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ABSTRACT 

 

 

In Tennessee, the Barking Treefrog (Hyla gratiosa) is listed as both rare and vulnerable, 

and more field data is needed to elucidate its distribution. Predictive modeling using the program 

MaxEnt provided results for models that guided field sampling to potential presence 

locations.  From April-August 2017, 126 sites (63 historical; 63 predicted) were visited monthly 

and sampled for frog calls according to a standardized protocol. Field results revealed H. 

gratiosa’s auditory presence at 23 out of 63 historic sites and at nine out of 63 predicted sites. 

While other predictive models were also generated, MaxEnt was demonstrated to be most precise 

in predicting presence likelihood. Weighted regression analysis showed that shrub/scrub and 

woody wetland coverages were the most positively associated with presence. The results suggest 

that H. gratiosa is not as relatively abundant as some frog species throughout ecologically 

relevant landscapes in Tennessee. 
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CHAPTER I 

MODELING AND ASSESSMENT OF SPATIAL STATUS AND ECOLOGICAL TRENDS 

OF HYLA GRATIOSA IN TENNESSEE 

 

Introduction 

 

Amphibians: Declining Bioindicators 

Globally, amphibians are experiencing notable population decline due to a variety of 

environmental and anthropogenic factors (Pounds & Crump, 1994; Lips, Reeve, & Witters, 

2003; Stuart et al., 2004). Members of this taxonomic group are known to be biological 

indicators because of their physiology, reproductive life history, and relative sensitivity to 

changes in the environment. This knowledge has prompted scientists to ask questions as to what 

factors contribute mostly to ongoing declines (Stuart et al., 2004). Several involve anthropogenic 

activities, directly and indirectly, including habitat alteration, spread of disease, and climatic 

shifts (Mac Nally et al., 2009). Most, if not all, factors causing decline are present in some 

proportion together, but some are more dominant than others, depending on geography (Mac 

Nally et al., 2009; Tsuji et al., 2011). At the same time, certain amphibians are affected by 

specific environmental factors, depending on requirements related to that species’ life history. 

In North America, two groups of amphibians exist naturally: Salamanders (Order: 

Caudata) and Frogs/Toads (Order: Anura) (Niemiller, Reynolds, & Miller, 2011). Both groups 

are responsive to environmental cues for breeding (Stuart et al., 2004; Araujo et al., 2006; 

Neveu, 2009). Anurans have been of particular research interest in recent decades due to 
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significant population declines. Absence of anuran breeding and large findings of deceased 

individuals have repeatedly been documented throughout multiple regions (Tsuji et al., 2011; 

Araujo et al., 2006).  

During breeding seasons, anurans will instinctually seek water bodies to mate and lay 

eggs. Specific breeding season ranges exist for each species, as determined by the presence of 

calling males (Oldham & Gerhardt, 1975; Pellet & Schmidt, 2005). Vocalizations are often loud 

and noticeably audible over distances from the breeding pools, which attract females in the 

nearby landscape. However, if climatic factors are unusual or habitats disrupted, breeding 

behavior can be impacted, potentially affecting the populations of the species (Oldham & 

Gerhardt, 1975; Lemmon, Lemmon, & Cannatella, 2007). The absence of breeding activity may 

indicate unsuitable habitat or conditions unappealing to these animals (Brand & Snodgrass, 

2009; Smallbone et al., 2011). Understanding the landscape ecology and environmental factors at 

which certain anurans will function is vital to the conservation of these species, especially for 

those in the face of decline or in need of management (Brand & Snodgrass, 2009). 

 

Effects of Urbanization on Anurans 

The geographic extent at which amphibian decline is occurring has been a particularly 

concerning prospect, especially if the rate continues as it has been observed (Stuart et al., 2004). 

As reflected in many causes for species extinction, habitat destruction and alteration is also a 

leading reason for the declines of anurans (Smallbone et al., 2011; Tsuji et al., 2011) However, 

even in affected landscapes, certain anurans have displayed an ability to adapt, so long as base 

needs of shelter, prey items, and breeding pools are met (generalists); others have much greater 

sensitivities to environmental changes (specialists) (Berg et al., 2010). The spectrum of 
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environmental sensitivity has been a telling factor in predicting which anurans would be more 

apt to decline due to alteration in the environment (Brander et al., 2007). 

Urbanization yields more concentrated impervious or developed surfaces, which may 

reduce suitable habitat for amphibians by altering local hydrology and wetland recharge (Brand 

& Snodgrass, 2009). Anurans are relatively mobile and can traverse these landscapes, but might 

not select to reside in such areas. Many of these species will move throughout the landscape to 

locate suitable breeding pools or stable shelters in the non-breeding seasons. However, in non-

breeding seasons, potential breeding sites may be changed or unavailable due to development, 

causing potential demise to a local population (Brander et al., 2007). In other cases, new 

breeding pools may be created by means of retention ponds, swimming pools, or other man-

made wetlands (Snodgrass et al., 2000). In general, urbanization introduces new dynamics for 

breeding pool availability, a resource crucial to the life history and survival of anurans; artificial 

habitats are at times beneficial, despite the potential of being ecological traps (Brand & 

Snodgrass, 2009; Birx-Raybuck, Price, & Dorcas, 2009). 

In contrast, some anurans may elect to avoid developed areas altogether, seeking 

undisturbed habitats that still retain more of the original, natural cover (Tsuji et al., 2011). 

However, while these undeveloped areas may provide suitable habitat, fragmentation can isolate 

them throughout a landscape, which ultimately has the potential to reduce population viability. 

Poor water quality in some pools might also deter some species (Riley et al., 2005), though 

certain species will even breed in puddles or roadside ditches (Homyack et al., 2014). The 

tolerance level of anurans continues to be a curious and intriguing subject, where studies 

continue to be carried to further understand this among populations of the same species. 
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Road mortalities have often been documented in urban landscapes, even for amphibian 

species (Carr & Fahrig, 2001). Vagility differs between anuran species, where true frogs 

(members of the family Ranidae) have been found abler to traverse long distances than tree frogs 

(members of the family Hylidae); (Carr & Fahrig, 2001; Parris, 2006). However, tree frogs are 

able to latch onto vehicles, which in turn assists dispersal and enhances vagility; this ability has 

facilitated the movement of an invasive tree frog species (Rodder & Weinsheimer, 2010). How 

traffic noise may affect species is a phenomenon still being further understood, though 

hypotheses have been tested in recent years. Some studies hypothesized and observed that 

modifications of calling behavior would take place, in order to compensate for the ambient level 

of noise that traffic creates (Bee & Swanson, 2007; Hanna et al., 2014). Researchers have 

artificially simulated traffic noise, making changes to frequency and decibels, to test the 

duration, call rate, and peak frequency of males advertising (Hanna et al., 2014). Certain species 

have been found to not elicit hypothesized responses to introduced noise, where manipulations 

seemed ignored and the males continued normal calling behavior, but sensitivity to noise seemed 

dependent on whether males were alone or with a chorus (Lengagne, 2008). Researchers 

continue to consider noise intensity, types of noise, and responses of different species since such 

variations exist and remain inconclusive to the direct effects of traffic noise on breeding behavior 

(Bee, 2015). 

In many locations, studies are limited by data gaps pertaining to local species presence 

and absence. It is often unknown which anuran species are better colonizers than others in the 

urbanized landscape, though tree frogs have been observed to be more exploitative, suggesting 

resilience and an ability to adapt to disturbed areas that will need to be investigated further (Tsuji 

et al., 2011). Even as amphibians are on the decline, base needs for reproductive success have 
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been found available in suburban landscapes, despite being thought as potential ecological traps 

(Brand & Snodgrass, 2009). In future studies, large-scale monitoring programs, such as the 

North American Amphibian Monitoring Program (NAAMP) can provide further insight as to the 

status of anuran species in developed environments (Patuxent Wildlife Research Center, 2012; 

Cosentino et al., 2014). Also, citizen science, and its increasing popularity, has the great potential 

to be utilized for gaining baseline data, where anuran conservation may be better understood and 

bring about species recovery (Cosentino et al., 2014). 

 

Climatic Factors Influencing Anuran Distribution 

An environmental factor that may not be able to be directly controlled within a short 

window of time is climate change, which has been hypothesized to have large scale impacts 

(Araujo et al., 2006; Griffiths, Sewell, & McCrea, 2010). For many taxonomic groups, climate 

change has also been blamed for species and population decline, though it functions with much 

more subtlety with amphibians (Stuart et al., 2004). Given that many amphibians require a 

certain amount of moisture and typically prefer certain temperature ranges, even small shifts in 

climate could influence the suitability of preferred habitat. The gradient of climates in the Great 

Smoky Mountains National Park and the variety of salamanders found only at certain elevations 

provides an example of just how particular amphibians can be (Peterman & Semlitsch, 2013). 

The variation of climatic conditions over landscapes holding suitable habitat provide unique 

niches for amphibian species, where climatic change or disruption to these places may lead to 

species decline (Araujo et al., 2006; Fu et al., 2006). 

Anurans exist in a wide range of geography and have displayed some level of resiliency 

throughout a variety of habitat types. Even as this group is facing declines, certain species have 
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been found to adapt to changes and persist in manipulated environments (Mac Nally et al., 2009; 

Griffiths, Sewell, & McCrea, 2010). At the same time, other species have been noted to drop out, 

which leads to a decrease in biodiversity and increases concern for anurans as a whole (Araujo et 

al., 2006). As anurans have long been considered environmental indicators and are rather 

sensitive to climate, decreases in their presence and abundance have made researchers question 

how climatic factors may influence survival and distribution (Berg et al., 2010; Peterman et al., 

2013). 

