
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-14-2018

Intra-exchange Cryptocurrency Arbitrage Bot
Eric Han
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Information Security Commons, and the Other Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Han, Eric, "Intra-exchange Cryptocurrency Arbitrage Bot" (2018). Master's Projects. 655.
DOI: https://doi.org/10.31979/etd.6xze-y9xu
https://scholarworks.sjsu.edu/etd_projects/655

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/655?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Intra-exchange Cryptocurrency Arbitrage Bot

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Eric Han

December 2018

© 2018

Eric Han

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Intra-exchange Cryptocurrency Arbitrage Bot

by

Eric Han

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2018

Dr. Thomas Austin Department of Computer Science

Dr. Mark Stamp Department of Computer Science

Dr. Jon Pearce Department of Computer Science

ABSTRACT

Intra-exchange Cryptocurrency Arbitrage Bot

by Eric Han

Cryptocurrencies are defined as a digital currency in which encryption techniques

are utilized to regulate generation of units of currency and verify the transfer of

funds, independent of a central governing body such as a bank. Due to the large

number of cryptocurrencies currently available, there inherently exists many price

discrepancies due to market inefficiencies. Market inefficiencies occur when the price

of assets do not reflect their true value. In fact, these types of pricing discrepancies

exist in other financial markets, including fiat currency exchanges and stock exchanges.

However, these discrepancies are more significant in the cryptocurrency domain due

to the low levels of government regulation, higher amounts of speculation, and human

behaviors driven by investors seeking profit. These types of pricing discrepancies can

be eliminated to some extent by executing arbitrages, which are defined as a sequences

of trades beginning and ending with the same asset which result in more of that asset

at the end of the trading sequence. Through executing arbitrages, the market should

become more efficient.

This project was an attempt to execute intra-exchange arbitrage on the well-

known cryptocurrency exchange Binance and generate profit, and as a side effect

make the cryptocurrency exchange market more fluid. Although the project did not

record phenomenal profits, it did successfully generate several hundred dollars over

the course of several months, independent of market fluctuations.

ACKNOWLEDGMENTS

I want to thank my family: KY Han, Sue-Jane Han, and Jason Han for their

undying support of me through this period of my life, along with Professor Thomas

Austin, Professor Mark Stamp, Professor John Pearce, and Professor Katerina Potika

from San Jose State University Computer Science Faculty. Their outstanding pedagogy

has inspired me as a student to try novel ideas, no matter how absurd they sound.

v

DEDICATION

I would like to dedicate this Project to all my my friends and family who are going

through struggles and feel like there’s no light at the end of the tunnel. Remember, a

any dream you have written down with a date becomes a goal. A goal broken down

into steps becomes a plan. A plan backed by actions makes your dreams come true.

vi

TABLE OF CONTENTS

DEDICATION . vi

CHAPTER

1 Introduction . 1

1.1 Overview . 1

1.2 Research Objective . 1

2 Background and Related Work . 3

2.1 History and Background . 3

2.2 Types of Currency Arbitrage . 4

2.3 Current Cryptocurrency Arbitrage Implementations and Challenges 5

2.4 Bellman-Ford and Asset Arbitrage 8

3 System Architecture . 11

3.1 Technical Approach/Methodology 11

3.2 Implementation . 12

3.2.1 Program Setup (List of classes and other files used) 12

3.2.2 Libraries Used . 14

3.2.3 Miscellaneous Data Structures Used 14

4 Experiments and Results . 16

4.1 Bitcoin Only Experiment . 16

4.2 ‘‘amountBuffer’’= 1 . 19

4.3 ‘‘amountBuffer’’ = 2 . 20

4.4 ‘‘amountBuffer’’ = 3 . 21

vii

viii

4.5 ‘‘amountBuffer’’ = 4 . 22

5 Discussion and Observations . 28

5.1 Important Topics . 28

6 Conclusion and Future Work . 30

LIST OF REFERENCES . 32

LIST OF FIGURES

1 Table showing Additional Bitcoins, Percent Increase, and Percent
Increase from Beginning vs Arbitrage Executions. 17

2 Total Account Bitcoin Value vs. Arbitrage Sequences Executed. . 18

3 Table showing Profitability with amountBuffer = 1. 19

4 Graph showing arbitrage results with amountBuffer = 1. 20

5 Table showing Profitability with amountBuffer = 2. 20

6 Graph showing arbitrage results with amountBuffer = 2. 21

7 Table showing Profitability with amountBuffer = 3. 22

8 Graph showing arbitrage results with amountBuffer = 3. 22

9 Table showing Profitability with amountBuffer = 4 (Run 1). . . . 23

10 Graph showing arbitrage results with amountBuffer = 4 (Run 1). 24

11 Table showing Profitability with amountBuffer = 4 (Run 2). . . . 24

12 Graph showing arbitrage results with amountBuffer = 4 (Run 2). 25

13 Table showing Profitability with amountBuffer = 4 (Run 3). . . . 25

14 Graph showing arbitrage results with amountBuffer = 4 (Run 3). 26

ix

CHAPTER 1

Introduction
1.1 Overview

Cryptocurrencies present many new opportunities that can be attributable to

its utilization of blockchain technology. With technologies such as smart contracts,

distributed ledger, and currency virtualization behind it, it is no wonder that there are

over 4000 cryptocurrencies (or alt-coins) in existence today [1]. As a side effect of this

explosion in number of cryptocurrencies, a similar rise in cryptocurrency exchanges

has also occurred. Coinbase, Kraken, Bitfinex, Bitrex, and Poloniex are just a few

of the many existing cryptocurrency exchanges[2]. These sites provide Application

Programming Interfaces (APIs) to their users so they can trade programmatically.

