
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-27-2019 2:00 PM

Virtual Sensor Middleware: A Middleware for Managing IoT Data Virtual Sensor Middleware: A Middleware for Managing IoT Data

for the Fog-Cloud Platform for the Fog-Cloud Platform

Fadi AlMahamid
The University of Western Ontario

Supervisor

Lutfiyya, Hanan

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Fadi AlMahamid 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Other Computer Sciences Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
AlMahamid, Fadi, "Virtual Sensor Middleware: A Middleware for Managing IoT Data for the Fog-Cloud
Platform" (2019). Electronic Thesis and Dissertation Repository. 6221.
https://ir.lib.uwo.ca/etd/6221

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F6221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F6221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6221?utm_source=ir.lib.uwo.ca%2Fetd%2F6221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Internet of Things is a massively growing field where billions of devices are connected to the
Internet using different protocols and produce an enormous amount of data. The produced
data is consumed and processed by different applications to make operations more efficient.
Application development is challenging, especially when applications access sensor data since
IoT devices use different communication protocols.

The existing IoT architectures address some of these challenges. This thesis proposes an
IoT Middleware that provides applications with the abstraction required of IoT devices while
distributing the processing of sensor data to provide a real-time or near real-time response
and enable the applications to choose from where to consume sensor data. The suggested
middleware architecture minimizes the development efforts required by the applications by
automating the processing of sensor data on multiple nodes (fog nodes) deployed near IoT
devices and making it configurable. Furthermore, the dissemination of sensor data using the
publish-subscribe paradigm makes it easier for applications to decide from where to consume
sensor data while maintaining decoupling from IoT devices.

Keywords: Internet of Things, IoT Middleware Architecture, Cloud Computing, Fog Com-
puting, Fog-Cloud Platform, Publish-Subscribe Paradigm, Virtual Sensor.

i

Acknowledgments
First and foremost, I would like to express my heartiest gratitude to the Almighty God (Allah),
the most gracious, and the most merciful, for providing me with the ability, knowledge and
patience to accomplish this thesis successfully.

I would like to express my sincere gratitude to my supervisor Prof. Hanan Lutfiyya for all
the support she provided me to accomplish this work. It was a great and enjoyable journey
with her. I have learned from her a lot and words are powerless to express my gratitude for
her guidance, patience, and motivation. Without her support, this work could not have been
accomplished.

I would also thank my late father Lorans AlMahamid, who encouraged me always to learn
and pursue further my studies. I would thank my mother Afaf AlMahamid, for the care, support,
and encouragement she provided me in my entire life. I would like to thank my lovely wife
Muntaha Muhaidat for all the support she gave me to stand up and accomplish my goals in life.

Last but not least, I would like to thank my brothers, sisters, teachers, and friends which no
words would be sufficient enough to describe my gratitude to them.

ii

Dedication
To the memory of my late father Lorans AlMahamid.
To my mother Afaf AlMahamid.

iii

Contents

Abstract i

Acknowledgments ii

Dedication iii

List of Figures vii

List of Tables x

List of Appendices xi

1 Introduction 1
1.1 Background . 1

1.1.1 Internet Of Things . 1
1.1.2 Wireless Sensors Network and Protocols 1
1.1.3 Cloud Computing . 2
1.1.4 Fog Computing . 2

1.2 Problem Statement . 3
1.3 Thesis Objective . 5
1.4 Thesis Outline . 5

2 Related Work 6
2.1 Virtual Sensors . 6

2.1.1 Related Work . 7
2.2 CoAP Proxy . 7
2.3 DPWS . 12

2.3.1 DPWS for IoT devices . 12
2.3.2 DPWS Gateways for Accessing WSN 15

2.4 Middleware . 18
2.4.1 Middleware-IoT Devices communication 19

Adapters/Connectors/Wrappers . 19
Publish/Subscribe . 20

2.4.2 Related Work . 21
2.5 Gap Analysis . 22

3 Virtual Sensors Middleware Architecture 24

iv

3.1 Virtual Sensor . 24
3.2 Middleware Communication . 25

3.2.1 Disseminating Data . 25
3.2.2 Publish-Subscribe communication patterns 26
3.2.3 Publish-Subscriber Topologies . 26
3.2.4 Why Federated Architecture? . 29
3.2.5 Virtual Sensor Communication . 29

3.3 Virtual Sensor Deployment Structure . 30
3.4 Middleware Components . 31

3.4.1 Middleware Fog Components . 32
3.4.2 Middleware Cloud Components . 32
3.4.3 Virtual Sensor Components . 33

Virtual Sensor Configurations . 33
Components . 34

3.5 Middleware Components Interaction Scenarios 35
3.5.1 Creating Virtual Sensor Configurations 35
3.5.2 Instantiating Virtual Sensor Configurations 36
3.5.3 Exchanging Messages Between Virtual Sensors 37

3.6 UML Diagram . 38

4 Virtual Sensor Middleware Implementation 41
4.1 Platform . 41
4.2 Development Tools . 41
4.3 Middleware Cloud Components . 41

4.3.1 Virtual Sensor Configurator Interface 41
4.3.2 Virtual Sensor Configurator . 43
4.3.3 Virtual Sensor Deployer . 43
4.3.4 Virtual Sensor Configurations . 43

4.4 Middleware Fog Components . 47
4.4.1 Publish-Subscribe Message Broker . 47
4.4.2 Knowledge-Base . 47
4.4.3 Database . 48
4.4.4 Virtual Sensor Orchestrator . 48
4.4.5 Virtual Sensor Container . 48
4.4.6 Virtual Sensor Libraries . 48

RabbitMQ Java Client Library . 48
Java UUID Generator (JUG) . 49
Apache Log4J . 49
JSR 374 (JSON Processing) . 49

4.5 Implementation Classes . 50
4.5.1 VS Aggregator . 50
4.5.2 Publisher . 50
4.5.3 Consumer . 51
4.5.4 VS Orchestrator . 52

v

5 Evaluation 53
5.1 Evaluation Environment . 53
5.2 Evaluation Factors and Metrics . 54

5.2.1 Evaluation Factors . 54
5.2.2 Evaluation Metrics . 55

5.3 Baseline . 56
5.4 Evaluation Scenarios . 57

5.4.1 Scenario 1 . 58
5.4.2 Scenario 2 . 60
5.4.3 Scenario 3 . 62
5.4.4 Scenario 4 . 65
5.4.5 Scenario 5 . 68
5.4.6 Scenario 6 . 70

5.5 Discussion of Results . 72

6 Conclusion and Future Work 75
6.1 Conclusion . 75
6.2 Future Work . 76

Bibliography 78

A Virtual Sensor Configuration File 82

B Reading Evaluations Tables and Figures 84
B.1 Reading Evaluation Table . 84
B.2 Box and Whisker Plot . 85

Curriculum Vitae 87

vi

List of Figures

1.1 Applications accessing IoT devices using different protocols[1] 2
1.2 Cloud Computing . 3
1.3 Fog Computing . 3
1.4 IoT Architectures focus on disseminating data vs. processing data 4

2.1 Global Sensors Network Architecture [1] . 8
2.2 Applications Communications with CoAP WSN [9] 8
2.3 Protocol Stack adaption between CoAP and HTTP carried through Proxy . . . 9
2.4 CoRE Resource Discovery [9] . 10
2.5 DPWS Protocol Stack [23] . 13
2.6 WS-Discovery used by DPWS . 14
2.7 WS-Eventing used between IoT Devices . 15
2.8 implemented layers of the OSI model by TCP/IP, 6LoWPAN, and ZigBee pro-

tocols . 16
2.9 IP Based Wireless Sensor Node . 16
2.10 DPWS Gateway connecting IP-based applications to 6LoWPAN WSN [41] . . 17
2.11 DPWS Gateway Sequence Diagram [23] . 18
2.12 IoT middleware communication channels . 19
2.13 Middleware-IoT devices communication using adapters 20
2.14 Middleware Publish/Subscribe . 20
2.15 FIWARE IoT Device Management GE architecture [15] 21
2.16 Senaas functional architecture [3] . 21
2.17 Wireless Sensor Networks with Publish-Subscribe Communication [3] 22

3.1 Virtual Sensor Abstraction . 25
3.2 Virtual Sensor Input Sources . 25
3.3 Centralized . 27
3.4 Clustered . 27
3.5 Federated . 28
3.6 Peer-to-Peer . 28
3.7 Federated Clusters . 29
3.8 VSM Middleware Communications . 30
3.9 Virtual Sensors Physical Deployment . 30
3.10 Virtual Sensors conceptual deployment . 31
3.11 Virtual Sensor Conceptual Deployment: Acyclic Graph 31
3.12 VS Middleware Architecture . 32
3.13 Virtual Sensor configurations vs. running virtual sensor 34

vii

3.14 Virtual Sensor Components . 35
3.15 Creating Virtual Sensor Configurations . 36
3.16 Instantiating Virtual Sensor . 37
3.17 Exchange Messages Between Virtual Sensors 39
3.18 UML Diagram . 40

4.1 VS Configurator GUI - Virtual Sensor Information 42
4.2 VS Configurator GUI - Deployment Node . 43
4.3 VS Configurator GUI - Publish Information 44
4.4 VS Configurator GUI - Subscribe Information 45
4.5 VS Configurator GUI - Generated Configuration Ready For Deployment 46
4.6 RabbitMQ Simple Publisher/Consumer Architecture 48

5.1 Evaluation Environment . 54
5.2 Evaluation Environment - Creating Configurations 54
5.3 Evaluation Environment - Load Testing . 54
5.4 Baseline - Experiment 1 - Performance Evaluation for Running Raspberry Pi

without the middleware . 57
5.5 Baseline - Experiment 2 - Performance Evaluation for Running Raspberry Pi

with the Middleware . 57
5.6 Baseline - Performance Comparison . 57
5.7 Scenario 1 - Experiment 1 - Frequency Performance Evaluation 60
5.8 Scenario 1 - Experiment 2 - Frequency Performance Evaluation 60
5.9 Scenario 1 - Experiment 3 - Frequency Performance Evaluation 60
5.10 Scenario 1 - Experiment 4 - Frequency Performance Evaluation 61
5.11 Scenario 1 - Experiment 5 - Frequency Performance Evaluation 61
5.12 Scenario 1 - Frequency Performance Comparison 61
5.13 Scenario 2 - Experiment 1 - Number of Inputs per Virtual Sensor Performance

Evaluation . 63
5.14 Scenario 2 - Experiment 2 - Number of Inputs per Virtual Sensor Performance

Evaluation . 63
5.15 Scenario 2 - Experiment 3 - Number of Inputs per Virtual Sensor Performance

Evaluation . 63
5.16 Scenario 2 - Experiment 4 - Number of Inputs per Virtual Sensor Performance

Evaluation . 64
5.17 Scenario 2 - Experiment 5 - Number of Inputs per Virtual Sensor Performance

Evaluation . 64
5.18 Scenario 2 - Number of Inputs per Virtual Sensor Performance Comparison . . 64
5.19 Scenario 3 - Experiment 1 - Number of Virtual Sensors Performance Evaluation 64
5.20 Scenario 3 - Experiment 2 - Number of Virtual Sensors Performance Evaluation 66
5.21 Scenario 3 - Experiment 3 - Number of Virtual Sensors Performance Evaluation 66
5.22 Scenario 3 - Experiment 4 - Number of Virtual Sensors Performance Evaluation 66
5.23 Scenario 3 - Experiment 5 - Number of Virtual Sensors Performance Evaluation 67
5.24 Scenario 3 - Number of Virtual Sensors Performance Comparison 67
5.25 Scenario 4 - Experiment 1 - Number of Levels Performance Evaluation 68

viii

5.26 Scenario 4 - Experiment 2 - Number of Levels Performance Evaluation 68
5.27 Scenario 4 - Experiment 3 - Number of Levels Performance Evaluation 68
5.28 Scenario 4 - Performance Comparison . 69
5.29 Scenario 5 - Experiment 1 - Performance Evaluation for 150 VS Running on

Single Node . 69
5.30 Scenario 5 - Experiment 2 - Performance Evaluation for 150 VS distributed

into tow nodes . 71
5.31 Scenario 5 - Experiment 3 - Performance Evaluation for 150 VS distributed

into three nodes . 72
5.32 Scenario 6 - Experiment 1 - Frequency Performance Evaluation of 111 Virtual

Sensors . 73
5.33 Scenario 6 - Experiment 2 - Frequency Performance Evaluation of 111 Virtual

Sensors . 73
5.34 Scenario 6 - Experiment 3 - Frequency Performance Evaluation of 111 Virtual

Sensors . 74
5.35 Scenario 6 - Experiment 4 - Frequency Performance Evaluation of 111 Virtual

Sensors . 74
5.36 Scenario 6 - Frequency Performance Comparison for 111 Virtual Sensors . . . 74

B.1 Evaluation Table Parts . 84
B.2 Evaluation Table Part 1 . 85
B.3 Evaluation Table Part 2 . 85
B.4 Box and Whisker Plot Explanation . 85

ix

List of Tables

4.1 UUID Structure . 49
4.2 UUID Breakdown . 49

5.1 Performance Baseline . 56
5.2 Evaluation Scenarios . 58
5.3 Impact of the frequency over the performance 59
5.4 Impact of number of inputs per virtual sensor over the performance 62
5.5 Impact of the number of virtual sensors over performance 65
5.6 Impact of the number of levels over performance 67
5.7 Impact of distribute processing over the performance 69
5.8 Impact of the frequency using 111 virtual sensors over the performance 71

x

List of Appendices

Appendix A: Virtual Sensor Configuration File . 82
Appendix B: Reading Evaluations Tables and Figures 84

xi

Chapter 1

Introduction

In this chapter, section 1.1 provides background and section 1.2 describes the problem state-
ment, where section 1.3 describes the objective of thesis and section 1.4 shows the thesis out-
line.

1.1 Background

1.1.1 Internet Of Things

The Internet of Things (IoT) is a massively growing field where the anticipated number of
devices by 2020 could range from 38 billion to 212 billion [2][37]. These devices can exist
anywhere in our home, workplace, or city.

An IoT device is an electronic device that can connect to the Internet and interact with
applications or other IoT devices in a specific context. For example, a simple form of an IoT
device can be a temperature sensor that sends data to a weather application, or it might be a
sensor that measures road traffic and sends the data to an application or actuator to control
the light signal. It can also be a smartphone or wearable device used to track the steps and
body activities. The IoT devices vary in terms of processing power, hardware used, power
consumption, and underlying protocol used. For example some of the IoT devices work on a
battery, while others work on a continuous power source. However, what they have in common
is IoT devices communicate with other IoT devices and/or applications using an underlying
protocol.

IoT devices are used in many domains such as smart cities, manufacturing, healthcare,
logistics and transportation, automotive, buildings, and home. So that tasks may be more
efficient and accurate, which helps to save time and money, and to provide more convenience
to the users of the IoT devices.

1.1.2 Wireless Sensors Network and Protocols

Wireless Sensor Networks (WSN)s consist of heterogeneous devices called things. Most of
these devices need to reduce energy consumption since they might operate on batteries. HTTP
can be used by IoT devices but IoT devices have limited resources and power. Therefore, IoT

1

2 Chapter 1. Introduction

Figure 1.1: Applications accessing IoT devices using different protocols[1]

devices use different protocols for communicating data e.g., CoAP [9], MQTT [22], 6LowPan
[30], and ZigBee [4].

1.1.3 Cloud Computing
Cloud computing as defined by The National Institute of Standards and Technology (NIST)
is “A model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal management effort or service
provider interaction [29]”. IoT devices’ data (sensor data) is sent to the cloud for process-
ing and enables the data to be available to different applications. For example temperature
readings from sensors distributed in different cities, which then could be made available for
multiple applications available for other websites or applications such as AccuWeather.com or
Weather.com.

