
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Publications Computer Engineering

February 2017

Efficient Neighborhood Graph Construction for Sparse High Efficient Neighborhood Graph Construction for Sparse High

Dimensional Data Dimensional Data

David Anastasiu
San Jose State University, danastasiu@scu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/computer_eng_pub

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
David Anastasiu. "Efficient Neighborhood Graph Construction for Sparse High Dimensional Data"
Lawrence Livermore National Laboratory (2017).

This Presentation is brought to you for free and open access by the Computer Engineering at SJSU ScholarWorks.
It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks.
For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/computer_eng_pub
https://scholarworks.sjsu.edu/computer_eng
https://scholarworks.sjsu.edu/computer_eng_pub?utm_source=scholarworks.sjsu.edu%2Fcomputer_eng_pub%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.sjsu.edu%2Fcomputer_eng_pub%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Efficient Neighborhood Graph
Construction for Sparse High

Dimensional Data
David C. Anastasiu
Department of Computer Engineering
San José State University

In collaboration with:
George Karypis, University of Minnesota

2

Near Duplicate Detection

3

Collaborative Filtering

5 3
4 55

23 4
5 45

3 54
3 55

1.0
.00 1.0

.30

.46 1.0.48
.34.84

.00
1.0

.64 .63.70

.99 .48 1.0
1.0

.32
.00.29

= 5

4

Data
Mining

Threat/Outlier detection

Duplicate detection

Recommendation

Clustering

Virtual screening

etc…

Data Similarities

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search (brief)
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

5

The problem

• For each object 𝑑𝑑𝑖𝑖 from a set 𝐷𝐷,
find all neighbors 𝑑𝑑𝑗𝑗 with T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ≥ 𝜖𝜖.

find all neighbors 𝑑𝑑𝑗𝑗 with C 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ≥ 𝜖𝜖.

6

Why Tanimoto and Cosine?

7

a
b

Why Tanimoto and Cosine?

8

a

b

Why Tanimoto and Cosine?

9

a
b

Why Tanimoto and Cosine?

• Tanimoto coefficient particularly useful for analyzing
sparse asymmetric attribute data

10

How: pruning the search space

11

All Pairwise Similarities

Vector angles

Angles & lengths

Vector lengths

Sparsity

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search (brief)
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

12

IdxJoin: A straight-forward solution

• Method:
Compute and store vector norms
Construct an inverted index from the objects
For each query object:
– Compare only with objects with features in common
– Select neighbors

• Advantage:
– Skips some object comparisons and many meaningless

multiply-adds

13

IdxJoin: A straight-forward solution

Main idea: leverage data sparsity

14

𝑑𝑑5

𝑑𝑑4

𝑑𝑑3

𝑑𝑑2

𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Input matrix

IdxJoin: Accumulation

• Inverted index: set of lists, one for each feature,
containing documents and their associated values

15

𝑑𝑑5 𝑑𝑑5

𝑑𝑑5 𝑑𝑑4 𝑑𝑑4 𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3 𝑑𝑑2 𝑑𝑑3 𝑑𝑑2

𝑑𝑑2 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index

𝑓𝑓1 𝑓𝑓2 𝑓𝑓5𝑑𝑑3

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

𝐴𝐴 𝑑𝑑2 += 𝑑𝑑3,1 × 𝑑𝑑2,1
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,1 × 𝑑𝑑5,1
𝐴𝐴 𝑑𝑑1 += 𝑑𝑑3,2 × 𝑑𝑑1,2
𝐴𝐴 𝑑𝑑4 += 𝑑𝑑3,2 × 𝑑𝑑4,2
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,2 × 𝑑𝑑5,2

[…]

IdxJoin: Neighbor selection

– Compute and store vector norms
– Compute dot-products with candidates in

index
– Apply T(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) or C(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) formula
– Sort the resulting similarities
– Restrict neighbors:

• Keep those candidates with sim 𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐 ≥ 𝜖𝜖.

16

.90 .61 .54 .19

𝑑𝑑5 𝑑𝑑1 𝑑𝑑4 𝑑𝑑2 𝑑𝑑3

T(𝑑𝑑3,𝑑𝑑𝑗𝑗) ≥ 𝜖𝜖

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search (brief)
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

17

How: pruning the search space

18

All Pairwise Similarities Sparsity

Can we do better?
Leverage
vector lengths

Length based pruning

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

– 𝛼𝛼 bound due to Marzena Kryszkiewicz, IIDS 2013

• If we process objects in non-decreasing length order,
we only need to check

19

Length based pruning

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

– 𝛼𝛼 bound due to Marzena Kryszkiewicz, IIDS 2013

• Relabel objects in non-decreasing length order

20

𝑑𝑑1
𝑑𝑑2
𝑑𝑑3
𝑑𝑑4
𝑑𝑑5

𝑑𝑑5 𝑑𝑑5

𝑑𝑑5 𝑑𝑑4 𝑑𝑑4 𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3 𝑑𝑑2 𝑑𝑑3 𝑑𝑑2

𝑑𝑑2 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1
𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index