Direct impacts of climate change tend to affect abiotic variables, mainly temperature and 

precipitation, where availability of resources associated with these may be affected. Increased 

temperatures have been shown to reduce reproductive potential (Saenz et al., 2006), which 

ultimately could cause extinction if no adaptive strategies (relating to behavior, phenotype and/or 

genetic plasticity) take place (Newman & Rissler, 2011). Thermal sensitivity can also affect the 

metabolic rate of anurans, where overheating can be detrimental to their bodies and induce stress 

(Berg et al., 2010). The amount of land mass available for these species to disperse upon plays a 

subtle role, as climate change can limit suitable habitat sizes and cause more competition to take 

place; this approach, however, cannot be applied to all regions, which the researchers of the 

study noted (Blaustein et al., 2010). Developed landscapes can often introduce changes to abiotic 

factors, such as increasing temperatures or adding new breeding pools to an area, though 

fragmentation of habitat is often found detrimental to communities (Mac Nally et al., 2009). At 

the same time, the survival of certain anurans becomes very dependent on the presence of pools 

and moisture for reproduction, where new pools potentially decrease chances of local extinction 

(Walls, Barichivich, & Brown, 2013). Abiotic factors may vary with climatic changes, where 

certain species may respond differently to extreme cases (Walls, Barichivich, & Brown, 2013), 
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but the response of species in the same family are not always the same. Several researchers 

acknowledge that long-term effects must still be monitored in order to understand the rates at 

which the subtleties of climate change affect these species (Ochoa-Ochoa et al., 2012). 

Changes in abiotic variables have the tendency to influence biotic factors in the 

environment, such as food availability, structure that may be used for shelter, or the spread of 

diseases (Araujo & Luoto, 2007). The fungal disease Batrachochytrium dendrobatidis has been 

increasingly decimating anuran populations, where researchers believe that climate may 

influence its occurrence on various landscapes (Berg et al., 2010). Available vegetation may also 

be impacted by climate change, especially if certain types have evolved specially to an area’s 

thermal and precipitative capacity; some insects or other prey items may feed on certain plants, 

where the disappearance of such could lead to a lack of food for anurans (Blaustein et al., 2010). 

Other organisms in the area might manipulate ecosystem processes, such as beavers, which 

potentially shift the microhabitat; some anuran species are sensitive to the slightest changes, 

which might deter them from residing in an area disturbed (Popescu & Gibbs, 2009). Even 

invasive species present an underlying issue, as some are more adapted to warmer conditions, 

where certain native species may not compete as well with such changes (Tsuji et al., 2011). 

These biotic factors all interact at the community level, which can strongly influence each other 

at the trophic scale if faced with environmental changes. 

Humans often are unaware of the effects to microclimate that development creates, where 

shifts in communities, diversity, and resource availability may occur. In Australia, where 

climatic conditions are already quite harsh, changes in land-use can have drastic effects on 

species (Mac Nally et al., 2009). Fragmentation often decreases habitat connectivity, which can 

isolate populations from each other and possibly cause local extinctions. Some species prefer 
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largely undisturbed plots of land, while others might thrive in agricultural plots. Despite the 

varying effects of development, the presence of water in the form of pools becomes a crucial 

component to survival, as it provides the possibility for anurans to reproduce. How some anurans 

are able to withstand such disturbed conditions has yet to be further understood, especially as 

some species are more tolerant than others (Mac Nally et al., 2009).  

Climate change and anthropogenic development can be modeled together using 

geospatial platforms, yielding results that may elucidate potential interactions or effects (Pilliod 

et al., 2015). This approach can also be used to simulate how a human-introduced invasive 

species might function on the landscape, especially in human disturbed areas which invasive 

species have the tendency to exploit (Rodder & Weinsheimer 2010). Invasive species also have 

the ability to reduce resource availability to natives, where the presence of invasive species can 

further be driven by climate change. Thus, modeling the extent at which each of these factors 

occur together may reveal further correlations that otherwise are subtle or unnoticed (Tsuji et al., 

2011; Terrado et al., 2016). 

 

Selection of Study Organism and Reasoning 

When considering anuran species of conservation concern, federal listings are often 

consulted, though some species at the state level are less understood and perhaps need some level 

of protection locally. For the state of Tennessee, the Barking Treefrog (Hyla gratiosa) has a 

conservation status of ‘Vulnerable’ due to its specific habitat requirements and a discontinuous, 

poorly understood distribution across the state. As an apparent specialist, this species prefers 

open canopy wetlands or pools that are fish-free, but also require trees in proximity to the 

breeding site to reside on during non-breeding seasons (Oldham & Gerhardt, 1975). Alterations 

to these conditions could harm local populations and possibly cause declines (Borzee et al., 
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2016). Hence, the need to further investigate the circumstances at which this species occurs and 

survive in the Tennessee landscape is paramount due to the potential of further decline. Are 

Tennessee’s populations of H. gratiosa in need of management, or is the species merely 

undersampled and in need of spatial understanding? 

 

Current Spatial Status and Ecology of Barking Treefrog in Tennessee 

Academic institutions, federal agencies, and citizen scientists have all provided data on 

species presence, but not all parties actively document or seek H. gratiosa. In Tennessee, 

published maps in amphibian field guides and online resources often display clusters of 

distribution largely in the Coastal Plain of the western region, north-central region near 

Clarksville, and on the Cumberland Plateau of the eastern region.  While each of these 

populations are apparently well established, the cause of these separate occurrences has yet to be 

truly elucidated, especially in the face of potential decline. Within known range, H. gratiosa is 

said to be fairly “common”, yet on a state-level is classified as “rare” due to being a habitat 

specialist (Dorcas & Gibbons, 2008; Niemiller, Reynolds, & Miller, 2011). 

Tennessee is unique in many regards, with a varying geography throughout the state that 

presents a vast multitude of habitats. This variety may provide H. gratiosa a spectrum of suitable 

habitats throughout the state, but habitat connectivity and accessibility are added obstacles that 

could hinder species distribution. Floodplain wetlands, ephemeral pools and wetlands, and even 

flooded ditches are all potential breeding habitat, but the criteria of breeding pools having an 

open canopy and being fish-free must also be met. During non-breeding seasons, H. gratiosa is 

arboreal and seeks shelter in tree canopies, meaning that forests must be approximate to breeding 

areas. Alternatively, they will burrow into soil during dry seasons, to retain moisture. The animal 
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tends to favor warmer temperatures, being primarily a summertime breeder in Tennessee; 

activity often coincides with rain events, typically in late spring and into summer. Breeding tends 

to begin in lower latitudes of Tennessee in earlier parts of summer, with more northern latitudes 

experiencing it in later summer, showing that H. gratiosa activity does vary throughout the state 

(Dorcas & Gibbons, 2008; Niemiller, Reynolds, & Miller, 2011). 

These specifications clarify why H. gratiosa can be rare to find in respect to all of 

Tennessee, since the varying landscape and local climates may not consistently facilitate the 

needs of the species. For the locations that the species has been documented, it is natural to next 

question whether the habitat components present are consistent throughout its known Tennessee 

range. 

 

Research Objectives and Hypotheses   

The primary research questions investigated in this study were: 

1. What are the land cover conditions at which H. gratiosa is documented approximate to 

throughout Tennessee, and does that vary greatly across the landscape or are these areas 

consistent? 

2. On average, what are the ranges of documented precipitation and temperature that are 

found with H. gratiosa presence?  

3. Can citizen science data assist in mending data gaps and supplement federal and 

institutional presence data?   

To understand the factors that may contribute to the spatial distribution of H. gratiosa, 

one must consider how species presence is influenced by the landscape. Reviewed literature 

revealed that climatic factors and anthropogenic disturbance compound upon each other, where 
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habitat destruction typically poses an immediate threat to species presence, while shifts in 

temperature and/or precipitation may gradually cause decline if unfavorable to the species. The 

species is able to find suitable habitat throughout Tennessee, but not all regions possess the same 

habitat conditions.  

As the species is largely found along the Coastal Plain of the southeastern United States, 

the climatic conditions of this region must also be considered. Breeding in Tennessee typically 

occurs between the months of April – August, with the peak being in late summer for the more 

northern latitudes, indicating a need for milder temperatures. As it prefers pools (as opposed to 

puddles or streams) and calls from the water, some amount of standing water must be present for 

breeding, even in the form of temporary pools. Lowland elevations also typically play a role, 

which permit flood events to occur and expand breeding pool options. However, overflooded 

areas introduce the risk of aquatic predators such as fish, where H. gratiosa would select against 

breeding in these environments (Dorcas & Gibbons, 2008; Niemiller, Reynolds, & Miller, 2011). 

Over the past several decades, documentation of species presence has been gathered by 

federal workers and citizens alike. However, citizen science data does not always get processed 

into updated species distribution models, which may lead to data gaps. Given that citizen science 

has played a role in amphibian monitoring in Tennessee, the results of many years of sampling 

may reveal new information to contribute toward further conservation and spatial understanding.   

 

Methods and Materials 

 Addressing questions regarding apparent spatial preferences of H. gratiosa in Tennessee 

requires somewhat fine scale presence data and relevant environmental data to analyze. Because 

the state of Tennessee was the region of concern for the species, this extent functioned as the 
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spatial scope. Restricting the scope to the state enabled the environmental data to be confined to 

a very precise extent, creating an element of consistency between data layers.  

 

Procurement of Spatial Distribution Data 

 Acquiring presence data involved consulting government, academic, and citizen science 

sources to determine which would be usable for spatial analysis and to what scale.  

 The Tennessee Department of Environment and Conservation (TDEC) has compiled a 

dataset of “Rare Species by HUC 12”, where H. gratiosa is a species included. This data is in 

tabular format and was freely available and downloadable, presenting watersheds in which H. 

gratiosa has been confirmed present by federal or academic personnel. Alongside the table, a 

data layer of HUC 12 watersheds was acquired, so that the species location table and watershed 

locations could be joined. After these two datasets were joined, a visualization of watersheds 

containing H. gratiosa resulted. Because TDEC’s finest scale of distribution was at the HUC 12 

level, this landscape scale was to be kept consistent for other distribution data gathered. 

 Another official source of distribution information for the state is the Austin Peay State 

University (APSU) Amphibian Atlas, which has accumulated presence data throughout the state 

through multiple sources, including the Tennessee Wildlife Resource Agency (TWRA) and 

students. The points are presented on a map on the Amphibian Atlas, with the actual coordinates 

reported through journal articles sourced with the map (Figure 1.1). Many of the points in the 

Atlas aligned with the TDEC watersheds, while others were mapped accordingly with associated 

watersheds. 
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Figure 1.1 The Austin Peay State University distribution map for H. gratiosa (solid red circles 

represent records published since 1996 that are vouchered in the APSU Museum of 

Zoology; red symbols other than circles represent records published since 1996 that 

are either unvouchered or vouchered elsewhere) 

 

While TDEC and APSU’s data provided some sense of H. gratiosa distribution in 

Tennessee, citizen science data was also investigated for the potential of additional presence 

findings. Throughout the past couple decades, the Tennessee Amphibian Monitoring Program 

(TAMP) has assessed Anuran presence and diversity throughout the state via citizen science 

volunteers along assigned routes. Auditory call surveying has been the primary monitoring 

method utilized, which required volunteers to be trained to identify calls with great accuracy. All 

TAMP volunteers adhere to protocols defined by the North American Amphibian Monitoring 

Program (NAAMP), which yielded consistent methods with gathered presence data in the field. 

