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Resumo

Uma estrutura matemática conveniente para modelar as flutuações estocásticas

nos preços de mercado é baseada na teoria das redes de filas de espera. Os polling

systems são uma classe especial de modelos de filas de espera. Uma definição clássica

de um polling system consiste num sistema com múltiplas filas e um único servidor

que muda de fila de acordo com uma determinada poĺıtica de serviço.

Sabe-se que um polling system é recorrente positivo (admitindo uma única dis-

tribuição estacionária) se, e só se, a carga total do sistema for menor do que um.

No regime transiente, i.e., carga total maior do que um, foi provado que um polling

system com três filas de espera é assimptoticamente periódico para praticamente

todas as opções de poĺıticas de serviço. Quando os polling systems têm mais do que

três filas de espera, a caracterização do seu comportamento num regime transiente

é um assunto em aberto.

Tendo como hipótese que o processo é transiente, o objetivo deste trabalho é

estudar os padrões periódicos resultantes das trocas entre filas efetuadas pelo servi-

dor. Em particular, esta dissertação tem como finalidade desenvolver técnicas que

permitam responder a algumas questões levantadas num recente artigo publicado

por I. MacPhee e os seus coautores em 2006.

Palavras-chave: Redes de Filas, Polling Systems, Transito-

riedade, Sistema Dinâmico, Periodicidade Assimptótica, q.c. Convergência.
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Abstract

A convenient mathematical framework for modelling the stochastic fluctuations

in market prices is based on the theory of queueing networks. A special class of

queueing models are the polling systems. A classical polling system consists of

multiple queues and a single server that visits the queues following a service policy.

It is well known that a polling system is positive recurrent (admitting a unique

stationary distribution) if and only if the total loading of the system is less than

one. In the transient regime, i.e., total loading greater than one, it has been proved

that a polling system with three queues is asymptotically periodic for almost every

choice of service policy. When the polling system has more than three queues,

characterizing its behaviour in the transient regime is widely open.

Under the assumption that the process is transient, the goal of this project is to

study the periodic patterns arising from the switching of the server. In particular,

this dissertation aims at developing tools to possibly answer some questions raised

in a recent article published by I. MacPhee and his coauthors in 2006.

Keywords: Queueing Networks, Polling Systems, Transience, Dy-

namical System, Asymptotic Periodicity, a.s. Convergence.
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Chapter 1

Introduction

The need to avoid congestion (e.g., traffic situations, at supermarket or elevators

waiting lines) on a daily basis increased the interest on queueing models that describe

situations in which customers request service from a server. A polling system is an

example of a queueing model in which customers arrive to one of the multiple waiting

queues according to some switching rule, service policy and switch-over time, and

where customers issues are solved by a single-server.

There are many applications (e.g., see [7]) involving polling systems:

� communication networks, with the aim of improving ways to share information

between two entities;

� the increase of flexibility in manufacturing and production systems due to the

appearance of multi-task machines;

� traffic signal control.

Recently, queueing systems have gained a renewed interest in financial markets,

mainly to understand if investors’ behaviour influences the stochastic fluctuations

in market prices. Agent-Based Models, for example, consider that there is a relation

between behavioural qualities of investors and quantitative features of the stock

price process, i.e., asset prices must be modelled as stochastic processes in a random

environment. Taking into account that, in real markets, buying and selling orders

occur in different points in time, almost all automated financial trading systems are

based on electronic order books, in which all unexecuted limit orders are stored and

displayed while awaiting execution [2]. Thus, understanding queueing behaviour

1
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plays an important role in short-term market dynamics [3].

In this thesis, it will only be considered exhaustive polling systems in a transient

regime, where the service rate in each queue is greater than the arrival rate and the

switching of the server is made instantaneously.

MacPhee et al. in [6] proved the existence of asymptotically periodic patterns in

the transient regime of exhaustive polling systems considering only three queues and

a single server. Approximating the stochastic process by a deterministic one, called

the triangle process, they showed that the sequence of queues visited by the server

is eventually periodic, meaning that for almost every realization of the process, the

sequence of queues visited by the server converges to a periodic pattern. Moreover,

they have shown that there are at most four periodic patterns. Numerical evidence

shows that, in fact, there are at most three.

Following the same reasoning, the aim of this dissertation is twofold:

1. study the existence of asymptotically periodic patterns in symmetric transient

polling systems (no preferred queues and equal rates) with three queues. No-

tice that such specific service policies have not been considered by MacPhee

et al. in [6];

2. develop an algorithm, using Mathematica, for a polling system with four or

more queues, to obtain numerical evidence that the server visits the queues in

a periodic way.

This dissertation is structured as follows: throughout Chapter 2, it is possible

to get in touch with some classical results about these transient exhaustive polling

systems (based on [6]), mainly to understand how the system in general works and

to see what happens more specifically when it is considered a polling system with

three queues only. Taking into account the study displayed in Section 2.2, Chapter

3 makes use of such results in order to show if there is any periodicity in the way

that the server visits the three queues for a symmetric case. Concerning a transient

exhaustive polling system with four or more queues, little or nothing is known.