How: pruning the search space

21

All Pairwise Similarities

Vector lengths

Sparsity

Can we do better?
Leverage
vector angles

Subset of cosine neighborhood

• The following inequalities hold for our domain:

• Potential solution
– Store vector norms and normalize vectors
– Find cosine neighbors

– Transform C 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 to T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗
– Remove non-Tanimoto neighbors

• Tighter bound due to Lee et al., DEXA 2010

22

L2AP: Fast cosine similarity search

Main idea: leverage similarity estimates

23

estimatecompute

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
p

* *

*

Angle Filtering

Filter/prune object pairs not in final graph based on
similarity estimates

Filter T(𝑑𝑑𝑞𝑞,𝑑𝑑𝑐𝑐) if
24

(Cauchy-Schwarz inequality)

𝐴𝐴[𝑑𝑑𝑐𝑐]

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
p

* *

*

Angle Filtering
Filter/prune object pairs not in final graph based on
similarity estimates

Filter T(𝑑𝑑𝑞𝑞,𝑑𝑑𝑐𝑐) if

25

𝐴𝐴[𝑑𝑑𝑐𝑐]

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
p

* *

*

TAPNN: Filtering

• L2AP filtering contingent on processing order
• Developed order-agnostic filtering bounds
• Integrated vector length-based index skip-

pointers

26

How: pruning the search space

27

All Pairwise Similarities

Vector angles

Vector lengths

Sparsity

Can we do better?
Leverage
vector angles & their
lengths

Angle + length

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

• 𝛼𝛼 is an upper limit of

where 𝑠𝑠 is any cosine similarity upper bound such as
the ones we compute during filtering

28

Tanimoto All-Pairs Nearest Neighbors

• TAPNN:
Compute and store vector norms
Normalize vectors
Construct a partial inverted index from the objects
For each query object:
– Skip short candidates
– Use cosine similarity upper bounds to filter cosine

non-neighbors
– Use cosine similarity upper bounds to filter

Tanimoto non-neighbors
– Select neighbors

29

How: pruning the search space

30

All Pairwise Similarities

Vector angles

Angles & lengths

Vector lengths

Sparsity

True neighbors

Experimental evaluation: datasets

• Patents: text of random USPTO patents
• RCV1: text of newswire stories
• MLSMR: structures of PubChem compounds
• SC: compounds form the SureChEMBL database

31

Experimental evaluation: datasets

32

Experimental evaluation: methods

• IdxJoin
• L2AP
• MMJoin

– Method by Lee et al.
– Angle based filtering with tighter 𝑡𝑡 bound

• MK-Join
– Algorithm designed using theoretic bounds by

Marzena Kryszkiewicz
– Method uses same fast accumulator as TAPNN

33http://davidanastasiu.net/software/tapnn/

TAPNN results: neighborhood size

34

TAPNN results: pruning effectiveness

35

TAPNN results: efficiency comparison

36

TAPNN results: scaling

37Execution time scaling given increasing problem size.

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

38

L2AP: Filtering

Could have many useless memory operations
If 𝑑𝑑1,𝑑𝑑2,𝑑𝑑4 were pruned

39

𝑑𝑑2 * 𝑑𝑑3 * 𝑑𝑑5 *𝑓𝑓1

𝑑𝑑1 * 𝑑𝑑3 * 𝑑𝑑4 *𝑓𝑓2 𝑑𝑑5 *

𝑓𝑓3 𝑑𝑑1 *

𝑑𝑑1 * 𝑑𝑑2 *𝑓𝑓4 𝑑𝑑4 * 𝑑𝑑5 *

𝑓𝑓5 𝑑𝑑1 * 𝑑𝑑3 * 𝑑𝑑5 *

𝑓𝑓6 𝑑𝑑1 * 𝑑𝑑2 * 𝑑𝑑4 *

Inverted index

-1 -1 .25 -1 .54

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

L2AP follows a two-step process:
1. Accumulate similarity using partial inverted index

2. For each un-pruned object, finish similarity
computation using forward index
• Only need to compute
• Can do further filtering

L2AP: algorithm

40

Forward
index

Inverted
index

-1 -1 .25 -1 .54

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

L2AP: Indexing

Solution:
Index enough non-zeros to guarantee correct result.
Same idea used to stop accepting new candidates during CG.