Due to the existence of these APIs, market inefficiencies present in cryptocurrency

markets can be capitalized on through trades that execute on these inefficiencies.

In fact, this technique, known as arbitrage, has been performed by banks and

financial institutions for many years. Unfortunately, access to a high availability API

often requires significant financial investment and access is typically only given to

banks and financial institutions such as investment houses[3]. The main research

question this project seeks to answer is: Can arbitrage techniques be applied to

cryptocurrency markets successfully?

1.2 Research Objective

The research objective is to develop an automated bot that can successfully

find and execute arbitrage opportunities, and ultimately yield profits on the Binance

exchange and make the market more efficient. I propose to apply this arbitrage

technique to Binance, currently the largest cryptocurrency exchange in the world,

because I believe that larger price discrepancies exist due to the high number of

currencies available, at the time of this writing over 150, as well as the inherent

1

volatility present in cryptocurrency values.

Building the foundation for a public-use library for an intra-exchange arbitrage

bot will be be part of the research objective. Ideally, if one single application could

make profits, then the objective can be extended to experiment running multiple

instances of the same application to extend profits and further stabilization of the

cryptocurrency-exchange toward market efficiency. If the arbitrage bot works on

Binance, steps can be taken to abstract the code so it can be applied to other exchanges

as well.

2

CHAPTER 2

Background and Related Work
2.1 History and Background

Currency arbitrage involves buying and selling currency pairs from different

brokers to take advantage of their different spreads. The currency-spread is defined

as the difference between ‘‘bid’’ and ‘‘ask’’ prices of an asset. ‘‘Bid’’ refers to what a

buyer offers to pay for a specific asset, while ‘‘Ask’’ refers to the selling price of an

asset offered by a seller. The size of the currency spread is often used to measure the

liquidity and efficiency of the market. A higher currency-spread means the market is

less efficient, while a lower currency-spread indicates a more efficient market.

In the fiat currency market, banks often use arbitrage to take advantage of pricing

discrepancies between multiple currency pairs to make a profit. Bots that trade on

conventional traditional markets such as Bloomberg and NASDAQ exist but are

available exclusively to investment houses and brokers. These conventional market

bots need access to exchange data from the market. This exchange data is typically

not available to laymen [4].

The transparent nature of the blockchain gives cryptocurrency traders access to

an exchange’s order book and design trading bots that act on this data. The blockchain

is essentially a distributed ledger with all transaction histories, maintained by users

and miners of the network. As a result of this, there are already many bots that

target cryptocurrency exchanges, such as ‘‘Crypto Trader’’, ‘‘Haasbot’’, ‘‘Zenbot’’,

‘‘Gekko’’, and ‘‘BTCRobot.’’ Many of these bots have a monthly subscription fee

ranging from $60USD to $3,500USD. (At the time of this writing Bitcoin was over

8000USD) Most utilize an inter-exchange arbitrage strategy [5].

3

2.2 Types of Currency Arbitrage

As a result of the large number of cryptocurrency exchanges, two types of

arbitrages can be performed to capitalize on market inefficiencies. The first is ‘‘inter-

exchange’’ arbitrage, and the second is ‘‘intra-exchange’’ arbitrage. The former refers

to executing arbitrage sequences within an exchange, while the second means executing

arbitrages across different exchanges. Each has its own benefits and challenges, which

will be discussed below.

• The first technique, inter-exchange arbitrage, was explored by Norry [5] in his

article on Bitcoin trading bots. This type of arbitrage surveys cryptocurrency

prices on many different exchanges, and finds pricing discrepancies between

them. When a pricing discrepancy is found, a lower priced cryptocurrency will

be bought on one exchange, then transferred and sold on the other. By doing

these arbitrages across many different exchanges, the pricing of cryptocurrencies

should stabilize more to a consistent market value, and the executor of the

arbitrages can gain profits directly linked to the pricing differences found [4].

• A second type of arbitrage technique, which is similar to the first one, also

takes advantage of pricing spreads between two exchanges. In the trading

bot ‘‘Blackbird,’’ when an spread is discovered that is large enough to cover

fees of short-selling and buying on the two respective exchanges, a short-sell is

performed on the exchange where the price is higher, and a long is executed on

the exchange where the price is lower. When the two prices eventually converge,

the positions are settled (sold for the long position, and bought in the short-sell

position). The net profit is basically half the spread minus the trading fees,

multiplied by the volume of cryptocurrency traded [6]. This technique claims

to be market-neutral in that it doesn’t expose the user to any risks associated

with market fluctuations. It also eliminates the need to transfer assets between

4

different exchanges.

• A third technique was discovered while the exploring MIT homework set solu-

tions by Demaine and Goldwasser [7]. This third technique, ‘‘intra-exchange’’

arbitrage, is basically making a sequence of trades starting and ending with

a specific currency, but you end up with more of the starting currency. The

Bellman-Ford algorithm [8] can be used to discover pricing discrepancies in an

exchange, and these arbitrage opportunities can then be executed by a bot. This

is the type of arbitrage explored in this paper. [7]

2.3 Current Cryptocurrency Arbitrage Implementations and Challenges

Osipovich and Jeong [9] discuss the case of Stefan Qin, a 21-year-old Australian

based in California, who has built a business out of cryptocurrency arbitrage. In 2016,

he founded Virgil Capital, a hedge fund specializing in cryptocurrency arbitrage. He

put his studies at San Francisco’s Minerva Schools on hold to run the fund, which

returned over 400 % last year after fees and now manages $23.5 million. [9] Qin is doing

inter-exchange arbitrage, or buying on one exchange, and selling on another. This

technique presents several challenges. The most significant challenge is withdrawal

times. Because when we buy a currency on an exchange, and want to withdraw it to

a different exchange, it needs to be processed by the blockchain and mined. Unless

the miner’s fee is high, it is likely that the transaction will take a significant length

of time, after which the arbitrage opportunity would disappear. The other challenge

is that you often need significant amounts of capital to really make any significant

impact on equalizing the rates on the two target exchanges.