Chapter 4 presents a simulation related with this type of system whose results are

shown in Chapter 5.
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Chapter 2

Transient Exhaustive Polling

Systems

2.1 System description

Consider an exhaustive polling system with N nodes where customers queue and

a single server that switches between nodes by a switching rule that considers not

only the queue lengths but also its significance. At a current queue i, customers

arrive according to a Poisson process at a rate λi, i ∈ {1, ..., N} and each service is

completed at a mean time µ−1i with i.i.d. service times having finite second moments.

The server only switches instantaneously to the next queue j, j ∈ {1, ..., N}, j 6= i,

when it is empty (all customers are served including any that arrived during the

process) and chooses the next queue following a switching rule. Also, the arrival

Poisson processes are independent between them.

2.1.1 Switching rule

An N × N matrix B = (bi,j), with positive entries, is called a switching rule.

Associated to a switching rule we define a switching function

si(x) = arg max
j 6=i

bijxj, i, j = 1, 2, ..., N, (2.1)

where bij is the weight of queue j having emptied queue i and xj is the number of

customers in queue j.

3
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λ1 λ2 λ3

µ1

...

λN

Figure 2.1. Illustration of a polling system with N queues

In order to show if there is any periodicity in the queues visited by the server,

these arrival and service processes can be modelled by a well defined, irreducible

and aperiodic homogeneous Markov chain in discrete time with state space NN
0 ×

{1, ..., N}:

Ξ = {(ξn, sn)} , n = 0, 1, 2, ..., (2.2)

where ξn represents the number of customers in each queue and sn the server location

immediately after the nth service. The average behaviour of each queue is:

E
[
ξin+1 − ξin | (ξn, sn) = (x, j)

]
= λiµ

−1
j − I{i=j}, i = 1, 2, ..., N, (2.3)

for x ∈ NN
0 with xj ≥ 1 and the server at queue j ∈ {1, ..., N} where I{i=j} takes

value 1 when i = j and 0 otherwise.

Definition 2.1.1. A Markov chain is irreducible if for any states

e = ((y1, y2, ..., yN), i) and ẽ = ((ỹ1, ỹ2, ..., ỹN), ĩ),

where (y1, y2, ..., yN), (ỹ1, ỹ2, ..., ỹN) ∈ RN
+ and i, ĩ ∈ {1, ..., N}, there is a positive

probability of moving from e to ẽ.

The following quantity determines the stability of the process.

Definition 2.1.2. The total loading is defined by

ρ =
N∑
i=1

ρi, (2.4)

where ρi =
λi
µi

at each queue i.

4
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The proof of the next result can be found in [4, 6].

Theorem 2.1.1.

1. The process Ξ is positive recurrent if ρ < 1 and transient if ρ > 1;

2. The system is stable (converges to a unique stationary distribution) if and only

if ρ < 1.

With the purpose of studying the switching sequence, and in such a way that the

server in the stochastic process does not remain serving at the same queue indefi-

nitely, from now on the following conditions (which characterize a polling system in

a transient regime) will be assumed:

ρi < 1, i = 1, 2, ..., N and ρ =
N∑
i=1

ρi > 1. (2.5)

2.1.2 Deterministic model

Consider a particle moving in RN
+×{1, ..., N} with linear dynamics whose velocity

is given by expression (2.3). If the server is at queue j ∈ {1, ..., N}, the velocity of

the particle at any point y = (y1, y2, ..., yN) with yj > 0 is

µ−1j

N∑
i=1

λiei − ej = µ−1j

(∑
i 6=j

λiei + (λj − µj)ej

)
, (2.6)

where ei denote the axial unit vectors in RN . Note that, when the hyperplane

{yj = 0} that passes through the origin is reached, the velocity of the particle

changes instantaneously due to the service switching rule.

Starting from an initial condition y(0) ∈ ∂RN
+ , it is denoted by y(n) ∈ ∂RN

+ ,

the position of the particle at the exact moment when the velocity changes. The

sequence y(n), n = 0, 1, 2, ..., can be determined using the linear transformations

Tj : ∂RN
+ → ∂RN

+ defined by

Tj(y) =
∑
i 6=j

(
yi +

λiyj
µj − λj

)
ei. (2.7)

This means that from the starting point y(0) and an initial position j0 ∈ {1, ..., N}

of the server, y
(n) = Tjn(y(n−1))

jn = sjn−1(y
(n−1))

, n = 1, 2, ..., (2.8)

5
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where jn is the sequence visited by the server. This is called the deterministic

system.

Plane y3 = 0

y1

y2

y3

0

y

αy

Tj(y)

αTj(y)

Figure 2.2. Example of a deterministic model’s trajectory in R3
+

In matrix form, the linear transformation Tj can be represented by the N × N

matrix

Tj = I + Cj, (2.9)

where Cj =
∑N

i=1 αijeie
T
j with αij =


λi

µj − λj
, i 6= j

−1, i = j

.

Denote by (∂RN
+ )j the hyperplane {yj = 0}.

Lemma 2.1.2. Tj is a projection of RN
+ onto (∂RN

+ )j, i.e.,

� range (Tj) = (∂RN
+ )j;

� T 2
j = Tj.

Proof. The first claim is obvious. To prove the second claim, we have

TjTj = (I + Cj)(I + Cj) = I + Cj + Cj + CjCj,

6
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where

CjCj =

(
N∑
i=1

αijeie
T
j

)(
N∑
l=1

αljele
T
j

)

=
N∑

i,l=1

αijαlj(eie
T
j )(ele

T
j )

=
N∑

i,l=1

αijαljei(e
T
j el)e

T
j

=
N∑
i=1

αijαjjeie
T
j

= −
N∑
i=1

αijeie
T
j

= −Cj.

