
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-18-2019 11:00 AM

A Survey Of Numerical Quadrature Methods For Highly Oscillatory A Survey Of Numerical Quadrature Methods For Highly Oscillatory

Integrals Integrals

Jeet Trivedi
The University of Western Ontario

Supervisor

Corless, Robert M.

The University of Western Ontario

Graduate Program in Applied Mathematics

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Jeet Trivedi 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Trivedi, Jeet, "A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals" (2019).
Electronic Thesis and Dissertation Repository. 6182.
https://ir.lib.uwo.ca/etd/6182

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/215392778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=ir.lib.uwo.ca%2Fetd%2F6182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6182?utm_source=ir.lib.uwo.ca%2Fetd%2F6182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
In this thesis, we examine the main types of numerical quadrature methods for a special

subclass of one-dimensional highly oscillatory integrals. Along with a presentation of the
methods themselves and the error bounds, the thesis contains implementations of the methods
in Maple and Python. The implementations take advantage of the symbolic computational
abilities of Maple and allow for a larger class of problems to be solved with greater ease to the
user. We also present a new variation on Levin integration which uses differentiation matrices
in various interpolation bases.

Keywords: Highly Oscillatory Quadrature, Numerical Quadrature, Levin Type Methods,
Filon Integration, Asymptotic Methods, Moment Free integration

i

Contents

Certificate of Examination i

Abstract i

List of Figures iv

1 Introduction 1
1.1 Failure of Classical Quadrature . 1

2 Asymptotic Type Methods 4
2.1 In The Absence of Stationary Points . 4

2.1.1 Numerical Examples . 6
2.2 In The Presence of Stationary Points . 10

2.2.1 Numerical Examples . 14

3 Filon Type Methods 16
3.1 Method Derivation . 16
3.2 Filon-Lagrange Method . 17
3.3 Filon-Hermite Method . 25

4 Moment Free Methods 35
4.1 Moment-Free Asymptotic Method . 36

4.1.1 Numerical Examples . 39
4.2 Moment-Free Filon Method . 42

4.2.1 Numerical Examples . 43

5 Levin Type Methods 46
5.1 Levin-Hermite Quadrature . 47
5.2 Levin-Bernstein Quadrature . 50
5.3 Levin-Compact Finite Difference Quadrature (Levin-CFD) 52
5.4 Numerical Experiments . 54

5.4.1 Stability of Methods . 59

6 Hybrid Method & Concluding Remarks 62

Bibliography 64

ii

A Computer Code 66
A.1 Asymptotic-Type Methods . 66

A.1.1 Asymptotic Method in the absence of stationary points 66
A.1.2 Asymptotic Method in the presence of stationary points 67

A.2 Filon-Type Methods . 69
A.2.1 Filon-Lagrange Method . 69
A.2.2 Filon-Hermite Method . 69

A.3 Levin-Type Methods . 72
A.3.1 Levin-Hermite Method . 72

Python Code . 72
Maple Code . 77

A.3.2 Levin-Bernstein Method . 84
A.3.3 Levin-Compact Finite Difference (CFD) 87

A.4 Moment-Free Methods . 90
A.4.1 Moment-Free Basis Verification Code 90
A.4.2 Moment-Free Asymptotic Method . 92
A.4.3 Moment-Free Filon Method . 94

A.5 Hybrid Method . 96

Curriculum Vitae 103

iii

List of Figures

1.1 Plot of the real and complex parts of the integrand f (x) = cos(x)eiωx2
for ω = 50. 1

1.2 Plots of the interpolated curves used for Gaussian quadrature. The red indicates
the function while the blue indicates the interpolated curves used for Gaussian
quadrature. 2

1.3 Error in Gaussian quadrature of integral (1.1) as a function of ω. 2

2.1 Left: Error plotted on a logarithmic scale of using the expression (2.17) to
evaluate

∫ 1

−1
cos(x)eiωx dx. Right: Absolute Error of using the expression (2.17)

to evaluate
∫ 1

−1
cos(x)eiωx dx scaled by ω3. 7

2.5 Absolute Error scaled by ω1/2. 9
2.7 Log plot of the absolute error for the asymptotic method applied to integral

(2.40) with increasing number of terms used. 14
2.8 Absolute error for the 3,4 and 5 term asymptotic method applied to (2.42). . . . 15
2.9 Absolute error scaled by ωp+1/2 for the 3,4 and 5 term asymptotic method ap-

plied to (2.42). 15

3.1 Absolute error for the Filon method plotted on a logarithmic scale for integral
(3.9). 20

3.2 Absolute error scaled by ω2 for the Filon method plotted on a logarithmic scale
for integral (3.9). 20

3.3 Log plot of the absolute error for 3-point Filon method used on integral (3.10). . 21
3.4 Scaled absolute error for 3-point Filon method used on integral (3.10). 21
3.5 Comparison of the 3-point Filon method and the 4-point Filon method for in-

tegral I1. 22
3.7 Comparison of the 3-point and 4-point Filon method applied to I2. 23
3.9 Absolute error plotted on a log scale for the Filon-Lagrange method with 3

nodes and the Filon-Hermite method with 3 nodes, each of confluency 2. 26
3.10 Absolute error scaled by ω3 for the Filon-Hermite method with 4 nodes applied

to (3.21), each of confluency 2. 28
3.11 Absolute error on a log scale for the Filon-Hermite method with 4 nodes, each

of confluency 2. 29
3.12 Error plot on the log scale with 3,5 and 7 interpolation nodes. The confluency

all of the nodes is set to 1 and the stationary point node’s is set to s · (r + 1) = 2. 32
3.13 Absolute error scaled by w3/2 for 3,5 and 7 interpolation nodes. 33
3.14 Absolute error scaled by ws+1/2, for confluency values s = 1, 2, 3. 33

iv

4.1 Log plot of the absolute error for the moment-free asymptotic method with 2,3
and 4 terms applied to integral (4.22). 39

4.2 Absolute error scaled by ω+p+1/2 for the moment free asymptotic method with
for p = 1, 2, 3 applied to (4.22). 39

4.3 Log plot of the absolute error for the moment-free asymptotic method with 2,3
and 4 terms applied to integral (4.23). 41

4.4 Absolute error scaled by ωp+1/3 for the moment free asymptotic method with
for p = 1, 2, 3 applied to (4.23). 41

4.5 Absolute error on a log scale for number of nodes N = 3, 5, 7 with confluency
1 at the endpoints. 43

4.6 Absolute error on a log scale for 3 nodes with confluency s = 1, 2, 3 at the
endpoints. 43

4.7 Log plot of the absolute error for the moment free Filon method applied to the
integral (4.28) with the number of nodes N = 3, 5, 7. 44

4.8 Absolute error scaled by ωs+1/3 for the moment free Filon method with 3 nodes,
with confluencies {s, 2 · (2s − 1), s} for s = 1, 2, 3. 44

5.1 Absolute error using the Levin-Lagrange method (Left) with 4 Chebyshev nodes
and Levin-Hermite method with 2 nodes each with confluency 2 (Right). 54

5.2 Absolute error using the Levin-Bernstein method (Left) with 4 Chebyshev
nodes and Levin-CFD method with 5 nodes (Right). 54

5.3 Absolute error multiplied by ω2 using the Levin-Lagrange method (Left) with
4 Chebyshev nodes and Levin-Hermite method with 4 nodes each with conflu-
ency 2 multiplied by ω3 (Right). 55

5.4 Absolute error multiplied by ω using the Levin-Bernstein method (Left) with 4
Chebyshev nodes and Levin-Composite Finite Difference method with 5 nodes
multiplied by ω2 (Right). 55

5.5 Absolute error multiplied by ω2 using the Levin-Lagrange method (Left) with
4 Chebyshev nodes and Levin-Hermite method with 4 nodes each with conflu-
ency 2 multiplied by ω3 (Right). 56

5.6 Absolute error multiplied by ω using the Levin-Bernstein method (Left) with 3
Chebyshev nodes and Levin-CFD method with 5 nodes multiplied by ω2 (Right). 56

5.7 Absolute error multiplied by ω2 using the Levin-Lagrange method (Left) with
4 Chebyshev nodes and Levin-Hermite method with 4 nodes each with conflu-
ency 2 multiplied by ω3 (Right). 57

5.8 Absolute error multiplied by ω using the Levin-Bernstein method (Left) with 3
Chebyshev nodes and Levin-Composite Finite Difference method with 4 nodes
multiplied by ω2 (Right). 57

5.9 Absolute error using the Levin-Hermite method (Left) with 5 Chebyshev nodes,
each with confluency 2 and the absolute error of the results scaled by ω2 (Right). 59

5.10 Log plot of the error as a function of the number of nodes for each of the
methods starting from 5 nodes and going up to 20 nodes. 60

5.11 Log plot of the error as a function of the number of nodes for each of the
methods for I7 starting from 5 nodes and going up to 20 nodes. 60

v

5.12 Log plot of the absolute error for Levin-Hermite method as a function of the
confluency at the 2 nodes (one at each endpoint) for I4. 61

vi

Chapter 1

Introduction

In this thesis, we will primarily discuss and present methods that numerically evaluate highly
oscillatory integrals of the form ∫ b

a
f (x)eiωg(x) dx,

where f (x) and g(x) are sufficiently smooth real valued functions and ω ∈ R such that |ω| � 1.