1.1.4 Fog Computing
Fog computing is an extension of cloud computing, where computing resources exist closer to
the network edge [10]. Fog computing provides computing resources that are less powerful
than the cloud and are deployed at the edge of the network to provide real-time communica-
tion or near real-time communication. Fog computing also has advantages such as distributed
processing of data.

1.2. Problem Statement 3

Figure 1.2: Cloud Computing

Figure 1.3: Fog Computing

1.2 Problem Statement

To deal with the collection of sensor data, existing IoT architectures (e.g., [15][1][9][23]) focus
on mechanisms that allow applications to access sensor data without requiring knowledge of
the specific communication protocols required by the IoT devices. This typically is done by

4 Chapter 1. Introduction

using intermediaries that support some form of adaptation. For example, applications use a
single protocol to communicate with an intermediary which communicates with a specific IoT
device. The protocol between the applications and the intermediary are the same regardless
of the protocol used between the intermediary and the IoT device. These intermediaries (or
adapters) are the foundations of IoT middleware environments.

Applications often require access to data from multiple IoT devices simultaneously, where
each application have different requirements and might need access to a subset of sensor data
or require different processing of the same sensor data. In the example of a traffic control
system, there may be an application that controls the traffic signals and another application
that monitors car speeds on roads. In this case, each application must set its own criteria for
collecting and processing sensor data.

(a) IoT Architecture focus on data delivery (b) IoT Architecture process sensor data

Figure 1.4: IoT Architectures focus on disseminating data vs. processing data

Furthermore, the reviewed work focuses on the delivery of sensor data to applications
through the cloud or a single node where all processing is performed. The implication is that
either the computing node is overloaded and/or the network core is overloaded. Processing
sensor data can not be performed on IoT devices since it has limited processing power and
battery life. One approach is to use fog computing where computing nodes are deployed near
data sources i.e., IoT devices. The use of fog computing complicates application development.
For example, assume an application requires the average temperature. This requires the aggre-
gation of temperature values in order to calculate the average. Some fog nodes may collect
temperature data from temperature sensors while another fog node may collect temperature
data from the other fog nodes in order to calculate the average temperature. This distribution
of tasks among distributed nodes is more complicated than sending all the data to the cloud.

A mechanism is needed to automate the deployment of sensors. Applications require seam-
less access to processed sensor data without tight integration between applications and IoT
devices.

1.3. Thesis Objective 5

1.3 Thesis Objective
This thesis proposes a solution to address the problem described in Section 1.2. The solution
combines the use of fog computing along with the use of virtual sensors, and the publish-
subscribe design pattern for communication so that data producers (IoT devices) and data con-
sumers (applications) do not need to maintain information about each other. The distributed
processing of the sensor data through the use of computing nodes called fog nodes that are
placed near sensors could minimize latencies in data processing and speed up data processing;
therefore, it would provide a real-time or near real-time analysis of sensor data for applica-
tions. The use of virtual sensors provides an abstraction from communication protocols. While
the use of publish-subscribe design pattern for communication would add another level of ab-
straction and makes it easier for applications to consume sensor data, since data producers
and consumers do not need to maintain information about each other. Only registration to a
message broker is needed.

1.4 Thesis Outline
The thesis is organized as the following: Chapter 2 described the related work of applica-
tions can access sensor data. Chapter 3 describes the architecture of the proposed middleware
(Virtual Sensor Middleware) and the interaction between different components. Chapter 4
describes how the middleware was implemented and the used technology. Chapter 5 shows
results of the experiments used to measure the middleware performance. Chapter 6 discuss the
conclusion and the future work.

Chapter 2

Related Work

This chapter describes the different approaches that can be used so that application developers
can develop their applications without getting into low-level application programming to com-
municate with IoT devices that exist within WSN and receive/fetch data from these devices.

2.1 Virtual Sensors

A virtual sensor can be consider as a software abstraction of one or more physical sensors
that can be deployed on the cloud or near the physical sensor on a fog node. A virtual senor
communicates with other virtual sensors or with one or more physical sensors and are usually
deployed as part of a middleware.

Virtual sensors can be classified by communication-direction type with physical sensor(s)
as listed below [28]:

1. One-to-Many: This is when one physical sensor is connected with many virtual sensors.
This is used when multiple clients need to connect to the same physical sensor and have
different requirements for the frequency that data is needed. It would be difficult to
program/configure a single sensor to send data at different intervals. However, it still
can be achieved by extending the sensor through multiple virtual sensors, where each
virtual sensor sends the data to the client at its pre-configured interval. Thus, it would
make it easier to have a personalized configuration for each client by configuring each
virtual sensor independently. Furthermore, it would make it easier to manage the billing
individually for each client if it is required.

2. Many-to-One: This is useful when there are multiple sensors generating different read-
ings at different intervals or the same interval; The received readings need to be ag-
gregated to produce one single reading. For example, if multiple physical sensors are
deployed across the city to provide temperature readings, but the client/application re-
quires the average temperature reading across the city. Therefore, a virtual sensor can
be configured to receive the readings from all various physical sensors across the city,
and then computes the average and submits the results to the client on a pre-configured
interval.

6

2.2. CoAP Proxy 7

3. Many-to-Many: This is a combination of many-to-one and one-to-many, where the phys-
ical sensor might participate in both relations. The physical sensor sends the data to mul-
tiple virtual sensors, but it submits the data to another virtual sensor which aggregates
the data received from other physical sensors.

4. Derived: In the derived relation, a virtual sensor receives readings from heterogenous
physical sensors but produces a reading derived from other readings, but not of the same
reading type. The derived sensors are used in two ways:

(a) Simulate a physical sensor e.g., configure a virtual proximity sensor using deployed
light sensors

(b) Derives or computes a value that cannot be calculated using just one type of sensor.
The virtual sensor communicates with different types of physical sensors. It then
calculates the value based on various readings. For example, assume we have a
food container that has different physical sensors, which provide readings for tem-
perature, humidity, and level of oxygen. These readings cannot be used separately
to determine if the environment is safe for food storage. However, a configured
virtual sensor, which communicates with physical sensors and then processes the
received data using an equation can determine whether the environment is safe for
the food storage or not.

2.1.1 Related Work
Global Sensor Networks (GSN) emphasizes on the use of virtual sensors for abstraction from
applications where it defines two types of virtual sensors, one that uses wrappers corresponding
to data received from physical sensors, while the other type corresponds to data received from
virtual sensors [1]. Both types are hosted in a container that can be deployed on multiple nodes.
Each container hosts one or more virtual sensors, where virtual sensors exchange information
across the different nodes [1]. Clients can access GSN through the interface layer which uses
the data access layer and data integrity layer to provide authentication and confidentiality [1].

2.2 CoAP Proxy
In constrained environments power consumption is an essential factor for IoT devices, espe-
cially for devices using batteries, which need to last for years [6]. Thus, devices tend to sleep
most of the time and wake when communication of data is needed. However, there are other
factors that can reduce the power consumption, such as the protocol used for communication
between the devices (Machine-to-Machine) and between the devices and the applications. Con-
strained Application Protocol or CoAP is a software transfer protocol that was developed and
standardized by the Internet Engineering Task Force (IETF), which extends REST architecture
style with HTTP to access IoT devices in constrained environments inside Wireless Sensors
Network.

Since CoAP extends REST it uses URIs (Universal Resource Indicators) to identify IoT
devices. For example, if we are considering a RESTful URI for a resource named R1 that

8 Chapter 2. RelatedWork

Figure 2.1: Global Sensors Network Architecture [1]

is controlled by a server named example.com, then the URI would look like the following:
http://example.com/R1. Similarly, CoAP identifies devices using URIs, so if we consider an
IoT device named R1, then the URI would look like the following: coap://node.example.com/R1.

So, by looking at the links, we see that the two protocols have almost the same URIs.
This raises the following question: do applications need to understand CoAP to be able to
communicate with IoT device? The answer is yes and no, because there are two different ways
applications can use to communicate with IoT devices as illustrated in Figure 2.2.

Figure 2.2: Applications Communications with CoAP WSN [9]

1. Invoke IoT URI directly: If the application understands the CoAP protocol, then it can
recognize the protocol standards and message formats, which enables the application to
communicate directly with IoT devices by making direct CoAP URI requests

2.2. CoAP Proxy 9

2. Invoke IoT URI via a proxy: If the application only understands HTTP, then it needs
a translation mechanism (adaption) between HTTP and CoAP since the two protocols
have different protocol stacks. The translation is carried by an intermediary node called
a proxy that understands HTTP from one side and CoAP from the other side. The proxy
translates between the two protocols.

Therefore, applications can be developed independently from the CoAP protocol stan-
dards, since it does not need to understand CoAP. Figure 2.3 illustrates how a proxy
carries out protocol adaption between IoT devices and HTTP applications.

Figure 2.3: Protocol Stack adaption between CoAP and HTTP carried through Proxy

Proxies provide an abstraction similar to virtual sensors that allow application developers
to use CoAP devices without needing to know the implementation details related to message
formats and CoAP protocol standards. Thus, it promotes a loosely-coupled approach, where
the application can be updated independently of CoAP WSN, while IoT devices still have the
advantage of using the CoAP WSN.

CoAP WSN supports these features:

1. Built-in Resource Discovery: Machine-to-Machine (M2M) discovery without human
interaction is very important in WSN due to the ad-hoc nature of IoT devices, where
new IoT devices might join the WSN, while some others might leave. CoAP provides
a built-in M2M discovery without the need for human interactions, by providing a well-
known link hosted on CoAP Server called "Constrained RESTful Environments (CoRE)
Link" as defined in RFC6690 [38], which is an extension of "Web Linking" defined in
RFC5988 [31].

CoRE links are mainly used in the discovery process for the resources hosted by CoAP
server and its attributes and relations. Each CoAP device (IoT device) registers itself with
the CoAP server, where a CoAP server defines a well-known URI "/.well-known/core"
that is used as a default entry point to discover hosted resources, their attributes, and their
relations with other resources, which is known as CoRE Discovery process [38].

2. Observer Design Pattern: In a constrained environments where device power consump-
tion matters, the design pattern and the protocol used makes a difference. In a typical
HTTP scenario clients need to perform a GET request to fetch the resource’s data. This
would drain the resource (IoT device) power, if it is going to respond to each received
GET request.

10 Chapter 2. RelatedWork

Figure 2.4: CoRE Resource Discovery [9]

CoAP uses an asynchronous approach to overcome this issue [9], where the client appli-
cation can specify in the first issued GET request, its interest in receiving further updates
from the resource, by specifying the "Observe" option. The resource can then sleep when
there are no updates, and when it has new updates it will send it to all interested clients.
This approach called "Observer design pattern", which is less expensive and more feasi-
ble to implement compared to the publish subscribe pattern [9].

3. Caching: Similar to the observer design pattern caching helps to reduce the power con-
sumption since the client would reuse the cached responses as long as they are valid
rather than making new requests to the IoT device. Two models are used for valid caching
[39]:

• Freshness Model: The response is "fresh" and valid to use as long as it has not
expired, which is determined by setting the Max-Age option in seconds. The re-
sponse is considered not valid and can not be used if its age is greater than the value
specified in the Max-Aget option. The Max-Age option has a default value of 60
seconds.

• Validation Model: If cached responses are not fresh they are no longer valid. A
client can give the originating device a chance to use a cached response by sending
a request to update the response. The IoT device sets the ETag option if it wishes
to update the freshness of the response, which indicates that the response is "valid".
In some cases, there might be more than one unfresh response. Therefore, the
originating device decides which response to set as "valid".

4. Built-in Reliability: The originating device can mark a message as "Confirmable" if it is
expecting an "Acknowledgment" message from the receiver. Once the receiver receives
"Confirmable" message, then the receiver should reply back by cloning the message
identifier and include a response or reply with an empty message. If the originating de-
vice does not receive an "Acknowledgment", it can retransmit at exponentially increasing

2.2. CoAP Proxy 11

intervals until it receives an "Acknowledgment" or runs out of attempts [39].

5. Multicasting: CoAP support multicasting - sending information from one or more end-
points to set of endpoints, through a series of unicasts, which involves sending infor-
mation from one sender to one receiver; endpoints that offer multicast service can be
discovered by other endpoints or CoAP applications using multicast service discovery.
A multicast request must be Non-confirmable. Therefore, the server decides when to
respond back to multicast so it picks a duration to respond back called "Leisure", which
depends on the application or can be derived using specific variables. The server then
selects a random point of time within the leisure period to send back the unicast response
to the multicast request [39].

12 Chapter 2. RelatedWork

2.3 DPWS
Device Profile for Web Services (DPWS) applies Service-Oriented architecture for device ab-
straction [23], where each device defines an XML profile, that is used to discover devices and
interact with them in a similar way that applications communicate with SOAP web service.
IoT devices that need to implement DPWS need to follow SOA interaction patterns [23]:

• Addressing: Each device should have an IP address

• Discovery: Each device can advertise itself so that other devices or applications can dis-
cover it. The discovery process involves two parts: The first part has the device advertise
itself by sending a multicast message. The second part covers searching for devices,
which is done by sending a multicast message to devices, and then waiting to receive a
reply (unicast message) from each device that matches the broadcasted search criteria.

• Description: Each device should have a description that can be used by other devices to
learn about the device properties, available services, and the associated message format.

• Control: This is the process of invoking a service of another device, by sending a control
message.

• Eventing: This is implemented using a publish-subscribe design pattern, where a device’s
service publishes events, and where other interested devices can register to (subscribe),
in order to receive update messages when an event occurs. Subscriptions expire over
time, and the registration to an event needs to be renewed if the receiving device is still
interested to receive further updates.

The above SOA patterns are used by other technologies that implements SOA architecture,
such as SOAP protocol, which uses SOAP messages (XML messages) to exchange information
between web services (SOAP Web Services). In fact DPWS extends the SOAP architectural
style, which implements "web services protocol stack", which stacks four different protocols:
1. Service Transport Protocol 2. XML Messaging Protocol 3. Service Description Protocol,
and 4. Service Discovery Protocol.

2.3.1 DPWS for IoT devices
DPWS and sometimes referred to as is a device-level protocol which is used for constrained
devices and used in UPnP [41] and UPnP V2 [23]. DPWS uses a protocols stack as illustrated
in Figure 2.5.

Some of the listed DPWS extensions are used by SOAP web services to implement addi-
tional features that are not supported by the underlaying protocol. The following describes the
functionality of each extension used by DPWS:

• WS-Security: This is concerned with message integrity, confidentiality, and reliability
rather than channel security. DPWS uses the WSS-SOAP Message Security standard,
which can be used with wide security models such as KPI, Kerberos, and TLS/SSL,
where it provides support for different token formats, signature formats, multiple trust

2.3. DPWS 13

Figure 2.5: DPWS Protocol Stack [23]

domains, and encryption technologies [23]. WSS-SOAP Message security combines
security tokens with digital signatures to insure the integrity and confidentiality of SOAP
messages [23].

• WS-Policy: This is a flexible and extensible grammar that is used to express different
requirements of web services such as security, quality etc. These policies can be defined
by the web service provider, or web service consumer. WS-Policy defines policies in
collections, where each collection consists of a set of policy assertions. Each policy
assertion is used to define a different requirement. For example one policy assertion
might define the transport protocol, where another policy assertion might define more
critical requirements such as privacy policy or QoS characteristics. These policies are
attached with web services using WS-PolicyAttachment, which defines the mechanism
on how the WS-Policy is attached to a web service, WSDL artifact, and UDDI element
[7].

