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ABSTRACT 
 
 

The budding yeast Saccharomyces cerevisiae is an important model organism for cellular aging. 

A common metric for determining the lifespan of budding yeast cells is the replicative lifespan (RLS), 

how many times a mother cell divides in its lifetime. Traditionally, determining the RLS of yeast cells is a 

tedious manual process. To address this challenge, our long-term goal is to develop an automated RLS 

estimation process. Recently microfluidics-based methods have been developed, which generate time-

series of images of individual cells. This work is focused on classifying these images into categories which 

can be used to estimate the RLS. We test three different deep learning models and found that all of the 

models have diverse and complementary errors, so we developed an ensemble of models that combine 

the best single models which led to high overall accuracy, precision and recall. 
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CHAPTER 1 

INTRODUCTION 
 
 

One major goal in aging is to determine which genetic pathways play a key role in slowing down 

the aging process. The budding yeast Saccharomyces cerevisiae is a common model organism because of 

its short lifespan [1], which means that researchers can gain quick feedback on genomic alterations. 

There are a couple of ways to determine the lifespan of the budding yeast. The first is the chronological 

lifespan, i.e. how long does the cell live? The second is the replicative lifespan (RLS), i.e. how many times 

does the cell divide? In this work, we focus on the RLS.  

To accurately estimate the RLS, a large sample size is needed. In [1], the authors devise a 

mechanism for high-throughput budding yeast cell analysis. Figure 1 from [1] describes the details of 

this system. Every ten minutes a picture is taken of an entire beacon, which usually consists of over 100 

traps depending on how the image is cropped. The raw data is a time-series of these images of beacons. 

However, parsing the images into individual traps is necessary for the classification task. Each trap image 

is 60x60 pixels in the greyscale format, which means the pixels ranged in value from 0 to 255, inclusive. 

In order to estimate RLS from a time-series of images, we need to classify each of these images 

into one of four categories: a trap with no cell (nC), a trap with a single mother cell (mC), a trap with a 

single mother and single daughter cell (mdC) and a trap with more than two cells (exC). This extra class 

is necessary because it can be difficult to determine where extra cells came from without having a true 

video feed of the cells. When a trap with more than two cells is encountered, we will throw it away if 

the necessary information cannot be inferred from earlier and later images. Figure 2 shows how these 

beacon images look as a whole and also how the different classes are determined from a single trap. 
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Figure 1  High-Throughput Yeast Cell System [1]: A) Scaled out view of the system containing four separate fluid 

channels. B) Magnified image of the fluid direction and cell loading locations. C) Microscopic image of 
the traps that will hold the yeast cells. D) Representation of how the traps will with mother and daughter 
cells. E) Microscopic images of individual traps and captured mother cells. 

 
 
 

 
Figure 2  Raw and Processed Data Format [16]: The final images are 60x60 grayscale of individual traps with one 

of the four labels, nC, mC, mdC or exC. 
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Figure 3  Variability of Dataset: Each individual trap image is highly variable. While traps and cells have a limited 

number of orientations, the contrast, brightness and image quality all add great complexity to the 
dataset. There are often shadows, depending on the lighting conditions of the experiment. 

 
 
 

 The dataset of individual trap images has the following key characteristics: it is relatively small 

with only a few thousand examples and the examples themselves are highly variable as shown in Figure 

3. The purpose of this work is to develop methods to accurately classify images from this small and noisy 

dataset. In particular, deep learning image classification methods will be used. 

In recent years, deep learning has been a popular method for image classification [28]. Many 

innovations have been driven by creating models that perform well on benchmark datasets such as 

MNIST, CIFAR10, CIFAR100 and Imagenet [2]. The basic idea of deep learning is to create or “learn” a 

function that can map a high-dimensional input space into some sort of output vector. In classification, 

the size of the output vector depends on the number of classes, while regression typically has a scalar 

output. This work will focus on classification. The function being learned is represented as a 

computational graph with edges that feed from one layer to the next. Determining the optimal weights 

(or parameters) of these edges are the primary objective of training deep neural networks as is done 

through an algorithm called backpropagation [21]. 

 In image classification problems, the convolutional neural network (CNN) is the primary type of 

deep learning model employed. CNNs are particularly useful for image classification because they are 

designed for 2-dimensional (or higher) input tensors. In addition, the proximity of pixels in the input  
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Figure 4  General Convolutional Neural Network Architecture [24] 

 

images are taken into consideration, which helps CNNs learn how pixels should be oriented relative to 

each other. However, one of the major drawbacks to CNNs is that they require a large amount of 

training data due to the way the architecture is designed [5]. 

In Figure 4 above, a general CNN architecture shows the relationship between one layer and the 

next. In the early layers, convolutional kernels are taken from the original input image and fed to the 

next layer as an aggregation of all the kernels in a higher dimensional space. As the network gets deeper 

and deeper, there is an increasing level of abstraction from the original input image that can be learned. 

In other words, early layers detect simple features like edges and corners while later layers detect 

complex features like shapes and objects. The reason so much training data is necessary for CNNs is that 

the pooling layers necessary to convert a higher-dimensional tensor into a scalar can throw out valuable 

information. This makes CNNs relatively efficient to train (when compared to other image recognition 

models), but it also means that more data is necessary to offset the inefficient use of training data [5]. 