Bearing this in mind, TAMP data was a valid candidate to consider for presence data, given how 

often data are gathered in precise locations. Data from this source was acquired by contacting 

Bob English, the TAMP coordinator, as he possessed a comprehensive spreadsheet of 

coordinates from all routes in the state. After acquiring the points, this data was aligned with 

HUC 12 watersheds and additional areas with documented presence were added with the TDEC 

and APSU watersheds. 
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 Another avenue of citizen science explored was an application called iNaturalist, which 

was launched in 2008. The purpose of iNaturalist has been to enable citizen scientists to 

document biological findings on a map casually, which has the potential to aid in research and 

conservation. While iNaturalist’s openness may be viewed as a risk of data integrity, the 

application developers allowed for observations to be identified appropriately by individuals of 

certain expertise. These individuals can also be contacted directly to gain more information 

regarding observations posted. For gaining data on H. gratiosa, the species was searched for on 

iNaturalist and observations were documented for use after ensuring accuracy of the data.  

 

Acquiring Land Cover Data 

 The distribution of amphibians is hardly ever random, where habitat types influence 

where they select to breed and reside. With the known watersheds in which H. gratiosa has been 

documented to occur, trends in habitat types were sought to be assessed in these areas.  

 The National Land Cover Dataset (NLCD) was used to acquire land cover classifications, 

utilized because it is free and readily available for spatial research. Due to the NLCD 2011 

dataset being the most recent land cover product available, it was selected for this portion of the 

project. The spatial resolution of the data is 30 meters, a grade fine enough to account for habitat 

definition on a broad scale while not too fine to hinder computer processing. NLCD was 

categorized into 15 classes, ranging from developed, urbanized surfaces to wetland cover types 

(Homer et al., 2015). 
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Summarizing Land Cover to Watersheds 

 To gain an understanding of the distribution of certain land cover types, I sought to 

summarize NLCD 2011 by HUC 12 watershed. Given that there are hundreds of watersheds at 

the HUC 12 level in Tennessee, this task was more efficiently executed by developing a Python 

programmed script that automated an extraction process per watershed (see Appendix A). A 

shapefile of all HUC 12 watersheds in Tennessee was used to select and extract specific pieces of 

the NLCD raster. The script automates the tasks of: select a row in the HUC 12 attribute table, 

Extract by Mask based on the selection, save the extracted piece of raster in a geodatabase, move 

to the next row in the HUC 12 table. This process looped until the end of the table, when all 

HUCs would have a land cover raster extraction associated with the watershed. 

 Next, to transfer all of the NLCD values to the HUC 12 shapefile attribute table, another 

Python script was developed (see Appendix B). This script automated the process of creating 

land cover category columns in the attribute table, reading the categories and pixel values in each 

raster, and writing the values to the respective category column and to the respective HUC 12 in 

the attribute table. After all values were transferred, proportions of each cover type category 

were calculated to normalize the weights of pixel representation in each watershed. This was 

done by totaling all land cover pixels in each watershed and subsequently calculating the 

proportion of each category pertaining to that total. As a result, all HUC 12 watersheds in 

Tennessee had land cover proportions calculated, allowing for further spatial analysis to be 

performed. 
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Climatic Data Acquisition and Processing 

 Several studies that consider climatic modeling utilize data from WorldClim’s set of 

global climate layers, which influenced its usage for this project. This data is freely available to 

use for mapping and spatial modeling, and has been generated by climatic averages of 

temperature and precipitation over the past several decades. Because H. gratiosa is said to be 

particular with climatic tolerance, several aspects of both temperature and precipitation were 

assessed. While there are 19 categories of variables available to use, literature stated that extreme 

values may be most influential of distribution, though annual averages may attribute to baseline 

stability. Thus, for temperature, the variables selected were: Annual Mean Temperature, 

Maximum Temperature of Warmest Month, and Minimum Temperature of Coldest Month. For 

precipitation, the variables selected were: Annual Precipitation, Precipitation of Wettest Month, 

and Precipitation of Driest Month (Groff et al., 2014; Fourcade et al., 2014).  

 Each of the bioclimatic variables were downloaded and processed through ArcGIS to 

match the extent of the Tennessee study region. Pixel values near H. gratiosa presence were 

extracted, so that temperature and precipitation values in association with presence could be 

analyzed. The minimum, maximum, mean, median, and mode were documented for the areas 

with presence, and compared to the overall possible range of values in Tennessee.  

 

Spatial Statistical Analysis 

 When searching for trends in attributes to a spatial phenomenon, linear regression 

analysis has often been a viable option (Snodgrass et al., 2008; Hartel et al., 2010; Stapanian, 

Micacchion, & Adams, 2015). In this study, a couple of spatial tools contained in the ArcGIS 10. 

* software called Exploratory Regression and Ordinary Least Squares (OLS) were used to 
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process regression analyses, which require a dependent variable and explanatory variables as 

inputs. The HUC 12 layer with land cover proportion attributes would be the source input for this 

tool, to compare proportions in watersheds with presence to those without presence. Based on the 

points found from the accumulated species presence data, a new attribute would be added that 

accounts for H. gratiosa presence per HUC, and this would function as the dependent variable 

and allow for weighting to occur among watersheds. The value of presence was defined by how 

many historic presence sites were represented in a HUC.  

Exploratory Regression was executed first, to address potential redundancy between 

variables and to identify which land covers appeared most significant in explaining H. gratiosa 

distribution. Initially, all 15 NLCD land cover types were considered for explanatory variables 

for H. gratiosa presence; the top seven significant were noted. From those noted cover types, 

OLS was executed to assess the strength of significance between the top ranked cover types. 

Multiple statistical values were computed by the tool to further indicate significance, such as 

Adjusted R-Squared (R2), corrected Akaike Information Criterion (AICc), Jarque-Bera p-value 

(JB), Koenker’s studentized Breusch-Pagan p-value (BP), Variance Inflation Factor (VIF), Joint 

F-Statistic, and Joint Wald Statistics. While each of these values give some indication of strength 

and significance, the R2 and AICc were primarily sought for identifying model fitness and 

performance. The Joint-F and Joint Wald values were also reviewed for validating the land cover 

significance, which were based on built-in F and Chi-squared tests respectively. 

 After running OLS and finding landscape variables that were consistently significantly 

associated with H. gratiosa presence, running Geographic Weighted Regression (GWR) was the 

next step to produce more localized models to assess the regional importance of certain 

variables. The outcome of this tool has the potential to result in somewhat different results than 
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OLS, since the variables are able to vary regionally and display local trends. This tool was also 

considered for its potential in making a lite predictive model, to possibly explain H. gratiosa 

presence in certain watersheds further. 

 In the process of running OLS and GWR, Akaike Information Criterion corrected (AICc) 

values were generated, which indicate the best models that pertain to the dependent variable. The 

values are corrected due to the smaller sample size, which normalized the results. The AICc 

values generated with each model are relative to each other, where some combinations of 

variables performed better in predicting species association than others; if one model’s AICc 

value is lower than another’s, the lower valued model is viewed to be better. Only variables from 

the NLCD were considered for the AICc models, as they were selected in both OLS and GWR. 

These values were reviewed to discern whether certain land cover types or combinations of types 

possessed any significant association with presence. 

 

Results 

Results of Land Cover Analysis 

 Executing Exploratory Regression analysis in ArcGIS with all 15 NLCD land cover 

proportions revealed that certain cover types are either positively or negatively associated with 

H. gratiosa presence, and some more than others. The cover type that was most important was 

“Shrub/Scrub”, a land cover type that tends to coincide with shrub/scrub type wetlands; this 

variable was the most important, with a value of 99.82%, in explaining species presence and was 

100% positively associated. The “Woody Wetlands” and “Cultivated Crops” were the next most 

positively associated land cover types with over 80% positive association, but were less than 

80% significant in explaining presence. The most negatively associated land covers were 
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“Evergreen Forest”, “Developed, Open Space”, “Open Water”, and “Barren Lands”, with each 

being over 80% negatively associated with presence; however, all were less than 80% important 

in explaining presence, according to the results from the tool. All other cover types were split 

between negative and positive associations and received low significance scores. The top seven  

contributing land cover variables were selected for Ordinary Least Squares regression, for further 

investigation of statistical significance, which were: “Shrub/Scrub”, “Woody Wetlands”, 

“Evergreen Forest”, “Developed, Open Space”, “Deciduous Forest”, “Cultivated Crops”, and 

“Hay/Pasture”. 

 Initially, all seven top scoring land cover types were used to in executing OLS. The 

following iterations of the tool removed the lesser important land covers one by one, to reveal 

the best models according to AICc values (Table 1.1). None of the adjusted R2 values were above 

0.5, showing weak connection to the fitted regression line. However, the Joint F-Statistic and 

Joint Wald Statistic indicated significance in almost all renditions, as “Shrub/Scrub” repeatedly 

was significant in each model. As a lone variable, “Shrub/Scrub” did not score as well with the 

AICc as when modeled with other variables. The best scoring AICc of 1861.837, being relatively 

less than the other scores, occurred when “Shrub/Scrub” was modeled with “Woody Wetlands” 

and “Evergreen Trees”. Those same two also stood out as significant to the model, when other 

variables were added; however, the “Shrub/Scrub” remained consistently significant. 
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Table 1.1 Ordinary Least Squares Statistics Results 

 

Model AICc Adj R2 Joint  

F- Statistic 

Joint Wald 

Statistic 

+ Shrub/Scrub  

+ Woody Wetlands  

- Evergreen Forest 

1861.837063 0.051064 

 

p < 0.01* p < 0.01* 

+ Shrub/Scrub  

+ Woody Wetlands 

- Evergreen Forest 

- Developed, Open Space 

1863.541026 0.050498 p < 0.01* p < 0.01* 

+ Shrub/Scrub 

+ Woody Wetlands 

1863.555019 0.048809 p < 0.01* p < 0.01* 

+ Shrub/Scrub  

+ Woody Wetlands 

- Evergreen Forest 

- Developed, Open Space 

- Deciduous Forest 

1865.515929 0.049709 p < 0.01* p < 0.01* 

+ Shrub/Scrub  

+ Woody Wetlands 

- Evergreen Forest 

- Developed, Open Space 

+ Deciduous Forest 

+ Cultivated Crops 

1866.660800 0.049608 p < 0.01* p < 0.01* 

+ Shrub/Scrub  

+ Woody Wetlands 

- Evergreen Forest 

+ Developed, Open Space 

+ Deciduous Forest 

+ Cultivated Crops 

+ Hay/Pasture 

1868.525902 0.048914 p < 0.01* p > 0.05 

+ Shrub/Scrub 1878.322797 0.035679 p < 0.01* p < 0.01* 

 