• WS-Addressing: This includes message routing and address information in the SOAP
header, which would enable more complex message exchange patterns rather than de-
pending on the underlaying protocol for message exchange and routing [23]. WS-
Addressing uses asynchronous message exchange, where every resource is referenced
using an End-Point Reference (EPR), which consists of (i) Address, and (ii) Reference
Properties [23].

– Address: This is the URI that uniquely identifies the device and is resolved to the
device physical address

– Reference Properties: These are introduced by the sender and includes:

∗ To: The URI of the message destination
∗ Action: Mandatory attribute which contains URI that identifies the message

semantics, and is associated with the WSDL definition.

14 Chapter 2. RelatedWork

∗ ReplyTo: This is when a response is expected, or used to route the response to
a desired endpoint
∗ FaultTo: This represents a URI that points to endpoint that receives fault mes-

sages
∗ MessageId: This is a unique identifier of the message that must be specified if

a reply is expected
∗ From: This is an optional attributes that contains the address of the message

originator
∗ RelatesTo: This is mandatory if it is a response message, which would contain

the message URI od the related message [11]

• WS-MetadataExchange: This defines how web services metadata included in a web ser-
vice description can be retrieved and embedded in WS-Addressing endpoint reference.
WS-Metadata Exchange is not intended for the purpose of general query or other data
associated with a web service [12].

• WS-Discovery: This is used for device discovery, where the discovered devices are able
to declare themselves and their services. WS-Discovery uses an ad-hoc approach to
search and locate devices. The discovery process starts when a device wants to join the
network, where it needs to declare itself by sending a Hello message to the multicast
group using SOAP-over-UDP binding, and thus it helps other devices to detect newly
joined devices without the need for continuous probing.

When a client/application wants to access a target device, it multicasts a Probe message
using SOAP-over-UDP binding to all devices in the network. Only the target device that
matches the Probe message responds with unicast WS-Discovery Probe Match message
using SOAP-over-UDP binding to the client [24].

Figure 2.6: WS-Discovery used by DPWS

2.3. DPWS 15

• WS-Eventing: This implements the publish-subscribe design pattern, where if a web ser-
vice called "A" is interested in another web service called "B", Then "A" would subscribe
to "B", which is considered as the "Event Source" and starts sending notifications to "A",
which would be considered as an "Event Sink". Notifications received by the Event Sink
can be filtered when subscribing to the Event Source, so then the Event source only sends
the notification based on the requested filter by the Event Sink [23].

Figure 2.7: WS-Eventing used between IoT Devices

In order to support publish-subscribe design pattern then the WS-Eventing supports three
built-in operations [23]:

– Subscribe: This is used to subscribe to a service, so the sink web service can start
to receive notifications

– Renew: The subscription expires over the time and needs to be renewed

– Unsubscribe: This is used when the web service wishes to receive no more notifi-
cations from the event source

• WS-Transfer: This is like WS-MetadataExchange except it is used to retrieve all the
metadata of an endpoint rather than retrieve partial data

2.3.2 DPWS Gateways for Accessing WSN
In order to understand the need of the DPWS gateway [41], we first need to understand the dif-
ference between the IP standards used in IP-networks, and the IP standard used by 6LoWPAN
WSN. 6LoWPAN supports two types of addresses: either the extended address of IEEE 64-bit,
or the short address of 16-bit, and can transfer a maximum frame size of 128-bytes.

IPv6, which is considered as a successor of IPv4, implements 128-bit for the address size,
which consists of two parts: i) 64-bit network prefix, and ii) 64-bit hosting address, and can
transfer up to 1500-bytes. Further, 6LoWPAN implements PHY, and MAC of the OSI model,
compared to IPv6 which follows the TCP/IP protocol implementation as illustrated in Figure
2.8.

Thus, it is necessary to implement an adaption mechanism to enable the communication
between IP-based networks and a WSN that implements 6LoWPAN. This adaption is imple-
mented via an adaption layer that is defined by 6LoWPAN, and used by wireless sensors nodes,
and is responsible for the following:

16 Chapter 2. RelatedWork

Figure 2.8: implemented layers of the OSI model by TCP/IP, 6LoWPAN, and ZigBee protocols

1. Compress IPv6 header information by disregarding fields that either can be fetched from
the source or destination nodes

2. Fragmentation and reassembly of IPv6 packets to meet the minimum MTU of 1280-bytes

Figure 2.9: IP Based Wireless Sensor Node

Each LoWPAN network has one coordinator, which is identified using PAN_ID and is used
by other nodes to communicate with each other. Since we have the full-picture of the differ-
ences between the protocols and why the adaption is required, we can now better understand
the solution proposed by [41] which implements DPWS Gateway to enable communication
between WSN and IP-based networks as illustrated in Figure 2.10. DPWS Gateway solution
consists of the following components:

1. Client: This is the application that wants to communicate with wireless sensors nodes
and use their services

2. DPWS Gateway: This is an intermediary between the applications and wireless sensors
nodes, which contains a routing table of all sensor nodes registered in the WSN. The
routing tables stores WSDL for each node, which is used to describe the services offered
by the node, and how it can be triggered. Furthermore, it uses WS-Eventing that allows
clients to respond to specific events published by the nodes that enables the application
to start receiving notifications from the nodes for registered events

2.3. DPWS 17

Figure 2.10: DPWS Gateway connecting IP-based applications to 6LoWPAN WSN [41]

3. Wireless Sensor Nodes: Each sensor node that joins WSN has a unique 64-bit ID (EUID-
64) that will be registered in DPWS Gateway. This then allows the node to advertise its
services using WSDL

4. Coordinator: This is a ZigBee node responsible for packet translation in both directions
as illustrated in figure 2.10.

Figure 2.11 graphically depicts how the interaction is carried between sensor nodes and appli-
cations using DPWS Gateway

18 Chapter 2. RelatedWork

Figure 2.11: DPWS Gateway Sequence Diagram [23]

2.4 Middleware

Another approach where applications do not have to communicate with the sensors directly,
is through a middleware, which is a software system that facilitates interaction/communica-
tion between two or more technological aspects and the applications, which helps minimize
development efforts [6].

An IoT middleware serves as an intermediary between the applications and IoT devices,
which allows applications to access IoT devices data without the need to manage low level
communications with IoT devices or worries about protocol standards. However, the mid-
dleware must carry the communication with IoT devices and make the data available to the
applications.

Each middleware has its own architecture which implements different techniques to facil-
itate communications between IoT devices and applications. There are two communication
channels that needs to be addressed as illustrated in figure 2.12.

1. middleware-iot devices communication

2. middleware-application communication

2.4. Middleware 19

Figure 2.12: IoT middleware communication channels

2.4.1 Middleware-IoT Devices communication

The data generated by the physical sensors (IoT devices) can either be sent by the physical sen-
sor or fetched by the middleware, where in the first case the middleware would act as a listener
and wait the data to be sent by the sensor, where in‘ the second approach the middleware will
be the actor and it fetches the data from the IoT device.

Adapters/Connectors/Wrappers

In some cases, the middleware needs to have more control over the frequency that it retrieves
data from the IoT device. The middleware should be able to establish a connection with IoT
device. The middleware communicates with the operating system (OS) of the IoT device.
However, each IoT device might use a different operating systems, and the each operating
systems (OS) might be customized to support specific hardware functions of the IoT device.
Thus, the middleware should be able to interact with different operating systems to support
various IoT devices.

Instead middlewares rely on software modules that communicate directly with different
IoT devices. These modules go by different names but implies the same function, which is
interacting with IoT devices. These modules are called connectors, adapters, or wrappers. A
middleware uses adapters for the most common operating systems used by IoT devices, such
as TinyOS, Snappy, and Android Things. However, the middleware should be flexible enough
so that the new adapters can be added anytime to support more IoT devices.

An exmaple of a middlware that uses wrappers to collect data from physical sensors is
Linked Stream Middleware (LSM) that defines wrappers in the data acquisition layer which
is responsible for collecting data from various sensor sources to provide unified output format
used by the LSM [26].

20 Chapter 2. RelatedWork

Figure 2.13: Middleware-IoT devices communication using adapters

Publish/Subscribe

Publish/Subscribe is a design pattern where the IoT device is a publisher that sends the data to
subscribers who are interested in the data. On the other hand, the middleware has to subscribe
to the IoT device to receive the published data. This approach allows the IoT device to deter-
mine when to send (publish) the data and how frequent, which helps to conserve battery power
and hence the IoT device goes into sleep mode if it does not have any updates. The delivery of
data to the middleware can happen directly or indirectly.

(a) Middleware using web services
(b) Middleware subscribed to message
broker

Figure 2.14: Middleware Publish/Subscribe

The IoT device can send the data directly to the middleware by calling a web service hosted
in the middleware or by executing a remote procedure call. However, this approach requires
the middleware to host a web service or remote method which receive the data and decides
how to process it next. Indirect message delivery happens when the IoT device send the data
indirectly to the middleware via a message broker. The message broker then delivers the data

2.4. Middleware 21

to subscribes, which can be the middleware or other interested applications. MQTT protocol
or its extensions might reflect the indirect message delivery to the middleware.

2.4.2 Related Work

FIWARE is a context-aware middleware which defines IoT agents to connect to IoT devices.
Each agent supports a specified IoT protocol such as M2M, MQTT, and CoAP. Therefore,
integrators should choose the IoT agent based on the protocol used by the IoT device [15]. The
IoT agent would register the IoT device with the context broker and defines a service to receive
observations/readings from the IoT device [16].

Figure 2.15: FIWARE IoT Device Management GE architecture [15]

Senaas is a middleware that uses sensor-as-a-service technique that declares different ser-
vices offered by an IoT device on the cloud, and uses adapters to connect to IoT devices. This
would allow IoT devices to produce events to the framework, and then the framework would
make these events available for different clients since it uses an event-driven service oriented
architecture (e-SOA) [3].

Figure 2.16: Senaas functional architecture [3]

22 Chapter 2. RelatedWork

Hunkeler & Truong et al [22] discuss the uses of publish-subscribe architecture where IoT
devices publish its data to a broker through WSN gateway which provides access to the broker
since the broker exists in a traditional network, and applications on the other hand subscribe to
a broker to receive published sensor data they are interested in. In this context sensors publish
data directly to the broker and applications receive data directly from the broker as illustrated
in figure 2.17.

Figure 2.17: Wireless Sensor Networks with Publish-Subscribe Communication [3]

2.5 Gap Analysis
All the presented IoT architectures in this chapter served as intermediaries between IoT devices
and applications providing proving abstraction between IoT devices and applications. These
architectures can be evaluated using the following factors:

• Adaption: All the architectures provided a form of adaption between the underlying
protocol and the applications. Therefore, it eliminated the need for applications to un-
derstand different protocol than what they need.

• Adaptability: Some of the architectures served well within a specific protocol and where
not be able to communicate with different protocols such as CoAP Proxy and DPWS
Gateway. Other architectures was able to communicate with different underlying proto-
cols using adapters as a foundation for communication with IoT devices.

• Processing location of sensor data: Most of the architectures suggested processing of
sensor data in one location without specifying if the data is processed on the cloud or
near IoT devices. Some of the architectures such as Senaas [3] was clear the data is be
processed on the cloud.

• Extend physical sensor functionality: All the architecture discussed a mechanism of
acquiring sensor data and make it accessible of the applications without further process-
ing of sensor data. except of GSN [1] which suggested the use of virtual sensors to
process sensor data.

• Distributing processing of sensor data: All of the architectures except for GSN [1]
assume processing of sensor data at single node.

2.5. Gap Analysis 23

What the discussed architectures are missing is the distributed processing of sensor data by
adding carrying some of the processing required by application into distributed nodes, while
providing the flexibility for applications to decide from where to consume sensor data. The use
of adapters is essential to communicate with IoT devices regardless of the underlying protocol.
However, applications needs a dynamic approach to receive sensor data rather than receiving
data from a particular sensor. The use of the publish-subscribe design pattern would provide
the applications the choice to subscribe to topics rather than sensors. Furthermore, the publish-
subscribe would make it easier to introduce new sensor data since there is no dependency
between data providers (IoT devices) and data consumers (applications).

Chapter 3

Virtual Sensors Middleware Architecture

This chapter describes the architecture which consists of components placed on fog nodes and
the cloud. This chapter is organized as follows. Section 3.1 describes the virtual sensor. Section
3.2 describe the middleware communication and the use of the publish-subscribe design pat-
tern. Section 3.4 describes the middleware different components at the fog node and the cloud.
Where section 3.5 shows how components interact with each other using different scenarios.

3.1 Virtual Sensor
A Virtual Sensor (VS) is a core component of the middleware, which is responsible for pro-
cessing sensor data by applying a combination of one or more of the following: transformation,
filtering and aggregation. Virtual sensors can be either deployed at a fog node or on the cloud.
The deployment of the virtual sensors at different locations does not impact how virtual sensors
are conceptually structured. Each virtual sensor receives data from one or more input sources
and produces data to only one output destination. The following briefly describes a virtual
sensor’s components used for handling data received by the virtual sensor:

1. Consumer: The consumer receives input and aggregates data received from the multiple
inputs into a single tuple, which is forwarded to the Processor for further processing. The
consumer applies a fault handling policy, which determines how to proceed if some of
the data is missing or not received.

2. Processor: The Processor is responsible for processing tuples received from the con-
sumer. The result is forwarded to the Publisher.

3. Publisher: The Publisher is responsible for disseminating data received from the Proces-
sor so that it can be used by other virtual sensors and applications.

The Virtual Sensor is responsible for processing data received from one or more input
sources. The virtual sensor input sources, can be of the same type or mixed types as shown in
figure 3.2. A virtual sensor can connect to a physical sensor using an adapter and/or receive its
input from other deployed virtual sensors.

Each virtual sensor publishes its data to the publish-subscribe manager that is on the same
node where the virtual sensor is deployed.

24

3.2. Middleware Communication 25

Figure 3.1: Virtual Sensor Abstraction

Figure 3.2: Virtual Sensor Input Sources

3.2 Middleware Communication

Section 3.1 describes the main components of the virtual sensor and the possible input sources
of a virtual sensor. This section also describes the middleware topology and the adopted ap-
proach for disseminating data.

3.2.1 Disseminating Data

IoT devices use different protocols and the number of IoT devices vary over time. Therefore,
there is a need for the use of a communication pattern that allows different devices to commu-
nicate with each other regardless of the underlying protocol. There is also a need to be able to
make use of sensor data without having a prior knowledge of producers of the sensor data. The
Publish-Subscribe design pattern is used since it provides a message proxy that allows data
producers (publishers) and data consumers (subscribers) to exchange information without the
need to maintain information about each other and the IoT devices can use different underlying
protocols.

The publish-subscribe middleware is a message-oriented middleware [21], where it uses a

26 Chapter 3. Virtual SensorsMiddleware Architecture

message broker to distribute messages to subscribers. There are three communication advan-
tages:

• Distributed communication: Publishers and subscribers do not need to exist in the same
domain. They can be anywhere in the network as long as they can communicate with the
message broker

• Loosely-coupled communication: Publishers do not need to maintain a list of subscribers
or any information about them. It is the responsibility of the message broker to deliver
messages to all subscribers. Publishers need to deliver their messages to the message
broker.

• Asynchronous communication: Publishers and subscribers do not need to be active at
the same time. Publishers can produce messages to the message brokers, and subscribers
can pick messages when they are active.

3.2.2 Publish-Subscribe communication patterns
The following is a list of models used by message brokers:

1. Topic-Based: Publishers publish data to topics declared on the message broker, where
different publishers can publish to the same topic. Subscribers with interest in a topic
register to receive updates on the selected topics [40].

2. Content-Based: This allows subscribers to enable restrictions on the received content
by imposing filters that consist of pairs of attributes and their values. This model is more
expressive since subscribers express their interest in contents (messages) by specifying
conditions over the content they are interested in [40].