The key contributions of this work are as follows: First, labeling training images in a non-trivial 

way can lead to superior performance, particularly with our small and noisy dataset. Second, 

augmenting the training data in this problem was another highly effective strategy for improving 

classification performance. Finally, an ensemble of the top three models performed better than any of 

the three individual models because each of the three models had diverse and complementary errors, 

leading to a good “collaboration” between the models.  
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CHAPTER 2 

LITERATURE REVIEW 
 
 

In this chapter, we will review relevant literature to our image recognition task. First, Ghafari 

and Qin are working on an alternative to classifying individual trap images [16]. Instead, they are 

developing object detection and cell segmentation methods to track individual cells with deep learning 

architectures like YOLO [26] and a Pyramid-based fully convolutional neural network approach to cell 

segmentation [27]. With better cell tracking, RLS estimation could be much more accurate. 

 Given that our dataset is relatively small and is quite noisy, ideas and research related to 

learning on small, noisy datasets will be discussed. There are a few methods for handling smaller 

datasets, such as the microfluidic images of our problem: augmenting the existing data through basic 

affine transformations and noise masks [6,7], use concepts from machine teaching to optimally label 

training datasets [8], use best practices from deep learning architecture design to create the optimal 

architecture and balance model capacity and model simplicity [9] and finally, use a fundamentally 

different type of deep learning architecture that should theoretically be able to learn from smaller 

amounts of data than traditional CNN counterparts called CapsNet [5]. In this paper, we will discuss and 

test the merits of these methods as it relates to RLS estimation. 

 

2.1 Data Augmentation 

There are several ways to augment images from a training dataset, but the way augmentation is 

accomplished can have important consequences on model performance [23]. Affine transformations on 

the original images are a popular and simple augmentation method. For example, rotating, reflecting, 
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shearing and scaling are all examples of affine transformations. Depending on the problem at hand, 

certain affine transformations may be more effective than others [7].  

Another method for data augmentation is adding noise to the pixels of the original image. One 

way of accomplishing this type of augmentation is by creating a random matrix (mask) where each 

element is sampled from a Gaussian distribution where  is zero and  is large enough so the mask 

elements are meaningfully different from zero, but not so large that when this mask is added to the 

original image, the result is still noticeable as belonging to the same class as the original image. One 

more method worth covering is adjusting the brightness and/or contrast of the original image. In many 

image processing libraries, it is straightforward to increase and decrease the contrast and brightness 

[10]. 

 

2.2 Machine Teaching 

Machine teaching is a concept in machine learning with the goal of optimizing the training 

dataset on which a model learns from. As is true in human learning, it is much easier for machine 

learning models to learn patterns in the training data if easier concepts (images, patterns, etc.) are seen 

first with more complex examples seen later [8]. 

Another way to approach this idea is to re-label training data. In other words, there may be no 

practical, real-world difference between two different types of images, but distinguishing between the 

two types of images might be easier for a machine learning algorithm to learn if one class is split into 

two. Consider an image recognition task where one of the classes of interest is “dog” but within the 

training examples we only have Pomeranians and wolves. It is theoretically easier for the machine 

learning algorithm to learn the class “dog” if we first split the Pomeranians and wolves into sub-classes 

and recombine those sub-classes into a single “dog” class afterwards. More details on the application of 

re-labeling in the context of estimating RLS of budding yeast cells will be given in chapters 3 and 4. 
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2.3 Best Practices in Deep Learning SimpleNet 

There are no shortages of extremely complex and deep convolutional neural network 

architectures. Some popular examples are AlexNet [11], VGGNet [12], and GoogleNet [13]. Each of these 

networks have tens to hundreds of millions of parameters (neural network weights) to learn. With a 

small dataset this can lead to problems with generalization. One alternative to extremely complex 

architectures is to design a deep learning architecture with best practices in mind as described in [9], 

where a model called SimpleNet is proposed. The authors design SimpleNet to have enough capacity to 

perform well on many complex datasets, but not so complicated that it is unable to learn from smaller 

datasets. 

SimpleNet is a convolutional neural network architecture with 13 layers and anywhere from 2-

25 times fewer parameters than the existing state-of-the-art models. There are a few basic principles 

used to maximize the model capacity while minimizing the overall complexity (number of parameters to 

learn). First, the architecture gradually increases in size at each layer which allows better parameter 

utilization. Second, smart kernel sizing lets SimpleNet learn locality of features in each training image. 

For example, having 1x1 kernels early in the network tend to increase the level of abstraction, but any 

local correlations are lost. So, 2x2 and 3x3 kernels are used for pooling and convolutions, respectively, 

until the last two layers. Lastly, instead of designing SimpleNet layer by layer, the authors of [9] chose to 

think of the architecture in groups of layers where each group of layers is homogeneous and thus, can 

control overall network size as well as perform specific tasks well, such as object detection. 

 

2.4 Capsule Networks 

The last method to improve performance of a model on a relatively small training sample is to 

use an entirely different architecture altogether. In [5], the authors discuss a novel architecture called a 

capsule network. Capsule networks (or CapsNet) have recently proven themselves to be effective deep  
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Figure 5  CNN Classification Mechanics: While CNNs are translationally invariant (shifting of an object does not 

affect output), they have a hard time learning how objects should be positioned relative to one another 
(i.e., CNNs don’t care where objects appear in the image as long as they are there). Capsule Networks, on 
the other hand, can more easily learn where objects should be relative to one another. 