 Models produced by GWR produced somewhat different results than OLS, in regard to 

how each of the parameters interacted with each other. A single explanatory parameter, 

“Shrub/Scrub” proportion, performed best in predicting watersheds with H. gratiosa presence, 

based on the available data and having the lowest AICc score. As the amount of parameters 

increased, the AICc values increased, where strength of progressing models decrease from the 

one prior to it (Table 1.2).  
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Table 1.2 Geographic Weighted Regression Model Results 

Model AICc Adj R2 

Shrub/Scrub 1590.530852 0.402236 

Shrub/Scrub  

Woody Wetlands 

1721.703324 0.307611 

Shrub/Scrub  

Woody Wetlands 

 Evergreen Forest 

1845.775961 0.051064 

 

Shrub/Scrub  

Woody Wetlands 

Evergreen Forest 

Developed, Open Space 

1857.504235 0.214686 

Shrub/Scrub  

Woody Wetlands 

Evergreen Forest 

Developed, Open Space 

Deciduous Forest 

1863.704249 0.066052 

Shrub/Scrub  

Woody Wetlands 

Evergreen Forest 

Developed, Open Space 

Deciduous Forest 

Cultivated Crops 

1865.701639 0.051133 

Shrub/Scrub  

Woody Wetlands 

Evergreen Forest 

Developed, Open Space 

Deciduous Forest 

Cultivated Crops 

Hay/Pasture 

1868.120919 0.050072 

 

Results of Climatic Data Analysis 

 Of the point presence data found, points from TAMP, iNaturalist, and APSU’s 

documentation were able to be used; TAMP data yielded the most out of the three. Annual Mean 

Temperature (BIO1) displayed values that accounted for the entire year, which indicated what 

overall temperatures could be tolerable to H. gratiosa. Maximum Temperature of the Warmest 

Month (BIO5) values unveiled the warmest extreme that H. gratiosa is drawn toward. Minimum 

Temperature of the Coldest Month (BIO6) values show the coldest extreme that this species is 
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able to endure. Compared to the entire spectrum of values throughout the state, BIO1, BIO5, and 

BIO6 values all fell to the warmer side, with the three central tendencies being very close in 

value (Table 1.3). The mean, median, and mode were also of warmer values within the range of 

temperatures associated with species presence (Table 1.3). 

 Precipitation levels displayed moderately close tendency, where Precipitation of the 

Driest Month (BIO14) had nearly equal mean, median, and mode, while the Annual Average 

Precipitation (BIO12) had slight variation. In comparison to the statewide ranges, BIO12 leaned 

more toward a moderately less amount of precipitation possible, but still favored more than the 

statewide minimum. The range of Precipitation of the Wettest Month (BIO13) associated with 

presence was a bit broad, but central tendencies were clearly visible at 140mm-142mm of 

rainfall (Table 1.3). Last, the Precipitation of the Driest Month (BIO14) showed ~78mm being 

the apparently preferred minimum precipitation. 

 

Table 1.3 Bioclimatic Variable Trends for H. gratiosa in Tennessee 

 

Bioclimatic 

Variable Mean Median Mode Minimum Maximum 

TN Overall  

Range of Values 

BIO1 

15.13°C  

(59.2°F) 

15.3°C 

(59.5°F) 

15.3°C 

(59.5°F) 

13.1°C 

(55.58°F) 

15.6°C 

(60.08°F) 

6.4°C - 16.3°C 

(43.52°F-61.34°F) 

BIO5 

32.15°C 

(89.87°F) 

32.2°C 

(89.96°F) 

32.2°C 

(89.96°F) 

28.9°C 

(84.02°F) 

32.8°C 

(91.04°F) 

20.2°C - 33.4°C 

(68.36°F-92.12°F) 

BIO6 

-2.64°C 

(27.25°F) 

-2.4°C 

(27.68°F) 

-2.3°C 

(27.86°F) 

-4.7°C 

(23.54°F) 

-1.9°C 

(28.58°F) 

-8.9°C - -0.4°C 

(15.98°F-31.28°F) 

BIO12 1363.63mm 1375.5mm 1380mm 1259mm 1576mm 
1079mm - 2073mm 

BIO13 140.40mm 142mm 142mm 127mm 172mm 
110mm - 208mm 

BIO14 78.40mm 78mm 78mm 70mm 101mm 
63mm - 157mm 
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Documented Distribution in Tennessee 

 According to TDEC, 29 HUC 12 watersheds have been documented with H. gratiosa, 

with 11 HUCs in the eastern region, five  HUCs in the north-central region, and 13 HUCs in the 

western region (Figure 1.2). Data from APSU revealed three  additional HUCs to TDEC’s data, 

with one  in the eastern region and two  in the western region (Figure 1.3). Overlaps of presence 

existed for several watersheds between these two data groups. However, the distribution data 

from these resources solely displayed the discontinuous range that has been understood to occur 

at this point in time. 

 

 

Figure 1.2 TDEC HUC12 distribution map (Datum: GCS_North_American_1983; Spatial 

Extent: Top 36.681860 dd, Bottom: 34.887339 dd, Right: -85.740875 dd, Left: -

89.739759 dd) 

  



24 
 

 

Figure 1.3 TDEC and APSU HUC12 distribution map (Datum: GCS_North_American_1983; 

Spatial Extent: Top 36.681860 dd, Bottom: 34.887339 dd, Right: -85.740875 dd,  

Left: -89.739759 dd) 

 Presence data from TAMP unveiled 19 more HUCs in addition to TDEC and APSU, 

which complimented previous areas of known presence by displaying continuity between 

watersheds. Solo, TAMP accounted for 23 HUCs with presence, where some of these watersheds 

overlapped with TDEC and APSU data as well (Figure 1.4). In addition to TAMP, iNaturalist 

indicated presence in one HUC in eastern TN, bringing citizen science data to contributing a total 

of 24 HUCs (Figure 1.5). No other citizen science sources provided additional information to 

these, showing that TAMP and iNaturalist were productive programs for accumulating 

information for H. gratiosa on a citizen level. 
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Figure 1.4 TDEC, APSU, and TAMP combined HUC12 distribution map (Datum: 

GCS_North_American_1983; Spatial Extent: Top 36.681860 dd, Bottom: 34.887339 

dd, Right: -85.740875 dd, Left: -89.739759 dd) 

 

Figure 1.5 Citizen science-only HUC12 distribution map (Datum: GCS_North_American_1983; 

Spatial Extent: Top 36.681860 dd, Bottom: 34.887339 dd, Right: -85.740875 dd, 

Left: -89.739759 dd) 

  

Overall, 52 HUC 12 watersheds were found to account for historic H. gratiosa presence 

in Tennessee. In the eastern region, 14 HUCs in all have been documented with presence, 

ranging from the AL state border up to just south of Cookeville, TN. In the north-central region, 
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7 HUCs have been documented with presence, ranging from west of Springfield, TN to north of 

Clarksville, TN. Last, in the western region, 31 HUCs have been documented with presence, 

having the majority between the regions; these HUCs ranged just north of the MS state border, 

toward the western border of TN, and areas encircling Jackson, TN. Apparent distribution 

clusters throughout these three regions and displays largely discontinuous range, but connectivity 

between local ranges (Figure 1.6). 

 

Figure 1.6 Comprehensive HUC12 distribution map of H. gratiosa in Tennessee (Datum: 

GCS_North_American_1983; Spatial Extent: Top 36.681860 dd, Bottom: 34.887339 

dd, Right: -85.740875 dd, Left: -89.739759 dd) 

 

Discussion 

Suitable Habitat Implications 

 Knowing that H. gratiosa has been documented to favor open canopy wetlands, the 

shrub/scrub habitat type is a logical match for that criteria. Given that much of western 

Tennessee is composed of much more grassland, it also makes sense that the species would have 

a more expansive range in that region if it is utilizing lowland floodplains there. Modeling land 

cover by smaller regions and assessing presence per watershed allowed for a more weighted 
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approach that was able to more proportionally analyze pieces of the state. When modeling 

shrub/scrub land cover by HUC12 on its own, the concentrations do become reminiscent of H. 

gratiosa’s documented range from past distribution models (Niemiller, Reynolds, & Miller, 

2011) (Figure 1.7). This land cover type is evidently not consistent throughout the Tennessee 

landscape, as it occurs primarily in lower latitudes of the state and more so in the western region. 

 

Figure 1.7 Concentrations of shrub/scrub land cover proportions by HUC12 Watershed (Datum: 

GCS_North_American_1983; Spatial Extent: Top 36.681860 dd, Bottom: 34.887339 

dd, Right: -85.740875 dd, Left: -89.739759 dd) 

 

 Involving citizen science data, from TAMP especially, not only filled data gaps, but also 

enabled weighted regression to be a more viable option when modeling (Royle, 2004). 

Furthermore, gaining precision on climatic trends was possible with the point data provided. 

While APSU also had point data, the amount was not scattered and the sample size was smaller. 

Just as NAAMP has been noted productive in other parts of the United States, it was showcased 

as supplementation of pre-existing public data in Tennessee. 
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 The climatic trends seemed to follow what would be expected, given the frog’s nature 

toward milder conditions. While a certain amount of precipitation seemed variable annually, the 

range was still restricted to a certain amount. This restriction may have also been due to the sheer 

number of sites used to extract the climatic data, but having an adequate sample size of 63 points 

was able to reveal basic trends that coincide with H. gratiosa presence. The species has been said 

to become more active in warmer temperatures, which matched with the temperature values 

extracted from the WorldClim data. In the future, however, aspects of humidity should be 

considered, as ambient moisture levels in local climates may influence other trends in presence 

(Peterman & Semlitsch, 2013). Because Worldclim did not include this parameter, such data 

would need to be acquired from another available source to be considered in future modeling.    