Then,

T 2
j = I + 2Cj + CjCj

= I + 2Cj − Cj

= I + Cj

= Tj. �

2.1.3 Compactification

In this subsection, it will be introduced a compactification that will allow the

study of the projections Tj.

For any linear transformation, it is possible to define its version (or projective)

by making a suitable change of coordinates. In this case, a point in RN
+ can be

projected onto the simplex ∆N−1 =
{
y ∈ RN

+ :
∑N

i=1 yi = 1
}

according to the map

Λ : RN
+ \ {0} → ∆N−1 where Λ(y) =

y

y1 + ...+ yN
. (2.10)

Figure 2.3, for example, illustrates a compactification in R3
+ and the linear transfor-

mation Tj.

7
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y1

y2

y3

0

y

αy

Tj(y)

αTj(y)

e3

e2

e1

Figure 2.3. Example of a compactification in R3
+ under Tj

It is obvious that being Tj a linear transformation,

Tj(αy) = αTj(y), α > 0, y ∈ ∂RN
+ ,

as shown in Figure 2.2 and 2.3. This means that Tj(y) and Tj(αy) represent the

same points in ∆N−1. So, Tj can be restricted to points ȳ ∈ ∂∆N−1, the boundary

of ∆N−1.

Example 2.1.1. (Compactification in R2
+)

Let A =

2 1

1 1

 and consider the unit simplex ∆1.

Defining y = Ax =

2 1

1 1

x1
x2

 =

2x1 + x2

x1 + x2

 and making a change of

coordinates x 7→ x̄ =
x

x1 + x2
we obtain


x̄1 =

x1
x1 + x2

x̄2 =
x2

x1 + x2

. Then, the projective

version Ā of A is given by

ȳ1 =
y1

y1 + y2
=

2x1 + x2
3x1 + 2x2

=

2x1 + x2
x1 + x2

3x1 + 2x2
x1 + x2

=
2x̄1 + x̄2
3x̄1 + 2x̄2

8
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and

ȳ2 =
y2

y1 + y2
=

x1 + x2
3x1 + 2x2

=

x1 + x2
x1 + x2

3x1 + 2x2
x1 + x2

=
x̄1 + x̄2

3x̄1 + 2x̄2
.

x̄10

IR2
+

Ā

ȳ1

Note that, ȳ1, ȳ2 ≥ 0 and ȳ1 + ȳ2 = 1. So,

in fact, ȳ = (ȳ1, ȳ2) ∈ ∆1. Since x̄2 = 1 − x̄1
and ȳ2 = 1− ȳ1, Ā can be written as a function

with one variable only:

ȳ1 =
2x̄1 + 1− x̄1

3x̄1 + 2(1− x̄1)
=
x̄1 + 1

x̄1 + 2
.

�

2.1.4 The queue process

Under the condition ρj < 1, j ∈ {1, ..., N} and knowing equation (2.7), it is clear

that the trajectory leaving ȳ ∈ ∂∆N−1 under Tj next reaches ∂RN
+ in finite time at

the point ∑
i 6=j

(
ȳi +

λiȳj
µj − λj

)
ei

with projection

T̄j(ȳ) =
∑
i 6=j

(µj − λj)ȳi + λiȳj
(µj − λj) + µjθj ȳj

ei ∈ A0
j , (2.11)

where

A0
j =

{
y ∈ RN :

N∑
i=1

yi = 1, yj = 0, yi ≥ 0 for i 6= j

}
are regions of the switching boundary ∂∆N−1 and θj := µ−1j

∑N
i=1 λi − 1.

Taking into account the previous results, it is possible to define a dynamical

system Z = {z(n)}, n = 0, 1, ..., called the queue process, living on A0 ≡
⋃N

i=1A
0
i =

∂∆N−1. For given z(0) ∈ ∂∆N−1,

z(n+ 1) = ϕ(z(n)), n = 0, 1, ..., (2.12)

9
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where ϕ(z) =
N∑

i,j=1
i 6=j

I{si(z)=j}T̄j(z), z ∈ A0 and s is the switching function defined in

equation (2.1). This is an important process in queueing theory since it contains

information about the projection of the dynamical system y(n) at the switching

moments.

2.2 The three queue case

In this section, some interesting results will be discussed about a restricted case

of a transient exhaustive polling system with three queues only, where the switching

decision is made under the switching rule characterized in equation (2.1).

In a situation where the server is at a certain queue i that just got empty, the

switching rule selects the next queue k when bijxj < bikxk for i, j, k any permutation

of 1, 2, 3. The projection made by Λ onto ∆2 (see rule (2.10)), reduces the switching

boundaries {x : bijxj = bikxk ∧ xi = 0} to decision points represented by di, one

on each side of the triangle A0. For the stochastic process Ξ, when bijxj = bikxk,

the decision for the next server location must be random so, for the queue process

Z, both possible options at such points will be considered. In this situation, all

trajectories of the queue process will be taken into consideration.

From this point on, Z will be called the triangle process.

The linear transformation that determines the trajectories is not continuous at

the di. However, for all the combinations of rates and decision points, the trajectories

converge toward periodic patterns.