Integrals of this form arise in a broad range of applications such as radiative transfer [7],
fluid dynamics and electrodynamics [15]. They are also a extensively studied in harmonic
analysis and computational harmonic analysis [22].

1.1 Failure of Classical Quadrature
Consider the following example from [10]:∫ 1

−1
cos(x)eiωx2

dx. (1.1)

A plot of the integrand for ω = 50 (Figure (1.1)) reveals its highly oscillatory nature.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

Re
(f(

x)
)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

Im
(f(

x)
)

Figure 1.1: Plot of the real and complex parts of the integrand f (x) = cos(x)eiωx2
for ω = 50.

1

2 Chapter 1. Introduction

Typical naive numerical quadrature methods rely on sampling points and interpolating the
integrand over a basis of functions for which the integrals over the intervals are precomputed.
From the plots in Figure (1.1), it is clear that we will need to sample a large number of points in
order to get a reasonable numerical approximation for this function. Furthermore, the number
of points that need to be sampled will grow as we increase ω.

Let’s attempt to use Gaussian quadrature to evaluate integral (1.1). With 10 points sampled,

Figure 1.2: Plots of the interpolated curves used for Gaussian quadrature. The red indicates the
function while the blue indicates the interpolated curves used for Gaussian quadrature.

From plots (1.2), it is clear that standard quadrature is not enough. More so, if we fix the
number of partitions and raise ω, we see in plot (1.3) that the error is asymptotically O(1).

Figure 1.3: Error in Gaussian quadrature of integral (1.1) as a function of ω.

The method we will examine will allow us to compute integrals of this type much more ef-
ficiently with an remarkable property. The absolute error will actually decrease as ω increases.

The road map for the rest of chapters is as follows: First we examine two classical meth-
ods, the asymptotic method and the Filon method. During the examination, we will naturally
find the need to define the methods differently for the case when g(x) has stationary points in
the domain and when it doesn’t. With the classical methods presented, we will then look at
the Levin method, which is a moment-free method but cannot handle integrals with station-
ary points. Then we will examine moment-free variants of both the Asymptotic and the Filon

1.1. Failure of Classical Quadrature 3

method in the presence of stationary points. The moment-free versions, while essentially solv-
ing the problem, require that g′′(x) , 0 in the integration domain (except the stationary point,
of course). This leads us then to the final chapter, which combines all these methods and pro-
vides a higher level interface to which the user can simply pass the integral and the integration
domain is divided appropriately and the correct method used. This “hybrid” method is one that
can be easily integrated1 into any existing computer algebra system’s integration library.

Lastly, the Appendix contains the code for all these methods in Maple, which in itself
is a major part of the thesis. The same code is available for download through the Github
(https://github.com/jeettrivedi/highly-oscillatory/).

1no pun intended

https://github.com/jeettrivedi/highly-oscillatory/

Chapter 2

Asymptotic Type Methods

Here we present the treatment of the material from [13]. As the name might suggest, this
method relies on us being able to asymptotically expand the integral∫ b

a
f (x)eiωg(x) dx. (2.1)

We will divide our presentation into two parts, first only considering monotone g(x) (equiv-
alently, g(x) has no stationary point in [a, b]) and then the general case. The reason for this
separation in cases will become clear when we derive the asymptotic expansion. Let us start
by assuming that g(x) has no stationary points in [a, b].

2.1 In The Absence of Stationary Points
In order to present the derivation cleanly, make a few definitions. First, let

I[f] :=
∫ b

a
f (x)eiωg(x) dx.

Next, consider the integral,

I[f · (g′)2] =

∫ b

a
f (x) · (g′(x))2eiωg(x) dx (2.2)

Using integration by parts we get

I[f · (g′)2] =
1
iω

[
f (x)g′(x)eiωg(x)

]∣∣∣∣b
a
−

1
iω

∫ b

a

d
dx

(f (x)g′(x))eiωg(x) dx

=
1
iω

[
f (x)g′(x)eiωg(x)

]∣∣∣∣b
a
−

1
iω

I
[

d
dx

(f g′)
]

(2.3)

Now, because we assumed that g(x) has no stationary points in [a, b], we can replace f (x) by
f (x)

g′(x)2 in the expansion (2.3), which results in

I
[

f
(g′)2 · (g

′)2
]

= I[f] =
1
iω

[
f (x)
g′(x)

eiωg(x)
]∣∣∣∣∣∣b

a

−
1
iω

I
[

d
dx

(
f
g′

)]
. (2.4)

4

2.1. In The Absence of Stationary Points 5

Let us now expand the last term of expansion (2.4) strategically using integration by parts.

I
[

d
dx

(
f
g′

)]
=

(∫
g′(x)eiωg(x)

) [
1

g′(x)

(
d
dx

f
g′

)]∣∣∣∣∣∣b
a

−

∫ b

a

d
dx

(
1
g′

d
dx

(
f
g′

)) (∫
g′(u)eiωg(u) du

)
dx

(2.5)

Now noticing that
∫ x

iωg′(u)eiωg(u) du = eiωg(u), we get

I
[

d
dx

(
f
g′

)]
=

1
iω

[
eiωg(x)

g′(x)
d
dx

(
f
g′

)]∣∣∣∣∣∣b
a

−
1
iω

∫ b

a

d
dx

(
1
g′

d
dx

(
f
g′

))
eiωg(x) dx, (2.6)

I
[

d
dx

(
f
g′

)]
=

1
iω

[
eiωg(x)

g′(x)
d
dx

(
f
g′

)]∣∣∣∣∣∣b
a

−
1
iω

I
[

d
dx

(
1
g′

d
dx

(
f
g′

))]
. (2.7)

And so, collecting everything, we have

I[f] =
1
iω

[
f (x)
g′(x)

eiωg(x)
]∣∣∣∣∣∣b

a

−
1

(iω)2

[
eiωg(x)

g′(x)
d
dx

(
f
g′

)]∣∣∣∣∣∣b
a

+
1

(iω)2 I
[

d
dx

(
1
g′

d
dx

(
f
g′

))]
. (2.8)

Another application of integration by parts yields,

I[f] =
1
iω

[
f (x)
g′(x)

eiωg(x)
]∣∣∣∣∣∣b

a

−
1

(iω)2

[
eiωg(x)

g′(x)
d
dx

(
f
g′

)]∣∣∣∣∣∣b
a

+
1

(iω)3

[
d
dx

(
1
g′

d
dx

(
f
g′

))
eiωg(x)

g′(x)

]∣∣∣∣∣∣b
a

−
1

(iω)3 I
[

d
dx

(
1
g′

d
dx

(
1
g′

d
dx

(
f
g′

)))]
(2.9)

From the expression (2.9), a pattern becomes apparent. In each successive term, there is an
additional 1

iωg′(x)
d
dx of the non-exponential part of the previous term. We can formalize this

pattern as follows. Let

f0(x) = f (x) (2.10)

and fm+1(x) =
d
dx

(
fm(x)
g′(x)

)
(2.11)

Then the asymptotic expansion is

I[f] ∼
∞∑

m=0

−
1

(iω)m+1

[
eiωg(x)

g′(x)
fm(x)

]∣∣∣∣∣∣b
a

= −

∞∑
m=0

1
(iω)m+1

[
eiωg(b)

g′(b)
fm(b) −

eiωg(a)

g′(a)
fm(a)

]
. (2.12)

Therefore an asymptotic method with p terms (denoted QA
p) is simply this series terminated

after p terms. That is

QA
p[f , g] ≡ −

p−1∑
m=0

1
(−iω)m+1

[
eiωg(b)

g′(b)
fm(b) −

eiωg(a)

g′(a)
fm(a)

]
. (2.13)

6 Chapter 2. Asymptotic TypeMethods

An immediate consequence of truncating the series to the first p terms is that the asymptotic
error in ω is

QA
p[f , g] − I[f] ∼ O(ω−p−1) (2.14)

Now with the approximation at hand, let us quickly gather our thoughts. Firstly, the deriva-
tion makes clear why special attention is required in the presence of stationary points as the
substitution we make of f

(g′)2 can’t be done in the presence of stationary points. Secondly,
equation (2.14) makes it clear why the error decreases as ω increases.

Lastly, as we only need to take symbolic derivatives, we can use computer algebra systems
such as Maple to automate this process of computing the series and automate the entire method.
We note in passing that this theme of automating these methods using computer algebra sys-
tems will prevail throughout this discussion.

2.1.1 Numerical Examples

Example 2.1.1
∫ b

a
f (x)eiωx dx

In this particular case, the sequence of functions fm(x) has a simple form because g′(x) = 1.
So, we have the following form,

QA
p[f , x] = −

p−1∑
m=0

1
(−iω)m+1

[
eiωb f (m)(b) − eiωa f (m)(a)

]
. (2.15)

Furthermore, if g(x) is monotone in [a, b] then we know the function g(x) is invertible on
[a, b]. So, we can use the expansion (2.15) to evaluate any integral of the form (2.1) as with a
simple change of variables. We get∫ b

a
f (x)eiωg(x) dx =

∫ g(b)

g(a)

f (g−1(x))
g′(g−1(x))

eiωx dx.

