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ABSTRACT

The induced path number ρ(G) of a graph G is defined as the minimum number of subsets

into which the vertex set of G can be partitioned so that each subset induces a path. A

complementary prism of a graph G that we will refer to as CP (G) is the graph formed from

the disjoint union of G and G and adding the edges between the corresponding vertices of

G and G. These new edges are called prism edges. The graph grid(n,m) is the Cartesian

product of Pn with Pm. In this thesis we will give an overview of a selection of important

results in determining ρ(G) of various graphs, we will then provide proofs for determining

the exact value of ρ(CP (grid(n,m))) for specific values of n and m.
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CHAPTER 1

INTRODUCTION

1.1 Preliminary Definitions

In this thesis, we follow the notation of G. Chartrand and L. Lesniak, Graphs &

Digraphs: Sixth Edition, Chapman & Hall, London, 2016. [3]. All graphs referenced are

simple graphs, where V (G) denotes the vertex set of a graph G, and E(G) denotes the edge

set of a graph G. The complement G of a graph G is the graph with vertex set V (G) such

that two vertices are adjacent in G if and only if these vertices are not adjacent in G. A

graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G), and we write H ⊆ G. For a

nonempy set S of V (G), the subgraph G[S] of G, induced by S, has S as its vertex set and

two vertices u and v are adjacent in G[S] if and only if u and v are adjacent in G, and a

subgraph H of G is called an induced subgraph if there is a nonempty subset S of V (G) such

that H = G[S]. For an integer n ≥ 1, the path Pn is a graph of order n and size n− 1 whose

vertices are labeled by v1, v2, ..., vn and whose edges are vivi+1 for i = 1, 2, ..., n − 1. The

subpath for a path P is a path from vk to vl with edges vivi+1 for k ≤ i ≤ l− 1. The induced

path number ρ(G) of a graph G is defined as the minimum number of subsets into which the

vertex set of G can be partitioned so that each subset induces a path. A complementary

prism of a graph G, denoted as CP (G), is the graph formed from the disjoint union of G

and G and adding the edges between the corresponding vertices of G and G. These added

edges are called prism edges. The graph grid(n,m) is the Cartesian product of Pn with

Pm. We are interested in finding ρ(CP (grid(n,m))) for various values of n,m.
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a b c

d e f

a b c

d e f

Figure 1.1

CP (grid(2, 3))
All edges of CP (grid(2, 3)) are shown

a

d e f

cb

e

Figure 1.2

Path Induced by the vertices a, d, e, f , e, b, c

1.2 Previous Research

Several papers have been published where exact bounds of the induced path number

for various graphs have been found [1], [2], [4], [7], [8]. I. Broere, G. S. Domke, E. Jonck, and

L.R. Markus, [1] made the following observations. For a path on n vertices ρ(Pn) = 1 and

for the cycle on n vertices ρ(Cn) = 2, and for the complete graph on n vertices ρ(Kn) = dn
2
e.

From G. Chartrand, J. Hashimi, M. Hossain, J. McCanna, and N. Sherwani, [2] we certainly

have ρ(grid(n,m)) = 1 for n = 1 or m = 1.

2



Theorem 1.1. [2] If m ≥ 2and n ≥ 2 then ρ(grid(n,m)) = 2.

As examples of cases where determining ρ(G) is more difficult, Broere et al. [1]

provide the following two theorems.

Theorem 1.2. [1] If n ≥ m , then

ρ(Km ×Kn) =


n
2

if n is even and n > m,
n
2

+ dm
4
e if n is even and n=m

n−1
2

+ dm
2
e if n is odd

Theorem 1.3. [1] Suppose m and n are positive integers. Then

ρ(Cm × Cn) ≤ 3.

Broere et al. [1] also give the induced path number of the complement of certain

classes of graphs, including the Cartesian product of complete graphs, and various combina-

tions of Cartesian products of paths and cycles. This area of research is still very active. In

an interesting case Broere et al. were unable to give a proof of the following conjecture:

Conjecture 1.4. [1] ρ(Km ×Kn) = dmn
5
e except when:

1. m = 3 and n ∈ (3, 5, 8, 10, 11, 13, 14, 15, ...)

2. m, n are odd; m,n ≥ 5 and mn ≡ 0 mod 5

In Cases (1) and (2) the conjecture is

ρ(Km ×Kn) = dmn
5
e+ 1

Papers by J.H. Hattingh, O.A. Saleh, L C. van der Merwe and T. Walters [7], [8]

established Nordhaus-Gaddum type results, which give bounds on the sum of the induced

path number of a graph and its complement.

Theorem 1.5. [7] For any Graph G of order n,
√
n ≤ ρ(G) + ρ(G) ≤ d3n

2
e.

3



Hattingh et al. [8] use the above results and methods to improve the bounds under

specific conditions and give results for various graphs using Ψ(G) to denote ρ(G) + ρ(G),

such as:

Theorem 1.6. [8] Let G be a graph of order n ≥ 3 such that neither G nor G is a

complete graph. Then Ψ(G) ≤ d3(n−1)
2
e. Moreover, this bound is best possible.

Corollary 1.7. [8] The upper bound in Theorem 1.6 is achieved if and only if G or

G is a complete graph.

4



CHAPTER 2

INDUCED PATHS IN CP(grid(n,m))

2.1 Labeling and Definitions

We now wish to calculate ρ(CP (grid(n,m))) for some values of n and m, where

grid(n,m) is Pn×Pm. It is helpful to have a good labeling system for the vertices of the graph

grid(n,m), which we call the grid side of CP (grid(n,m)), and grid(n,m), which we call the

complement side of CP (grid(n,m)), (refer to Figure 2.1). For any grid(n,m) and grid(n,m)

with n,m ≥ 1 we label the vertices of grid(n,m) as an ordered pair (i, j) for 1 ≤ i ≤ n and

1 ≤ j ≤ m and i, j ∈ N. Each vertex (i, j) in grid(n,m) is adjacent to the following vertices

{(i−1, j), (i+1, j), (i, j−1), (i, j+1)} if they exist. In grid(n,m) the vertices are labeled (i, j)

and they correspond to the vertices of grid(n,m). In grid(n,m) each vertex (i, j) is adjacent

to every other vertex except the vertices {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}, if they ex-

ist. For any given vertex (i, j) we call these vertices non-adjacent-vertices of (i, j), and taken

together for any vertex (i, j) we call it the non-adjacent-vertex-set of (i, j), NAV S((i, j)).

If while finding NAV S((i, j)) there is a (k, l) where k = 0 or k > n,m or l = 0 or l > n,m,

then that vertex does not exist and so (k, l) has a smaller NAV S((i, j)).

We call any vertex (i, j) with exactly four vertices in NAV S((i, j)) an interior vertex,

any vertex with exactly two vertices in NAV S((i, j)) a corner vertex, and any vertex with

exactly three vertices in NAV S((i, j)) an edge vertex.

5



(1,1) (1,2) ... (1,m)

(2,1) (2,2) ... ...

...
... (i,j) ...

(n,1) (n,2) ... (n,m)

(1, 1) (1, 2) ... (1,m)

(2, 1) (2, 2) (...) ...

...
... (i, j) ...

(n, 1) (n, 2) ... (n,m)

Figure 2.1

Some Edges and Vertices for CP (grid(n,m))
Not all edges are drawn

2.2 Induced Paths in Complementary Prisms

First we will provide two proofs for results on complementary prisms in general and

then give characterizations of the induced paths in CP (grid(n,m)).

Theorem 2.1. Induced paths in complementary prisms have at most two prism edges.