The proof of the following theorems can be found in [6].

Theorem 2.2.1. For almost all switching rules, the corresponding polling system

with three queues is asymptotically periodic, i.e., a.s. each trajectory z(n) of the

associated triangle process converges to a periodic pattern as n→∞.

Theorem 2.2.2. There are no more than four periodic patterns for any triangle

process parameters.

Theorem 2.2.3. There are (infinitely many) choices of the switching rules that lead

to the existence of aperiodic trajectories of the triangle process.

10
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2.3 The stochastic triangle process

The last theorems announced in Section 2.2 have important consequences for the

behaviour of the underlying stochastic process defined in (2.2). Approximating the

polling system by the triangle process, MacPhee et al. in [6] proved that the polling

system is periodic whenever the triangle process is.

The proof of the next result can be found in [6] and corresponds to the main

result of this article:

Theorem 2.3.1. Suppose the service times have variances σ2
i < ∞. If the queue

process Z is asymptotically stable then the corresponding stochastic process of the

polling system is also stable, i.e., a.s. each trajectory of the stochastic process con-

verges onto one of the periodic patterns of Z.

11



Chapter 3

The symmetric case of a three

queue polling system

MacPhee et al. in [6] obtained very interesting results concerning the theory of

queueing models, particularly with regard to the class of exhaustive polling systems

with three queues, in the transient regime (see Section 2.2). However, they did not

considered the simplest case: a polling system in the same conditions but with equal

arrival and service rates in all queues, called the symmetric case.

Against this background, this chapter aims to effectively show the veracity of

Theorem 2.2.1 but, in this case, a concrete number of patterns should be found.

3.1 Detailed analysis

Consider, for the symmetric case,

λi = λ, µi = µ and bij = 1, i, j = 1, 2, ..., N, i 6= j. (3.1)

Consequently, and according to equation (2.11), the projection of the trajectory

leaving z ∈ A0 \ A0
j under T̄j is given by

T̄j(z) =
∑
i 6=j

(µ− λ)zi + λzj
(µ− λ) + µθzj

ei ∈ A0
j , j = 1, 2, ..., N, (3.2)

with θ = µ−1(Nλ)− 1 = Nρ− 1. Simplifying,

T̄j(z) =
∑
i 6=j

(1− ρ)zi + ρzj
(1− ρ) + (Nρ− 1)zj

ei. (3.3)

12
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When N = 3, trajectories of the triangle process will be mapped onto the unit

simplex ∆2 =
{
z ∈ R3

+ :
∑3

i=1 zi = 1, zi ≥ 0
}

. A point z with coordinates (z1, 0, z3)

means that the second queue is empty. This way, the server can relocate to the

first or third queue, depending which one has the maximum number of costumers.

For example, if z1 > z3, the server will choose to empty the first queue, which

corresponds to apply the transformation

T̄1(z1, 0, z3) =
3∑

i=1
i 6=1

(1− ρ)zi + ρz1
(1− ρ) + (3ρ− 1)z1

ei

=
(1− ρ)z2 + ρz1

(1− ρ) + (3ρ− 1)z1
e2 +

(1− ρ)z3 + ρz1
(1− ρ) + (3ρ− 1)z1

e3

=

(
0,

(1− ρ)z2 + ρz1
(1− ρ) + (3ρ− 1)z1

,
(1− ρ)z3 + ρz1

(1− ρ) + (3ρ− 1)z1

)
. (3.4)

Figure 3.1 shows an example of a trajectory of the triangle process for the two

possible cases.

y1

y2

y3

0

d1

d3

d2

R3

R2

R1

z

z

T̄3(z)

T̄1(z)

Figure 3.1. The symmetric triangle process trajectory

The triangle system is then composed by T̄1, T̄2, T̄3 and by the switching rule

si(z) = arg max
j 6=i

bijzj, i, j = 1, 2, 3, where the corresponding process ϕ : ∂∆2 7→ ∂∆2

13
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consists of

ϕ(z) =



T̄2(z), z1 = 0 ∧ s1(z) = 2

T̄3(z), z1 = 0 ∧ s1(z) = 3

T̄1(z), z2 = 0 ∧ s2(z) = 1

T̄3(z), z2 = 0 ∧ s2(z) = 3

T̄1(z), z3 = 0 ∧ s3(z) = 1

T̄2(z), z3 = 0 ∧ s3(z) = 2

. (3.5)

In the general case (for any value of N and bij > 0), ϕ(z) = T̄j(z) if zi = 0 and

si(z) = j.

Given z ∈ ∂∆2, define the boundary regions

Ri =
{
z ∈ ∂∆2 : ∃j : zj = 0 ∧ sj(z) = i

}
, (3.6)

for i, j = 1, 2, 3, i 6= j. Therefore, the triangle process can be rewritten as

ϕ(z) = T̄i(z), z ∈ Ri, (3.7)

where
⋃3

i=1Ri = ∂∆2 \
⋃3

i=1 di with di = {z ∈ ∂∆2 : ∃k 6= j : bijzj = bikzk ∧ zi = 0}.

D =
⋃3

i=1 di is the set of decision points.

The next step in this analysis will be to transform the triangle process ϕ in a

transformation of the interval

f : [0, 3] 7→ [0, 3] (3.8)

and study the dynamics of this transformation.