41

𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3

𝑑𝑑2 𝑑𝑑1 𝑑𝑑2
𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index

𝑑𝑑5

𝑑𝑑4

𝑑𝑑3

𝑑𝑑2

𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Input matrix

𝒅𝒅1≥4 2 < 𝜖𝜖

L2AP: Datasets

42

43

Indexing: in practice
• L2AP indexes fewer non-zeros than previous approaches
• Leads to greatly improved execution runtime

44

Pruning: in practice

45

• L2AP filters most objects without computing their similarity

LSH vs. IndexJoin

46

• In all experiments, LSH parameters were tuned to achieve at least
95% accuracy.

• LSH outperforms IndexJoin at high thresholds.
• Performs poorly at low thresholds and for high dimensional datasets

(Orkut, Wiki).

L2AP results: efficiency comparison

47

• L2AP outperforms all exact and most approximate baselines

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

48

pL2AP

• Shared memory parallel extension of L2AP
• Parallelizing each iteration of L2AP (finding

neighbors for one object)
– has limited potential for work sharing

• Main challenge: avoid synchronization and
resource contention

49

pL2AP

Strategy:
• Precompute the partial inverted index for all

objects
• Share the index among the threads
• Use tiling to improve cache locality

– Index divided into blocks based on non-zeros
– Threads cooperate to process subset of queries on one

index block at a time
• Reduce size of query object data structures

– Mask-based hash table

50

pL2AP: Tiling

• Split based on index non-zeros & # rows
• During candidate generation, fit index &

accumulator in cache

51

𝑑𝑑5

𝑑𝑑4

𝑑𝑑3

𝑑𝑑2

𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Input matrix

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

Intel Haswell-E chip
From: http://www.extremetech.com/wp-
content/uploads/2014/09/Haswell-Labeled.jpg

pL2AP: Masked hash table

52

-1 10 11 2 -1 -14

overflow

.43 .17 .83 .31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 4 12

.83 .83 .43.43

.95 1.0 .43.46

Prefix sizes

Prefix max values

Prefix lengths

Index pointers

.83 .31 .43.17 Values

h

Hash table

Data

Partial linear overflow scan during collision lookup.

traversal order
• Fit query vector in cache

pL2AP: in practice

53

• Tiling and masked hash table reduce cache misses by
more than 50%

pL2AP: in practice

54

• pL2AP significantly outperforms parallel baselines,
especially at lower values

pL2AP: in practice

55

• pL2AP shows very good strong scaling, better than
that of baselines, especially at lower values

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

56

Distributed memory parallel algorithm

• Assume input partitioned among p different
machines

• Explore ways to minimize communication cost
specific to the problem

57

Distributed memory parallel algorithm

• Currently exploring:
Dynamic candidate generation and verification
assignments

– For high thresholds, inverted index very small
– Compare blocks 𝐵𝐵𝑖𝑖 and 𝐵𝐵𝑗𝑗
– Send inverted index of 𝐵𝐵𝑖𝑖 to 𝐵𝐵𝑗𝑗
– 𝐵𝐵𝑗𝑗 finds candidates for all queries in 𝐵𝐵𝑗𝑗
– Decide what is better: send partial similarities to 𝐵𝐵𝑖𝑖

or get partial forward index from 𝐵𝐵𝑖𝑖?
58

Distributed memory parallel algorithm

• Currently exploring:
Blocking strategies that can eliminate some object
comparisons, based on:

• Holder inequalities

• Euclidean distance of
normalized vectors

59

Image from Optimizing Parallel Algorithms for All
Pairs Similarity Search, by Maha Alabduljalil et al.

Distributed memory parallel algorithm

• Currently exploring:
Graph partitioning based load estimate

– Over-partition blocks
– Model block-block nn search based on nnzs and

number of objects in candidate blocks
– Use graph partitioning to assign blocks to

processes

60

Outline

• Nearest neighbor (NN) search
– IdxJoin – a straightforward solution
– TAPNN – Tanimoto All-Pairs similarity search
– L2AP – Cosine All-Pairs similarity search
– pL2AP – Parallel All-Pairs similarity search
– Distributed similarity graph construction

• Ongoing and future work

61

Nearest neighbors directions

Ongoing work:
• Distributed neighbor search (MPI+OMP)

– Challenge: minimize communication + load balance
– Solution: graph partitioning based load estimate, staged

communication (send partial inverted index + what is
needed of forward index)

• SnnLib, an integrated Sparse NN library
– Written in C, with C++, Python, Matlab, R bindings
– Include both self and non-self joins
– Include shared memory and distributed code

L2AP: http://davidanastasiu.net/software/l2ap/
L2Knng: http://davidanastasiu.net/software/l2knng/

62

http://davidanastasiu.net/software/l2ap/
http://davidanastasiu.net/software/l2knng/

