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Abstract 
 

 Recommendation system is a filtering system that predicts ratings or preferences that a 

user might have. Recommendation system is an evolved form of our trivial information retrieval 

systems. In this paper, we present a technique to solve new item cold start problem. New item 

cold start problem occurs when a new item is added to a shopping website like Amazon.com. 

There is no metadata for this item, no ratings and no reviews because it’s a new item in the 

system. Absence of data results in no recommendation or bad recommendations. Our approach to 

solve new item cold start problem requires only an image of a new item. A deep learning 

architecture is used to extract feature vector from an image. Using a distance metric, the distance 

between various image feature vectors are calculated. Finally, the model recommends most 

similar items to the users.  
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Chapter 1 

1.1 Introduction 
 

 Web users these days have access to data available in huge databases. This leads to the 

popularity of systems known as recommendation systems that recommends an item to solve the 

problem of plenty [1]. A recommendation system in general is a technique that recommends a 

likable item/items to the user. Hence a recommendation system plays a vital role for both online 

business providers and their users. Techniques such as Collaborative Filtering (CF) assume that 

there is enough user preference information readily available in order to create personalized 

recommendations [2]. A recommendation system requires the users to create a profile and fill in 

the profile information, or it will require users’ usage history. Another technique is to explore 

available information related to metadata of items to predict recommendations [3]. These 

techniques assume that user information, metadata of an item and item features are always 

available, which is not true. 

 In this paper, a recommendation system is proposed which takes a selected item as an 

input and recommends an item/items as the output. The goal is to precisely predict and 

recommend items to the user even when his/her profile information is unavailable. The absence 

of user information is a serious real world problem, and it belongs to a special category of 

problem known as the cold start problem [4]. 

 In this research, we will explore various types and issues of recommendation systems and 

propose a technique to handle new item cold start problems. The research is organized as shown 

in Fig. 1. We aimed to address the following questions: 
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RQ1: What are the various types of recommendation systems? 

RQ2: Challenges in recommendation systems? 

RQ3: What are the current recommendation approaches to solve them? 

RQ4: How to solve cold start problem? 

 

 
 

Fig. 1. Conceptual map of research 

 

1.2 Background 
 

 Machine Learning has been in the main stream of information technology since the last 

two decades and it has been involved in our lives one way or the other way. As the population  
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using technology exploded there was a lot of data created by people. Analyzing this massive data 

became the main ingredient of technology evolution. Hence machine learning became popular 

and new machine learning algorithms are born almost every day.  

 Machine learning is broadly classified into two categories: supervised and unsupervised 

learning. In supervised learning, the computer has a general rule for connecting inputs to outputs. 

The output is usually referred to as the target variable or target label. In unsupervised learning, 

the target variable is not explicitly given. The machine learning algorithm has to figure out the 

hidden pattern between the inputs and outputs. This can be considered as one of the challenges in 

unsupervised learning. Recommendation systems are supervised learning, unsupervised learning 

and sometimes both. The category of the recommendation system entirely depends on the area 

and scope of the application. When machine learning algorithms were not able to solve a certain 

real world problem, neural networks also known as deep learning were used. We will discuss 

briefly about each one of them in the next sections. 

1.3 Supervised Learning 
 

 Supervised learning is a class of algorithms where most of our real world problems that 

are straightforward simple tasks fall under this category. In this type of learning, the algorithm 

will have access to data with correct input - output pairs which can be used to train the algorithm 

during its training phase. A common example is handwriting recognition. We typically approach 

this problem as a supervised learning task. In this task, we train the algorithm with various 

number of handwritten images with correct labels and the algorithm learns the relationship 

between images and their respective correct labels as a pattern and will remember it. Then when 
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we send a new image to the algorithm, it will recognize the handwritten pattern and predict its 

label.  

 Supervised learning is an easy task because the algorithm will learn using explicit 

examples and it is also easy for humans to understand. But supervised learning can be done only 

when there is data available. The data should be labeled too, which means at some point of time 

a human would have collected data, processed them, arranged them in a structured format and 

labeled them correctly. This is a tedious process but once we have labeled data then it’s very 

easy to deal with supervised learning tasks. Many real time problems fall into this category of 

problems. 

 

 

Fig. 2. Classification and Regression examples 

 

 Supervised machine learning algorithms can be further classified into regression and 

classification tasks as shown in Fig. 2. A regression problem is a problem where the output  

variable is a real continuous value, such as stocks, weight and currency value. To solve such  
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problems using supervised learning method, we will need historical data related to the problem. 

The algorithm will learn the pattern between input and output variables to predict the continuous 

outcomes for the current input variable. A classification problem is a problem where the output 

variable is a discrete value, mostly a category or belongs to a class. For example, size of a fruit - 

big, medium or small, color of a vegetable - red, yellow or purple, does the given patient have 

breast cancer - yes or no. If a problem has only two classes, then it’s called binary classification. 

If a problem has more than two classes, then the problem is called multiclass classification. Since 

classification is a supervised learning algorithm, it learns the pattern using historical examples 

and classifies a new input variable into one of the classes. 

1.4 Unsupervised Learning 
 

 On the other end is unsupervised learning. It is an entirely different class of algorithm. 

Supervised learning algorithms find and learn patterns using a dataset containing right input – 

output pairs but in unsupervised learning, the algorithms find and learn patterns from unlabeled 

data. This may happen because of the unobservable nature of the problem; its infeasible or 

sometimes there is no right answer for a given problem. 
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Fig. 3. Clustering example 

 

 Unsupervised learning can be classified into clustering and association rules. Clustering 

is a task where similar observations are grouped together as shown in Fig. 3. Observations in 

different groups have different behavior. For example, customers are put into different clusters 

based on their similar buying habits. Customers within the cluster have similar buying habits and 

customers from different clusters have dissimilar buying habits. Unsupervised learning algorithm 

plays a prominent role in solving sales related problems. The difficulty in such problems is that 

we never know how many clusters the customers should be divided into. In other words, we do 

not know how the clusters should look like. The most popular algorithm used for forming 

clusters is K-means algorithm; where K is equal to the number of clusters to be formed.  

Association rule problem is a problem where one has to discover the association between 

the inputs and learn the hidden pattern. This usually describes a large portion of the data, such as 

customers who bought this item may have also bought this. For example, customers who buy 

milk also tend to buy eggs and bread. For this reason, you will find milk, eggs and bread placed 

close to each other in all the supermarkets. 
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1.5 Reinforcement Learning, Hybrid Models and Beyond 
  

 This type of problem has gained importance recently due to its nature of learning. In this 

type of problem, we will not provide the algorithm with historical data examples with correct 

input - output pairs, but what we will provide is a procedure as shown in Fig. 4. for the algorithm 

to quantify its performance in the form of a reward signal. Reinforcement learning resembles 

how humans, animals and other living things learn. When the algorithm tries a bunch of new and 

different things, it is rewarded when it does something well. 