In an article written by ‘‘scrawl’’(username), he says that intra-exchange arbitrage,

presents its own set of challenges. First off, many exchanges have a rate-limit on their

API, which limits the number of API requests you can make on it for a given time

5

period. These rate-limits vary from exchange to exchange, but they tend to start

from around 60 requests a minute, and may go up to 120 requests per minute [10]. A

second challenge this technique presents is the very small window in which you have

to execute these arbitrages. In the FOREX market, arbitrage opportunities exist for

at most one second, by which time the opportunity has already been taken advantage

of [3]. A third challenge is that in cryptocurrency exchanges, a flat commission fee is

charged for each trade. These fees can differ from exchange to exchange, but tend to

range from 0.05% to 0.5% per trade. These are all factors that need to be taken into

consideration when building an arbitrage bot [5].

From Norry’s article on cryptocurrency trading bots, many implementations

of trading bots currently exist on the market. ‘‘Blackbird’’, ‘‘Haasbot’’, ‘‘Zenbot’’,

‘‘Gekko’’, ‘‘CryptoTrader’’, and ‘‘3Commas’’ are a several available cryptocurrency

trading bots available on the market currently.

• ‘‘Blackbird’’ - Blackbird is a supposedly an inter-exchange, market neutral

arbitrage bot written in C++ because it actually doesn’t sell, but short-sells a

currency on one exchange when a significant price difference is observed. When

the prices eventually equalize, it settles the position and reaps in the profit. In

addition, The buy/sell and sell/buy trading activities are done in parallel on two

different exchanges, independently. Advantage: no need to deal with transfer

latency issues [6].

• ‘‘Hassbot’’ - Haasbot offers 3 different pricing plans- one for beginners at a

price of 0.073BTC, one for advanced traders at 0.208BTC, and one for growing

investors priced at 0.127BTC. These prices are for one year. Haasbot is written

in C# and offers a many customizations for bot trading strategies. Haasbot can

use technical indicators like RSI, MACD, and Fibonacci. There are proprietary

safeties and insurances to keep your investments safe. There is also an auto-tune

6

feature you can use to optimize your trading strategy. Historical/Real time

testing, advanced notifications and reporting are also available, and the platform

is developer friendly: meaning you can write your own code to develop and

our customize your own bots. Most importantly, the platform offers a plethora

of technical indicators you can use to your advantage when developing a bot

trading strategy [11].

• ‘‘Zenbot’’ - Zenbot is a command-line inter-exchange cryptocurrency trading

bot using Node.js and MongoDB. Features it includes are: Fully-automated

technical-analysis-based trading approach, full support for GDAX, Poloniex,

Kraken, Bittrex, Quadriga, Gemini, Bitfinex, CEX.IO and Bitstamp; plugin

architecture for implementing exchange support, or writing new strategies;

simulator for backtesting strategies against historical data; ‘‘Paper’’ trading

mode which operates on a simulated balance while watching the live market;

configurable sell stops, buy stops, and (trailing) profit stops; and flexible sampling

period and trade frequency - averages 1-2 trades/day with 1h period, 15-50/day

with 5m period [12].

• ‘‘Gekko’’ - Gekko is a free and open source inter-exchange Bitcoin TA trading

and backtesting platform that connects to popular Bitcoin exchanges. It is

written in JavaScript and runs on Node.js. It offers a ‘‘Paper’’ Trader and

‘‘Tradebot’’ that performs actual trades. Gekko offers plug-in support and

the ability to develop your own trading strategies. Gekko supports 3 different

exchanges (including Bitfinex, Bitstamp and Poloniex) [13].

• ‘‘CryptoTrader’’ - CrytpoTrader is an cloud-based inter-exchange arbitrage bot

that requires no software installation. All major crypto-currency exchanges

are supported for both backtesting and live trading. It also offers a strategies

marketplace where strategies can be bought and sold. It offers backtesting

7

trading strategies to see how a chosen strategy would work in different market

conditions [14].

• ‘‘3Commas’’ - 3Commas is a trading platform that offers several interesting

features, including concurrent stop-loss and take-profit trades. It also includes a

feature called Trailing features which allows you to rake in profits at a higher

threshold than you initially set. It also has long (longer time frame) and short

(shorter time frame, typically day trading) bots available. It also offers a QFL

bot that performs well in stable markets. The QFL trading strategy is another

version of trading based on "price support" and the focus on finding "dead cat

bounce" trading opportunities. It also offers a composite bot option which lets

you have a list of coins you want the bot to trade and it will then manage your

balance automatically. This option allows for optimal balance usage, and is

much easier to use then multiple usual bots. [15].

It is not known whether or not these trading bots can discover or execute on arbitrage

opportunities. Most bots come with the option to design your own trading strategies

and even provide test environments to test your trading bot strategy out. However, it

was noted by Norry that some of the trading bots with better reviews would require

up to 0.32BTC (2048 USD at the time of this writing) per month licensing fee [5, 10].

2.4 Bellman-Ford and Asset Arbitrage

In this section, we will go over the mathematical foundations behind calculating

arbitrage opportunities, which specially utilize the negative-cycle detection property

of the Bellman-Ford algorithm. The Bellman-Ford algorithm is a shortest-paths

algorithm similar to Dijkstra’s. It utilizes relaxation to find the shortest distance

from any one node to another node in a connected graph. Note that the graph we

are dealing with in this thesis is not fully-connected, e.g. not every node is connected

8

directly with another. The nodes are typically connected through 4 main nodes,

‘‘BTC’’(Bitcoin), ‘‘ETH’’(Ethereum), ‘‘BNB’’(Binance Coin), and ‘‘USDT’’(Tether:

Cryptocurrency backed 1:1 by the US Dollar- Not Verified!)