Proof: (refer to Figure 2.2) Let G and G be the two complementary graphs of the

prism. Suppose to the contrary that there exists an induced path P in the prism that contains

at least three or more prism edges. Then there exists ua, ub, uc ∈ G and ua, ub, uc ∈ G such

that P has the edges uaua, ubub, ucuc. Since G and G are complements, the following is true:

either ua is adjacent to ub or ua is adjacent to ub, and either ua is adjacent to uc or ua is

adjacent to uc, and either ub is adjacent to uc or ub is adjacent to uc. Since P is an induced

6



path, no vertex on the path is adjacent to three other vertices. Without loss of generality

assume ua is adjacent to ub, then ua is not adjacent to uc and so ua is adjacent to uc. Now ub

is not adjacent to uc since ub would be adjacent to three other vertices, and so ub is adjacent

to uc, this is a contradiction because then uc is adjacent to three different vertices on the

path. 2

ua

ua

ub

ub

uc G

uc G

Figure 2.2

Induced Paths can not have three prism edges

Theorem 2.2. Suppose an induced path in a complementary prism contains the two

prism edges aa and bb, then either G or G has exactly two adjacent vertices of the induced

path. Furthermore, the induced path has the form u1...unaabbw1...wk or v1...vnaabbx1...xk for

k, n ≥ 0.

Proof: (refer to Figure 2.3) Suppose an induced path P in a complementary prism

contains prism edges aa and bb with a, b ∈ G and a, b ∈ G. By Theorem 2.1 there are only

two prism edges. Clearly either a is adjacent to b or a is adjacent to b. Suppose that a is

adjacent to b in G. Then the edge ab is on the induced path, and aabb is a subpath of P . The

whole path is of the form alal−1...a1aabbb1...bk. Since there are no additional prism edges

then all alal−1...a1 and b1...bk are in G and the only edge in G is ab. A similar argument

holds assuming a is adjacent to b for G and the other subpath aabb. 2

7



a

a

b G

b w1 wk Gu1un

Figure 2.3

An induced path in a complementary prism with two prism edges

We now show that in grid(n,m), induced paths have at most four vertices. We will

also describe how these four vertices can be arranged. The following lemmas provide us with

information about the (NAVS) of vertices that will help in providing a proof for the nature

of induced paths in grid(n,m).

Lemma 2.3. For any (a, b), (c, d) ∈ grid(n,m); if (a, b) ∈ NAV S((c, d)), then

NAV S((a, b)) ∩NAV S((c, d)) = ∅ and (c, d) ∈ NAV S((a, b)).

Proof: (refer to Figure 2.4) Let (a, b) ∈ NAV S((c, d)). The NAV S((c, d)) is

{(c− 1, d), (c+ 1, d), (c, d− 1), (c, d+ 1)}, so (a, b) is one of those vertices. Suppose that

(a, b) = (c− 1, d), then the NAV S((a, b)) is {(c− 2, d), (c, d), (c− 1, d− 1), (c− 1, d+ 1)}

which has no common members of the NAV S((c, d)). Repeat for the other three vertices in

the NAV S((c, d)) and it is clear that NAV S((a, b)) ∩NAV S((c, d)) = ∅. 2
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(c, d) (a, b)1

2 3

4

56

Figure 2.4

(a, b) ∈ NAV S((c, d)) and (c, d) ∈ NAV S((a, b)) )

NAV S((a, b)) = { (c, d), 3, 4, 5} and NAV S((c, d)) = { (a, b), 1, 2, 6}

Lemma 2.4. If there are two different vertices a, b ∈ grid(n,m) such that NAV S(a)∩

NAV S(b) 6= ∅, then the two vertices are adjacent in grid(n,m).

Proof: (refer to Figure 2.5) Assume to the contrary that two vertices a and b share at

least one member of their (NAVS) in common and a is not adjacent to b. Then a ∈ NAV S(b)

and b ∈ NAV S(a), and by Lemma 2.2 NAV S(a) ∩ NAV S(b) = ∅ contradicting our

assumption. Therefore a is adjacent to b. 2
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a b1

2

3

4

5

6

7

Figure 2.5

NAV S(a) ∩NAV S(b) = {3}
a is adjacent to b on the complement side

Lemma 2.5. If there are three vertices a, b, c ∈ grid(n,m) such that NAV S(a) ∩

NAV S(b) ∩NAV S(c) 6= ∅, then these vertices induce a triangle.

Proof: (refer to Figure 2.6) Apply the previous lemma three times and we see that

a is adjacent to b and c, and b is adjacent to c. So they induce a triangle.2
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a b

c

1

2

3

4

5

6

7

8

Figure 2.6

NAV S(a) ∩NAV S(b) ∩NAV S(c) = {3}
a, b, and c induce a triangle

Theorem 2.6. Induced paths in CP (grid(n,m)) have at most four vertices in the

grid(n,m) side.

Proof: (refer to Figure 2.7) Using the notation established in Section 2.1 the fol-

lowing vertices in grid(4, 4) form an induced path; (1, 3), (1, 1), (1, 4), (1, 2). Therefore it is

possible to have four vertices in an induced path in grid(n,m). Now we show that every

induced path in CP (grid(n,m)) has at most four vertices in the complement side. Assume

to the contrary that an induced path in CP (grid(n,m)) has the five vertices a, b, c, d, e

in grid(n,m). Without loss of generality, assume that starting from one end of the induced

path the first of these we encounter on the path is a. Since this is an induced path, a is

adjacent to at most one of b, c, d, or e. Without loss of generality, assume that a is not

adjacent to c, d, nor e. We have then that a ∈ NAV S(c), a ∈ NAV S(d), and a ∈ NAV S(e).

Therefore, it follows that NAV S(c)∩NAV S(d)∩NAV S(e) 6= ∅ and by Lemma 2.4, c, d,

and e induce a triangle and it follows that five vertices do not induce a path, contradicting
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our assumption. Therefore any induced path in CP (grid(n,m)) has at most four vertices in

grid(n,m). 2

a bc

d

e grid(n,m)

a grid(n,m)...

Figure 2.7

Five vertices in grid(n,m)

c, d, and e induce a triangle.

Theorem 2.7. If an induced path in CP (grid(n,m)) has three or more consecutive

vertices in grid(n,m), then that induced path has at most one prism edge.

Proof: (refer to Figure 2.8) Suppose the we have an induced path P in CP (grid(n,m))

that contains two prism edges aa and bb and three consecutive vertices in grid(n,m). By

Theorem 2.2 P is of this form u1...unaabbw1...wk. By Theorem 2.6 we can have at most

four vertices in grid(n,m), and P is of the form u1u2aabb or aabbw1w2. Suppose P is u1u2aabb

then NAV S(u1), NAV S(u2), and NAV S(a) all contain b, and by Lemma 2.4 they induce

a triangle and we have contradiction. If P is aabbw1w2 a similar contradiction follows. 2
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a b w1 w2 grid(n,m)

a b grid(n,m)

Figure 2.8

Two prism edges and three consecutive vertices in grid(n,m)

b, w1, and w2 induce a triangle.

Theorem 2.8. If ab is an edge in grid(n,m) of CP (grid(n,m)), then any induced

path in CP (grid(n,m)) containing the vertices a, b, a, b, has at most two more vertices, which

can only be in grid(n,m), with one adjacent to a and the other adjacent to b.