 Reinforcement learning can be applied to problems where it’s solution space is infinite. 

One real world example of reinforcement learning is a small group of people who came up with 

an algorithm to play Atari games. The model was well trained and it outperformed all the human 

players and later the creators sold the company to Google for $500 Million. If we choose to 

implement this solution using a supervised learning, it will require an extremely large dataset  

 

 

Fig. 4. Example model of reinforcement learning 
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containing human and game interactions. But if we use the reinforcement learning technique to 

solve this problem it will not require any data at all. The algorithm itself creates its own data. 

And the algorithm rewards itself when it performs well. Reward is usually in the form of a score. 

The higher the score the better the model performance. The ultimate goal of this algorithm will 

be to how to maximize the score. 

 Hybrid algorithms are often a combination of supervised and unsupervised learning 

algorithms. For example, let’s consider the anomaly detection problem which is a common 

problem in various fields. Here an anomaly is detected when something unexpected occurs in a 

usual pattern. The pattern can be remembered by the algorithm using supervised learning and 

when it sees something unusual it will recognize it as abnormal behavior and categorize it into 

different sections. This can be achieved by using unsupervised learning. 
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Chapter 2 

2.1 Recommendation Techniques 
 

 Collaborative filtering, content based filtering and hybrid filtering are the 3 main types of 

filtering techniques used in recommendation systems. Users’ past interactions and similar users’ 

behavior are recorded in collaborative filtering as showing in Fig. 5. This information will be 

used to recommend an item to the user. 

 

 
 

Fig. 5. Collaborative filtering 

 

 Users’ item characteristics are used to determine which item to recommend to the user in 

content based filtering as shown in Fig. 6. And in hybrid recommendation systems,  
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collaborative filtering and content based filtering are combined. These techniques assume that 

the user information is always available, but in the real world the user information is not always 

available. Overcoming the unavailability of user information is the biggest challenge in 

recommendation systems. There is a lot of active research going on to find ways to handle cold 

start problems and we will discuss a few of these studies in the upcoming chapters. 

 

 
 

Fig. 6. Content-based filtering 

 

 Research has proven that a hybrid recommendation technique outperforms content-based 

and collaborative filtering in special cases. Hybrid systems can be implemented in various ways 

such as - by combining these techniques into one technique, by using the predictions of content 

based and collaborative filtering techniques and later combining them for a final result or by 

simply adding collaborative based capabilities to a content based technique and vice versa. 

Hybrid techniques can be used to solve a few challenges of recommendation systems like the 

sparsity problem. Best examples of hybrid recommendation systems in the real world are 
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YouTube recommendation and Netflix recommendation systems. 

 Before discussing more about recommendation systems in detail we’ll discuss the types 

of ratings given to an item by the users. These ratings are the main component of 

recommendation systems. Using these ratings given by the users, the recommendation system 

recommends items to the user. Ratings collected by recommendation systems in a shopping 

website such as ebay.com, amazon.com are broadly classified as follows. 

2.1.1 Explicit Data or Explicit Ratings 

  Explicit data in a recommendation system is collected by asking the users to rate items on 

a scale of 1 to 5. This type of rating is generally measured in stars, 1 star being low rating and 5 

stars being highest rating. Thus, if user rates an item with more stars then they are more likely to 

like it. This data is stored and used by the recommendation system to recommend items to the  

users. For example, my favorite cookie is rated with 5 stars on Amazon.com as seen in Fig. 7. 

 

 
 

Fig. 7. Rating of an item 

2.1.2 Implicit Data or Implicit Ratings  

 Implicit data in a recommendation system is collected by asking the users to review an  
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item they purchased. If a user had good experience with the item, the review of that item is going 

to be positive, else the review is negative. We can determine the emotion of the reviews by using 

sentimental analysis. Reviews given by the users to the items in shopping websites are stored by 

the online business providers and later used for recommending items to the users in the future. 

For example, review of my favorite cookie on amazon.com as shown in Fig. 8. 

 

 
 

Fig. 8. Review of an item 
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Chapter 3 

3.1 Challenges in Recommendation Systems 
 

 In paper [5], the author talks about important and popular challenges in online shopping 

recommendation systems and lists an example for each. 

3.1.1 Cold Start and Sparsity  

 We will be combining cold start and sparsity problems in our discussion because both of 

them primarily deal with lack of information availability. Cold start problems are either caused 

by new items or new users of the system. For new items there are not enough reviews to 

recommend them to a user. And for a new user, it is almost impossible to recommend items 

because there is no history of purchase transactions and the user is new to the system and its 

difficult to predict his/her taste. Sometimes there is no user profile too. The next biggest 

challenge is sparsity, which is a subcategory of cold start problem. If a shopping website has lots 

of items and only a few of them are rated by the users, then there is a review sparsity problem. 

Sparsity may also introduce bias while recommending items to the users. This problem is also 

known as lack of knowledge problem because it is hard to recommend an item that is not rated 

against items that have received lots of ratings.  

3.1.2 Over Specialization  

 In content based filtering recommendation systems, items that are already familiar to the 

users are recommended. And hence the users are not quite surprised by the recommendations 

made by the system but users always love surprises. A good recommendation system should 

always recommend a variety and a wide range of items to the users. 
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3.1.3 Privacy  

 In demographic recommendation systems, user’s information such as gender, email, age, 

address, hobbies and sometimes their salary information is required. However, this is dangerous 

to the users because there is a possibility that the users’ information can be hacked and therefore 

their privacy is breached. 

3.1.4 Scalability  

 As the number of users increase there is a direct demand to increase the number of items 

available in the shopping website. New resources are added to efficiently determine items with 

similar characteristics and to make recommendations to users with similar tastes. This is a 

problem in collaborative filtering technique.   

3.1.5 Freshness or a Change in Prediction 

 There are recommendation systems that can recommend a wide range of items to the 

users but the users are already familiar with it. For example, recommending new arrivals to the 

users, recommending top selling items of a shopping website to the user, etc. 
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Chapter 4 

4.1 Handling Cold Start Problems 
 

 Most common problem in recommendation systems is the cold start problem. When there 

is no data available for recommendation the cold start problem occurs. This is broadly classified 

into cold start user problem and cold start item problem based on which data is missing [6]. We 

will discuss briefly about them in the next section. 

