
School of Information Student School of Information Student

Research Journal Research Journal

Volume 2 Issue 2 Article 5

January 2013

Consider the Source: The Value of Source Code to Digital Consider the Source: The Value of Source Code to Digital

Preservation Strategies Preservation Strategies

Michel Castagné
The University of British Columbia, castagne@gmail.com

Follow this and additional works at: https://scholarworks.sjsu.edu/ischoolsrj

 Part of the Library and Information Science Commons

Recommended Citation Recommended Citation
Castagné, M. (2013). Consider the source: The value of source code to digital preservation strategies.
SLIS Student Research Journal, 2(2). Retrieved from http://scholarworks.sjsu.edu/slissrj/vol2/iss2/5.

This article is brought to you by the open access Journals at SJSU ScholarWorks. It has been accepted for
inclusion in School of Information Student Research Journal by an authorized administrator of SJSU ScholarWorks.
For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/ischoolsrj
https://scholarworks.sjsu.edu/ischoolsrj
https://scholarworks.sjsu.edu/ischoolsrj/vol2
https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2
https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5
https://scholarworks.sjsu.edu/ischoolsrj?utm_source=scholarworks.sjsu.edu%2Fischoolsrj%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=scholarworks.sjsu.edu%2Fischoolsrj%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Consider the Source: The Value of Source Code to Digital Preservation Strategies Consider the Source: The Value of Source Code to Digital Preservation Strategies

Abstract Abstract
One of the major challenges in the digital preservation field is the difficulty of ensuring long-term access
to digital objects, especially in cases when the software that was used to create an object is no longer
current. Software source code has a human-readable, documentary structure that makes it an overlooked
aspect of digital preservation strategies, in addition to a valuable component for the records of modern
computing history. The author surveys several approaches to software preservation and finds that, by
supporting open source initiatives, digital libraries can improve their ability to preserve access to their
collections for future generations.

Keywords Keywords
source code, open source, digital preservation, software preservation

About Author
Michel Castagné is a Master of Library and Information Studies candidate at the University of British
Columbia. He specializes in digital libraries and preservation in an academic setting, as well as designing
effective information architecture and databases.

This article is available in School of Information Student Research Journal: https://scholarworks.sjsu.edu/ischoolsrj/
vol2/iss2/5

https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5
https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5

INTRODUCTION

When faced with a screen of technical software instructions to a computer (known
to programmers as source code), even in a language as common as HyperText
Markup Language (HTML), it is not hard to imagine how the average computer
user might see the strings of verbs, abbreviations, slashes, and semicolons as little
more than technical gibberish, and quickly close the editor. As long as the program
or document works as described, of what benefit is peering into its internal
structure? Even from a digital preservation standpoint, a similar argument might be
raised: As long as file format registries are maintained and digital objects are
migrated when necessary, of what benefit is the cryptic source code of millions of
projects? This approach, however, does little service to the nature and value of
source code, which can be seen as integral to durable software preservation, in
terms of both recording modern computing history and as part of a strategy to
maintain access to digital objects.

Although the burgeoning digital preservation field has been the source of a
great deal of research activity in the past decade—including the formation of the
Preservation Metadata: Implementation Strategies (PREMIS)1 working group and
a comprehensive reference model for designing an Open Archival Information
System (OAIS)2—software preservation is a sub-field that has yet to be thoroughly
explored. Matthews, Shaon, Bicarregui, and Jones (2010) suggest that there is a
need for further “conceptual analysis,” as well as the development of experience
and tools for software preservation. The debate over why and how software should
be preserved has several perspectives, often centered around the need to defend
against format obsolescence. This article will make a survey of the issue, as well as
examine the current approaches to software preservation with a view towards how
source code, and the open source community in particular, can assume an
important role in the digital preservation field.

DEFINITIONS AND MODELS

Definitions

A definition of “software” can encompass a surprisingly large amount of digital
bits. The Institute of Electrical and Electronics Engineers (IEEE) Standard
Glossary of Software Engineering Terminology defines a software product as the
“complete set of computer programs, procedures, and possibly associated
documentation and data designated for delivery to a user” (“Software product,”
1990), while a “software item” is described as “source code, object code, job

1 PREMIS: http://www.loc.gov/standards/premis/
2 Reference Model for an OAIS: http://public.ccsds.org/publications/archive/650x0b1.pdf

1

Castagné: Source Code Preservation

Published by SJSU ScholarWorks, 2013

control code, control data, or a collection of these items” (“Software item,” 1990),
or in other words, an identifiable component of a software product. Examples of
software can include everything from system software, like an operating system or
device driver, to programming software, such as a compiler or debugger, in
addition to application software, such as web browsers, word processors, and
graphic design programs. The form of software an end user typically encounters is
the executable program or, in IEEE's vocabulary, “object program” (“Object
program,” 1990). This is compiled from human-readable source code, which is
usually written by a programmer in plain text format and often annotated with
explanatory comments, so that any programmer who studies the source code can
learn more about how the software functions and any particular quirks it might
have. Van de Vanter (2002) calls this semantic dimension of source code, including
use of white space and choice of names, its “documentary structure” (p. 1).