In equation (3.4), may be considered just the coordinate z1 since z3 = 1 − z1,

getting

T̄1(z1, 0, z3) = T̄1(z1, 0, 1− z1)

=

(
0,

(1− ρ)z2 + ρz1
(1− ρ) + (3ρ− 1)z1

,
(1− ρ)(1− z1) + ρz1
(1− ρ) + (3ρ− 1)z1

)
(3.9)

which corresponds to apply the transformation

h21(x) =
(1− ρ)(1− x) + ρx

(1− ρ) + (3ρ− 1)x
=

(2ρ− 1)x+ 1− ρ
(3ρ− 1)x+ 1− ρ

, (3.10)

14
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that is obviously equal to the transformation generated by going from plane z3 = 0

to z1 = 0 (h31(x)).

Suppose that, at the moment when queue one goes empty, z3 > z2. In this case,

the projection of the symmetric triangle process trajectories will be equal to

T̄3(0, z2, z3) =
3∑

i=1
i 6=3

(1− ρ)zi + ρz3
(1− ρ) + (3ρ− 1)z3

ei

=
(1− ρ)z1 + ρz3

(1− ρ) + (3ρ− 1)z3
e1 +

(1− ρ)z2 + ρz3
(1− ρ) + (3ρ− 1)z3

e2

=

(
(1− ρ)z1 + ρz3

(1− ρ) + (3ρ− 1)z3
,

(1− ρ)z2 + ρz3
(1− ρ) + (3ρ− 1)z3

, 0

)
=

(
(1− ρ)z1 + ρz3

(1− ρ) + (3ρ− 1)z3
,
(1− ρ)(1− z3) + ρz3
(1− ρ) + (3ρ− 1)z3

, 0

)
(3.11)

because z2 = 1− z3. This corresponds to apply the transformation

h13(x) = h23(x) =
(1− ρ)(1− x) + ρx

(1− ρ) + (3ρ− 1)x
+ 1 =

(2ρ− 1)x+ 1− ρ
(3ρ− 1)x+ 1− ρ

+ 1. (3.12)

In a similar way, a transformation resulting from the server switching to the

second queue, as a consequence of z2 > z1, can be found:

T̄2(z1, z2, 0) =
3∑

i=1
i 6=2

(1− ρ)zi + ρz2
(1− ρ) + (3ρ− 1)z2

ei

=

(
(1− ρ)z1 + ρz2

(1− ρ) + (3ρ− 1)z2
, 0,

(1− ρ)z3 + ρz2
(1− ρ) + (3ρ− 1)z2

)
=

(
(1− ρ)(1− z2) + ρz2
(1− ρ) + (3ρ− 1)z2

, 0,
(1− ρ)z3 + ρz2

(1− ρ) + (3ρ− 1)z2

)
(3.13)

which, again, corresponds to apply

h32(x) = h12(x) =
(1− ρ)(1− x) + ρx

(1− ρ) + (3ρ− 1)x
+ 2 =

(2ρ− 1)x+ 1− ρ
(3ρ− 1)x+ 1− ρ

+ 2. (3.14)

Taking into account the above results, it is possible to define a single function

that will be an important basis in the search for periodic patterns. Defining

g(x) =
(2ρ− 1)x+ 1− ρ
(3ρ− 1)x+ 1− ρ

, (3.15)

15
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the transformation f for this particular case will be

f(x) =



g
(
x+ 1

2

)
+ 3

2
− g

(
1
2

)
, x ∈

[
0, 1

2

[
g
(
x− 1

2

)
+ 5

2
− g

(
1
2

)
, x ∈

[
1
2
, 3
2

[
g
(
x− 3

2

)
+ 1

2
− g

(
1
2

)
, x ∈

[
3
2
, 5
2

[
g
(
x− 5

2

)
+ 3

2
− g

(
1
2

)
, x ∈

[
5
2
, 3
]
. (3.16)

The graph of this function is depicted in Figure 3.2.

x

f(x)

0

1

2

3 R1

R2

R3

1 2 3

Figure 3.2. Graphical representation of the transformation f

3.2 Web diagram

A graphical procedure, known as web diagram, can be used to visualize successive

iterations of a function f(x), representing the orbit of x [8, 9]. In particular, the

segments of the diagram connect the points

{(x, f(x)), (f(x), f 2(x)), (f 2(x), f 3(x)), (f 3(x), f 4(x)), ...}. (3.17)

Definition 3.2.1. O = {x, f(x), f 2(x), f 3(x), f 4(x), ...}, called the orbit of x, is the

16
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set of points formed by the sequence

x0 = x

x1 = f(x0)

x2 = f 2(x0) = f(x1)

...

xn+1 = f(xn)

where n ≥ 0, n ∈ N0. (3.18)

Definition 3.2.2. x is a periodic point of period p if p is the smallest positive

integer such that fp(x) = x, where fp = f ◦ f ◦ . . . ◦ f , p times. This way, its orbit

O = {x, f(x), f 2(x), ..., f p−1(x)} is a finite set known as periodic orbit. When p = 1,

f(x) = x and x is said to be a fixed point of f [1].

The following theorem is a particular case of the Banach fixed-point theorem:

Theorem 3.2.1. Let f : I → I = [a, b] where f ∈ C1 and |f ′(x)| < 1,∀x ∈ [a, b].

