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ABSTRACT

This research deals with classical, Bayesian, and generalized estimation of stress-strength

reliability parameter, Rs,k = Pr(at least s of (X1,X2, ...,Xk) exceed Y ) = Pr(Xk−s+1:k > Y ) of an

s-out-of-k : G multicomponent system, based on progressively type-II right-censored samples with

random removals when stress and strength are two independent Chen random variables. Under

squared-error and LINEX loss functions, Bayes estimates are developed by using Lindley’s

approximation and Markov Chain Monte Carlo method. Generalized estimates are developed using

generalized variable method while classical estimates - the maximum likelihood estimators, their

asymptotic distributions, asymptotic confidence intervals, bootstrap-based confidence intervals - are

also developed. A simulation study and a real-world data analysis are provided to illustrate the

proposed procedures. The size of the test, adjusted and unadjusted power of the test, coverage

probability and expected lengths of the confidence intervals, and biases of the estimators are also

computed, compared and contrasted.

iv



DEDICATION

This thesis is dedicated to my family. To my loving parents, Titus and Ibijoke Ajumobi who

supported me emotionally and financially, and whose words of encouragement and unwavering

support molded me into the man I am today. To my siblings, Oyinda, Siji and Damilare who have

always believed in me and pushed me to be the best that I can be. Thank you for teaching me that

life comes in phases and to take the time to enjoy the little moments.

v



ACKNOWLEDGMENTS

This journey would not have been possible without the support of my family, professors and

mentors, and friends. To my family, thank you for encouraging me in all of my pursuits, never

giving up on me and inspiring me to follow my dreams. I am forever indebted and hope my work

makes you proud. I must give special acknowledgment to my advisor, Dr. Sumith Gunasekera

(Associate Professor of Statistics, Department of Mathematics) who I have been extremely

fortunate to work with and has served as a mentor throughout my academic journey. For his advice,

his encouragement and guidance, I am eternally grateful and humbled. In addition, I would like to

acknowledge the entire faculty and staff in the Department of Mathematics at The University of

Tennessee at Chattanooga. It has been an absolute privilege working alongside such a dedicated and

generous group of people.

I would like to give special thanks to my thesis committee; I owe a debt of gratitude to Dr.

Ossama Saleh for his time and careful attention to detail. To Dr. Lakmali Weerasena, I thank her for

her untiring support and guidance throughout my journey. To Dr. Hong Qin, I am grateful for the

well needed critiques and feedback. I look up to them as the epitome of the researcher and teacher I

strive to be in the future. I want to thank Dr. Michael Colvin (Professor of Mathematics & Interim

Head, Department of Mathematics) and Dr. Andrew Ledoan (Associate Professor of Mathematics,

and Associate Head for Graduate Studies & Research, Department of Mathematics) for their very

valuable support and counsel over the years. To Ms. Heather Sirley Heinlein (Administrative

Specialist, Department of Mathematics) and students in the Department of Mathematics, I give my

most sincere thanks for their support and encouragement during my time at UTC.

To my friends, thank you for supporting me throughout this entire journey. Special thanks to my

Chattanooga friends: Joel, Nicole, Madeline and Chyniece. The debates, dinners, random musings 
vi



on life, general help and friendship are all greatly appreciated. To you all I say thank you for being

there when I needed a friend.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Background of Exact Statistical Methods . . . . . . . . . . . . . . . . . . . . 1

1.2 Chen Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Reliability of a Multicomponent System . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Reliability of a Multicomponent System Based on Chen Distributions . . . . . . . 5

CHAPTER 2 THE CLASSICAL METHOD . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Maximum Likelihood Estimator of Rs,k . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Uniformly Minimum Variance Unbiased Estimator of Rs,k . . . . . . . . . . . . . 12

2.3 Asymptotic distribution of R̂s,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3 THE GENERALIZED VARIABLE METHOD . . . . . . . . . . . . . . . . 20

3.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Generalized inference for Rs,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Generalized confidence interval for Rs,k . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Generalized testing procedure for Rs,k . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 4 THE BAYESIAN METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Lindley’s approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Markov chain Monte Carlo (MCMC or MC2) method . . . . . . . . . . . . . . . . 30

CHAPTER 5 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Practical application study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
viii



5.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Bias and Expected Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Computations & Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER 6 OVERVIEW, SUMMARY, AND FUTURE RESEARCH . . . . . . . . . . . 53

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



LIST OF TABLES

5.1 Comparison of Point Estimates of Rs,k . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Comparison of Interval Estimates of Rs,k . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Classical and generalized point estimates of R2,4 when the common shape parameter β

is known (β = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Bayesian point estimates of R2,4 when the common shape parameter β is known (β = 3)     45

5.5 Classical and generalized interval estimates of R2,4 when the common shape parameter
β is known (β = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Bayesian interval estimates of R2,4 when the common shape parameter β is known
(β = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Classical and generalized point estimates of R2,4 when the common shape parameter β

is known (β = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Bayesian point estimates of R2,4 when the common shape parameter β is known (β = 10)    48

5.9 Classical and generalized interval estimates of R2,4 when the common shape parameter
β is known (β = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.10 Bayesian interval estimates of R2,4 when the common shape parameter β is known
(β = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.11 Empirical (true) Type-I error rates for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when
nominal (intended) level is γ = 0.05 with the known common shape parameter (β = 3) 51

5.12 Empirical (true) Type-I error rates for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when
nominal (intended) level is γ = 0.05 with the known common shape parameter (β = 10)    51

5.13 Comparison of powers for testing H0 : R2,4 ≤ 0.5429 vs Ha : R2,4 > 0.5429 without
and after adjusting the size at γ = 0.05 when the common shape parameter is known
(β = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.14 Comparison of powers for testing H0 : R2,4 ≤ 0.5429 vs Ha : R2,4 > 0.5429 without
and after adjusting the size at γ = 0.05 when the common shape parameter is known
(β = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

x

52

52



LIST OF ABBREVIATIONS

BTCI, bootstrap-t confidence interval

C-Method, classical method

GV-Method, generalized variable method

C , Chen distributed

pmf, probability mass function

MLE, maximum likelihood estimate

CI, confidence interval

UMVUE, uniformly minimum variance unbiased estimator

BBCACI, bootstrap bias-corrected and accelerated confidence interval

MCMC, Markov Chain Monte Carlo

LINEX, linear exponential loss function

HPD, highest posterior density

HPDI, highest posterior density interval

BCI, Bayesian credible interval

DWR, Department of Water Resources

SSE, error sum of squares

ACI, approximate confidence interval

B-Method, Bayesian method

MSE, mean squared error

ER, estimated risk

CP, coverage probability

UP, unadjusted power of a statistical test

AP, adjusted power of a statistical test

UMVU, uniformly minimum variance unbiased
xi



ANOVA, analysis of variance

ANORE, analysis of reciprocals

ANCOVA, analysis of covariance

ANOFRE, analysis of frequency

MANOVA, multivariate analysis of variance

MANCOVA, multivariate analysis of covariance

RAM, read access memory

ln, natural logarithm

GVM, generalized variable method

pdf, probability density function

iid, independent and identically distributed

OOL, offered optical network unit load

xii



LIST OF SYMBOLS

X , random strength

Y, random stress

α, shape parameter of exponentiated inverted exponential distribution

λ , scale parameter of exponentiated inverted exponential distribution

Rs:k, reliability of a multi-component s-out-of-k: G system, where at least s out of the k components

work (or are good)

Xr:n, rth order statistic of a simple random sample of size n for the random variable X

fX (x), probability density function of the random variable X when X = x

FX (x), cumulative distribution function of the random variable X when X ≤ x

Fν1,ν2, Fisher-Snedecore distribution (or simple F distribution) with numerator degrees of freedom

ν1 and denominator degrees of freedom ν2

Pr(X ∈ D), Probability of X that belongs to the domain D

Pr(X > Y ), Probability that strength X is greater than stress Y

˜, distributed as

∑, single summation

∏, single product

l(β ), log-likelihood function of β

{X}i=1,2,...,I; j=1,2,...,J, I× J matrix

D(α,β ,δ ), statistical distribution D with a location parameter α, a shape parameter β , and a scale

parameter γ∫ b
a ydx, single definite integral of the function y with respect to x computed from a to b

xiii



 n

r

 , n choose r ; or n combination r, where r items have been chosen from n items without

regard to the order

P(A|B), conditional probability of the event A given that event B has already occurred

α̂, estimator of the parameter α

A, estimator of the parameter α

α̂obs, observed (or realized) value ( or estimate) of the parameter α

∏∏, double product

∑∑∑∑, quintuple summation

H0, null hypothesis

Ha, alternative hypothesis

X, vector of simple random sample from the strength

Y, vector of simple random sample from the stress
D−→, convergence in distribution

∂y
∂x , slope y over slope x; partial derivative of the function y with respect to x∫∫

D ydx, double integral of the function y with respect to x computed in the domain D

∂ 2y
∂x2 , slope squared y over slope squared x; second partial derivative of the function y with respect to

x

E(X), expected value of the random variable X

χ2
ν , chi-squared distribution with ν degrees of freedom

α̂obs, observed (or realized) value ( or estimate) of the parameter α

Φ, distribution function of the standard normal distribution

CIγ

η , a γ% confidence interval for the parameter η

α̂∗, bootstrap estimator of the parameter α

zγ , γth quantile of the standard normal distribution

H(x), Cumulative distribution at the point X = x of the random variable X

B(α,β ), beta function with parameters α and β
xiv



2F1(α,β ;γ,z), hypergeometric function

E , exponentially distributed

Im×n, m×n matrix; matrix with m rows and n columns

ab, a to the power of b; a has been raised to the power of b

Re(ξ ), real part of the complex number ξ

U(θ |x), posterior distribution of θ given the random sample x

π(θ), prior distribution of θ

min
1≤ i ≤ n

(Xi) , first order statistic of the random variable X

UD, discrete uniformly distributed

|| , absolute value

×, multiplication

+, addition

−, subtraction

/, division

>, greater than; more than

<, smaller than; less than

≥, greater than or equals; at least

≤, less than or equals; at most

=, equal sign
√
, square root

∑∑, double summation

n→ ∞, n approaches infinity

≈, approximately

G , gamma distributed

xv



CHAPTER 1

INTRODUCTION

1.1 The Background of Exact Statistical Methods

Permutation methods have been in use since 1935, when Fisher utilized the methods for solving

exact inference [17]. Ever since, the feasibility of such methods increased steadily as computing

power became more robust. Permutation methods can now be easily employed in many situations

without absent of the computational limitations that plagued previous generations. When statistical

inferences are performed, more reliable, accurate, non-misleading results are provided,thereby

outperforming procedures based on classical asymptotic and approximate statistical inference

methods. The most prominent and major characteristic of exact methods is that statistical

inferences are mainly based on exact probability statements that are valid for any sample size.

Approximate tests make approximation to a desired distribution by making the sample size big

enough so that the test will have a false rejection rate that is always equal to the significance level of

the test. When the sample size is small, the asymptotic and other approximate results may lead to

unreliable and misleading conclusions. Exact parametric procedures and exact nonparametric

procedures are the two branches in exact statistics. When the cell counts are small – specifically, if

more than twenty percent of the cells, with fixed marginal totals, have an expected count that is less

than five – the χ2 distribution may not a suitable distributional candidate of the Pearson C2 or

Likelihood Ratio G2 statistics for testing independence of row and column variables. Such a

situation is easily remedied by Fisher’s exact test.

In the late 1980’s, Weerahandi [54] searched for an extreme region, which is an unbiased subset

of sample space formed by minimal sufficient statistics. This extreme region has the observed
1



sample points on its boundary and is utilized to generalize the existing p-values to come up with 

exact solutions for different problems that arise in hypothesis testing. For exact tests, readers are 

referred to Fisher [18], Weerahandi ([52], [51]), and many others. Motivated by a generalized test 

given by Weerahandi [54], Tsui and Weerahandi [49] formally introduced the notion of generalized 

p-values. Weerahandi [53] extended the classical definition of confidence intervals to obtain the

generalized confidence intervals so that one can obtain reasonable interval estimates for situations 

where the classical approach fails or yield results lacking small sample accuracy. Even though the 

generalized confidence interval is an exact interval,they do not possess the repeated sampling 

property under the Neyman-Pearson framework. Nevertheless, even under the Neyman-Pearson 

framework, their actual probability coverage is almost the same as the desired nominal level. 

Recently, Weerahandi [50] introduced the notion of generalized point estimators. These notions 

are successfully applied to many areas in statistics, including anova, regression, mixed models, 

and growth curve models. The concept of generalized estimators, generalized pivotal quantities, 

generalized test variables, generalized p-values, and generalized confidence intervals have turned 

out to be very satisfactory for obtaining tests and confidence intervals for many complex problems 

(see Gamage and Weerahandi [19], Bebu and Mathew [7], Mu et al. [44], Tian and Wu [47], 

Weerahandi and Berger [55], Weerahandi and Johnson [56], Ananda and Weerahandi [4], Ananda 

([3], [2], [1]), Gunasekera ( [23], [24], [25], [26], [27]), Gunasekera et al. [29], Gunasekera and 

Ananda [28], and Krishnamoorthy and Lu [36]. For a recipe of constructing generalized pivotal 

quantities, see Iyer and Patterson [34]. But this method has also produced unsatisfactory results for 

some applications: for instance, the generalized variable method is very unsatisfactory for 

multivariate analysis of variance with arbitrary covariance matrices (see, Krishnamoorthy et al. 

[37], Krishnamoorthy and Lu [36]). Books by Weerahandi ([51], [52]) give a detailed, complete, 

and clear discussion, along with numerous examples, on the generalized variable method.

2



1.2 Chen Distributions

When modeling monotonic hazard rates, the exponential, gamma, lognormal, and Weibull

distributions may be initial choices. However, these distributions have several limitations. First,

none of them exhibit bathtub shapes for their hazard rate functions. These distributions exhibit only

monotonically increasing, decreasing, or constant hazard rates. The most realistic hazard rate is

bathtub-shaped. This occurs in most real-life systems. For instance, such shapes occur when the

population is divided into several sub-populations having early failures, wear out failures, and more

or less constant failures. Therefore, a perfect bathtub consists of two change points and a constant

part enclosed within the change points. Usefulness of bathtub shape is well recognized in several

fields. Many parametric probability distributions have been introduced to analyze real data sets with

bathtub failure rates. Chen [10] proposed a new two-parameter lifetime distribution with

bathtub-shaped or increasing failure rate function.

The new two-parameter distribution has some useful properties compared with other well-known

models. Xie et al. [58] extended the Chen’s distribution adding other parameter and named it the

extended-Weibull distribution, due to relation to the Weibull distribution. Pappas et al. [45]

proposed a four-parameter modified Weibull extension distribution using the Marshall and

Olkin [42] technique. Therefore, one of its particular cases could be named as Marshall-Olkin

extended Chen’s distribution. Recently, Chaubey and Zhang [9] introduced another extension of the

Chen’s family. Chaubey and Zhang [9] also addressed the problem of estimation of parameters of

the extended Chen’s distribution, focusing on the maximum likelihood estimation (MLE) method.

Related studies for other distributions can be found in Gupta and Kundu [30], Dey et al. [13], and

Louzada et al. [41].
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1.3 Reliability of a Multicomponent System

We treat the problem of classical, Bayesian, and generalized point and interval estimation of the 

reliability parameter Rs,k = Pr(at least s of the (X1,X2, ...,Xk) exceed Y ) = Pr(Xk−s+1:k > Y ) in the 

multicomponent stress-strength model [8]. This system consists of k statistically independent and 

identical strength components X1,X2, ...,Xk, whose common probability density function (pdf) is 

fX (x), experienced by a common stress Y , whose pdf is fY (y). The system functions when s

(1 ≤ s ≤ k) or more of the components simultaneously survive. This system is referred to as an 

s-out-of-k : G (or s-out-of-k : F) system because a k-component system works (or is good) if and 

only if at least s of the k components work (or are good), and the system is referred to as s-out-of-k : 

F because the k-component system fails if and only if at least s of the k components fail. Based on 

these two definitions, a s-out-of-k : G system is equivalent to an (k − s + 1)-out-of-k : F  system.

In the reliability context, the multicomponent stress-strength model can be described as an 

assessment of reliability of an s-out-of-k : G system. Its practical application range from 

communication and industrial systems to logistic and military systems. Multicomponent systems 

can be illustrated with several examples. The Airbus A-380 has four engines; while the Boeing 787 

Dreamliner is a twin-engine jet-liner. An airplane which is capable of flying if and only if at least 

two of its four engines are functioning is an example of 2-out-of-4:G system. A more homely but 

complicated example of a multicomponent system would be a music (stereo Hi-Fi) system 

consisting of an FM tuner and record changer in parallel; connected in series with an amplifier and 

speakers (with two speakers, say A and B) connected in parallel. A panel consisting of k identical 

solar cells maintains an adequate power output if at least s cells are active during the duration of the 

mission.