Proof: (refer to Figure 2.9) Let P be an induced path containing the edge ab and

the vertices a, b. Since P is induced, the prism edges aa and bb are in P . By Theorem

2.1, P does not have another prism edge, and any other vertices on P are in grid(n,m). By

Theorem 2.6 we only have two more vertices on P . So, P contains the subpath aabb and

possibly two more vertices only in grid(n,m). Now suppose, without loss of generality, that

the induced path is a, a, b, b, c, d. This contradicts Theorem 2.7, and similarly we can not

have c, d, a, a, b, b. Thus, the induced path is of the form c, a, a, b, b, d. 2
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a b grid(n,m)

cd

a b grid(n,m)

Figure 2.9

Induced path of the form c, a, a, b, b, d

2.3 Four Types of Induced Paths in CP (grid(n,m)) With

Four Vertices In grid(n,m)

Induced paths in CP (grid(n,m)) with four vertices in grid(n,m) follow four partic-

ular patterns that we will call B-paths, L-paths, Z-paths, and U-paths.

A B-path is an induced path with the following vertices; either (a+ 1, b), (a+ 3, b), (a, b),

(a+ 2, b) (a vertical B-path) or (a, b+ 1), (a, b+ 3), (a, b), (a, b+ 2) (a horizontal B-path).
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(1, 1)

(2, 1)

(3, 1)

(4, 1)

(1, 1) (1, 2) (1, 3) (1, 4)

Figure 2.10

B-paths

An L-path is an induced path with the following vertices; either (a+ 2, b), (a, b),

(a+ 2, b± 1), (a+ 1, b) or (a, b), (a+ 2, b), (a, b± 1), (a+ 1, b) or (a, b+ 2), (a, b), (a± 1, b+ 2),

(a, b+ 1) or (a, b), (a, b+ 2), (a± 1, b), (a, b+ 1).

(1, 1) (1, 2)

(2, 2)

(3, 2)

(1, 3)

(2, 3)(2, 2)(2, 1)

Figure 2.11

L-paths
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A Z-path is an induced path with the following vertices; either (a+ 1, b), (a+ 2, b+ 1), (a, b),

(a+ 1, b+ 1) or (a+ 1, b− 1), (a, b), (a+ 2, b− 1), (a+ 1, b) or (a+ 1, b+ 1), (a, b), (a+ 1, b+ 2),

(a, b+ 1) or (a− 1, b+ 1), (a, b), (a− 1, b+ 2), (a, b+ 1).

(1, 1) (1, 2)

(2, 2) (2, 3)

(1, 2)

(2, 1) (2, 2)

(3, 1)

Figure 2.12

Z-paths

A U-path is of the form described in Theorem 2.8 with the following vertices

(a+ 1, b+ 1), (a, b), (a, b), (a+ 1, b), (a+ 1, b), (a, b+ 1) or (a+ 1, b+ 1), (a, b), (a, b),

(a, b+ 1), (a, b+ 1), (a+ 1, b).
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(1, 1)grid(n,m) (1, 2)

(2, 2)(2, 1)

(1, 1)grid(n,m) (1, 2)

(1, 1) (1, 2)

(2, 2)(2, 1)

(1, 1)

(2, 1)

Figure 2.13

U-paths

Theorem 2.9. If an induced path in CP (grid(n,m)) has two prism edges and four

vertices in grid(n,m), then the induced path is a U
¯

-path having exactly six vertices.

Proof: Let P be an induced path in CP (grid(n,m)) with two prism edges and

four vertices in grid(n,m). By Theorem 2.8 the path must be of the form u1uuvvv1

since we have exactly four vertices in grid(n,m). Since P is an induced path, u1 is not

adjacent to v nor v1 in grid(n,m), and u is not adjacent to v nor v1 in grid(n,m). Consider

the specific case u = (a, b) and v = (a, b + 1). Then u = (a, b), v = (a, b+ 1), u1 ∈

NAV S(v), and v1 ∈ NAV S(u). The vertices in NAV S(v) are (a− 1, b+ 1), (a, b+ 2) and

(a+ 1, b+ 1), so u1 must be one of these. Similarly, the vertices in NAV S(u) are (a− 1, b),

(a, b− 1) and (a+ 1, b), so v1 must be one of these. Suppose that u1 is (a, b+ 2), then

any possible v1 will be adjacent to u1 and we do not have a path. Similarly v1 can not be

(a, b− 1). We can not have u1 = (a− 1, b+ 1) and v1 = (a+ 1, b) since these vertices are
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adjacent in grid(n,m). Similarly we can not have u1 = (a+ 1, b+ 1) and v1 = (a− 1, b).

Therefore we get the U-path (a− 1, b+ 1)(a, b)(a, b)(a, b + 1)(a, b+ 1)(a− 1, b) or the U-

path (a+ 1, b+ 1)(a, b)(a, b)(a, b+ 1)(a+ 1, b)(a− 1, b1).

Theorem 2.10. If an induced path in CP (grid(n,m)) has one prism edge and four

vertices in grid(n,m), then the graph induced in grid(n,m) by these four vertices is a B-

path, L-path, or Z-path.

Proof: (refer to Figure 2.14) Using Theorem 2.6 and without loss of generality

the induced path has the form abcddv1...vs. Since this is a path we know the following

c ∈ NAV S(a), d ∈ NAV S(a), b ∈ NAV S(d), and a ∈ NAV S(d). We also know that

b /∈ NAV S(a), b /∈ NAV S(c), c /∈ NAV S(b), and c /∈ NAV S(d). Since the path is induced

the subpath abcd is a path in grid(n,m). Starting with end vertex a the remaining vertices

can only be in the following locations acording to their NAV S. If we are close to the edge

of the grid(n,m) then some of these may not exist.
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b

b c/d b

b c/d a c/d b

b c/d b

b

Figure 2.14

Possible locations of b, c, d relative to a

Starting at a we go to any b in the image above. Once we choose a b we go to c such

that b /∈ NAV S(c). From here we go to any d /∈ NAV S(c) and d ∈ NAV S(b). Following

this algorithm we only produce L-paths (Figure 2.14), B-paths (Figure 2.15), or Z-paths

(Figure 2.16). 2
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b

b c/d b

b c/d a c/d b

b c/d b

b

Figure 2.15

An L-path produced by the algorithm

b

b c/d b

b c/d a c/d b

b c/d b

b

Figure 2.16

A B-path produced by the algorithm
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b

b c/d b

b c/d a c/d b

b c/d b

b

Figure 2.17

A Z-path produced by the algorithm

Corollary 2.11. Any induced path in CP (grid(n,m)) that has four vertices in

grid(n,m) is a U-path or has a B-path, L-path, or Z-path as a subpath.

The proof of Corollary 2.11 follows from Theorem 2.9 and Theorem 2.11 2
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CHAPTER 3

INDUCED PATH NUMBER OF SPECIFIC CP (grid(n,m))

3.1 Specific Examples of ρ(CP (grid(n, n)))

Now, since there are nm vertices in grid(n,m) and each induced path in a cover

for CP (grid(n,m)) contains at most four vertices from grid(n,m), we have ρ(grid(n,m)) ≥

dnm
4
e. Using the above notation system we provide ρ(CP (grid(n, n))) for n = 1, 2, 3, 4, 5, 6, 7.