Now we demonstrate with some examples that the error is indeed O(ω−p−1). The code used
to calculate the examples in this section is included in (A.1.1).

Example 2.1.2 I =
∫ 1

−1
cos(x)eiωx dx

The integral has the closed form expression∫ 1

−1
cos(x)eiωx dx =

−e−iω

ω2 − 1
(iω cos(1)e2iω + sin(1)e2iω − iω cos(1) + sin(1)). (2.16)

Recall that we expect the error to be O(ω−p−1). This however, makes no promises about the
magnitude of the error but only about the decay as ω → ∞. Let’s calculate the expression
QA

2 [cos(x), x].

QA
2 [cos(x), x] = −

1
(−iω)

(eiω cos(1) − e−iω cos(1)) +
1

(−iω)2 (eiω sin(1) − e−iω sin(1)) (2.17)

Let’s plot the actual error ‖QA
2 − I‖ on a logarithmic scale and the error scaled by ω3, that is

‖QA
2 − I‖ · ω3.

2.1. In The Absence of Stationary Points 7

0 25 50 75 100

10 7

10 5

10 3

10 1
|Q

2 A
I|

0 25 50 75 100
0.0

0.5

1.0

1.5

|Q
2 A

I|
3

Figure 2.1: Left: Error plotted on a logarithmic scale of using the expression (2.17) to
evaluate

∫ 1

−1
cos(x)eiωx dx. Right: Absolute Error of using the expression (2.17) to evaluate∫ 1

−1
cos(x)eiωx dx scaled by ω3.

The first thing to notice from the log plot (??) is that the absolute error is on the scale of
10−5 and decreases as ω increases. Furthermore, from the scaled error plot (??) we see that it
is indeed decaying as ω−3.

But perhaps this integral was too simple. Let’s attempt to evaluate an integral which does
not have a closed form solution in terms of elementary functions.

Example 2.1.3
∫ 1

−1
sin(x)eiω(x−2)2

dx

Using Maple, we obtain a closed form of the integral.

∫
sin(x)eiω(x−2)2

dx =
i
√
π

4
√
−iω

[
e

i
4ω (8ω−1)erf

(
i

2
√
−iω

(2ωx − 4ω + 1)
)
+

+e−
i

4ω (8ω−1)erf
(

i

2
√
−iω

(2ωx − 4ω + 1)
)]
. (2.18)

where erf(x) = 2
√
π

∫ x

0
e−t2 dt.

Now we compare the exact value of the integral with QA
2 and QA

5 .

8 Chapter 2. Asymptotic TypeMethods

0 25 50 75 100
10 6

10 5

10 4

10 3

10 2

10 1
|Q

2 A
I|

(2.2a) Absolute error on a logarithmic scale of using
QA

2 to evaluate
∫ 1
−1 sin(x)eiω(x−2)2

dx.

0 25 50 75 100
0.20

0.25

0.30

0.35

0.40

|Q
5 A

I|
3

(2.2b) Absolute error of using QA
2 to evaluate∫ 1

−1 sin(x)eiω(x−2)2
dx scaled by ω3.

0 25 50 75 100

10 9

10 6

10 3

100

|Q
5 A

I|

(2.3a) Absolute error on a logarithmic scale of using
QA

5 to evaluate
∫ 1
−1 sin(x)eiω(x−2)2

dx.

0 25 50 75 1002.5

5.0

7.5

10.0

12.5

15.0
|Q

5 A
I|

6

(2.3b) Absolute error of using QA
5 to evaluate∫ 1

−1 sin(x)eiω(x−2)2
dx scaled by ω6.

As we can see by comparing figures (2.2a) and (2.3a), the absolute error goes down 4 orders
of magnitude when we go from QA

2 to QA
5 . Furthermore, both methods provide satisfactory

results when looked at individually and follow the expected rate of error decay.
We also note that the integral in this example has a stationary point but it lies outside the

domain of integration.

Lastly, we present an anti-example. We used the fact that g′(x) has no stationary points in
[a, b] when deriving the methods but perhaps this method extends simply to the case where it
does have stationary points in [a, b]. This turns out not to be the case.

Example 2.1.4 Consider the following very simple integral,

I =

∫ 1

−1
eiωx2

dx (2.19)

2.1. In The Absence of Stationary Points 9

which has a closed form expression in terms of the special function erf(x),

I =

√
π

2
√
−iω

[
erf

(√
−iω

)
− erf

(
−
√
−iω

)]
. (2.20)

Let QA
2 denote the asymptotic expansion of I truncated to 3 terms. If we compare the value of

QA
2 to the exact value over 0 ≤ ω ≤ 100, it is clear that the method is not computing the correct

value. This is shown in the plots (2.4a) and (2.4b).

0 25 50 75 100

0.0

0.5

1.0

1.5

(2.4a) Plots of Re(I) (solid line) and Re(QA
2) (dotted

line).

0 25 50 75 100
1.0

0.5

0.0

0.5

1.0

(2.4b) Plots of Im(I) (solid line) and Im(QA
2) (dotted

line).

Furthermore, when we plot the error in figure (2.5), we notice that it is asymptotically
O(ω−1/2) instead of O(ω−p−1).

0 25 50 75 100

1.8

1.9

2.0

|Q
2 A

I|
1/

2

Figure 2.5: Absolute Error scaled by ω1/2.

Neither of these two failures can be simply remedied by calculating more terms of the
expansion. Some more non-trivial work is needed to extend this method, which is described in
the next section.

10 Chapter 2. Asymptotic TypeMethods

2.2 In The Presence of Stationary Points
Now we look at the general case. Without loss of generality1, assume that [a, b] = [0, 1] and
that g(x) has a single isolated rth order stationary point at ξ ∈ [0, 1]. That is,

g(ξ) = g′(ξ) = . . . = g(r−1)(ξ) = g(r)(ξ) = 0 and g(r+1)(ξ) , 0. (2.21)

The requirement that g(ξ) = 0 can be relaxed as if g(ξ) , 0, we can simply evaluate the
following equivalent integral,

eiωg(ξ)
∫ b

a
f (x)eiωg(x)−g(ξ) dx.

We start by adding and subtracting the power series expansion of f (x) around x = ξ up to
order r − 1 gives∫ 1

0
f (x)eiωg(x) dx =

∫ 1

0

 f (x) +

r−1∑
j=0

f (j)(ξ)
j!

(x − ξ) j −

r−1∑
j=0

f (ξ)
j!

(x − ξ) j

 eiωg(x) dx

=

∫ 1

0

r−1∑
j=0

f (j)(ξ)
j!

(x − ξ) jeiωg(x) dx +

∫ 1

0

 f (x) −
r−1∑
j=0

f (j)(ξ)
j!

(x − ξ) j

 eiωg(x) dx

=

r−1∑
j=0

f (j)(ξ)
j!

∫ 1

0
(x − ξ) jeiωg(x) dx +

∫ 1

0

 f (x) −
r−1∑
j=0

f (j)(ξ)
j!

(x − ξ) j

 eiωg(x) dx

Now we multiply the second term by
g′(x)iω
g′(x)iω

,

=

r−1∑
j=0

f (j)(ξ)
j!

∫ 1

0
(x − ξ) jeiωg(x) dx+

+
1
iω

∫ 1

0

(
f (x) −

∑r−1
j=0

f (j)(ξ)
j! (x − ξ) j

)
g′(x)

iωg′(x)eiωg(x) dx (2.22)

And now we rewrite the last term in the second integral,∫ 1

0
f (x)eiωg(x) dx =

r−1∑
j=0

f (j)(ξ)
j!

∫ 1

0
(x − ξ) jeiωg(x) dx+

+
1
iω

∫ 1

0

(
f (x) −

∑r−1
j=0

f (j)(ξ)
j! (x − ξ) j

)
g′(x)

d
dx

(
eiωg(x)

)
dx. (2.23)

Keep in mind the identity (2.23). We will be using it over and over. As before, we are going to
define the asymptotic expansion recursively. To that end, let

ρ0[f](x) := f (x) (2.24)
1We can do this because any interval [a, b] can be linearly mapped to [0, 1].

2.2. In The Presence of Stationary Points 11

Now, starting with (2.23), we apply integration by parts to the second term.

∫ 1

0
f (x)eiωg(x) dx =

r−1∑
j=0

ρ
(j)
0 [f](ξ)

j!

∫ 1

0
(x − ξ) jeiωg(x) dx +

eiωg(x)

iω

(
ρ0[f](x) −

∑r−1
j=0

ρ
(j)
0 [f](ξ)

j! (x − ξ) j
)

g′(x)

∣∣∣∣∣∣∣∣∣∣
1

0

+

−
1
iω

∫ 1

0

d
dx

(
ρ0[f](x) −

∑r−1
j=0

ρ
(j)
0 [f](ξ)

j! (x − ξ) j
)

g′(x)

 eiωg(x) dx (2.25)

Expecting a pattern, let’s define

ρ1[f](x) :=
d
dx

(
ρ0[f](x) −

∑r−1
j=0

ρ
(j)
0 [f](ξ)

j! (x − ξ) j
)

g′(x)

 =
d
dx

(

f (x) −
∑r−1

j=0
f (j)(ξ)

j! (x − ξ) j
)

g′(x)

 .
(2.26)

Then we can rewrite equation (2.25) as

∫ 1

0
f (x)eiωg(x) dx =

r−1∑
j=0

ρ
(j)
0 [f](ξ)

j!