In the Homework 7 solutions by ‘‘Demaine’’ and ‘‘Goldwasser’’ [7], they presume

a situation where there is a suitable weighted, directed graph G = (V,E), which we

form as follows. G is composed of n vertices which comprise V, this is the number of

cryptocurrencies available to trade. An edge 𝑒𝑖,𝑗 from 𝑣𝑖 to 𝑣𝑗 and an edge 𝑒𝑗,𝑖 from 𝑣𝑗

to 𝑣𝑖 exist if there is a trading pair between two vertices, and these edges comprise

E. The full set of edges, E and vertices, V, comprise our graph, G. An arbitrage

opportunity is defined as a case where:

𝑅[𝑖1, 𝑖2]×𝑅[𝑖2, 𝑖3]×𝑅[𝑖3, 𝑖4]× · · · ×𝑅[𝑖𝑘−1, 𝑖𝑘]×𝑅[𝑖𝑘, 𝑖1] > 1

where 𝑅[𝑖𝑖, 𝑖𝑗] is the exchange rate going from a currency 𝑖 to a different currency 𝑗

They further note that this scenario is only true when:

1

𝑅[𝑖1, 𝑖2]
× 1

𝑅[𝑖2, 𝑖3]
× 1

𝑅[𝑖3, 𝑖4]
× · · · × 1

𝑅[𝑖𝑘−1, 𝑖𝑘]
× 1

𝑅[𝑖𝑘, 𝑖1]
< 1

Taking an advantage of the multiplicative to addition property of logarithms, they

note that if you take the logarithm of both sides you can instead represent this

condition as a sum:

ln
1

𝑅[𝑖1, 𝑖2]
+ ln

1

𝑅[𝑖2, 𝑖3]
+ ln

1

𝑅[𝑖3, 𝑖4]
+ · · ·+ ln

1

𝑅[𝑖𝑘−1, 𝑖𝑘]
+ ln

1

𝑅[𝑖𝑘, 𝑖1]
< 0

Using this intuition, we can then represent our an edge weight from 𝑣𝑖 to 𝑣𝑗 simply as:

𝑒𝑖,𝑗 = ln
1

𝑅[𝑖, 𝑗]
= − ln𝑅[𝑖, 𝑗]

[7]

Thus, this representation allows us to calculate, depending on current market

exchange rates polled, all the negative cycles present and also the most profitable

9

one. The arbitrage sequence is determined by tracing the predecessor when a negative

cycle is found, and a set can be handily used to determine what the exact sequence

is. Although the run-time of Bellman-Ford is 𝑓(𝑛) = 𝑛3, our 𝑛 is small enough

that the cubic property of the run-time does not really impact program performance;

rate-limiting would by an exchange’s API would be a bigger concern than the run-time

of the Bellman-Ford algorithm in our program. From my experience the Binance

REST API is not rate-limiting. I have polled Binance’s REST API every 0.0001ms

and did not get any errors.

10

CHAPTER 3

System Architecture
3.1 Technical Approach/Methodology

An object-oriented approach to this problem was taken. Currencies were repre-

sented as vertices and exchange rate pairs as edges. The Bellman-Ford algorithm, a

single-source shortest-path algorithm that can detect negative cycles, was utilized to

discover whether or not arbitrage opportunities exist on the Binance exchange, and

when they did show up, an execution on the most profitable one was made. Steps to

implement this are detailed below:

1. Poll the REST API Binance to obtain current active trading pairs and their

respective current exchange rates.

2. Dynamically generate the vertices and edges from data obtained in step 1.

3. A graph is constructed from the edges and vertices from step 2. Bellman-Ford

will be executed on these edges and vertices.

4. Store the highest profitable trade sequence generated from Bellman-Ford as our

‘‘best arbitrage sequence’’.

5. Execute trades on the ‘‘best arbitrage sequence’’ stored in previous step with

the Binance API.

6. Write following values to .csv file immediately after trade, which includes:

• Time-stamp

• Arbitrage sequence

• Portfolio BTC balance

• Snapshot value (at current exchange rates- exchangeRatesMid)

• Actual portfolio value (calculated with exchangeRatesMid)

11

• ‘‘amountBuffer’’ value

• ‘‘sigDigBuffer’’ value

• Exchange (Binance in this project)

7. Repeat previous steps indefinitely.

The steps outlined above should steady stream of profits while making the Binance

exchange more liquid and efficient.

3.2 Implementation

This project was implemented in Java(1.8+).

3.2.1 Program Setup (List of classes and other files used)

• Main - Used to execute interaction with Binance’s REST API. Has static

HashMaps of exchange rates, code that interacts and extracts data from the

API for construction of our graph for use by Bellman-Ford. All dialogs for user

interaction are also in the Main class.

• Trader - Used for calculating account balances (without arbitrage and holding),

doing actual currency conversion from either BTC/ETH to all others, or the

other way around, determining amount and pricing for each trade in a arbitrage

sequence, and executing trades. Also used for taking account snapshots.

• ShouldTrade - This is a class used by the Trader class to filter out trades that

had an amount requiring a precision of significant digits < 2. I tried higher

values than 2 but no trades were executed. This makes sense because most pairs

had a requirement of 2 or less for amount precision.

• Trade - Used to return a LimitOrder object provided by XChange’s library.