4.2 New User Cold Start Problem 
 

 Recommendation systems in general are targeted to the individual users and recommend 

items that they like. So when a user is new, his or her history is not present and user profile data 

is incomplete or missing. In such scenarios it is impossible to make good recommendations to 

the new users. Suggesting things that the users may not like may disappoint them. Thus, bad 

recommendations lead to loss of new users from the system which ideally should not happen in a 

business point of view. So before even recommending items to the users we should gain enough 

information about them. There are studies which propose techniques to extract this knowledge 

from the minimal information provided by the new users. Researchers tried out various 

approaches in order to solve this problem. Now, we will discuss some of the most common 

methods proposed in research studies. 

4.2.1 Demographic Information 

 The users have an option of entering data about them which will be a part of their profile  
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or users can provide their information by signing up using their social media accounts such as 

Facebook, Twitter or Gmail applications. This will help the recommendation system to know 

which group the user belongs to. Depending on the type of recommendation system, we can 

collect new users’ information and use this information for recommending items to the users. 

Similar group of people share similar interests so we can group people by demographic 

information such as age, gender, zip code, marital status, occupation, student status, education, 

city, country, salary, number of people in household, number of children in house, number of 

cars and many more to list. An example as shown in Fig. 9. This information can be gathered by 

asking users simple questions or from their social media profile. These questions should be 

simple and should not bore or disappoint new users. Depending on the domain of application 

questions can be generated.  

 

 

Age 

                                                                                                                                             Location 

 

    Salary 

 

 

Occupation          Education 

Fig. 9. Demographic information example 
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 If all the information is available through social media profile, the user need not take the 

trouble to fill the profile information. A demographic recommendation system was implemented 

on the tourism app called TripAdvisor, a tourist attractions and booking website by Y. Wang et 

al. [8]. In this paper, they used a crawler to collect demographic data and ratings from 

TripAdvisor website. The website had information about travelers including travel style, age, 

gender, travel for, travel with and great vacation attributes. To classify these ratings, Y. Wang et 

al. used popular machine learning algorithms such as Support Vector Machines (SVM), Naïve 

Bayes and Bayesian network. SVM model performed the best followed by Naive Bayes model. 

Bayesian Network underperformed when compared to these two models. All these algorithms 

were used in recommendations and performed better than their baseline algorithm. 

 After further inspection of the results, authors of [8] realized that they did not have 

accurate recommendations for users who rated items between 1-4 and the data was highly 

imbalanced because majority of the users in TripAdvisor rated their items from 4-5. In future 

work, the authors said they will come up with a hybrid recommendation technique which will 

use information about reviews and attractions. There are limitations of using demographic 

information to solve cold start user problems because they cannot be applied to all the domains 

in recommendation systems and it is not a general solution for solving cold start problems. 

Therefore, this technique opened doors for more research in this area.  

4.2.2 Requesting Users to Provide Ratings 

 In this paper [9], the author says there is a direct way to collect information of new users 

by asking them questions to rate certain items. However, this is not a great idea because it may 

be stressful for the new users. So it is very important to ask simple and required questions so that  
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we can collect only necessary information. These questions will help us in understanding the 

new users taste, his or her likes and dislikes, and these questions should collect information as 

much as possible for the recommendation system. The questions asked should not be general and 

agreeable by everyone since these questions will not distinguish the users. Questions must be 

formulated in such a way that we should be able to extract information required by the 

recommendation system. For example, in a food recommendation system, the recommender 

should not prompt a question like “Do you love chocolate ice cream?” because here almost 

everyone will answer yes. 

 So the questions asked to the users must be opinion oriented and questions should not be 

too specific to the users because this will make the rating process complex. The user may not 

know how to answer resulting in less knowledge extraction and a bad recommendation system. 

In paper [9], the authors propose a method to recommend items to a new user using Movie Lens 

dataset. They figured out four attributes on which the system can be judged on and they are: - a) 

Users effort – How difficult is the sign up process? b) User satisfaction - Did the user like 

signing up process? c) Recommendation accuracy – Accuracy of recommendation system in 

recommending items to the users? d) System utility – Overall, how well did the 

Recommendation System serve all the users. Effort and accuracy are easy and simple to measure 

so the researchers chose them as their metric. They came up with five different techniques to 

present questions to the new users. 

i) Random 

 In random technique, items to be presented to the users are picked randomly from a list of  

items and the users are asked to rate these items. The other way of presenting items to users to  
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rate them is to pick an item randomly from a list of popular items and then to pick other items 

randomly. The main advantage of this technique is that it collects a lot of information. The 

disadvantage of this technique is that since items are presented at random for the users to rate 

they may not have an opinion on these items. 

ii) Popularity 

 In this technique, only the popular items are considered. These items are ranked from 

most popular to least popular before presenting them to the users to collect ratings. The 

advantage of this technique is that we can collect the new users’ opinion because he or she will 

definitely give an opinion on popular items. But, since the popular items are very general the 

recommendation system model may thus become generic and may end up learning nothing new 

about the new user. Hence, this technique will be of no use at all in solving cold start problems. 

iii) Pure entropy 

 In this technique, users are presented with a list of items with very high entropy. This 

means the items present in the list are highly likable or dislikable by the new users. Items with 

highest and lowest ratings will have high entropy. So the list of items presented to the users are 

either rated 5 or 1 on a scale of 1 to 5. The main disadvantage of this technique is that the new 

users may not have an opinion on the high entropy items at all and will fail to solve our cold start 

problem. 

iv) Balanced 

 Balanced technique is a combination of two techniques discussed previously. Items are 

selected by combining popularity and pure entropy technique. This technique is most likely to be 

of benefit because the new users will have an opinion about these items and the recommendation  
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system can use this information to build a model. This technique is more likely to succeed in 

collecting users’ opinions. 

v) Item – Item 

 In this technique, the items are presented to the new users using one of the above 

techniques that we discussed before. On the basis of what was rated by the new users, the related 

items are presented to the users. The next items are chosen as follows: if the same item was 

previously rated by other users then their other items are presented to the new users for rating. In 

the next section, we will discuss the results presented in A. M. Rashid et al [9]. Their results are 

in the Fig. 10. 

 

 
 

Fig. 10. Results of A. M. Rashid et al. technique [9] 

 

 In their paper [9], the authors have picked user effort and accuracy as their metrics to 

evaluate their experiment. User effort was measured in terms of how many new users quit during 

the sign up process. More number of stars mean less user effort and less dropouts. And the other  
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metric is accuracy, which is a standard metric to measure any machine learning algorithm. For 

accuracy metric, the authors used Mean Absolute Error (MAE). The text book definition of MAE 

is the sum of absolute differences between each prediction and the corresponding rating divided 

by the number of ratings. 

 What type of rating technique to pick for a recommendation system is dependent on the 

domain of the application. So before even solving an issue, one has to have collected various 

information about their domain. Say for example, if we are building a recommendation system 

for an e-commerce website, then we might probably use popularity technique to select items for 

the new users to rate because we need to collect information about them as we have no data 

about them in order to make recommendations. After collecting enough information about the 

new users we can move on to item – item technique for recommending items to the new users. 