For n = 1 it is trivial and ρ(CP (grid(1, 1))) = 1 = d1
4
e = d12

4
e

For n = 2 ρ(CP (grid(2, 2))) 6= d22
4
e because all the vertices would need to be in

the induced path and the four vertices in grid(2, 2) clearly induce a cycle. It is easy to

show however, that ρ(CP (grid(2, 2)) = 2 = d22
4
e + 1 with the following induced paths;

P1 = (1, 1), (2, 2), (2, 2), (1, 2); P2 = (1, 2), (2, 1), (2, 1), (1, 1)

For n = 3 the induced paths are the following: P1 = (2, 2), (2, 3), (2, 3), (1, 2), (3, 3);

P2 = (3, 3), (3, 2), (3, 1), (2, 1), (1, 1), (1, 2), (1, 3), (1, 3), (2, 2);

P3 = (3, 1), (1, 1), (3, 2), (2, 1), and we have ρ(CP (grid(3, 3))) = 3 = d32
4
e

For n = 4 (refer to Figure 3.1) the induced paths are the following: P1 = (4, 1), (2, 1), (4, 2),

(3, 1), (3, 1), (3, 2), (3, 3), (3, 4), (4, 4); P2 = (3, 3), (4, 4), (2, 3), (4, 3), (4, 3), (4, 2), (4, 1); P3 =

(1, 4),

(3, 4), (1, 3), (2, 4), (2, 4), (2, 3), (2, 2), (2, 1), (1, 1); P4 = (2, 2), (1, 1), (3, 2), (1, 2), (1, 2), (1, 3),

(1, 4), and we have ρ(CP (grid(4, 4))) = 4 = d42
4
e.
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(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

Figure 3.1

Induced paths for CP (grid(4, 4))

For n = 5 the induced paths are the following: P1 = (3, 3), (3, 3), (2, 3), (1, 3), (1, 4),

(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (5, 4), (5, 3), (5, 2), (5, 1), (4, 1), (3, 1), (2, 1), (1, 1); P2 = (2, 5),

(2, 3), (1, 5), (2, 4), (2, 4), (3, 4), (4, 4), (4, 3), (4, 2), (3, 2), (2, 2), (1, 2); P3 = (3, 5), (5, 5), (3, 4),

(4, 5); P4 = (4, 4), (4, 2), (5, 4), (4, 3); P5 = (5, 1), (5, 3), (4, 1), (5, 2); P6 = (3, 1), (1, 1), (3, 2),

(2, 1); P7 = (1, 2), (1, 4), (2, 2), (1, 3), and we have ρ(CP (grid(5, 5))) = 7 = d52
4
e

For n = 6 the induced paths are the following: P1 = (2, 2), (1, 1), (3, 2), (1, 2), (1, 2),

(1, 3), (1, 4), (1, 5), (1, 6); P2 = (1, 6), (3, 6), (1, 5), (2, 6), (2, 6), (2, 5), (2, 4), (2, 3), (2, 2), (2, 1),

(1, 1); P3 = (4, 1), (2, 1), (5, 1), (3, 1), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6), (5, 5),

(5, 4), (5, 3), (5, 2); P4 = (3, 5), (5, 5), (2, 5), (4, 5), (4, 5), (4, 4), (4, 3), (4, 2), (4, 1), (5, 1), (6, 1),

(6, 2), (6, 3), (6, 4), (6, 5), (6, 6); P5 = (1, 4), (3, 4), (1, 3), (2, 4); P6 = (3, 3), (5, 3), (2, 3), (4, 3);
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P7 = (6, 2), (4, 2), (6, 1), (5, 2); P8 = (6, 4), (4, 4), (6, 3), (5, 4); P9 = (6, 6), (4, 6), (6, 5), (5, 6),

and we have ρ(CP (grid(6, 6))) = 9 = d62
4
e

For n = 7 the induced paths are the following: P1 = (5, 2), (7, 2), (4, 2), (6, 2), (6, 2),

(6, 1), (7, 1); P2 = (6, 1), (4, 1), (7, 1), (5, 1), (5, 1), (5, 2), (5, 3), (6, 3), (7, 3), (7, 2); P3 = (5, 6),

(7, 6), (4, 6), (6, 6), (6, 6), (6, 7), (7, 7); P4 = (6, 7), (4, 7), (7, 7), (5, 7), (5, 7), (5, 6), (5, 5), (6, 5),

(7, 5), (7, 6); P5 = (3, 6), (2, 7), (3, 5), (3, 7), (3, 7), (4, 7), (4, 6), (4, 5), (4, 4), (5, 4), (6, 4), (7, 4);

P6 = (3, 2), (3, 4), (2, 2), (3, 3), (3, 3), (4, 3), (4, 2), (4, 1), (3, 1), (2, 1), (1, 1), (1, 2), (1, 3); P7 =

(1, 7), (1, 7), (2, 7), (2, 6), (3, 6), (3, 5), (3, 4); P8 = (2, 4), (2, 6), (2, 3), (2, 5), (2, 5), (1, 5), (1, 6);

P9 = (1, 5), (1, 3), (1, 6), (1, 4), (1, 4), (2, 4), (2, 3), (2, 2), (3, 2); P10 = (1, 1), (3, 1), (1, 2), (2, 1));

P11 = (5, 3), (7, 3), (4, 3), (6, 3)); P12 = (5, 5), (7, 5), (4, 5), (6, 5)); P13 = (5, 4), (7, 4), (4, 4), (6, 4)),

and we have ρ(CP (grid(7, 7))) = 13 = d72
4
e

3.2 Proof of ρ(CP (grid(n,m))) for n,m ≥ 4

Theorem 3.1. For n,m ≥ 4 , ρ(CP (grid(n,m))) = dnm
4
e

Proof: We proceed by examining the 16 possible modulo cases.

Case 1: n ≡ 0 mod 4 and m ≡ 0 mod 4

It has already been shown that to cover all the vertices for CP (grid(4, 4)) we need 4 induced

paths. Now suppose n = 4k and m = 4l for k, l ≥ 1. There are 32kl vertices in the prism.

The rows and columns will increase by multiples of 4 in both grid(n,m) and grid(n,m).

We cover all the vertices with copies of the induced paths provided for CP (grid(4, 4)), each

copy has 4 induced paths and we will need l columns and k rows of the copies. Therefore

we will need 4kl = d16kl
4
e = dnm

4
e induced paths to cover all the vertices.
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Case 2: (efer to Figures 3.2 and 3.3) n ≡ 0 mod 4 and m ≡ 1 mod 4

Suppose n = 4k and m = 4l + 1 for k, l ≥ 1, and there are a total of 32kl + 8k vertices to

cover. We cover 32kl vertices with copies of the induced paths used to cover CP (grid(4, 4))

starting in the upper lefthand corner for a total of 4kl paths. What remains is the farthest

right column of vertices in both grid(n,m) and grid(n,m). To cover the remaining vertices in

grid(n,m) we extend the path corresponding to P4 from the CP (grid(4, 4)) case. The vertex

(1,m− 1) will be the end of a path, continue it to (1,m), (2,m), ...(n,m) and all the vertices

in grid(n,m) will be covered without a new path. Now we cover the remaining 4k vertices

in grid(n,m) with k vertical B-paths for a total of 4kl + k = d16kl+4k
4
e = d4k(4l+1)

4
e = dnm

4
e

induced paths.