3. Type-Based: Messages are treated as objects that have different types. Consumers sub-
scribe to receive messages of a specific type or sub-instance of a type regardless of the
publisher or the content of the message [14].

Subscribers do not subscribe directly to publishers. Instead they subscribe to the topics of
interest. Therefore, subscribers do not hold any information about the publishers since they are
interested in topics rather than who publishes these topics.

3.2.3 Publish-Subscriber Topologies
The message broker can have different topologies depending on the criticality of the system,
and number of the publishers and subscribers.

1. Centralized: With a centralized topology, there is a single message broker. This ar-
chitecture has a single point of failure (SPOF), which means that if the message broker
failed/stopped neither publishers nor subscribers would be able to produce or consume
messages.

3.2. Middleware Communication 27

Figure 3.3: Centralized

2. Clustered: With the clustered approach, there is a cluster of message brokers that act
as a single message broker. Each message broker serves a subset of publishers and
subscribers that define their own topics. If one of the message brokers fail it would
not hinder the operation, as the publishers, subscribers, and the topics in the failing
node will be moved to another message broker; this process is called fail-over. Another
advantage of clustering, is that load balancing can be used to distribute the load between
the different message brokers. For example, if there are two message brokers A and B,
the publishers and subscribers join the cluster using the cluster virtual name, rather than
joining a specific message broker. Once they join the cluster, then the cluster decides on
which message broker they will be added to. If the message broker A is down then all
publishers, subscribers, and topics of message broker A will be moved to message broker
B. In other words message broker A will perform a fail-over to message broker B.

Figure 3.4: Clustered

3. Federated: Work can be distributed among message brokers, where each message bro-
ker can serve different geographical regions, a specific set of publishers/subscribers, or

28 Chapter 3. Virtual SensorsMiddleware Architecture

set of topics. If one of the message brokers fails then only the publishers/subscribers us-
ing the failed message broker would be impacted. For example, if there are two message
brokers A and B each message broker would be set to serve a specific city. The publishers
and subscribers should specify which message broker they want to use. Publishers and
subscribers on both message brokers A and B exchange messages. However, if message
broker A is down then all publishers, subscribers, and topics of message broker A will be
affected until message broker A resumes service. Publishers and subscribers of message
broker B remains unaffected.

Figure 3.5: Federated

4. Peer-to-Peer: This type of architecture is used in Data Distribution Services (DDS)
where publishers/subscribers write/read from/to Global Data Space (GDS) which is a
logical (virtual) channel for exchanging information. DDS can define different GDS and
it does not have single point of failure.

Figure 3.6: Peer-to-Peer

3.2. Middleware Communication 29

3.2.4 Why Federated Architecture?
For this work we considered several factors in selecting the topology to be used:

• The distributed nature of physical sensors

• The use of fog computing, where multiple fog-nodes can be deployed near wireless sen-
sors networks, each of which may have multiple virtual sensors running on it.

• Failure of any part of the middleware should not hinder the overall operation of the
middleware

The federated topology would serve best in the mentioned scenarios since it would allow
virtual sensors to communicate across multiple fog nodes and if one fog node went down it
would not affect the operation of other fog nodes but it might effect some subscribers who is
waiting for data from publishers hosted on the affected node. However in a more complex sce-
nario where high-availability is the desired option then a federation of clusters can be applied
as shown in figure 3.7

Figure 3.7: Federated Clusters

3.2.5 Virtual Sensor Communication
All virtual sensor communications use the Publish-Subscribe message broker as illustrated in
figure 3.2. If a virtual sensor is to receive data from a physical sensor, then the virtual sensor
uses an adapter that is responsible for connection management with a physical sensor in order
to receive the data. Once the data is received, the virtual sensor publishes the data to the broker.
A virtual sensor can subscribe to other virtual sensors as illustrated in figure 3.8.

30 Chapter 3. Virtual SensorsMiddleware Architecture

Figure 3.8: VSM Middleware Communications

3.3 Virtual Sensor Deployment Structure
Each virtual sensor is deployed within a container hosted on a fog node or cloud. All vir-
tual sensor communications go through the Publish-Subscribe message broker as illustrated in
figure 3.9.

Figure 3.9: Virtual Sensors Physical Deployment

Conceptually virtual sensors can be structured into levels by specifying from where each
virtual sensor should receive its input sources. Figure 3.10 shows an example deployment
where virtual sensors are deployed at four different conceptual levels. If we look at VS9 of
level 2 the virtual sensor receives its input from VS1 and VS2 of level 1. VS9 processes the
data received from the two inputs, and then publishes the result to the next level (level 3), which
is consumed by VS13.

Figure 3.11 shows a more complex conceptual deployment where virtual sensors might
access data from different levels. A conceptual deployment might not contain levels and can

3.4. Middleware Components 31

Figure 3.10: Virtual Sensors conceptual deployment

be totally random, which should be determined by the applications needs and the problem to
solve.

Figure 3.11: Virtual Sensor Conceptual Deployment: Acyclic Graph

3.4 Middleware Components

This section describes the middleware components deployed at the cloud and fog nodes and
how they interact with each other. Figure 3.12 shows the different components of the middle-
ware.

32 Chapter 3. Virtual SensorsMiddleware Architecture

Figure 3.12: VS Middleware Architecture

3.4.1 Middleware Fog Components
1. Virtual Sensor: A virtual sensor is responsible for processing data received from phys-

ical sensors and make this data available to the applications. The components of the
virtual sensor are described in more detail in section 3.4.3

2. Publish-Subscribe Message Broker: The publish-subscribe message broker at the fog
node receives published data from the virtual sensors, where applications can access the
published data by subscribing to the Publish-Subscribe Message Broker, regardless of
where applications are hosted i.e. cloud or fog node.

3. Database: A virtual sensor can store data in a database, which enables auditing or ana-
lytics.

4. Knowledge-Base: This contains the different configurations (see section 3.4.3) of all
deployed virtual sensors hosted on the fog node. These configurations are used to deploy
and run the virtual sensor.

5. VS Orchestrator: The VS Orchestrator is responsible to act upon notifications received
from the knowledge-base for newly added virtual sensor configurations or updates for
existing configurations. The Orchestrator instantiates or updates the virtual sensor based
on the provided configuration in the knowledge-base and maintains a reference of all
instantiated virtual sensors inside the Virtual Sensor Container in case it requires to
update or dispose the virtual sensor.

6. VS Container: Contains all running instances of the virtual sensors

3.4.2 Middleware Cloud Components
An administrator is responsible for specifying virtual sensor configuration (described in Sec-
tion 3.4.3) and selecting the fog nodes for hosting the virtual sensors. This can be done through

3.4. Middleware Components 33

either a script or a graphical user interface (GUI). In addition to script/GUI for specifying con-
figurations and the publish-subscribe message broker, the following components are needed:

1. Virtual Sensor Configurator: This component receives configuration information from
the administrator using a GUI referred to as the VS Configurator Interface. It creates and
validates the syntax of the virtual sensors configurations and stores the configurations in
a file. Section 3.5.1 describes the creation process of virtual sensor configurations.

2. VSM Monitor: This component is responsible for monitoring the status of all deployed
virtual sensors. Each virtual sensor sends a message to the VSM Monitor at a configured
frequency to report its status. If the VSM Monitor does not receive a signal from the
virtual sensor it assumes that the virtual sensor is down.

3. Virtual Sensor Deployer: This component is responsible for deploying the virtual sen-
sor configurations to the selected fog nodes. Once the deployer receives the configu-
rations from the VS Configurator, it initiates the deployment process of virtual sensor
configurations to the fog node. Section 3.5.2 describes the deployment process of virtual
sensor configurations

3.4.3 Virtual Sensor Components
Virtual Sensor Configurations

Attributes of a configuration includes the following:

• Virtual Sensor Output Destination: Each virtual sensor should publish its data to
unique topic defined at the message broker. The output source defines the unique iden-
tifier (ID) of the topic and the location of the message broker where it declares the topic
and publishes the data.

• Virtual Sensor Input Sources: This defines a list of all topics that the virtual sensor is
interested in. For each topic the virtual sensor should define the unique name of the topic
and the location of the message broker where the topic is declared in order to receive
published data related to the topic.

• Virtual Sensor Frequency: The frequency of the virtual sensor defines the rate at which
the virtual sensor would check input queues for new data published by the input sources
(topics).

• Fault Handling Policy: This refers to the policy used when there is a failure in receiving
the data from input sources. The fault handling policy determines how the virtual sensor
should act or proceed in case of such failures.

• Data Management: This contains information for connecting to the database if the
virtual sensor needs to store data.

Virtual sensor configurations are sent to the Knowledge-Base component by the Virtual
Sensor Orchestrator component responsible for creating the running instance of the virtual

34 Chapter 3. Virtual SensorsMiddleware Architecture

sensor based on the provided configurations. The Virtual Sensor Orchestrator waits for an
event from the knowledge-base to notify it with newly added configurations or updates on
current configurations. Figure 3.13 shows how the Orchestrator instantiates VS1 based on the
deployed configurations of VS1.

Figure 3.13: Virtual Sensor configurations vs. running virtual sensor

Components

The virtual sensor consist of a set of components that are responsible for consuming, processing
and publishing sensor data.. The components as illustrated in figure 3.14 are the following:

• Consumer: The Consumer connects to the input source and consumes data received
from the input source. If the input source is a virtual sensor then the consumer subscribes
to the message broker. However, if the input source is a physical sensor then adapters are
used to establish connections to the physical sensor. Once the connection is established
then the consumer will receive data from input sources.

• Data Aggregator: The data aggregator component is responsible for aggregating data
received from multiple inputs. Data might arrive at different rates. The data aggregator
applies a technique that places data received from different input sources into priority
queues to sort messages/data based on their timestamps. There is a priority queue per
input source. The Data Aggregator dequeues available data from all the queues and store
the data into a tuple. The aggregator runs (dequeue data) at a fixed rate specified in the
virtual sensor configuration using the vsFrequency attribute. The tuple produced by the
aggregator might contain a subset of the data from the input sources, and it is up to the
fault handler to determine how to proceed in this case. Once the data aggregator is ready
to proceed with the data processing it forwards the data to the Processor component.

• Fault Handler: The fault handler is triggered by the data aggregator component when
there is missing data needed for a tuple. The fault handler uses the action specified in
the fault handling policy to be applied when data is missing. For example, it can proceed
with processing partial data or it can wait for the missing data to arrive.

3.5. Middleware Components Interaction Scenarios 35

• Processor: The Processor is responsible for processing the produced tuple. Once the
Processor produces the result it forwards it to the Publisher.

• Publisher: The Publisher is responsible for establishing a connection to the Publish-
Subscribe message broker in order to publish the data produced by the processor.

• Data Manager: The virtual sensor can be configured to store produced data by the
processor. The data manager component is responsible for establishing a connection to
the database based on the virtual sensor configuration attribute saveToDB which indicates
if the data needs to be saved to a database, and databaseConnectionInfo which contains
the database connection information. This can be useful if applications would like to
access historical data produced by the virtual sensor.

• VS Monitor: The virtual sensor monitor is responsible for reporting virtual sensor status
by sending a signal to VSM Monitor which is hosted on the cloud. The signal is sent at a
configured frequency and the absence of the signal means that the virtual sensor is down.

Figure 3.14: Virtual Sensor Components

3.5 Middleware Components Interaction Scenarios

3.5.1 Creating Virtual Sensor Configurations
An administrator is responsible for creating various virtual sensor configuration and for the
deployment of the configuration to the fog nodes or the cloud. The virtual sensor configurations
are used to initialize a virtual sensor. Figure 3.15 describes the steps of how the virtual sensor
configuration is created.

1. The administrator specifies various virtual sensor configurations using the web-based
interface component referred to as the VS Configurator Interface. The VS Configurator
Interface sends the configuration to the VS Configurator component

2. The VS Configurator component generates the configuration based on the configuration
received values from VS Configurator Interface

3. The VS configuration file will be loaded by the virtual sensor at the designated node.
The virtual sensor object process data, subscribe to topics, and publish data based on the
configurations stored inside the generated configuration file.

36 Chapter 3. Virtual SensorsMiddleware Architecture

Figure 3.15: Creating Virtual Sensor Configurations

3.5.2 Instantiating Virtual Sensor Configurations

Figure 3.16 shows the steps needed to instantiate a virtual sensor.

1. The VS Configurator forwards the virtual sensor configuration to the VS Deployer, which
is located on the cloud.

2. Upon receiving the configuration file, the VS Deployer uses the vsNode attribute of the
configuration file to determine where the virtual sensor is to be deployed.

3. If the node is a fog node, then the VS Deployer transfers the configuration file to the
Knowledge-Base.

4. VS Orchestrator will wait for events from the Knowledge-Base to inform it of updates
(e.g., new configuration file added). Therefore, once a configuration file is added to
the Knowledge-Base, The VS Orchestrator receives a reference to configuration file and
instantiate the virtual sensor (explained in the next step).

5. The VS Orchestrator instantiates a virtual sensor by creating a new object of the virtual
sensor and passing the configuration file. The virtual sensor processes the configuration
file and sets the different attributes required by the virtual sensor using the attributes
specified inside the configuration file. These attributes defines the input sources and
output destinations, and other attributes as defined in section 3.4.3.

3.5. Middleware Components Interaction Scenarios 37

Figure 3.16: Instantiating Virtual Sensor

3.5.3 Exchanging Messages Between Virtual Sensors

This scenario is graphically depicted in Figure 3.17 shows two virtual sensors: The first virtual
sensor publishes data while the second virtual sensor receives the published data after subscrib-
ing to the message broker. The second virtual sensor would know the topic where to receive its
data based on the configuration file, which determines the input sources.

The scenario assumes that the data is ready for publishing at the first virtual sensor, and it
assumes no fault handling or data management is required. The scenario ends when the second
virtual sensor publishes the consumed data from the first virtual sensor. We will refer to the
first virtual sensor as VS1, and the second virtual sensor as VS2. Both VS1 and VS2 exists on

38 Chapter 3. Virtual SensorsMiddleware Architecture

the same fog node, and if VS1 and VS2 exists at two different nodes, the scenario would not
change except for the fact that VS2 needs to subscribe to the topic of the message broker where
VS1 publishes its data.

1. The VS1 Publisher timestamps the data and publishes it as a message to the topic de-
clared by VS1 Publisher at Publish-Subscribe Message Broker. VS1 Publisher has the
message broker details set from the instantiation process explained in Section 3.5.2. The
Virtual Sensor Configurations contains the details and the location of the message broker
and the name of the topic.

2. Upon receiving the message from VS1 Publisher, the Publish-Subscribe Message Broker
searches for all interested subscribers.

3. The Publish-Subscribe Message Broker forwards the published message from VS1 Pub-
lisher to VS2 Consumer since it is registered as subscriber. The VS2 consumer times-
tamps the message and add it to a designated queue that stores data received from VS1.
VS2 has a designated queue per input source.

4. The Data Aggregator runs at a configured frequency that specifies the rate (per second)
that it needs to check for data in the queues. Once it has the data, it creates a tuple with
the data found from all queues and forwards it to the Processor.

5. When the Processor receives the tuple, it performs the configured function based on
the attribute vsAggregateFunction stored inside the configuration file i.e. Average, Sum-
mation...etc. using the data stored in the tuple. It then forwards the result to the VS2
Publisher.

6. The VS2 Publisher timestamps the data and publishes it as a message to the Publish-
Subscribe Message Broker.

3.6 UML Diagram
The middleware components described earlier uses different classes and tools to achieve the
overall function of the middleware. Figure 3.18 describes some of the created components to
serve specific functions of the middleware.

• VirtualSensorOrchestator represents the VS Orchestrator, which is responsible for
monitoring the knowledge-base for new virtual sensor configurations.