Another example is seen in the construction of suspension bridges, the deck is supported by a 

series of vertical cables hung from the towers. Suppose a suspension bridge consisting of k number 

of vertical cable pairs. The bridge will only survive if minimum s number of vertical cable through

the deck are not damaged when subjected to stresses due to wind loading, heavy traffic, corrosion, 
4
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etc. Another given example involves a V-8 engine of an automobile; it may be possible to drive the 

car if only four cylinders are firing. However, if less than four cylinders fire, then the automobile 

cannot be driven. Thus, the functioning of the engine may be represented by a 4-out-of-8 : G 

system.

Other examples include an electrical power station containing eight generating units produces the 

right amount of electricity only if at least 6 units are working; the demand of the electricity of a 

district is fulfilled only if 6-out-of-8 wind roses are operating at all times; a communication system 

for a navy can be successful only if 6 transmitters out of 10 are operational to cover a district; and 

lastly a semi-trailer pulled by a truck can be driven safely as long as 6-out-of-8 tires are in good 

conditions. For an extensive reviews of s-out-of-k and related systems, see Kuo and Zuo [39].

1.4 Reliability of a Multicomponent System Based on Chen Distributions

The main goal of this thesis is to obtain the estimates of Rs,k under classical, Bayesian, and 

generalized frameworks when fX and fY are newly introduced independent Chen distributions

(Chen [10]) that have bathtub-shaped or increasing hazard functions. In addition, we observe 

progressively type-II censored samples with uniformly distributed random removals from the Chen 

distributed fX and fY . Suppose X1,X2, ...,Xk are independent random variables from the Chen 

distribution with shape parameters β and λ . For brevity, we shall also say that

X j ∼ C (λ ,β ), j = 1,2, ...,s, ...,k, with its common survival function (sf )

S(x j) = exp{λ [1 − exp(x )]} whereas F(x j) = 1 − exp{λ [1 − exp(x )]} and

f (x j) = λ β xβ

j 
−1 exp{λ [1 − exp(x )] + x } are the cumulative distribution function (cdf) and pdf 

of the Chen distribution, respectively. Similarly, Y is also distributed according to an independent 

Chen distribution with a common shape parameter β and a shape parameter η . We say that

Y ∼ C (η ,β ). If β < 1, the hazard function of Chen distribution has a bathtub shape, and has an

increasing failure rate function, if β ≥ 1. Note that, if λ (or η) = 1, the Chen distribution becomes 
5



an exponential power distribution. See Wu [57], Kayal et al. [35], and the references therein for

some recent developments on the Chen distribution.

The reliability in a multicomponent stress-strength model, based on strength

X j ∼ C (λ ,β ), j = 1,2, ...,s, ...,k, and stress Y ∼ C (η ,β ), is then given by

Rs,k = Pr(at least s of the (X1,X2, ...,Xk) exceed Y ),

= Pr(Xk−s+1:k > Y ),

=
k

∑
i=s

 k

i

∫ ∞

−∞

(1−FX (y))
i(FX (y))

k−idFY (y),

= αη

k

∑
i=s

 k

i

∫ 1

0
(ln t)(β−1)/β exp{(1− t)(αi+η)}[1− exp{α(1− t)}]k−idt,where t = exp{yβ}

= η

k

∑
i = s

k − i

∑
j = 0

 k

i

 k− i

j

(−1) j
∫

∞

1
exp[(λ (i+ j)+η)(1− t)]dt

=
k

∑
i = s

k − i

∑
j = 0

 k

i

 k− i

j

 (−1) jη

λ (i+ j)+η
(1.1)

Estimation of Rs,k =Pr(Xk−s+1:k > Y ) is widely known as multicomponent stress-strength 

modeling. Many authors have discussed parametric and non-parametric inference on Rs,k when 

complete random samples are available on each X1,X2, ...,Xk and Y. We mention: Hanagal [32], 

Eryilmaz [16], and Rao et al. [46]. For a comprehensive discussion on different stress-strength 

models, along with more theories and examples, the reader is referred to the monograph of Kotz et 

al. [38].

There has been little work on parametric and non-parametric inference of Rs,k =Pr(Xk−s+1:k > Y ) 

when samples available on X1,X2, ...,Xk and Y are not complete. In reliability studies, the 

experimenter may not always obtain complete information on failure times for all experimental 

units. Some real life examples giving censored data are: (i) sometimes a failure is planned and 

expected but does not occur due to operator error, equipment malfunction, test anomaly, etc; (ii) 

sometimes engineers plan a test program so that, after a certain time limit or number of failures, all

other tests will be terminated. Among various censoring schemes, the type II progressive censoring 
6



scheme has become very popular. It can be described as follows: Let n items be put in a life time

study and m (< n) items be completely observed; At the time of the first failure, r1 surviving units

are removed from the n−1 remaining items; At the time of the next failure, r2 items are randomly

withdrawn from the n− r1−2 remaining items; When the mth failure occurs all the

n−m− r1− ...− rm−1 items are removed. See Kotz et al. [38] for more details.

In the above studies, the generalized variable method-based (Tsui and Weerahandi ( [49]) and

Bayesian method-based inferences for the reliability in multicomponent stress-strength system

based on complete or censored data with fixed or random removals have not been discussed in the

literature. Therefore, in this study, we discuss the classical, Bayesian, and generalized inference of

the reliability parameter Rs,k under the progressively type-II right censored samples with uniformly

random removals, i.e., we develop inference procedures for Rs,k =Pr(Xk−s+1:k > Y ) when

X1,X2, ...,Xk and Y are independent Chen random variables and samples available on them are

progressively type-II right-censored with uniformly random removals.

The generalized variable method and its affiliated generalized p-value were recently introduced

by Tsui and Weerahandi [49], and generalized confidence interval (CI) and generalized estimators

by Weerahandi ([53], [50]) presenting them as extensions of – rather than alternatives to – classical

methods of statistical evaluation. The concepts of generalized CI and generalized p-value have been

widely applied to a wide variety of practical settings such as regression, Analysis of Variance

(ANOVA), Analysis of Reciprocals (ANORE), Analysis of Covariance (ANCOVA), Analysis of

Frequency (ANOFRE), Multivariate Analysis of Variance (MANOVA), Multivariate Analysis of

Covariance (MANCOVA), mixed models, and growth curves where standard methods failed to

produce satisfactory results obliging practitioners to settle for asymptotic results and approximate

solutions. For example, see Weerahandi ([52], [51]), Gunasekera ([23], [24], [25], [26], [27]),

Gunasekera et al. [29], and Gunasekera and Ananda [28]. For instructions on constructing

generalized pivotal quantities, see Iyer and Patterson [34].
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CHAPTER 2

THE CLASSICAL METHOD

2.1 Maximum Likelihood Estimator of Rs,k

Let X1,X2, ...,Xk denote strength components that are statistically distributed with C (λ ,β ).

Consider that X1 j:m:n ≤ X2 j:m:n ≤ · · · ≤ Xm j:m:n , j = 1,2, ...,k, is the corresponding progressively

type-II right-censored sample from C (λ ,β ), with censoring scheme

R j = (R1 j,R2 j, ...,Rm j)
T = r j = (r1 j,r2 j, ...,rm j)

T and R= Rm×k = {Rj} j=1,2,...,k =

{Ri j}i=1,2,...,m; j=1,2,...,k = r= rm×k = {rj} j=1,2,...,k = {ri j}i=1,2,...,m; j=1,2,...,k where m denote the

number of failures observed before termination from n items that are on test, and r1 j,r2 j, ...,rm j

denote the corresponding numbers of units randomly removed (withdrawn) from the jth strength

component, where j = 1,2, ...,k. Furthermore, let x1 j:m:n ≤ x2 j:m:n ≤· · · ≤ xm j:m:n , j = 1,2, ...,k

be the observed ordered strengths. Let ri j denote the number of strength components removed at

the time of the ith failure (or the lack of strength) of the jth strength component,

0≤ ri j ≤ n−m−∑
i−1
l=1 rl j, i = 2,3, ...,m−1; j = 1,2, ...,k with 0≤ r1 j ≤ n−m and

rm j = n−m−∑
m−1
l=1 rl j, where ri j’s are non-pre-specified integers and n are pre-specified integers,

where j = 1,2, ...,k. Note that if r1 j,r2 j, ...,rm−1, j = 0, so that rm j = n−m, this scheme reduces to

the conventional type-II right censoring scheme.

Also note that if r1 j = r2 j = ...= rm j = 0, so that m = n, the progressively type-II right

censoring scheme reduces to the case of no censoring scheme (complete sample case). Similarly,

consider that Y1:m:n ≤ Y2:m:n ≤· · · ≤ Ym:m:n is the corresponding progressively type-II right

censored sample from the Chen distribution Y ∼ C (η ,β ), with censoring scheme

R′ = (R′1,R
′
2, ...,R

′
m) = r′ = (r′1,r

′
2, ...,r

′
m); where m denote the number of failures observed before

termination from n items that are on test, and r′1,r
′
2, ...,r

′
m denote the corresponding numbers

8



of units randomly removed (withdrawn) from the test. Furthermore, let y1:m:n ≤ y2:m:n ≤· · ·

≤ ym:m:n be the observed ordered lifetimes. Let r′i denote the number of stress components removed

at the time of the ith failure of the stress component, 0≤ r′i ≤ n−m−∑
i−1
l=1 r′l, i = 2,3, ...,m−1

with 0≤ r′1 ≤ n−m and r′m = n−m−∑
m−1
l=1 r′l , where r′i’s are non-pre-specified integers and m are

pre-specified integers. Note that if r′1,r
′
2, ...,r

′
m−1 = 0, so that r′m = n−m, this scheme reduces to

the conventional type II right censoring scheme. Also note that if r′1 = r′2 = ...= r′m = 0, so that

m = n, the progressively type II right censoring scheme reduces to the case of no censoring scheme

(complete sample case).

The conditional likelihood function of the unknown parameters based on the observed sample is

then given as

L(λ ,η ,β ;x,y|R= r,R′ = r′) = λ
mk

η
m

β
m(k+1)

m

∏
i=1

k

∏
j=1

Ci j

{
xβ−1

i j exp
[
λ

(
1− exp(xβ

i j)
)
+ xβ

i j

]}
×

{
exp{λ [1− exp(xβ

i j)]}
}ri j
×

m

∏
i=1

{
Ciy

β−1
i exp

[
η

(
1− exp(yβ

i )
)
+ yβ

i

]}
×{

exp{η [1− exp(yβ

i )]}
}r′l

(2.1)

and the log-likelihood function is then given by

l(λ ,η ,β ;x,y|R= r,R′ = r′) = nk lnλ +n lnη +n(k+1) lnβ +(β −1)
m

∑
i=1

(
k

∑
j=1

lnxi j + lnyi

)

+

(
m

∑
i=1

k

∑
j=1

xβ

i j + yβ

i

)
−λvβ −ηwβ ,

where x= xm×k = {xi j}i=1,2,...,m; j=1,2,...,k and y = {yi}i=1,2,...,m,

wβ =−∑
n
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)], vβ =−∑
m
i=1(1+ r′i)[1− exp(yβ

i )] ,

Ci j = n−∑
i−1
l=1(1+ rl j), Ci = n−∑

i−1
l=1(1+ r′l), and R= Rm×k = {Rj} j=1,2,...,k =

{Ri j}i=1,2,...,m; j=1,2,...,k,r= rm×k = {rj} j=1,2,...,k = {ri j}i=1,2,...,m; j=1,2,...,k, R′ = (R′1,R
′
2, ...,R

′
m),

and r′ = (r′1,r
′
2, ...,r

′
m).

Now, suppose that the number of units removed at each failure time

Ri j(i = 1,2, ...,m−1; j = 1,2, ...,k) follows a discrete uniform distribution; for brevity, we say
9



Ri j ∼ UD(0,n−m−∑
i−1
l=1 rl j); with probability mass function (pmf)

P(Ri j = ri j|Ri−1, j = ri−1, j,Ri−2, j = ri−2, j, ...,R1 j = r1 j) =
1

n−m−∑
i−1
l=1 rl j +1

,

i = 2,3, ...,m−1; j = 1,2, ...,k,

and

P(R1 j = r1 j) =
1

n−m+1
.

Suppose further that Ri j(i = 1,2, ...,m−1) is independent of xi j:m:n, then the unconditional

likelihood function can be expressed as

L(λ ,β ) = L(λ ,β ;x|R= r)P(Rj = rj),

where P(Rj = rj) = ∏
m−1
i=1 P(Ri j = ri j|Ri−1, j = ri−1, j,Ri−2, j = ri−2, j, ...,R1 j = r1 j), L(λ ,β ;x|R=

r) = λ mkβ m(k+1)
m
∏
i=1

k
∏
j=1

Ci j

{
xβ−1

i j exp
[
λ

(
1− exp(xβ

i j)
)
+ xβ

i j

]}
×
{

exp{λ [1− exp(xβ

i j)]}
}ri j

with Ci j = n−∑
i−1
l=1(1+ rl j).

It is evident that P(Rj = rj) does not depend on the parameters λ and β , and hence the MLEs of

those parameters can be obtained by the conditional likelihood function given in (2.1) directly. In a

similar fashion, we can write the similar expressions for the stress random variable Y. Therefore,

assuming that β is given (or known), the maximum likelihood estimates (MLE) of λ and η can be

derived by solving the equations:

d
dλ

lnL(λ ,η ,β ) =
nk
λ
−∑

n
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)] = 0

and

d
dη

lnL(λ ,η ,β ) =
n
η
−∑

m
i=1(1+ r′i)[1− exp(yβ

i )] = 0

Hence, we can show that the MLEs λ̂ of λ and η̂ of η are, respectively, given by

λ̂ =
mk

−∑
m
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)]
, (2.2)

and

η̂ =
m

−∑
m
i=1(1+ r′i)[1− exp(yβ

i )]
. (2.3)
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Now, let Zi j:m:n = (1+ ri j)[1− exp(xβ

i j)], i = 1,2, ...,m; j = 1,2, ...,k. It is easy to show that

Z1 j:m:n ≤ Z2 j:m:n ≤· · · ≤ Zm j:m:n; j = 1,2, ...,k is a progressively type-II right-censored sample

from the exponential distribution with mean (1/λ ). For a fixed set of R j = r j = (r1 j,r2 j, ...,rm j),

let us consider the following scaled (generalized ) spacings

W1 j = nZ1 j:m:n

W2 j = (n− r1 j−1)(Z2 j:m:n−Z1 j:m:n)

.

.

.

Wi j = (n−∑
i−1
l=1 rl j− (i−1))(Zi j:m:n−Zi j−1:m:n)

.

.

.

Wm j = (n−∑
m−1
l=1 rl j− (m−1))(Zm j:m:n−Zm j−1:m:n)

m
=

k n k

m m
=

Balaksrihnan and Aggarwala [5] proved that the progressively type-II right-censored spacings Wi j, 

for i = 1,2, ...,m; j = 1,2, ...,k are all independent and identically distributed as exponential with

the mean (1/λ ), that is, Wi j ∼ E (1/λ ) = G (1,1/λ ), where E (α) is an exponential distribution 

with a mean (or scale parameter) α, and G (γ,ε) is a gamma distribution with a shape parameter γ

and a scale parameter ε. Then, Wβ = ∑i 1 ∑ j=1Wi j = −∑i=1 ∑ j=1(1 +Ri j)[1 − exp(Xi
β

j:m:n)], ∼

G (mk,1/λ ). In a similar fashion, we can show that

Vβ = ∑i=1 Vi = −∑i 1(1 +R′i)[1 − exp(Yi:
β

m:n)] ∼ G (m,1/η).

It can be seen that (Wβ ,Vβ ) is a complete sufficient statistics for (λ ,η). Let Λ = 2mkλ /L and

∆ = 2mη/E, and Wβ and Vβ have gamma distributions with parameters (mk,λ −1) and (m,η−1),

respectively, we can then show

Λ ∼ χ2
2
mk and ∆ ∼ χ2

2
m,11



where L is the estimator of λ , that is, λ̂ , E is the estimator of η , that is, η̂ , and χ2
υ denotes a central

chi-square distribution with υ degrees of freedom.

Hence, the MLE of Rs,k due to the invariance property of estimators is given by

R̂M
s,k =

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) jE
L(i+ j)+E

=
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) j

1+ L
E (i + j)

=
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 R̂i j (2.4)

where R̂i j = (−1) j/[1+L(i+ j)/E] .

Since 2mk(Lλ )−1 ∼ χ2
2mk and 2m(Eη)−1 ∼ χ2

2m,

R̂i j =
(−1) j

1+ L
E (i + j)Fi j

,

where

Fi j =
Ri j

1−Ri j
×

1− R̂i j

R̂i j
∼ F2mk,2m,

with Fυ1,υ2 denotes a central F-distribution with υ1 numerator df and υ2 denominator df, and R̂′i js

pdf is given by

fR̂i j
(χ) =

1
χ2B(m,m)

(
kη

λ

)mk

×

(
1−χ

χ

)m

(
1+ kη

λ

(
1−χ

χ

))(mk+m)
;

0 ≤ χ ≤ 1;λ ,η > 0,

where B(ζ ,ξ ) is the beta function given by
∫ 1

0 w(ζ−1)(1−w)(ξ−1)dw.