An unexpected result was that the anthropogenic landscapes, which included all of the 

land covers labeled “Developed”, were not as outstandingly negative in association with species 

presence as they could have been. Many amphibians have been documented as sensitive to 

habitat alteration and destruction, but some anurans have been able to cope with those 

circumstances by utilizing manmade structures to fulfill their ecological needs. The dispersal 

ability of H. gratiosa in developed landscapes needs to be addressed further, to assess whether it 

is a species that is truly impacted or if it is neutral to some degree (Todd et al., 2016). Sister taxa, 

such as the green treefrog (Hyla cinerea) and Cope’s gray treefrog (Hyla chrysoscelis) have 

often been noted to be calling in urbanized areas; might H. gratiosa also have this potential? 

  

Limitations and Biases 

 The modeling limitations present in this project are due to the amount of presence data 

available. While a sample size of 52 HUC12s for spatial modeling was adequate, the results were 
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not as strong as they could have been, as noted with the small Adjusted R2 values. Higher sample 

sizes would be needed to help improve the models, as more data would naturally result in more 

robust spatial models. Land cover values in association with H. gratiosa presence were also not 

normally distributed; however, this also reflects the reality that a landscape has variation in 

composition. Assessing presence at an even finer scale than HUC level may improve regression 

modeling further (Weir et al., 2005; Syphard & Franklin, 2009). 

 Another limitation that is also due to data availability regards the land cover data and its 

dating to 2011. Utilizing this data is adequate for basic trends in the landscape, but it is not 

necessarily reflective of the current landscape, nor able to show the amount of habitat alteration 

that may have occurred between then and now. When the NLCD 2016 data becomes available, 

that will be much more suitable to use for the next modeling regimes, given the fast paced 

development occurring.  

 While the amount points available from TAMP supplemented presence data, there is an 

element of bias to consider in its locations. The routes were set all across the state, but not all 

routes have been monitored as frequently as others. Furthermore, the populations at each of the 

sites might not represent a population that could be existing across the state. Because of the 

landscape variability in Tennessee, some populations may be more biased to resources they are 

familiar with at a certain part of the state, where this may differ in another region. But overall, as 

H. gratiosa tends to be consistent in its selection of breeding pool types, that at least may be 

reliable for future modelling and assessment of potential habitat, leading to further conservation 

and management. 
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Conclusions 

 This chapter was designed to address the apparent land cover use of H. gratiosa, climatic 

occurrences with presence, and assess the overall spatial status of the species in Tennessee. With 

the results gained, each of the questions posed earlier are able to be addressed. 

 First, the significance of the “Shrub/Scrub” land cover proportion supports that the 

species would be particular to at least one natural land cover, and not partial to developed 

landscapes. The continuous consistency of that land cover’s significance is worth noting, as it 

fulfills the lowland, floodplain type of habitat the species is known to be attracted to (Oldham & 

Gerhardt, 1975). With more presence data, greater specificity of other habitat components can be 

revealed in the future. Sampling in areas similar to this habitat type may yield other locations of 

presence to be analyzed in future conservation. 

 Second, the climatic gradients falling within a specific range in association with H. 

gratiosa points of presence supports that there is a particular climate favored. This species is not 

one to haphazardly select areas to breed and reside; it is precise and more prone to warmer, rainy 

conditions. Should sudden microclimate changes occur that are unfavorable, this may force 

species to migrate or adapt in some way; however, this may be difficult if habitat corridors are 

not available for their movement (Pilliod et al., 2015). 

 Last, the addition of citizen science data to federal and academic institution data was able 

to supplement and expand known distribution on a finer scale, which supported citizen science’s 

utility in contributing more presence data. One of the purposes of NAAMP was to accomplish 

the goal of mending data gaps over time. Given the purpose that citizen science data has served 

for H. gratiosa, it will likely be useful for further modeling and for other species in need of 

management and conservation in the future (Villena et al., 2016) 
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CHAPTER II 

 

DEVELOPMENT AND ASSESSMENT OF PREDICTIVE SPATIAL MODELS FOR HYLA 

GRATIOSA IN TENNESSEE WITH CITIZEN SCIENCE DATA 

 

Introduction 

Conservation and Predictive Modeling 

Ongoing development of geospatial technologies and modelling practices have 

empowered researchers to broadly analyze species populations and ranges, a much needed utility 

for conservation of declining species. In the early 1990s, climatic envelope modelling, such as 

with BIOCLIM and DOMAIN, became prominent and was utilized to understand correlations 

between species presence and persistence in association with environmental conditions (Booth et 

al., 2014; Carpenter et al., 1993). Over time, profile approaches of modelling were gradually 

replaced with machine-learning in terms of popular usage, as these modelling algorithms 

repeatedly displayed greater precision and accuracy in predicting presence based on known 

locations, even if sample sizes were low (Fouquet et al., 2010). MaxEnt (Maximum Entropy) and 

GARP (Genetic Algorithm for Rule Set Production) are both capable of creating ecological niche 

models for species using machine-learning, yet may perform differently at different geographic 

scales (Pearson et al., 2006; Tsoar et al., 2007). Despite differences in accuracy, both are still 

widely used and remain dominant in the realm of species distribution modelling because of their 

general reliability. Newer modelling scenarios are being developed through R programming, a 
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language that is inclusive of statistical and spatial processing (Hijmans & Elith, 2013), which is 

presently gaining popularity.  

 Predictive modeling approaches have been utilized to assess species that fall under a 

variety of management categories, from invasive to endangered (Iverson, Prasad, & Schwartz, 

1999; Giovanelli, Haddad, & Alexandrino, 2007; Groff et al., 2014). Rare species in particular 

tend to pose prominent conservation challenges (Measey et al., 2016), pushing modelling 

approaches to continually be developed toward greater accuracy (Groff et al., 2014). There are 

oftentimes concerns with presence-only data having sampling bias and influencing models 

(Miller et al., 2011), but for threatened or vulnerable species, utilizing this data becomes crucial 

for exploratory models (Chandler, 2015; Groff et al., 2014). Certain modelling scenarios, such as 

in MaxEnt and GARP, have become streamlined, where default settings are capable of creating 

accurate models with few configurations required for calibration (Phillips & Dudík, 2008). For a 

rare amphibian in Oregon, MaxEnt was able to assist in guiding exploratory surveys, resulting in 

the discovery of a previously unknown occurrence (Groff et al., 2014). In larger regions, novel 

methods had the tendency to outperform older, more established modeling scenarios, where 

machine-learning methods functioning with presence-only data gave more accurate results (Elith 

et al., 2006). For species that tend to occur in predictable habitats, presence-only data functions 

efficiently, but other species may display different dynamics apart from predictive models; the 

species being modeled becomes of importance when selecting modeling schemes (Segurado and 

Araujo, 2004). When model customization is more favorable, programming for predictive 

models in R have become more appealing to allow greater specification (Fiske and Chandler, 

2011). An R package known as spThin has the ability to thin clusters of occurrence points in an 

attempt to reduce spatial bias, allowing models to become less skewed by spatial bias (Aiello-
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Lemmons et al., 2015). MaxEnt, however, has been shown to offer a similar capability by 

allowing the user to indicate where biases may occur and correcting for it (Fourcade et al., 2014). 

Some of the more established modeling scenarios, such as Generalized Linear Modeling (GLM) 

and Generalized Additive Modeling (GAM), have been shown to provide comparable results to 

MaxEnt, but the produced models may vary greatly with complex parameters; models with 

greater consistency tend to be preferred when being applied toward species assessment (Syphard 

& Franklin, 2009; Segurado & Araujo, 2004; Elith et al., 2006; Hernandez et al., 2006), 

 Concerns for amphibians in specific have caught the attention of GIS analysts, where 

spatial analyses to assess amphibian distribution and range have been performed in recent 

decades. Multiple researchers in Europe have modeled the effects of a changing environment on 

amphibian species ranges, displaying shrinking populations and tolerance potential (Arntzen, 

2006; D’Amen & Bombi, 2009; Pellet et al., 2006; Schmidt & Pellet, 2005; Joly et al., 2003). 

Some studies have involved assessing amphibian population connectivity to understand 

population viability in the impacted landscapes, utilizing GIS packages to produce connectivity 

models between suitable habitats holding populations (Joly et al., 2003; Decout et al., 2012; 

Hether & Hoffman, 2012). In various places worldwide, predictive models have been utilized to 

guide surveys for amphibians or assess population status, such as with: the Syrian Spadefoot 

Toad (Pelobates syriacus) (Tarkhnishvili et al., 2009), the Mountain Yellow-legged Frog (Rana 

muscosa) (Knapp et al., 2003), the Oregon Spotted Frog (Rana pretiosa) (Groff et al., 2014), and 

Hochstetter’s New Zealand Frog (Leiopelma hochstetteri) (Fouquet et al., 2010).  Several of 

these studies utilized machine-learning modeling schemes in addition to ArcGIS extensions, 

while others utilized combinations of GLM and GAM modeling, displaying themes of modeling 

applications in amphibian conservation (Syphard & Franklin, 2009; Groff et al., 2014).  
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For a wide variety of organisms, researchers have utilized these computational tools to 

address conservation concerns across landscapes in an attempt to improve conservation 

management practices (Giovanelli, Haddad, & Alexandrino, 2007; Fouquet et al., 2010; Groff et 

al., 2014). For anurans in the face of decline, this mode of species distribution assessment has 

great potential to guide conservation along a more efficient path. With this in mind, one may 

question: which Anuran species are in need of spatial analysis for conservation purposes? 

 

Contribution of Citizen Science 

The modern era has access to many technological advancements, allowing knowledge to 

be quickly available in the palm of one’s hand. Whether by a book or a mobile device, citizens 

have become more empowered in recent decades to be more involved with the gathering of 

scientific data, whether they realize it or not (Tulloch et al., 2013; Biggs et al., 2015). For 

programs that do intentionally use citizens as a data source, accommodations for training or data 

verification are in place (Walls, 2014; Biggs et al., 2015). With citizen science, the flux of 

information to be gained has great potential to be explored (Devictor, Whittaker, & Beltrame, 

2010).  