There may be cases in other domains of recommendation systems where the balanced technique 

works better because we will be able to collect information about the new users and build a 

model for their recommendations. 

4.2.3 Asking Users to Select Few Users That They Trust  

 In [10] the authors propose a method to overcome cold start user problem. The method is 

as follows: - The new users are given a choice to select existing user or users whom they trust.  

And this is the beginning point in recommending items to the new users. Later on, the model can 

be built according to the new users input and feedback. The main issue in this strategy is that the 

new users have to trust other user or users. Trust is a very crucial factor and we cannot measure 

the factor of how many new users will be willing to do this and therefore, this techniquecannot 

be a good practical approach. 
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4.2.4 Tags  

 In this section, we will discuss a method proposed by H. Kim et al. [11]. Generally, 

collaborative filtering technique builds a User X Item matrix but these matrices are typically 

sparse because it is very difficult for the user to rate all the items present. So the author suggests 

grouping these items into tags and coming up with a User X Tags matrix for the user. User X 

Tags matrix are denser than User X Item matrix. This approach proposed by the authors was 

tested. They used a dataset from del.icio.us, a website containing bookmarks that various users 

have tagged.  

 This method was better than the traditional item based collaborative filtering approach 

and the authors used the recall metric to compare the efficiency of the algorithm with traditional  

item based collaborative filtering approach. Using this tags model, they generated top – N items 

for recommendation using Naïve Bayes algorithm. H. Kim et al. said that their method for 

handling cold start problems has a drawback. If the tags were noisy then the model’s 

performance drastically goes down. In real world scenarios, the tags are created by the users and 

it is always noisy, so this is a major issue.  

4.3 Cold Start Item Problem 
 

 Cold start item problems are very difficult to handle and there are very few approaches 

proposed in research studies to successfully handle cold start item problem. In this section, we 

will discuss a few approaches proposed by related research studies to see how they handle cold 

start item problem.  
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 When there are no ratings on new items, it is impossible to predict ratings of all new 

items using a traditional collaborative filtering technique [12]. A. I. Schein et al. [12] came up 

with an answer to this problem. He used probabilistic approach which is a combination of 

content based filtering and collaborative filtering information by using something known as 

expectation maximization (EM) [13] making the model learn with the available data and to fit to 

it. They verified their proposed approach on a movie dataset and they considered the cast 

attribute of a movie and how similar are they to what the users have rated previously.  

 The cold start item problem can be easily handled in a content based filtering system 

when compared to cold start item problem using collaborative filtering approach. In content 

based filtering system, metadata of items can be used to match against information present in 

user profile. This works even if the items are new or have never been seen by the users. Ask to 

rate technique which was described in the previous section will help the users to discover new 

items if the items presented to the user are randomly selected from list of all items.  
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Chapter 5 

5.1 Deep Learning 
 

 Deep learning is a type of machine learning which functions very similar to neurons in a 

human brain. Deep learning algorithms learn the way our neurons learn and also their structure is 

a blue print of a neuron too. Combining many of these neuron like structures in a certain fashion 

results in deep neural networks. Many real time problems that are impossible to solve using 

machine learning algorithms can be solved using deep learning algorithms. Machine learning and 

deep learning has been there for a while from now but gained popularity recently due to 

enormous amount of data which results in bigger models which in turn requires more 

computation. 

 Artificial neural network is another name of deep learning algorithm; the name is given 

due to the similarity in functioning of the neuron [14]. There are many types of networks based 

on the number of neurons, type of neurons, number of layers, type of connection between the 

neurons. Perceptron (P), Radial Basis Network (RBN), Feed Forward Network (FFN) as seen in 

Fig. 11. are few basic artificial neural networks. Convolution Neural Network (CNN), Recurrent 

Neural Network (RNN) are few complex network examples. 

 

 
 

Fig. 11. Example of basic neural networks 
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5.2 Deep Learning Architectures 
 

 Deep learning architectures are designed based on the scope of the application. These 

architectures are arrangement of many basic and complex networks that we discussed in previous 

section. VGG, AlexNet, Inception-V3 are few popular architectures used widely today. Scientists 

and researchers carefully design the architecture and this is one of the main contribution for its 

success. All the implementation details of these architectures are available on World Wide Web. 

Because of this they are very robust with the help of others’ feedback. 

5.2.1 Applications of Deep Learning Architectures 

 Deep learning is widely used in all the fields today. To understand more about these 

applications [15], we can broadly classify them as recognition of pattern and computer vision, 

computers games, self-driving cars and robotics, acoustical engineering or in simple words 

creating and managing sound waves, creating art, hallucinations using deep dream and other 

adventures. Last but not the least, is natural language processing. Coming to future of AI, 

nobody can predict what may or may not happen. An example of what a computer vision 

algorithm can do is shown in Fig. 12. It is a multi-object detection algorithm on images. 

 

 
 

Fig. 12. An example of multi object detection in computer vision 
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5.3 Visualizing Features of Images 
 

 In order to understand how a simple neural network can identify and classify objects of 

an image, first we need to understand how the neural network sees and works on these images.  

The authors of paper [16], a group of people in Google brain team tried to visualize features of 

each layer using their own GoogleNet architecture. After training on ImageNet dataset using 

GoogleNet, something magical happened. When they tried to visualize what these neurons saw 

after training was difficult to believe. They saw that neurons are able to remember objects, parts 

of an object, textures, patterns and edges of an image as shown in Fig. 13. and Fig. 14. 

 
 

Fig. 13. Example of single neuron feature visualization. From left to right edges, textures and patterns from [16] 

 
 

 
 

Fig. 14. Example of single neuron feature visualization. From left to right object parts and objects from [16] 
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 The combination of what two neurons saw gave jaw dropping results. When two neurons 

interacted with each other, they not only remembered things but they also translated/exchanged 

styles among themselves as shown in Fig. 15. Hence this proves the success of such algorithms 

in fields like object detection, real time detection and many more. Due to this main reason deep 

neural networks are being widely combined and used with computer vision applications today. 

 

 
 

Fig. 15. Visualization of interaction between two neurons from [16] 

 

 Furthermore, to make neural networks more easy for humans to understand, two 

categories were recently born in the research field. They are feature attribution and visualization. 

An example is shown in Fig. 16. and Fig. 17. from [16]. Feature attribution research investigates 

what section of an example image is responsible for activation of the network in a certain way. 