2.2 Uniformly Minimum Variance Unbiased Estimator of Rs,k

In this section, we obtain the uniformly minimum variance unbiased estimator (UMVUE) of Rs,k.

Using the linearity property of the UMVUE, it suffices to find the UMVUE of parametric function 
12



ν(λ ,η) = η/[λ (i+ j)+η ]. We know that

(Wβ =−∑
n
i=1 ∑

k
j=1(1+Ri j)[1− exp(Xβ

i j )],Vβ =−∑
m
i=1(1+R′i)[1− exp(Y β

i )]) is a complete

sufficient statistic for (λ ,η) and their densities are gamma distributions with parameters (mk,λ )

and (m,η), respectively, we take (Wβ ,Vβ ) = (ρ̃, ϕ̃). To derive the UMVUE of Rs,k, we need the

following lemma:

Lemma 1: Define

Ψ(ρ̃∗, ϕ̃∗) =

 1, if ϕ̃∗ > (i+ j)ϕ̃∗

0, if ϕ̃∗ ≤ (i+ j)ϕ̃∗
,

where ρ̃∗ = (1+R11)[exp(Xβ

11)−1] and ϕ̃∗ = (1+R′1)[exp(Y β

1 )−1]). Then, Ψ(ρ̃∗, ϕ̃∗) is an

unbiased estimator of ν(λ ,η).

Proof: Notice that ρ̃∗ and ϕ̃∗ are independent and follow exponential distributions with parameters

λ and η , respectively. Then, we can obtain that

E(Ψ(ρ̃∗, ϕ̃∗)) = P(ρ̃∗ > (i+ j)ϕ̃∗)

= λη

∫
∞

0

∫ ρ̃∗
(i+ j)

0
e−λρ̃∗e−ηϕ̃∗dϕ̃∗dρ̃∗

= λ

∫
∞

0
e−λρ̃∗

[
1− e

ρ̃∗
(i+ j)

]
dρ̃∗

= λ

[
1
λ
− 1

λ +η/(i+ j)

]
=

η

λ (i+ j)+η

This completes the proof of the lemma.

Now, the UMVUE of ν(λ ,η), say ν̂(λ ,η), can be obtained by using the Lehmann-Scheffé

Theorem and it is given by

ν̂(λ ,η) = E(Ψ(ρ̃∗, ϕ̃∗)|ρ̃ = ρ, ϕ̃ = ϕ)

= P(ρ̃∗ > (i+ j)ϕ̃∗|ρ̃ = ρ, ϕ̃ = ϕ)

=
∫

Φ

∫
f ∗
ρ̃∗|ρ̃=ρ

(ρ∗|ρ) f ∗
ϕ̃∗|ϕ̃=ϕ

(ϕ∗|ϕ)dϕ̃∗dρ̃∗

where Φ{(ρ∗,ϕ∗);0 < ρ∗ < ρ,0 < ϕ∗ < ϕ,ϕ∗ > (i+ j)ϕ∗}. The double integral in Equation ( )

can be discussed in three cases, That is,
13



Case(i) φ(i+ k)< ρ, Case(ii) φ(i+ k)> ρ, and Case(iii) φ(i+ k) = ρ. Therefore,

we have

Case (i):

ν̂(λ ,η) =
(m−1)(mk−1)

ρϕ

∫
ϕ

0

∫
ρ

ϕ∗(i+ j)

(
1− ρ∗

ρ

)mk−2(
1− ϕ∗

ϕ

)m−2

dρ
∗dϕ

∗

=
(m−1)

ϕ

∫
ϕ

0

(
1− ϕ∗

ϕ

)m−2[
1− ϕ∗(i+ j)

ρ

]mk−1

dϕ
∗

=
mk−1

∑
r=0

(−1)r
[
(i+ j)ϕ

ρ

]r

 mk−1

r


 m+ r−1

r


Case (ii):

ν̂(λ ,η) =
(m−1)(mk−1)

ρϕ

∫
ρ

0

∫ ρ∗
i+ j

0

(
1− ρ∗

ρ

)mk−2(
1− ϕ∗

ϕ

)m−2

dϕ
∗dρ

∗

=
mk−1

ρ

∫
ρ

0

(
1− ρ∗

ρ

)mk−2[
1−
(

1− ϕ∗

(i+ j)ϕ

)m−1]
dρ
∗

= 1−
m−1

∑
r=0

(−1)r
[

ρ

ϕ(i+ j)

]r

 m−1

r


 mk+ r−1

r


Case (iii):

ν̂(λ ,η) =
(m−1)(mk−1)

ρϕ

∫
ϕ

0

∫
ρ

ϕ∗(i+ j)

(
1− ρ∗

ρ

)mk−2(
1− ϕ∗

ϕ

)m−2

dρ
∗dϕ

∗

=
(m−1)

ϕ

∫
ϕ

0

(
1− ϕ∗

ϕ

)m−2[
1− ϕ∗(i+ j)

ρ

]mk−1

dϕ
∗

=
(m−1)

ϕ

∫
ϕ

0

(
1− ϕ∗

ϕ

)mk+m−3

dϕ
∗

=
m−1

mk+m−2

Hence, the UMVUE of Rs,k is now given by
14



R̂U
s,k =

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 ν̂(λ ,η)

2.3 Asymptotic distribution of R̂s,k

Suppose that δ =(λ ,η) is a vector of parameters of interest and δ̂ = (L,E) be its MLE.

Therefore, it is known that Rs,k is a function of δ = (λ ,η), i.e., Rs,k = g(δ ), then by the invariance

property of MLEs, R̂s,k = g(δ̂ ) = g(L,E). The classical pivotal quantity, denoted by T c
Rs,k

(X,Y,δ )

or simply by T c
Rs,k

, where X= Xm×k = {Xi j}i−1,2,...,m; j=1,2,...,k and Y = {Y}i=1,2,...,m, based on the

large sample procedure for testing

H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 , where R0 is a given quantity, (2.5)

is given by

T c
Rs,k

(X,Y,δ ) =T c
Rs,k

= (R̂s,k−Rs,k)
√

I∗m(Rs,k)−1 D−→N(0,1),

here D−→ denotes the “convergence in distribution” and σ2
R̂s,k

= I∗m(Rs,k)
−1 is the asymptotic

variance (or the mean squared error (MSE) for unbiased R̂s,k) of R̂s,k with I∗m(Rs,k) being the the

Fisher information (or the expected Fisher information) matrix. I∗m(Rs,k) for the new

parameterization Rs,k is obtained using the chain rule as

I∗n (Rs,k) = J(Rs,k)
T Im(δ ))J(Rs,k),

where J(Rs,k) is the Jacobian matrix with elements J(Rs,k) = (∂Rs,k/∂λ ,∂Rs,k/∂∂η) and Im(δ ) is

the observed information matrix of δ , whose i jth element is given by Im(δ )i j=−E[∂ 2l (δ )/∂ i∂ j],

for i, j = λ ,η , with l(δ ) = l(λ ,η ;x,y) as in (2.2). Therefore, the asymptotic variance of R̂s,k is

given by

σ
2
R̂s,k

=

(
∂Rs,k

∂λ

)2
λ 2

mk
+

(
∂Rs,k

∂η

)2
η2

m
,
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where

∂Rs,k

∂λ
=

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) j+1η(i+ j)
(λ (i + j) + η)2 and

∂Rs,k

∂η
=

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) jλ (i+ j)
(λ (i + j) + η)2 .

The Asymptotic variance as well as the asymptotic one-and two-sided confidence intervals for

Rs,k can also be achieved through the following procedure. Let us consider

X= {Xi j}i−1,2,...,m; j=1,2,...,k and Y = (Y )i=1,2,...,m. To compute the confidence interval of Rs,k,

consider the log-likelihood function of the observed sample, which is given by

l(δ ) = l(λ ,η ,β ;x,y) = mk lnλ +m lnη +m(k+1) lnβ +(β −1)
m

∑
i=1

(
k

∑
j=1

lnxi j + lnyi

)

+

(
m

∑
i=1

k

∑
j=1

xβ

i j + yβ

i

)
−λvβ −ηwβ ,

We denote the expected Fisher information matrix of δ =(λ ,η) as I(δ ) = E[I†(δ )], where

I
†(δ ) =

[
I†

i j
]

i, j = 1,2 =
[
−∂ 2l(δ )

∂ i∂ j

]
i, j =λ ,η

is the observed information matrix. That is

I
†(δ ) =−

 ∂ 2l(δ )
∂ 2λ

∂ 2l(δ )
∂λ∂η

∂ 2l(δ )
∂η∂λ

∂ 2l(δ )
∂ 2η

 .
The p-value for testing hypotheses in (2.5), based on the asymptotic distribution of Rs,k, is given by

pRs,k
= 1−Φ(qR̂s,k

), (2.6)

where qR̂s,k
=
(
r̂s,k−R0

)
s−1

R̂s,k
, and qc

R̂s,k
, r̂s,k, respectively, are the observed values of

QR̂s,k
=
(

R̂s,k−R0

)
S−1

R̂s,k
and R̂s,k; Φ(.) is the distribution function of the standard normal distributi

on.

A 100(1− γ)% , asymptotic confidence interval (ACI) for Rs,k, based on the above asymptotic

distribution, is given by

ACI1−γ

Rs,k
=
(

r̂s,k−Zγ/2sR̂s,k
, r̂s,k +Zγ/2sR̂s,k

)
(2.7)
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where Zη is η th quantile (or 100η th percentile) of the standard normal distribution. A one-sided

100(1− γ)% asymptotic lower confidence interval (ALCI) for Rs,k is given by

ALCI1−γ

Rs,k
=
(

r̂s,k, r̂s,k +Zγ/2sR̂s,k

)
(2.8)

It is clear that the confidence intervals for Rs,k based on the asymptotic results do not perform

very well for small sample sizes. So, two confidence intervals based on the parametric bootstrap

methods for estimating Rs,k are proposed: (i) percentile bootstrap method (Efron [15]) (we call it

from now on as boot-p), and (ii) studentized bootstrap method or bootstrap-t method (we call it for

now on as boot-t) (Hall [31]).

(i) Percentile Bootstrap Method (Efron [15])

Algorithm 1:

For given (λ ,η , β ), (m,n,k,s),R= r= {ri j}i=1,2,...,m; j=1,2,...,k and R′ = r′ = (r′1,r
′
2, ...,r

′
m) :

Step 1: Generate Chen xi j from C (λ ,β )∼ λβxβ−1
i j exp{λ [1− exp(xβ

i j)]+ xβ

i j}

for i = 1,2, ...,n; j = 1,2, ...,k, and yi from C (η ,β )∼ ηβyβ−1
i exp{η [1− exp(yβ

i )]+ yβ

i }

for i = 1,2, ...,m,

Step 2: From the samples x= {xi j}i=1,2,...,m; j=1,2,...,k and y = (y1,y2...,ym),

compute the estimates of (λ ,η), say (l,e):

l = mkw−1
β

, where wβ =−∑
m
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)], and

e = mv−1
β
, where vβ =−∑

m
i=1(1+ r′i)[1− exp(yβ

i )].

Step 3 : Generate bootstrap Chen x∗i j from C (l,β )∼ lβx∗β−1
i j exp{l[1− exp(x∗βi j )]+ x∗βi j }

for i = 1,2, ...,m; j = 1,2, ...,k, and y∗i from

C (e,β )∼ eβy∗β−1
i exp{e[1− exp(y∗βi )]+ y∗βi } for i = 1,2, ...,m.

Then, compute bootstrap sample estimates of λ and η :

l∗ = mkw∗−1
β

, where wβ∗=−∑
m
i=1 ∑

k
j=1(1+ ri j)[1− exp(x∗βi j )], and

e∗ = mv∗−1
β

, where v∗
β
=−∑

m
i=1 ∑

k
j=1(1+ r′i)[1− exp(y∗βi )].

Based on x
∗ {x∗i j}i=1,2,...,m; j=1,2,...,k and y = (y∗1,y

∗
2...,y

∗
m) compute the bootstrap sample
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estimate of Rs,k , denoted by R̂∗s,k, using

BPR̂∗s,k =
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) jê∗

l̂∗(i + j) + ê∗
,

Step 4: Repeat step 3, N boot times and get the bootstrap distribution given by 1R̂∗s,k,
2 R̂∗s,k, ...,

NR̂∗s,k. The bootstrap distribution of the statistic R̂∗s,k that is based on many resamples

represents the sampling distribution of the statistic R̂∗s,k that is based on many samples.

Step 5: After ranking from bottom to top, let us denote these bootstrap values as (1)R∗s,k,
(2)R∗s,k,

...,(N)R∗s,k. Let G(R∗s,k) = P(R∗s,k ≤ r∗s,k), where r∗s,k is the observed value of R∗s,k, be the

cumulative distribution of R∗s,k. Define BPR∗s,k = G−1(ξ ) for a given ξ . The approximate

100(1− γ)% percentile-bootstrap CI (PBCI) for Rs,k is then given by

PBCI =
(

BPR̂∗s,k
(

γ

2

)
,BP R̂∗s,k

(
1− γ

2

))
(2.9)

When the distributions are skewed we need do some adjustment. One method which is

proved to be reliable is BCa method ( BCa stands for Bias-corrected and accelerated).

For the details please refer to DiCiccio and Efron ( [14]). When the distribution of R∗s,k

is skewed, we instead use the q.low and q.up percentiles of the bootstrap replicates of

R∗s,k to calculate the lower bound and upper bound of the confidence intervals. Formally,

for confidence level 95%, the bootstrap bias-corrected and accelerated CI(BBCACI) for

Rs,k is

BBCACI = (q.low,q.up) , (2.10)

where

q.low = Φ

(
z0 +

z0 + z0.025

1−b(z0 +az0.025)

)
and

q.up = Φ

(
z0 +

z0 + z0.975

1−b(z0 +az0.975)

)
,

here zγ is the γth quantile of standard normal distribution, z0 and b, namely bias-

correction and acceleration, are two parameters to be estimated, by (2.8) and (6.6)
18



in DiCiccio and Efron [14], respectively.

(ii) Bootstrap-t Method (Hall [31]) : The method was suggested in Efron [15], but some

poor numerical results reduced its appeal. Hall’s [31] paper showing the bootstrap-t’s

good second-order properties has revived interest in its use. Babu and Singh [6] gave

the first proof of second-order accuracy for the bootstrap-t.

Algorithm 2:

Step 1: Do steps 1–3 in Algorithm 1. Also, compute the following statistic

t∗ =

√
n(r̂∗s,k− r̂s,k)

s
R∗s,k

,

where

T ∗ =

√
n(R̂∗s,k− R̂s,k)

S
R∗s,k

,

and S
R∗s,k

is the standard deviation of the bootstrap distribution and s
R∗s,k

is its observed

value. S
R∗s,k

is obtained using the Fisher (or expected Fisher) information matrix.

Moreover, r∗s,k is the estimate (or the observed estimator) of Rs,k based on the bootstarp

resamples and r̂s,k is the estimate of Rs,k based on the original observed sample, and

R̂∗s,k is the estimator of Rs,k based on the bootstrap random resamples and R̂s,k is the

estimator of Rs,k based on the original random sample.

Step 2: Compute N bootstrap replications of t∗. Denote t∗ by t∗1 , ..., t
∗
N .

Step 3: After ranking from bottom to top, let us denote these bootstrap values as t∗(1), ..., t
∗
(N).

Step 4: For t∗ values obtained in step 1, determine the upper and lower bounds of the 100(1−

γ)% confidence interval of R∗s,k as follows:

Let H(t∗) = P(T ∗ ≤ t∗) be the cumulative distribution function of T ∗. For a given ξ ,

define

BT R̂∗s,k (ξ ) = r̂∗s,k +H−1(ξ )
s

R∗s,k√
n
.

The 100(1− γ)% bootstrap-t CI (BTCI) for Rs,k is then given by

BTCI =
(

BT R̂∗s,k
(

γ

2

)
,BT R̂∗s,k

(
1− γ

2

))
(2.11)
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CHAPTER 3

THE GENERALIZED VARIABLE METHOD

3.1 Review

Motivated by a generalized test given by Weerahandi [54], Tsui and Weerahandi [49] formally

introduced the notion of generalized p-values. Weerahandi [53] extended the classical definition of

confidence intervals to obtain the generalized confidence intervals so that one can obtain reasonable

interval estimates for situations where the classical approach fails or yield results lacking small

sample accuracy. Weerahandi [50] introduced the notion of generalized point estimators.