In digital preservation, software often assumes a secondary role as a tool to
view digital objects in a collection (Matthews, McIlwrath, Giaretta, & Conway,
2008). But if a software product produces a research result inaccurately, displays
an object incorrectly, or ceases to function altogether, the relevant digital object or
result is effectively lost, sometimes without the user even noticing. This can be the
result of running an unsupported program in a new operating environment with
changed or missing dependencies, or a manufacturer's decision to no longer
support a format (Sandborn, 2007, p. 886). Software can also have very complex
and dynamic behavior; thus, simple strategies such as preserving a copy of the
object program are inadequate. There is a very clear need to preserve not only
digital objects, but reliable access to these objects, which means adopting one or
more approaches toward software preservation.

Models

In the United Kingdom, important research on the topic has taken place in the past
decade, notably by the Software Sustainability Institute3 and the e-Science
Department,4 with a great deal of funding for projects related to digital
preservation and curation coming from the Joint Information Systems Committee
(JISC), a non-departmental public body that supports higher education and
research in Information and Communications Technology. Two related key studies
that have emerged recently are Matthews et al. (2008) and Matthews et al. (2010).
The first study proposed supplements to a draft of the InSPECT5 report and the

3 The Software Sustainability Institute: http://software.ac.uk/
4 e-Science Department in the Science and Technologies Facilities Council in Oxford:

http://www.stfc.ac.uk/e-Science
5 Investigating Significant Properties of Electronic Content:

http://www.significantproperties.org.uk/

2

School of Information Student Research Journal, Vol. 2, Iss. 2 [2013], Art. 5

https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5

latter extends this research to propose an overall framework for software
preservation, which includes a performance model, a conceptual model of software
components based on the Functional Requirements for Bibliographic Records
(FRBR), and an OAIS-based categorization of the significant properties of
software.

First, Matthews et al. (2010) outline four major aspects of software
preservation: storage, retrieval, reconstruction, and replay (pp. 92–93). The
“storage” and “retrieval” dimensions are dependent on the digital preservation
strategy of the repository. The authors remain neutral on this subject, but point out
that it should at least ensure secure and authentic maintenance of the digital
objects, with the inclusion of sufficient metadata for retrieval purposes.
“Reconstruction” refers to the ability of a repository to reinstall or rebuild a piece
of software from what has been stored, while “replay” refers to how well the
software performs in relation to its original behavior.

Performance Model

The performance model relies on a concept of “adequacy,” that is, whether the
replay of a software product conforms to certain designated significant properties
within an acceptable tolerance (p. 94). These significant properties are based on
how the reconstructed software processes and displays data to the user. Matthews
et al. (2010) include a flow chart of their performance model to illustrate the
relationship between these concepts (see Fig. 1). In this chart, the software source
must be processed before the software can perform. Its performance is directly
linked to its ability to process input data, leading to performance of the data, which
is then viewed by a user. The user interacts with the software, thus changing the
performance of its input data.

Fig. 1. Performance model of software and its input data (Matthews et al., 2010,
p. 95).

3

Castagné: Source Code Preservation

Published by SJSU ScholarWorks, 2013

Conceptual Model

The FRBR-based conceptual model is comprised of four entities that describe a
“complete software system”: product, version, variant, and instance. This is
parallel to the FRBR entities work, expression, manifestation, and item. As a
simple example, LibreOffice 3.6.2 for Mac OS X (PPC) can be broken down as:

• Product: LibreOffice
• Version: 3.6.2
• Variant: Mac OS X (PPC)
• Instance: An actual copy of the software system on a particular computer

Properties Model

The preservation properties model looks at seven main categories of software
features and relates the categories to the nearest OAIS equivalent, which have
been placed in parentheses here. These are: functionality (descriptive information),
software composition (representation information/preservation description
information), provenance and ownership (provenance information), user
interaction (significant properties), software environment (representation
information), software architecture (representation information), and operating
performance (significant properties) (pp. 98–100). That the OAIS model falls
short of comprehensively defining the significant properties of software, such as
user interaction and operating performance, emphasizes its current inadequacy for
software preservation.

