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Near Duplicate Detection
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Collaborative Filtering
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Data 
Mining

Threat/Outlier detection

Duplicate detection

Recommendation

Clustering

Virtual screening

etc…

Data Similarities



Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search (brief)
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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The problem

• For each object 𝑑𝑑𝑖𝑖 from a set 𝐷𝐷,
find all neighbors 𝑑𝑑𝑗𝑗 with T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ≥ 𝜖𝜖.

find all neighbors 𝑑𝑑𝑗𝑗 with C 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ≥ 𝜖𝜖.
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Why Tanimoto and Cosine?
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Why Tanimoto and Cosine?
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Why Tanimoto and Cosine?
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Why Tanimoto and Cosine?

• Tanimoto coefficient particularly useful for analyzing 
sparse asymmetric attribute data
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How: pruning the search space
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All Pairwise Similarities

Vector angles

Angles & lengths

Vector lengths

Sparsity



Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search (brief)
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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IdxJoin: A straight-forward solution

• Method:
Compute and store vector norms
Construct an inverted index from the objects
For each query object:
– Compare only with objects with features in common
– Select neighbors

• Advantage:
– Skips some object comparisons and many meaningless 

multiply-adds
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IdxJoin: A straight-forward solution

Main idea: leverage data sparsity
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IdxJoin: Accumulation

• Inverted index: set of lists, one for each feature, 
containing documents and their associated values
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Accumulator

𝐴𝐴 𝑑𝑑2 += 𝑑𝑑3,1 × 𝑑𝑑2,1
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,1 × 𝑑𝑑5,1
𝐴𝐴 𝑑𝑑1 += 𝑑𝑑3,2 × 𝑑𝑑1,2
𝐴𝐴 𝑑𝑑4 += 𝑑𝑑3,2 × 𝑑𝑑4,2
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,2 × 𝑑𝑑5,2

[…]



IdxJoin: Neighbor selection

– Compute and store vector norms
– Compute dot-products with candidates in 

index
– Apply T(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) or C(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) formula
– Sort the resulting similarities
– Restrict neighbors:

• Keep those candidates with sim 𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐 ≥ 𝜖𝜖. 
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Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search (brief)
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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How: pruning the search space
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All Pairwise Similarities Sparsity

Can we do better? 
Leverage 
vector lengths



Length based pruning

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

– 𝛼𝛼 bound due to Marzena Kryszkiewicz, IIDS 2013

• If we process objects in non-decreasing length order, 
we only need to check

19



Length based pruning

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

– 𝛼𝛼 bound due to Marzena Kryszkiewicz, IIDS 2013

• Relabel objects in non-decreasing length order
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How: pruning the search space
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All Pairwise Similarities

Vector lengths

Sparsity

Can we do better? 
Leverage
vector angles



Subset of cosine neighborhood

• The following inequalities hold for our domain:

• Potential solution
– Store vector norms and normalize vectors
– Find cosine neighbors

– Transform C 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 to T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗
– Remove non-Tanimoto neighbors

• Tighter bound due to Lee et al., DEXA 2010
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L2AP: Fast cosine similarity search

Main idea: leverage similarity estimates
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Angle Filtering

Filter/prune object pairs not in final graph based on 
similarity estimates

Filter T(𝑑𝑑𝑞𝑞,𝑑𝑑𝑐𝑐) if 
24

(Cauchy-Schwarz inequality)
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Angle Filtering
Filter/prune object pairs not in final graph based on 
similarity estimates

Filter T(𝑑𝑑𝑞𝑞,𝑑𝑑𝑐𝑐) if 
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TAPNN: Filtering

• L2AP filtering contingent on processing order
• Developed order-agnostic filtering bounds
• Integrated vector length-based index skip-

pointers

26



How: pruning the search space
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All Pairwise Similarities

Vector angles

Vector lengths

Sparsity

Can we do better? 
Leverage
vector angles & their 
lengths



Angle + length

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

• 𝛼𝛼 is an upper limit of

where 𝑠𝑠 is any cosine similarity upper bound such as 
the ones we compute during filtering

28



Tanimoto All-Pairs Nearest Neighbors

• TAPNN:
Compute and store vector norms
Normalize vectors
Construct a partial inverted index from the objects
For each query object:
– Skip short candidates
– Use cosine similarity upper bounds to filter cosine 

non-neighbors
– Use cosine similarity upper bounds to filter 

Tanimoto non-neighbors
– Select neighbors

29



How: pruning the search space
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All Pairwise Similarities

Vector angles

Angles & lengths

Vector lengths

Sparsity

True neighbors



Experimental evaluation: datasets

• Patents: text of random USPTO patents
• RCV1: text of newswire stories
• MLSMR: structures of PubChem compounds
• SC: compounds form the SureChEMBL database

31



Experimental evaluation: datasets
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Experimental evaluation: methods

• IdxJoin
• L2AP
• MMJoin

– Method by Lee et al.
– Angle based filtering with tighter 𝑡𝑡 bound

• MK-Join
– Algorithm designed using theoretic bounds by 

Marzena Kryszkiewicz
– Method uses same fast accumulator as TAPNN 

33http://davidanastasiu.net/software/tapnn/



TAPNN results: neighborhood size 
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TAPNN results: pruning effectiveness
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TAPNN results: efficiency comparison
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TAPNN results: scaling

37Execution time scaling given increasing problem size.



Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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L2AP: Filtering

Could have many useless memory operations 
If 𝑑𝑑1,𝑑𝑑2,𝑑𝑑4 were pruned

39
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L2AP follows a two-step process:
1. Accumulate similarity using partial inverted index

2. For each un-pruned object, finish similarity 
computation using forward index
• Only need to compute 
• Can do further filtering

L2AP: algorithm

40
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Inverted 
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L2AP: Indexing

Solution:
Index enough non-zeros to guarantee correct result.
Same idea used to stop accepting new candidates during CG.
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L2AP: Datasets

42
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Indexing: in practice
• L2AP indexes fewer non-zeros than previous approaches
• Leads to greatly improved execution runtime
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Pruning: in practice
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• L2AP filters most objects without computing their similarity 



LSH vs. IndexJoin

46

• In all experiments, LSH parameters were tuned to achieve at least 
95% accuracy.

• LSH outperforms IndexJoin at high thresholds.
• Performs poorly at low thresholds and for high dimensional datasets 

(Orkut, Wiki).



L2AP results: efficiency comparison

47

• L2AP outperforms all exact and most approximate baselines 



Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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pL2AP

• Shared memory parallel extension of L2AP
• Parallelizing each iteration of L2AP (finding 

neighbors for one object) 
– has limited potential for work sharing

• Main challenge: avoid synchronization and 
resource contention

49



pL2AP

Strategy:
• Precompute the partial inverted index for all 

objects
• Share the index among the threads
• Use tiling to improve cache locality

– Index divided into blocks based on non-zeros
– Threads cooperate to process subset of queries on one 

index block at a time
• Reduce size of query object data structures

– Mask-based hash table

50



pL2AP: Tiling

• Split based on index non-zeros & # rows
• During candidate generation, fit index & 

accumulator in cache
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pL2AP: Masked hash table
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pL2AP: in practice
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• Tiling and masked hash table reduce cache misses by 
more than 50%



pL2AP: in practice
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• pL2AP significantly outperforms parallel baselines, 
especially at lower    values



pL2AP: in practice
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• pL2AP shows very good strong scaling, better than 
that of baselines, especially at lower    values



Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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Distributed memory parallel algorithm

• Assume input partitioned among p different 
machines

• Explore ways to minimize communication cost 
specific to the problem

57



Distributed memory parallel algorithm

• Currently exploring:
Dynamic candidate generation and verification 
assignments

– For high thresholds, inverted index very small
– Compare blocks 𝐵𝐵𝑖𝑖 and 𝐵𝐵𝑗𝑗
– Send inverted index of 𝐵𝐵𝑖𝑖 to 𝐵𝐵𝑗𝑗
– 𝐵𝐵𝑗𝑗 finds candidates for all queries in 𝐵𝐵𝑗𝑗
– Decide what is better: send partial similarities to 𝐵𝐵𝑖𝑖

or get partial forward index from 𝐵𝐵𝑖𝑖?
58



Distributed memory parallel algorithm

• Currently exploring:
Blocking strategies that can eliminate some object 
comparisons, based on:

• Holder inequalities

• Euclidean distance of 
normalized vectors

59

Image from Optimizing Parallel Algorithms for All 
Pairs Similarity Search, by Maha Alabduljalil et al.



Distributed memory parallel algorithm

• Currently exploring:
Graph partitioning based load estimate

– Over-partition blocks
– Model block-block nn search based on nnzs and 

number of objects in candidate blocks
– Use graph partitioning to assign blocks to 

processes

60



Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work
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Nearest neighbors directions

Ongoing work:
• Distributed neighbor search (MPI+OMP)

– Challenge: minimize communication + load balance
– Solution: graph partitioning based load estimate, staged 

communication (send partial inverted index + what is 
needed of forward index)

• SnnLib, an integrated Sparse NN library
– Written in C, with C++, Python, Matlab, R bindings
– Include both self and non-self joins
– Include shared memory and distributed code

L2AP: http://davidanastasiu.net/software/l2ap/
L2Knng: http://davidanastasiu.net/software/l2knng/

62
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Future directions: short term

Nearest Neighbors:
• Beyond cosine similarity

– Preliminary theoretic results for Dice similarity

– Inner-product similarity
– Euclidean distance

• Beyond OMP+MPI
– GPGPU
– Xeon Phi
– Heterogeneous clusters, Hadoop, Spark

63



Research interests

Behavior-centric analytics
• Understand human behavior

– Characterizing micro-behavior evolution
– Integrate heterogeneous behavior signals 

64Online learning

Social networksGeolocation

Click-stream
Internet-of-things/mobile 

sensors



Wireless Emergency Network Topology
• Goal: Identify optimal placement of antennae to 

create a strong and redundant wireless 
emergency network for the City of San Jose

• Solution: two steps
– Efficient line-of-site probability estimation
– Path-constrained multi-criteria optimization using 

heterogeneous data

• Criteria
– Minimum LOS links
– Must-have locations
– Preferred locations
– Hardware limitations 

(P2P vs. sector antennae)
– Signal strength

• Data
• Satellite data (SRTM/NED)
• OpenStreetMaps
• Mapzen San Jose
• Survey markers
• City LIDAR topography
• Census
• WEN data & preferences

Research interests



Research interests

What are your interests?
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Questions?
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