Then, f has a unique fixed point x∗ = f(x∗) and, for any x ∈ [a, b],

lim
n→∞

fn(x) = x∗, (3.19)

i.e., the orbit of any point converges to a fixed point.

For the symmetric three queue polling system case, was verified, using Mathe-

matica, the existence of two periodic orbits with period equal to three. This corre-

sponds, in the polling system, to exactly two periodic patterns for the symmetric

case characterized in expression (3.1), ∀ρ ∈
(
1
3
, 1
)
.

Note that
3∑

i=1

ρi > 1⇔ 3ρ > 1⇔ ρ >
1

3
(3.20)

and

ρ =
λ

µ
< 1. (3.21)

The figures presented in the next page represent two examples of this numerical

and analytical evidence:

17
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(a) (b)

Figure 3.3. (a) Graphical representation of f3 and (b) web diagram for an initial point

x0 = 0.925 and ρ = 0.835333 with 205 iterations

(a) (b)

Figure 3.4. (a) Graphical representation of f3 and (b) web diagram for an initial point x0 = 0.2

and ρ = 0.553333 with 205 iterations

It is notorious that, for each orbit, the system will converge to one of its three

fixed points. Consequently, the following theorem can be announced:

Theorem 3.2.2. In the symmetric case, the triangle process converges to a periodic

orbit. There are, in total, two periodic orbits.

It follows from the results stated in Section 2.3, that the corresponding polling

system (transient) converges to a periodic pattern. There are, in total, two periodic

patterns.

18



Chapter 4

Simulation

At this stage, one might ask two questions: Is there any periodic pattern in a

transient exhaustive polling system with four or more queues? And, the system will

always converge (with probability 1) to a periodic pattern?

With the aim of trying to find an answer to these questions, it was created a

program in Mathematica that simulates an exhaustive polling system with N queues,

in a transient regime, with the aid of a function that simulates a Birth-Death process.

4.1 Birth-death process

First, it will be made a brief introduction about Markov chains in continuous

time (see [5] for more detail) in order to create an algorithm for the Birth-Death

process.

Definition 4.1.1. Let {X(t) : t ≥ 0} be a stochastic process in continuous time

with state space E = {0, 1, 2, 3, ...}. X is a Markov chain if it satisfies the Markov

property

P (X(t+ s) = j | X(s) = i,X(sn) = in, ..., X(s0) = i0) = P (X(t+ s) = j | X(s) = i)

= pij(t), (4.1)

for all t > 0, s > sn > . . . > s0 > 0 and j, i, in, ..., i0 ∈ E.

For an homogeneous Markov chain, the transition probabilities are defined by

pij(t) = P (X(t) = j | X(0) = i) . (4.2)
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The Birth-Death process is a Markov chain in continuous time that generalises the

well known Poisson process, in the sense that decreases in the process are allowed.

Their transition probabilities pij(n) are well defined, i.e., the limits

qij =


lim
n→0

pij(n)

n
, i 6= j

lim
n→0

pij(n)− 1

n
, i = j

(4.3)

exist and represent the intensities of the jumps from state i to j, knowing that

pii(0) = 1. The intensities of the jumps combined result in the matrix of intensities

of the process:

Q = (qij)i,j∈E. (4.4)

It is possible to simulate a Markov chain using the matrix of intensities Q of a

stochastic process. In the case of the Birth-Death process, the matrix of intensities

will be equal to

Q =


−λ0 λ0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 . . .
...

...
...

...
. . .

 , (4.5)

where µ0 = 0, λ0 > 0 and λi, µi > 0, i = 1, 2, ... . The Poisson process has a Q

matrix similar to matrix (4.5), although without the service rates.

Let

λi =
∑
i 6=j

qij (4.6)

be the total intensity in which X(t) leaves state i ∈ E. The ”probability” to occur

a jump from state i to j is defined by

rij =


qij
λj
, i 6= j

0, i = j

(4.7)

and R = (rij)ij represents a Markov chain at the jumps’ moment. Considering the
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Birth-Death process, its easy to verify that

R =



0 1 0 0 . . .
µ1

λ1 + µ1

0
λ1

λ1 + µ1

0 . . .

0
µ2

λ2 + µ2

0
λ2

λ2 + µ2

. . .

...
...

...
...

. . .


. (4.8)

4.2 Generating a sample of a single queue

The simulation of a single queue, in a polling system, may be generated using

the Birth-Death process with parameters λ (birth or arrival rate) and µ (death or

service rate).

Let (un)n≥1 be a sequence of i.i.d. random real numbers uniformly distributed

in [0, 1]. Let T0 = 0 and γ0 be the initial state of the process, i.e., the initial number

of elements in the queue. For n ≥ 1, define the following sequences:

tn = − 1

λ+ µ
log(1− un) and (4.9)

Tn = Tn−1 + tn. (4.10)

Notice that tn ∼ Exp(λ + µ) and Tn represents the time of occurrence of the nth

service or arrival in the queue.

