eq. 1), and
then, for each moment, we calculated the average
from all sampling sites. For the next spatial scale
(i.e., 80 x 80 m), we lumped all sampling sites
within such areas, calculated the moments for
each area, and for each moment we then averaged
the values across all these areas. This procedure
was repeated one more time for the next spatial
scale (i.e., 320 x 320 m). Next, we fitted a linear
regression in order to assess the relationship
between the In-transformed area and the In-
transformed moment, In(M,,(A)) = a, + b, In(A),
where g, and b, are parameters estimated from
the regression of that particular moment. Then,
we extrapolated the moments for the largest two
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scales (i.e., 1280 x 1280 m or the individual land-
scapes, and the sum of the three landscapes) using
the moments obtained at the trap level,
80 x 80 m and 320 x 320 m scales; that is, we
used the smallest three scales of the sampling
design to extrapolate the SADs (1) to the full data
for each landscape and (2) to the entire data set.
We used chi-square tests to compare the extrapo-
lated and observed SADs on histograms and did
this separately for each landscape as well as for
the sum of the three landscapes.

REesuLTs

In total, we collected 22,825 individuals
belonging to 378 species. Most species belonged
to two families: Noctuidae (39.4%) and
Geometridae (38.9%). The two most abundant
species were the noctuid Xestia agathina and the
geometrid Pachycnemia hippocastanaria, compris-
ing 8.2% and 6.9% of all individuals collected,
respectively, 15.3% of the species were singletons,
and 38.3% had five individuals or less.

For all macro-moth species, ordinal logistic
regression showed that the probabilities of moving
from a logseries to intermediate/lognormal distri-
bution (or from logseries/intermediate to lognor-
mal) increased as In-area increases (Fig. 2). This
means that the probability of being logseries dis-
tributed is highest at small areas and that the
probability of being lognormal distributed is high-
est at large areas (In-area = 0.395; t = 4.436; P <
0.0001; Fig. 2; Appendix S2: Fig. S1; Appendix S1:
Table S3).

Our results also show the importance of host-
plant specialization (R3isophagy = 0147 Rbotyphagy =
0.00) and body size (RZ, ., = 0.27; Rfarge =0.01),
with the difference in R” values indicating a fit of
the model only for oligophagous and small spe-
cies. This shows that for oligophagous and small
species, a logseries distribution is more likely at
small areas, and a lognormal distribution is more
likely at large areas (Areaoigophagy = 0.412;
t =4.463; P < 0.0001; Areagm.y = 0.717; t = 5.786;
P < 0.0001). For polyphagous and large body size
species groups, the logseries distribution gener-
ally provided the best relative fit at both small
and large spatial scales (Fig. 2; Appendix S1:
Table S3).

Plotting the In-transformed moments of order
1-9 as a function of the In-transformed area
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Fig. 2. Probabilities for three types of species abundance distribution (SAD)—lognormal, logseries, and an
intermediate combination of both (—2 < AAIC < 2)—as a function of area (In m?). Panels depict relationships for
all macro-moth species as well as for separate species groups, contrasting oligophagous versus polyphagous spe-
cies, and small versus large species. Solid, dotted, and dashed lines represent lognormal, intermediate, and log-
series SADs, respectively, based on ordinal logistic regression model output. R* values and significance levels of
the probabilities when changing distribution as function of In-area (P < 0.05) are given for each panel.

shows that there is an almost linear relationship
(Fig. 3; Appendix S1: Table S2), similar to previ-
ous findings (Borda-de-Agua et al. 2012, 2017).
We used this relationship to extrapolate the SAD
to larger scales. For the meadow-, forest-, and
scrub-dominated landscapes, the SAD was
extrapolated to an area of 1280 x 1280 m
(Fig. 1). Next, the SAD was also extrapolated to
the sum of all three landscapes combined. Con-
sistently, the predicted extrapolated curves do
not statistically differ from the empirical distribu-
tions (extrapolated SADs: gray lines in Fig. 4,
Appendix S2: Figs. 52, S3; %3qow = 120, df =
110, P =024; 32, =108, df =99, P = 0.5
Xl%orest:132’ df= 121’ P:O'2‘3; x"threelandscapes :108’
df =99, P =0.25). Also, note that the distribu-
tions at smaller spatial scales, which contain the
information used to forecast, are very different
from the extrapolated distributions (Appendix S2:
Fig. S1).