3.2 Generalized inference for Rs,k

Let XDATA = (X,Y), where X= {Xi j}i=1,2,...,m; j=1,2,...,k and Y = (Y1, ...,Ym), and let

xDATA = (x,y), where x= {xi j}i=1,2,...,m; j=1,2,...,k and y = (y1, ...,ym), be its observed value. The

generalized pivotal quantity, denoted by R(XDATA;xDATA,δ ,β ), or generalized point estimator,

denoted by Q(XDATA;xDATA, δ , β ), for Rs,k where δ = (λ ,η), can then be obtained by replacing

λ ,η in Rs,k given in 1.1 with their generalized variables R(X;x,λ ,β ) and R(Y;y,η ,β ) as:

R(XDATA;xDATA,δ ,β ) =
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j


× (−1)R(Y;y,η ,β )

R(X;x,λ ,β )(i + j) + R(Y;y,η ,β )
(3.1)

where R(X;x,λ ,β ) = 2mk(lΛ)−1 is the generalized pivotal quantity of λ and

R(Y;y,η ,β ) = 2m(e∆)−1 is the generalized pivotal quantity of η with Λ = 2mk(Lλ )−1 ∼ χ2
2mk

and ∆ = 2m(Eη)−1 ∼ χ2
2m, and e being the observed value of E, and l being the observed value of

L.
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We are now interested making inferences such as point and interval estimation of, and statistical

tests for, Rs,k based on the generalized variable method. The random variable

Q(XDATA;xDATA,δ ,β ) is a generalized point estimator which satisfy the three conditions to be a

bona fide generalized point estimator. Therefore, this would also serve as a generalized pivotal

quantity R(XDATA;xDATA,δ ,β ), and T (XDATA;xDATA,δ ,β ) = R(XDATA;xDATA,δ ,β )−Rs,k would

be a generalized test variable. First, for fixed xDATA, the distribution FT (t) of

T (XDATA;xDATA,δ ,β ), where FT (t) = Pr[T (XDATA;xDATA,δ ,β )≤ t] = Pr[R(XDATA;

xDATA,δ ,β )≤ t +Rs,k] =FR(t +Rs,k), with FR(·), being the distribution function of R(XDATA;

xDATA,δ ,β ), is free of nuisance parameters. Secondly, at XDATA = xDATA,

T (xDATA;xDATA,δ ,β ) =R(xDATA;xDATA,δ ,β )−Rs,k

=
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

×
(−1)R(y;y,η ,β )

R(x;x,λ ,β )(i + j) + R(y;y,η ,β )
−Rs,k

=
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) jη

λ (i + j) + η
−

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) jη

λ (i + j)+η

= 0

thus T (XDATA;xDATA,δ ,β ) is free of any unknown parameters. Thirdly, FT (t) =

Pr[T (XDATA;xDATA,δ , β )≤ t] = Pr[R(XDATA;xDATA,δ ,β )≤ t +Rs,k] = FR(t +Rs,k) is a

decreasing function of Rs,k. Hence, Q(XDATA;xDATA,δ ,β ), R(XDATA;xDATAδ ,β ), and

T (XDATA;xDATA,δ ,β ) are, respectively, bona fide generalized point estimator of Rs,k , generalized

pivotal quantity for constructing interval estimation for Rs,k, and the generalized test variable for

testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 , where R0 is a known quantity.
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3.3 Generalized confidence interval for Rs,k

Given the specified significance level γ , a (1− γ) two–sided generalized confidence interval for

Rs,k can be derived as follows:

For mathematical tractability and simplicity, we write Rλ = R(X;x,λ ,β ) = 2mk(lΛ)−1 and

Rη = R(Y;y,η ,β ) = 2m(e∆)−1 with Λ = 2mk(Lλ )−1 ∼ χ2
2mk and ∆ = 2m(Eη)−1 ∼ χ2

2m , and

L = mk/Wβ with Wβ = ∑
m
i=1 ∑

k
j=1Wi j =−∑

n
i=1 ∑

k
j=1(1+Ri j)[1− exp(Xβ

i j )], and E = m/Vβ

withVβ = ∑
m
i=1Vi =−∑

m
i=1(1+R′i)[1− exp(Y β

i )]∼ G (m,1/η). Hence, a generalized pivotal

statistic for Rs,k in 1.1 is given by

RRs,k, = R(xDATA;xDATA,β ,λ ) =
k

∑
i = s

k − i

∑
j = 0

 k

i

 k− i

j

 (−1) jRη

Rλ (i + j) + Rη
. (3.2)

Let R
Rs,k,

γ/2 = R
Rs,k,

γ/2 (xDATA;d,β ) and R
Rs,k,

1−γ/2 = R
Rs,k
1−γ/2(xDATA,d,β ) where d = δ̂obs = (l,e) satisfy

P[R
Rs,k,

γ/2 ≤RRs,k, ≤ R
Rs,k,

1−γ/2] = 1− γ

The
(

R
Rs,k,

γ/2 ,R
Rs,k,

1−γ/2

)
is a 100(1− γ)% lower confidence limit for Rs,k. That is, generalized

confidence bounds for Rs,k is CIG,
Rs,k ,

=
(

R
Rs,k,

γ/2 ,R
Rs,k,

1−γ/2

)
.

3.4 Generalized testing procedure for Rs,k

Construct a statistical testing procedure to assess whether the reliability function adheres to the

required level. The one-sided hypothesis testing for Rs,k is obtained using the generalized test

variable T (XDATA;xDATA,δ ,β ) = R(XDATA;xDATA,δ ,β )−Rs,k or simply T Rs,k = RRs,k−Rs,k.

Assuming that the required reliability is larger than R0, where R0 denotes the target value, the null

hypothesis H0 : Rs,k ≤ R0 and the alternative hypothesis Ha : Rs,k > R0 are constructed. Then, the

generalized p-value, denoted by pg , is given by

pg = Pr

 k

∑
i = s

k − i

∑
j = 0

 k

i

 k− i

j

 (−1)R(Y;y,η ,β )

R(X;x,λ ,β )(i + j) + R(Y;y,η ,β )
> R0

 . (3.3)
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This p-value can be either computed by numerical integration exact up to a desired level of

accuracy or well approximated by a Monte Carlo method. When there are a large number of

random numbers from various random variables, the latter method is more desirable and

computationally more efficient. p is an exact probability of a well-defined extreme region of the

sample space and measures the evidence in favor of the null hypothesis. This is an exact test in

significance testing. In fixed level testing, one can use this p-value by rejecting the null hypothesis,

if pg < γ , where γ is a desired nominal level .

The following algorithm is useful in constructing pg.

Algorithm 3

Step 1: Given β ,s,k,γ,m,n,R0, R= (R1,R2, ...,Rk),and R′ = (R′1,R
′
2, ...,R

′
m), where

R j = (R1 j,R2 j, ...,Rm j) for j = 1,2, ...,k.

(a) The generation of data Ui j is by the uniform distribution U(0,1), for i = 1,2, ...,m;

j = 1,2, ...,k.

(b) By the transformation of Zi j = β−1ln
[
1−λ−1ln(Ui j)

]
, i = 1,2, ...,m; j = 1,2, ...,k.

{Zi j}i=1,2,...,m; j=1,2,...,k is a random sample from the C (λ ,β ) .

(c) Set Xi j:m:n =
Z1 j
m +

Z2 j
(m−R1 j−1) + ...+ Zi j

[m−∑
i−1
l=1 Rl j−i+1]

, for i = 1,2, ...,m; j = 1,2, ...,k

{Xi j:m:n}i=1,2,...,m; j=1,2,...,k is the progressively type II right censored sample from a

two-parameter C (λ ,β ).

Step 2: Compute the maximum likelihood estimate of λ

l = mk/wβ , where wβ = ∑
m
i=1 ∑

k
j=1 wi j =−∑

n
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)],

Step 3: (a) Similarly, generate data U ′i from the uniform distribution U(0,1), for i = 1,2, ...,m.

(b) By the transformation of Z′i = β−1ln
[
1−η−1ln(U ′i )

]
, i = 1,2, ...,m,

{Z′i}i=1,2,...,m is a random sample from the C (η ,β ) .

(c) Set Yi:m:n =
Z′1
m +

Z′2
(m−R′1−1) + ...+ Z′i

[m−∑
i−1
l=1 R′l−i+1]

, for i = 1,2, ...,m.

{Yi:m:M}i=1,2,...,m is the progressively type II right censored sample from a two-

parameter C (η ,β ).

Step 4: Compute the maximum likelihood estimate of η

e = m/vβ , where vβ = ∑
m
i=1 vi =−∑

m
i=1(1+ r′i)[1− exp(yβ

i )].23



Step 5: For g = 1 : G

(a) Generate Λ∼ χ2
2mk and ∆∼ χ2

2n

(b) Compute the quantities Rλ = 2mk(lΛ)−1 and Rη = 2m(e∆)−1

(c) Compute RRs,k,=
k
∑

i = s

k − i
∑

j = 0

 k

i


 k− i

j

 (−1)Rη

Rλ (i + j) +Rη

(end g loop)

Generalized p-value is estimated by the proportion of RRs,k which are greater than R0. The

100(1− γ/2)th and 100γ/2th percentile of RRs,k ; R
Rs,k
γ/2 and R

Rs,k
1−γ/2, respectively; are the lower and

upper bounds of the two-sided 1− γ confidence interval. That is, CIG
Rs,k

=
(

R
Rs,k
γ/2 ,R

Rs,k
1−γ/2

)
.

Coverage probabilities of the generalized confidence intervals and powers of generalized tests are

computed using the Monte Carlo method given in the following algorithm.

Algorithm 4

For given δ = (λ ,η),β ,k,γ,m,n,R0, R= (R1,R2, ...,Rk),and R′ = (R′1,R
′
2, ...,R

′
m),

where R j = (R1 j,R2 j, ...,Rn j) for j = 1,2, ...,k

For p = 1 : P

1. Generate Λ∼ χ2
2mk and ∆∼ χ2

2n

2. Set λ = 2mk(lΛ)−1 and η = 2m(e∆)−1,

3.Use Algorithm 3 to construct a (1− γ) confidence interval Cp,

ξRs,k
=

 1, if Cp contains Rs,k

0, if Cp does not contain Rs,k

,

4.Use Algorithm 3 again to compute the generalized p-value, pg.

ηRs,k
=

 1, if pg < γ

0, if pg > γ

.

(end p loop)

The proportion 1
P ∑

P
p =1 ξRs,k

is the estimated coverage probability of the generalized confidence

interval. It is evident that sometimes the coverage of the generalized confidence interval may not

equal to the nominal level. But, when generalized confidence interval reduces to traditional

classical confidence intervals, theoretical results are available on coverage properties of generalized

confidence intervals. The proportion 1
P ∑

P
p =1 ηR is the estimated power of the generalized test.
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CHAPTER 4

THE BAYESIAN METHOD

4.1 Review

We deal with the problem of estimating the parameters λ and η , and the reliability function Rs,k

of C distribution under mainly SE (squared error) and LINEX (linear exponential) loss functions.

Similar procedure can be adopted for estimating the reliability function Rs,k under various other

loss functions as well. In this section, we assume that the parameters (λ ,η) are random variables

and have statistically independent gamma prior distributions with hyperparameters (ai,bi), i = x,y,

respectively, that is, prior distributions for λ and η are taken to be G (ai,bi), i = x,y. The pdf of a

gamma random variable χ with parameters (ai,bi) is

f (χ) =
bai

i
Γ(ai)

χ
ai−1e−biχ , χ > 0,ai,bi > 0. (4.1)

Then, the joint posterior density function of (λ ,η) turns out to be

π(λ ,η |β ,x,y) =
(b1 +wβ )

mk+a1(b2 + vβ )
m+a2

Γ(mk+a1)Γ(m+a2)
λ

mk+a1−1
η

m+a2−1e−λ (b1+wβ )−η(b2+vβ )

where x= {xi j}i=1,2,...,m; j=1,2,...,k;y = {yi}i=1,2,...,m

;wβ = ∑
m
i=1 ∑

k
j=1 wi j =−∑

n
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)],

vβ = ∑
m
i=1 vi =−∑

m
i=1(1+ r′i)[1− exp(yβ

i )] with r j = (r1 j,r2 j, ...,rm j) and

r′ = (r′1,r
′
2, ...,r

′
m), j = 1,2, ...,k. Furthermore, the marginal posterior densities of λ and η have

gamma distributions with parameters (mk+a1,b1 +wβ ) and (m+a2,b2 +vβ ). The Bayes estimate

of Rs,k under the SE loss function, say R̂B,SE
s,k , is

R̂B,SE
s,k = Eπ(λ ,η |β ,xDATA)[Rs,k|xDATA]

=
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

(−1) j
∫

∞

0

∫
∞

0

η

λ (i + j) + η
×

π(λ ,η |β ,xDATA)dλdη ,
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where xDATA = (x,y) with x= {xi j}i=1,2,...,m; j=1,2,...,k and y = (y1, ...,ym) is the observed (or

realized) value of XDATA = (X,Y) with X= {Xi j}i=1,2,...,n; j=1,2,...,k and Y = (Y1, ...,Ym).

We consider a one-to-one transformation u1 = η/(λ (i+ j)+η) and u2 = λ (i+ j)+η . Then,

0 < u1 < 1, 0 < u2 < ∞,λ = u2(1−u1)/(i+ j),η = u1u2 and the Jacobian of (u1,u2) is J(u1,u2)

=−u2/(i+ j). Therefore, the double integral in ( 4.3) can be rewritten as

(b1 +wβ )
nk+a1(b2 + vβ )

m+a2

Γ(mk+a1)Γ(m+a2)(i+ j)mk+a1

{∫ 1

0

∫
∞

0
um+a2

1 (1−u1)
nk+a1−1up−1

2 ×

exp
(
−u2

{
(1−u1)(b1 +wβ )

(i+ j)
+u1(b2 + vβ )

})
du1du2

}
=

(1− z)m+a2

B(mk+a1,m+a2)

∫ 1

0
um+a2

1 (1−u1)
mk+a1−1(1−u1z)−pdu1,

where z = 1− ((b2 + vβ )(i+ j)/(b1 +wβ )) and p = mk+a1 +m+a2. The integral representation

of the hypergeometric series is (this was given by Euler in 1748 and implies Euler’s and Pfaff’s

hypergeometric transformations. See Section 9.1 in Gradshteyn and Ryzhik [22]

2F1(α,β ;γ,z) =
1

B(β ,γ−β )

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−αdt,

|z|< 1or |z|= 1,Re(γ)> Re(β )> 0.

Notice that the hypergeometric series converges in the unit circle |z|< 1. Then,

R̂B
s,k =



k
∑

i = s

k − i
∑

j = 0

 k

i

 k− i

j

 (−1) j(1−z)(m+a2)(m+a2)
p ×2 F1(p,m+a2 +1; p+1,z)

if |z|< 1

k
∑

i = s

k − i
∑

j = 0

 k

i

 k− i

j

 (−1) j(m+a2)

(1−z)mk+a1 p
×2 F1(p,mk+a1; p+1, z

z−1 )

if z <−1.

(4.2)
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The Bayes estimate of Rs,k under the LINEX loss function, say R̂B,LINEX
s,k , is

R̂B,LINEX
s,k =Eπ(λ ,η |β ,xDATA)[exp{cRs,k|xDATA}]

=

∞∫
0

∞∫
0

exp

−λ (b1 +wβ )−η(b2 + vβ )+
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

×
(−1) j η

λ (i + j) + η
×

(b1 +wβ )
mk+a1(b2 + vβ )

m+a2

Γ(mk+a1)Γ(m+a2)
×

α
mk+a1−1
1 η

m+a2−1dλdη , (4.3)

where xDATA = (x,y) with x= {xi j}i=1,2,...,n; j=1,2,...,k and y = (y1, ...,ym) is the observed (or

realized) value of XDATA = (X,Y) with X= {Xi j}i=1,2,...,m; j=1,2,...,k and Y = (Y1, ...,Ym).

It is easily observed that all these estimates are in the form of ratio of two integrals for which

simplified closed forms are not available. Thus to evaluate these estimates, in practice, intensive

numerical techniques are required. Instead, one can apply approximation methods to evaluate these

estimates such as Lindley’s approximation and Markov Chain Monte Carlo (MCMC). However, the

Bayes estimate under the SE loss function is obtained in the closed form, and alternative methods

are also used to see how good the approximate methods compared with the exact one. We

completely use the Lindley’s method for the Bayes estimate under the LINEX loss function as has

no closed forms. If these result are close, then it will be encouraging to use the approximate

methods when the exact form can not be obtained in the all parameters are unknown case. These

estimators will be compared in the simulation study section. Next, we give the Bayes estimates of

Rs,k using the Lindley’s approximation and MCMC method.