 
 
 

learning architectures in many respects. In some applications, basic CapsNet architectures can 

outperform extremely sophisticated CNN architectures [5]. The basic idea of CapsNet is to replace the 

typical pooling layers of CNNs with a more sophisticated weight-routing mechanism. For example, max 

pooling layers take the most prominent value (most commonly, pixels) from a previous convolutional 

kernel (or filter) as input to the next layer. Unfortunately, noticing only the “loudest” value will ignore all 

the information of the other values in the convolutional kernel. Average pooling is one way to 

incorporate some information from all the values in the kernel, but again, information is lost. 

Information is always lost in pooling layers because a kernel with many values needs to output a single 

scalar value. This scalar output can be viewed as the likelihood that some feature from the previous 

layer is present. 

On the other hand, capsule layers in a capsule network will output a vector for convolutional 

kernel inputs where the length of the vector represents how likely a feature from the previous layer is 

present and the values of the vector are an encoding of all the affine transformation of the kernel input. 

With a more data-efficient architecture (i.e. less information loss), fewer samples are required to create 

state-of-the-art models. For example, in [5], Hinton et. al. discovered that CapsNet can achieve near 

state-of-the-art performance on the MNIST dataset on 10% of the whole dataset. However, capsule 
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networks also have downsides. For one, the time complexity is much greater in training capsule weights 

than in training the weights in pooling layers of CNNs. In general, capsule networks also tend to have 

more hyper-parameters than typical CNNs because they contain all the same hyper-parameters of CNNs, 

but with additional parameters which will be discussed later. Thus, the hyper-parameter search space 

can be quite large. 

In the context of our small and noisy dataset, one of the most notable advantages of CapsNet 

learning the affine transformation of an image is the reduction in the size of training data necessary to 

create an accurate model. With a CNN, an extremely large number of training images are necessary to 

capture all of the variance possible within a single image. The architecture of CapsNet is very similar to 

the architecture of a general neural network. In Figure 6 from [14], we can see these differences. Rather 

than the traditional pooling layer (block), we see that CapsNet has a capsule layer block (which usually 

has at least one lower-level and one higher-level capsule layer) as well as a flattening layer that re-

normalizes the capsule layer to be in terms that the traditional fully connected prediction layers can 

make sense of. 

One of the trickiest parts of making CapsNet work is figuring out how to train weights. It is clear 

that a vector output would increase the number of trainable parameters greatly - but by how much 

exactly? In our image recognition task, we have 60x60 pixel input images. The SimpleNet architecture 

with 13 layers has a total of 5,490,821 parameters to learn while a simple (relatively speaking) CapsNet 

architecture with one convolution layer and one capsule layer block has to learn 19,498,768 parameters. 

Additionally, the weights in the capsule layers undergo a much more computationally intensive training 

process. 
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Figure 6 Comparing a General Architecture to a Capsule Network Architecture [14] 

 
 
 

Now we will briefly discuss the training algorithm called “routing by agreement” [5]. If we think 

of pooling as a naive implementation of “routing”, it is easier to understand what the purpose of routing 

by agreement is. Basically, pooling looks at each element in a convolutional kernel and its output is a 

scalar that somehow represents the values of that kernel (e.g. maximum or average). With routing by 

agreement, the important concept is that there are low-level capsules and high-level capsules. This 

routing algorithm takes place between each low-level and high-level capsule pair to determine how each 

low- and high-level capsule pair should be related. A longer vector indicates a stronger relationship 

between each low- and high-level capsule and a shorter vector represents a weaker one. Note that low-

level capsules refer to those that are earlier on in the architecture and high-level capsules refer to those 
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that occur sequentially later. This iterative approach is a way of calculating the output of lower-level 

capsules while looking ahead at higher-level capsules. 

 

2.5 Performance Metrics 

To analyze the results of our models, there are a few key metrics we use. The first metric is 

accuracy, e.g. how many exC examples out of the whole sample did we classify correctly? Accuracy is 

given by the following equation: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
. 

The next performance metric is precision. An example question that precision answers is, how 

many times was our prediction for the mC class correct out of all the times we predicted a mC example? 

The equation for precision is: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
.  

After precision, we are concerned with a metric called recall. One example of recall is, of all the 

times a true member of the mdC class appeared, how many times did we correctly classify it? The 

equation for recall: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. Each of these three metrics has its own 

purpose and are oftentimes used together to determine the overall performance of a model [17]. 

In the context of RLS estimation and classifying images into one of the categories: nC, mC, mdC 

and exC (discussed in the introductory chapter), where we can think of each of these classes increasing 

in order from 1-4. It is important to note that some mistakes are more costly than others in terms of the 

effect on RLS estimation. It is better for our model to make mistakes in the direction of higher order, e.g. 

classifying a mdC image as an exC image is less costly than classifying an exC image as a mdC image. The 

reason for this is because it is easier for the RLS estimation algorithm to parse out the former mistake 

than the latter [16]. 