DiscussioN
The main goals of this study were to assess

how well Tchebichef moments and polynomials
are able to predict the regional SAD using SADs
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from smaller spatial scales and whether spatial
scale and species traits affect the shape of SADs.
We showed that the shape of the SADs changes
across spatial scales, but we also showed that this
is less noticeable for polyphagous and large spe-
cies.

A simple qualitative model helps interpret our
results for the different groups of species. Imag-
ine two communities with exactly the same num-
ber of species and relative abundance, or in other
words with the total number of individuals
occurring at the same density. In one of the com-
munities, individuals of the same species tend to
be strongly aggregated, while in the other com-
munity individuals of different species are spa-
tially well mixed. We do not invoke any
particular reason for the level of clustering of
both communities, but it could be due to disper-
sal (Borda-de-Agua et al. 2017), which is likely
the case for small versus large-bodied macro-
moth species, or it could be due to niche prefer-
ences, which is likely the case for oligophagous
moths. For small sample sizes, if one increases
the area sampled in the aggregated community,
we find a small number of species, but each rep-
resented by several individuals. Furthermore,
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Polyphagous species

log(Morrents)

In(Avea (m?))

Fig. 3. Plots of In-transformed moments (1-9) of the species abundance distribution as a function of spatial
scale (In m?). Panels depict relationships for all macro-moths as well as for separate species groups, contrasting
oligophagous versus polyphagous species, and small versus large species. Dashed lines represent the best fit of

linear regression models.

when we increase the sample size one tends to
find more individuals of the same species. Thus,
as we increase the sampling scale, the SAD
quickly develops a maximum for intermediate
abundance classes, although we should obvi-
ously not exclude the presence of some rare spe-
cies in the sample. On the other hand, if one
increases sample size in the mixed community
from small to intermediate sample sizes, we tend
to find more species, but all with small abun-
dances because species are well mixed, the SAD
classes corresponding to rare species keep
increasing, and the maximum for intermediate
classes only occurs for larger sample sizes than it
does for the case of the aggregated community.
Hence, most species tend to remain rare and the
SAD classes corresponding to rare species keep
increasing. This trend will eventually stop
because the rarest species will accumulate more
individuals and not many more rare species will
be found. Thus, overall, most species will have
intermediate abundances, but it requires a larger
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sample size for the SAD to finally start develop-
ing a maximum for intermediate abundance
classes; Borda-de-Agua et al. (2007) performed
simulations that illustrate these behaviors.

In line with our previous explanations, com-
plexity arises as different species traits interact to
determine SADs (Gaston etal. 2000). For
instance, although polyphagous moth species
typically have wider distribution ranges than oli-
gophagous species (Spitzer et al. 1984, Spitzer
and Leps 1988, Quinn et al. 1997), the latter are
also typically smaller than polyphagous species.
Also, large moth species tend to occur at lower
densities at the local scale than small species
(Peters 1986, Nieminen et al. 1999). Moreover,
large macro-moth species (e.g., noctuids) are typ-
ically relatively mobile (Ockinger et al. 2010,
Sekar 2012, Slade et al. 2013). This agrees with
our previous simple model and it may explain
why the SADs of small species followed the log-
series distribution at the local scale, and changed
to the lognormal distribution at larger scales,
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Fig. 4. Species abundance distributions (SAD) for all macro-moth species, both separated according to land-

scape type (forest-, scrub-, and meadow-dominated), and for all three landscapes combined. Histograms repre-
sent the observed data at these spatial scales while gray lines represent the number of species as predicted by the
moments (n = 9). For the meadow-, forest-, and scrub-dominated landscapes, the SAD (gray line) was extrapo-
lated to an area of 1280 x 1280 m and to an area that summed these three landscapes (Fig. 1).