4.2 Lindley’s approximation

Lindley [40] introduced an approximate procedure for the computation of the ratio of two

integrals. This procedure, applied to the posterior expectation of the function U(θ) for a given x, is

E(U(θ)|x) =
∫

Θ
u(θ)eQ(θ)dθ∫
Θ

eQ(θ)dθ
,
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where Q(θ) = l(θ)+ ρ(θ), l(θ) is the logarithm of the likelihood function and ρ(θ) is the

logarithm of the prior density of θ , θ = (θ1,θ2, ...,θL), i, j,k, l = 1,2, ...,L, and Θ is the parameter

space. Using Lindley’s approximation, E(U(θ)|x) is approximately estimated by

E(U(θ)|x) =

∣∣∣∣∣u+ 1
2 ∑

i
∑

j
(ui j +2uiρ j)σi j +

1
2 ∑

i
∑

j
∑
k

∑
l

Li jkσi jσklul

∣∣∣∣∣
θ̂

+terms of order n−2 or smaller,

where θ = (θ1,θ2, ...,θL), i, j,k, l = 1,2, ...,L, θ̂ is the MLE of θ , u = u(θ), ui = ∂u/∂θi, ui j

= ∂ 2u/∂θi∂θ j,Li jk = ∂ 3l/∂θi∂θ j ∂θk, ρ j = ∂ρ/∂θ j and σi j = (i, j)th element in the inverse of

the matrix {−Li j = ∂ 2l/∂θi∂θ j} and σkl = (k, l)th element in the inverse of the matrix

{−Lkl = ∂ 2l/∂θk∂θl}, all evaluated at the MLE of the parameters.

For the two parameter case θ = (θ1,θ2), Lindley’s approximation leads to

ûLin = u(θ)+
1
2
[B+Q30B12 +Q21C12 +Q12C21 +Q03B21] ,

where B = ∑
2
i=1 ∑

2
j=1 ui jτi j,Qi j = ∂ i+ ju/∂ iθ1∂ jθ2 for i, j = 0,1,2,3, i+ j = 3,ui = ∂u/∂θi,ui j

= ∂ 2u/∂θi∂θ j for i, j = 1,2, and Bi j = (uiτii +u jτi j)τii,Ci j = 3uiτiiτi j +u j(τiiτi j +2τ2
i j)τi j for

i 6= j. τi j is the (i, j)th element in the inverse of matrix Q∗ = (Q∗i j), i, j = 1,2 such that Q∗i j =

∂ 2Q/∂θi∂θ j. The approximate Bayes estimate ûLin is evaluated at θ̃ = (θ̃1, θ̃2) which is the mode

of the posterior density.

In our case, θ = (θ1,θ2) = α = (λ ,η) and

Q = lnπ(λ ,η |β ,x,y) ∝ (mk+a1−1) lna1 +(m+a2−1) lna2−a1(b1 +wβ )−α2(b2 + vβ ),

where x = {xi j}i=1,2,...,n; j=1,2,...,k;y = {yi}i=1,2,...,m

;wβ = ∑
m
i=1 ∑

k
j=1 wi j =−∑

n
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)],

vβ = ∑
m
i=1 vi =−∑

m
i=1(1+ r′i)[1− exp(yβ

i )] with r j = (r1 j,r2 j, ...,rn j) and

r′ = (r′1,r
′
2, ...,r

′
m), j = 1,2, ...,k.
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The posterior mode of (λ ,η) is obtained from Q and is given by

λ̃ =
mk+a1−1

b1 +wβ

and η̃ =
m+a2−1

b2 + vβ

.

We obtain that τ11 = λ 2/(mk+a1−1),τ22 = η2/(m+a2−1),τ12

= τ21 = 0,Q12 = Q21 = 0,Q03 = 2/(m+a2−1)/η3,Q30 = 2/(nk+a1−1)/λ 3,B12 =

u1τ2
11,B21 = u2τ2

22,B = u11τ11 +u22τ22, and

u1 =
∂Rs,k

∂λ
=

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 (−1) j+1(i + j)η
(λ (i + j) + η)2 ,

u2 =
∂Rs,k

∂η
=

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 λ (i + j)(−1) j

(λ (i + j) + η)2 ,

u11 =
∂ 2Rs,k

∂ 2λ 2 =
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 2(−1) j(i + j)2η

(λ (i + j) + η)3 ,

u12 = u21 =
∂ 2Rs,k

∂λ∂η
=

k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

× 2(−1) j+1(i + j)λ (λ (i + j) − η)

(λ (i + j) + η)3 ,

u22 =
∂ 2Rs,k

∂ 2η2 =
k

∑
i = s

k − i

∑
j = 0

 k

i


 k− i

j

 2(−1) j+1(i + j)λ
(λ (i + j) + η)3 .

Therefore, the approximate Bayes estimate of the reliability function Rs,k under SE loss function is

given by

R̂B,Lin(SE)
s,k = Rs,k

∣∣∣
(λ ,η)=(λ̃ ,η̃)

+
1
2

[
λ 2u11 +2ηu1

nk+λ −1
+

η2u22 +2ηu2

m+η−1

]
(λ ,η)=(λ̃ ,η̃)

,

where u1, u2,u11, and u22 are given above.
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With the same argument, we can obtain Bayes estimators under the LINEX loss function of the

reliability function from (1.1). They are obtained by the following forms:

if u(λ ,η) = exp[−cRs,k], then

u∗1 =
∂ exp[−cRs,k]

∂λ
=−cexp[−cRs,k]×

∂Rs,k

∂λ
=−cexp[−cRs,k]×u1,

u∗2 =
∂ exp[−cRs,k]

∂η
=−cexp[−cRs,k]×

∂Rs,k

∂η
=−cexp[−cRs,k]×u2, ,

u∗11 =
∂ 2 exp[−cRs,k]

∂ 2λ 2 =
∂

∂λ
{−cexp[−cRs,k]×u1}=−c

{
exp[−cRs,k]u11 +u1u∗1

}
u∗12 = u∗21 =

∂ 2 exp[−cRs,k]

∂λ∂η
=

∂

∂η
{−cexp[−cRs,k]×u1}

= −c
{

exp[−cRs,k]u12 +u1u∗2
}

u∗22 =
∂ 2 exp[−cRs,k]

∂ 2η2 =
∂

∂η
{−cexp[−cRs,k]×u2}=−c

{
exp[−cRs,k]u22 +u2u∗2

}
The approximate Bayes estimate of the reliability function Rs,k under a LINEX loss function is

given by

R̂B,Lin(LINEX)
s,k =

−1
c

ln
{

Eπ(λ ,η |β ,xDATA)[exp(cRs,k|xDATA)]
}

(4.3)

Eπ(λ ,η |β ,xDATA)[exp(cRs,k|xDATA)] = exp(cRs,k|xDATA)+
1
2
[B∗+Q∗30B∗12+

2 2 ∗
i

∗
i

∗
i

∗
i

∗
i

∗
j

∗
i

∗
j

∗
i

∗
i

Q∗21C∗12 +Q∗12C∗21 +Q∗03B∗21]

where B∗ = ∑i=1 ∑ j=1 u jτi j,Qi j = ∂ i+ ju∗/∂ iθ1∂ jθ2 for i, j = 0,1,2,3, i + j = 3,u

= ∂ u∗/∂ θi,u j = ∂ 2u∗/∂ θi∂ θ j for i, j = 1,2, and

B j = (u τii + u τi j)τii,Ci
∗
j = 3u τiiτi j + u (τiiτi j + 2τi

2
j)τi j for i 6= j. τi j is the (i, j)th element in 

the inverse of matrix Q∗ = (Q j), i, j = 1,2 such that Q j = ∂ 2Q/∂ θi∂ θ j, and θ = (θ1,θ2) =

δ = (λ ,η).

4.3 Markov chain Monte Carlo (MCMC or MC2) method

The MCMC algorithm is used for computing the Bayes estimates of the parameters λ and η as

well as the reliability function Rs,k. The joint posterior density function of λ and η is given in (4.2). 
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It is easily seen that the marginal posterior density functions of λ and η are, respectively,

λ |β ,x,y∼ G (nk+a1,b1 +wβ ) and η |β ,x,y∼ G (m+a2,b2 + vβ ),

where x= {xi j}i=1,2,...,m; j=1,2,...,k;y = {yi}i=1,2,...,m

;wβ = ∑
m
i=1 ∑

k
j=1 wi j =−∑

m
i=1 ∑

k
j=1(1+ ri j)[1− exp(xβ

i j)],

vβ = ∑
m
i=1 vi =−∑

m
i=1(1+ r′i)[1− exp(yβ

i )] with r j = (r1 j,r2 j, ...,rm j) and

r′ = (r′1,r
′
2, ...,r

′
m), j = 1,2, ...,k.

In the event that the conditional posterior distribution of any parameter to be estimated is not in

the closed form or well-known distribution, we then consider the Metropolis-Hastings (MH)

(Metropolis et al. [43] and Hasting [33]) algorithm to generate samples from the conditional

posterior distributions and then compute the Bayes estimates. The MH algorithm generate samples

from an arbitrary proposal distribution (i.e., a Markov transition kernel), where most of the time the

samples are drawn from normal distribution.

So, as suggested by Tierney [48], a common way to solve this problem is to use the hybrid

algorithm by combining a Metropolis sampling with the Gibbs sampling scheme using normal

proposal distribution. We assume that λ and η can be generated from (nk+a1,b1 +wβ ) and

(m+a2,b2 + vβ ), respectively, using a direct random generation scheme (see, for example,

Devroye [12] or an MCMC procedure, which uses the Gibbs sampler and Metropolis-Hastings

algorithm (see Gelfand and Smith [21] for the Gibbs sampler, and Tierney [48] for the

Metropolis-Hastings algorithm).

Step 1: Choose an initial guess of (λ ,η), say (λ0,η0)

Step 2: Set g = 1.

Step 3: Generate λ (l) from G (nk+a1,b1 +wβ ).

Step 4:Generate η(l) from G (m+a2,b2 + vβ ).

Step 5: Compute the R(l)
s,k at (λ (l),η(l))

Step 6: Set g = g+1.

Step 7: Repeat Steps 3 through 6, G times, and obtain the posterior sample R(l)
s,k, l = 1, ...,L.
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Now the approximate posterior mean, and posterior variance of Rs,k becomes

Ê(Rs,k|xDATA) =
1

G−S

G

∑
g=S+1

R(l)
s,k,

where R̂B,MC2

s,k = Ê(Rs,k|xDATA) is the Bayes estimate of Rs,k, and

V̂ (Rs,k|xDATA) =
1

G−S

G

∑
g=S+1

(R(l)
s,k− Ê(Rs,k|xDATA))

2,

respectively. Then a 100(1− γ)% HPD interval (HPDI) of Rs,k can be approximated (Chen and

Shao [11]) by

Cp∗(L)Rs,k
=
(

R(p∗)
s,k ,R(p∗+[(1−γ)L])

s,k

)
,

where p∗ is chosen so that

R(p∗+[(1−γ)L])
s,k −R(p∗)

s,k = min
1≤ p≤ [(1−γ)L]

(
R(p∗+[(1−γ)L])

s,k −R(p∗)
s,k

)
.

Furthermore, approximate 100(1− γ)% Bayesian credible interval (BCI) of Ψ can be obtained by

BCIRs,k = Ê(Rs,k|xDATA)±Zγ/2

√
V̂ (Rs,k|xDATA

G
,

where Zζ is the ζ th quantile of the standard normal distribution and S is the burn-in period. It well

known that rapid convergence is facilitated by choosing appropriate starting values. In order to

guarantee the convergence and to remove the affection of the selection of initial value, the first S

simulated variates are discarded. Then the selected sample are λ (l) and η(l), l = 1, ...,G., for

sufficiently large L, forms an approximate posterior sample which can be used to develop the

Bayesian inference. Similarly, the Bayes estimate of Rs,k under a LINEX loss function is given by

R̂B,MC2

s,k =−1
c

ln

{
1

G−S

G

∑
g=S+1

exp[−cR(l)
s,k]

}
(4.4)

and in a similar fashion, we can easily find the BCI as well as HPDI Rs,k under LINEX loss

function.
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CHAPTER 5

EXAMPLES

5.1 Practical application study

We consider a data set which represents the monthly water capacity of Shasta reservoir (or Shasta 

lake by collecting water due to the impounding of the Sacramento River, the largest river in the 

State of California, by Shasta Dam, called Kennett Dam before its construction). Code named as 

USBR SHA, it is operated by the U.S. Federal Bureau of Reclamation under The United States 

Department of the Interior, California, USA. The data set is available in the link

“http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA”. If the water capacity of the 

reservoir in December of the previous year is about half of the maximum capacity, and minimum 

water level in September is more than the amount of water achieved in December in at least two 

years out of the next five years, it is claimed that there will not be any excessive drought after wards. 

We arbitrarily take s = 2 and k = 5 which suggests that it is a 2-out-of-5:G system.

We assume that Y1 is the capacity of water in December 1989, X1 j, j = 1,2, ...,5 are the 

capacities of water in September 1990 to 1994, Y2 is the capacity of water in December 1995, and 

X2 j, j = 1,2, ...,5 are the capacities of water in September 1996 to 2000. When we carry on this 

data process up to 2018, then we get n = 5. For computational convenience, we divided the data set 

by 4552000/50=91040, where 4552000 is the total capacity of water of Shasta reservoir. 

Nevertheless, due to the time limitation and/or other restrictions (such as financial, material 

resources, mechanical or experimental difficulties) on data collection, we observe type-II 

progressively censored data with random removals, thus we have the Xi j for

i = 1,2, ...,m = 4, j = 1,s = 2, ...k = 5 with random removals R = (R1 = 0,R2 = 0,R3 = 0,R4 = 1) 

creating four (m = 4) five-year periods 1990−1994, 1996−2000, 2002−2006, and 2008−2012. 
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Similarly, Yi is the mean annual water capacity of the ith year in-between two consecutive

five-year periods, where i = 1,2, ...,n = 5, but again due to the restrictions on data collection and to

keep the consistency with the water capacity in September of each five-year period, we consider the

mean annual capacity of only four (m = 4) years such as 1989, 1995, 2001, and 2007. To remove

(or to reduce) the dependency between Xi j and Yi; the years of Yi are not used for obtaining the data

Xi j.

Thus, we obtain the 2-out-of-5 : G system and observed data (X,Y). For computational ease, all

of the values divided data set by 4552000/50, where 4552000 is the total capacity of water of

Shasta Reservoir . The data are as follows:

X=



17.9851 14.7172 18.4886 34.0703 23.0848

33.9281 25.3552 37.7974 36.5499 32.7892

28.0997 34.7032 23.9768 33.3352 35.2059

15.2074 19.4854 36.4541 36.6992 28.4662


and Y =



22.5575

35.8928

32.8016

19.5969


We first verify that the Chen distribution can be used to fit the data. For this purpose, we compute

the MLEs of unknown parameters with respect to both the data sets, (X,Y) . Chen distribution

provides reasonably good fit to the data compared to Weibull, generalized exponential, and

exponential distribution.

In the case of real-world data, we use the Least Squares Estimation (LSE) Method, which is

based on the minimum Error Sum of Squares (SSE), for various values of β and the “shape-first”

approach (that is to fit the shape parameter β before fitting the other shape parameter λ ) to fit the

optimal value of β and estimate of λ such that SSE is minimized for progressively type-II

right-censored data. Then, β is defined as known. The procedure is as follows:

Step 1. Let X j ∼ C (λ ,β ), j = 1,2, ...,k whose common pdf is given by

f (x;λ ,β ) = λβxβ−1 exp{λ [1− exp(xβ )]+ xβ}; x > 0, λ > 0, β > 0,
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and the common cdf is

F(x;λ ,β ) = 1− exp{λ [1− exp(xβ )]}, x > 0, λ > 0, β > 0,

and F(x;λ ,β ) satisfies

ln [1−F(x;λ ,β )] = λ [1− exp(xβ )], x > 0, λ > 0, β > 0,

Consider that X1:m:n ≤ X2:m:n ≤···≤ Xm:m:n is the corresponding

progressively type-II right-censored sample, with observed censoring

scheme r = (r1,r2, ...,rm). The expectation of F(xi:m:n;λ ,β ) is

1 − ∏
m
j = m−i+1(a j/(a j +1)), i = 1, ...,m, where a j = j+∑

m
i = m− j+1 Ri

By using the approximate

ln
(

1−
(

1−∏
m
j = m−i+1(a j/(a j +1))

))
≈ λi[1− exp(xβ )], i = 1, ...,n,

we get

λi ≈−
ln
(

1−
(

1−∏
m
j = m−i+1(a j/(a j +1))

))
[1− exp(xβ )]

for i = 1, ...,m.

Then using the least squares estimation method for various values of β

and the “shape-first” approach to fit the optimal value of β , calculate

the SSE for given each value of β , that is,

SSEβ =
m

∑
i=1

(λ − λ̂ )2, where λ̂=
mk
wβ

with

wβ =−∑
n
i=1 ∑

k
j=1(1+ ri j)[1− exp(Xβ

i j:m:n)]

Now, find the optimal value of β (say β f it)) and estimate λ such that

SSE is minimized. The density of the fitted C distribution is now

f (x;λ ,β ) = λβ f itxβ f it−1 exp{λ [1− exp(xβ f it )]+ xβ f it}; x > 0, λ > 0.

Step 2. Use the scale-free goodness-of-fit test for C distribution based on
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the Gini statistic due to Gail and Gastwirth [20] for the progressively

type-II right-censored data X1:m:n ≤ X2:m:n ≤···≤ Xm:m:n.