Figure 3.2

Example for grid(8, 9)
4 copies of induced paths for grid(4, 4), with extended path
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Figure 3.3

Example for grid(8, 9)

4 copies of induced paths for grid(4, 4) and 2 B-paths

Case 3: (refer to Figures 3.4 and 3.5) n ≡ 0 mod 4 and m ≡ 2 mod 4

Suppose n = 4k and m = 4l + 2 for k, l ≥ 1, then the total number of vertices to cover is

32kl+ 16k. As before, we cover 32kl vertices with copies of the induced paths used to cover

CP (grid(4, 4)) starting in the upper lefthand corner for a total of 4kl induced paths. What

remains are the farthest right 2 columns in both grid(n,m) and grid(n,m). For the remaining

vertices in grid(n,m) we extend two paths corresponding to P4 and P1 in the original cover of

CP (grid(4, 4)). From the vertex (1,m−2) continue to (1,m−1), (2,m−1), ..., (n−1,m−1)

and from the vertex (n,m − 2) continue to (n,m − 1), (n,m), (n − 1,m), ...(1,m). Now we

cover the 8k vertices in grid(n,m) with 2k vertical B-paths for a total of 4kl + 2k =

d16kl+8k
4
e = d4k(4l+2)

4
e = dnm

4
e induced paths.
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Figure 3.4

Example for grid(8, 10)
4 copies of induced paths for grid(4, 4), with extended paths

Figure 3.5

Example for grid(8, 10)

4 copies of induced paths for grid(4, 4) and 4 B-paths
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Case 4: (refer to Figures 3.6 and 3.7) n ≡ 0 mod 4 and m ≡ 3 mod 4

Suppose n = 4k and m = 4l + 3 for k, l ≥ 1, then the total number of vertices to cover is

32kl + 24k. As before we cover 32kl vertices with copies of the induced paths used to cover

CP (grid(4, 4)) but this time starting 1 column to the right in the upper lefthand corner for

a total of 4kl induced paths. What remains are the farthest right 2 columns and farthest left

column in both grid(n,m) and grid(n,m). To cover the remaining vertices in grid(n,m) we

continue the paths corresponding to P4, P1, and P2 in the original cover of CP (grid(4, 4)).

From vertex (1,m − 2) continue to (1,m − 1), (2,m − 1), ..., (n − 1,m − 1). From vertex

(n,m − 2) continue to (n,m − 1), (n,m), (n − 1,m), ..., (1,m). From vertex (n, 2) continue

to (n, 1), (n − 1, 1), ..., (1, 1). Now we cover the 12k vertices in grid(n,m) with 3k vertical

B-paths for a total of 4kl + 3k = d16kl+12k
4
e = d4k(4l+3)

4
e = dnm

4
e induced paths.

Figure 3.6

Example for grid(8, 11)
4 copies of induced paths for grid(4, 4), with extended paths
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Figure 3.7

Example for grid(8, 11)

4 copies of induced paths for grid(4, 4) and 6 B-paths

Case 5: n ≡ 1 mod 4 and m ≡ 0 mod 4

This is isomorphic to Case 2

Case 6: (refer to Figures 3.8 and 3.9) n ≡ 1 mod 4 and m ≡ 1 mod 4

Suppose n = 4k + 1 and m = 4l + 1 for k, l ≥ 1, so the total number of vertices to cover

is 32kl + 8k + 8l + 2. As before we cover 32kl vertices with copies of the induced paths

used to cover CP (grid(4, 4)) starting in the upper lefthand corner for a total of 4kl induced

paths. What remains are the farthest right column and bottom row in both grid(n,m)

and grid(n,m). To cover the remaining vertices in grid(n,m) we extend a path corre-

sponding to P4 in the original cover of CP (grid(4, 4)). From the vertex (1,m − 1) we con-

tinue to (1,m), (2,m), ..., (n,m), (n,m − 1), (n,m − 2)..., (n, 1). For the remaining vertices

in grid(n,m)) we cover the farthest right column with k vertical B-paths starting
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at the top, with 1 vertex left at the bottom right corner. We cover the bottom row starting

on the left with l horizontal B-paths and the same vertex leftover that will be a singleton

vertex path. This brings the total number of induced paths needed to 4kl + l + k + 1 =

d16kl+4l+4k+1
4

e = d (4k+1)(4l+1)
4

e = dnm
4
e.

Figure 3.8

Example for grid(9, 9)
4 copies of induced paths for grid(4, 4), with extended paths
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Figure 3.9

Example for grid(9, 9)

4 copies of induced paths for grid(4, 4), 4 B-paths, and one vertex

Case 7: (refer to Figures 3.10 and 3.11) n ≡ 1 mod 4 and m ≡ 2 mod 4

Suppose n = 4k + 1 and m = 4l + 2 for k, l ≥ 1, then the total number of vertices to cover

is 32kl + 16k + 8l + 4. As before we cover 32kl vertices with copies of the induced paths

used to cover CP (grid(4, 4)) starting at the top and 1 column to the right for a total of

4kl induced paths. What remains are the farthest right column, farthest left column, and

bottom row in both grid(n,m) and grid(n,m). To cover the remaining vertices in grid(n,m)

we extend a path corresponding to P4 and P2 in the original cover of CP (grid(4, 4)). From

vertex (1,m − 1) we continue to (1,m), (2,m), ..., (n,m), (n,m − 1), ..., (n, 1) and from the

vertex (n − 1, 2) we continue to (n − 1, 1), (n − 2, 1), ...(1, 1). For the remaining vertices in

grid(n,m)) we start on the upper left corner for the left column and use k vertical B-paths,
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with 1 vertex leftover in the bottom left. Starting at the bottom left we use l horizontal B-

paths to cover the bottom row except for 2 vertices. Now we use k−1 vertical bars starting

at the upper right corner to cover that column except for the 5 bottom vertices in the right

column and the 2 right vertices in the bottom row. We cover these with two induced paths

Pa = (n,m− 1), (n− 2,m), (n,m) and Pb = (n− 4,m), (n− 1,m), (n− 3,m) This comes

out to a total of 4kl+k+l+(k−1)+2 = 4kl+2k+l+1 = d16kl+8k+4l+2
4

e = d (4k+1)(4l+2)
4

e = dnm
4
e

induced paths.

Figure 3.10

Example for grid(9, 10)
4 copies of induced paths for grid(4, 4), with extended paths
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Figure 3.11

Example for grid(9, 10)

4 copies of induced paths for grid(4, 4), 5 B-paths, and two paths of three vertices

Case 8: (refer to Figures 3.12 and 3.13) n ≡ 1 mod 4 and m ≡ 3 mod 4

Suppose n = 4k+ 1 and m = 4l+ 3 for k, l ≥ 1, then the total number of vertices to cover is

32kl+24k+8l+6. As before we cover 32kl vertices with copies of the induced paths used to

cover CP (grid(4, 4)) leaving the leftmost column, the 2 rightmost columns and the top row

for a total of 4kl induced paths. To cover the remaining vertices in grid(n,m) we extend the

paths corresponding to P4 and P2 in the original cover of CP (grid(4, 4)). From vertex (n, 2)

continue to (n, 1), (n− 1, 1), ..., (1, 1), (1, 2), ...(1,m), (2,m), ...(n,m). From vertex (2,m− 2)

continue to (2,m− 1), (3,m− 1), ..., (n,m− 1). For the remaining vertices in grid(n,m)) we

start on the lower left corner for the left column and use k vertical B-paths, with 1 leftover

33



in the upper left corner. Starting at that vertex use l horizontal B-paths leaving the last 3

vertices on the right side of the top row. Now use 1 L-path covering those 3 vertices and 2

vertices of the farthest right column. Now use 1 more L-path starting in the second from

last column to cover 3 of those vertices and the vertex (4,m). Now we use the induced path

Pa = (n,m), (3,m), (n,m− 1) and the remaining vertices are covered with 2(k − 1) vertical

B-path. This comes out to a total of 4kl+ k+ l+ 1 + 1 + 1 + 2(k− 1) = 4kl+ 3k+ l+ 1 =

d16kl+12k+4l+3
4

e = d (4k+1)(4l+3)
4

e = dnm
4
e induced paths.