∫ 1

0
(x − ξ) jeiωg(x) dx +

eiωg(x)

iω

(
ρ0[f](x) −

∑r−1
j=0

ρ
(j)
0 [f](ξ)

j! (x − ξ) j
)

g′(x)

∣∣∣∣∣∣∣∣∣∣
1

0

+

−
1
iω

∫ 1

0
ρ1[f](x)eiωg(x) dx. (2.27)

The last term in (2.27) is exactly the same form as the left hand side of identity (2.23). So,
using the identity to expand gives

−
1
iω

∫ 1

0
ρ1[f](x)eiωg(x) dx = −

1
iω

r−1∑
j=0

ρ
(j)
1 [f](ξ)

j!

∫ 1

0
(x − ξ) jeiωg(x) dx+

−
1

(iω)2

∫ 1

0

(
ρ1[f](x) −

∑r−1
j=0

ρ
(j)
1 [f](ξ)

j! (x − ξ) j
)

g′(x)
d
dx

(
eiωg(x)

)
dx.

(2.28)

From here, the pattern is clear. We alternate between using integration by parts to the last term
of the expression and then follow that up with an application of the identity (2.23). Each time
we apply the identity, we pick up a term of the form

±
1

(iω)α

r−1∑
j=0

ρ
(j)
α [f](ξ)

j!

∫ 1

0
(x − ξ) jeiωg(x) dx. (2.29)

Each application of integration by parts yields a term of the form

±
eiωg(x)

(iω)α

(
ρα[f](x) −

∑r−1
j=0

ρ
(j)
α [f](ξ)

j! (x − ξ) j
)

g′(x)

∣∣∣∣∣∣∣∣∣∣
1

0

. (2.30)

12 Chapter 2. Asymptotic TypeMethods

With some careful book-keeping of the signs of each term and the powers of the coefficients
1
iω , we arrive at the result. Let

µ j(ω, ξ) =

∫ 1

0
(x − ξ) jeiωg(x) dx, j ≥ 0; (2.31)

ρ0[f](x) = f (x), (2.32)

ρk+1[f](x) =
d
dx

ρk[f](x) −
∑r−1

j=0
ρ

(j)
k [f](ξ)

j! (x − ξ) j

g′(x)

 k ≥ 0 (2.33)

Then the asymptotic expansion is∫ 1

0
f (x)eiωg(x) dx ∼

r−1∑
j=0

1
j!
µ j(ω, ξ)

∞∑
m=0

1
(−iω)mρ

(j)
m [f](ξ)

−

∞∑
m=0

(
eiωg(x)

(iω)m+1g′(x)
(ρm[f](x) − ρm[f](ξ))

)∣∣∣∣∣∣1
0

. (2.34)

And so by truncating the series to the first p terms, we obtain the asymptotic method for highly
oscillatory integrals with an rth order stationary point ξ ∈ [0, 1]:

QA
p[f , g] ≡

r−1∑
j=0

1
j!
µ j(ω, ξ)

p−1∑
m=0

1
(−iω)mρ

(j)
m [f](ξ)

−

p−1∑
m=0

(
eiωg(x)

(iω)m+1g′(x)
(ρm[f](x) − ρm[f](ξ))

)∣∣∣∣∣∣1
0

. (2.35)

With the expansion at hand, we can now comment on a few things. Firstly, if we have any
finite number of stationary points in the interval, we can simply partition the interval in such a
way that each partition only has one stationary point. Secondly, this method can be applied to
any interval [a, b], since we can simply transform the interval to [0, 1].

We need to compute the moments (2.31) in order to be able to use this method. These inte-
grals are themselves oscillatory and in some sense, all we have done is reduced the problem of
computing highly oscillatory integrals to computing highly oscillatory integrals with a slightly
“nicer” function. Fortunately, these only depend on the function g and so can be precomputed,
if the method is to be used repeatedly. Furthermore, as we are out to automate these meth-
ods, we will use Maple’s arbitrary precision arithmetic capabilities in order to calculate these
integrals precisely.

Another important thing to note here is that the computation of ρ(j)
k (x) requires the applica-

tion of L’Hopital’s rule repeatedly (as we need to evaluate ρl
k−1(ξ), which by direct substitution

leads to an indeterminate form). In the form it’s presented, computation with this method for
an arbitrary f and g would be a fairly tedious task. However, with the aid of Maple, we are able
to symbolically find the limit and thus are able to automate this method as well for an arbitrary
f and g.

Now let us derive the asymptotic error for this method. For this, we need a result from [22],
which we state here with the appropriate translation of notation and convention.

2.2. In The Presence of Stationary Points 13

Proposition 2.2.1 For an integral
∫ b

a
f (x)eiωg(x) dx, where g(x) has an rth order stationary

point ξ ∈ (a, b) and f (x) is supported in a small neighborhood around ξ, then the following
asymptotic expansion holds:

I[ω] =

∫
f (x)eiωg(x) dx ∼

∞∑
j=0

a j

ω
j+1
r+1

(2.36)

in the sense that for all N, r ∈ N,(
d

dω

)r
I[ω] −

∞∑
j=0

a j

ω
j+1
r+1

 = O(ω−r−(N+1)/k) as ω→ ∞. (2.37)

Furthermore, the coefficients a j depend on only finitely many derivatives of the functions f and
g.

While the proof in [22] is not constructive and only presents the expression for the first
coefficient, it is shown in [19] that each coefficient a j only depends on j derivatives of f at the
stationary point2 ξ.

Then the moments µ j(ω, ξ) have an expansion

µ j(ω, ξ) ∼
∞∑

k=0

ak

ω
k+1
r+1

(2.38)

We know that dk

dxk (x − ξ) j
∣∣∣∣
x=ξ

= 0 for k ≤ j−1. So it follows that ak = 0 for k ≤ j−1. Therefore,

µ j(ω, ξ) ∼
∞∑

k= j

ak

ω
k+1
r+1

∼ O(ω−(j+1)/(r+1)). (2.39)

The asymptotic estimate of the moments µ j(ω, ξ) is the last piece of information we need to
describe the error, which readily follows by the order of ω in the leading terms of the difference
below.

Absolute error =

∣∣∣∣∣∣
∫ b

a
f (x)eiωg(x) dx − QA

p[f , g]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ µ0(ω, ξ)
(iω)1/(r+1) + · · · −

(
eiωg(x)

(iω)p+1g′(x)
(ρp[f](x) − ρp[f](ξ))

)∣∣∣∣∣∣1
0

− · · ·

∣∣∣∣∣∣∣
∼O(ω−p− 1

r+1) as ω→ ∞.

2We can also say more about how many derivatives of g at ξ are needed to calculate a j but we don’t need this
information

14 Chapter 2. Asymptotic TypeMethods

2.2.1 Numerical Examples
Example 2.2.1 ∫ 1

−1
cos(x)eiωx2

dx (2.40)

The indefinite integral has a closed form expression in terms of erf,∫
cos(x)eiωx2

dx =

√
πe−i/4ω

4
√
−iω

erf
(
√
−iωx −

1

2
√
−iω

)
+

√
πe−i/4ω

4
√
−iω

erf
(
√
−iωx +

1

2
√
−iω

)
.

(2.41)

0 25 50 75 100
10 6

10 5

10 4

10 3

10 2

10 1

|Q
2 A

I|

(a) Log plot of the absolute error for the 2 term
asymptotic method applied to integral (2.40).

0 25 50 75 100
0.045
0.050
0.055
0.060
0.065
0.070

|Q
2 A

I|
5/

2

(b) Absolute error scaled by ω5/2 for the 2 term
asymptotic method applied to integral (2.40).

0 20 40 60 80 100

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1
Q2

A

Q3
A

Q4
A

Q5
A

Figure 2.7: Log plot of the absolute error for the asymptotic method applied to integral (2.40)
with increasing number of terms used.

2.2. In The Presence of Stationary Points 15

Example 2.2.2 As another example, consider the following integral,∫ 1

−1
cos(x)eiω(7x2+x3) dx (2.42)

The function g(x) = 7x2 + x3 has a stationary point of order 2 at x = 0. We see in plot (2.8)
that with just 3 terms, we attain an accuracy of 10 digits. Another interesting artifact that
requires some explaining in the same plot is the strange oscillation in the blue curve. This is
simply a result of the calculation reaching machine precision that introduces roundoff error in
the intermediate steps, which result in the strange looking oscillation.

0 20 40 60 80 100

10 16

10 14

10 12

10 10

10 8

10 6
QA

2
QA

3
QA

4

Figure 2.8: Absolute error for the 3,4 and 5 term asymptotic method applied to (2.42).

0 20 40 60 80 100
0.00000

0.00001

0.00002

0.00003

0.00004
QA

2
QA

3
QA

4

Figure 2.9: Absolute error scaled by ωp+1/2 for the 3,4 and 5 term asymptotic method applied
to (2.42).

The asymptotic error in all three cases is ω−p−1/2 as we would expect it to be.