The procedure is as follows:

The null hypothesis is H0: X ∼ C distribution with the pdf

f (x;λ ,β ) = λβ f itxβ f it−1 exp{λ [1− exp(xβ f it )]+ xβ f it}

The Gini statistic given as follows:

Gm =
∑

m−1
i = 1 ∑

k
j = 1 iWi j+1

(m−1)∑
m
i = 1 ∑

k
j = 1Wi j

,

where

Wi j = (n−∑
i−1
l=1 rl j− (i−1))(Zi j:m:n−Zi j−1:m:n)

with Zi j:m:n = (1+ ri j)[1− exp(xβ

i j)], i = 1,2, ...,m; j = 1,2, ...,k.

For n = 3, ...,20, the rejection region is given by
{

Gm > ξ1−γ/2 or Gm < ξγ/2
}
,

where the critical value ξγ/2 is the 100(γ/2)th percentile of the Gm statistic

and is available on p. 352 in Gail and Gastwirth [20].

Y ∼ C (η ,β ) is also treated in a similar fashion to see whether Y

values are fitted to a C .

Once the real-world data were handled in the manner described above, the value of β (out of

various β values) that minimizes SSEX
β

is found to be β = 1.4, which is very close to the optimum

(minimum) value of the graph of SSE versus β . (These graphs have been omitted for saving space

and can be produced upon request). Further, λ̂ value corresponds to β = 1.4 is 0.22. Then, β is

defined as known. That is,

f (x;λ ,β ) = 1.4λx0.4 exp{λ [1− exp(x1.4)]+ x1.4}, x > 0,λ > 0.

The goodness of fit test for the null hypothesis is performed , where the null hypothesis is

H0: X ∼ C distribution with the pdf

f (x;λ ,β ) = 1.4λx0.4 exp{λ [1− exp(x1.4)]+ x1.4}, x > 0,λ > 0, at level γ = 0.05, the Gini

statistic for the progressively type-II right-censored observed sample is found to be

G4 =
∑
(4−1)
i = 1 ∑

5
k = 1 iWi+1

(4−1)∑
4
i = 1Wi

= 0.41920.
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Since ξ0.025 = 0.28748 < G4 = 0.41920 < ξ0.975 = 0.71252,we cannot reject H0 at the 0.05

level of significance, and we can conclude the observed strength components are from the C

distribution with the pdf is f (x;λ ,β ) = 1.4λx0.4 exp{λ [1− exp(x1.4)]+ x1.4}, x > 0,λ > 0. at

level γ = 0.05.

Y ∼ C (η ,β ) is also treated in a similar fashion to see whether Y stress values are fitted to a C .

Then,

λ̂ = 0.2433,wherewβ =−∑
4
i=1 ∑

5
j=1(1+ ri j)[1− exp(xβ

i j) = 32.8879

η̂ = 0.8314,wherevβ =−∑
4
i=1(1+ r′i)[1− exp(yβ

i )] = 25.7612

To fully explore the advantage of the newly introduced generalized variable method, classical

and generalized point and 95% interval estimates are compared for the reliability function Rs,k. In

addition, p-values for testing reliability function are also compared. The numerical results for these

data are presented in Table 5.1 and 5.2. Posterior distributions are obtained from 10,000 Gibbs

samplings after a burn-in period of 1,000 iterations.

Both these arguments clearly show that the generalized variable method (GV-Method) provides

accurate, reliable, and non-misleading results, while the classical method (C-Method) and Bayesian

method (B-Method) approaches fail to do so for this particular case. Hence, the GV-Method

outperforms the C–and B-Method for this particular practical application.

5.2 Simulation study

In this section, to illustrate the usage and benefit of the generalized variable method for this

problem, we present some numerical results for the Chen distribution

F(x j) = 1− exp{λ [1− exp(xβ

j )]}. Those random variables are simulated in the following manner.

For given δ = (λ ,η) and β , and (m,k) :
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1. Generate uniform random numbers, i.e., U ∼U(m,0,1), where U(m,0,1) is the standard

continuous uniform distribution with boundary parameters 0 and 1, and m is the sample size,

2. Generate pseudo Chen random variates for x:

x= {xi j}i=1,2,...,m; j=1,2,...,k = [ln(1− exp(U)/λ )]1/β

3. Generate pseudo Chen random variates for y:

y = {yi}i=1,2,...,m = [ln(1− exp(U)/η)]1/β

The performances of the point estimators are compared by using estimated risks (ER) or estimate

of the mean squared errors (MSE), and estimated biases. The ER and bias of θ̂ relative to an known

parameter θ , when it is estimated by θ̂ , is given by

ER(θ̂) = M̂SE(θ̂) =
1
N

N

∑
i=1

(θ̂i−θ)2 and ̂BIAS(θ̂) =
1
N

N

∑
i=1

θ̂i−θ ,

where ER has been calculated under the squared error function.

5.3 Bias and Expected Risk

The performances of the confidence intervals are compared by using average confidence lengths

and coverage probabilities. The coverage probability (CP) of a confidence interval is the proportion

of the time that the interval contains the true value of interest. That is,

CP =
[Number of intervals that contain the true value of interest θ ]

The total number of simulations

The performances of the hypothesis testing are compared by using average empirical Type-I error 

rate (or the actual size) of the test, and the unadjusted and adjusted powers of the test.

Actual Size of the Test
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Actual size (AS) for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0 is the proportion of p-values that are

less than the nominal value γ. That is,

AS =
Number of p-values for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0 that are less than γ

The total number of simulations
.

Power of the Test

When θ = θ0, unadjusted power (UP) for testing H0 : θ ≤ θ ∗0 vs. Ha : θ > θ ∗0 , where θ ∗0 < θ0,

is the proportion of p-values that are less than the nominal value γ. That is,

UP =
Number of p-values for testing H0 : θ ≤ θ ∗0 vs. Ha : θ > θ ∗0 that are less than γ

The total number of simulations
,

where θ ∗0 < θ0.

When θ = θ0, adjusted power (AP) for testing H0 : θ ≤ θ ∗0 vs. Ha : θ > θ ∗0 , where θ ∗0 < θ0, is

the proportion of p-values for testing H0 : θ ≤ θ ∗0 vs. Ha : θ > θ ∗0 that are less than the p-value

(pγ) for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0. That is,

AP =
Number of p-values for testing H0 : θ ≤ θ ∗0 vs. Ha : θ > θ ∗0 that are less than pγ

The total number of simulations
,

where θ ∗0 < θ0.

5.4 Computations & Calculations

The performance of the estimates of Rs,k are obtained by using the Bayesian, classical and 

generalized methods for different sample sizes. All of the computations are performed by using 

PYTHON and R. All the results are based on N = 100,000 replications.

In Table 5.3, 5.4, 5.5, and 5.6 when the common shape parameter is known (β = 3), strength and 

stress populations are generated for δ = (λ ,η) = (4,2),(4,4),(4,6), and (4,8) and different 

sample sizes n = 10,15,25 and 35. The corresponding true values of reliability in multicomponent

stress-strength with the given combinations (s,k) = (2,4) are 0.3905,0.6000, 0.7229 and 0.8000. 
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In Table 5.7, 5.8, 5.9, and 5.10 when β = 10, strength and stress populations are generated for

δ = (λ ,η) = (18,5),(12,5),(6,5),(1,5) and different sample sizes n = 10,15,25 and 35. The

corresponding true values of reliability in multicomponent stress-strength with the given

combinations for (s,k) = (2,4) are 0.2485,0.3419,0.5428 and 0.9524.

From Table 5.3,5.4 and 5.7, 5.8, we observe that the average ERs for the estimates of Rs,k

decrease as the sample size increases in all cases and all tables, as expected. The ERs of the ML,

UMVU and generalized estimates have generally following order of ER(R̂G
s,k)< ER(R̂MLE

s,k )

< ER(R̂U
s,k) except for the cases when the true value of Rs,k is not close to extreme values. On the

other hand, when the true value of Rs,k approaches the extreme values, we have following order of

ER(R̂G
s,k)< ER(R̂U

s,k) < ER(R̂MLE
s,k ) and all ERs are close the each other as the sample size

increases. The average lengths of the intervals decrease as the sample size increases. The average

lengths of the generalized intervals are smaller than those of the classical confidence intervals.

Furthermore, the coverage probabilities of the generalized intervals are more close to the nominal

level 95% than the classical confidence intervals.

Table 5.3, 5.4, 5.5, 5.6 show the point and interval estimates when (s,k) = (2,4) under known

β = 3. The first rows under the point estimates represent the average estimates and the second row

represents corresponding ERs. The first row under the interval estimates represent a 95%

confidence interval and the second rows represent their expected lengths and coverage probabilities.

Table 5.7, 5.8, 5.9, 5.10 show the point and interval estimates when (s,k) = (2,4) under known

β = 3. The first rows under the point estimates represent the average estimates and the second row

represents corresponding ERs. The first row under the interval estimates represent a 95%

confidence interval and the second rows represent their expected lengths and coverage probabilities.

Table 5.11 and 5.12 show the classical and generalized empirical (actual) type-I error rates or the

sizes of the test (the rejection rate of the null hypothesis: the fraction of times the p-value is less

than the nominal level) for testing t H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when nominal (intended)

type-I error rate is at γ = 0.05.
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Tables 5.13, 5.14 show the power comparison for testing Rs,k ≤ 0.50 vs. Rs,k > 0.50 before and

after adjusting the actual type-I error rate at γ = 0.05 based on 10,000 replications.

Without adjusting the size, the generalized powers for testing H0 : Rs,k ≤ 0.5429 vs.

Ha : Rs,k > 0.5429 clearly suggest that the generalized variable method outperforms the classical

method. Even after adjusting the size, the generalized variable method still maintains a light

advantage over the classical method. The size of the test has to be adjusted to get a meaningful

comparison of power of tests. But, in reality practitioners, being less-concern about the size, are not

interested in adjusting the nominal size in order to get the desired level γ. In terms of computational

time, it takes less than few minutes to run the proposed procedure for either of the examples on Dell

Optiplex 3020 with processor 3.20 GHz and 8.00 GB RAM.

When hypothesis Rs,k > 0.50 is tested when nominal (intended) level is γ = 0.05 with the

common parameter β = 3 for δ = (4,2), the generalized Type-I error rate is 0.0511, which is very

close to the nominal value. However, the classical Type-I error rate is 0.007, a value way off from

the nominal value. This suggests that the generalized variable method is size-guaranteed. When

Rs,k > R0 is tested in a similar fashion for various parameter combinations such as β = (3,10),

(s,k) = (2,4) δ = (λ ,η) = {(4,2),(4,4),(4,6),(4,8)} , n = {10,15,25, 35}, and

R0 = {0.35,0.50,0.55,0.65,0.70,0.75,0.80,0.85} , all these arguments clearly show that the

generalized variable method (GV-Method) is size-guaranteed, while the classical method

(C-Method) approach fails to do so. Hence, the GV-Method outperforms the C-Method for this

particular case.
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Table 5.1 Comparison of Point Estimates of Rs,k

Bayesian Classical Generalized
R̂SE

s,k 0.6781 R̂M
s,k 0.6987 R̂G

s,k 0.6781
R̂LINEX

s,k 0.6875 R̂U
s,k 0.6988

SE R̂Lin
s,k 0.6985 BPR̂∗s,k 0.6701

LINEX R̂Lin
s,k 0.6855 BT R̂∗s,k 0.6898

SE R̂MCMC
s,k 0.7101

LINEX R̂MCMC
s,k 0.6998

Table 5.2 Comparison of Interval Estimates of Rs,k

Bayesian Classical Generalized
SEBCIMCMC (0.57−0.95) ACI (0.51−1.5) GCI (0.65−0.75)
SEHDPIMCMC (0.51−0.88) PBCI (0.58−0.95)
LINEX BCIMCMC (0.55−1.5) BBCACI (0.61−1.00)
LINEX HPDIMCMC (0.55−1.5) BTCI (0.51−1.7)
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Table 5.3 Classical and generalized point estimates of R2,4 when the common shape parameter β is
known (β = 3)

Sample size Parameters Reliability Classical Generalized
n δ R2,4 R̂M

s,k R̂U
s,k R̂∗s,k R̂G

s,k
10 (4,2) 0.3905 0.4071 0.3905 0.3982 0.3989

0.0108 0.0108 0.0066 0.0066
15 0.3998 0.3886 0.3952 0.3956

0.0064 0.0064 0.0046 0.0046
25 0.3980 0.3913 0.3955 0.3957

0.0038 0.0038 0.0031 0.0031
35 0.3957 0.3909 0.3942 0.3942

0.0029 0.0029 0.0025 0.0025
10 (4,4) 0.6000 0.6085 0.5986 0.5950 0.5953

0.0115 0.0126 0.0059 0.0059
15 0.6074 0.6006 0.5981 0.5983

0.0077 0.0081 0.0047 0.0047
25 0.6045 0.6004 0.5989 0.5990

0.0048 0.0050 0.0036 0.0036
35 0.6031 0.6001 0.5992 0.5992

0.0034 0.0035 0.0027 0.0027
10 (4,6) 0.7229 0.7267 0.7235 0.7130 0.7129

0.0093 0.0105 0.0043 0.0042
15 0.7257 0.7235 0.7158 0.7158

0.0064 0.0069 0.0036 0.0036
25 0.7246 0.7232 0.7181 0.7181

0.0040 0.0042 0.0027 0.0027
35 0.7239 0.7229 0.7192 0.7192

0.0029 0.0030 0.0022 0.0022
10 (4,8) 0.8000 0.7995 0.8005 0.7880 0.7878

0.0070 0.0077 0.0029 0.0029
15 0.8016 0.8024 0.7922 0.7921

0.0048 0.0052 0.0025 0.0025
25 0.7989 0.7992 0.7929 0.7928

0.0030 0.0031 0.0019 0.0019
35 0.7998 0.8000 0.7952 0.7952

0.0020 0.0021 0.0015 0.0015
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Table 5.4 Bayesian point estimates of R2,4 when the common shape parameter β is known (β = 3)

Sample size Parameters Reliability Bayesian
n δ R2,4 R̂SE

s,k R̂LINEX
s,k

SE R̂Lin
s,k

LINEX R̂Lin
s,k

SE R̂MCMC
s,k

LINEX R̂MCMC
s,k

10 (4,2) 0.3905 0.4071 0.3905 0.3982 0.3989 0.3982 0.3982
0.0108 0.0108 0.0066 0.0066 0.0046 0.0077

15 0.3998 0.3886 0.3952 0.3956 0.3982 0.3982
0.0064 0.0064 0.0046 0.0046 0.0046 0.0077

25 0.3980 0.3913 0.3955 0.3957 0.3982 0.5950
0.0038 0.0038 0.0031 0.0031 0.0025 0.0031

35 0.3957 0.3909 0.3942 0.3942 0.3942 0.3942
0.0029 0.0029 0.0025 0.0025 0.0025 0.5986

10 (4,4) 0.6000 0.6085 0.5986 0.5950 0.5953 0.3942 0.5950
0.0115 0.0126 0.0059 0.0059 0.0025 0.0025

15 0.6074 0.6006 0.5981 0.5983 0.5983 0.0025
0.0077 0.0081 0.0047 0.0047 0.0047 0.0077

25 0.6045 0.6004 0.5989 0.5990 0.5992 0.5992
0.0048 0.0050 0.0036 0.0036 0.0025 0.0025

35 0.6031 0.6001 0.5992 0.5992 0.5992 0.5992
0.0034 0.0035 0.0027 0.0027 0.0025 0.0042

10 (4,6) 0.7229 0.7267 0.7235 0.7130 0.7129 0.5992 0.7192
0.0093 0.0105 0.0043 0.0042 0.0042 0.0042

15 0.7257 0.7235 0.7158 0.7158 0.5992 0.7192
0.0064 0.0069 0.0036 0.0036 0.0042 0.0042

25 0.7246 0.7232 0.7181 0.7181 0.5992 0.7192
0.0040 0.0042 0.0027 0.0027 0.0027 0.0042

35 0.7239 0.7229 0.7192 0.7192 0.7181 0.7181
0.0029 0.0030 0.0022 0.0022 0.0019 0.0019

10 (4,8) 0.8000 0.7995 0.8005 0.7880 0.7878 0.7181 0.7181
0.0070 0.0077 0.0029 0.0029 0.0027 0.0018

15 0.8016 0.8024 0.7922 0.7921 0.7181 0.7880
0.0048 0.0052 0.0025 0.0025 0.0019 0.0042

25 0.7989 0.7992 0.7929 0.7928 0.7952 0.7880
0.0030 0.0031 0.0019 0.0019 0.0019 0.0017

35 0.7998 0.8000 0.7952 0.7952 0.7953 (0.7952
0.0020 0.0021 0.0015 0.0015 0.0019 0.0019
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Table 5.5 Classical and generalized interval estimates of R2,4 when the common shape parameter β

is known (β = 3)

Sample size Parameters Reliability Classical Generalized
n δ R2,4 ACI PBCI BTCI GCI