 In summary, data augmentation, machine teaching concepts, an architecture based on deep 

learning best practices (SimpleNet), and a data-efficient neural network architecture (CapsNet) are all 
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potential ways for handling our small and noisy dataset. Additionally, we have the key metrics to analyze 

each method. The following chapters will discuss how we tested these ideas and the results of each.  
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CHAPTER 3 

METHODS 
 
 

3.1 Deep Learning Architectures Tested 

With the goal of classifying each trap image as accurately as possible, we needed to test 

different models. We tested a baseline convolutional neural network as well as the SimpleNet 

architecture and the CapsNet architecture, both of which were discussed in the previous chapters. The 

baseline CNN had the following architecture: two convolution layers, a pooling layer and two fully 

connected layers at the end for classification. Convolutional kernel sizes were 3x3 and pooling kernel 

sizes were 2x2. The activation function used is ReLU, as is normal in image classification and the dense 

layers have drop out probabilities of 0.25 and 0.5, respectively. This baseline model was chosen for its 

simplicity and similar variants are used in introductions to CNNs [28]. More information about each 

architecture tested is presented in Appendix A. 

 

3.2 Data Augmentation 

As discussed in Chapter 2, data augmentation is one method for achieving better generalization 

on small datasets. There were three augmentation methods employed in this problem, the first of which 

was to generate a random matrix where each element was sampled from a Gaussian distribution, 

𝒩(𝜇 = 0, 𝜎 = 6). The standard deviation was chosen to create enough pixelated variance to possibly 

blur boundaries, but not enough to change the class of the images themselves. This matrix was then 

used as a mask and added to the original input matrix (image). The second data augmentation method 

was brightness adjustment where a single scalar was added to every element to create a uniform 
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adjustment in brightness. These values ranged from (-16, +16), but the pixels were bounded to the 

range [0, 255]. Finally, the third was a reflection over the vertical axis. This was the most straightforward 

affine transformation because the traps themselves are symmetrical about the vertical axis. 

 

3.3 Hardware and Hyper-Parameter Tuning 

The models trained with 4 NVIDIA Tesla V100 GPUs. This was necessary particularly in 

performing a grid search on the CapsNet models which were quite sensitive to hyper-parameters, 

meaning that small changes in hyper-parameter combinations resulted in vastly different outcomes of 

the models. In order to optimize the hyper-parameters of the CapsNet architecture (the baseline CNN 

and SimpleNet were not sensitive to hyper-parameters), we decided to run a basic grid search on several 

hyper-parameters. These were: 1) the number of routing iterations, 2) learning rate, 3) batch size, 4) 

whether to add noise to training images, 5) the number of epochs in training. The hyper-parameter grid 

search options are shown in Table 1. Results of the grid search will be discussed in the CapsNet portion 

of Chapter 4. 

 

3.4 Splitting the “Mother Cell” Class into Two Subclasses 

As discussed in the introductory section, some concepts are easier for machine learning 

algorithms to learn if examples from the same class are different enough that they can be split into two 

or more separate classes for the purposes of training. Afterwards, these classes will be recombined into 

a single class for practical purposes. In Figure 7 below, the five classes are shown.  
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Table 1 Grid Search Options: A total of 108 combinations were tested. 

 

 
Figure 7  Class Splitting: Classes from left to right: No cell (nC), mother cell (mC), mother and daughter cell 

with the daughter cell on top (mduC), mother and daughter cell with the daughter cell below 
(mddC), and extra cells (exC). 

 
 
 

Notice that the classes mduC and exC seem quite a bit more similar to each other than the 

mduC and mddC classes. This is because extra cells tend to accumulate over a mother cell. So, instead of 

making the machine learning algorithm learn the difference between mddC and mduC (since mddC is 

quite distinct), it can focus on the harder problem of learning the difference between mduC and exC 

since that is a more difficult difference to learn. Results for the four- and five-class dataset will be 

discussed in the Baseline CNN portion of Chapter 4. 

 

3.5 Estimating RLS 

After a model has been selected that accurately classifies each image into one of the four main 

categories, the final step is to estimate RLS based on those images. Ghafari and Qin [16] developed an 

algorithm that will take a series of trap images with classifications as input and will return a family tree 

and the estimated replicative lifespan of mother cells in each trap time-series. Of course, uncertainty 

Routing Iterations Learning Rate Batch Size Augment Data? Epochs 

3 0.001 128 True 15 
5 0.0005 256 False 20 

7  512  25 
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arises when the extra cell (exC) class is encountered. Fortunately, the entire experimental sample of 

mother cells is not necessary for statistical significance.  
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CHAPTER 4 

RESULTS 
 
 

In this section, results of significant baseline CNN variations, SimpleNet variations and the 

CapsNet grid search will be presented. Additionally, we explore the performance of an ensemble of the 

best models from each of the three variations. Since the grayscale images can hide some cells that are 

sometimes indistinguishable from background noise to the human eye, the images in this section will be 

presented with colored contrast. 

 

4.1 Early Problems 

Early in the process of model selection and tuning, we discovered many training images that 

were misclassified. Some of the best models struggled to reach 60% test accuracy with the four-class 

dataset. By examining the misclassifications, we were able to quickly resolve this issue and relabel the 

training images.  