Feature visualization on an example dataset answers many questions like what are the 

subsections of a network looking for in an image? And what is the entire network as a whole 

looking for in an image?  
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Fig. 16. Example of feature visualization from [16] 

 

 
 

Fig. 17. Example of feature attribution from [16] 

 

Using [16] as a proof of concept for this research, we will propose and discuss a technique to 

solve one of the most common and challenging problems in recommendation systems as of 

today. 
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Chapter 6 

6.1 Proposed Technique 
 

 Consider a new product ‘A’ in an online shopping website like ebay, whose image and 

description are available, but reviews not. We can still recommend this product to users by using 

the image of this product by extracting features using deep learning architecture. We will be able 

to recommend this product to users who like similar items. This technique will help us to tackle 

new item cold start problems in recommendation system. 

 Real time new item cold start problems in general won’t have any data to work with, so 

we will not be using any textual data in this research. Images of new items are always available 

so will be make use of this to recommend items to the user. Images are downloaded from Google 

using a custom query API. Proposed recommendation technique aims to build a deep learning 

model to recommend relevant new items to the users. We will be using VGG 19, a deep learning 

architecture to extract features from all the images. VGG 19 is made up of CNNs and CNNs are 

very good at learning and remembering patterns. As images are made up of different patterns and 

textures, CNNs are best suitable for this task. We will store these extracted features as vectors. 

Similar items are obtained using K-nearest neighbors algorithm; K is the number of neighbors. 

Finally, we use a sorting algorithm to rank images from most similar to least similar. We will 

hyper tune our model using various parameters of K-nearest neighbors algorithm.  

 In next section, we will be discussing methods for data collection, data processing, deep 

learning modeling and evaluating the model by comparing it with existing systems. 
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6.2 Data Collection 
  

 We will be collecting images for our research by scraping them directly from Web with 

the help of an API written in python. There are many ways to download images from World 

Wide Web. We will be using the most common libraries BeautifulSoap and urllibreq for 

downloading images from a search engine like Google.  

 For example, if we want to collect images of a whale, we can enter our search variable as 

whale in the API. The API will go ahead and search for images with whale, construct the URL of 

the image and download it. Most importantly, we need to make sure that the downloaded images 

match our search variable to ensure this we will be downloading the top N most relevant images. 

N can take any numeric value.  

  We can download N number of relevant images by this method and store it to a file on 

local disk for further processing.  

6.3 Data Processing 
 

 Data processing is all about making sure we have valid data and relevant data, avoid bias 

in data, and most importantly ensure that they are consistent with each other. Some of the 

attributes of an image are its size on local disk, color space, dimensions and type. Size is 

measured in bytes, color space can be RGB which has three channels or HSV or CMY’K which 

has a single channel. Dimensions of digital images are its height and width measured in pixels, 

kind or type of an image is determined by its extensions like GIF or JPEG/JPG or PNG, etc. 

Alpha channel, another attribute of an image widely used in photo editing in applications like  
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Photoshop is the fourth channel which is only supported in GIF and PNG and determines how 

opaque or how transparent an image is. We can use the alpha channel also known as mask 

channel of a PNG image to remove or add transparency to it. We will briefly discuss these 

parameters in the following sections. An example image with its attributes is shown in Table 1. 

 

Table 1 Example of image parameters in an image 
 

Image Image Parameters 

 

Size: 295 KB 

Type: JPEG 

Alpha Channel: No 

Dimensions: 800 x 1200 

Color Space: RGB 

 

 

6.3.1 Resizing an Image 

 In order to avoid any sort of bias introduced due to pixel size, we will be resizing all our 

images in our database to 100 x 100. That is whose height and width is equal to 100 pixels. This 

can be done by using PIL library, PIL stands for Python Imaging Library. It is an open source 

library available for python programming to manipulate images and it supports various types of 

images. It runs on most of the operating systems available today.  
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 During resizing process, an original image will be converted into 100 x 100 pixels. We  

will also preserve the original color space, type of an image and alpha channel. When the process 

is completed we will save the images to file on disk for further processing. An example of before 

and after resizing of an image can be seen in Fig. 18. The other reason for performing resizing of 

images is to limit the resources required during feature extraction. This will also help us in 

decreasing computational time. 

 

 
 

Fig. 18. An example of an image after resizing process 

 

 There are various image processing tools to reduce the computational time and power of 

a deep learning architecture like grey scaling, outline detection, rotate, shear and many more. But 

in our research we will be performing only resizing on our image dataset. 

6.4 Model 
 

 Choosing a deep learning model to extract features from images for our recommendation  
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is a crucial task. Many studies in visual recognition field have proved that the state of art is  

currently been set by convolution neural networks (CNN). For example, in some computer vision 

tasks like classifying images, humans underperform when compared to the performance of CNN. 

This means they perform better in visual tasks than humans. In 2014, a team of researchers from 

Oxford University designed a model and participated in ImageNet large scale visual recognition 

challenge. Their model performed extraordinarily well and was designed purely using CNN.  

They secured first prize for image localization task of finding a particular object in an image and 

drawing a bounding box around it. They secured second place for image classification task - a 

task of identifying object of an image and describing them with a label [17]. This challenge used 

a dataset called ImageNet. It is a huge visual dataset which consists more than 1000 classes and 

is widely used in academic researches [18]. 

 The Oxford University team that won the challenges and their models widely became 

known to everyone. They were from the popular group called visual geometry team. So they 

decided to name their models that won the challenges as VGG models. They designed two 

versions of it depending on the number of layers present in it. The 16 layer model has 16 layers 

in it and the 19 layer model has 19 layers in it [17]. The 19 layer model outperformed the 16 

layer model in the competition. This is the reason for picking the 19 layer model to perform our 

experiments. The VGG made their models public in 2015 to help it get better and to help 

researchers in their research. They also designed a third version of VGG model named hybrid 

VGG model in 2015. The hybrid model known as fusion performed better than VGG16 and 

VGG19 with least training and testing errors but they did not say anything more about this 

model. 
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6.4.1 Architecture of VGG19 

 The architecture design of VGG16 and VGG19 was inspired by the architecture of 

AlexNet. The designers of VGG models replaced the large convolution filters in AlexNet with  

many small 3 x 3 convolution filters one after the other. Authors of [19] also confirm that these 

3 x 3 convolution filters helped in preserving finer details of the image. And worked in 

combination with multiple max pooling layer, softmax layers and fully connected layers. In  

2014, these architectures were considered to be very deep. In order to train these large 

architectures, the VGG team first trained smaller networks with lesser weighted layers [19]. So 

this was known as pre-training process and it was used as initiators for VGG16 and VGG19 

models. The pre-training itself took a lot of time and was a tedious task. Then the authors of [19] 

used this small pre-trained network to train the entire network. 

 Along with its advantages, VGG comes with many disadvantages. It is very difficult and 

slow to train the network. The architecture of this network has very large weights. Due to the 

presence of fully connected layers and deep depth, the trained network weight itself is about 

540MB and 580MB for VGG 16 and VGG 19 models respectively. In spite of all these 

disadvantages VGG is a widely used model even today but smaller architectures like GoogleNet 

is more desirable. VGG 16 alone has a total of about 138.5 Million parameters. 