1

T1

2

3

4

5

T2 T3 T4 T5 T6 T7 T8 T9 T10

seconds

number of customers

0

Figure 4.1. Example of a Birth-Death process

At time Tn, the number of customers in the queue is given by

γn = γn−1 + (−1)cn , cn ∼ Bernoulli

(
µ

λ+ µ

)
(4.11)
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with cn i.i.d.. Thus, the queue can be generated by

ξ(t) = γn, Tn ≤ t < Tn+1. (4.12)

4.2.1 Algorithm

The following algorithm represents the key to perform the simulation of a single

queue (for more detail, see Section A.1.1):

1. generate a sequence of random reals un in the interval [0, 1];

2. define tn = − 1

λ+ µ
log(1− un), n ≥ 1;

3. compute recursively: Tn = Tn−1 + tn, T0 = 0;

4. generate a sequence cn of 0 and 1, where the probability of having cn = 1 is
µ

λ+ µ
;

5. compute recursively: γn = γn−1 + (−1)cn ;

6. define the function ξ(t) = γn if t ∈ [Tn, Tn+1[.

4.3 Generating a sample of a polling system

In order to perform the simulation of the transient exhaustive polling system

with N queues, the parameters can be chosen in the following way:

1. generate randomly εi ∼ 0 (εi ∈ ]0, 0.1[, for example) and γ0 ∈ {1, 2, ..., 10}

for the first queue. It will be assumed that there are no customers in the

remaining queues in the beginning of the simulation;

2. define ρi =
1

N
+ εi, i = 1, 2, ..., N . Consequently,

λi = 1 + εiN

µi = N

.
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4.3.1 Algorithm

Let pi = {T i, ξi} be the process of a single queue i ∈ {1, ..., N}. If s ∈ {1, ..., N}

is the queue with the maximum number of customers (here it is considered that

all queues have weight equal to one), then ps can be described by the Birth-Death

process algorithm with service rate different than zero and the remaining pi, i 6= s,

follow the same process but with zero service rates (which corresponds to a Poisson

process with parameter λi).

After queue s goes empty, the server will be relocated to the queue with more

customers and the above scheme will be repeated in a predefined number of times

n− 1 ≥ 2.

The detailed code based in this algorithm can be found in Sections A.1.2 and

A.1.3.
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Chapter 5

Numerical results

In this chapter, some results will be presented in relation to the simulation

performed.

When simulating a polling system with four waiting queues, it is evident that

from a certain moment there is a periodic pattern that remains. Knowing that n

refers to the number of times that the server changes queue, the following results

were generated:

(a) n = 25, Pattern = {1, 4, 2, 3}

(b) n = 50, Pattern = {3, 1, 2, 4}

Figure 5.1. Simulation of a polling system with four queues

The same happens in a polling system with five waiting queues. Although, in
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this case, a change occurred on the extension of the pattern sequence:

(a) n = 50, Pattern = {2, 5, 3, 4, 1}

(b) n = 75, Pattern = {2, 1, 3, 4, 5}

Figure 5.2. Simulation of a polling system with five queues

As a consequence of the previous results, one can ask the following question:

Question 5.1. For almost all switching rules, the corresponding polling system with

four or more queues is asymptotically periodic, i.e., a.s. each trajectory of the asso-

ciated stochastic process converges to a periodic pattern.
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Chapter 6

Conclusions

The analysis performed in this project concerning the dynamics of transient

exhaustive polling systems led to very interesting results. I. MacPhee and his coau-

thors, in 2006, proved the existence of periodic patterns for polling systems with

three queues only, under generic conditions. In this thesis, it has been proved that

the triangle process, in the symmetric case, exhibits the same behaviour as a generic

polling system. However, in this case, the way that the server changes between the

three queues suggests that the triangle process converges to one of two periodic

orbits.

Additionally, according to the results of the simulation performed in this project,

there is evidence of having periodic patterns in a polling system with four or more

queues. However, this last statement still needs to be proved analytically.

In the end, lot of open questions in this area still remain open, mostly regarding

polling systems with more than four queues, due to difficulties in analysing such

cases.
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Appendix A

Mathematica code

A.1 Simulation

A.1.1 Birth-death process

1 (* r e tu rn s a truncated bir th−death proce s s *)

2 SampleBirthDeathProcess [ \ [ Lambda ] , \ [Mu] , \ [ Xi ] 0 , tmin ,

tmax ,

3 t runca t e ] := Module [{ aux , cust , T = { tmin } , X = {\ [ Xi ] 0} , t

} ,

4 While [And[ Last [T] <= tmax , Or [ Last [X] > 0 , Not [ t runcate ] ] ] ,

5 t = 1/ (\ [ Lambda ] + \ [Mu] ) (−Log [ 1 − RandomReal [ ] ] ) ;

6 T = Append [T, Last [T] + t ] ;

7 X = Append [X,

8 Last [X] + (−1)ˆ

9 RandomVariate [

10 Be rnou l l iD i s t r i bu t i o n [ \ [Mu] / ( \ [ Lambda ] + \ [Mu] ) ] ] ] ;

11 ] ;

12 I f [Not [ t runcate ] , T[ [ − 1 ] ] = tmax ] ;

13 Transpose@{T, X}

14 ] ;

A.1.2 Polling System with N queues
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15 (* po l l i n g system *)

16 SamplePoll ingSystem [ \ [ Lambda ] , \ [Mu] , \ [ Xi ] 0 , n , tmin ,

tmax ] :=

17 Module [{Ts = {0} , S , s ,

18 p = Table [Table [ Subscript [m, i , j ] , { i , 1} , { j , 2} ] ,

19 Length [ \ [ Lambda ] ] ] , aux , t i n i t i a l , snext , \ [ Xi ] ,

20 pnew = Table [Table [ Subscript [m, i , j ] , { i , 1} , { j , 2} ] ,

21 Length [ \ [ Lambda ] ] ] } ,

22 s = Ordering [ \ [ Xi ] 0 , − 1 ] [ [ 1 ] ] ;