Future directions: short term

Nearest Neighbors:
• Beyond cosine similarity

– Preliminary theoretic results for Dice similarity

– Inner-product similarity
– Euclidean distance

• Beyond OMP+MPI
– GPGPU
– Xeon Phi
– Heterogeneous clusters, Hadoop, Spark

63

Research interests

Behavior-centric analytics
• Understand human behavior

– Characterizing micro-behavior evolution
– Integrate heterogeneous behavior signals

64Online learning

Social networksGeolocation

Click-stream
Internet-of-things/mobile

sensors

Wireless Emergency Network Topology
• Goal: Identify optimal placement of antennae to

create a strong and redundant wireless
emergency network for the City of San Jose

• Solution: two steps
– Efficient line-of-site probability estimation
– Path-constrained multi-criteria optimization using

heterogeneous data

• Criteria
– Minimum LOS links
– Must-have locations
– Preferred locations
– Hardware limitations

(P2P vs. sector antennae)
– Signal strength

• Data
• Satellite data (SRTM/NED)
• OpenStreetMaps
• Mapzen San Jose
• Survey markers
• City LIDAR topography
• Census
• WEN data & preferences

Research interests

Research interests

What are your interests?

66

Questions?

67

References
[1] David C. Anastasiu and George Karypis. L2AP: Fast Cosine Similarity Search With Prefix L-2
Norm Bounds. Proceedings of the 30th IEEE International Conference on Data Engineering (ICDE
2014).
[2] Dongjoo Lee, Jaehui Park, Junho Shim, and Sang-goo Lee. 2010. An efficient similarity join
algorithm with cosine similarity predicate. In Proceedings of the 21st international conference on
Database and expert systems applications: Part II (DEXA'10), Pablo Garcia Bringas, Abdelkader
Hameurlain, and Gerald Quirchmayr (Eds.). Springer-Verlag, Berlin, Heidelberg, 422-436
[3] M. Kryszkiewicz. Bounds on lengths of real valued vectors similar with regard to the tanimoto
similarity. Intelligent Information and Database Systems, ser. Lecture Notes in Computer Science,
A. Selamat, N. Nguyen, and H. Haron, Eds. Springer Berlin Heidelberg, 2013, vol. 7802, pp. 445-
454.
[4] ----. Using non-zero dimensions for the cosine and tanimoto similarity search among real
valued vectors. Fundamenta Informaticae, vol. 127, no. 1-4, pp. 307-323, 2013.
[5] ----. Using non-zero dimensions and lengths of vectors for the tanimoto similarity search
among real valued vectors. Intelligent Information and Database Systems. Springer International
Publishing, 2014, pp. 173-182.

68

	Efficient Neighborhood Graph Construction for Sparse High Dimensional Data
	Recommended Citation

	Efficient Neighborhood Graph Construction for Sparse High Dimensional Data
	Near Duplicate Detection
	Collaborative Filtering
	Slide Number 4
	Outline
	The problem
	Why Tanimoto and Cosine?
	Why Tanimoto and Cosine?
	Why Tanimoto and Cosine?
	Why Tanimoto and Cosine?
	How: pruning the search space
	Outline
	IdxJoin: A straight-forward solution
	IdxJoin: A straight-forward solution
	IdxJoin: Accumulation
	IdxJoin: Neighbor selection
	Outline
	How: pruning the search space
	Length based pruning
	Length based pruning
	How: pruning the search space
	Subset of cosine neighborhood
	L2AP: Fast cosine similarity search
	Angle Filtering
	Angle Filtering
	TAPNN: Filtering
	How: pruning the search space
	Angle + length
	Tanimoto All-Pairs Nearest Neighbors
	How: pruning the search space
	Experimental evaluation: datasets
	Experimental evaluation: datasets
	Experimental evaluation: methods
	TAPNN results: neighborhood size
	TAPNN results: pruning effectiveness
	TAPNN results: efficiency comparison
	TAPNN results: scaling
	Outline
	L2AP: Filtering
	L2AP: algorithm
	L2AP: Indexing
	L2AP: Datasets
	Slide Number 43
	Indexing: in practice
	Pruning: in practice
	LSH vs. IndexJoin
	L2AP results: efficiency comparison
	Outline
	pL2AP
	pL2AP
	pL2AP: Tiling
	pL2AP: Masked hash table
	pL2AP: in practice
	pL2AP: in practice
	pL2AP: in practice
	Outline
	Distributed memory parallel algorithm
	Distributed memory parallel algorithm
	Distributed memory parallel algorithm
	Distributed memory parallel algorithm
	Outline
	Nearest neighbors directions
	Future directions: short term
	Research interests
	Wireless Emergency Network Topology
	Research interests
	Questions?
	References