 

4.2 Baseline Convolutional Neural Network 

After re-labeling the training dataset, we noticed another odd performance issue: the baseline 

convolutional neural network architecture exhibited great test set instability and hovered around 70%-

80% test set accuracy, as discussed in Figure 8 below. Based on these results (and results from CapsNet), 

we were motivated to split the mother and daughter cell class into the two classes discussed in the 

previous section, mother cell with the daughter cell on top and mother cell with the daughter cell 

below. The next step was to train a baseline model with the raw five-class training images without any 
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sort of augmentation. Figure 9 shows the training progress of the best baseline model. These results 

pointed us towards the fact that we should do some form of data augmentation to see if performance 

could be significantly affected.  The last iteration of the baseline CNN model was to try data 

augmentation and the five-class training dataset. The results of this are discussed in Figure 10, Figure 11, 

Table 2 and Table 3. 

 

 
Figure 8  Training Progress of Four-Class Baseline CNN: This chart shows the progress (in particular, the train and 

test data accuracies) of a model being trained on four classes. While the training accuracy stabilized 

quickly, the test accuracy remained unstable. Even after using regularization methods such as dropout 

and augmenting the training data, this was the best performer. 

 
 
 

 
Figure 9  Training Progress of Five-Class Baseline CNN without Augmentation: The train accuracy slowly rises, as 

does the test accuracy. However, the best results of the test dataset barely reach 80% and are quite 

unstable. 
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Figure 10  Training Progress of Five-Class Baseline CNN with Augmentation: After just 20 epochs, the model 
trained on a five-class, augmented dataset, was stable and performing quite well. 

 
 
 
Table 2  Baseline CNN Performance Metrics: After recombining the mddC and mduC classes, the performance of 

the model increased further with metrics shown in this table. The precision for the exC class was relatively 

low, which means this model predicted the exC class often, but was not correct in many of those 

instances. The recall of the mdC class was also relatively low, which says that of the actual mdC images we 

encountered, we only correctly classified 85% correctly. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Precision Recall Count 

nC 1.00 1.00 80 

mC 0.92 1.00 180 

mdC 0.99 0.85 315 
exC 0.85 0.99 176 

    

Avg. 0.94 0.96 751 

Weighted Avg. 0.94 0.94 751 
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Table 3  Baseline CNN Confusion Matrix: There are a couple of key things to note in the above table. First, of the 

predicted mother cell only images, there were 15 that were actually mother and daughter cells. This is a 

potentially costly mistake because the RLS calculation might miss some cell divisions. However, it is also 

likely that a daughter cell would be picked up further down the line in the series of images. The second 

thing to note is that there were only two of these problematic classifications when a true extra cell image 

is encountered. Conversely, there were 31 predicted cases of the extra cell class when it was actually an 

image of a mother and daughter cell. These predictions are not as problematic because the data can be 

thrown away. 

 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 
True mC 0 180 0 0 

True mdC 0 15 296 31 

True exC 0 0 2 174 
 
 
 

 
Figure 11  Common Baseline CNN Misclassifications: There were two very common types of misclassifications. 

Image 1 (left) had small cells with very blurred boundaries. Fortunately, image 4 ends up not being a 

problem after recombining the mddC and mduC classes. Images 2 and 3 (middle) were a little more 

problematic because the baseline model did not recognize the daughter cells above or below the 

mother cells. Image 4 was an interesting case because the mother cell is almost entirely transparent. It 

is possible that the mother cell died, and the daughter cell had nowhere to go. 

 

4.3 SimpleNet Architecture 

After reviewing results from the baseline convolutional neural network, we decided to continue 

training our models on five classes rather than four. Beyond that, we wanted to see how SimpleNet 

performed on a training dataset with no augmentation. Figure 12 shows and discusses the training 

progress of this test. Note that the SimpleNet models are trained in four sets of 25-30 epochs as is 

recommended in [9]. 



 
 

21 

It was immediately clear that we should try augmenting our dataset for the SimpleNet model. 

Results are shown and discussed in Figure 13, Figure 14, Table 4 and Table 5. In terms of precision, recall 

and accuracy, SimpleNet was our best performing model, but the next section will discuss why this isn’t 

necessarily the best in terms of accurately calculating replicative lifespan. Fortunately, Section 3.5 will 

discuss how we can take the high accuracy of SimpleNet and combine it with our baseline CNN and 

CapsNet predictions to create a superior ensemble of models. 

 

 
Figure 12  Training Progress of SimpleNet without Augmentation: There are a couple of noticeable problems with 

this training progress graph. First, we see that the training dataset is learned extremely quickly. Even 

though the traps and cells are in the same orientation, this is no surprise given that there are only a few 

thousand examples with fairly drasitc contrast and brightness differences. The second issue we see is 

the unstable and inaccurate performance of the model on our test dataset. 
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Figure 13  Training Progress of SimpleNet with Augmentation: After augmenting the dataset, there was a 

substantial improvement in the SimpleNet model. Even early on, the test dataset accuracy bounces 

from 80% to around 95%. Although it was initally unstable, the model stabilized right around epoch 30. 