Chapter 3

Filon Type Methods

A large class of numerical quadrature methods are based on sampling the integrand at a set of
points in the interval and interpolating this set of values in a convenient basis which is either
easier to integrate or where the integral of the basis functions is known. A variation on this line
of thinking will lead us to Filon type methods.

These methods were first presented in [5] and discussed extensively in the modern context
in [13].

3.1 Method Derivation

Let {τk}
N−1
k=0 be N distinct points in [a, b] such that a = τ[0] < τ[1] < τ[2] < . . . < τ[N − 1] = b.

One such choice of points is the Chebyshev-Lobatto nodes,

{τk}
n−1
k=0 =

{
a + b

2
+

(b − a)
2

cos
(
π(n − 1) − k

n − 1

)}n−1

k=0
.

Unless otherwise stated, we will always use the Chebyshev-Lobatto nodes for interpolation
points.

Let {φk(x)}N−1
k=0 be a set of continuous functions from [a, b] into R such that they satisfy the

haar condition (they are linearly independent on [a, b]). This ensures that we can interpolate
real continuous functions on [a, b] in this basis and the interpolation is unique.

Now instead of interpolating the entire integrand f (x)eiωg(x) at the interpolation nodes, we
interpolate only f (x). Denote the interpolant of f (x) by f̃ (x). The interpolant f̃ (x) is a function
of the form

f̃ (x) =

N−1∑
j=0

c jφ j(x), (3.1)

such that

f̃ (τ`) = f (τ`), for ` = 0, 1, . . . , n − 1. (3.2)

16

3.2. Filon-LagrangeMethod 17

Then the N-point Filon integration method is simply

QF
N[f , g] =

∫ b

a
f̃ (x)eiωg(x) dx. (3.3)

At first glance, equation (3.3) does not appear to be progress. However, substituting the ex-
pression for f̃ (x) makes it clear that it is indeed a step forward.

QF
N[f , g] =

∫ b

a
f̃ (x)eiωg(x) dx,

=

∫ b

a

N−1∑
j=0

c jφ j(x)eiωg(x) dx,

=

N−1∑
j=0

c j

∫ b

a
φ j(x)eiωg(x) dx. (3.4)

And so if the integrals ∫ b

a
φ j(x)eiωg(x) dx (3.5)

have a closed form expression or are precomputed numerically, then expression (3.4) is easy
to evaluate. This captures the essence of Filon-type methods. The integrals (3.5) are called the
moments.

The choice of the interpolation basis {φk(x)} depends on the function g(x). Having said
that, it is not true that we can always find a family of interpolating functions that makes the
integrals (3.5) exactly computable. But for specific applications, we can always compute an
expression for each of the integrals using the asymptotic-type methods we described in the
previous section. Using asymptotic methods to evaluate the moments is an efficient route if
g(x) has no stationary points in [a, b]. However, the presence of stationary points would render
this route more computationally expensive than evaluating the moments directly. This is owing
to the fact that in the expansion (2.35), we need to calculate the integrals µ j(ω, ξ), which are
themselves highly oscillatory.

In its most general form, we cannot make any general statements on the quality of the
approximation derived from the Filon method. This is due to the fact that it is dependent on the
quality on interpolation f̃ (x). For the rest of the chapter, we will look at the two most natural
choices for interpolational basis functions, their error bounds and examples of the method at
work.

3.2 Filon-Lagrange Method

Let’s begin with one such choice for the interpolational basis (and perhaps the most used one),
the monomial basis and Lagrange interpolation. The basis functions are monomials,

{φk}
N−1
k=0 = {1, x, x2, . . . , xN−1}. (3.6)

18 Chapter 3. Filon TypeMethods

The interpolant f̃ (x) is then

f̃ (x) =

N−1∑
k=0

ckxk,

where the ck’s are obtained by solving the system
f (a)
f (τ1)
...

f (b)

 =

1 a a2 · · · aN−1

1 τ1 τ2
1 · · · τN−1

1
...

. . .
...

1 b b2 · · · bN−1

c0

c1
...

cN−1

 .
Let’s examine the case when g(x) has no stationary points in the interval [a, b]. Then this
method has an error on the order of O(ω−2). This can be obtained as follows.

Absolute Error =

∣∣∣∣∣∣
∫ b

a
f (x)eiωg(x) dx −

∫ b

a
f̃ (x)eiωg(x) dx

∣∣∣∣∣∣
Absolute Error =

∣∣∣∣∣∣
∫ b

a
(f (x) − f̃ (x))eiωg(x) dx

∣∣∣∣∣∣
As g does not have stationary points in [a, b], we have the asymptotic expansion (2.12)

Absolute Error =

∣∣∣∣∣∣∣−
∞∑

m=0

1
(iω)m+1

[
eiωg(b)

g′(b)
fm(b) −

eiωg(a)

g′(a)
fm(a)

]∣∣∣∣∣∣∣
Absolute Error =

∣∣∣∣∣∣∣ 1
(iω)

[
eiωg(b)

g′(b)
(f − f̃)(b) −

eiωg(a)

g′(a)
(f − f̃)(a)

]
−

∞∑
m=1

1
(iω)m+1

[
eiωg(b)

g′(b)
fm(b) −

eiωg(a)

g′(a)
fm(a)

]∣∣∣∣∣∣∣
But we know that f (a) = f̃ (a) and f (b) = f̃ (b). So the first term in the above expression is 0.
Thus we are left with

Absolute Error =

∣∣∣∣∣∣∣−
∞∑

m=1

1
(iω)m+1

[
eiωg(b)

g′(b)
fm(b) −

eiωg(a)

g′(a)
fm(a)

]∣∣∣∣∣∣∣
This shows that the error is O(ω−2).

At this point, it is worth noting that if we require the interpolant to match the derivatives of
f (x), we can improve this rate of error decay. This will be the subject of the next section. Now
onto some demonstrations of this method.

Example 3.2.1 Consider integrals of the form∫ b

a
f (x)eiωx dx, (3.7)

where f (x) is any continuous function.

3.2. Filon-LagrangeMethod 19

We can use Filon-Lagrange to evaluate integrals of this form quite easily. This is due to the
fact that the moments have closed form expressions, that is

∫
xneiωx dx =

ixn

ω
(n((n − 1)! − Γ(n,−iωx))(−iωx)−n − eiωx),

where Γ(a, x) is the upper incomplete Gamma function, given by

Γ(a, z) =

∫ ∞

z
ta−1e−t dt.

Both Maple and Python have very efficient internal numerical methods to compute values of
Γ(a, z). With this integral identity at hand, we see that

QF
N[f , x] =

∫ b

a
f̃ (x)eiωx dx

QF
N[f , x] =

∫ b

a

N−1∑
j=0

c jx jeiωx dx

where the c j’s are the Lagrange interpolation coefficients of f (x). Then it is clear that

QF
N[f , x] =

N−1∑
j=0

c j

∫ b

a
x jeiωx dx

QF
N[f , x] =

N−1∑
j=0

c j

(
ix j

ω
(n((n − 1)! − Γ(j,−iωx))(−iωx)− j − eiωx)

)∣∣∣∣∣∣b
a

. (3.8)

So, using expression (3.8), we can evaluate any integral of the form (3.7). As an example, we
evaluate the following integral

∫ 1

−1

1
1 + x2 eiωx dx. (3.9)

Its exact value is given by the following expression

i
2

[
e−ωE1(1,−ω(ix + 1)) − eωE1(1,−ω(ix − 1))

]
.

Now using equation (3.8), we obtain the following results:

20 Chapter 3. Filon TypeMethods

0 20 40 60 80 100

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g(

Ab
so

lu
te

 E
rro

r)

QF
2

QF
3

QF
4

QF
5

Figure 3.1: Absolute error for the Filon method plotted on a logarithmic scale for integral (3.9).

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

(A
bs

ol
ut

e
Er

ro
r)

2

QF
2

QF
3

QF
4

QF
5

Figure 3.2: Absolute error scaled by ω2 for the Filon method plotted on a logarithmic scale for
integral (3.9).

In Figure (3.1) we see that the the error is indeed decreasing asymptotically and raising the
number of interpolation nodes decreases the magnitude of the error. Furthermore, the error
always decays like O(ω−2) and adding interpolation points appears to not improve the result
significantly. With further examples, we should expect to see the similar results.

Something to notice is that during the derivation process, at no point did we require the
assumption that g(x) has no stationary points in the integration domain. However, it will turn
out that this method is inadequate in the presence of stationary points. We will show with an
example that this asymptotic error bound is not valid in the stationary point case and the error
will decay more slowly in the presence of stationary points. In fact, the higher the order of a
stationary point, the slower the error will decay as ω→ ∞ (this too will be demonstrated with
an example).

3.2. Filon-LagrangeMethod 21

Continuing on to another example, with a function g(x) that is not simply x. Notice that
g(x) has a stationary point but it is outside the integration domain.

Example 3.2.2 ∫ 1

−1
sin(x)eiω(x−2)2

dx (3.10)

The closed form of this integral is∫
sin(x)eiω(x−2)2

dx =
i
√
π

4
√
−iω

[
e

i
4ω (8ω−1)erf

(
i

2
√
−iω

(2ωx − 4ω + 1)
)
+

+e−
i

4ω (8ω−1)erf
(

i

2
√
−iω

(2ωx − 4ω + 1)
)]
, (3.11)

where erf is the error function as defined before.