6.4.2 Transfer Learning  

 Transfer learning is a popular technique in machine learning where a certain model is 

developed to solve a particular problem and can be reused as an initiator to solve a different task. 

They are mostly used in natural language processing and computer vision applications [20]. 

Transfer learning is also known as optimization technique because it is already trained to solve a  
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task and often speeds up the progress of its related task. There are two approaches in transfer 

learning, develop model technique and pre-trained model technique. The develop model transfer 

learning technique is not widely used in deep learning so we will discuss about it.  

  Pre-trained model transfer technique is widely used because not all research studies can 

afford 2-3 years of time and the high cost just to train a deep learning model. In this technique, 

we pick a model trained to solve a common task like classifying images. Then we reuse the 

entire model or use a part of it to solve the new task [20]. Depending on the task we can 

optionally tune the model. 

 In this research we will be using a part of VGG 19 network as an initiator for our 

recommendation task.  As the higher level layers are used for classification task in this model, 

we will use only the low level layers to read all the images in our database and convert images to 

a vector containing features. Then using K nearest neighbors’ algorithm, we find K nearest 

neighbors for every image in the database and store the recommended images to a file for future 

use. 
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Chapter 7 

7.1 Baseline for Evaluation 
 

 In [21], the authors developed a model to address cold start problems in social 

networking websites like etsy and pinterest using images liked by the users. They also collected 

contextual information of new items. Which constitutes of visual, topic and spatial data. Their 

model used implicit feedback provided by the users to improve the performance. They trained 

their model on Flickr dataset. During their course of experiments the highest recall was 0.0769 

and precision was 0.0893 at K = 5. So we will be considering results of [21] as baseline for our 

experiment. 

 
Table 2 Baseline for our research 

 
Author names Results @ k=5 

Niu, W. et al.  [21] Recall: 0.0769 

Precision: 0.0893 

  

7.2 Evaluation Metric 
 

 The best possible way to evaluate supervised and unsupervised learning algorithm is by 

calculating their precision, recall and F score. The values are between 0 to 1. If a value is close to  

1 the better it is. Formulae for calculating precision, recall and F score is shown in the Figure 19. 
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Fig. 19. Evaluation Formulae 

 

 In the next section we will discuss more about the datasets, experiment and results. 

7.3 Hardware and Software Requirements 
  

 There are no hard hardware requirements in our research. In order to implement this 

research we suggest these minimum hardware requirements. 

❖ Memory: 8 GB 

❖ Processor: 2.3 GHz Intel Core i7 

Here is the list of software resources required to implement this research. 

❖ Python 3 

❖ Anaconda-Navigator an IDE to analyze data 

v And create your own database with custom Google API 
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v Any OS can be used that can support Python 3 

v Libraries such as Scikit Learn or SK Learn, Tensor Flow and Keras 

All of the above listed softwares are required and is free to download. 

7.4 Dataset 1  
   

 Our dataset 1 consists of four different shapes in geometry (circle, cylinder, triangle and 

square). We have 10 images of each shape. All the images were downloaded from Google using 

a custom API that we discussed in the previous chapter. We downloaded only JPEG images 

because these images are universally accepted. All the images were resized to 100 x 100 pixels 

in data preprocessing phase. We preserved their original color space. Further, the feature vectors 

were extracted from all the images using VGG 19 architecture and flattened for comparison 

using KNN algorithm. Finally, we used a sorting algorithm to rank the images from most similar 

to least similar images. Glimpse of our dataset 1 can be seen in Figure 20. 

 
Fig. 20. Glimpse of Dataset 1 
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 We experimented with different values of K in KNN algorithm and hyper tuned the 

model using hyper tuning parameters such as algorithm, metric in KNN algorithm. Weights 

parameter is set to uniform which is a default value. We will briefly discuss about hyper tuning 

in further sections. The results for dataset 1 are tabulated in Table 3. The results were averaged 

over 40 runs for each combination of K and hyper parameter values. 

Table 3 Experimental results of Dataset 1 
 

K values 
Algorithm = brute 

Metric = cosine 
Weights = uniform  

Algorithm = auto 
Metric = cosine 

Weights = uniform 

Baseline results @ 
K = 5 

K = 1 
Precision: 0.5125 

Recall: 0.2875 
F Score: 0.3682 

Precision: 0.5100 
Recall: 0.2850 

F Score: 0.3655 

 

 

Precision: 0.0893 [21] 
Recall: 0.0769 [21] 

 
 
 

K = 2 
Precision: 0.5250 

Recall: 0.2900 
F Score: 0.3734 

Precision: 0.5200 
Recall: 0.2900 

F Score: 0.3703 

K = 3 
Precision: 0.5430 

Recall: 0.2995 
F Score: 0.3859 

Precision: 0.5530 
Recall: 0.2995 

F Score: 0.3885 

K = 4 
Precision: 0.5800 

Recall: 0.2900 
F Score: 0.3866 

Precision: 0.5800 
Recall: 0.2900 

F Score: 0.3866 

K = 5 
Precision: 0.5950 

Recall: 0.2975 
F Score: 0.3966 

Precision: 0.5900 
Recall: 0.2950 

F Score: 0.3933 

K = 6 
Precision: 0.5500 

Recall: 0.3300 
F Score: 0.4125 

Precision: 0.5500 
Recall: 0.3300 

F Score: 0.4125 
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 As we can see from Table 3, our precision and recall values are better than the baseline  

results which is a positive sign. We also calculated F score value as precision and recall values 

were available. We observed that as the K value increased we saw an increase in precision and 

recall values. Precision and recall values almost became constant at K=4, K=5 and K=6 in our 

experiment. We performed hyper tuning on KNN algorithm to improve our results. Parameters 

considered for hyper tuning were algorithm, n_neighbors aka K and distance metric.  