Throughout the decades, monitoring various species through citizen efforts has been 

underway, ranging from bird counts to tree inventories (Silvertown, 2009; Galloway, Tudor, & 

Haegen, 2006). The benefits of this effort have been reported as double-sided, where officials in 

need of data gain a great amount, and citizens receive an opportunity to learn more about 

ecology and wildlife. Across the board, most any taxa that people are interested in investigating 

has a citizen science opportunity, allowing international biodiversity monitoring and monitoring 

across different regions (Chandler et al., 2017; Mair & Ruete, 2016). 
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As amphibian biodiversity is in a state of decline worldwide, monitoring programs for 

this taxa have been greatly encouraged through citizen science, which has been evident through 

online applications such as iNaturalist, HerpMapper, and the Herpetological Education and 

Research Project. Given the mass concern for amphibians, this avenue of data has been viewed 

as efficient and creates greater awareness, encouraging the conservation of these species 

(Theobald et al., 2015). The North American Amphibian Program (NAAMP) began an initiative 

in the 1990s to expand on awareness, train citizens, and allow in-field opportunities throughout 

spring and summer seasons. The fruits of this effort have come in the form of usable data for 

research, as seen in an occupancy studies performed from NAAMP data (Weir et al., 2005; Weir, 

Fiske, & Royle, 2009). Another study utilized NAAMP data to assess negative effects of road 

traffic on amphibians, in which they did discover impacts on populations (Cosentino et al., 

2009).  

With so many different amphibian species that may be at risk, and with many accessible 

opportunities to contribute data, the time to utilize citizen science data for conservation is upon 

modern citizens. Spatial modeling and citizen science have the potential to be used together for 

furthering the conservation of a species of concern (Walls, 2014). 

 

The Modeling Candidate: Barking Treefrog (Hyla gratiosa) 

 Amphibians are often low hanging fruits for spatial modeling, given their predictable 

ecological needs and typically limited geographic ranges. Throughout the United States, many 

amphibian species are in need of management, where researchers have adopted spatial modeling 

to efficiently assess habitat requirements and remediate impacts potentially lead to declines. 

Within the state of Tennessee, one such species that has remained poorly understood is Barking 
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Treefrog (Hyla gratiosa), where this species is also listed as ‘Vulnerable’ due to its nature as a 

specialist. To understand the needs of this treefrog for further management, more presence data 

is needed to clarify its habitat preferences in the Tennessee landscape. A way to gain more 

presence data is to utilize presence data sources already existing alongside environmental 

parameters and create predictive distribution models to test (Kearney & Porter, 2009).  

 Tennessee has maintained a citizen science program through the Tennessee Amphibian 

Monitoring Program (TAMP) since 2004, which involves and trains citizen scientists to perform 

auditory surveys along assigned routes. Of the species heard in Tennessee, H. gratiosa is 

included, but its distribution from the accumulated data had not yet been fully analyzed. 

 

Research Objectives and Hypotheses 

Using presence data from citizen science sources, the objective of this section of the 

project is to develop and assess spatial predictive models in the field. Predictive modeling also 

requires environmental parameters with which to model potential habitat, such as land cover, 

climatic data, topography, and more, which have been utilized in previous studies involving 

amphibians (Tarkhnishvili et al., 2009; Fouquet et al., 2010; Groff et al., 2014). Some modeling 

programs have been more popularly used than others, such as MaxEnt and GARP, which are 

machine-learning algorithms that can function with presence data only (Segurado & Araujo, 

2004; Fourcade et al., 2014; Miller, 2014). Testing these modeling methods against each other, 

and with an older method, such as BIOCLIM, may reveal the usefulness of this modern utility 

for conservation. In contrast, testing a newer modeling scenario, InVEST, is also of worth to 

benchmark the future reliability of certain programs. With all of these modeling schemes in 

mind, I seek to answer these questions: 1) Will one of these modeling programs create a more 
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accurate model than the others, given the same presence data and similar environmental 

parameters? 2) Will the predictive models, born of citizen science presence data, be able to 

accurately locate H. gratiosa presence in one or more previously undocumented places in 

Tennessee? Ultimately, I will use the results to assess potential modeling solutions for H. 

gratiosa and assess how predictive modeling may enhance conservation for the species in 

Tennessee. 

 

Methods and Materials 

 To answer the research questions presented, the methods involved computational and in-

field phases. The computational aspect required a moderately high-powered computer with at 

least an Intel i5 processor, 8GB of RAM, adequate graphics capability, over 100GB of storage 

space for files, and the ESRI ArcGIS 10.* software suite. The in-field aspect required a reliable 

vehicle for traveling long distances, funds for fuel, and a smartphone with GPS capabilities for 

navigation. 

 

Data Acquisition and Processing 

 Based on past studies that have utilized NAAMP data for research (Weir et al., 2005; 

Weir et al., 2009; Walls, 2014; Villena et al., 2016), data from TAMP was pursued for 

modelling. The state coordinator for TAMP was contacted he provided the coordinates for all 

TAMP sites in Tennessee. From those points, the sites having documented H. gratiosa presence 

were analyzed, queried, and separated using ArcGIS software. In addition to NAAMP data, 

many other citizen sciences sources were analyzed, but only iNaturalist had usable coordinates 
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for modeling. The resulting amount of presence points numbered to 63, and the coordinates were 

placed into a *.csv file in preparation for predictive modeling programs (Figure 2.1).  

 

Figure 2.1 Historical citizen science sampling sites with H. gratiosa presence (among these 

points, 61 are from TAMP and 2 are from iNaturalist, totaling 63 sites) 

 The environmental parameters used in other modeling studies involved land cover, 

temperature, precipitation, and topographical features. Along with those datasets, wetland 

proximity and climate resiliency were considered and used, to test if they would be of any 

importance to the model. The following datasets were located and downloaded: NLCD 2001, 

2006, and 2011; GAP land cover; Worldclim Bioclimatic variables Annual Mean Temperature 

(BIO1), Maximum Temperature of Warmest Month (BIO5), Minimum Temperature of Coldest 

Month (BIO6), Annual Precipitation (BIO12), Precipitation of Wettest Month (BIO13), 

Precipitation of Driest Month (BIO14); Nature Conservancy’s Climate Resiliency data; US 

Geological Survey Slope, Aspect, and Elevation; and the National Wetland Inventory’s wetland 

dataset. All of these parameters were processed to be at the same exact extent to be used for the 
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state of Tennessee, rendered to a resolution of 30m. After processing all layers to the same 

extent, all fourteen (14) were converted to a *.asc file format, in preparation for predictive 

modeling.   

 

Predictive Model Processing 

 Literature supports MaxEnt’s reliability compared to most other predictive modeling 

algorithms (Segurado & Araujo, 2004; Tarkhnishvili et al., 2009; Radosavljevic, Anderson, & 

Araujo, 2014; Groff et al., 2014); for this reason, it was chosen to be the base modeling method 

for selecting sampling sites.  

 MaxEnt is an open source modeling program that requires downloading from the internet 

and need only be extracted and installed on a computer. Once setup, the maxent.bat file must be 

executed to run the program. Upon the MaxEnt window’s opening, the coordinates *.csv file is 

able to be added to the Samples on the left, and the series of processed Environmental Layers can 

be added on the column on the right. Environmental Layers are defined as either categorical or 

continuous, where discrete layers such as land cover would be classified as categorical and 

numerical layers such as elevation would be continuous. After all of the data was uploaded, a set 

of guidelines by Phillips & Dudík (2008) and Young et al. (2011) were followed to ensure proper 

setup of the modeling environment. The output format was set to be Logistic, and the program 

was instructed to do a jackknife test to measure variable importance. Other settings modified 

were: the number of replicates (to 15), the random test percentage (to 25), the replicated run type 

(to Subsample), the maximum iterations (to 5000), and a bias file was input (the HUC 12s with 

H. gratiosa presence were used for this) (Phillips & Dudík, 2008; Young et al., 2011). In 

addition, the following checkboxes were modified from the default: Random seed (checked); 
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Write clamp grid when projecting (unchecked); write output grids (unchecked). At this point, the 

model was to be executed and took a few hours to process. The output was set to be in *.asc 

format. 

 To create models for GARP and Bioclim, an open source program called openModeller 

was used. Similarly, to MaxEnt, the program needed only to be downloaded, setup, and 

executed. After setup and opening the program, the Data Preparation button was selected and a 

prompt for Occurrence data and environmental variables appeared. The algorithms Bioclim and 

GARP were also selected in this window, and the file save location was set up, and the model 

was then instructed to run. No other modifications were found to be made in the modeling 

environment. The output for these models were also set to be in *.asc format. 

 Last, InVEST, a newer modeling scenario, was located and downloaded from the Natural 

Capitol Project website: https://www.naturalcapitalproject.org/ (Tallis et al., 2011). This 

modeling scenario was selected as more of an exploratory aspect, as the inputs permitted and set 

up were different from the other three modeling algorithms. The Habitat Quality tool in InVEST 

was utilized to model potential suitable habitat for H. gratiosa. The inputs required for this 

model were the most recent land cover, NLCD 2011, and threats that may be present to habitats, 

such as roads and agricultural impact. All natural land covers were described as suitable potential 

habitat, such as forests and wetlands, while agricultural areas and lightly developed areas were 

categorized as mildly potential, and urbanized areas were categorized as not suitable. The 

sensitivity values to threats are on a scale of 0 to 1, where 1 means a land cover is very sensitive 

to the threat. The likely suitable habitats were set up to a moderately sensitive value to respond 

accordingly to threats on the landscape (Tallis et al., 2011). 
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Selection of Sampling Sites Using MaxEnt 

 The model resulting from the MaxEnt algorithm was opened in ArcGIS and displayed 

precise, suitable areas for H. gratiosa to be calling from, which indicated potential presence for 

the species (Figure 2.2). The model ranked the areas on a scale of 0.0-1.0, where 1.0 has a higher 

probability of presence. According to literature and similar studies, using 0.5 and above is a 

sufficient for finding areas that can support a rare species. All areas ranking 0.5 and above were 

selected and converted to a vector shapefile to be used with another spatial tool. Given 63 

historic sites used to generate the predictive model, 63 predicted sites based on the MaxEnt 

model were selected via stratified random sampling. Predicted sites were divided between major 

ecoregions of Tennessee at the EPA III level, which allowed spatial broadness of sampling areas 

while also accounting for ecological relevance of the selected sites. Numbers of historic sites per 

ecoregion were noted, indicating the number of random predicted sites to be selected per region. 