0 20 40 60 80 100

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g(

Ab
so

lu
te

 E
rro

r)

QF
3

QF
4

QF
5

QF
6

Figure 3.3: Log plot of the absolute error for 3-point Filon method used on integral (3.10).

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

(A
bs

ol
ut

e
Er

ro
r)

2

QF
3

QF
4

QF
5

QF
6

Figure 3.4: Scaled absolute error for 3-point Filon method used on integral (3.10).

22 Chapter 3. Filon TypeMethods

From plots (3.3) and (3.4), we clearly see that the presence of a stationary point outside the
integration domain has no effect on the method. The next example will show that the presence
of a stationary point inside the integration domain does.

Example 3.2.3 Consider the following family of integrals,

In =

∫ 1

−1
cos(x)eiωx2n

dx for n ≥ 1 (3.12)

We first use a Filon-Type method with 3 points and 4 points on I1 and compare the results.

0 20 40 60 80 100

10 4

10 3

10 2

lo
g(

Ab
so

lu
te

 E
rro

r)

QF
3

QF
4

Figure 3.5: Comparison of the 3-point Filon method and the 4-point Filon method for integral
I1.

The resulting log error is plotted in Figure (3.5). The first thing that we notice is that the
method with 3 points outperforms the method with 4 points. In fact, with a bit more expermi-
nentation, it can be seen that the methods which have an odd number of interpolation points
outperform their even numbered counterparts. This may appear strange at first but the rea-
son for this is whenever we use an odd number of points, our stationary point is one of the
interpolation points. We will use this fact later when we attempt to generalize this method.

Next we look at how the error behaves asymptotically.

3.2. Filon-LagrangeMethod 23

0 20 40 60 80 100
0.01

0.02

0.03

0.04

0.05
(A

b
so

lu
te

 E
rr

or
)

3
/2

QF
3

(a) Scaled Error plot of the 3-point Filon method
applied to I1.

0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

(A
b
so

lu
te

 E
rr

or
)

1
/2

QF
4

(b) Scaled Error plot of the 4-point Filon method
applied to I1.

In Figures (3.6a) and (3.6b) we see that neither the 3-point method nor the 4-point formula
acheives the asymptotic error O(ω−2). The 3-point method achieves O(ω−3/2) and the 4-point
method acheives O(ω−1/2). In I1, the stationary point is of order 1. Let us now look at I2, which
has a stationary point of order 2.

0 20 40 60 80 100

10 3

10 2

lo
g(

Ab
so

lu
te

 E
rro

r)

QF
3

QF
4

Figure 3.7: Comparison of the 3-point and 4-point Filon method applied to I2.

It is clear from Figure (3.7) that the performance of the method is noticeably worse in the
presence of a higher order stationary point. Not just do we get a greater magnitude, but also a
slower asymptotic error decay, as can be seen in figures (3.8a) and (3.8b).

24 Chapter 3. Filon TypeMethods

0 20 40 60 80 100
0.010

0.012

0.014

0.016

0.018

0.020

(A
b
so

lu
te

 E
rr

o
r)

0
.7

2

QF
3

(a) Scaled error for the 3-point Filon method applied
to I2.

0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

(A
b
so

lu
te

 E
rr

o
r)

0
.2

QF
4

(b) Scaled error for the 4-point Filon method ap-
plied to I2.

Example (3.2.3) forces us to conclude that this method is inadequate in the presence of
stationary points. In the next section we will extend this method to cater to stationary points.

3.3. Filon-HermiteMethod 25

3.3 Filon-Hermite Method
Consider the integral, ∫ b

a
f (x)eiωg(x) dx, (3.13)

where g(x) has a stationary point ξ ∈ (a, b) of order r. That is, g′(ξ) = g′′(ξ) = . . . = g(r)(ξ) = 0
and g(r+1)(ξ) , 0.

We attack this problem of extending the method by using the two facts we noted in the
previous section:

1. If we require the interpolating function to match the derivatives of the function, we can
lower the asymptotic error (both in magnitude and the rate at which is decays).

2. When the stationary point ξ is an interpolation point, we get a lower asymptotic error.

So, we require both of the above to hold.

Let {τk}
N−1
k=0 be N ≥ 3 distinct points in [a, b] such that a = τ0 < τ1 < . . . < τν = ξ < . . . <

τN−1 = b. With each interpolation point τi, associate a confluency si ∈ N\{0, 1}. So far we have
the following two vectors,

τ = [τ0, τ1, . . . , τN−2, τN−1],
s = [s0, s1, . . . , sN−2, sN−1].

At each node τi with confluency si, we match our interpolating polynomial up to the (si − 1)th
derivative of f at that point. That is, we let f̃ (x) be a polynomial of order (−1 +

∑N−1
i=0 si) such

that it satisfies

f̃ (τi) = f (τi)

f̃ ′(τi) = f ′(τi)
...

f̃ (si−2)(τi) = f (si−2)(τi)

f̃ (si−1)(τi) = f (si−1)(τi)

for i = 0, 1, . . . ,N − 1. Then the Filon-Hermite method is simply

QFH
N,s =

∫ b

a
f̃ (x)eiωg(x) dx (3.14)

where s = min(s0, sN−1) and r is the order of the stationary point ξ.
We saw in the section (3.2) that the order of the stationary point has a direct impact on the

asymptotic error achieved. It stands to reason that the number of derivatives we need to sample
at the stationary point and at the other interpolation points will play a key role. However,
before we attempt to quantify that, let us first check if this generalization does improve the
performance in the presence of stationary points. We will do this by looking again at example

26 Chapter 3. Filon TypeMethods

(3.2.3). Instead of matching only the function value, we also match the derivative value at each
point as well.

0 20 40 60 80 100
10 6

10 5

10 4

10 3

10 2 QFH
3, 2

QFL
3

Figure 3.9: Absolute error plotted on a log scale for the Filon-Lagrange method with 3 nodes
and the Filon-Hermite method with 3 nodes, each of confluency 2.

We see from the plot above that matching the first derivative does improve our results but
keeps the asymptotic error the same. In fact, the promise of improved asymptotic error only
holds simply when there is no stationary point1. In order to improve the asymptotic error in
the presence of a stationary point, we need to sample further derivatives at the stationary point.
The natural question to ask then is, how many derivatives does one need to sample in order to
obtain a certain asymptotic error. This is what we look at now.

First, let us consider the case g(x) does not have stationary points in [a, b]. Then we have
at our disposal the asymptotic expansion (2.12),

I[f ,Ω] ∼
∞∑

m=0

−
1

(iω)m+1

[
eiωg(x)

g′(x)
fm(x)

]∣∣∣∣∣∣b
a

= −

∞∑
m=0

1
(iω)m+1

[
eiωg(b)

g′(b)
fm(b) −

eiωg(a)

g′(a)
fm(a)

]

where

f0(x) = f (x),

and fm+1(x) =
d
dx

(
fm(x)
g′(x)

)
.

Using this simple Maple script, we can calculate expressions for fm and collect the terms.

1 rho[0]:=f(x):

2 for k from 1 to 4 do

3 rho[k]:=diff(rho[k-1]/diff(g(x),x),x);

1We will justify that this holds when we look at more numerical examples.

3.3. Filon-HermiteMethod 27

4 print(collect(simplify(rho[k]),{seq(diff(f(x),[x$j]),j=0..k)

}));

5 od:

If we look closely at the the first few fm(x)′s, a pattern becomes apparent.

f0(x) = f (x)

f1(x) =
f ′(x)g′(x) − g′′(x) f (x)

g′(x)2 =
1

g′(x)
f ′(x) +

g′′(x)
g′(x)2 f (x)

f2(x) =
d
dx

(
f ′(x)

g′(x)2

)
+

d
dx

(
g′′(x) f (x)

g′(x)3

)
=

1
g′(x)2 f ′′(x) − 3

g′′(x)
g′(x)3 f ′(x) +

−g(3)(x)g′(x) + 3g′′(x)2

g′(x)4 f (x)

...

fm(x) =

m∑
j=0

σm
j (x) f (j)(x)

where each σm
j (x) is of the form

σm
j (x) =

α j(x)
g′(x)2m− j

and α j(x) depends on g′(x), g′′(x), . . . , g(m+1− j)(x). In particular, we always have

σm
m(x) =

1
g′(x)m

which is always non-zero by assumption.
With this re-expression of fm’s, we can rewrite the asymptotic expansion (2.12) as

I[f ,Ω] ∼
∞∑

m=0

−
1

(iω)m+1

eiωg(x)

g′(x)

m∑
j=0

σm
j (x) f (j)(x)

∣∣∣∣∣∣∣
b

a

. (3.15)

With this fact in mind, let us attempt to calculate the absolute error of this method.