 At K = 5, our baseline precision, recall values were 0.0893, 0.0769 respectively and 

proposed approach precision, recall values are 0.5950, 0.2975. Our model performed better than 

baseline model due to following reasons: We have a consistent dataset which consists of simple 

geometry shapes. The most important reason is we used VGG 19 architecture in our feature 

extraction phase. Which is trained on ImageNet dataset. ImageNet is a very large dataset. It 

consists of variety of images. VGG 19 architecture is well known for learning and remembering 

visual features. Hence the results. The glimpse of our visual recommendations of dataset 1 is 

shown in Figure 21. 
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Fig. 21. From top to bottom, the best and worst circle image recommendations given by our model with k=5, 

algorithm=brute and metric=cosine 

7.5 Dataset 2  
   

 Our dataset 2 consists of four different junk food items (burger, chicken wings, fries and  

onion rings). We have 10 images of each food item. All the images were downloaded from 

Google using a custom API that we discussed in the previous chapter. We downloaded only 

JPEG images because they are universally accepted. Images were resized to 100 x 100 pixels in 

data preprocessing phase. We preserved their original color space. Further, the feature vectors 

were extracted from all the images using VGG 19 architecture and flattened for comparison 

using KNN algorithm. Finally, we used a sorting algorithm to rank the images from most similar 

to least similar images. Glimpse of our dataset 2 can be seen in Figure 22. 
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Fig. 22. Glimpse of Dataset 2 

 

 We performed experiments with different values of K in KNN algorithm and also hyper 

tuned the model using parameters such as algorithm and metric in KNN algorithm. Weights 

parameter is set to uniform which is a default value. We will briefly discuss about hyper tuning 

in further sections. The results for dataset 2 are tabulated in Table 4. The results were averaged 

over 40 runs for each combination of K and hyper parameter values. 
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Table 4 Experimental results of Dataset 2 
 

K values 
Algorithm = brute 

Metric = cosine 
Weights = uniform 

Algorithm = auto 
Metric = cosine 

Weights = uniform 

Baseline results @ 
K = 5 

K = 1 
Precision: 0.3050 

Recall: 0.1625 
F Score: 0.2096 

Precision: 0.3025 
Recall: 0.1875 

F Score: 0.2285 

 

 

Precision: 0.0893 [21] 
Recall: 0.0769 [21] 

 
 
 

K = 2 
Precision: 0.3350 

Recall: 0.1825 
F Score: 0.2361 

Precision: 0.3325 
Recall: 0.1875 

F Score: 0.2384 

K = 3 
Precision: 0.3550 

Recall: 0.1850 
F Score: 0.2429 

Precision: 0.3525 
Recall: 0.2075 

F Score: 0.2610 

K = 4 
Precision: 0.3650 

Recall: 0.1825 
F Score: 0.2432 

Precision: 0.3625 
Recall: 0.2175 

F Score: 0.2717 

K = 5 
Precision: 0.3650 

Recall: 0.1825 
F Score: 0.2432 

Precision: 0.3625 
Recall: 0.2175 

F Score: 0.2717 

K = 6 
Precision: 0.3650 

Recall: 0.1825 
F Score: 0.2432 

Precision: 0.3625 
Recall: 0.2175 

F Score: 0.2717 

 

 As we can see from Table 4, our precision and recall values are better than the baseline  

results which is a positive sign. We also calculated F score value as precision and recall values 

were available. We observed that as the K value increased we saw an increase in precision and 

recall values. Precision and recall values became constant for K = 4, K = 5 and K = 6. We 
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performed hyper tuning on KNN algorithm to improve our results. Parameters considered for 

hyper tuning were algorithm, n_neighbors aka K and distance metric.  

 At K = 5, our baseline precision, recall values were 0.0893, 0.0769 respectively and 

proposed approach precision, recall values are 0.3650, 0.1825. Our model performed better than 

baseline model due to following reasons: We have a consistent dataset which consists of junk 

food items. The most important reason is we used VGG 19 architecture in our feature extraction 

phase. Which is trained on ImageNet dataset. ImageNet is a very large dataset consists of variety 

of images. VGG 19 architecture is well known for learning and remembering visual features. 

Hence the results. The glimpse of our visual recommendations of dataset 2 is shown in Figure 

23. 

 

 

Fig. 23. From top to bottom, the best and worst onion rings image recommendations given by our model with k=5, 

algorithm=brute and metric=cosine 
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7.6 Dataset 3  
   

 Our dataset 3 consists of two popular junk food items (burger and hotdog). We have 20 

images of each food item. All the images were downloaded from Google using a custom API 

that we discussed in previous chapter. We downloaded only JPEG images because they are 

universally accepted. Images were resized to 100 x 100 pixels in data preprocessing phase. We 

preserved their original color space. Further, the feature vectors were extracted from all the 

images using VGG 19 architecture and flattened for comparison using KNN algorithm. Finally, 

we used a sorting algorithm to rank the images from most similar to least similar images. 

Glimpse of our dataset 3 can be seen in Figure 24. 

 

 
 

Fig. 24. Glimpse of Dataset 3 
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 We performed experiments with different values of K in KNN algorithm and also hyper  

tuned the model using parameters such as algorithm and metric in KNN algorithm. Weights 

parameter is set to uniform which is a default value. We will briefly discuss about hyper tuning 

in further sections. The results for dataset 3 are tabulated in Table 5. The results were averaged 

over 40 runs for each combination of K and hyper parameter values. 

 
Table 5 Experimental results of Dataset 3 

 

K values Algorithm = brute 
Metric = cosine 

Algorithm = auto 
Metric = cosine 

Baseline results  
@ K = 5 

K = 1 
Precision: 0.6250 

Recall: 0.3400 
F Score: 0.4404 

Precision: 0.6300 
Recall: 0.3450 

F Score: 0.4457 

 

 

Precision: 0.0893 [21] 
Recall: 0.0769 [21] 

 
 
 

K = 2 
Precision: 0.7200 

Recall: 0.3600 
F Score: 0.4800 

Precision: 0.7200 
Recall: 0.3600 

F Score: 0.4800 

K = 3 
Precision: 0.7450 

Recall: 0.3725 
F Score: 0.4966 

Precision: 0.7450 
Recall: 0.3725 

F Score: 0.4966 

K = 4 
Precision: 0.7450 

Recall: 0.3725 
F Score: 0.4966 

Precision: 0.7500 
Recall: 0.4500 

F Score: 0.5625 

K = 5 
Precision: 0.7500 

Recall: 0.4500 
F Score: 0.5625 

Precision: 0.7600 
Recall: 0.3800 

F Score: 0.5066 

K = 6 
Precision: 0.7450 

Recall: 0.3725 
F Score: 0.4966 

Precision: 0.7600 
Recall: 0.3800 

F Score: 0.5066 
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 As we can see from Table 5, our precision and recall values are better than baseline  

results which is a positive sign. We also calculated F score value as precision and recall values 

were available. We observed that as the K value increased we saw an increase in precision and 

recall values. Precision and recall values became constant for K values 3, 4, 5 and 6. We 

performed hyper tuning on KNN algorithm to improve our results. Parameters considered for 

hyper tuning were algorithm, n_neighbors aka K and distance metric.   

 At K = 5, our baseline precision, recall values were 0.0893, 0.0769 respectively and 

proposed approach precision, recall values are 0.7600, 0.3800. Our model performed better than 

the baseline model due to following reasons: We have a consistent dataset which consists of junk 

food items. The most important reason is we used VGG 19 architecture in our feature extraction 

phase. Which is trained on ImageNet dataset. ImageNet is a very large dataset consists of variety 

of images. VGG 19 architecture is well known for learning and remembering visual features. 