This LimitOrder object has a price that is determined by the best sell price

if we are "buying", and the best "bid" price if we are selling. The amount

is determined through a dialog when the program first runs, but I typically

12

used 0.0025BTC ≈ $16USD at the time of this writing. 1BTC ≈ $6400USD in

November, 2018. I chose this value of Bitcoin to use because it is slightly over

the minimum order value, which is approximately $10 USD. We want to use

the least amount of BTC available, so that all our orders will fill immediately

and not be left as an open order to be filled later. As the total value of a trade

goes up, the likelihood that it will not be filled immediately goes up. I noticed

good results with about $15 USD. It is interesting to note, however, that all my

open trades did fill. Some took a few months, but they all did complete.

• Vertex(𝑣𝑖)- Used to model each cryptocurrency as a node in a graph

• Edge(𝑒𝑖,𝑗) - Used to model exchange rates between these cryptocurrency nodes.

*Note that when creating the Edge class, we use the best buy price for going

from one currency to another (e.g. BTCUSDT symbol, going from BTC to

USD), since that would be the price we could immediately sell BTC for USDT

at. Conversely, we would use the best sell price when buying a currency with

another, since that would be the cheapest we could immediately buy BTC with

USDT in this example at.(e.g. BTCUSDT symbol, going from USDT to BTC)

• Graph(𝐺) - Used to model the collection of Vertices and Edges, and execute

the Bellman-Ford algorithm. Also used to find the negative cycle with the

largest weight (highest profitability), and find the path associated with that

cycle. When tracing the route with predecessor, remember to reverse the route

since we are tracing backwards.

• CurrencyConverter - Used to convert currencies between each other at current

exchange rates, and ensure correct precision (number of significant digits) in

price and quantity fields when creating limit orders. I read the number of

significant digits from a .csv file but I know there is a REST API endpoint

provided by Binance that provides this data.

13

• Utilities - Used to log data in results .csv file.

• BinanceTradingRule-Master.csv - used to store the precision of quantity

• BinanceTradingRule-MinPrice.csv - used to store the precision for pricing

• binanceConfig.properties - This file stores your apiKey and apiSecret, make sure

not to push it to Github! (i.e. store it outside your project folder)

3.2.2 Libraries Used

• XChange by Knowm - This was a very handy library that provided easy to

use classes and builder methods for interaction with Binance’s API. They have

implemented their library for more than 60 exchanges, and their code can be

viewed on Github at XChange Github Repository.

• GSON - a JSON interaction library by Google. This library made it easy to

parse and interact with JSON data returned by Binance’s REST API.

• Unirest - a simple Java library for making HTTP verb requests, such as GET

and POST in this project.

• XChange-stream - a Java libary allowing for interaction with websockets. Allows

you to subscribe to updates in different websocket channels, such as ticker, trades,

and orderbook, and also unsubscribe from a channel.

3.2.3 Miscellaneous Data Structures Used

• ArrayList<Vertex> vertices - Used to store all the cryptocurrencies available

on the Binance exchange.

• ArrayList<Edge> edges - Used to store all the edges and their weights calculated

for use in Bellman-Ford.

• HashMap<String, Double> exchangePrices - This would store the prices for an

instant sell (highest buy), and instant buy (lowest sell).

• HashMap<String, Double> exchangeRates - This was used by the Currency-

14

https://github.com/knowm/XChange

Converter class to make conversion rates between currencies easier and more

intuitive.

• HashMap<String, Double> exchangeRatesMid - This was used to get an accurate

portolio value. I notices that I couldn’t use exchangeRates because it would

often underestimate my account value. When I averaged the lowest "ask" and

highest "sell", and stored it in exchangeRatesMid, I obtained a much more

accurate picture of my portfolio value. This was verified by checking with my

portfolio balance on Binance.

• LinkedHashMap<String,Integer> sigDigs - This was used to store the precision

required for the quantity when creating LimitOrder objects to execute.

• LinkedHashMap<String,Integer> sigDigsForPricing - This was used to store

the precision required for the price when creating LimitOrder objects to execute.

• HashMap<String, Edge> edgeMap - This was used in construction of edges

• HashMap<String, Vertex> vertexMap - This was used in construction of vertices.

HashSet<Vertex> setOfVertices - This was used in construction of vertices.

HashSet<Edge> setOfEdges - This was used in construction of edges

• Properties prop - used to store apiKey and apiSecret for authentication to

Binance REST API.

15

CHAPTER 4

Experiments and Results

In the table below, it shows the ending amount of bitcoins after each arbitrage

sequence is executed. I chose to execute trades starting and ending with bitcoin

because I felt this strategy would be a good way to verify whether the arbitrage was

working or not. As you can see from the table, the average amount of bitcoin increased

a little less than 0.1% after each arbitrage sequence. This makes sense, given that

the trading commission Binance takes is approximately 0.05% for each trade made.

This commission was calculated before depending on the length of the trade sequence.

For example, for 4 trades, approximately 0.2% (4 * 0.05) would be initially added as

commission to the potential arbitrage; we will call this ‘‘potential arbitrage’’. After

adding the commission to the arbitrage ratio opportunity, an additional parameter

‘‘amountBuffer’’ was then added on top of this ‘‘potential arbitrage’’, to compensate

for the limitations on precision for the price and amount fields imposed by the Binance

REST API. Different values were tested for ‘‘amountBuffer’’ and the results will be

shown below. ‘‘AmountBuffer’’ is an integer value used in the Trader class, though

decimal values would work too; it adds a buffer on top of the commission for a wider

arbitrage profit ‘‘space’’. Through my experimentation, I discovered that Binance is a

highly liquid cryptocurrency exchange. However, arbitrage opportunities still do exist

and can be capitalized on.