10 (4,2) 0.3905 (0.2182,0.5960) (0.2180,0.5959) (0.218,0.5949) (0.2340,0.5663)
0.3779/0.9272 0.3770/0.9270 0.3775/0.9265 0.3322/0.9548

15 (0.2447,0.5550) (0.2444,0.5555) (0.2441,0.5548) (0.2553,0.5375)
0.3103/0.9432 0.3100/0.9428 0.3103/0.9432 0.2822/0.9604

25 (0.2771,0.5190) (0.2758,0.5188) (0.2765,0.5175) (0.2830,0.5100)
0.2419/0.9448 0.2415/0.9440 0.2410/0.9440 0.2269/0.9556

35 (0.2935,0.4980) (0.2930,0.4975) (0.2933,0.4977) (0.2975,0.4920)
0.2045/0.9412 0.2044/0.9412 0.2040/0.9410 0.1945/0.9432

10 (4,4) 0.6000 (0.4018,0.8153) (0.4015,0.8150) (0.4010,0.8152) (0.4172,0.7667)
0.4134/0.9200 0.4130/0.9189 0.4128/0.9190 0.3495/0.9672

15 (0.4357,0.7790) (0.4351,0.7777) (0.4355,0.7788) (0.4447,0.7467)
0.3432/0.9372 0.3429/0.9365 0.3425/0.9365 0.3020/0.9716

25 (0.4699,0.7391) (0.4688,0.7389) (0.4688,0.7389) (0.4740,0.7206)
0.2692/0.9364 0.2689/0.9365 0.2687/0.9360 0.2466/0.9572

35 (0.4886,0.7175) (0.4883,0.7177) (0.4885,0.7170) (0.4911,0.7047)
0.2289/0.9480 0.2282/0.9479 0.2284/0.9477 0.2136/0.9576

10 (4,6) 0.7229 (0.5394,0.9141) (0.5388,0.9138) (0.5389,0.9138) (0.5537,0.8601)
0.3747/0.9032 0.3739/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699,0.8816) (0.5688,0.8810) (0.5688,0.8811) (0.5776,0.8450)
0.3117/0.9172 0.3111/0.9165 0.3115/0.9165 0.2674/0.9700

25 (0.6019,0.8472) (0.6018,0.8468) (0.6010,0.8468) (0.6051,0.8254)
0.2452/0.9308 0.2444/0.9300 0.2449/0.9300 0.2203/0.9596

35 (0.6196,0.8283) (0.6190,0.8280) (0.6195,0.8282) (0.6209,0.8127)
0.2087/0.9332 0.2085/0.9331 0.2080/0.9328 0.1918/0.9540

10 (4,8) 0.8000 (0.6376,0.9614) (0.6372,0.9601) (0.6365,0.9610) (0.6531,0.9092)
0.3238/0.8992 0.3228/0.8985 0.3230/0.8960 0.2561/0.9844

15 (0.6680,0.9353) (0.6677,0.9344) (0.6677,0.9350) (0.6750,0.8988)
0.2674/0.9040 0.2670/0.9039 0.2666/0.9033 0.2239/0.9664

25 (0.6929,0.9048) (0.6920,0.9040) (0.6918,0.9040) (0.6961,0.8826)
0.2119/0.9252 0.2111/0.9248 0.2108/0.9238 0.1866/0.9648

35 (0.7098,0.8897) (0.7098,0.8897) (0.7088,0.8885) (0.7110,0.8739)
0.1799/0.9372 0.1799/0.9372 0.1789/0.9365 0.1630/0.9628
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Table 5.6 Bayesian interval estimates of R2,4 when the common shape parameter β is known (β = 3)

Sample size Parameters Reliability Bayesian
n δ R2,4

SEBCIMCMC SEHDPIMCMC LINEX BCIMCMC LINEX HPDIMCMC

10 (4,2) 0.3905 (0.2182,0.5960) (0.2180,0.5959) (0.218,0.5949) (0.2340,0.5663)
0.3779/0.9272 0.3770/0.9270 0.3775/0.9265 0.3322/0.9548

15 (0.2447,0.5550) (0.2444,0.5555) (0.2441,0.5548) (0.2553,0.5375)
0.3103/0.9432 0.3100/0.9428 0.3103/0.9432 0.2822/0.9604

25 (0.2771,0.5190) (0.2758,0.5188) (0.2765,0.5175) (0.2830,0.5100)
0.2419/0.9448 0.2415/0.9440 0.2410/0.9440 0.2269/0.9556

35 (0.2935,0.4980) (0.2930,0.4975) (0.2933,0.4977) (0.2975,0.4920)
0.2045/0.9412 0.2044/0.9412 0.2040/0.9410 0.1945/0.9432

10 (4,4) 0.6000 (0.4018,0.8153) (0.4015,0.8150) (0.4010,0.8152) (0.4172,0.7667)
0.4134/0.9200 0.4130/0.9189 0.4128/0.9190 0.3495/0.9672

15 (0.4357,0.7790) (0.4351,0.7777) (0.4355,0.7788) (0.4447,0.7467)
0.3432/0.9372 0.3429/0.9365 0.3425/0.9365 0.3020/0.9716

25 (0.4699,0.7391) (0.4688,0.7389) (0.4688,0.7389) (0.4740,0.7206)
0.2692/0.9364 0.2689/0.9365 0.2687/0.9360 0.2466/0.9572

35 (0.4886,0.7175) (0.4883,0.7177) (0.4885,0.7170) (0.4911,0.7047)
0.2289/0.9480 0.2282/0.9479 0.2284/0.9477 0.2136/0.9576

10 (4,6) 0.7229 (0.5394,0.9141) (0.5388,0.9138) (0.5389,0.9138) (0.5537,0.8601)
0.3747/0.9032 0.3739/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699,0.8816) (0.5688,0.8810) (0.5688,0.8811) (0.5776,0.8450)
0.3117/0.9172 0.3111/0.9165 0.3115/0.9165 0.2674/0.9700

25 (0.6019,0.8472) (0.6018,0.8468) (0.6010,0.8468) (0.6051,0.8254)
0.2452/0.9308 0.2444/0.9300 0.2449/0.9300 0.2203/0.9596

35 (0.6196,0.8283) (0.6190,0.8280) (0.6195,0.8282) (0.6209,0.8127)
0.2087/0.9332 0.2085/0.9331 0.2080/0.9328 0.1918/0.9540

10 (4,8) 0.8000 (0.6376,0.9614) (0.6372,0.9601) (0.6365,0.9610) (0.6531,0.9092)
0.3238/0.8992 0.3228/0.8985 0.3230/0.8960 0.2561/0.9844

15 (0.6680,0.9353) (0.6677,0.9344) (0.6677,0.9350) (0.6750,0.8988)
0.2674/0.9040 0.2670/0.9039 0.2666/0.9033 0.2239/0.9664

25 (0.6929,0.9048) (0.6920,0.9040) (0.6918,0.9040) (0.6961,0.8826)
0.2119/0.9252 0.2111/0.9248 0.2108/0.9238 0.1866/0.9648

35 (0.7098,0.8897) (0.7098,0.8897) (0.7088,0.8885) (0.7110,0.8739)
0.1799/0.9372 0.1799/0.9372 0.1789/0.9365 0.1630/0.9628
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Table 5.7 Classical and generalized point estimates of R2,4 when the common shape parameter β is
known (β = 10)

Sample size Parameters Reliability Classical Generalized
n δ R2,4 R̂M

s,k R̂U
s,k R̂∗s,k R̂G

s,k
10 (4,2) 0.3905 0.4071 0.3905 0.3982 0.3989

0.0108 0.0108 0.0066 0.0066
15 0.3998 0.3886 0.3952 0.3956

0.0064 0.0064 0.0046 0.0046
25 0.3980 0.3913 0.3955 0.3957

0.0038 0.0038 0.0031 0.0031
35 0.3957 0.3909 0.3942 0.3942

0.0029 0.0029 0.0025 0.0025
10 (4,4) 0.6000 0.6085 0.5986 0.5950 0.5953

0.0115 0.0126 0.0059 0.0059
15 0.6074 0.6006 0.5981 0.5983

0.0077 0.0081 0.0047 0.0047
25 0.6045 0.6004 0.5989 0.5990

0.0048 0.0050 0.0036 0.0036
35 0.6031 0.6001 0.5992 0.5992

0.0034 0.0035 0.0027 0.0027
10 (4,6) 0.7229 0.7267 0.7235 0.7130 0.7129

0.0093 0.0105 0.0043 0.0042
15 0.7257 0.7235 0.7158 0.7158

0.0064 0.0069 0.0036 0.0036
25 0.7246 0.7232 0.7181 0.7181

0.0040 0.0042 0.0027 0.0027
35 0.7239 0.7229 0.7192 0.7192

0.0029 0.0030 0.0022 0.0022
10 (4,8) 0.8000 0.7995 0.8005 0.7880 0.7878

0.0070 0.0077 0.0029 0.0029
15 0.8016 0.8024 0.7922 0.7921

0.0048 0.0052 0.0025 0.0025
25 0.7989 0.7992 0.7929 0.7928

0.0030 0.0031 0.0019 0.0019
35 0.7998 0.8000 0.7952 0.7952

0.0020 0.0021 0.0015 0.0015
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Table 5.8 Bayesian point estimates of R2,4 when the common shape parameter β is known (β = 10)

Sample size Parameters Reliability Bayesian
n δ R2,4 R̂SE

s,k R̂LINEX
s,k

SE R̂Lin
s,k

LINEX R̂Lin
s,k

SE R̂MCMC
s,k

LINEX R̂MCMC
s,k

10 (4,2) 0.3905 0.4071 0.3905 0.3982 0.3989 0.3982 0.3989
0.0108 0.0108 0.0066 0.0066 0.0066 0.0066

15 0.3998 0.3886 0.3952 0.3956 0.3952 0.3956
0.0064 0.0064 0.0046 0.0046 0.0046 0.0046

25 0.3980 0.3913 0.3955 0.3957 0.3980 0.3958
0.0038 0.0038 0.0031 0.0031 0.0038 0.0040

35 0.3957 0.3909 0.3942 0.3942 0.3957 0.3958
0.0029 0.0029 0.0025 0.0025 0.0029 0.0022

10 (4,4) 0.6000 0.6085 0.5986 0.5950 0.5953 0.5953 0.5953
0.0115 0.0126 0.0059 0.0059 0.0059 0.0060

15 0.6074 0.6006 0.5981 0.5983 0.5983 0.5987
0.0077 0.0081 0.0047 0.0047 0.0048 0.0047

25 0.6045 0.6004 0.5989 0.5990 0.5990 0.5990
0.0048 0.0050 0.0036 0.0036 0.0037 0.0038

35 0.6031 0.6001 0.5992 0.5992 0.5989 0.5992
0.0034 0.0035 0.0027 0.0027 0.0027 0.0097

10 (4,6) 0.7229 0.7267 0.7235 0.7130 0.7129 0.7129 0.7129
0.0093 0.0105 0.0043 0.0042 0.0042 0.0042

15 0.7257 0.7235 0.7158 0.7158 0.7159 0.7159
0.0064 0.0069 0.0036 0.0036 0.0036 0.0036

25 0.7246 0.7232 0.7181 0.7181 0.7232 0.7232
0.0040 0.0042 0.0027 0.0027 0.0042 0.0042

35 0.7239 0.7229 0.7192 0.7192 0.7192 0.7192
0.0029 0.0030 0.0022 0.0022 0.0029 0.0029

10 (4,8) 0.8000 0.7995 0.8005 0.7880 0.7878 0.7878 0.7879
0.0070 0.0077 0.0029 0.0029 0.0077 0.0077

15 0.8016 0.8024 0.7922 0.7921 0.7921 0.7921
0.0048 0.0052 0.0025 0.0025 0.0025 0.0026

25 0.7989 0.7992 0.7929 0.7928 0.7992 0.7992
0.0030 0.0031 0.0019 0.0019 0.0019 0.0019

35 0.7998 0.8000 0.7952 0.7952 0.7953 0.7954
0.0020 0.0021 0.0015 0.0015 0.0015 0.0015
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Table 5.9 Classical and generalized interval estimates of R2,4 when the common shape parameter β

is known (β = 10)

Sample size Parameters Reliability Classical Generalized
n δ R2,4 ACI PBCI BTCI GCI

10 (4,2) 0.3905 (0.2182,0.5960) (0.2180,0.5959) (0.2178,0.5959) (0.2340,0.5663)
0.3778/0.9271 0.3779/0.9272 0.3773/0.9271 0.3322/0.9548

15 (0.2443,0.5550) (0.2447,0.5550) (0.2444,0.5549) (0.2553,0.5375)
0.3103/0.9432 0.3098/0.9430 0.3100/0.9430 0.2822/0.9604

25 (0.2771,0.5190) (0.2767,0.5189) (0.2770,0.5189) (0.2830,0.5100)
0.2419/0.9448 0.2411/0.9444 0.2411/0.9445 0.2269/0.9556

35 (0.2935,0.4980) (0.2931,0.4979) (0.2932,0.4982) (0.2975,0.4920)
0.2045/0.9412 0.2043/0.9401 0.2041/0.9411 0.1945/0.9432

10 (4,4) 0.6000 (0.4018,0.8153) (0.4012,0.8151) (0.4017,0.8153) (0.4172,0.7667)
0.4134/0.9200 0.4130/0.9197 0.4134/0.9203 0.3495/0.9672

15 (0.4357,0.7790) (0.4355,0.7789) (0.4356,0.7791) (0.4447,0.7467)
0.3432/0.9372 0.3430/0.9370 0.3431/0.9372 0.3020/0.9716

25 (0.4699,0.7391) (0.4691,0.7388) (0.4693,0.7390) (0.4740,0.7206)
0.2692/0.9364 0.2688/0.9361 0.2691/0.9361 0.2466/0.9572

35 (0.4886,0.7175) (0.4885,0.7175) (0.4885,0.7175) (0.4911,0.7047)
0.2289/0.9480 0.2283/0.9478 0.2284/0.9475 0.2136/0.9576

10 (4,6) 0.7229 (0.5394,0.9141) (0.5391,0.9140) (0.5391,0.9140) (0.5537,0.8601)
0.3747/0.9032 0.3742/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699,0.8816) (0.5695,0.8811) (0.5697,0.8815) (0.5776,0.8450)
0.3117/0.9172 0.3112/0.9170 0.3116/0.9170 0.2674/0.9700

25 (0.6019,0.8472) (0.6009,0.8467) (0.6011,0.8470) (0.6051,0.8254)
0.2452/0.9308 0.2451/0.9303 0.2450/0.9300 0.2203/0.9596

35 (0.6196,0.8283) (0.6191,0.8282) (0.6195,0.8280) (0.6209,0.8127)
0.2087/0.9332 0.2088/0.9333 0.2080/0.9330 0.1918/0.9540

10 (4,8) 0.8000 (0.6376,0.9614) (0.6371,0.9611) (0.6371,0.9614) (0.6531,0.9092)
0.3238/0.8992 0.3233/0.8989 0.3233/0.8992 0.2561/0.9844

15 (0.6680,0.9353) (0.6678,0.9350) (0.6680,0.9352) (0.6750,0.8988)
0.2674/0.9040 0.2671/0.9037 0.2673/0.9040 0.2239/0.9664

25 (0.6929,0.9048) (0.6928,0.9041) (0.6929,0.9045 (0.6961,0.8826)
0.2119/0.9252 0.2111/0.9251 0.2111/0.9250 0.1866/0.9648

35 (0.7098,0.8897) (0.7092,0.8892) (0.7099,0.8897) (0.7110,0.8739)
0.1799/0.9372 0.1793/0.9371 0.1799/0.9371 0.1630/0.9628
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Table 5.10 Bayesian interval estimates of R2,4 when the common shape parameter β is known
(β = 10)

Sample size Parameters Reliability Bayesian
n δ R2,4

SEBCIMCMC SEHDPIMCMC LINEX BCIMCMC LINEX HPDIMCMC

10 (4,2) 0.3905 (0.2182,0.5960) (0.2180,0.5959) (0.2178,0.5959) (0.2340,0.5663)
0.3778/0.9271 0.3779/0.9272 0.3773/0.9271 0.3322/0.9548

15 (0.2443,0.5550) (0.2447,0.5550) (0.2444,0.5549) (0.2553,0.5375)
0.3103/0.9432 0.3098/0.9430 0.3100/0.9430 0.2822/0.9604

25 (0.2771,0.5190) (0.2767,0.5189) (0.2770,0.5189) (0.2830,0.5100)
0.2419/0.9448 0.2411/0.9444 0.2411/0.9445 0.2269/0.9556

35 (0.2935,0.4980) (0.2931,0.4979) (0.2932,0.4982) (0.2975,0.4920)
0.2045/0.9412 0.2043/0.9401 0.2041/0.9411 0.1945/0.9432

10 (4,4) 0.6000 (0.4018,0.8153) (0.4012,0.8151) (0.4017,0.8153) (0.4172,0.7667)
0.4134/0.9200 0.4130/0.9197 0.4134/0.9203 0.3495/0.9672