while the SADs for the large moth species fol-
lowed the logseries distribution at all spatial
scales. As we mentioned before, the higher dis-
persal ability of large species tends to homoge-
nize them in the community, making the SAD
steeper and placing the mode at the rare species.
On the other hand, small species tend to be
more aggregated, and hence more common at a
given spatial scale, due to their low to interme-
diate mobility levels (Nieminen et al. 1999,
Borda-de-Agua et al. 2017). As a consequence,
the SADs of this species group show a lognor-
mal shape at larger spatial scales. Likewise,
Mouquet and Loreau (2003) observed that spe-
cies rank-abundance distributions were strongly
affected by the level of dispersal between spatial
scales. Dornelas and Connolly (2008) also
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showed that evenly spaced species are rare in
abundance and dominate the rare mode of the
SAD, while clustered species dominate the
intermediate mode.

Some studies have shown that plant species
distributions are important predictors of moth
abundance, diversity, and distribution (Kitching
et al. 2000, Hilt and Fiedler 2006, Novotny et al.
2006). If host plants are generally characterized
by a patchy distribution, we would expect that
oligophagous species are more aggregated than
polyphagous ones (Lindstrom et al. 1994). This
interpretation would explain why the shape of
the SADs for oligophagous species also changed
from logseries at a local scale to lognormal at lar-
ger scales, while no change was observed for
polyphagous species.
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The capability of forecasting the SAD for larger
areas than those sampled is one of the most inter-
esting features of our method. There are, how-
ever, two important assumptions that need to be
met (1) the correct identification of the pattern
associated with the moments within the sampled
spatial scales and (2) this pattern needs to remain
valid for the extrapolated areas. Here, and con-
trary to previous applications (Borda-de- Agua
et al. 2012, 2017), we only have a small number
of area sizes as a base to fit the pattern. However,
because the sampling design follows a fractal
pattern, it is ideal to assess the patterns on a loga-
rithmic scale and, in particular, to identify possi-
ble power laws. Note nevertheless that the
method also works when the sampling scheme is
not fractal, such as the scheme used in the paper
where the method was originally developed
(Borda- de—Agua et al. 2012) or in Borda-de-Agua
et al. (2017). Although we recognize that we
used only three points based on which we fitted
the moments, they nevertheless follow approxi-
mately straight lines for several orders of magni-
tude. More work, both empirical and theoretical,
needs to be carried out in order to assess the gen-
erality of this pattern across taxa and across
space. With regard to the second assumption, the
pattern remains valid for the extrapolated areas.
However, extrapolating for even larger areas
should be done with care given the uncertainty
on the extrapolation of the coefficients of the
Tchebichef moments and the increasing habitat
heterogeneity at larger scales. Indeed, although
our method partially reveals the inherent
heterogeneity in the landscape, at very large
scales, we risk combining very different commu-
nities which may translate into sudden changes
in the scaling patterns of the moments or of the
SAR.

Overall, we believe that our results are in
agreement with Preston’s veil line concept, and
for those groups studied here that did not exhibit
it, the reason is likely to be due to paucity of
data. However, we do not assume that the distri-
butions are converging to a lognormal distribu-
tion. The reason is that empirical (ter Steege et al.
2006), simulation (Borda-de-Agua et al. 2007),
and theoretical (Hubbell 2001) results have
hinted at the possibility of the distributions
reverting to a logseries type of curve for very
large areas.
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CONCLUSIONS

We show that the shape of SADs generally
changes across spatial scales and that species
traits are able to affect the rate of this change;
small species are characterized by SADs that
change more rapidly than those of large species,
while SADs of polyphagous species do not exhi-
bit any change contrary to those of oligophagous
species. Although studying species richness
across spatial scales—SARs—is common practice
(Rosenzweig 1995), our findings demonstrated
the importance of considering relative species
abundance via the SAD across spatial scales.
Indeed, our approach is similar to that used by
ecologists when analyzing species richness
across spatial scales, but we added the analysis
of species abundance across scales. We predict
this analysis to be important both from a theoret-
ical perspective, thanks to the patterns it reveals,
and from a practical perspective, thanks to possi-
ble applications to conservation and manage-
ment of species.
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