APPROACHES TO PRESERVATION

As a software preservation framework has yet to be agreed upon and established, a
number of techniques have been debated. Hong, Crouch, Hettrick, Parkinson, and
Shreeve (2010) have discussed seven of these techniques, each of which has its
place:

• Technical preservation
• Emulation
• Migration
• Cultivation
• Hibernation
• Deprecation
• Procrastination

4

School of Information Student Research Journal, Vol. 2, Iss. 2 [2013], Art. 5

https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5

Technical Preservation

Technical preservation involves the intention to maintain software and hardware in
the same functional state, which usually implies purchasing spare parts when
needed. Naturally, this often becomes costlier as time goes on and unusual parts
become harder to find. A good example of a facility pursuing technical preservation
would be the Computer History Museum in Mountain View, California, which is
home to “one of the largest international collections of computing artifacts in the
world,” including hardware, software, documents, and ephemera (Computer
History Museum, n.d.). Applying Van de Vanter's observation of the documentary
structure of source code, software can be seen as a cultural artifact (in addition to
being a computing artifact) and source code can be seen as the “intellectual
essence” of this artifact (Shustek, 2006, p. 112). Zabolitzky (2002) notes that the
source code is the only artifact containing the full information regarding the
functioning of a software product, and everything else is “essentially hearsay” (p.
4). He also suggests that the availability of the source code of an operating system
makes parts replacement much easier, as the code can be adjusted to allow
interfacing with a different piece of hardware. Even if a software product no longer
serves any practical purpose, this primary document, in addition to any related
documentation or specification, is still of importance to current or future historians
studying the evolution of software, and this needs to be taken into consideration by
digital curators.

Emulation

It is also possible to emulate aging hardware by writing software that mimics its
architecture and processes. For instance, an emulator such as Charon6 allows a
user to run various Digital Equipment Corporation platforms as virtual machines
on modern personal computers, encapsulating a guest operating system within a
host operating system. These types of emulators can facilitate migration and
viewing of data from an old system to a virtual machine running a legacy operating
system and any related software, provided, of course, that it has been preserved
well. Emulation has been championed in the digital preservation field since the
1990s, notably by the computer scientist Jeff Rothenberg.7 In order to, in turn,
preserve emulation software—without creating an endless chain of emulators—
Rothenberg proposed that a layer be created between the emulator and the
platform, called an Emulation Virtual Machine, which would make the emulator
platform-independent for the foreseeable future (Van der Hoeven & Van

6 Charon: http://www.winvms.com/
7 Such as his widely cited article from 1995, “Ensuring the Longevity of Digital Documents,”

published in Scientific American, 272(1), 42–47.

5

Castagné: Source Code Preservation

Published by SJSU ScholarWorks, 2013

Wijngaarden, 2005). While in theory this seems like an ideal solution, his design for
the concept mostly encountered skepticism. In addition to being extremely difficult
to program, Bearman (1999) considers emulation to be disproportional to the
needs of an archive when migration would be adequate, because he considers
Rothenberg's criticisms of migration (discussed further on) to be ill-founded and
without strong evidence.

That is not to say that long-term emulation no longer garners interest.
Gladney and Lorie (2005) cite Bearman's criticism and note that, while it has not
been refuted, they propose a more technically feasible approach: the Universal
Virtual Computer. While an in-depth treatment of this concept is not within the
range of this discussion, it is worth noting that Van der Hoeven, Lohman, and
Verdegem (2007) have built on Gladney and Lorie's and Rothenberg's ideas to
develop an open source modular emulator written in Java called Dioscuri,8 which
consists of a number of flexible, platform-independent components that emulate a
simple x86 computer9 and can transfer data between the real and emulated
environment.

Migration

Migration, as alluded to above, means transporting information from one type of
system or format to another. Hoorens, Rothenberg, Van Orange, Van der Mandele,
and Levitt (2007) state that format migration leads to “cumulative corruption and
degradation,” as data is forced into each new “Procrustean bed” of a format (p. x).
Evocative language aside, while this can be true in poorly planned automated
migration scenarios, much like how successive runs through a machine translator
can render a sentence into nonsense, software migration does not have to be not
quite as random and inevitable. This type of migration involves rewriting and
recompiling source code for another operating environment (Hong et al., 2010).
The rewrite could range from a small tweak to a complete overhaul of the code in
a new programming language. Migration can be greatly facilitated by way of the
fourth option for software preservation listed by Hong et al.: cultivation.