4.1 Bitcoin Only Experiment

After verifying that the arbitrage sequence is correct in execution, I removed

the ‘‘BTC’’ only filter so that I would be able to execute on significantly more

opportunities.

I collected data using different values for ‘‘amountBuffer’’ and ‘‘sigDigBuffer’’.

‘‘amountBuffer’’ refers to the buffer on top of the estimation of the trading fees Binance

16

Figure 1: Table showing Additional Bitcoins, Percent Increase, and Percent Increase
from Beginning vs Arbitrage Executions.

takes on each arbitrage sequence, which is dependent on the arbitrage sequence length.

Different values for ‘‘amountBuffer’’ were used, ranging from 1 to 6. ‘‘sigDigBuffer’’

refers to precision we would like to have on our trades. For ‘sigDigBuffer’’, a value of 2

would mean that any symbol with a precision less than 2, ie. 1 and 0, would be filtered

out. Of course, we would want to increase the precision of our arbitrage execution, but

by increasing the ‘‘sigDigBuffer’’, but the number of arbitrage opportunities found is

decreased. By decreasing ‘‘sigDigBuffer’’ to 1 or 0, the number of arbitrages executed

increase. The precision of the arbitrage is directly proportional to ‘‘sigDigBuffer’’.

Increasing ‘‘sigDigBuffer’’ past of a value of 2 results in nearly no trades being

executed. Hence, for Binance, a ‘‘sigDigBiffer’’ of 2 is necessary to execute intra-

exchagne arbitrage. The tables below show the results for runs with different values for

‘‘amountBuffer’’ and ‘‘sigDigBuffer’’. Note that these results are specific to Binance

and would likely be different for a different exchange.

17

Figure 2: Total Account Bitcoin Value vs. Arbitrage Sequences Executed.

After verifying that my arbitrage logic was correct, I decided to remove my BTC

only filter and to execute on all arbitrage sequences. An interesting question came

into mind: How would I capture whether or not I was making profits through arbitrage

if I was executing on all coins? To address this issue, I decided to take a snapshot of

my balances at a certain point in time, consisting of a HashMap of coins and their

respective balances. I would then convert all those coins into Bitcoin at the current

market rate on the exchange, using a data structure called exchangeRatesMid (This is

the average of the best sell and best buy price). This calculation gave me a reasonable

estimate of my account value if I held onto my coins and had not executed arbitrage.

I could then compare my actual Binance account value, using the same rates stored

in exchangeRatesMid, to this snapshot value to gauge whether or not I was gaining

or losing value through executing arbitrages. In using this methodology, I could also

negate market movements of the highly volatile cryptocurrency market and obtain a

18

neutral picture of the success of my program.

The following section shows 6 tables and graphs demonstrating the impact of

‘‘amountBuffer’’ on the profitability of my arbitrage program. The line graphs shown

simply shows whether or not my portfolio value increases or decreases depending on

the value of ‘‘amountBuffer’’. The following table is for ‘‘amountBuffer’’ = 1.

4.2 ‘‘amountBuffer’’= 1

Figure 3: Table showing Profitability with amountBuffer = 1.

As you can see from the table and graph below, an actual loss is shown with

‘‘amountBuffer’’ = 1. A higher frequency of arbitrages is noticed, but the profitability

is most likely due to loss in precision due to the limitations imposed by Binance’s REST

19

API on both the price and amount. After executing nearly 50 arbitrage sequences with

an average amount of 0.002 BTC, I noticed a loss of approximately 6USD equivalent,

so I decided to move on to higher values of ‘‘amountBuffer’’. The initial difference in

portfolio value is due to previous experiments with arbitrage at higher values that

had resulted in profit. I went back to an ‘‘amountBuffer’’ of 1 to log data in order to

verify that it is indeed a losing proposition.

Figure 4: Graph showing arbitrage results with amountBuffer = 1.

4.3 ‘‘amountBuffer’’ = 2

Figure 5: Table showing Profitability with amountBuffer = 2.

20

The table above shows experiments with an ‘‘amountBuffer’’ = 2. Results were

similar to ‘‘amountBuffer’’ = 1, but with an actual small gain of approximately 0.5USD

after just 10 arbitrage executions. The reason for so little data on ‘‘amountBuffer’’

= 2 is because I found the program was much more profitable at higher values of

‘‘amountBuffer’’. The graph below shows the table in a line bar format.

Figure 6: Graph showing arbitrage results with amountBuffer = 2.

4.4 ‘‘amountBuffer’’ = 3

The table above shows experimental results with an ‘‘amountBuffer’’ value of

3, I started noticing some actual gains with respect to arbitrage execution. After 20

arbitrage executions, a net gain of approximately 7.5USD was noticed. This was

exciting and I decided to bump up the value of ‘‘amountBuffer’’ even higher. The

graph shown below shows the results from using an ‘‘amountBuffer’’ value of 3.

21

Figure 7: Table showing Profitability with amountBuffer = 3.

Figure 8: Graph showing arbitrage results with amountBuffer = 3.

4.5 ‘‘amountBuffer’’ = 4

The tables below show my experimental results of 3 runs with an ‘‘amountBuffer’’

value of 4. and the tables and graphs are listed in sequence. I noticed that at this

value, the profitability of my program was at its highest. In Run 1, after nearly 70

executions, the program had made a net profit of approximately 20USD equivalent.

22

Figure 9: Table showing Profitability with amountBuffer = 4 (Run 1).

23

This results of Run 1 are clearly shown in the graph below. Run 2’s table and

graphs are shown further below, with a net gain of almost 6USD. Run 3 is displayed

lastly; over 26 arbitrage executions, a net portfolio value increase of approximately

6USD was recorded.