23 S = { s } ;

24 p [ [ s ] ] =

25 SampleBirthDeathProcess [ \ [ Lambda ] [ [ s ] ] , \ [Mu ] [ [ s ] ] , \ [ Xi ] 0 [ [

s ] ] ,

26 tmin , tmax , True ] ;

27 aux = p [ [ s ] ] [ [ − 1 , 1 ] ] ;

28

29 Do[ p [ [ i ] ] =

30 SampleBirthDeathProcess [ \ [ Lambda ] [ [ i ] ] , 0 , \ [ Xi ] 0 [ [ i ] ] ,

tmin ,

31 aux , False ] , { i , Cases [Range [Length [ \ [ Lambda ] ] ] , Except [ s

] ] } ] ;

32 Do[ t i n i t i a l = aux ;

33 \ [ Xi ] = Table [ p [ [ i ] ] [ [ − 1 , 2 ] ] , { i , Length [ \ [ Lambda ] ] } ] ;

34 snext = Ordering [ \ [ Xi ] , − 1 ] [ [ 1 ] ] ;

35 Ts = Append [ Ts , t i n i t i a l ] ;

36 S = Append [ S , snext ] ;

37 pnew [ [ snext ] ] =

38 SampleBirthDeathProcess [ \ [ Lambda ] [ [ snext ] ] , \ [Mu ] [ [

39 snext ] ] , \ [ Xi ] [ [ snext ] ] , t i n i t i a l , tmax , True ] ;

40 p [ [ snext ] ] = Join [ p [ [ snext ] ] , pnew [ [ snext ] ] ] ;

41 aux = pnew [ [ snext ] ] [ [ − 1 , 1 ] ] ;

42

43 Do[ p [ [ i ] ] =
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44 Join [ p [ [ i ] ] ,

45 SampleBirthDeathProcess [ \ [ Lambda ] [ [ i ] ] , 0 , \ [ Xi ] [ [ i ] ] ,

46 t i n i t i a l , aux , False ] ] , { i ,

47 Cases [Range [Length [ \ [ Lambda ] ] ] , Except [ snext ] ] } ] ;

48 , {n } ] ;

49 {p , Transpose@{Ts , S}}

50 ] ;

51

52 (* gene ra t e s the graph o f the p o l l i n g system *)

53 PlotSample [ L i s tP r o c e s s ] :=

54 Li s tS t epP lo t [

55 Table [ Legended [ L i s tPro c e s s [ [ k ] ] , Row[{ ”queue ” , k } ] ] , {k ,

56 Length [ L i s tP roc e s s ] } ] , PlotRange −> Full , F i l l i n g −> Axis ,

57 AxesLabel −> {” seconds ” , ”number o f customers ” } , ImageSize −>

4 0 0 ] ;

A.1.3 Polling System with N queues with variable param-

eters

58 (* s imu la t i on with va r i ab l e parameters *)

59 Manipulate [

60 Module [ { \ [ Eps i lon ] , sys , \ [ Lambda ] , \ [Mu] , aux \ [ Xi ] 0 , \ [ Xi ] 0} ,

61 \ [ Eps i lon ] = RandomReal [{0 , 0 . 1} , q ] ;

62 \ [ Lambda ] = 1 + \ [ Eps i lon ] q ; (* a r r i v a l r a t e s *)

63 \ [Mu] = ConstantArray [ q , Length [ \ [ Lambda ] ] ] ; (* s e r v i c e r a t e s *)

64 aux \ [ Xi ] 0 = ConstantArray [ 0 , Length [ \ [ Lambda ] ] − 1 ] ;

65 \ [ Xi ] 0 =

66 PrependTo [ aux \ [ Xi ] 0 ,

67 RandomInteger [{1 , 1 0 } ] ] ; (* i n i t i a l number o f customers *)

68 sys = SamplePoll ingSystem [ \ [ Lambda ] , \ [Mu] , \ [ Xi ] 0 , n , 0 ,

100000 ] ;

69 {StringForm [ ”Pattern= ‘ ‘” ,

70 FindTransientRepeat [ sys [ [ 2 ] ] [ [ ; ; , 2 ] ] , 2 ] [ [ 2 ] ] ] ,

30
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71 GraphicsRow [{ PlotSample@sys [ [ 1 ] ] ,

72 Li s tS t epP lo t [

73 Table [ Legended [{ sys [ [ 2 ] ] } [ [ k ] ] , ” s e r v e r l o c a t i o n ” ] , {k ,

74 Length [{ sys [ [ 2 ] ] } ] } ] , PlotRange −> Full , F i l l i n g −> Axis

,

75 AxesLabel −> {” seconds ” , ”queue” } , ImageSize −> 400 ]} ,

76 ImageSize −> {1100 , 600} , Spac ings −> 50 ]}

77 ] , {{n , 2 , ”number o f t imes that the s e r v e r changes queue” } ,

1 , 100 ,

78 1} , {{q , 4 , ”number o f queues ” } , 3 , 20 , 1} ]
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