15 (0.4357,0.7790) (0.4355,0.7789) (0.4356,0.7791) (0.4447,0.7467)
0.3432/0.9372 0.3430/0.9370 0.3431/0.9372 0.3020/0.9716

25 (0.4699,0.7391) (0.4691,0.7388) (0.4693,0.7390) (0.4740,0.7206)
0.2692/0.9364 0.2688/0.9361 0.2691/0.9361 0.2466/0.9572

35 (0.4886,0.7175) (0.4885,0.7175) (0.4885,0.7175) (0.4911,0.7047)
0.2289/0.9480 0.2283/0.9478 0.2284/0.9475 0.2136/0.9576

10 (4,6) 0.7229 (0.5394,0.9141) (0.5391,0.9140) (0.5391,0.9140) (0.5537,0.8601)
0.3747/0.9032 0.3742/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699,0.8816) (0.5695,0.8811) (0.5697,0.8815) (0.5776,0.8450)
0.3117/0.9172 0.3112/0.9170 0.3116/0.9170 0.2674/0.9700

25 (0.6019,0.8472) (0.6009,0.8467) (0.6011,0.8470) (0.6051,0.8254)
0.2452/0.9308 0.2451/0.9303 0.2450/0.9300 0.2203/0.9596

35 (0.6196,0.8283) (0.6191,0.8282) (0.6195,0.8280) (0.6209,0.8127)
0.2087/0.9332 0.2088/0.9333 0.2080/0.9330 0.1918/0.9540

10 (4,8) 0.8000 (0.6376,0.9614) (0.6371,0.9611) (0.6371,0.9614) (0.6531,0.9092)
0.3238/0.8992 0.3233/0.8989 0.3233/0.8992 0.2561/0.9844

15 (0.6680,0.9353) (0.6678,0.9350) (0.6680,0.9352) (0.6750,0.8988)
0.2674/0.9040 0.2671/0.9037 0.2673/0.9040 0.2239/0.9664

25 (0.6929,0.9048) (0.6928,0.9041) (0.6929,0.9045 (0.6961,0.8826)
0.2119/0.9252 0.2111/0.9251 0.2111/0.9250 0.1866/0.9648

35 (0.7098,0.8897) (0.7092,0.8892) (0.7099,0.8897) (0.7110,0.8739)
0.1799/0.9372 0.1793/0.9371 0.1799/0.9371 0.1630/0.9628
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Table 5.11 Empirical (true) Type-I error rates for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when
nominal (intended) level is γ = 0.05 with the known common shape parameter (β = 3)

n δ R1,3 R0 Generalized Bayesian Classical R2,4 R0 Generalized Bayesian Classical
10 (4,2) 0.5429 0.50 0.0490 0.0059 0.0070 0.3905 0.35 0.0510 0.0510 0.0145
15 0.0450 0.0050 0.0058 0.0489 0.0541 0.0125
25 0.0510 0.0480 0.0060 0.0485 0.0478 0.0128
35 0.0491 0.0480 0.0063 0.0510 0.0478 0.088
10 (4,4) 0.7500 0.70 0.0481 0.0030 0.0031 0.6000 0.55 0.0510 0.0510 0.0412
15 0.0510 0.0500 0.0281 0.0478 0.0510 0.0415
25 0.0503 0.0050 0.0017 0.0512 0.0478 0.0325
35 0.0540 0.0570 0.0125 0.0499 0.0510 0.0324
10 (4,6) 0.8476 0.80 0.0479 0.0590 0.0254 0.7229 0.65 0.0510 0.0541 0.0254
15 0.0486 0.0480 0.0123 0.0502 0.0499 0.0213
25 0.0512 0.0480 0.0325 0.0513 0.0499 0.0215
35 0.01487 0.0059 0.0327 0.0499 0.0510 0.0113
10 (4,8) 0.9000 0.85 0.0489 0.0590 0.0400 0.8000 0.75 0.0501 0.0541 0.0413
15 0.0466 0.0570 0.0328 0.4888 0.0510 0.0077
25 0.0485 0.0059 0.0214 0.4789 0.0541 0.0012
35 0.0512 0.0059 0.0415 0.0541 0.0510 0.0045

Table 5.12 Empirical (true) Type-I error rates for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when
nominal (intended) level is γ = 0.05 with the known common shape parameter (β = 10)

n δ R1,3 R0 Generalized Bayesian Classical R2,4 R0 Generalized Bayesian Classical
10 (4,2) 0.5429 0.50 0.0511 0.0478 0.0012 0.3905 0.35 0.0512 0.0498 0.0124
15 0.0513 0.0231 0.0045 0.0548 0.0088 0.0128
25 0.0489 0.0478 0.0078 0.0510 0.0145 0.0088
35 0.0485 0.0511 0.0099 0.0555 0.0498 0.0099
10 (4,4) 0.7500 0.70 0.0478 0.0231 0.0012 0.6000 0.55 0.0478 0.0128 0.0100
15 0.0498 0.0222 0.0100 0.0498 0.0145 0.0099
25 0.0478 0.0125 0.0125 0.0457 0.0145 0.0145
35 0.0456 0.0231 0.0123 0.0498 0.0145 0.0179
10 (4,6) 0.8476 0.80 0.0511 0.0511 0.0236 0.7229 0.65 0.0478 0.0400 0.0258
15 0.0509 0.0222 0.0223 0.0513 0.0088 0.0248
25 0.0478 0.0222 0.0145 0.0511 0.0145 0.0325
35 0.0499 0.0222 0.0128 0.0547 0.0547 0.0125
10 (4,8) 0.9000 0.85 0.0456 0.0511 0.0222 0.8000 0.75 0.0555 0.0498 0.0410
15 0.0477 0.0478 0.0114 0.0547 0.0400 0.0124
25 0.0518 0.0231 0.0231 0.0512 0.0400 0.0400
35 0.0498 0.0231 0.0224 0.0478 0.0478 0.0128
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Table 5.13 Comparison of powers for testing H0 : R2,4 ≤ 0.5429 vs Ha : R2,4 > 0.5429 without and
after adjusting the size at γ = 0.05 when the common shape parameter is known (β = 3)

Parameters Without adjusting the size After adjusting the size
n δ R2,4 Generalized Bayesian Classical Generalized Bayesian Classical
10 (4,2) 0.5429 0.1180 0.1180 0.0660 0.0500 0.0553 0.0553
15 0.1010 0.1180 0.0712 0.0998 0.0553 0.0621
25 0.1021 0.1180 0.0722 0.1000 0.0553 0.0702
35 0.1225 0.0712 0.0741 0.1198 0.0553 0.0715
10 (4,4) 0.7500 0.2222 0.0712 0.1215 0.1998 0.2000 0.1125
15 0.2112 0.0712 0.1015 0.2000 0.0715 0.1001
25 0.3125 0.0712 0.2451 0.2145 0.2000 0.1198
35 0.3546 0.2451 0.2415 0.3212 0.0715 0.2356
10 (4,6) 0.8476 0.4115 0.3999 0.3874 0.3998 0.2000 0.3789
15 0.4899 0.2451 0.3899 0.3454 0.0715 0.3877
25 0.5551 0.3999 0.3999 0.4597 0.2000 0.3845
35 0.5789 0.3999 0.4521 0.5412 0.4852 0.4511
10 (4,8) 0.9000 0.6889 0.3999 0.4887 0.5778 0.4852 0.4852
15 0.7888 0.8888 0.6552 0.6589 0.4852 0.5879
25 0.8888 0.8888 0.7858 0.7777 0.6666 0.6666
35 0.8994 0.8888 0.7889 0.8412 0.6666 0.6894

Table 5.14 Comparison of powers for testing H0 : R2,4 ≤ 0.5429 vs Ha : R2,4 > 0.5429 without and
after adjusting the size at γ = 0.05 when the common shape parameter is known (β = 10)

Parameters Without adjusting the size After adjusting the size
n δ R2,4 Generalized Bayesian Classical Generalized Bayesian Classical
10 (4,2) 0.5429 0.1001 0.1001 0.0125 0.0500 0.0500 0.0500
15 0.1254 0.1001 0.0245 0.1356 0.0500 0.0235
25 0.1540 0.1001 0.325 0.1389 0.0500 0.0245
35 0.1656 0.0245 0.0458 0.1478 0.0500 0.0889
10 (4,4) 0.7500 0.2789 0.0245 0.1225 0.1899 0.0500 0.0999
15 0.2889 0.0245 0.1458 0.2458 0.0500 0.1225
25 0.3211 0.0245 0.2451 0.2589 0.1899 0.1889
35 0.3489 0.3211 0.2898 0.3458 0.1899 0.1997
10 (4,6) 0.8476 0.4569 0.3211 0.3254 0.3888 0.1899 0.2458
15 0.4689 0.3211 0.3589 0.4125 0.1899 0.2789
25 0.4889 0.3211 0.3789 0.5478 0.2589 0.3458
35 0.5879 0.3211 0.4558 0.6521 0.2589 0.3333
10 (4,8) 0.9000 0.6655 0.3254 0.4789 0.7415 0.2589 0.3889
15 0.7889 0.3254 0.5511 0.8888 0.4215 0.4215
25 0.8994 0.6789 0.6654 0.8995 0.4215 0.4887
35 0.9994 0.6789 0.6789 0.9885 0.4215 0.6987
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CHAPTER 6

OVERVIEW, SUMMARY, AND FUTURE RESEARCH

Overview

Classical inferences for the reliability of multicomponent stress-strength system using various 

underlying distributions have been discussed intensively and extensively in literature. To name few 

seminal papers: Hanagal [32], Eryilmaz [16], Rao et al. [46], and seminal works of many others. 

For a comprehensive discussion on different stress-strength models, along with more theories, 

applications, and examples, the interested parties are referred to the monograph of Kotz et al. [38]. 

In these studies, maximum likelihood estimator (MLE) and asymptotic confidence interval were 

obtained. The size of the test, adjusted and unadjusted power of the test, coverage probability and 

expected confidence lengths of the confidence interval, and biases of the estimator are also 

discussed. But mainly, the recently introduced generalized variable method (GVM) due to Tusi and 

Weerahandi [49] was not taken into consideration.

Therefore, in this research work, we mainly discuss the generalized inferences. To do that: firstly, 

for the classical inferences of Rs,k, MLE- and UMVUE-based, pivotal quantity for the hypothesis 

testing and interval estimation, where MLE is the maximum likelihood estimator and UMVUE is 

the minimum variance unbiased estimator, are developed. Secondly, for the Bayesian inference of 

Rs,k, exact and approximate point estimators are developed with the aid of Markov Chain Monte 

Carlo (MCMC or MC2) procedure using the Gibbs sampler and Metropolis-Hasting sampler, and of 

Lindley’s approximation [40] procedure. Bayesian confidence intervals (BCI) as well as highest 

posterior density intervals (HPDI) are also computed. Finally, for the generalized inference of Rs,k, 

estimators, interval estimators, and hypothesis testing of Rs,k are developed with the aid of the

generalized variable method. The diagnostic testing procedures found in reliability analyses have a 
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wide variety of applications in economics, engineering, biostatistics, biomedical, and various other 

related-fields.

It is the opinion and strong belief of the author of this research thesis that the intensive and 

extensive research in this nature must be carried out to broaden the scope of, and to open new 

avenues for, the critical and rational thinking needed to produce new statistical methodologies and 

procedures to tackle the complex and complicated statistical problems found in artificial 

intelligence, machine learning, deep learning, and data analytics in this era of very advanced high 

technology and sciences. Furthermore, independent and collaborative research based on these new 

procedures done with the other interested parties will contribute in a great deal to the success and 

advancement of the statistical research and to fill vacuum in the statistical arena. A statistics major 

with a strong and robust background in this type of research will be a very competitive and 

beneficial advantage when they plan to enter into the workforce in future.

Over the years we have seen an increase in the number of students pursuing advanced degrees in 

statistics after graduated with Bachelor’s and Master’s degrees. This research will broaden the 

statistical knowledge of those students who are pursuing Ph.D. and are interested in doing research 

to contribute to the statistical arena, and also those who seek employment or internships in various 

institutions.

Summary

In Chapter II, we examine and review the classical inferences for Rs,k with the aid of MLE and 

UMVUE.

In Chapter III, we provide generalized inference for Rs,k. This discussion has been built up for 

the generalized point and interval estimation as well as for the testing hypothesis in the face of

nuisance parameters from different populations by using generalized p-value approach introduced 
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by Tsui and Weerahandi [54]. This new development, which has a promising approach for data 

modeling in reliability and survivability, has revolutionized the advanced-science- and

hi-tech-based modern society. This technique is very useful for practitioners who have been 

performing inferences using the normality-assumption-based inferences even if they deal with 

small samples for the sake of the mathematical tractability and mere simplicity.

Reliability experts, who encounter several various system models with longer heavy-tailed 

distributions, can now easily remedy the difficulties using this newly introduced generalized 

variable method. In addition, this methodology is heavily used in agriculture, mechanical 

engineering, econometrics fields, etc. Practitioners in biostatistical and biomedical research, where 

each sample point is vital and expensive, can now comfortably use this generalized variable method 

to provide a significant test with power of testing procedures. This generalized p-value approach 

can easily be used to overcome the drawbacks of F-test’s failure to detect significant experimental 

results.

In Chapter IV, we review and suggest the Bayesian inference for Rs,k with the aid of MCMC, 

Gibbs sampler, Metropolis-Hasting sampler, and Lindley’s approximation.

In Chapter V, simulation results for biases of the point estimators, coverage probability and mean 

confidence lengths of the interval estimators, and true type-I error rate control, unadjusted and 

adjusted power of the test are extensively and intensively discussed. In addition, extensive and 

intensive data analysis was performed for a real-world data set, which represents the monthly water 

capacity of Shasta reservoir with code name USBR SHA that is operated and maintained by the 

U.S. Federal Bureau of Reclamation under The United States Department of the Interior, California, 

USA. The data set is available in the link

http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA.

Complicated functions of parameters are not easily inferred exactly using classical approaches; 

in that sense, we here emphasize the importance of using the generalized variable method, which

outperforms other available and exiting inferential methodologies in the face of nuisance parameters 
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Future Research

One of the major weaknesses and the drawbacks of the generalized variable method is that its

non-applicability when the pivotal quantities are not distributed with standard distributions. But

such situations are also tackled by using intensive and tedious numerical approaches, which are to

be explored as future works. Moreover, the power guarantee has not been mathematically proved

and is a major hot topic in the statistical arena. Furthermore, the advantages and drawbacks are

summarized as follows;

Advantages of the proposed method:

1. Can handle complicated functions of parameters.

2. Various distribution-driven tests.

3. Valid for smaller samples as well as for the larger samples.

4. Can easily avoid the unnecessary large sample assumption.

5. Can avoid the unnecessary large sample assumption.

6. Can find exact solutions in the face of nuisance parameters.

Drawbacks of the proposed procedure:

1. p-values are not uniformly distributed.

2. If the estimators are not distributed with distributions with closed forms intensive numerical

analysis has to be carried out.

3. Can not solve all situations unless the test variable satisfy the properties of Generalized Test

Variable.

A compact and comprehensive final version of the thesis will be submitted to the Graduate 

Coordinating Committee of the Department of Mathematics and to the university’s Graduate 

School. Collaborating with my advisor Dr. Gunasekera, several high quality advanced papers 

stemming from this research will be submitted to top peer-reviewed statistical/mathematical 

journals. In addition, papers will be submitted to the 2019 Joint Statistical Meetings (JSM) and 

2019 8th International Conference on Biostatistics & Bioinformatics (CB&B) for the oral

presentation. JSM is the largest gathering of statisticians in North America, attended by more than 
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6000 visitors across the globe, sponsored jointly with the American Statistical Association (ASA),

Institute of Mathematical Statistics (IMS), International Biometric Society (IBS) (Eastern North

American Region - ENAR and Western North American Region –WNAR), Statistical Society of

Canada (SSC), International Chinese Statistical Association (ICSA), International Indian Statistical

Association (IISA), International Society for Bayesian Analysis (ISBA), and Korean International

Statistical Association (KISA). It will be held at the Baltimore Convention Center, Baltimore,

Maryland from July 27 to August 01, 2019, and CB&B is sponsored by the Conference Series from

September 16 to 17, 2019 in San Francisco, CA

Furthermore, building up from analyzing a two-component system, future research will focus on

analyzing three-component or many-component systems. Another development in analysis of

reliability is taking different type of censored, truncated, grouped, or merged data under Type-or -II

left-and right-censored data rather than taking type-II progressively right censored data uniformly

removals thus paving the way for different aspects to be discussed.

Applicability, accessibility, and usability of exact non parametric procedures in reliability are

also in serious consideration and hope to explore nonparametric new approaches coupled with the

old ones to come up with methodology to tackle drastic, vague situations without taking the

underlying distributions into account. In the future, we seek to expand the applications of this

generalized p-value methodology expanding from reliability into other areas and fields such as data

networking, econometrics, agriculture, actuarial field, insurance, etc.
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