Figure 10: Graph showing arbitrage results with amountBuffer = 4 (Run 1).

Figure 11: Table showing Profitability with amountBuffer = 4 (Run 2).

24

Figure 12: Graph showing arbitrage results with amountBuffer = 4 (Run 2).

Figure 13: Table showing Profitability with amountBuffer = 4 (Run 3).

25

Figure 14: Graph showing arbitrage results with amountBuffer = 4 (Run 3).

With higher values of ‘‘amountBuffer’’, such as ones greater than 6, very few

arbitrages are executed. This is due to the fact that Binance is the most highly traded

exchange in the world and as such is highly fluid. As such, and due to extraneous

circumstances, data for ‘‘amountBuffer’’ = 5 and 6 were unable to be collected and

displayed. I did conclude that an ‘‘amountBuffer’’ value of 3 to 4 was ideal, however.

With lower values of ‘‘amountBuffer’’, more but less profitable arbitrages are executed.

With higher values of ‘‘amountBuffer’’, the profitability of each arbitrage executed

increases, but an arbitrageur needs to take into account time. Values of 5 and 6 were

not as profitable as 3 or 4, and anything higher than 6 would result in nearly nil

arbitrage executions. From my experimental results, I concluded that ‘‘amountBuffer’’

is a critical and necessary parameter. Also, the total trade amount value you choose

to execute with in the beginning is another factor that you need to consider. With

higher trade values, you will likely end up with more open unfilled orders that will

26

take time to complete. Thus, I suggest anyone trying to build an intra-exchange

arbitrage bot to use as minimal a trade value as possible.

27

CHAPTER 5

Discussion and Observations

On an exchange like Binance, or any highly volatile market, one needs to take

into consideration many factors. The first obviously is how you can measure the

success of your program. I solved this issue by taking an account snapshot of a past

account balance, and comparing it with the estimated portfolio value of my actual

account balance after executing a series of arbitrages.

Another thing to take into consideration is that precision matters when it comes

down to arbitrage. If we could have just 7-9 significant digits for both amount and

pricing, I’m positive ‘‘amountBuffer’’ wouldn’t be needed, and if it was needed, a

value of 1 would work just fine.

5.1 Important Topics

• Don’t use market orders. When you use a market order, it fills at the best

possible price available. Because we are executing arbitrage based on best

available exchange pricing, executing a market order leaves you susceptible to

filling your market order by filling multiple orders in the book with higher prices

in a buy-side order, and lower prices in a sell-side order, in effect nullifying the

validity of the arbitrage.

• There is a specific precision (number of significant digits) required for the

amounts on an order for each trading pair. Many symbols have a precision

requirement of 0, which means that the amount must be an integer. These

symbols were filtered out when finding arbitrage opportunities to execute because

the integer precision would likely result in inaccurate executions of arbitrage.

• There is also a specific precision required for the price, but because we are

executing limit orders, there is no filtering or buffering required for the price of

an order.

28

• In this project’s implementation, an initial investment of cryptocurrency equiva-

lent to $3000 USD was made, with an additional injection of $2000 USD later

on. This amount was divided by the number of coins on Binance, and a specific

amount of each coin was bought. The reason for diversification is because we

are executing limit orders, we want the arbitrage to go all the way through at

the time of execution. If we were executing market orders, this would not be

necessary. (But don’t use market orders.)

• It is also interesting to note that all limit orders will usually fill at some point

in the future. This was found to be the case in this project. All limit orders

filled within a timespan of 2 months. Due to this inherent property of working

with crypto-exchanges, or any stock market in particular, an unfilled limit order

will have the side effect of giving you an inaccurate snapshot of your arbitrage.

Ideally, you would want all the trades to complete after executing the order.

Hence, that is why you saw spikes and jumps in my graphs. These are most

likely due to past limit orders filling in the future and increasing my portfolio

value through the delayed arbitrage profit.

• Due to inherent volatility of cryptocurrency market, you should take an account

snapshot of your starting coin balances, and store it into a hashmap with each

coin as the key and balance as the value. You can then use this hashmap to

calculate the account value if you had not executed arbitrage. This same method

was used to calculate present value of coin balances. Because Binance’s API

returns coins that are not listed on the exchange with the ‘‘getBalances’’ method

provided by the wallet class in the XChange library, I only polled the server for

the coin if it is contained in the list of vertices in my Main class.

29

CHAPTER 6

Conclusion and Future Work

In this project, an intra-exchange arbitrage bot for the Binance cryptocurrency

exchange was created and successfully deployed. During the implementation of the

project, two main challenges were encountered, one due to the precision offered by

the REST API offered, and the other due to the volatility of the cryptocurrency

market. To try to combat the limited precision imposed on amount and price when

executing trades, a parameter called ‘‘amountBuffer’’ was introduced to give the

arbitrage more breathing room. To combat market volatility, account snapshots were

taken of previous account balances and used to compare to current portfolio value;

both these values were calculated at the current market exchange rates during the

time of execution. Overall, it can be said that it is possible to create an intra-exchange

arbitrage bot for the cryptocurrency market, though I believe a significantly larger

investment of capital would be required for a sit back and watch your cryptocurrency

portfolio grow type of situation.

It is interesting to note that for future work, websockets provided by an exchange

could be an area that could be explored further. My exploration of websocket usage

use in this project was very limited.

Another exciting direction this project could go is undergoing modification for an

exchange like Hitbtc, which actually pays out a commission of 0.01% when you place

an order that adds liquidity to the market. A market maker is an entity, such as a

person or a bot, that does not buy and sell at the best price offered. In other words,

the entity will sell at a price higher than the current best market "ask" price, and buy

at a price lower then the best "bid" price. Because we have this data when we poll

any exchange’s API, we can easily adjust our program to perhaps adjust our price

to 99.5-99.9% or 100.1-100.5% of the best market price available, depending on if

30

you were buying or selling, respectively, and get paid commission for doing so. From

my experience with Binance, all my limit orders eventually filled within 1-2 months.