∣∣∣I[f , ω] − QF
N,sH

∣∣∣ =

∣∣∣∣∣∣
∫ b

a
f (x)eiωg(x) dx −

∫ b

a
f̃ (x)eiωg(x) dx

∣∣∣∣∣∣ (3.16)

=

∣∣∣∣∣∣
∫ b

a
(f − f̃)(x)eiωg(x) dx

∣∣∣∣∣∣ (3.17)

28 Chapter 3. Filon TypeMethods

And now using the expansion (3.15)

=

∣∣∣∣∣∣∣∣
∞∑

m=0

−
1

(iω)m+1

eiωg(x)

g′(x)

m∑
j=0

σm
j (x) (f − f̃)(j)(x)

∣∣∣∣∣∣∣
b

a

∣∣∣∣∣∣∣∣ (3.18)

=

∣∣∣∣∣∣∣∣
s−1∑
m=0

−
1

(iω)m+1

eiωg(x)

g′(x)

m∑
j=0

σm
j (x) (f − f̃)(j)(x)

∣∣∣∣∣∣∣
b

a

+

+

∞∑
m=s

−
1

(iω)m+1

eiωg(x)

g′(x)

m∑
j=0

σm
j (x) (f − f̃)(j)(x)

∣∣∣∣∣∣∣
b

a

∣∣∣∣∣∣∣∣ (3.19)

And as we have matched the function and its derivatives of f (x) at the end point at least up to
the (s − 1)th order. So, (f − f̃)(j)(a) = (f − f̃)(j)(b) = 0 for j = 0, 1, . . . , s − 1. So, the first of
the two sums is always 0. This leaves us with

=

∣∣∣∣∣∣∣∣
∞∑

m=s

−
1

(iω)m+1

eiωg(x)

g′(x)

m∑
j=0

σm
j (x) (f − f̃)(j)(x)

∣∣∣∣∣∣∣
b

a

∣∣∣∣∣∣∣∣ (3.20)

And from expression (3.20) we see that the asymptotic error is O(ω−s−1).
Let us take a pause here before continuing on to the general case and verify with an example

the error is indeed O(ω−s−1).

Example 3.3.1 Consider the integral∫ 1

−1
cos(x)eiω(x−2)2

dx (3.21)

If we use the Filon-Hermite method with 3 interpolation nodes and require that the inter-
polating function match the function and its derivative at each node, we expect the error to be
O(ω−3). This is confirmed by plot (3.10).

0 20 40 60 80 100

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

(A
bs

ol
ut

e
Er

ro
r)

3

QFH
3, 2

Figure 3.10: Absolute error scaled by ω3 for the Filon-Hermite method with 4 nodes applied
to (3.21), each of confluency 2.

3.3. Filon-HermiteMethod 29

A log plot of the absolute error confirms that we have 9 digits of accuracy by the time
ω = 100.

0 20 40 60 80 100
10 9

10 8

10 7

10 6

10 5

10 4
QFH

3, 2

Figure 3.11: Absolute error on a log scale for the Filon-Hermite method with 4 nodes, each of
confluency 2.

Now with that out of the way, let us consider the case where g(x) has a stationary point in
the integration domain.

The approach we will take for this is along the same lines as what we did for the previous
case. Briefly put, we will first find out how many derivatives we need to sample at the stationary
point in order to compute ρk’s in the asymptotic expansion (2.31). Using this, we will be able
to figure out exactly how many derivatives we need to sample at x = ξ in order to match the
accuracy of the Asymptotic method in the presence of stationary points, O(ω−s−1/(r+1)).

Assume that we have the integral,

∫ 1

0
f (x)eiωg(x) dx (3.22)

with g(x) having a stationary point of order r at x = ξ ∈ (0, 1). Recall that in the presence of
stationary points, we have at our disposal the following asymptotic expansion,

∫ 1

0
f (x)eiωg(x) dx ∼

r−1∑
j=0

1
j!
µ j(ω, ξ)

∞∑
m=0

1
(−iω)mρ

(j)
m [f](ξ)

−

∞∑
m=0

(
eiωg(x)

(iω)m+1g′(x)
(ρm[f](x) − ρm[f](ξ))

)∣∣∣∣∣∣1
0

.

30 Chapter 3. Filon TypeMethods

where

µ j(ω, ξ) =

∫ 1

0
(x − ξ) jeiωg(x) dx, j ≥ 0;

ρ0[f](x) = f (x), (3.23)

ρk[f](x) =
d
dx

ρk−1[f](x) −
∑r−1

j=0
ρ

(j)
k−1[f](ξ)

j! (x − ξ) j

g′(x)

 , k ≥ 0. (3.24)

In order to be able to calculate an expression any ρk[f](x), we have to be able to evaluate
ρk−1[f](ξ), ρ′k−1[f](ξ), . . . , ρ(r−1)

k−1 [f](ξ). And as we have a stationary point at ξ, we need to
verify that this these expressions are indeed always well-defined.

Away from x = ξ, the function ρk[f](x)’s are well defined2 and evaluating them at a fixed
x = τi just gives a linear combination of f (τi), f ′(τi), . . . , f (k)(τi).

Let’s focus on x = ξ. We can rewrite f (x) and g(x) as

f (x) =

∞∑
j=0

f j

j!
(x − ξ) j and g(x) =

∞∑
j=r+1

g j

j!
(x − ξ) j. (3.25)

Then we have that ρ0[f](ξ) = f0 and ρ(j)
0 [f](ξ) = f j. With this in mind,

ρ1[f](x) =
d
dx

 f (x) −
∑r−1

j=0
f j

j! (x − ξ) j

g′(x)

ρ1[f](x) =

d
dx

∑∞

j=0
f j

j! (x − ξ) j −
∑r−1

j=0
f j

j! (x − ξ) j

g′(x)

ρ1[f](x) =

d
dx

∑∞

j=r
f j

j! (x − ξ) j

g′(x)

ρ1[f](x) =

∑∞
j=r

f j

(j−1)! (x − ξ) j−1

g′(x)
−

g′′(x)
∑∞

j=r
f j

j! (x − ξ) j

g′(x)2 (3.26)

And so evaluating (3.26) at x = ξ is obtained by taking the limit as x → ξ. We take the limits
for each of the two terms separately for simplicity.

lim
x→ξ

∑∞
j=r

f j

(j−1)! (x − ξ) j−1

g′(x)
= lim

x→ξ

∑∞
j=r

f j

(j−1)! (x − ξ) j−1∑∞
j=r

g j+1

j! (x − ξ) j
(3.27)

2as long as we can evaluate ρk−1[f](ξ), ρ′k−1[f](ξ), . . . , ρ(r−1)
k−1 [f](ξ)

3.3. Filon-HermiteMethod 31

This is a 0/0 indeterminate form. Applying L’Hopital’s rule r times gives

lim
x→ξ

∑∞
j=r

f j

(j−1)! (x − ξ) j−1

g′(x)
= lim

x→ξ

dr

dxr

(∑∞
j=r

f j

(j−1)! (x − ξ) j−1
)

dr

dxr

(∑∞
j=r

g j+1

j! (x − ξ) j
)

= lim
x→ξ

∑∞
j=0

f j+1+r

j! (x − ξ) j∑∞
j=0

g j+1+r

j! (x − ξ) j
= lim

x→ξ

fr+1

gr+1
+ O(x − ξ) =

fr+1

gr+1
(3.28)

And now for the second term we have

lim
x→ξ
−

g′′(x)
∑∞

j=r
f j

j! (x − ξ) j

g′(x)2 = − lim
x→ξ

(∑∞
j=r−1

g j+2

j! (x − ξ) j
) (∑∞

j=r
f j

j! (x − ξ) j
)

(∑∞
j=r

g j+1

j! (x − ξ) j
)2

Which we evaluate with Maple to get

= − lim
x→ξ

(gr+2 fr + f1+rg1+r)r + gr+2 fr

(1 + r)g2
1+r

+ O(x − ξ)

= −
(gr+2 fr + f1+rg1+r)r + gr+2 fr

(1 + r)g2
1+r

(3.29)

And so combining both limits yields,

ρ1[f](x) = −
1

r + 1
gr+2

gr+1
fr +

1
r + 1

fr+1

gr+1
+ O(x − ξ) (3.30)

From equation (3.30) we note that ρ1[f](ξ) depends linearly on f (r)(ξ) and f (r+1)(ξ). Further-
more we can say that ρ(m)

1 [f](ξ) depends linearly on f (r)(ξ), f (r+1)(ξ), . . . , f (r+m+1)(ξ) because in
order to calculate it, we would take the mth derivative of (3.26), which will introduce m fur-
ther derivatives of f . Using this inductive process, we can find a Taylor expansion of ρ1[f](x)
around x = ξ,

ρ1[f](x) =

∞∑
m=0

f̃m

m!
(x − ξ)m (3.31)

where each f̃m depends linearly on f (r)(ξ), f (r+1)(ξ), . . . , f (r+m+1)(ξ).
We can now use the same inductive argument to make a general statement. That is, ρ2[f](ξ)

will depend linearly on f̃r and f̃r+1, which means it depends linearly on f (r)(ξ), f (r+1)(ξ), · · · ,
f (r+(r+1)+1)(ξ) = f (2r+2)(ξ).

And in general, for k ≥ 1, ρk[f](ξ) will depend linearly on f (r)(ξ), f (r+1)(ξ), · · · , f (k(r+1))(ξ).
So in order to calculate ρk[f](ξ), we need to sample k · (r + 1) derivatives at x = ξ.