Figure 3.12

Example for grid(9, 11)
4 copies of induced paths for grid(4, 4), with extended paths

34



Figure 3.13

Example for grid(9, 11)

4 copies of induced paths for grid(4, 4), 6 B-paths, 2 L-paths, and 1 path with 3 vertices

Case 9: n ≡ 2 mod 4 and m ≡ 0 mod 4

This is isomorphic to Case 3

Case 10: n ≡ 2 mod 4 and m ≡ 1 mod 4

This is isomorphic to Case 7

Case 11: (refer to Figures 3.14 and 3.15) n ≡ 2 mod 4 and m ≡ 2 mod 4

Suppose n = 4k+ 2 and m = 4l+ 2 for k, l ≥ 1, then the total number of vertices to cover is

32kl+ 16k+ 16l+ 8. As before we cover 32kl vertices with copies of the induced paths used

to cover CP (grid(4, 4)) leaving the leftmost column, the rightmost column, the top row, and

the bottom row for a total of 4kl induced paths.To cover the remaining vertices in grid(n,m)

we extend the paths corresponding to P2 and P4 in the original cover of CP (grid(4, 4)). From

vertex (n− 1, 2) continue to (n− 1, 1), (n− 2, 1), ..., (1, 1), (1, 2), ...(1,m). From vertex
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(2,m − 1) to (2,m), (3,m), ..., (n,m). For the remaining vertices in grid(n,m)) we start

on the upper left corner for the left column and use k vertical B-paths, with 2 leftover

in the bottom left corner. We cover those 2 vertices with 1 L-path that also covers 3

vertices of the bottom row. The remaining vertices in the bottom row are covered with l− 1

horizontal B-paths with 3 vertices left. We cover those 3 with 1 more L-path that also

covers 2 of the vertices in the rightmost column. We cover the remainder of the column with

k vertical B-paths. We cover the top row with l horizontal B-paths. This is a total of

4kl+ k + 1 + (l− 1) + 1 + k + l = 4kl+ 2k + 2l+ 1 = d16kl+8k+8l+4
4

e = d (4k+2)(4l+2)
4

e = dnm
4
e

induced paths.

Figure 3.14

Example for grid(10, 10)
4 copies of induced paths for grid(4, 4), with extended paths
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Figure 3.15

Example for grid(10, 10)

4 copies of induced paths for grid(4, 4), 7 B-paths, and 2 L-paths

Case 12: (refer to Figures 3.16 and 3.17) n ≡ 2 mod 4 and m ≡ 3 mod 4

Suppose n = 4k+ 2 and m = 4l+ 3 for k, l ≥ 1, then the total number of vertices to cover is

32kl+24k+16l+12. As before we cover 32kl vertices with copies of the induced paths used to

cover CP (grid(4, 4)) leaving the leftmost column, the 2 rightmost columns, the top row, and

the bottom row for a total of 4kl induced paths. To cover the remaining vertices in grid(n,m)

we extend the paths corresponding to P2 and P4 in the original cover of CP (grid(4, 4)). From

vertex (n− 1, 2) continue to (n− 1, 1), (n− 2, 1), ..., (1, 1), (1, 2), ..., (1,m), (2,m), ..., (n,m).

From (2,m− 2) continue to (2,m− 1), (3,m− 1), ..., (n,m− 1), (n,m− 2), ...(n, 1). For the

remaining vertices in grid(n,m)) we start on the upper left corner for the left column and

use k vertical B-paths, with 2 leftover in the bottom left corner. We cover those 2
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vertices with 1 L-path that also covers 3 vertices of the bottom row. We cover the remaining

vertices in the bottom row with l horizontal B-paths. We cover the top row with l horizontal

B-paths leaving 2 vertices left in the top row. For the second from the right column we

start at the top and use k vertical B-paths with 1 uncovered vertex. For the rightmost

column we start second from the top and use k vertical B-paths leaving 1 vertex. Those

remaining two vertices form 1 more induced path. This comes to a total of 4kl+3k+2l+2 =

d16kl+12k+8l+6
4

e = d (4k+2)(4l+3)
4

e = dnm
4
e induced paths.

Figure 3.16

Example for grid(10, 11)
4 copies of induced paths for grid(4, 4), with extended paths
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Figure 3.17

Example for grid(10, 11)

4 copies of induced paths for grid(4, 4), 10 B-paths, 1 L-path, and 1 two vertex path

Case 13: n ≡ 3 mod 4 and m ≡ 0 mod 4

This is isomorphic to Case 4

Case 14: n ≡ 3 mod 4 and m ≡ 1 mod 4

This is isomorphic to Case 8

Case 15: n ≡ 3 mod 4 and m ≡ 2 mod 4

This is isomorphic to Case 12

Case 16: (refer to Figures 3.18 and 3.19) n ≡ 3 mod 4 and m ≡ 3 mod 4

Suppose n = 4k + 3 and m = 4l + 3 for k, l ≥ 1, then the total number of vertices to

cover is 32kl + 24k + 24l + 18. As before we cover 32kl vertices with copies of the in-

duced paths used to cover CP (grid(4, 4)) leaving the leftmost column, the 2 rightmost
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columns, the top row, and the 2 bottom rows for a total of 4kl induced paths. To cover

the remaining vertices in grid(n,m) we extend the paths corresponding to P4 and P2 in

the original cover of CP (grid(4, 4)). From vertex (n − 2, 2) continue to (n − 2, 1), (n −

3, 1), ..., (1, 1), (1, 2), ..., (1,m), (2,m), ..., (n,m), (n,m − 1), .., (n, 1). From vertex (2,m − 2)

continue to (2,m − 1), (3,m − 1), ..., (n − 1,m − 1), (n − 1,m − 2), ..., (n − 1, 1). For the

remaining vertices in grid(n,m)) we start on the upper left corner for the left column and

use k vertical B-paths, with 3 leftover in the bottom left corner. We cover those 3 vertices

with 1 L-path that also covers 2 vertices of the bottom row. We cover the second from the

bottom row and the bottom row each with l horizontal B-paths, leaving 2 vertices and 1

vetex leftover respectivley. We use an L-path to cover the 3 bottom vertices in the rightmost

column and 1 vertex at (n− 2,m− 1). Now we cover the rest of the 2 right most columns

using k vertical B-paths each. We cover the rest of the top row with l horizontal B-paths.

The vertex (n− 1,m− 1) will be 1 induced path in the cover. This comes out to a total of

4kl + 3k + 3l + 3 = d16kl+12k+12l+9
4

e = d (4k+3)(4l+3)
4

e = dnm
4
e induced paths. 2
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Figure 3.18

Example for grid(11, 11)
4 copies of induced paths for grid(4, 4), with extended paths
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Figure 3.19

Example for grid(11, 11)

4 copies of induced paths for grid(4, 4), 12 B-paths, 2 L-paths, and 1 vertex

Corollary 3.2.

ρ(CP (grid(n, n))) =

{
dn2

4
e+ 1 n = 2

dn2

4
e m 6= 2;m ≥ 1

Proof follows from the above theorem and the examples already provided.2

3.3 Special Cases where n,m < 4

Now to address the special cases where n = 2; first we will show that ρ(CP (grid(2,m))) >

d2m
4
e for m = 3, 4, 6, then we will provide some examples of induced path covers for n = 2.

We will use these to compute ρ(CP (grid(2,m))) in general.
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Lemma 3.3. ρ(CP (grid(2, 3))) > 2

a b c

d e f

a b c

d e f

Figure 3.20

CP (grid(2, 3))
All edges are shown

Proof: (refer to Figure 3.20) Suppose we have two induced paths P1 and P2 to cover

the twelve vertices of CP (grid(2, 3)). By Theorem 2.6, P1 and P2 have at most four vertices

in grid(2, 3). So both P1 and P2 have three vertices in grid(2, 3), or there are four vertices in

one path and two vertices in the other path in grid(2, 3). A path cannot have six vertices in

grid(2, 3), because we would induce multiple cycles. Suppose one of the paths, P1, has five

vertices in grid(2, 3). In order to not induce a cycle, and without loss of generality, the five

vertices are d, a, b, c, f and they induce a subpath dabcf . P1 must have at least two vertices

in grid(2, 3), but if we continue the subpath to either d or f , there are no more vertices in

grid(2, 3) that can be in P1, since otherwise we induce a cycle. So the paths do not have five

vertices in grid(2, 3) and do not have less than two vertices in grid(2, 3).