Hitbtc is a very good choice for executing arbitrage because you then can directly

execute the arbitrage and rake in arbitrage profit along with the trading commission

received. However, due to the large number of coins on Hitbtc, about 450 at the

time of this writing, the capital required to perform a project like this would require

a significant amount of capital. I look forward to implementing this for the Hitbtc

exchange in the near future.

31

LIST OF REFERENCES

[1] Wikipedia, ‘‘Cryptocurrency,’’ https://en.wikipedia.org/wiki/Cryptocurrency,
2018, (Accessed on 11/1/2018.

[2] Wikipedia, ‘‘Cryptocurrency exchange,’’ https://en.wikipedia.org/wiki/
Cryptocurrency_exchange, 2018, (Accessed on 11/1/2018.

[3] J. Wei, ‘‘Conditions for no triangular arbitrage with transaction costs: A peda-
gogical note,’’ Journal of Education for Business, vol. 73(1), pp. 44--47, 1997.

[4] M. T. T. Ito, K. Yamada and H. Takayasu, ‘‘Free lunch! arbitrage opportunities
in the foreign exchange markets.’’ Cambridge: National Bureau of Economic
Research, Inc, 2012, (Accessed on 4/6/2018).

[5] A. Norry, ‘‘Beginner’s guide to bitcoin trading bots,’’ https://blockonomi.com/
bitcoin-trading-bots, 2018, (Accessed on 3/15/2018).

[6] butor(Github user), ‘‘Advantage of short-selling and minimum budget,’’ https:
//github.com/butor/blackbird/issues/100, 2017, (Accessed on 4/11/2018).

[7] E. Demiane and S. Goldwasser, ‘‘Problem 7 set solutions,’’ https://courses.csail.
mit.edu/6.046/spring04/handouts/ps7sol.pdf, 2004, (Accessed on 2/30/2018).

[8] Wikipedia, ‘‘Bellman-ford algorithm,’’ https://en.wikipedia.org/wiki/Bellman%
E2%80%93Ford_algorithm, 2018, (Accessed on 11/1/2018.

[9] A. Osipovich and E. Jeong, ‘‘Bitcoin’s crashing? that won’t stop arbitrage
traders from raking in millions.’’ http://search.proquest.com.libaccess.sjlibrary.
org/docview/1993889011?accountid=10361, 2018, (Accessed on 4/6/2018).

[10] scrawl(username), ‘‘A brief look at cryto arbitrage trading,’’ https://steemit.
com/cryptocurrency/@scrawl/a-brief-look-at-crypto-arbitrage-trading, 2016, (Ac-
cessed on 2/15/2018).

[11] unknown, ‘‘Our automated crypto trading platform features,’’ https://www.
haasonline.com/features/, 2018, (Accessed on 11/17/2018).

[12] unknown, ‘‘Zenbot,’’ https://github.com/DeviaVir/zenbot, 2018, (Accessed on
11/17/2018).

[13] unknown, ‘‘Zenbot,’’ https://gekko.wizb.it/, 2018, (Accessed on 11/17/2018).

[14] unknown, ‘‘Cryptotrader- build your own trading bot in minutes,’’ https://
cryptotrader.org/, 2018, (Accessed on 11/18/2018).

32

https://en.wikipedia.org/wiki/Cryptocurrency
https://en.wikipedia.org/wiki/Cryptocurrency_exchange
https://en.wikipedia.org/wiki/Cryptocurrency_exchange
https://blockonomi.com/bitcoin-trading-bots
https://blockonomi.com/bitcoin-trading-bots
https://github.com/butor/blackbird/issues/100
https://github.com/butor/blackbird/issues/100
https://courses.csail.mit.edu/6.046/spring04/handouts/ps7sol.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/ps7sol.pdf
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
http://search.proquest.com.libaccess.sjlibrary.org/docview/1993889011?accountid=10361
http://search.proquest.com.libaccess.sjlibrary.org/docview/1993889011?accountid=10361
https://steemit.com/cryptocurrency/@scrawl/a-brief-look-at-crypto-arbitrage-trading
https://steemit.com/cryptocurrency/@scrawl/a-brief-look-at-crypto-arbitrage-trading
https://www.haasonline.com/features/
https://www.haasonline.com/features/
https://github.com/DeviaVir/zenbot
https://gekko.wizb.it/
https://cryptotrader.org/
https://cryptotrader.org/

[15] unknown, ‘‘3commas,’’ https://3commas.io/#tab5/, 2018, (Accessed on
11/18/2018).

33

https://3commas.io/#tab5/

	San Jose State University
	SJSU ScholarWorks
	Fall 12-14-2018

	Intra-exchange Cryptocurrency Arbitrage Bot
	Eric Han
	Recommended Citation

	DEDICATION
	Introduction
	Overview
	Research Objective

	Background and Related Work
	History and Background
	Types of Currency Arbitrage
	Current Cryptocurrency Arbitrage Implementations and Challenges
	Bellman-Ford and Asset Arbitrage

	System Architecture
	Technical Approach/Methodology
	Implementation
	Program Setup (List of classes and other files used)
	Libraries Used
	Miscellaneous Data Structures Used

	Experiments and Results
	Bitcoin Only Experiment
	``amountBuffer''= 1
	``amountBuffer'' = 2
	``amountBuffer'' = 3
	``amountBuffer'' = 4

	Discussion and Observations
	Important Topics

	Conclusion and Future Work
	LIST OF REFERENCES