• VirtualSensor is the main class that is used to instantiate all virtual sensors and initiating
all dependencies required by the running virtual sensor.

• VirtualSensorConfigObserver is responsible for loading received configurations and
pass it to different VirtualSensor, VirtualSensorPublisher, and VirtualSensorConsumer.

• VirtualSensorConsumer is responsible for maintaining references for the different in-
put sources and initiating VirtualSensorAggregator.

3.6. UML Diagram 39

Figure 3.17: Exchange Messages Between Virtual Sensors

• SubscribeExchange is responsible for a establishing connection with the message bro-
ker to receive published messages.

• VirtualSensorAggregator is responsible for aggregating data received from multiple
inputs (multiple SubscribeExchange).

• FaultHandler is responsible to decide how to proceed if aggregated data is incomplete.
It works closely with VirtaulSensorAggregator.

40 Chapter 3. Virtual SensorsMiddleware Architecture

• VirtualSensorProcessor is responsible for processing received tuples from the con-
sumer.

• VirtualSensorDataManager is responsible for storing results produced by the processor
if the virtual sensor is configured to store data in the database.

• VirtualSensorPublisher is responsible for initiating the PublishExchange to publish re-
ceived data from the processor.

• PublishExchange is responsible for establishing connections to the message broker and
publishing produced data.

• VirtualSensorExchange is a super class for both PublishExchange and SubscribeEx-
change that contains common features and functions used by both classes.

• VirtualSensorMonitor is responsible for reporting the virtual sensor status to the cloud
by sending a signal at a configured frequency.

Figure 3.18: UML Diagram

Chapter 4

Virtual Sensor Middleware
Implementation

This chapter describes the underlying technology used in the virtual sensor middleware (vsm)
and the software and tools used to implement the interactions between the middleware different
components.

4.1 Platform
Our platform uses Raspberry Pi 3 Model B+. The Raspberry Pi has the following specifications
[18]:

• 1.4 GHz 64-bit quad-core ARM Cortex-A53 CPU

• 1 GB RAM (LPDDR2 SDRAM)

• Wireless LAN – dual-band 802.11 b/g/n/ac

• Gigabit Ethernet (300 Mbps)

The operating system installed on the Raspberry Pi is Raspbian Stretch version 4.14 [19], which
is a Linux Debian based operating system optimized for Raspberry Pi.

4.2 Development Tools
The software was written using Java SE v1.8 and Maven was used to import the required
libraries from the Maven repository.

4.3 Middleware Cloud Components

4.3.1 Virtual Sensor Configurator Interface
The Virtual Sensor Configurator Interface is a web-based component hosted on the cloud that
is responsible to generate configuration for a single virtual sensor. The following technology

41

42 Chapter 4. Virtual SensorMiddleware Implementation

is used to create the interface:

• Java Server Pages (JSP): The JSP is a Java server-side programming language that is
used to display the interface required to enter virtual sensor configuration values.

• JQuery is a rich JavaScript library [25] that is used to collect the entered data in the web-
interface fields, generate JSON syntax on the fly, and then display it inside the JSON
Editor web-component.

• JSON Editor: JSON Editor is a web-based tool used to view, edit, format, and validate
JSON code. It provides different modes to view JSON code such as a tree editor, a code
editor, and a plain text editor [13].

• Bootstrap: The Bootstrap is a framework that is used to provide responsive HTML com-
ponents and enhance the look-and-feel of the interface [8]

Figure 4.1 through 4.4 shows the interface used to enter virtual sensor configurations.

Figure 4.1: VS Configurator GUI - Virtual Sensor Information

4.3. Middleware Cloud Components 43

Figure 4.2: VS Configurator GUI - Deployment Node

4.3.2 Virtual Sensor Configurator
The Virtual Sensor Configurator component is a Java Servlet that receives the entered JSON
configurations from the Virtual Sensor Configurator Interface and creates a temporary JSON
file on the server and pass it Virtual Sensor Deployer to initiate the deployment process.

4.3.3 Virtual Sensor Deployer
The Virtual Sensor Deployer component is a Java Servlet that uses Apache Commons Net
v3.6 [5] to transfer virtual sensor configurations (JSON file) to the desired node using File
Transfer Protocol (FTP). The Virtual Sensor Deployer deploys the JSON file based on the
vsNode attributes that contains the node information.

4.3.4 Virtual Sensor Configurations
The virtual sensor configuration is a JSON file that contains different attributes of the virtual
sensor which is used to specify the different settings of the virtual sensor, such as the input
sources and output destination. The configuration file can be created individually using Virtual
Sensor Configurator GUI or it can be generated using a VS Configuration Generator Script,
which is used to create configurations for a bulk of virtual sensors. The following are the
attributes that are used inside the JSON file:

• vsName: vsName represent the virtual sensor name

• vsID: vsID is a unique identifier that is used to uniquely identify the virtual sensor across
the middleware. It consist of two two parts. The first part refers to the node number

44 Chapter 4. Virtual SensorMiddleware Implementation

Figure 4.3: VS Configurator GUI - Publish Information

where the virtual sensor is deployed and second part refers to the virtual sensor sequence
number on the selected node.

• vsFrequency: vsFrequency is used to specify the rate in seconds at which VS Aggregator
would check the queues for a newly arrived data

• vsInitialDelay: vsInitialDelay is used to set the delay time in seconds before the VS
Aggregator starts running at the specified frequency.

• vsAggregateFunction: vsAggregateFunction is used to specify the function to be per-
formed by the Processor on the received data e.g., average, summation.

• vsNode: vsNode is a JSON object that contains the hostname and IP address of the node
at which the JSON file is to be deployed.

• publishExchange: publishExchange is a JSON object that is used to describe the output
destination of the virtual sensor. In other words, it is used to determine where the virtual
sensor will publish its data. publishExchange objects contains the following values:

4.3. Middleware Cloud Components 45

Figure 4.4: VS Configurator GUI - Subscribe Information

– exchName: exchName specifies the name of the exchange (topic) at which the
virtual sensor publishes its data.

– exchType: exchType specifies how the exchange distributes data to subscribers.
The current supported value is fanout which means the published data is delivered
to all subscribers

– exchNode: exchNode is a JSON object that specifies the information of the node
at which exchange is going to be declared.

– exchUsername: exchUsername specifies the username required by the virtual sen-
sor to connect to the message broker (RabbitMQ) and publish data to the exchange
(topic).

– exchPassword: exchPassword specifies the password required by the virtual sensor

46 Chapter 4. Virtual SensorMiddleware Implementation

Figure 4.5: VS Configurator GUI - Generated Configuration Ready For Deployment

to connect to the message broker (RabbitMQ)

• subscribeExchanges: This is a JSON array representing all input sources (topics). Each
item in the array has the same attributes of the publishExchange in addition to ex-
chQueueName. Each array item describes an input source.

• exchQueueName: exchQueueName is used to define the queue name at which the vir-
tual sensor stores the data received from the input source (exchanges/topics that virtual

4.4. Middleware Fog Components 47

sensor is subscribed to)

• faultHandlerPolicyID: faultHandlerPolicyID is used to set the fault handling policy of
the virtual sensor, which is used by FaultHandler component.

• saveToDB: saveToDB is a boolean attribute used to specify if the sensor data needs to
be stored in a database.

• database: database is s JSON object that is used to specify the database information
required to connect to the database if saveToDB is set to true.

– dbName: dbName is the database name that is used to store sensor data

– driverURL: driverURL is a database URL to server that hosts the database. The
URL contains the host name, port number, and the database name.

– dbUsername: dbUsername is used to set the username required to connect to the
database.

– dbPassword: dbPassword is used to set the password required to connect to the
database.

A sample JSON file that contains the virtual sensor configurations can be found in appendix
A

4.4 Middleware Fog Components

4.4.1 Publish-Subscribe Message Broker
The Publish-Subscribe Message Broker is implemented using RabbitMQ, which is an open
source message broker that uses AMQP 0-9-1 as underlying protocol to exchange messages
between publishers and subscribers asynchronously [34]. Additionally, RabbitMQ supports
transmitting messages using HTTP and other messaging protocols such as Simple Text Ori-
ented Messaging protocol (STOPM), Message Queuing Telemetry Transport protocol (MQTT),
and AMQP 1.0 [36]. RabbitMQ is used as a message broker to exchange messages between
different virtual sensors, and IoT devices.

RabbitMQ can be deployed on single mode as a centralized message broker or deployed
across multiple nodes to support cluster or federation architectures. In the current implemen-
tation RabbitMQ is deployed on different nodes using federation topology, where the virtual
sensors deployed at different nodes would be able to exchange messages using the RabbitMQ-
federation.

Figure 4.6 shows how the publisher declares an exchange which represents the topic of the
publisher, where the consumer declares queue to receive published messages.

4.4.2 Knowledge-Base
The Knowledge-Base is a designated folder in the filesystem that stores all virtual sensor con-
figurations (JSON files). Once a new file is added to the Knowledge-Base it produces an event

48 Chapter 4. Virtual SensorMiddleware Implementation

Figure 4.6: RabbitMQ Simple Publisher/Consumer Architecture

that is picked up by the Virtual Sensor Orchestrator to create a new virtual sensor based on the
configuration file.

4.4.3 Database
The Database is used to store virtual sensor data if the virtual sensor is configured to store data.
The middleware supports the use of any database as long is it is supported by the operating
system on the fog node and it has a Java driver to establish connection to the database such as
MySQL.

4.4.4 Virtual Sensor Orchestrator
The Virtual Sensor Orchestrator implemented using Java, where it awaits a notification from
the Knowledge-Base which contains the virtual sensor configuration file location. Then the
Orchestrator would instantiate the virtual sensor using VirtualSensor class and add it to the
Virtual Sensor Container.

4.4.5 Virtual Sensor Container
The Virtual Sensor Container is a Java ArrayList object that contains all references of the
instantiated Virtual Sensor objects. These references used to update virtual sensor based on
updates on virtual sensor configurations.

4.4.6 Virtual Sensor Libraries
The following software libraries are used by a virtual sensor:

RabbitMQ Java Client Library

RabbitMQ Java Client Library provides the APIs required for the virtual sensor to connect to
the RabbitMQ server (Message Broker) and publish/consume messages to/from the server [35].
As described earlier the virtual sensor consist of Publisher and Consumer components. These

4.4. Middleware Fog Components 49

components are required to establish a connection with the RabbitMQ server using RabbitMQ
Java Client Library and declare the necessary Exchanges and Queues to exchange messages
with RabbitMQ message broker.

Java UUID Generator (JUG)

Java UUID Generator is a Java APIs developed by FasterXML that is used to generate a Uni-
versal Unique Identifier (UUID), This is used to identify published messages. UUIDs does
not require a centralized authorities to administer them and they are fixed to 128 bits that are
unique across space and time [33]. UUID consist of 32 case-sensitive hexadecimal-digits as
shown below [33]:

Table 4.1: UUID Structure

A - B - C - DE - F

Table 4.2: UUID Breakdown

Code Attribute Value
A time-low 8 hex-digit
B time-mid 4 hex-digit
C time-high-and-version 4 hex-digit
D clock-seq-and-reserved 2 hex-digit
E clock-seq-low 2 hex-digit
F node 12 hex-digit

Since RabbitMQ does not assign message identifiers with the messages it is the respon-
sibility of the application to assign unique message identifiers. Therefore, the virtual sensor
Publisher component generates UUID per published message to guarantee the uniqueness of
the message across the fog nodes.

Apache Log4J

Logging is very important in order to debug the application and monitor the communication
across multiple components. Therefore, the middleware uses Log4J [17], which is a Java
logging framework developed by Apache to support log generation to the filesystem instead
of logging to standard output. The generated logs can be configured to contain the required
information and the level of debugging.

JSR 374 (JSON Processing)

JSR 374 is a Java library used to generate, parse, transform, and query JSON files [32]. The
library is used to process virtual sensor configuration files that contains the different attributes
used to create the virtual sensor.

50 Chapter 4. Virtual SensorMiddleware Implementation

4.5 Implementation Classes
The following are the main classes implemented in Java running the virtual sensor. Each virtual
sensor would have its own instances of these classes.

4.5.1 VS Aggregator
Algorithm 1 is responsible for aggregating data from multiple input sources if the virtual sensor
subscribes to more than one input source. Algorithm 1 checks for received data in the queues.
Algorithm 1 runs in the background in a thread at configured frequency that is set at the time
of starting the thread.

Algorithm 1: Virtual Sensor Aggregator
Input : Virtual Sensor Queues queues

1 t ← new Tuple();
2 if queues , empty then
3 for each qi ∈ queues do
4 if Peek(qi) , empty then
5 message← dequeue(qi) ;
6 t ← add(message) ;

7 if isComplete(t) == true then
8 f orwardToProcessor(t) ;
9 else

10 f orwardToFaultHandler(t) ;

The algorithm starts by creating a new tuple at line 1, it then checks if the queues received
data from the input sources (topics/exchanges) at line 2. Lines 4-6 is applied to each queue.
The Peek function on line 4 checks the head of the queue to determine there is data. If the
queue has data then data is dequeued(line 5) and added to the tuple (line 6). if the queue has
data then it will dequeue the head of the queue at line 5 and then add it to the tuple at line 6.

After the algorithm checks all the queues it then check if the tuple size is equal to the
number of the queues at line 7 by calling a function isComplete(). If the tuple is complete the
algorithm forwards the tuple to Processor component at line 8. if the tuple is not complete
then it forwards the tuple to the fault-handler component at line 10 to decide on the action to
be done based on the policy number.

4.5.2 Publisher
The publisher component is responsible to establishing connections to the message broker
and publish the produced results of the Processor component. The publisher is called by the
processor upon the completion of the computation.

Algorithm 2 starts by establishing a connection to the message broker (RabbitMQ) at 1 and
creating a channel at line 2 as required by RabbitMQ to create a topic, and then the algorithm at
line 3 declares an exchange (topic) based on the information associated with the virtual sensor

4.5. Implementation Classes 51

Algorithm 2: Publish Virtual Sensor Data
Input : Data di, Virtual Sensor VS i

1 connection← connectToMessageBroker();
2 channel← connection.getChannel();
3 exchnage← getExchangeProperties(VS i) ;
4 channel.declare(exchange) ;
5 create new Message Mi ;
6 Mi.timestamp← getCurrentT imestamp() ;
7 Mi.messageID← generateUUID() ;
8 channel.publish(Mi) ;

which was loaded from the JSON file during the virtual sensor instantiation process. Once the
topic is declared, it adds exchange to the message broker at line 4. Then at line 5 it creates a
new message with the data that is going to be publish, and timestamps the message at line 6
and add UUID to the message at line 7. After setting up the message it get published at line 8.

4.5.3 Consumer
The main function of the consumer is to establish connection for each input source (topic) that
it should fetch data from. The consumer define an array of objects that maintain references
for all input source. These objects are declared as SubscribeExchange that is responsible to
establish connection with the message broker, declare a queue to the corresponding exchange,
then receive published messaged delivered to the queues.

Algorithm 3: Consume Virtual Sensor Data
Input : Data di, Virtual Sensor VS i

1 connection← connectToMessageBroker();
2 channel← connection.getChannel();
3 exchnage← getExchangeProperties(VS i) ;
4 queue← getQueueProperties(VS i) ;
5 channel.declare(exchange) ;
6 channel.declare(queue) ;

Algorithm 3 starts by establishing connection to the message broker (RabbitMQ) at 1 and
creating a channel at line 2 as required by RabbitMQ to declare the topic that the consumer
wants to receive updates from. At line 3 the consumer declares an exchange (topic) based on
the information associated with the virtual sensor which was loaded from the configuration file
(JSON file) during the virtual sensor instantiation process. Once the exchange is declared, a
consumer needs to define the queue that is going to be associated with the exchange to receive
published messages at line 4. The consumer then adds the exchange and queue to the channel
at lines 5 and 6 respectively. After the consumer declares the topic that it is going to listen to
and associate a queue with the topic, it will start listening to the channel, waiting for updates
from the publisher.