 
 
 
Table 4  SimpleNet Performance Metrics: Interestingly, the recall and precision of the mdC and exC classes for 

SimpleNet are almost the reverse of the baseline CNN counterparts. In other words, for every predicted exC 

instance, the model was right >99% of the time (high precision), but for all actual instances of the exC class 

encountered, the model only recognized it 85% of the time (low recall). For the mdC class, precision is low and 

recall is high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Precision Recall Count 

nC 1.00 1.00 80 

mC 0.97 1.00 180 
mdC 0.92 0.98 315 

exC 0.99 0.85 176 

    
Avg. 0.97 0.96 751 

Weighted Avg. 0.96 0.96 751 
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Table 5  SimpleNet Confusion Matrix: As was highlighted in Table 4, there were a full 26 times where SimpleNet 

predicted the mdC class when the instance was actually an exC class. Unfortunately, this is a more costly 

mistake than the incorrect classifications of the baseline CNN. This is because the RLS calculation 

algorithm might determine there has been a division when there was actually just a daughter cell that 

floated down from upstream. The 6 instances where the mC class was predicted, but it was actually the 

mdC class, is a more permissible mistake as discussed in Table 3. 

 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 

True mC 0 180 0 0 

True mdC 0 6 308 1 
True exC 0 0 26 150 

 
 
 

 
Figure 14 Common SimpleNet Misclassifications: Image 1 (left) shows an interesting case where it seems obvious 

that there are several cells clustered together. After further inspection, this image was classified with 
near 100% certainty. Although this is an uncommon instance, it still poses problems in RLS calculation. 
The mistake on image 2 is more understandable. There is certainly a mother cell with seemingly two 
daughter cells on top. However, the algorithm does not classify this in the exC class as it should be. 
Since one of these cells could actually be a true daughter cell, this image may not be as problematic. 
Image 3 is an example that is similar to image 2, but the boundary between the two cells on top of the 
bother cell are so thin that it is reasonable to think that it is a deformed single daughter cell to the 
untrained eye. Finally, image 4 shows a mistake that was common in the baseline CNN model. This is 
one of only six misclassifications of the sort and should not cause drastic issues in the RLS calculation. 

 

4.4 CapsNet Architecture 

Based on early results, the CapsNet architecture proved itself to be quite sensitive to hyper-

parameters, unlike the baseline CNN and SimpleNet architectures. So, the best model was selected 

based on a grid search (discussed in the previous section). Table 6 shows the top 10 models from the 

108 models tested. Interestingly, despite its promise, the capsule network architecture actually had the 

worst performance of all three models with the best performer only reaching 90.55% accuracy (on 5 
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classes). Results of the best CapsNet model after recombining the mddC and mduC classes are discussed 

in Figure 15, Table 7 and Table 8. 

 

Table 6  CapsNet Hyper-Parameter Grid Search: There are a few of things to note about the top 10 models. Every 

single one of the best models had an augmented dataset. This is unsurprising, given the results of the 

baseline CNN model and SimpleNet, but it is worth pointing out the importance of this again. A batch size 

of 128 dominated the top 10 models with only 2 models being trained on batch sizes of 256 or 512. The 

number of routing iterations did not seem to play a major role, but the learning rate and number of 

epochs did seem to play some sort of role. However, those relationships are unclear. 

 

Routing  Learning Rate Batch Size Augment Data? Epochs Accuracy 

7 0.0005 512 True 20 0.8788 

7 0.0005 128 True 25 0.8855 

5 0.001 128 True 20 0.8895 

3 0.0005 128 True 20 0.8961 

7 0.0005 128 True 20 0.8961 
3 0.001 128 True 15 0.8961 

7 0.0005 265 True 20 0.8961 

5 0.0005 128 True 20 0.9028 
7 0.001 128 True 20 0.9028 

5 0.0005 128 True 15 0.9055 
 
 
 
 Table 7  CapsNet Performance Metrics: Unsurprisingly, the model perfectly classified the nC class. It did struggle 

with the precision of the mC class, which is not a problem either of the other two models ran into. The 

recall of the mdC class was also relatively low. However, CapsNet did better than the other two models on 

the exC class. One possible reason for this is that the CapsNet architecture is good at learning where 

entities should be relative to one another. So, if there are multiple entities above the main compartment 

in a trap (where a mother cell would sit), CapsNet should recognize this and classify the example as being 

part of the exC class. This is in contrast with the SimpleNet architecture that struggled on such questions. 

Again, the overall accuracy, precision and recall were lower than the baseline CNN model or SimpleNet, 

but it is promising that what this model learns is different. 

 

 Precision Recall Count 

nC 1.00 1.00 80 

mC 0.85 0.92 180 
mdC 0.91 0.86 315 

exC 0.91 0.94 176 

    

Avg. 0.92 0.93 751 
Weighted Avg. 0.91 0.91 751 
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Table 8  CapsNet Confusion Matrix: As seen in the performance metrics of Table 7, CapsNet struggled primarily 
with the mC and mdC classes. The 29 instances where the CapsNet classified a mdC image as a mC image 
are problematic in the RLS calculation as discussed in Table 3. However, there were only 11 instances of 
true exC images that were classified as mdC images. When compared to 26 of these misclassifications in 
the SimpleNet model, it can be seen as an improvement (though not as good as the baseline CNN). 

 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 
True mC 0 165 15 0 

True mdC 0 29 270 16 

True exC 0 0 11 165 
 
 
 

 
Figure 15  Common CapsNet Misclassifications: In image 1 (left), there is a small cell on the top right portion of 

the mother cell that seemed to be overlooked by the CapsNet model. One potential cause for this 

misclassification is that the two cells on top of the mother cell are quite different in size. Image 2 is one 

of the 29 problematic misclassifications that SimpleNet was good at detecting. Image 3 is an interesting 

example showing a transparent cell that is likely dead or senescent. This type of image is unlikely to 

happen often enough for the model to learn effectively. In image 4 (right), we see another interesting 

example. It looks as though a mother cell was too big for the trap and is reproducing daughters that 

flow over the outside edge of the trap. Since CapsNet learns how entities should be positioned relative 

to one another, when a cell is above the trap, it is reasonable to assume the model will predict such an 

example as being part of the exC class. 