Cultivation

Cultivation involves opening the software to outside development by sharing the
source code. This can mean adopting an open source license,10 such as the widely

8 Dioscuri: http://dioscuri.sourceforge.net/
9 At the time of writing, Dioscuri is only capable of running 16-bit operating systems, like

MS-DOS. Development is under way to add 32-bit functionality and support Windows 3.11.
10 The Open Source Initiative provides an extensive list:

http://www.opensource.org/licenses/category

6

School of Information Student Research Journal, Vol. 2, Iss. 2 [2013], Art. 5

https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5

used General Public License, or simply sharing the code privately with a group of
developers. As mentioned earlier, source code has a documentary structure, which
makes it a strong candidate for one of the chief semantic bearers when it comes to
preserving software (Van de Vanter, 2002). By sharing code, programmers are
encouraged to provide meaningful documentation of their work to make it
comprehensible to others. A piece of software can then be analyzed by another
programmer who can fix bugs or extend its original capabilities.

A compelling case can be made for adopting an open source license. First, a
publicly available source code will help future programmers avoid the immense
challenges related to reverse-engineering from the object program.11 Further, in
addition to making emulation and software migration more feasible (Zabolitzky,
2002), backwards compatibility is a high priority in the open source community
(Rosenthal, 2010, p. 3). When it comes to rendering an obsolete format, the source
code of an old renderer is likely to be vastly more useful than the information
contained in a format registry (Rosenthal, 2010, p. 5). Rosenthal also notes that, if
an open source renderer does not exist, it is unlikely that a format registry is even
aware of the format (p. 5). One of the main hurdles in this open source approach,
however, is that source code is considered by many companies to be a trade secret,
and it can be challenging to convince a software manufacturer that there is any
reason to share these secrets with anyone. Alternatively, the Library of Congress
suggests that those concerned with exposing their code make an escrow deposit of
documentation and source code related to “rendering software, validation tools,
and software development kits” with a trusted archive (Library of Congress,
2007), a sort of hibernation.

Hibernation

Hibernation involves placing the entire software product (including documentation
and significant properties) into storage, to be re-examined at a later date when it
needs to be used. In this case, open source software is at an advantage, because
preparation is likely to be already near completion (Hong et al., 2010). Source
code itself would again be useful, as future programmers would find it much easier
to migrate or emulate the software if the structure is at hand.

Deprecation and Procrastination

The final two approaches—deprecation and procrastination—are not preservation
strategies as such and will not be discussed in depth here. In brief, deprecation is a
way of noting that a specific software feature or practice will no longer be
supported in the future, whereas procrastination means to “do nothing” (Hong et

11 A field known as software archeology.

7

Castagné: Source Code Preservation

Published by SJSU ScholarWorks, 2013

al., 2010). Deprecation, at the very least, provides some degree of notice that
interested parties should consider ways of adapting to the change.

FURTHER INFORMATION AND CONCLUSION

In light of this discussion, there are a number of current projects that contribute to
the preservation of source code that are worthy of discussion. Foremost are the
many open source software (OSS) repositories,12 such as SourceForge,13

Launchpad,14 and GitHub,15 which offer numerous preservation-friendly features to
developers, such as version control and bug tracking, and can often host both
public and private code. In the United Kingdom, the Software Sustainability
Institute promotes a number of user-friendly guides16 on how to make software
durable, in addition to their research on software preservation. JISC also funds
OSS Watch, an open source software advisory service that provides advice on
building an open development community. There are a number of European
Union-sponsored projects, including the Open Planets Foundation,17 which
provides practical digital preservation expertise to its members, and the Keeping
Emulation Environments Portable (KEEP) Project,18 which focuses on building a
stable foundation for Europe's digital heritage. The IEEE also holds many annual
conferences related to software engineering, two of which are of particular
interest: the International Conference on Software Maintenance (ICSM)19 and the
International Working Conference on Source Code Analysis and Manipulation
(SCAM).20 All of these projects could use support, even in such a basic way as
spreading awareness about software preservation issues.