52 Chapter 4. Virtual SensorMiddleware Implementation

4.5.4 VS Orchestrator
VS Orchestrator is the main class that is responsible for loading and running virtual sensors
based on the configuration file stored in the knowledge-base.

Algorithm 4: Watch Knowledge-Base For New Configurations
Input : Knowledge-Base K

1 vsArray← new Array() ;
2 while watch(K) == true do
3 if K received new configuration Ci then
4 VS i ← new VirtualS ensor(Ci) ;
5 vsArray.add(VS i) ;

Algorithm 4 starts at line 1 by creating a new array to store all references for virtual sen-
sors in case a virtual sensor needs to be updated or disposed. At line 2 the algorithm waits
for an event to be created by the knowledge-base (new file is added). If a new configuration
file (JSON) is added to the knowledge-base then an event is created which satisfies the condi-
tion and contains a reference to the new configuration file at line 3. A virtual sensor is then
instantiated at line 4 and the reference for the virtual sensor is stored in vsArray at line 5.

Chapter 5

Evaluation

This chapter describes the performance evaluation of Virtual Sensor Middleware discussed in
the previous chapters. The main objective of the evaluation is to observe the different factors
that are related to the middleware and define how they have impact over the performance.
Section 5.1 describes the evaluation environment and the different tools and software used to
perform the evaluation. Section 5.2 describes the different factors that are evaluated. Section
5.3 describe the baseline performance of the devices used for evaluation. Section 5.4 describes
the different evaluation scenarios used to show the impact of the different factors over the
performance. Section 5.5 summarize the evaluation results.

5.1 Evaluation Environment
As described in chapter 3 the middleware consist of different components that run on the cloud
or on the fog node. The cloud components provides the interface required to generate and
deploy virtual sensors configuration. Where the fog node would contain the different com-
ponents responsible to process sensor data. Therefore, the following are used to simulate the
performance as shown in figure 5.1.

• Raspberry Pi: The Raspberry Pi is a computing device used in represents the fog node.
The reason behind selecting the Raspberry Pi is the cheap cost of the device on one hand,
and since it has a moderate processing powers, therefore if the proof-of-concept carried
on such device it can be scaled-up on higher processing devices.

• Configurator Script: The Configurator Script is used to generate a bulk of virtual sensor
configurations at once and deploy them to the corresponding fog node as shown in figure
5.2. The Configurator Script can be configured to generated the desired number of virtual
sensors and define the relations among them, where it generates the configurations on a
designated folder on a computing device (i.e. laptop) other than the fog node, where this
folder can be copied to the Knowledge-Base at the desired fog node.

• Load Testing Script: The Load Testing Script is responsible for simulating the gener-
ation of sensor data produced by physical sensors and send it to the message broker at
each participating fog node as shown in figure 5.3. The Load Testing script is executed
on a laptop.

53

54 Chapter 5. Evaluation

• Data Collection Tools: dstat and top commands both are Linux-based commands exe-
cuted to collect information about the CPU and memory usage.

Figure 5.1: Evaluation Environment

Figure 5.2: Evaluation Environment - Creating Configurations

Figure 5.3: Evaluation Environment - Load Testing

5.2 Evaluation Factors and Metrics

5.2.1 Evaluation Factors
There are different factors related to the middleware that can impact positively or negatively the
performance of the middleware. These factors relate to how the virtual sensors are configured,

5.2. Evaluation Factors andMetrics 55

structured, and deployed. The following describes each factor:

• Virtual Sensor Frequency: Virtual Sensor Frequency determines the rate at which the vir-
tual sensor checks the input queues for newly arrived data. The Virtual Sensor Frequency
is configured in seconds. This factor will be evaluated by running the virtual sensor at
different frequencies and verify the impact over the performance.

• Number of Virtual Sensors: This factor refers to the number of virtual sensors deployed
on a single fog node and on a single level and at the same frequency. The purpose of
evaluating this factor is to see how the performance scales by increasing the number of
virtual sensors and to determine the maximum number of virtual sensors the Raspberry
Pi can handle.

• Total Number of Input Sources per Virtual Sensor: The virtual sensor can subscribe to
one or more input sources to receive data. The purpose for evaluating the number of
input sources per virtual sensor to see if the increase of the input sources have impact
over performance.

• Number of Virtual Sensors per Level: The virtual sensors can be structured in multiple
levels to perform aggregate functions. The purpose of evaluating this factor is see the
impact of structuring virtual sensors into levels on the performance.

• Distributed Processing of Virtual Sensors: The main purpose of the middleware is to
distribute processing of sensor data which can be achieved by deploying virtual sensors
into multiple nodes. The purpose of evaluating this factor is to see the impact on perfor-
mance when having the virtual sensors running on multiple nodes versus running them
on a single node.

5.2.2 Evaluation Metrics
We used the following metrics to evaluate the middleware performance:

• CPU Utilization

• Memory Utilization

The time required to process sensor data is an important metric that can be used to under-
stand the impact over the performance. However, it was impossible to measure the time due to
different factors:

• Each message is timestamped once it is received at each virtual sensor, since each Rasp-
berry Pi (fog node) in the current setup has a different clock/time that is setup manu-
ally, then it makes the timestamps inconsistent when messages send across different fog
nodes.

• The messages are aggregated at different levels, which makes it impossible to link the
message generated by the load tester with the messages aggregated at the fog node since
the virtual sensor would aggregate different messages into a single message

• Since it is a custom-built middleware it was hard to find a software that can perform the
load testing and measure the response time

56 Chapter 5. Evaluation

5.3 Baseline
The main purpose of this scenario is to define the performance baseline for the CPU and mem-
ory of the fog node since the Raspbain OS would contain a preinstalled packages. Therefore,
we executed two experiments monitoring the performance of the CPU and memory for six
minutes independently. The first experiment we monitored the performance without running
the middleware, only the message broker was running in the background with no activities.
Where, the second experiment, we ran the middleware without instantiating any virtual sensor.

Table 5.1 shows the results of the two experiments. Experiment 1 defines the performance
baseline for the Raspberry Pi at 3.86% for the CPU and 39.29% for the memory. In Experi-
ment 2 it shows there is a little overhead in the CPU and memory utilization when we loaded
the middleware. This increase is expected due to the fact that the middleware has to load the li-
braries that it requires to do its job. Figure 5.5 shows the performance gauge for the for the CPU
and memory side by side which shows the slight increment in the utilization in Experiment 2,
compared to figure 5.4.

Table 5.1: Performance Baseline

Experiment 1
L1 L2 L3 L4 L5

VS Used - - - - -
VS Inputs - - - - -
Frequency - - - - -

Min Max Average Median S D.
CPU 0.25% 32.91% 3.86% 3.51% 3.26%
Memory 39.13% 40.09% 39.29% 39.29% 0.09%

Experiment 2
L1 L2 L3 L4 L5

VS Used - - - - -
VS Inputs - - - - -
Frequency - - - - -

Min Max Average Median S D.
CPU 2.52% 31.31% 6.64% 5.77% 3.86%
Memory 43.99% 45.61% 44.13% 44.11% 0.17%

5.4. Evaluation Scenarios 57

Figure 5.4: Baseline - Experiment 1 - Performance Evaluation for Running Raspberry Pi with-
out the middleware

Figure 5.5: Baseline - Experiment 2 - Performance Evaluation for Running Raspberry Pi with
the Middleware

(a) CPU Comparison (b) Memory Comparison

Figure 5.6: Baseline - Performance Comparison

5.4 Evaluation Scenarios
In the evaluation we are going to perform 5 scenarios, each scenario evaluates one of the factors
described in section 5.2.1 and carries multiple experiments to show the impact of the changing
values on the performance. Table 5.2 explains the different scenarios to be executed.

58 Chapter 5. Evaluation

Table 5.2: Evaluation Scenarios

Scenario Factor Description
Scenario 1 Virtual Sensor Frequency This scenario consist of 5 experiments us-

ing 1 virtual sensor, each experiment runs
at different frequency rate 1, 5, 10, 15, 60
seconds

Scenario 2 Total Number of Input
Sources per Virtual Sensor

This scenario consist of 5 experiments us-
ing 1 virtual sensor having different num-
bers of input sources 1, 10, 50, 100, 150

Scenario 3 Number of Virtual Sensors This scenario consist of 5 experiments us-
ing 1, 10, 50, 100, 150 virtual sensors. All
virtual sensors have the same frequency rate
and input sources

Scenario 4 Number of Virtual Sensors per
Level

This scenario consist of 3 experiments.
Each experiment uses 150 virtual sensors,
with the difference that the virtual sensors
are deployed into 1 level, 2 levels, or 3 lev-
els

Scenario 5 Distributed Processing of Vir-
tual Sensors

This scenario consist of 3 experiments us-
ing 150 virtual sensors. In the first ex-
periment all of the virtual sensors are pro-
cessed on one fog node, the second experi-
ment processes the virtual sensors on two
fog nodes, and the third experiment pro-
cesses the virtual sensors on three fog nodes

Scenario 6 Virtual Sensor Frequency for
multiple virtual sensors

This scenario consist of 4 experiments us-
ing a total of 111 virtual sensors, each ex-
periment runs at different frequency rate 5,
10, 15, 60 seconds

5.4.1 Scenario 1

The purpose of this scenario is to evaluate the affect of the virtual sensor frequency over the
performance. We defined in section 4.3.4 the use of vsFrequency which determines the rate
at which virtual sensor checks the input queues. Therefore, in this scenario we use only one
sensor that is deployed on level 1. The same sensor will be used in all experiments of this
scenario with one difference is the frequency rate at which the virtual sensor will be running.
We ran the virtual sensor at 1, 5, 10, 15, an 60 seconds. The results show that the CPU and
memory utilization decreased by increasing the frequency rate of the virtual sensor. When we
increased the frequency from 1 to 5 there was an enhancement in the CPU utilization from
13.51% to 12% or 1.5% enhancement in the CPU performance. However, when we increased
the rate more there was a slight enhancement in the CPU performance and it almost became
unnoticeable when we increased the frequency rate from 15 seconds to 60 seconds. Figure
5.7 through 5.11 show the performance gauge for CPU and memory for the experiments 1-5,

5.4. Evaluation Scenarios 59

which shows a decrease in CPU and memory utilization when we increased the virtual sensor
frequency.

Table 5.3: Impact of the frequency over the performance

Scenario 1 - Experiment 1
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 6.78% 57.03% 13.51% 12.41% 6.02%
Memory 46.27% 51.73% 50.28% 50.31% 0.39%

Scenario 1 - Experiment 2
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 5 - - - -

Min Max Average Median S D.
CPU 5.54% 57.36% 12% 10.22% 6.30%
Memory 46.28% 51.68% 50.19% 50.21% 0.36%

Scenario 1 - Experiment 3
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 10 - - - -

Min Max Average Median S D.
CPU 5.58% 78.21% 11.62% 9.62% 7.49%
Memory 46.50% 51.30% 49.89% 49.87% 0.28%

Scenario 1 - Experiment 4
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 15 - - - -

Min Max Average Median S D.
CPU 5.06% 57.44% 10.74% 9.32% 0.16%
Memory 46.32% 50.85% 49.15% 49.17% 0.29%

60 Chapter 5. Evaluation

Scenario 1 - Experiment 5
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 60 - - - -

Min Max Average Median S D.
CPU 5.30% 48.72% 9.96% 8.33% 5.25%
Memory 46.69% 51.42% 49.83% 49.82% 0.28%

Figure 5.7: Scenario 1 - Experiment 1 - Frequency Performance Evaluation

Figure 5.8: Scenario 1 - Experiment 2 - Frequency Performance Evaluation

Figure 5.9: Scenario 1 - Experiment 3 - Frequency Performance Evaluation

5.4.2 Scenario 2

The virtual sensor may subscribe to one or more topics. The number of topics that the virtual
sensor wishes to subscribe to, specifies the number of input sources that the virtual sensor
should have. Therefore, the purpose of this scenario is to evaluate the impact of the number
of input sources per virtual sensor over the performance. Each experiment would use the same

5.4. Evaluation Scenarios 61

Figure 5.10: Scenario 1 - Experiment 4 - Frequency Performance Evaluation

Figure 5.11: Scenario 1 - Experiment 5 - Frequency Performance Evaluation

(a) CPU Comparison (b) Memory Comparison

Figure 5.12: Scenario 1 - Frequency Performance Comparison

virtual sensor with with the difference being the number of input sources. The virtual sensor
was tested with 1, 10, 50, 100, and 150 input sources. As shown in table 5.4 we can notice that
the CPU and memory utilization increased by increasing the number of input sources. This
increase was due to increase in the number of topics declared at the message broke, since each
input source represented an independent topic, which require the message broker to create an
exchange for each topic. Furthermore, for each input source the virtual sensor needs to define
a queue to store data received. We can infer that the more input sources that a virtual sensor
have the more CPU and memory.

62 Chapter 5. Evaluation

Table 5.4: Impact of number of inputs per virtual sensor over the performance

Scenario 2 - Experiment 1
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 6.78% 57.03% 13.51% 12.41% 6.02%
Memory 46.27% 51.73% 50.28% 50.31% 0.39%

Scenario 2 - Experiment 2
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 10 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 7.20% 66.84% 16.01% 15.19% 0.22%
Memory 44.47% 51.69% 49.65% 49.77% 0.60%

Scenario 2 - Experiment 3
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 50 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 15.80% 65.64% 27.22% 26.02% 7.10%
Memory 44.35% 56.54% 54.21% 54.60% 1.58%

Scenario 2 - Experiment 4
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 100 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 15.57% 82.52% 39.91% 38.17% 7.79%
Memory 48.34% 67.46% 63.25% 63.82% 2.99%

5.4.3 Scenario 3
The purpose of this scenario is to assess the impact of the total number of virtual sensor used
on the performance. In this scenario we deploy a set of virtual sensors all at level 1. Each
virtual sensor receives one input source and each has the same frequency rate. In this scenario
we ran 5 different experiments using 1, 10, 50, 100, 150 virtual sensors. We noticed that as we
increased the number of virtual sensors, higher the CPU and memory utilization. This behavior

5.4. Evaluation Scenarios 63

Scenario 2 - Experiment 5
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 150 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 21.28% 85.90% 50.16% 48.30% 7.71%
Memory 44.91% 72.22% 66.85% 67.87% 4.81%

Figure 5.13: Scenario 2 - Experiment 1 - Number of Inputs per Virtual Sensor Performance
Evaluation

Figure 5.14: Scenario 2 - Experiment 2 - Number of Inputs per Virtual Sensor Performance
Evaluation

Figure 5.15: Scenario 2 - Experiment 3 - Number of Inputs per Virtual Sensor Performance
Evaluation

is expected since each virtual sensor needs to define its input source and output destination.