 

4.5 Ensemble of Models 

Given the results of the best baseline CNN, SimpleNet and CapsNet models, there are a couple 

of different ways we could ensemble (i.e. combine) the models together to create a single aggregate 

model. The simplest method is to average the predictions of each model where each prediction is 

weighted equally. However, it turns out that weighing the predictions by overall model accuracy 

achieves slightly better performance. Thus, models in the ensembles presented are weighted by their 
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overall test set accuracy. So, SimpleNet predictions had the highest weight, the baseline CNN was 

weighted slightly lower and CapsNet had the lowest prediction weights. 

We will explore the results of every possible ensemble combination, which are shown in Figure 

16. The classification matrices for each of the ensembles are shown in Tables 9-12 below. Performance 

metrics and common misclassifications of the best ensemble are shown in Table 13 and Figure 17. 

Figure 16 Ensemble Combinations 

 

Table 9  Ensemble #1 Confusion Matrix: There were a total of 28 problematic classifications in this ensemble. Of 

those, there were 9 instances of a mdC image that were classified into the mC category and 19 instances 

where an exC image was classified as a mdC image. 

 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 

True mC 0 180 0 0 

True mdC 0 9 303 3 

True exC 0 0 19 157 
 

 

 

Table 10  Ensemble #2 Confusion Matrix: There were a total of 33 problematic misclassifications and 1 non-

problematic misclassification. Although SimpleNet has the highest single-model accuracy, it tended to 

make mistakes in the wrong direction. 

 

 

 

 

 

 

 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 

True mC 0 180 0 0 

True mdC 0 6 308 1 

True exC 0 0 27 149 
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Table 11  Ensemble #3 Confusion Matrix: There were a total of 17 problematic misclassifications and 28 non-

problematic misclassifications. Of course, 28 misclassifications are still undesirable if it can be avoided. 

However, it seems that the second and third best single models (in terms of accuracy) work well 

together to create an ensemble of models that is very good from a practical standpoint. 

 

 
 
 
Table 12  Ensemble #4 Confusion Matrix: With only 16 problematic misclassifications and 11 non-problematic 

misclassifications, this ensemble is the best by far. Since each model performs well in a unique way, the 
aggregate of all three models is best from both a practical standpoint and from the perspective of the 
key performance metrics. 

 

 
 
 
Table 13  Ensemble #4 Performance Metrics: Given the diversity of each model, they made mistakes in different 

ways from one another. The CapsNet struggled to accurately predict the mC class but did quite well on 
the exC class, whereas the baseline CNN and SimpleNet models struggled with either the precision or 
recall of the exC class. Altogether, the weighted precision of this ensemble was 0.97 and the weighted 
recall was 0.96. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 

True mC 0 180 0 0 
True mdC 0 15 272 28 

True exC 0 0 2 174 

 Predicted nC Predicted mC Predicted mdC Predicted exC 

True nC 80 0 0 0 
True mC 0 180 0 0 

True mdC 0 12 292 11 

True exC 0 0 4 172 

 Precision Recall Count 

nC 1.00 1.00 80 

mC 0.94 1.00 180 
mdC 0.99 0.93 315 

exC 0.94 0.98 176 

    

Avg. 0.97 0.98 751 

Weighted Avg. 0.97 0.96 751 
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Figure 17  Common Ensemble Misclassifications: Each of the misclassifications of the ensemble are obviously 

misclassifications of at least one of the three models. Thus, in the previous three sections, we’ve seen 
each of the above examples. 

 
 
 

Table 14  Summary of the Best Models: We can see that the ensemble was greater than its component models 

individually. A collaboration between the best models leads to a higher precision and accuracy than the 

best single model and ties SimpleNet on recall. 

 
Model Precision Recall Accuracy 

Baseline CNN 0.94 0.94 0.938 

SimpleNet 0.96 0.96 0.956 

CapsNet 0.91 0.91 0.905 

Ensemble #4 0.97 0.96 0.964 
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CHAPTER 5 

DISCUSSION 
 
 

Given the results presented in the previous section, we will now discuss the main takeaways. 

The first of the three major results was that splitting the mother and daughter cell class into two 

separate classes significantly helped the models learn on a small, noisy dataset. Second, training data 

augmentation is another highly effective strategy for dealing with the noisy trap images. Lastly, an 

ensemble with diverse models outperformed the single best model. After reviewing these results we will 

discuss future work related to the automatic estimation of RLS. 

 

5.1 Splitting the mdC Class 

The most important part of understanding why it was so effective to split the mC class into a 

mddC and mduC class is to first understand the nature of the images being classified. If we revisit Figure 

7 from Chapter 3, we can reiterate the similarity between the extra cell class and the mother and 

daughter cell class, when the daughter cell is above the mother cell. 