One of the major challenges in the digital preservation field is the difficulty of
ensuring long-term access to digital objects, especially in cases when the software
that was used to create an object is no longer current. Zabolitzky (2002) notes that
a proactive approach to software preservation is necessary, and that passive
gathering of software is not likely to produce a comprehensive and relevant
collection, nor can it ensure that the software will perform accurately when needed
(p. 8). Access to source code is a major factor in a preservationist's ability to

12 An extensive list, comparing the features of each:
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities

13 SourceForge: http://sourceforge.net/
14 Launchpad: https://launchpad.net/
15 GitHub: https://github.com/
16 Resources for developers: http://software.ac.uk/resources/guides
17 Based on a previous project called Preservation and Long-term Access through Networked

Services (PLANETS): http://www.openplanetsfoundation.org/
18 KEEP: http://www.keep-project.eu/ezpub2/index.php
19 ICSM: http://conferences.computer.org/icsm/
20 SCAM: http://www.ieee-scam.org/

8

School of Information Student Research Journal, Vol. 2, Iss. 2 [2013], Art. 5

https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5

recreate adequate software performance and, to this end, open standards must be
actively promoted, regardless of which preservation approach currently seems best.
Additional requirements include a strong digital preservation framework that is
tailored to the growing complexity of software and a continued discussion of ways
to protect the intellectual property of software developers while preserving access
to the work of software users.

REFERENCES

Bearman, D. (1999). Reality and chimeras in the preservation of electronic records.
D-Lib Magazine, 5(4). Retrieved from
http://www.dlib.org/dlib/april99/bearman/04bearman.html

Computer History Museum. (n.d.). Backgrounder. Retrieved from
http://www.computerhistory.org/press/backgrounder/

Gladney, H. M., & Lorie, R. A. (2005). Trustworthy 100-year digital objects:
Durable encoding for when it's too late to ask. ACM Transactions on
Information Systems, 23(3), 299–324.

Hong, N. C., Crouch, S., Hettrick, S., Parkinson, T., & Shreeve, M. (2010).
Software preservation benefits framework. [PDF document]. Retrieved
from
http://www.software.ac.uk/attach/SoftwarePreservationBenefitsFramework
.pdf

Hoorens, S., Rothenberg, J., Van Orange, C., Van der Mandele, M., & Levitt, R.
(2007). Addressing the uncertain future of preserving the past: Towards a
robust strategy for digital archiving and preservation. [PDF document].
Retrieved from http://www.rand.org/pubs/technical_reports/TR510.html

Library of Congress. (2007). Sustainability factors. Retrieved from
http://www.digitalpreservation.gov/formats/sustain/sustain.shtml

Matthews, B., McIlwrath, B., Giaretta, D., & Conway, E. (2008). The significant
properties of software: A study. [PDF document]. Retrieved from
http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftwa
re_report_redacted.pdf

Matthews, B., Shaon, A., Bicarregui, J., & Jones, C. (2010). A framework for
software preservation. The International Journal of Digital Curation, 5(1),
91–105.

9

Castagné: Source Code Preservation

Published by SJSU ScholarWorks, 2013

Object program. (1990). In IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=159342&isnumber=4148

Rosenthal, D. S. H. (2010). Format obsolescence: Assessing the threat and the
defenses. Library Hi Tech, 28(2), 195–210.

Rosenthal, D. S. H., Robertson, T., Lipkis, T., Reich, V., & Morabito, S. (2005).
Requirements for digital preservation systems: A bottom-up approach.
D-Lib Magazine, 11(11). Retrieved from
http://www.dlib.org/dlib/november05/rosenthal/11rosenthal.html

Sandborn, P. A. (2007). Editorial: Software obsolescence—complicating the part
and technology obsolescence management problem. IEEE Transactions on
Components and Packaging Technologies, 30(4), 886–888.

Shustek, L. (2006). What should we collect to preserve the history of software?
IEEE Annals of the History of Computing, 28(4), 112–111.

Software item. (1990). In IEEE standard glossary of software engineering
terminology (IEEE Std 610.12-1990). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=159342&isnumber=4148

Software product. (1990). In IEEE standard glossary of software engineering
terminology (IEEE Std 610.12-1990). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=159342&isnumber=4148

Van de Vanter, M. L. (2002). The documentary structure of source code.
Information & Software Technology, 44(13), 767–782.

Van der Hoeven, J., Lohman, B., & Verdegem, R. (2007). Emulation for digital
preservation in practice: The results. The International Journal of Digital
Curation, 2(2), 123–132.

Van der Hoeven, J. & Van Wijngaarden, H. (2005). Modular emulation as a
long-term preservation strategy for digital objects. [PDF document].
Retrieved from http://www.iwaw.net/05/papers/iwaw05-hoeven.pdf

Zabolitzky, J. G. (2002). Preserving software: Why and how. Iterations: An
Interdisciplinary Journal of Software History, 1, 1–8.

10

School of Information Student Research Journal, Vol. 2, Iss. 2 [2013], Art. 5

https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5

	Consider the Source: The Value of Source Code to Digital Preservation Strategies
	Recommended Citation

	Consider the Source: The Value of Source Code to Digital Preservation Strategies
	Abstract
	Keywords
	About Author

	Introduction