64 Chapter 5. Evaluation

Figure 5.16: Scenario 2 - Experiment 4 - Number of Inputs per Virtual Sensor Performance
Evaluation

Figure 5.17: Scenario 2 - Experiment 5 - Number of Inputs per Virtual Sensor Performance
Evaluation

(a) CPU Comparison (b) Memory Comparison

Figure 5.18: Scenario 2 - Number of Inputs per Virtual Sensor Performance Comparison

Figure 5.19: Scenario 3 - Experiment 1 - Number of Virtual Sensors Performance Evaluation

5.4. Evaluation Scenarios 65

Table 5.5: Impact of the number of virtual sensors over performance

Scenario 3 - Experiment 1
L1 L2 L3 L4 L5

VS Used 1 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 6.78% 57.03% 13.51% 12.41% 6.02%
Memory 46.27% 51.73% 50.28% 50.31% 0.39%

Scenario 3 - Experiment 2
L1 L2 L3 L4 L5

VS Used 10 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 8.14% 85.90% 18.50% 17.77% 8.82%
Memory 45.71% 52.65% 50.71% 50.91% 0.63%

Scenario 3 - Experiment 3
L1 L2 L3 L4 L5

VS Used 50 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 17.75% 94.67% 31.14% 28.93% 10.75%
Memory 44.57% 59.14% 56.14% 56.43% 1.90%

Scenario 3 - Experiment 4
L1 L2 L3 L4 L5

VS Used 100 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 16.47% 95.90% 45.29% 45.26% 11.35%
Memory 45.05% 72.26% 67.08% 68.27% 4.39%

5.4.4 Scenario 4
The purpose of this scenario is to evaluate the distribution of the virtual sensors across multiple
levels on the same fog node. In this scenario we use 150 virtual sensors. In the first experiment
we place all of them at level 1. In the second experiment we place 100 virtual sensor at level
1 and 50 virtual sensors at level 2. In experiment 3 we distribute the virtual sensors equally
across three levels (50 virtual sensor each level). We noticed that in experiment 2 when we

66 Chapter 5. Evaluation

Scenario 3 - Experiment 5
L1 L2 L3 L4 L5

VS Used 150 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 18.61% 98.22% 60.18% 57.25% 10.45%
Memory 45.38% 80.40% 73.25% 75.08% 6.29%

Figure 5.20: Scenario 3 - Experiment 2 - Number of Virtual Sensors Performance Evaluation

Figure 5.21: Scenario 3 - Experiment 3 - Number of Virtual Sensors Performance Evaluation

Figure 5.22: Scenario 3 - Experiment 4 - Number of Virtual Sensors Performance Evaluation

distribute the virtual sensors across 2 levels there was a slight increase in the CPU and memory
utilization and this can be resulted from the fact that the number of input sources has increased
at level 2 for each virtual sensor. However, when we distributed the virtual sensors into 3
levels we noticed that this has decreased the CPU utilization but the memory utilization almost
remained the same compared to Experiment 1.

5.4. Evaluation Scenarios 67

Figure 5.23: Scenario 3 - Experiment 5 - Number of Virtual Sensors Performance Evaluation

(a) CPU Comparison (b) Memory Comparison

Figure 5.24: Scenario 3 - Number of Virtual Sensors Performance Comparison

Table 5.6: Impact of the number of levels over performance

Scenario 4 - Experiment 1
L1 L2 L3 L4 L5

VS Used 150 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 18.61% 98.22% 60.18% 57.25% 10.45%
Memory 45.38% 80.40% 73.25% 75.08% 6.29%

Scenario 4 - Experiment 2
L1 L2 L3 L4 L5

VS Used 100 50 - - -
VS Inputs 1 2 - - -
Frequency 1 1 - - -

Min Max Average Median S D.
CPU 15.09% 99.25% 60.20% 57.44% 10.90%
Memory 44.98% 84.37% 76.38% 77.95% 7.30%

68 Chapter 5. Evaluation

Scenario 4 - Experiment 3
L1 L2 L3 L4 L5

VS Used 50 50 50 - -
VS Inputs 1 1 1 - -
Frequency 1 1 1 - -

Min Max Average Median S D.
CPU 16.43% 98.00% 47.33% 47.33% 13.58%
Memory 48.12% 80.58% 74.02% 75.75% 5.83%

Figure 5.25: Scenario 4 - Experiment 1 - Number of Levels Performance Evaluation

Figure 5.26: Scenario 4 - Experiment 2 - Number of Levels Performance Evaluation

Figure 5.27: Scenario 4 - Experiment 3 - Number of Levels Performance Evaluation

5.4.5 Scenario 5

The purpose of this scenario is to show the impact of distributing processing of virtual sensors
on the performance. For this scenario, we ran three experiments. The first experiment has 150
virtual sensors at level 1 in a single fog node. In the second experiment there are 100 virtual
sensors hosted on fog 1 and 50 virtual sensors hosted on fog 2, receiving inputs from the 100

5.4. Evaluation Scenarios 69

(a) CPU Comparison (b) Memory Comparison

Figure 5.28: Scenario 4 - Performance Comparison

virtual sensor at fog 1, which means each virtual sensor would receive two inputs. In the third
experiments, there are 50 virtual sensors hosted on a fog 1 on level 1, 50 virtual sensors hosted
on a fog 2 on level 2 and 50 virtual sensors hosted on a fog 3 at level 3. The virtual sensors
at fog 2 receive data from the virtual sensors at fog 1, and the virtual sensors at fog 3 receive
data from virtual sensors at fog 2. Table 5.7 shows the results of the three experiments. We can
notice that both the CPU and memory utilization is reduced when we distribute the processing
on other nodes.

Table 5.7: Impact of distribute processing over the performance

Scenario 5 - Experiment 1

Node 1

L1 L2 L3 L4 L5
VS Used 150 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 15.45% 96.44% 57.81% 54.77% 10.93%
Memory 44.12% 79.44% 73.08% 74.08% 6.38%

Figure 5.29: Scenario 5 - Experiment 1 - Performance Evaluation for 150 VS Running on
Single Node

70 Chapter 5. Evaluation

Scenario 5 - Experiment 2

Node 1

L1 L2 L3 L4 L5
VS Used 100 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 11.93% 96.70% 50.67% 48.96% 11.42%
Memory 44.95% 73.72% 67.86% 69.16% 4.85%

Node 2

L1 L2 L3 L4 L5
VS Used - 50 - - -
VS Inputs - 1 - - -
Frequency - 1 - - -

Min Max Average Median S D.
CPU 7.32% 87.88% 18.16% 17.13% 7.05%
Memory 43.44% 59.64% 56.47% 56.70% 1.75%

Scenario 5 - Experiment 3

Node 1

L1 L2 L3 L4 L5
VS Used 50 - - - -
VS Inputs 1 - - - -
Frequency 1 - - - -

Min Max Average Median S D.
CPU 9.65% 92.98% 31.78% 29.06% 11.93%
Memory 45.19% 63.17% 59.26% 59.74% 2.49%

Node 2

L1 L2 L3 L4 L5
VS Used - 50 - - -
VS Inputs - 1 - - -
Frequency - 1 - - -

Min Max Average Median S D.
CPU 6.13% 91.88% 16.18% 14.68% 0.44%
Memory 44.70% 59.11% 56.76% 57.27% 1.70%

Node 3

L1 L2 L3 L4 L5
VS Used - - 50 - -
VS Inputs - - 1 - -
Frequency - - 1 - -

Min Max Average Median S D.
CPU 4.57% 89.06% 12.43% 11.17% 8.35%
Memory 46.27% 57.63% 55.54% 55.67% 1.10%

5.4.6 Scenario 6

The purpose of this scenario is to evaluate the affect of the virtual sensor frequency. We defined
in section 4.3.4 the use of vsFrequency which determines the rate at which virtual sensor checks
the input queues. This scenario uses 111 virtual sensors that is deployed on three levels. The

5.4. Evaluation Scenarios 71

(a) Node 1

(b) Node 2

Figure 5.30: Scenario 5 - Experiment 2 - Performance Evaluation for 150 VS distributed into
tow nodes

same number of virtual sensors will be used in all experiments of this scenario with one differ-
ence is the frequency rate at which the virtual sensor will be running. We ran the virtual sensor
at a frequency rate of 5, 10, 15, an 60 seconds. The results show that the CPU and memory
utilization decreased by increasing the frequency rate of the virtual sensor. When we increased
the frequency from 5 to 10 there was an enhancement in the CPU utilization from 36.47%
to 34.65% or 2% enhancement in the CPU performance. When we increased the frequency
rate from 15 seconds to 60 seconds there was an enhancement in the CPU utilization from
31.66% to 28.66% or 3% enhancement in the CPU performance. Figure 5.32 through 5.35
show the performance gauge for CPU and memory for the experiments 1-4, which shows an
improvement in CPU and memory utilization when we increased the virtual sensor frequency.

Table 5.8: Impact of the frequency using 111 virtual sensors over the performance

Scenario 6 - Experiment 1
L1 L2 L3 L4 L5

VS Used 100 10 1 - -
VS Inputs 1 - - - -
Frequency 5 - - - -

Min Max Average Median S D.
CPU 16.80% 95.89% 36.47% 32.36% 15.40%
Memory 49.79% 84.01% 78.48% 80.26% 6.30%

72 Chapter 5. Evaluation

(a) Node 1

(b) Node 2

(c) Node 3

Figure 5.31: Scenario 5 - Experiment 3 - Performance Evaluation for 150 VS distributed into
three nodes

Scenario 6 - Experiment 2
L1 L2 L3 L4 L5

VS Used 100 10 1 - -
VS Inputs 1 - - - -
Frequency 10 - - - -

Min Max Average Median S D.
CPU 11.39% 95.68% 34.65% 31.04% 14.68%
Memory 50.65% 81.45% 76.15% 78.46% 5.71%

5.5 Discussion of Results

When the middleware starts, there are several tasks that take place. These include reading all
sensor configurations (JSON), instantiation of virtual sensors, and create topics associated with
each virtual sensor. This cause the middleware to reach the maximum number displayed in the
results. Once the middleware finished processing and instanctiating all virtual sensor the load

5.5. Discussion of Results 73

Scenario 6 - Experiment 3
L1 L2 L3 L4 L5

VS Used 100 10 1 - -
VS Inputs 1 - - - -
Frequency 15 - - - -

Min Max Average Median S D.
CPU 11.92% 96.68% 31.66% 26.65% 15.87%
Memory 45.32% 74.55% 69.54% 71.48% 5.37%

Scenario 6 - Experiment 4
L1 L2 L3 L4 L5

VS Used 100 10 1 - -
VS Inputs 1 - - - -
Frequency 60 - - - -

Min Max Average Median S D.
CPU 9.85% 95.67% 28.66% 23.66% 15.99%
Memory 46.55% 71.31% 65.96% 67.11% 4.14%

Figure 5.32: Scenario 6 - Experiment 1 - Frequency Performance Evaluation of 111 Virtual
Sensors

Figure 5.33: Scenario 6 - Experiment 2 - Frequency Performance Evaluation of 111 Virtual
Sensors

on CPU and Memory is decreased.
The collection of evaluation results for all experiments executed only once manually using

Linux commands for 6 minutes. The commands were started directly after starting the middle-
ware. However, it is hard to tell the exact start point of the results collection compared to the
start point of the middleware. Therefore, if multiple runs executed, there might be a slight vari-

74 Chapter 5. Evaluation

Figure 5.34: Scenario 6 - Experiment 3 - Frequency Performance Evaluation of 111 Virtual
Sensors

Figure 5.35: Scenario 6 - Experiment 4 - Frequency Performance Evaluation of 111 Virtual
Sensors

(a) CPU Comparison (b) Memory Comparison

Figure 5.36: Scenario 6 - Frequency Performance Comparison for 111 Virtual Sensors

ation in the minimum, maximum, and average of the CPU and memory performance. Another
reason behind this slight variation is that the operating system has other software packages
running in the background which might have some processes running that might impact the
evaluation numbers.

Chapter 6

Conclusion and Future Work

6.1 Conclusion
The Internet of Things (IoT) is a massively growing field where billions of devices are ex-
pected to be connected to the internet. These devices co-exits in a fast changing heterogeneous
environment that uses different protocols, operating systems, and hardware. Yet, these devices
need to interact with different applications to process sensor data and perform tasks efficiently.
Moreover, most applications in a rapid growing world require a real-time processing of data
to provide real-time responses. This produce a burden on application developers to communi-
cate with IoT devices which use different protocols and produce large amounts of data. The
middleware was able to reduce the development efforts by extending the physical sensor ac-
tivities to provide extended functions performed on the fog nodes rather than on the cloud
or let the applications do the actual processing of sensor data. The middleware provided the
abstraction required by application through the use of adapters to connect to the physical sen-
sors and through the use of the publish-subscribe design pattern. Furthermore, the middleware
considered the different needs of the applications by providing the choice for the applications
to subscribe to sensor data at fog nodes or at the cloud. Therefore, it helped applications to
acquire sensor data in a real time or near-real time. In addition, the use of the fog computing
helped the middleware to distribute the processing of sensor data to produce results quickly and
minimize the need for powerful node to do the processing. Finally, the middleware through the
use of fog computing reduced the amount of the traffic transferred to the cloud by processing
sensor data on the fog nodes and allowing applications to subscribe to the produced data.

In this thesis, we propose virtual sensor middleware architecture to overcome the different
challenges. The middleware focused on the following:

• Reduce the development efforts required by application developers through the use of
virtual sensors, which extends the functionalities of the IoT devices needed by the ap-
plications. For example, a virtual sensor can be used to connect to multiple temperature
sensors and compute the average temperature. Therefore, it reduced the development
efforts to establish and maintain connections to the physical sensors then compute the
average temperature.

• Provide a real-time or near real-time sensor data by processing the data at the fog node
and allowing applications to receive sensor data from the fog node.

75

76 Chapter 6. Conclusion and FutureWork

• Eliminate the dependency between IoT devices and applications through the use of the
publish-subscribe design pattern, where data producers don’t need to maintain informa-
tion about data consumers.

• Introduce new IoT devices to the applications easily regardless of the underlying proto-
col through the use of adapters or by allowing capable IoT devices to send data to the
message broker.

• Bring up an adaptive middleware that allows modifications of virtual sensor configu-
ration and introduce new virtual sensor through configurable settings that can updated
during the run-time of the applications.

• Introduce the use of a fault-handling policy to deal with the absence of sensor data when
a physical sensor is down

6.2 Future Work

In this thesis, we built virtual sensor middleware to correspond to different challenges dis-
cussed earlier. The middleware was tested and operated well in different scenarios. Despite
the functionalities provided by the middleware, there are always a space for improvement. The
middleware can be extended to support more features and enhance existing functions

First, the middleware uses the publish-subscribe design pattern to exchange information
between virtual sensors and applications. The publish-subscribe design pattern currently sup-
port the use of topics to exchange information. This, can be extended to make virtual sensors
content-aware by allowing virtual sensors to apply filters to receive data selectively based on
the content. This feature would allow virtual sensor to filter data and would minimize the traffic
sent over the network.

Second, sensor data processing can be a very sophisticated problem. Especially due to
errors produced by physical sensors. The middleware currently applies a simple fault-handling
technique that might not be sufficient to cover all cases. Therefore, in more complex scenarios
data/sensor fusion [27] [20] might be required to process sensor data to make sure the produced
data have a better quality and to produce new derived data type from the input sources. For
example, if sensors of different types are deployed inside a cargo container that transfer food,
the container should preserve the food under certain conditions. Suppose, a humidity and
temperature sensors are used. By applying sensor fusion on the data we can improve the quality
of the readings and produce a new reading that tells us if the conditions inside the container are
suitable to preserve the food.

Third, currently applications should have knowledge about the published topics in order to
subscribe to these topics. Therefore, applications should be able to allocate topics by search-
ing a topics-catalog which contains a description of each topic, which allows applications to
independently select the topics and subscribe to.

Fourth, subscribers and publishers require username and password to access the message
broker. This can cause a security issue and can be difficult to manage since it requires the
maintenance of different applications. We will explore the use f a public-private key.

6.2. FutureWork 77

Fifth, the current architecture assumes the administrator specifies the deployment location
of the virtual sensors. It would be more convenient if the middleware is able to determine
the best location to deploy the virtual sensor based on multiple factors: The desired response
time, the distance from the physical sensor, the function executed by the virtual sensor, and the
processing power of the fog node.