At the highest level, splitting the mdC class created a situation where the neural networks were 

able to more easily learn the differences of the mduC class and the exC class without having to learn 

that the mddC and mduC class are the same. Another concept that was not used in this work, but has 

interesting similarities is transfer learning [18]. Transfer learning is when a neural network starts with 

pre-trained weights, which can theoretically make it easier for models to learn weights. The machine 

teaching concept of splitting classes is similar to transfer learning in that both methods attempt to make 

it easy for the model to learn weights, however these approaches are tackled from different angles. 
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5.2 Data Augmentation 

Many of the beacon images are quite uniform and predictable in terms of brightness, contrast 

and cell and trap shape. However, Figure 3 from Chapter 1 shows examples to illustrate the non-

uniformity of the dataset. Unlike benchmark datasets such as MNIST [2], the microfluidic beacon images 

do not necessarily have the same brightness, trap color, background color, or even a uniform 

background. The result of all this noise makes the possible input space of the dataset massive. In 

addition, the small number of samples we have led to a sparse input space. The result is a sparse and 

high-dimensional input space. 

 Recall that machine learning aims to map some input space (represented by all possible inputs) 

onto an output space. When we augmented our data, we reduced the sparsity of our input space and 

the machine learning models were better able to learn the mapping between inputs and outputs. 

 

5.3 The Effectiveness of an Ensemble of Models 

The final major improvement upon our models (though not nearly as effective as machine 

teaching or augmenting our training data), was to ensemble our best performing models of each 

architecture, the baseline CNN, SimpleNet and CapsNet. In the previous section, we saw that the 

precision and recall for the mdC and exC classes were completely different between all the models. For 

example, SimpleNet had low recall and high precision for the exC class, but vice-versa for the baseline 

CNN. On the other hand, CapsNet had relatively high precision and recall for the same class but 

performed worse in areas the other two models had little trouble with (e.g. the mC class). 

The most interesting result here is that CapsNet was not a great model individually, but when 

combined with either SimpleNet, the baseline CNN, or both, the results were always improved. This 

implies that the diversity of models plays an important role in ensemble methods. In fact, [19] supports 

this idea and the authors show that accuracy should not necessarily even be the top metric for 
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determining which models are included in an ensemble. Rather, the authors show that optimizing for 

error diversity is key to improving overall accuracy. 

 

5.4 Future Work 

While correctly classifying images into one of the four discussed categories was the focus of this 

work, there are still improvements to be made. To approach the image pre-processing differently from 

data augmentation, we could focus on reducing the size of the possible input space by pre-processing 

the input images with an edge detection algorithm, so each image only had non-zero pixels on edges of 

the original images. Additionally, to help make the models learn weights more easily, we could focus on 

transfer learning [18] in addition to machine teaching. Lastly, we could improve the overall ensemble by 

adding more diversity to the set of models. For example, the sequential nature of the problem could 

lend itself nicely to an LSTM architecture [20]. Beyond the deep learning problem, an interface for 

biologists to quickly input full beacon images and receive the family trees of each cell and a probability 

distribution for the RLS of the entire experiment is needed for rapid genomic experiments on 

Saccharomyces cerevisiae. 
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APPENDIX A 

NEURAL NETWORK ARCHITECTURES BROKEN DOWN BY LAYER 
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Baseline Convolutional Neural Network Architecture Layer Breakdown 

 
 
 
SimpleNet Architecture Layer Breakdown 
 

 
 
 
CapsNet Architecture Layer Breakdown 

 

  

Layer Number Output Size Description 
1 (58, 58, 60) Convolution layer with 3x3 kernel size 

2 (28, 28, 64) Convolution layers with 3x3 kernel and 2x2 max pooling 

3 (50176) Flatten Layer with dropout probability of 50% 
4 (128) Densely connected layer with dropout probability of 25% 

5 (5) Densely connected output layer 

Layer Number Output Size Description 

1 (60, 60, 64) Convolution layers with 3x3 kernel and 25% dropout probability 

2 (60, 60, 128) Convolution layers with 3x3 kernel and 25% dropout probability 

3 (60, 60, 128) Convolution layers with 3x3 kernel and 25% dropout probability 
4 (30, 30, 128) Convolution layers with 3x3 kernel, 2x2 max pooling and 25% 

dropout probability 

5 (30, 30, 128) Convolution layers with 3x3 kernel and 25% dropout probability 

6 (30, 30, 128) Convolution layers with 3x3 kernel and 25% dropout probability 

7 (15, 15, 256) Convolution layers with 3x3 kernel, 2x2 max pooling and 25% 
dropout probability 

8 (15, 15, 256) Convolution layers with 3x3 kernel and 25% dropout probability 
9 (15, 15, 256) Convolution layers with 3x3 kernel and 25% dropout probability 

10 (7, 7, 512) Convolution layers with 3x3 kernel, 2x2 max pooling and 25% 
dropout probability 

11 (7, 7, 2048) Convolution layers with 3x3 kernel and 25% dropout probability 

12 (3, 3, 256) Convolution layers with 3x3 kernel, 3x3 max pooling and 25% 
dropout probability 

13 (256) Convolution layers with 1x1 kernel and flattened 

14 (5) Densely connected output layer 

Layer Number Output Size Description 

1 (52, 52, 256) Convolution layer with 2x2 kernel size 

2 (15488, 8) Low-level capsule, convolutional layer with 3x3 kernel and where 
routing algorithm takes place 

3 (5, 16) High-level capsule after squashing output vectors 

4 (5) Densely connected output layer 
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