The ArcGIS tool “Create Random Points” was used alongside the vector of MaxEnt areas 

ranking 0.5 and above, to ensure random selection of suitable areas in each ecoregion. After 

random points were laid out, screening was performed to ensure accessibility and plausibility of 

sites based on environmental appropriateness.  
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Figure 2.2 MaxEnt Model for H. gratiosa potential distribution (Datum: NAD_1983_Albers; 

Spatial Extent: Top: 1126572.09967543, Bottom: -35062.579798864, Right: 

3272352.08455572, Left: 611702.888096803) 

Five  ecoregions contained historic TAMP points, with the most amount of coordinates 

being in western Tennessee. The Southwestern Appalachians region had two  historic points and 

was granted two  predicted points to sample; the Interior Plateau had three historic points and 

was granted three  predicted points to sample; the Southeastern Plains had 33 historic points and 

was granted 33 predicted points to sample; the Mississippi Valley Loess Plains had 17 historic 

points and was granted 17 predicted points to sample; and last, the Mississippi Alluvial Plain had 

8 historic points and was granted 8 predicted points to sample (Figure 2.3). 
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Figure 2.3 Map of Level III ecoregions with sites (Datum: NAD_1983_Albers; Spatial Extent:  

Top: 1126572.09967543, Bottom: -35062.579798864, Right: 3272352.08455572,  

Left: 611702.888096803) 

Mapping Routes With Google MyMaps 

 To most efficiently sample all sites, an application called Google MyMaps was used to 

create routes between the points and to upload the points onto a smartphone. This application 

assisted in arriving to the locations more precisely, and helped with organizing how many sites to 

visit per night. Drive times and distances needed to be measured carefully, as time was limited 

every night for sampling. Sites were broken up into 14 groups, and one group of sites would be 

completed per sampling night (Figure 2.4). 
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Figure 2.4 Image of site sampling sections, organized by the Google MyMaps application  

 

In-Field Sampling Methods 

From the months of April through August 2017, all 126 study sites were visited and 

surveyed for frog calls according to NAAMP protocol. The generated routes allowed me to 

efficiently sample a certain number of sites within the time window of 30-minutes-after-sundown 

to 0100. Distributing site sampling in this manner resulted in a two-week sampling period per 

month, during which auditory sampling was performed every night. The sites were visited in a 

consistent order every month, with May having a slight exception due to accessibility issues 

during a flood event. The latter two weeks of every month were allocated for sampling effort to 

retain temporal consistency (Bridges & Dorcas, 2000). 

If weather was ever a factor, whether windy or rainy, auditory sampling was performed 

during quieter moments when hearing and calling performance would not be affected. A 

Kestral® unit was utilized to ensure the wind speeds did not exceed 13 mph, which is a condition 

that typically deters frogs from usual calling behavior. During flood events in May, some sites 
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needed to be visited in a different order to maximize accessibility for auditory sampling; if 

certain sites were inaccessible due to weather hazard during this month, a site very approximate 

and within hearing range of the original was proceeded to.  

Listening locations during sampling were often on the side of the road or from a 

designated parking area near the sampling sites when available. To maintain safety, listening for 

frog calls from the vehicle was sufficient and did not interfere with listening ability. Locations 

were all in public areas, where asking for permissions to enter certain areas were not required. 

Occasionally, police and citizens approached the vehicle during listening periods, during which 

the listening session needed to be stalled when explaining the study; people inquired for reasons 

out of concern for listener safety.  

Several environmental and locational parameters were documented at each sampling site, 

including: start/end time of listening, temperature, moon visibility, car traffic count, and ambient 

weather. If Barking Treefrog was heard, the intensity was documented on a 1 to 3 scale, 

according to NAAMP protocol; other frogs heard were also noted at each site to account for 

general habitat suitability. 

 

Postprocessing and Statistical Analyses 

 For any sites that were positive for H. gratiosa presence, those areas were considered for 

Exploratory Regression to find habitat trends in those areas. Since sites were visited five times 

during the season, certain sites were weighted more greatly if H. gratiosa was heard calling more 

than once. Also, the intensity of the choruses was considered for the weighting system. If H. 

gratiosa choruses were a ‘3’ twice over the sampling season, that site received a score of ‘6’, and 

so on for other sites. 
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 The MaxEnt, GARP, and BIOCLIM models each produced Area Under the Curve (AUC) 

values, which determines the usefulness of the predicted models and the classes used. The values 

of those and qualitative use of each model were compared to assess which would continue being 

useful for conservation management. 

 

Results 

Comparison of Predictive Models 

 While AUC values were only generated from processing MaxEnt, GARP, and BIOCLIM 

models, those three were assessed in a more statistical manner; comparing InVEST with all of 

them was done in a more qualitative manner. The three modeling scenarios had similar AUC 

scores, and yet differing modeling outcomes. MaxEnt had an AUC score of 0.834, GARP 

received and AUC score of 0.95, and BIOCLIM received an AUC score of 0.83. While each of 

these models found scored themselves to have fairly modeled the basic distribution of H. 

gratiosa, as a score closer to 1.0 is typically best, not all models appeared equal in prediction. 

BIOCLIM modeled for large portions of Tennessee to be suitable for H. gratiosa habitat, as it 

creates a bioclimatic envelope. GARP differed from both in its seeking also predict absence 

values to test alongside the presence values; having the highest AUC of the three, its accuracy 

may seem the best, though its spatial model too is very broad. MaxEnt’s AUC score fell in the 

middle of the other two, being a high enough score to consider valid, but the mapped model 

appeared to predict much less than the others (Figure 2.2). All three models were able to run 

successfully with citizen science data and produce fairly accurate distribution models according 

to AUC, despite potentially overestimating species presence.  
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 When comparing the four models – Maxent, GARP, BIOCLIM, and InVEST – the 

amount of overestimating presence becomes more evident in how widespread the potential is. 

BIOCLIM’s predictive presence values for this model were only on a scale of 0-0.5, only 

showing areas where H. gratiosa presence is somewhat possible (Figure 2.5). GARP produced a 

similar model to MaxEnt, in terms of where presence likelihood was weighted, but expanded 

more widely in the western Tennessee region (Figure 2.6). The InVEST model was created as a 

pilot to test its conservation modeling potential, but its parameters were only able to focus on one 

environmental aspect and ended up appearing broad as well (Figure 2.7). 

 With MaxEnt, a Jackknife test was generated automatically, which assessed the most 

important variables to the predictive model. The test showed that NLCD 2006 land cover was 

most useful in explaining H. gratiosa presence when isolated, yet Slope values cause the entire  

model to decrease if omitted (Figure 2.8). 
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Figure 2.5 BIOCLIM model for H. gratiosa potential distribution (Datum: NAD_1983_Albers; 

Spatial Extent: Top: 1126572.09967543, Bottom: -35062.579798864, Right: 

3272352.08455572, Left: 611702.888096803 

 

Figure 2.6 GARP model for H. gratiosa potential distribution (Datum: NAD_1983_Albers; 

Spatial Extent: Top: 1126572.09967543, Bottom:  

-35062.579798864, Right: 3272352.08455572, Left: 611702.888096803) 
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Figure 2.7 InVEST pilot distribution model (Datum: NAD_1983_Albers; Spatial Extent: Top: 

1126572.09967543, Bottom: -35062.579798864, Right: 3272352.08455572,  

Left: 611702.888096803) 
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Figure 2.8 The Jackknife test of variable importance, modeled from MaxEnt (the teal color 

indicates the strength of the overall model when the variable is excluded; if a certain 

variable’s absence causes the model’s gain to decrease, it may contribute something 

in particular; the royal blue color indicates the model’s strength when the variable is 

solely used – the higher the gain, the more important the variable is in contributing to 

the model) 
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Spatial Results of Auditory Surveying 

 Out of the 126 sites sampled for H. gratiosa calls, 31 sites overall were positive for H. 

gratiosa presence via calls being heard. There were 23 out of 63 historic sites with auditory 

presence, and 9 out of 63 predicted sites with auditory presence. Most of the sites with presence 

were in western Tennessee, though a couple in the eastern and one in the north-central areas also 

were positive (Figure 2.9). Roughly, H. gratiosa was present at 34% of the historic sites; the 

proportion of positive predicted compared to the number of overall sites H. gratiosa was heard at 

was 29%.  

 

Figure 2.9 MaxEnt predicted model with 2017 results  

 In April, H. gratiosa was heard at three  sites, two of which were based on the predicted 

model. The species was noticed to become more active when temperatures rose and in 

approximate timing to rain events. In May, temperatures increased and H. gratiosa was noted 

calling at 6 sites; there also was a flood event during that month that may have impacted calling 

activity. June and July were the peak months of calling, rising to around 20 sites in all each 

month and a mix of historic and predicted sites were positive (Figure 2.10). Calling activity 
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occurred at an average temperature of 74°F (23.3°C ), with a minimum was 65°F (18.3°C ) and 

maximum of 83°F (28.3°C), again displaying a warm-natured preference. 