Sixth, a more sophisticated dashboards should be developed to support advanced monitor-
ing and provide a GUI and advanced reporting tools.

Bibliography

[1] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A Middleware For Fast and Flexible
Sensor Network Deployment. Proceedings of the 32nd international conference on Very
large data bases, pages 1199–1202, 2006.

[2] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa
Ayyash. Internet of things: A survey on enabling technologies, protocols, and applica-
tions. IEEE Communications Surveys & Tutorials, 17(4):2347–2376, 2015.

[3] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Senaas: An event-driven sen-
sor virtualization approach for internet of things cloud. In Networked Embedded Systems
for Enterprise Applications (NESEA), 2010 IEEE International Conference on, pages 1–
6. IEEE, 2010.

[4] ZigBee Alliance. What is zigbee? 2015. https://www.zigbee.org/
what-is-zigbee/494-2/.

[5] Apache Foundation. Apache commons net. Product documentation, 2019. https:
//commons.apache.org/proper/commons-net/ [March 15, 2019].

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[7] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, Glen Daniels, Phillip
Hallam-Baker, Maryann Hondo, Chris Kaler, Dave Langworthy, Ashok Malhotra, et al.
Web services policy 1.2 - framework (ws-policy). W3C specification, 2006. http:
//www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/.

[8] Bootstrap. Bootstrap. Product documentation, 2019. https://getbootstrap.com/
docs/3.3/ [March 14, 2019].

[9] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap: An application protocol
for billions of tiny internet nodes. IEEE Internet Computing, 16(2):62–67, 2012.

[10] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. Integration of
cloud computing and internet of things: a survey. Future generation computer systems,
56:684–700, 2016.

78

https://www.zigbee.org/what-is-zigbee/494-2/
https://www.zigbee.org/what-is-zigbee/494-2/
https://commons.apache.org/proper/commons-net/
https://commons.apache.org/proper/commons-net/
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
https://getbootstrap.com/docs/3.3/
https://getbootstrap.com/docs/3.3/

BIBLIOGRAPHY 79

[11] Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey Frey, Marc
Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad Lovering, et al. Web
services addressing (ws-addressing). W3C specification, 2004. http://www.w3.org/
Submission/2004/SUBM-ws-addressing-20040810/.

[12] Doug Davis, Ashok Malhotra, Wu Chou, and Katy Warr. Web services metadata ex-
change (WS-metadataexchange). W3C recommendation, 2011. http://www.w3.org/
TR/2011/REC-ws-metadata-exchange-20111213/.

[13] JSON Editor. Json editor. Product documentation, 2019. https://github.com/
josdejong/jsoneditor [March 14, 2019].

[14] Patrick Th Eugster, Rachid Guerraoui, and Joe Sventek. Type-based publish/subscribe.
Technical report, 2000.

[15] FIWARE. Introduction - quick fiware tour guide. FIWARE documen-
tation, 2018. http://fiwaretourguide.readthedocs.io/en/latest/
connection-to-the-internet-of-things/introduction/.

[16] FIWARE. Reading data from iot devices - quick fiware tour
guide. FIWARE documentation, 2018. http://fiwaretourguide.
readthedocs.io/en/latest/connection-to-the-internet-of-things/
how-to-read-measures-captured-from-iot-devices/.

[17] Apache Foundation. Apache log4j 2. Apache website, 2019. https://logging.
apache.org/log4j/2.x/ [Feb 25, 2019].

[18] Raspberry Pi Foundation. Raspberry pi 3 model b+. Product documentation, 2019.
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
[Feb 25, 2019].

[19] Raspberry Pi Foundation. Raspbian. Product documentation, 2019. https://www.
raspberrypi.org/downloads/raspbian/ [March 14, 2019].

[20] David L Hall and James Llinas. An introduction to multisensor data fusion. Proceedings
of the IEEE, 85(1):6–23, 1997.

[21] Daniel Happ, Niels Karowski, Thomas Menzel, Vlado Handziski, and Adam Wolisz.
Meeting iot platform requirements with open pub/sub solutions. Annals of Telecommuni-
cations, 72(1-2):41–52, 2017.

[22] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. Mqtt-s—a publish/subscribe
protocol for wireless sensor networks. In Communication systems software and mid-
dleware and workshops, 2008. comsware 2008. 3rd international conference on, pages
791–798. IEEE, 2008.

[23] François Jammes, Antoine Mensch, and Harm Smit. Service-oriented device communi-
cations using the devices profile for web services. In Proceedings of the 3rd international
workshop on Middleware for pervasive and ad-hoc computing, pages 1–8. ACM, 2005.

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/TR/2011/REC-ws-metadata-exchange-20111213/
http://www.w3.org/TR/2011/REC-ws-metadata-exchange-20111213/
https://github.com/josdejong/jsoneditor
https://github.com/josdejong/jsoneditor
http://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/introduction/
http://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/introduction/
http://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/how-to-read-measures-captured-from-iot-devices/
http://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/how-to-read-measures-captured-from-iot-devices/
http://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/how-to-read-measures-captured-from-iot-devices/
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

80 BIBLIOGRAPHY

[24] Ram Jeyaraman, Vipul Modi, Dan Driscoll, Geoff Bullen, and Toby Nixon. Under-
standing devices profile for web services, ws-discovery, and soap-over-udp. 2008.
http://msdn.microsoft.com/en-us/library/dd179231.aspx#_Toc208829801.

[25] The jQuery Foundation. What is jquery. Product documentation, 2019. https:
//jquery.com/ [March 14, 2019].

[26] Danh Le-Phuoc, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, and Manfred
Hauswirth. A middleware framework for scalable management of linked streams. Web
Semantics: Science, Services and Agents on the World Wide Web, 16:42–51, 2012.

[27] Theresa W Long, Emil L Hanzevack, and William L Bynum. Sensor fusion and failure
detection using virtual sensors. In Proceedings of the 1999 American Control Conference
(Cat. No. 99CH36251), volume 4, pages 2417–2421. IEEE, 1999.

[28] Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. Sensor cloud: A cloud of virtual sen-
sors. IEEE software, 31(2):70–77, 2014.

[29] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[30] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop on Em-
bedded networked sensors, pages 78–82. ACM, 2007.

[31] Mark Nottingham. Web linking. IETF standards track, 2010. http://tools.ietf.
org/html/rfc5988.

[32] Oracle. Java api for json processing. JSR 374 specification, 2015. https://javaee.
github.io/jsonp/ [Feb 25, 2019].

[33] R. Salz P. Leach, M. Mealling. A universally unique identifier (uuid) urn names-
pace. IETF standards track, 2005. https://tools.ietf.org/html/rfc4122 [Feb
25, 2019].

[34] RabbitMQ. Amqp 0-9-1 model explained. RabbitMQ documentation, 2019.
https://www.rabbitmq.com/tutorials/amqp-concepts.html#amqp-model
[Feb 25, 2019].

[35] RabbitMQ. Rabbitmq java client library. Technical report, 2019. https://www.
rabbitmq.com/java-client.html [Feb 25, 2019].

[36] RabbitMQ. Which protocols does rabbitmq support? Technical report, 2019. https:
//www.rabbitmq.com/protocols.html [Feb 25, 2019].

[37] Sajjad Hussain Shah and Ilyas Yaqoob. A survey: Internet of things (iot) technologies,
applications and challenges. In Smart Energy Grid Engineering (SEGE), 2016 IEEE,
pages 381–385. IEEE, 2016.

[38] Zach Shelby. Constrained restful environments (CoRE) link format. IETF standards
track, 2012. http://tools.ietf.org/html/rfc6690.html.

http://msdn.microsoft.com/en-us/library/dd179231.aspx#_Toc208829801
https://jquery.com/
https://jquery.com/
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://tools.ietf.org/html/rfc4122
https://www.rabbitmq.com/tutorials/amqp-concepts.html#amqp-model
https://www.rabbitmq.com/java-client.html
https://www.rabbitmq.com/java-client.html
https://www.rabbitmq.com/protocols.html
https://www.rabbitmq.com/protocols.html
http://tools.ietf.org/html/rfc6690.html

BIBLIOGRAPHY 81

[39] Zach Shelby. The constrained application protocol (CoAP). IETF standards track, 2016.
http://tools.ietf.org/html/rfc7252.

[40] Haiying Shen. Content-based publish/subscribe systems. In Handbook of Peer-to-Peer
Networking. Springer US, 2010.

[41] Ayman Sleman and Reinhard Moeller. Integration of wireless sensor network services
into other home and industrial networks; using device profile for web services (dpws).
In Information and Communication Technologies: From Theory to Applications, 2008.
ICTTA 2008. 3rd International Conference on, pages 1–5. IEEE, 2008.

http://tools.ietf.org/html/rfc7252

Appendix A

Virtual Sensor Configuration File

1 {
2 "vsName" : "VS-01-000001",
3 "vsID" : "01-000001",
4 "vsType" : "Processor",
5 "vsFrequency" : "1",
6 "vsInitialDelay" : "1",
7 "vsAggregateFunction" : "AVG",
8 "vsNode" : {
9 "hostname" : "vsm-fognode01",

10 "hostip" : "172.18.17.11"
11 },
12 "publishExchange" : {
13 "exchName" : "PE-01-000001",
14 "exchType" : "fanout",
15 "exchNode" : {
16 "exchHostName" : "vsm-fognode01",
17 "exchHostIP" : "172.18.17.11"
18 },
19 "exchUsername" : "admin",
20 "exchPassword" : "admin",
21 },
22 "subscribeExchanges" : [
23 {
24 "exchName" : "PE-00-000001",
25 "exchType" : "fanout",
26 "exchQueueName" : "SE-Queue-01-000001

--00-000001",
27 "exchNode" : {
28 "exchHostName" : "vsm-fognode0

1",
29 "exchHostIP" : "172.18.17.11"
30 },

82

83

31 "exchUsername" : "admin",
32 "exchPassword" : "admin",
33 },
34 {
35 "exchName" : "PE-00-000002",
36 "exchType" : "fanout",
37 "exchQueueName" : "SE-Queue-01-000001

--00-000002",
38 "exchNode" : {
39 "exchHostName" : "vsm-fognode01",
40 "exchHostIP" : "172.18.17.11"
41 },
42 "exchUsername" : "admin",
43 "exchPassword" : "admin",
44 }
45],
46 "faultHandlerPolicyID" : "policy1",
47 "saveToDB" : true,
48 "database" : {
49 "dbName" : "mydb",
50 "driverURL" : "jdbc:sqlserver://localhost:3306

",
51 "dbUsername" : "admin",
52 "dbPassword" : "admin"
53 }
54 }

Appendix B

Reading Evaluations Tables and Figures

Appendix B explains how to read the tables used in chapter 5 and explains the Box and Whisker
Diagram.

B.1 Reading Evaluation Table
Figure B.1 shows the evaluation table, which consists of two parts:

• Part 1: This part is illustrated in figure B.2 describes the different configurations used to
setup the virtual sensor at each level. There are three configurations used at each level:

– VS Used refers to the number of virtual sensor used at the mentioned level.

– VS Inputs refers to the number of input sources that any given virtual sensor have
at the mentioned level.

– Frequency refers to the frequency rate at which any given sensor in the mentioned
level checks the input queues

• Part 2: This part illustrated in figure B.3 describes the statistical data collected from the
full experiment for both the CPU and Memory utilization.

Figure B.1: Evaluation Table Parts

84

B.2. Box andWhisker Plot 85

Figure B.2: Evaluation Table Part 1

Figure B.3: Evaluation Table Part 2

B.2 Box and Whisker Plot

Box and Whisker is a diagram consist of a box with two lines drafted from the middle of the
box called whisker, at the end of each line there is a cross-hair that forms a T-shape along with
the line. Each part of the diagram represents a statistical information in a data set as shown in
figure B.4.

Figure B.4: Box and Whisker Plot Explanation

86 Chapter B. Reading Evaluations Tables and Figures

• Maximum Value: The maximum value is displayed at the top of the box using a cross-
hair.

• Minimum Value: The minimum value is displayed at the bottom of the box using a
cross-hair.

• Upper Quartile (Q3): Upper quartile is defined as the median for the upper half of the
data set and presented with the top line in the box.

• Lower Quartile (Q1): Lower quartile is defines as the median for the lower half of the
data set and presented with lower line in the box.

• Median: The median is presented with the middle-line in the box which is calculated for
the whole data set.

• Average: The average is presented with X inside the box

B.2. Box andWhisker Plot 87

Curriculum Vitae

Name: Fadi AlMahamid

Post-Secondary Princess Sumaya University for Technology
Education and Amman, Jordan
Degrees: 2007 - 2001 B.Sc.

New York Institute of Technology
Amman, Jordan
2002 - 2003 M.Sc.

University of Western Ontario
London, Ontario, Canada
2017 - 2019 M.Sc.

Related Work Research & Teaching Assistant
Experience: The University of Western Ontario

2017 - 2019

Team Lead & Senior Consultant
Xerox
2012 - 2016

Senior Consultant & Solution Architect
eSolutions Information Management
2009 - 2011

ECM Consultant
Xerox
2007 - 2009

IT Lecturer
PSUT, NYIT, Colleges of Technology, and ECT
2001 - 2007

Honours and Princess Sumaya Excellence Award
Awards: 2001

Graduate Student Teaching Assistant Award – Nomination
2017 & 2019

	Virtual Sensor Middleware: A Middleware for Managing IoT Data for the Fog-Cloud Platform
	Recommended Citation

	Abstract
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Background
	Internet Of Things
	Wireless Sensors Network and Protocols
	Cloud Computing
	Fog Computing

	Problem Statement
	Thesis Objective
	Thesis Outline

	Related Work
	Virtual Sensors
	Related Work

	CoAP Proxy
	DPWS
	DPWS for IoT devices
	DPWS Gateways for Accessing WSN

	Middleware
	Middleware-IoT Devices communication
	 Adapters/Connectors/Wrappers
	 Publish/Subscribe

	Related Work

	Gap Analysis

	Virtual Sensors Middleware Architecture
	Virtual Sensor
	Middleware Communication
	Disseminating Data
	Publish-Subscribe communication patterns
	Publish-Subscriber Topologies
	Why Federated Architecture?
	Virtual Sensor Communication

	Virtual Sensor Deployment Structure
	Middleware Components
	Middleware Fog Components
	Middleware Cloud Components
	Virtual Sensor Components
	Virtual Sensor Configurations
	Components

	Middleware Components Interaction Scenarios
	Creating Virtual Sensor Configurations
	Instantiating Virtual Sensor Configurations
	Exchanging Messages Between Virtual Sensors

	UML Diagram

	Virtual Sensor Middleware Implementation
	Platform
	Development Tools
	Middleware Cloud Components
	Virtual Sensor Configurator Interface
	Virtual Sensor Configurator
	Virtual Sensor Deployer
	Virtual Sensor Configurations

	Middleware Fog Components
	Publish-Subscribe Message Broker
	Knowledge-Base
	Database
	Virtual Sensor Orchestrator
	Virtual Sensor Container
	Virtual Sensor Libraries
	RabbitMQ Java Client Library
	Java UUID Generator (JUG)
	Apache Log4J
	JSR 374 (JSON Processing)

	Implementation Classes
	VS Aggregator
	Publisher
	Consumer
	VS Orchestrator

	Evaluation
	Evaluation Environment
	Evaluation Factors and Metrics
	Evaluation Factors
	Evaluation Metrics

	Baseline
	Evaluation Scenarios
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6

	Discussion of Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Virtual Sensor Configuration File
	Reading Evaluations Tables and Figures
	Reading Evaluation Table
	Box and Whisker Plot

	Curriculum Vitae