Now we show that the paths cannot have four vertices in grid(2, 3). Suppose P1 has

four vertices in grid(2, 3), then by Corollary 2.11 the four vertices are in a U-path in

CP (grid(2, 3)) or they form a B-path, Z-path, or L-path in grid(2, 3). A B-path is not

possible in grid(2, 3). Suppose P1 has a Z-path. Without loss of generality let it be e a f b.
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P1 has at least two vertices in grid(2, 3), and does not have two prism edges by Theorem

2.7. So we can not continue to both b and e. Using symmetry, we continue to e. From here

we can only go to d and no farther. Now P2 must have the vertices a, b, c, f, d, c. However, c

is adjacent to c, b, and f , and so P2 is not a path, which is a contradiction. Now suppose P1

is an L-path and using symmetry let it be dfae. P2 has non-adjacent vertices b and c. In

order for those vertices to be on the same path, P2 has two prism edges. Using Theorem

2.8, P2 is bbcc with no additional vertices. Therefore P1 has vertices a, d, e, f, d, f , a, e, but

P2 is an induced path so it has four prism edges which contradicts Theorem 2.1. Finally

suppose P1 is a U-path. Using symmetry, P1 can be f bbcc e, f bbee c, or b ffcc e. If P1 is

f bbcc e, then vertex d in P2 is adjacent to three vertices in P2, which is a contradiction. If

P1 is f bbee c, then in P2 the vertices c, f, a, d all have degree one, but a path can only have

two vertices with degree one. If P1 is b ffcc e, then P2 contains the cycle abed, which is a

contradiction. So each path must contain exactly three vertices in grid(2, 3).

We now show that neither P1 nor P2 can have four vertices in grid(2, 3). Suppose P1

has four vertices in grid(2, 3), we know it must also have exactly three vertices in grid(2, 3).

P1 can not have two prism edges because this would contradict Theorem 2.2. The four

vertices in grid(2, 3) in P1 without loss of generality can be {a, d, e, f}, {a, b, e, f} {a, d, c, f},

or {a, d, e, c}. Suppose P1 has the vertices {a, d, e, f} which induce the subpath adef . If we

continue to either a or f then we can only continue to one more vertex in each case, but we

need three vertices in grid(2, 3), and therefore have a contradiction. The case is similar for

{a, b, e, f}. Suppose P1 has the vertices {a, d, c, f}. These vertices do not induce a subpath

of grid(2, 3) and so in order for them to be in the same path P1 must have two prism edges,

but this is a contradiction to Theorem 2.2. The case is similar for P1 containing the vertices

{a, d, e, c}. So P1 and P2 both contain exactly three vertices in both grid(2, 3) and grid(2, 3).
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Suppose P1 and P2 both contain exactly three vertices in both grid(2, 3) and grid(2, 3).

Using Theorem 2.2 each path can only have one prism edge so the three vertices in grid(2, 3)

and grid(2, 3) each induce subpaths. Without loss of generality, we can assume that the ver-

tex a is on P1 and the subpath in P1 is abc, ade, or abe in grid(2, 3). Suppose P1 has abc and

P1 needs three more vertices in grid(2, 3). Using symmetry, continue P1 to c. From here we

can go to e, or d. If we continue to e, we can not get a third vertex. If we continue to d,

the only vertex to go to is f . Now P2 has vertices {d, e, f, a, b, e}, but b is not adjacent to

any other vertex in P2 which is a contradiction. Suppose P1 has subpath abe, then P2 has

vertices {d, c, f} in grid(2, 3) and d is not adjacent to c or f . So P2 must have two prism

edges, but this is a contradiction. Finally suppose P1 has ade. If we continue to e, we can

only go to c, and therefore we can not get the third vertex of grid(2, 3). If we continue to

a, we can go to to f or c. If we continue to c, we can not get our third vertex. Instead,

continue to f , then to b. Then P2 has the vertices {b, c, f, d, c, e}, but c is adjacent to three

of these vertices, which is a contradiction. So there are not two disjoint induced paths that

cover every vertex in CP (grid(2, 3)). 2

Lemma 3.4. ρ(CP (grid(2, 4))) > 2

Proof: Suppose that ρ(CP (grid(2, 4))) = 2, then there are two disjoint induced

paths, P1 and P2, that cover all the vertices and they each have four vertices in grid(2, 4).

To cover grid(2, 4) with two induced paths, they are two B-paths, two L-paths, or 2 U-

paths. If we use two U-paths we will not cover all the vertices in grid(2, 4), since they

each have two vertices in grid(2, 4). If we use two B-paths we will have the subpaths

(1, 3), (1, 1), (1, 4), (1, 2) in P1 and (2, 3), (2, 1), (2, 4), (2, 2) in P2. By Theorem 2.7 we have

at most one prism edge to extend P1. If for instance we extend P1 from (1, 2) to (1, 2) and
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stop at (1, 2), then neither P1 nor P2 can cover (1, 1). Instead we continue to (2, 2), and

agiain neither P1 nor P2 can cover (1, 1). Extending P1 to (1, 3) or P2 to (2, 2) or (2, 3)

lead to a similar contradiction. If we use two L-paths, we have at most one prism edge on

each path by Theorem 2.7 and we have the subpath (2, 1), (2, 3), (1, 1), (2, 2) in P1, and

(1, 4), (1, 2), (2, 4), (1, 3) in P2. If we extend P1 from (2, 1) to (2, 1), then there is nowhere

else to go without inducing a cycle. So P2 has the remaining vertices and P2 will contain a

cycle. By extending P1 from (2, 2) to (2, 2), then we can not cover (2, 1) with either P1 or

P2. 2

Lemma 3.5. ρ(CP (grid(2, 6))) > 3

Proof: Suppose that ρ(CP (grid(2, 6))) = 3, then there are three induced paths and

they each have four vertices in grid(2, 6). The only way to do this is with two L-paths

and one B-path or two B-paths and one U-path or three U-paths. Applying reasoning

similar to the above claim, we can not cover all the vertices without the addition of another

induced path. 2

Now we provide specific ρ(CP (grid(2,m))) for m = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14. For

m = 1 it is trivial and ρ(CP (grid(2, 1))) = 1 = d2∗1
4
e.

For m = 2 we have already shown ρ(CP (grid(2, 2)) = 2 = d2∗2
4
e+ 1.