Hence the results. The glimpse of our visual recommendations of dataset 3 is shown in Figure 

25. 
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Fig. 25. From top to bottom, the best and worst hotdog image recommendations given by our model with k=5, 

algorithm=auto and metric=cosine 

7.7 Dataset 4  
   

 Our dataset 4 consists of four different types of landscapes (desert, glacier, coast and 

taiga). We have 10 images of each landscape. All the images were downloaded from Google 

using a custom API that was discussed in previous chapter. We downloaded only JPEG images 

because they are universally accepted. Images were resized to 100 x 100 pixels in data 

preprocessing phase. We preserved their original color space. Further, the feature vectors were 

extracted from all the images using VGG 19 architecture and flattened for comparison using 

KNN algorithm. Finally, we used a sorting algorithm to rank the images from most similar to 

least similar images. Glimpse of our dataset 4 can be seen in Figure 26. 
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Fig. 26. Glimpse of Dataset 4 

 

 We performed experiments with different values of K in KNN algorithm and also hyper 

tuned the model using parameters such as algorithm and metric in KNN algorithm. Weights 

parameter is set to uniform which is a default value. We will briefly discuss about hyper tuning 

in further sections. The results for dataset 4 are tabulated in Table 6. The results were averaged 

over 40 runs for each combination of K and hyper parameter values. 
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Table 6 Experimental results of Dataset 4 
 

K values Algorithm = brute 
Metric = cosine 

Algorithm = auto 
Metric = cosine 

Baseline results 
@ K = 5 

K = 1 
Precision: 0.4550 

Recall: 0.2550 
F Score: 0.3267 

Precision: 0.5000 
Recall: 0.2555 

F Score: 0.3381 

 

 

Precision: 0.0893 [21] 
Recall: 0.0769 [21] 

 
 
 

K = 2 
Precision: 0.4550 

Recall: 0.2550 
F Score: 0.3267 

Precision: 0.5000 
Recall: 0.2555 

F Score: 0.3381 

K = 3 
Precision: 0.5500 

Recall: 0.2725 
F Score: 0.3642 

Precision: 0.5500 
Recall: 0.2725 

F Score: 0.3642 

K = 4 
Precision: 0.5650 

Recall: 0.2825 
F Score: 0.3766 

Precision: 0.5375 
Recall: 0.3225 

F Score: 0.4030 

K = 5 
Precision: 0.5650 

Recall: 0.2825 
F Score: 0.3766 

Precision: 0.5750 
Recall: 0.2900 

F Score: 0.3854 

K = 6 
Precision: 0.5375 

Recall: 0.3225 
F Score: 0.4030 

Precision: 0.5375 
Recall: 0.3225 

F Score: 0.4030 

  

 As we can see from Table 6, our precision and recall values are better than the baseline  

results which is a positive sign. We also calculated F score value as precision and recall values 

were available. We observed that as the K value increased we saw an increase in precision and 

recall values. Precision and recall values almost become constant for K values 4, 5 and 6. We  
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performed hyper tuning on KNN algorithm to improve our results. Parameters considered for 

hyper tuning were algorithm, n_neighbors aka K and distance metric.   

 At K = 5, our baseline precision, recall values were 0.0893, 0.0769 respectively and 

proposed approach precision, recall values are 0.5750, 0.2900. Our model performed better than 

baseline model due to following reasons: We have a consistent dataset which consists of 

different landscapes. The most important reason is we used VGG 19 architecture in our feature 

extraction phase. Which is trained on ImageNet dataset. ImageNet is a very large dataset consists 

of variety of images. VGG 19 architecture is well known for learning and remembering visual 

features. Hence the results. The glimpse of our visual recommendations of dataset 4 is shown in 

Figure 27. 

 

 

 

Fig. 27. From top to bottom, the best and worst taiga image recommendations given by our model with k=5, 

algorithm=auto and metric=cosine 
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Conclusion 
 

 In this research, we reviewed different types of recommendation systems, discussed 

various challenges faced by them and we made an attempt to address the most important 

challenge. We also discussed several research studies that proposed techniques to handle new 

item cold start problems. Finally, we proposed a solution as one of the ways to tackle new item 

cold start problem. 

Table 7 Comparison of our experiments with the baseline approach 
 

K value Baseline Dataset 1 Dataset 2 Dataset 3 Dataset 4 

K = 5 

 
 

Precision: 0.0893 [21] 
Recall: 0.0769 [21] 

 

Precision: 
0.5950 
Recall: 
0.2975 

F Score: 
0.3966 

Precision: 
0.3650 
Recall: 
0.1825 

F Score: 
0.2432 

Precision: 
0.7600 
Recall: 
0.3800 

F Score: 
0.5066 

Precision: 
0.5750 
Recall: 
0.2900 

F Score: 
0.3854 

 

 We performed experiments on four different image datasets containing variety of shapes 

patterns, colors and textures. Precision, recall and F Score are tabulated as seen in Table 7. It 

contains best results of each dataset @ K = 5 as the baseline results were recorded at K @ 5. We 

saw better results with a geometric shapes dataset when compared to a junk food dataset. This 

may be because it had less number of colors and shapes to deal with. In junk food dataset we 

noticed some images had additional items like fries and coke along with the item of interest like 

burger and chicken wings. This will confuse the model and it will recommend a fries image for 

an input containing fries and burger in the same image and vice versa. Hence we saw lowest 

precision and recall values among our experiments. The hotdog-burger dataset gave us the best 

results. This may be because the images had only hotdogs or burgers no additional items were  
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present in the image that would confuse the model to distinguish between burger and hotdog 

during recommendation. Additional we had 20 images of each food item whereas in other dataset 

we had 10 images of each item. More is better.  

 Finally, landscape dataset performed better than expected because it had to deal with 

common regions like sand, rock formations and shrubs in the landscape images. The most 

challenging thing for the model in this dataset may have been to distinguish between the water 

body present in glacier and coastal landscape image as it constituted larger percentage in coastal 

and glacier images. Same challenge for sandy regions present in desert and coastal images.  

 The efficiency of a recommendation system is purely dependent on the data available to 

it. Good data yields better recommendations and hence better precision, recall and F score 

values. In the future, we can possibly improve the quality of our recommendations by following 

these techniques: generating captions for images this could help us recommend relevant items to 

the users, for example - desert images will have captions such as dry, sand and sun. Whereas 

coastal images will have captions such as water, sand, cliff. These captions will help in 

improving our results or we can assign tags on images of items. This could help us to classify 

item images implicitly, which in turn, will help in improving our results. 
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