 

 

Figure 2.10 Graph of H. gratiosa calling activity during Summer 2017 

In many cases, if not almost all, H. gratiosa was observed to be chorusing with other 

anuran species, often at least two  or more species. Vocal anuran community structures were 

apparent in association with the presence of the study species. Any breeding territory that did 

exist approximate to auditory presence were flooded pools, stable ponds, or lowland forest 

wetlands. At many sites, other anurans were calling without H. gratiosa, which showcased that 

breeding activity was taking place and that the sites were not completely devoid. Breeding 
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activity typically indicated a level of suitability in general for anurans, that certain pools were 

usable for them. The tendency for H. gratiosa to only be around specific areas was evident, as it 

was not heard repeatedly at as many sites across the state (see Appendix C). Only in certain 

regions was H. gratiosa heard more regularly, but even then it showcased itself to be much less 

common than species of sister taxa. The nine predicted sites with newly unveiled presence 

displayed certain aspects, which may further our understanding of suitable habitats to sustain this 

species and its communities (Table 2.3). 
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Table 2.1 Site Descriptions of Predicted Sites with Confirmed Presence  

Site Name and 

Number 

TN County Site Description 

1 – NewHope Marion Behind a small fire station; at a park that is in 

lowlands and is flooded; rural neighborhoods 

approximate; forestry surrounding 

35 – Rogers Fayette Someone’s farm/agricultural property; pond present 

in one of the fields that H. gratiosa was calling from 

77 - Overton Hardeman Big farm field; trees and forest patches nearby H. 

gratiosa was heard distantly but was a loud chorus 

112 - Goadman/Dillon McNairy Rural residential; heard H. gratiosa calling from 

someone’s backyard; pond present and trees nearby 

113 – Pickett/TN142 McNairy Near a suburban neighborhood; very rural; lowland 

forest and fields nearby, where calling was heard 

from 

115 – McCull Hardin Forested lowland; suburban, yet rural area 

122 - Lacefield Hardin The edge of  a residential strip, this had lowland 

woods near the rural neighborhood 

125 – Beulah Hardin Very rural neighborhood; pond near house had H. 

gratiosa calling from; strong chorus 

126 – George Olive Wayne Residential area surrounded by farm fields; ponds 

were in the vicinity of the listening location 

 

 

Exploratory Regression Results 

 Paralleling Chapter 1, habitat tendencies between sites of species presence were 

investigated using spatial regression analysis. Exploratory regression showed that “shrub/scrub” 

land cover was once again 100% associated habitat cover type with H. gratiosa. However, due to 

the small sample size of HUC12s (n=17), significance could not be found between cover types, 

even with the added weight between watersheds. Given that only HUCs associated with citizen 

science and areas of new presence were considered for this section, the sheer number of areas for 

the test to consider were limited. The adjusted R2 values were still very low, which indicated 

non-significance in the models produced by running the statistical tool. 
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Discussion 

Observations: In and Out of the Field 

 While one of my tasks in this project was to perform a mass test of a predictive spatial 

model, conservation of this species would benefit from also performing in-depth site selection 

analysis in Tennessee, to gain a firmer understanding of the habitats this species selects. The 

usage of the sites discovered from this study may be useful for assessing habitat selection and 

usage, while also further addressing dispersal abilities and distribution. The species was not 

heard at 100% of the historic sites, meaning that either migrations have occurred from site to site 

or local extinctions are occurring. The full story of how this species behaves on the landscape is 

one that has yet to be explored. 

 Oftentimes, the sites that H. gratiosa was heard around were mainly rural-residential, 

which was likely due to the lowland condition they tend to be drawn to. These sites were clearly 

owned by people in the area, but their knowledge of the species existing approximate to them 

was not investigated. Field sampling with the predictive model sought to merely test and locate 

potential areas with H. gratiosa presence, seeking to address spatial questions. To preserve these 

habitats for this species even more, federal agencies such as TDEC and TWRA should consider 

approaching landowners in regard to H. gratiosa on their land, to collaborate toward 

conservation. If H. gratiosa is repeatedly residing on their property, the presence is indicative 

that the habitat is apparently suitable and landowners have not degraded it too severely. 

  Observing how citizen science data performs in predictive modeling was enlightening 

and inspiring for future projects. The fact that a model led me to precise locations of H. gratiosa 

presence based off of spatial data revealed that there is always something new to explore with 
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any amount of information that has been gathered. Modeling and citizen science truly have the 

capacity to be used together, so long as it is correctly and toward a feasible goal. 

 

Limitations, Biases, and Reflections 

 The modeling efforts performed in this chapter were useful in being able to broadly 

assess H. gratiosa presence throughout the state of Tennessee. However, while citizen science 

data provided precise points to utilize, the locations of the points often clustered together (due to 

the fact that these points were already parts of routes). Spatial clustering can create an element of 

bias, which does not allow data to be gathered as even or uniform as it could be. For statistical 

robustness, even more watersheds with H. gratiosa presence would be needed to properly assess 

broad habitat selection and increase the adjusted R2 values pertaining to models (Bailey et al., 

2007). 

 Going out to randomized locations was one of the potential solutions to mending the bias 

of clusters (MacKenzie et al., 2003). Even so, the act of carrying out that plan came with a cost, 

as visiting randomized locations became very time consuming every night. In future attempts of 

this approach, it may be better to have randomized sites within a certain distance, so as to not 

create routes that are unfeasible or dangerous to traverse in a limited time window. 

 Site selection with GARP and BIOCLIM would have caused other issues with sampling, 

if used instead of MaxEnt. While both programs were able to construct broadly accurate range 

maps, using those in the field would not have been practical. Similarly, while InVEST has a 

workable approach in mind for conserving habitat, the result still becomes too broad; the ideal 

input for the program also must be very precise for the species. MaxEnt was able to point out 

very precise locations to sample without creating too many complications, hence its usage for the 



57 
 

field testing. But even as MaxEnt is able to direct researchers to particular places, there is still 

much to learn when actually in the field.  

 At certain study sites, accessibility was sometimes temporarily an issue or certain aspects 

of the site became awkward. The act of listening to frogs for 5 minutes is not always seen with 

understanding eyes by local citizens, though it could be used as an engagement to the public. 

Otherwise, personal notes were made on how to approach each site in an optimal manner, so as 

to not be disturbed or to make people feel uncomfortable.   

 

Conservation Speculations 

Conservation of biodiversity is one of the most important tasks in amphibian species 

management, to ensure genetic flow and community survival. At multiple sites, diverse frog 

choruses were noted to occur alongside H. gratiosa, which caused me to ponder its function as 

an “umbrella species” for conservation purposes. Due to H. gratiosa’s particular habitat 

requirements, according to literature, the species may have the ability to locate habitats also ideal 

for other species. For future studies, the “umbrella species” nature of H. gratiosa needs to be 

explored and understood further, as it may benefit conservation of multiple species (Fleishman et 

al., 2005; Hernandez et al., 2006). 

Seeing the capacity at which H. gratiosa was living in, being in suburban developed 

landscapes, was enlightening to what the species may be able to tolerate. Compared to other 

species, their ability to withstand disturbances was questionable, but they may be capable of 

adapting to human disturbance. Again, gaining a full scope of their dispersal ability and specific 

requirements other than the status quo would improve the conservation of this species. 
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Conclusions 

 The research in this chapter sought to create predictive models from accumulated citizen 

science data, in an effort to understand the distribution of the rare H. gratiosa in Tennessee 

further. The questions posed earlier are able to be addressed, given the amount of information 

gathered in the process of this project. 

 As shown from the qualitative aspects of MaxEnt, GARP, BIOCLIM, and InVEST, one 

predictive modeling scenario stood out as most precise about the rest: MaxEnt. Literature 

supported this program being the most reliable, and this study too can fortify that statement. 

While the other modeling scenarios have potential to be used in research, MaxEnt was practical 

for taking into the field and for assisting in the conservation of H. gratiosa. 

 The utility of citizen science data can sometimes be viewed with mixed emotions by 

researchers, but sources that have been gathering data with consistency and precision show 

themselves as valid options in the field of science. As TAMP has consistently kept its volunteers 

trained and on protocol, the data hosted becomes ideal for a presence modeling project. With the 

utility of citizen science data through TAMP and predictive modeling, several previously 

undocumented locations for H. gratiosa in Tennessee were discovered and can be monitored in 

future research. The continued use of citizen science for modeling should maintain its 

momentum, as we keep in mind the needs of conservation for the future. 
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APPENDIX A 

 

PYTHON SCRIPT DEVELOPED FOR “EXTRACT BY MASK” BATCH 
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import arcpy 

 

workspace = arcpy.GetParameterAsText(0) 

raster = arcpy.GetParameterAsText(1) 

vector = arcpy.GetParameterAsText(2) 

idField = arcpy.GetParameterAsText(3) 

extractPrefix = arcpy.GetParameterAsText(4) 

 

rows = arcpy.SearchCursor(vector) 

row = rows.next() 

i = 0 #Depending on the desired starting position, this number can change.  

        #The variable i must match with j for data management purposes. 

j = 1100000 

while row: 

    outname = (extractPrefix + str(j)) 

    query = (idField + ' = ' + str(i)) 

    selection = arcpy.SelectLayerByAttribute_management(vector,"NEW_SELECTION",query) 

    outraster = arcpy.sa.ExtractByMask(raster,selection) 

    outraster.save(outname) 

    arcpy.AddMessage(outname + " has been saved in the gdb!") 

    i = i + 1 

    j = j + 1 

    row = rows.next() 

arcpy.AddMessage("It's done!") 
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APPENDIX B 

 

PYTHON SCRIPT DEVELOPED FOR TRANSFERRING  

RASTER TABLE VALUES TO VECTOR TABLE 
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import arcpy 

 

arcpy.env.workspace = arcpy.GetParameterAsText(0) 

arcpy.env.outputOverwrite = True 

 

vectortable = arcpy.GetParameterAsText(1) 

 

rasterList = arcpy.ListRasters() 

rows2 = arcpy.UpdateCursor(vectortable) 

row2 = rows2.next() 

for raster in rasterList: 

    try: 

        rows = arcpy.SearchCursor(raster) 

         

        for row in rows: #Need to figure out how to iterate through each row in each raster table 

             

            lcover = row.LAND_COVER 

            lcount = row.COUNT 

            lvalue = row.VALUE 

            print (raster, lvalue, lcover, lcount, " data captured.") 

             

            if lcover == 'Open Water': 

                row2.Open_Water = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Developed, Open Space': 

                row2.D_OpenSpace = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Developed, Low Intensity': 

                row2.D_LowIntens = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Developed, Medium Intensity': 

                row2.D_MedIntens = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Developed, High Intensity': 

                row2.D_HighIntens = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Barren Land': 

                row2.BarrenLand = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Deciduous Forest': 

                row2.DecidForest = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Evergreen Forest': 

                row2.EverForest = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Mixed Forest': 
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                row2.MixedForest = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Shrub/Scrub': 

                row2.ShrubScrub = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Herbaceous': 

                row2.Herbaceous = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Hay/Pasture': 

                row2.HayPasture = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Cultivated Crops': 

                row2.CultiCrops = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Woody Wetlands': 

                row2.WoodyWet = lcount 

                rows2.updateRow(row2) 

            elif lcover == 'Emergent Herbaceous Wetlands': 

                row2.EmHerbWet = lcount 

                rows2.updateRow(row2) 

             

            name = row2.OBJECTID 

            print (name, " row has been updated with ", lcount) 

        row2 = rows2.next() 

             

    except NameError: 

        pass 

        row = rows.next() 

        row2 = rows2.next() 

    except AttributeError: 

        pass 

        row = rows.next() 

        row2 = rows2.next() 

 

        del lcover 

        del lcount 

del row 

del rows 

del row2 

del rows2 
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APPENDIX C  

DATA SHEETS FROM AUDITORY SAMPLING - 2017 
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