For m = 3 (refer to Figure 3.21) we know ρ(CP (grid(2, 3)) > 2 but we cover

all vertices with the following three induced paths. P1 = (1, 1), (1, 2), (1, 3), (1, 3); P2 =

(2, 3), (2, 2), (2, 1), (2, 1); P3 = (2, 2), (1, 1), (2, 3), (1, 2), and ρ(CP (grid(2, 3)) = 3 = d2∗3
4
e +

1.
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(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

Figure 3.21

Paths for ρ(CP (grid(2, 3)))

For m = 4 we know ρ(CP (grid(2, 4)) > 2, but we cover all vertices with the following

three induced paths. P1 = (1, 1), (1, 2), (1, 3), (1, 4), (1, 4), (2, 1); P2 = (2, 1), (2, 2), (2, 3), (2, 4),

(2, 4), (1, 3); P3 = (2, 2), (1, 1), (2, 3), (1, 2), and ρ(CP (grid(2, 4)) = 3 = d2∗4
4
e+ 1

For m = 5 (refer to Figure 3.22) we cover all the vertices with the following three in-

duced paths. P1 = (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (2, 4), (1, 3), (2, 5), (1, 4); P2 = (2, 5), (1, 5),

(1, 4), (1, 3), (1, 2), (1, 2), (2, 3), (1, 1), (2, 2); P3 = (2, 1), (1, 5), and ρ(CP (grid(2, 5)) = 3 =

d2∗5
4
e
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

Figure 3.22

Paths for ρ(CP (grid(2, 5)))

For m = 6 we know ρ(CP (grid(2, 6)) > 3 but we cover all vertices with the fol-

lowing four induced paths. P1 = (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 6), (2, 5); P2 =

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 6), (1, 5); P3 = (2, 1), (2, 3), (1, 1), (2, 2); P4 = (1, 4),

(1, 2), (2, 4), (1, 3), and ρ(CP (grid(2, 6)) = 4 = d2∗6
4
e+ 1

For m = 8 (refer to Figure 3.23) we cover all the vertices with the following four in-

duced paths. P1 = (2, 1), (2, 3), (1, 1), (2, 2), (2, 2); P2 = (1, 3), (2, 4), (1, 2), (1, 4), (1, 4), (1, 5),

(1, 6), (2, 6), (2, 7), (2, 8), (1, 8); P3 = (2, 6), (1, 5), (2, 7), (2, 5), (2, 5), (2, 4), (2, 3), (1, 3), (1, 2),

(1, 1), (2, 1); P4 = (1, 8), (1, 6), (2, 8), (1, 7), (1, 7), and ρ(CP (grid(2, 8)) = 4 = d2∗8
4
e.
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)

Figure 3.23

Paths for ρ(CP (grid(2, 8)))

For m = 10 we cover all the vertices with the following five induced paths. P1 =

(2, 1), (2, 3), (1, 1), (2, 2), (2, 2); P2 = (1, 3), (1, 5), (1, 2), (1, 4), (1, 4); P3 = (2, 5), (1, 6), (2, 4),

(2, 6), (2, 6), (2, 7), (2, 8), (1, 8), (1, 9), (1, 10), (2, 10); P4 = (1, 8), (2, 7), (1, 9), (1, 7), (1, 7), (1, 6),

(1, 5), (2, 5), (2, 4), (2, 3), (1, 3), (1, 2), (1, 1), (2, 1); P5 = (2, 10), (2, 8), (1, 10), (2, 9), (2, 9),

and ρ(CP (grid(2, 10)) = 5 = d2∗10
4
e

For m = 12 we cover all the vertices with the following six induced paths. P1 =

(2, 1), (2, 3), (1, 1), (2, 2), (2, 2); P2 = (1, 3), (1, 5), (1, 2), (1, 4), (1, 4); P3 = (2, 5), (1, 6), (2, 4),

(2, 6), (2, 6), (2, 7), (2, 8), (1, 8), (1, 9), (1, 10), (2, 10), (2, 11), (2, 12), (1, 12); P4 = (1, 8), (2, 7),

(1, 9), (1, 7), (1, 7), (1, 6), (1, 5), (2, 5), (2, 4), (2, 3), (1, 3), (1, 2), (1, 1), (2, 1); P5 = (2, 10), (2, 8),

(2, 11), (2, 9), (2, 9); P6 = (1, 12), (1, 10), (2, 12), (1, 11), (1, 11), and ρ(CP (grid(2, 12)) = 6 =

d2∗12
4
e
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For m = 14 we cover all the vertices with the following seven induced paths. P1 =

(2, 1), (2, 3), (1, 1), (2, 2), (2, 2); P2 = (1, 3), (1, 5), (1, 2), (1, 4), (1, 4); P3 = (2, 5), (1, 6), (2, 4),

(2, 6), (2, 6), (2, 7), (2, 8), (1, 8), (1, 9), (1, 10), (2, 10), (2, 11), (2, 12), (1, 12), (1, 13), (1, 14), (2, 14);

P4 = (1, 8), (2, 7), (1, 9), (1, 7), (1, 7), (1, 6), (1, 5), (2, 5), (2, 4), (2, 3), (1, 3), (1, 2), (1, 1), (2, 1);

P5 = (2, 10), (2, 8), (2, 11), (2, 9), (2, 9); P6 = (1, 12), (1, 10), (1, 13), (1, 11), (1, 11); P7 = (2, 14),

(2, 12), (1, 14), (2, 13), (2, 13), and ρ(CP (grid(2, 14)) = 7 = d2∗14
4
e

Theorem 3.6.

ρ(CP (grid(2,m))) =

{
d2m

4
e+ 1 m = 2, 3, 4, 6

d2m
4
e m 6= 2, 3, 4, 6;m ≥ 1

Proof: The cases for m = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14 have already been shown.

Case 1: Suppose that m is odd and m ≥ 5.

An example has been provided for m = 5, for any other m > 5 and m = 2k + 1 we have

2(2k+ 1) = 4k+ 2 vertices in each grid(2,m) and grid(2,m). Our first induced path is from

(2, 1) and (1,m). What remains in grid(2,m) are 2k vertices in the top row and 2k vertices

in the bottom row shifted to one vertex to the right. We cover these with k Z-paths. Now to

cover all the vertices in grid(2,m) we extend two of the previous paths. We extend one path

starting with (1, 2) and continue to (1, 2), (1, 3), ..., (1,m), (2,m), and another path starting

at (2,m− 1) and continuing to (2,m− 1), (2,m− 2), ..., (2, 1), (1, 1) and we have a total of

k + 1 = dk + 1/2e = d4k+2
4
e = d2(2k+1)

4
e = d2m

4
e induced paths to cover all the vertices

Case 2: Suppose that m is even and m ≥ 14.

Since in the examples of m = 8, 10, 12, 14 the induced paths all have four vertices in the

grid(2,m) side, therefore any m ≥ 14 and even is covered by making copies and combining

the covers used for m = 8, 10, 12, 14 for a total of d2m
4
e induced paths. Since m = 2k for

k > 7, k = 4s + r for s ≥ 1, and 0 ≤ r1 ≤ 3. Therefore m = 8(s − 1) + (2r + 8) with
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8 ≤ 2r + 8 ≤ 14 so we have s − 1 copies of a cover for CP (grid(2, 8)) and one copy of

grid(2, 2r + 8). 2

3.4 Future Work

There are many more graphs for which we can try to calculate ρ(G) and ρ(CP (G)).

We also would like to find a proof for Lemma 3.2 that does not require a ”brute force”

method and leave it to future research. The NAV S for vertices was helpful for finding proofs

in this thesis, and perhaps finding more theorems involving NAV S for other types of graphs

can help solve other open problems. For the case of n = 3 we were unable to provide a proof,

but believe it is possible. From multiple examples we have the following Conjecture 3.7.

Conjecture 3.7.

ρ(CP (grid(3,m))) =

{
d3m

4
e+ 1 m = 1, 2, 4

d3m
4
e m 6= 1, 2, 4;m ≥ 1

We believe we can generalize ρ(CP (grid(3,m))) by using constructions similar to the

ones we provide in Figures 3.24 and 3.25. We believe however, we have to make a special

argument for when m = 4 that might be similar to the arguments made in Lemmas 3.3,

3.4, and 3.5.

51



grid(3, 7)

grid(3, 7)

Figure 3.24

Six Induced Paths for ρ(CP (grid(3, 7)))
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grid(3, 8)

grid(3, 8)

Figure 3.25

Six Induced Paths for ρ(CP (grid(3, 8)))
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