This is the last piece of information we need to make a complete statement. Let s =

min(s0, sN−1) and sν = s · (r + 1). Then the error is asymptotically

|I − QFH
N | ∼ O(ω−s− 1

r+1) as ω→ ∞. (3.32)

This readily follows from substituting (f − f̃)(x) into the asymptotic expansion (2.31) and
seeing that the lowest order ω term is ω−s− 1

r+1 . Let us now see this method in action.

32 Chapter 3. Filon TypeMethods

Example 3.3.2 Consider integrals of the form,∫ 1

−1
f (x)eiωxr

dx (3.33)

for r ≥ 2. The function g(x) has a stationary point of order r − 1 at x = 0, so we will need to
sample appropriately.

Using Mathematica, we are able to compute an expression for the moments,∫
xkeiωxr

dx = −
x1+m

r
(−iωxr)−

1+m
r · Γ

(
1 + m

r
,−iωxr

)
(3.34)

where Γ(a, z) is the incomplete gamma function.
And finally, as the order of the stationary point is r − 1, we require the interpolating poly-

nomial to match f (x) at x = 0 upto the (s · r)th derivative, where s = min{s0, sN−1}.

QFH
N,s =

∫ 1

−1
f̃ (x)eiωg(x) =

order(f̃)∑
k=0

ck ·

(
−

x1+m

r
(−iωxr)−

1+m
r · Γ

(
1 + m

r
,−iωxr

))∣∣∣∣∣∣1
−1

(3.35)

where the ck’s are the interpolation coefficients for the expression of the interpolating polyno-
mial in the monomial basis.

Let’s see how the method performs for some fixed f (x). Let’s take the integral from Example
2.2.1, ∫ 1

−1
cos(x)eiωx2

dx.

The resulting error plots are shown in Figures (3.12, 3.13). As we increase the number of
interpolation nodes, the absolute error drops.

0 20 40 60 80 100

10 8

10 7

10 6

10 5

10 4

10 3

10 2

(A
bs

ol
ut

e
Er

ro
r)

3/
2

QFH
3, 1

QFH
5, 1

QFH
7, 1

Figure 3.12: Error plot on the log scale with 3,5 and 7 interpolation nodes. The confluency all
of the nodes is set to 1 and the stationary point node’s is set to s · (r + 1) = 2.

3.3. Filon-HermiteMethod 33

Next we see in Figure (3.13) that the asymptotic error is what we expect it to be.

0.025

0.050 QFH
3, 1

0.0000

0.0005
QFH

5, 1

0 20 40 60 80 100
0.000000

0.000005 QFH
7, 1

Figure 3.13: Absolute error scaled by w3/2 for 3,5 and 7 interpolation nodes.

Now we raise the confluency of the nodes to see if the asymptotic error responds appropri-
ately.

0.025

0.050

|Q
FH 3,

1
I|

3/
2

QFH
3, 1

0.00000

0.00005

|Q
FH 3,

2
I|

5/
2

QFH
3, 2

0 20 40 60 80 100
0

1

|Q
FH 3,

3
I|

7/
2 1e 8

QFH
3, 3

Figure 3.14: Absolute error scaled by ws+1/2, for confluency values s = 1, 2, 3.

And as we see from the scaled error plots in Figure (3.14), the asymptotic error is O(ωs+ 1
2).

Before moving on to the next chapter, let’s take a brief pause to collect the results from this
chapter:

• In the absence of stationary points, the Filon-Hermite method will attain an asymptotic
error of

O(ω−min(s0,sN)−1).

34 Chapter 3. Filon TypeMethods

That is, the asymptotic error depends only on how many derivatives we sample at the
end points.

• In the presence of a stationary point, we can attain the same asymptotic error if we sample
the function at the stationary point upto the (s ·(r+1))th derivative, where s = min(s0, sN)
and r is the order of the stationary point.

• An observation to make is that the Filon method generally provides a better approxima-
tion than the asymptotic method but at the same time is a lot more computationally costly
(at least in the absence of stationary points).

• Maple implementations of the methods described in this section can be found in Ap-
pendix (A.2.1) and (A.2.2).

Chapter 4

Moment Free Methods

The methods described in sections (2.2) and (3.3) for highly oscillatory integrals with stationary
points all required us to evaluate moments numerically. While sometimes we can evaluate
them explicitly, in general we are forced to rely on the internal quadrature method of whatever
system we are implementing the methods. This is a recipe for disaster as we are trading in a
highly oscillatory integral for a few slightly easier highly oscillatory integrals. Ideally, this is
something one would want to avoid. The methods presented here allow us to do just that. The
two methods discussed here were first presented in [20].

We will focus our attention on the integral∫ 1

−1
f (x)eiωg(x) dx (4.1)

where g(x) has a stationary point of order r at x = 0. Furthermore, we require g′(x), g′′(x) , 0
for 0 < |x| ≤ 1 and g(r+1)(0) > 0. The reason why we are choosing to restrict our attention to
[−1, 1] will become clear shortly.

Both the methods rely on the creation of a basis, ψr,k(x), which depends on the function
g(x) with the special property that the moments∫ 1

−1
ψr,k(x)eiωg(x) dx (4.2)

can be calculated exactly. This means we always know the expression for the moments in
closed form and so don’t need to approximate them using classical quadrature.

As a first step, consider the special case where ψr,k(x) = xk and g(x) = xr. If the correspond-
ing moment (4.2) has a closed form solution, then there exists a continuous function F(x) such
that ∫

xkeiωxr
dx = F(x)eiωxr

Differentiating both sides with respect to x yields

xkeiωxr
=

d
dx

(
F(x)eiωxr)

xk = F′(x) + iωrxr−1F(x) (4.3)

35

36 Chapter 4. Moment FreeMethods

The differential equation (4.3) has a known solution,

F(x) =
ω−

1+k
r

r
e−iωxr+ 1+k

2r iπ

[
Γ

(
1 + k

r
,−iωxr

)
− Γ

(
1 + k

r
, 0

)]
(4.4)

where Γ(a, x) is the incomplete gamma function defined by

Γ(a, x) =

∫ ∞

x
e−tta−1 dt.

In the expression (4.4), we notice that xr occurs several times. Define a new family of functions,
φr,k obtained by replace xr with g(x) in (4.4) and an additional term to account for the branch
cuts,

φr,k(x) = Dr+1,k(sgn(x))
ω−

1+k
r+1

r + 1
e−iωg(x)+ 1+k

2(r+1) iπ
[
Γ

(
1 + k
r + 1

,−iωg(x)
)
− Γ

(
1 + k
r + 1

, 0
)]
, (4.5)

where

Dr,k(sgn(x)) =

(−1)k x < 0 and r even
(−1)ke−

1+k
r iπ x < 0 and r odd

−1 otherwise.
(4.6)

Following the same train of thought, define the generalization of the differential equation (4.3),

ψk(x) = F′(x) + iωg′(x)F(x) (4.7)

Then it stands to reason that substituting the equation (4.5) into the right hand side of the dif-
ferential equation (4.7) should yield a basis in which the moment integrals always have closed
form expressions. This yields the following g-dependent butω-independent interpolation basis,

L[φr,k](x) = sgn(x)r+k+1 |g(x)|
k+1

r −1g′(x)
r

. (4.8)

The details of the substitution and simplification can be found in the original paper [20]
and are not included here as they are not relevant to the method itself. We have included some
Maple code in appendix (A.4.1) if the reader wishes to verify that the expression above satisfies
the differential equation for a given g(x). This code also provides a good way to determine how
well this method will perform for a given g(x).

4.1 Moment-Free Asymptotic Method
Once we have obtained the basis {φr,k(x)}, we obtain a new method by simply replacing the
monomial basis terms in the classical asymptotic method derivation in section (2.2) with this
new basis.

4.1. Moment-Free AsymptoticMethod 37

Define

µ[f](x) =

r−2∑
k=0

ckφr,k(x) (4.9)

so that

L[µ[f]](0) = f (0),L[µ[f]]′(0) = f ′(0), . . . ,L[µ[f]](r−2)(0) = f (r−2)(0). (4.10)

Then we can write integral (4.1) as∫ 1

−1
f (x)eiωg(x) dx =

∫ 1

−1
(f (x) +L[µ[f]](x) − L[µ[f]](x))eiωg(x) dx (4.11)

=

∫ 1

−1
L[µ[f]](x)eiωg(x) dx +

∫ 1

−1
(f (x) − L[µ[f]](x))eiωg(x) dx (4.12)

The first integral above can be computed exactly,

=

r−2∑
k=0

ck · I
[
L[φr,k](x)

]
+

∫ 1

−1
(f (x) − µ[f](x))eiωg(x) dx (4.13)

Substituting in (??), the exact expression for I
[
L[φr,k](x)

]
,

=

r−2∑
k=0

ck · (φr,k(1)eiωg(1) − φr,k(−1)eiωg(−1)) +

∫ 1

−1
(f (x) − µ[f](x))eiωg(x) dx∫ 1

−1
f (x)eiωg(x) dx =µ[f](1)eiωg(1) − µ[f](−1)eiωg(−1) +

1
iω

∫ 1

−1

(f (x) − µ[f](x))
g′(x)

(iωg′(x)eiωg(x)) dx

(4.14)

The integral in the expression above has a removable singularity at x = 0. So, we can use
integration by parts there. We simultaneously relabel f (x) to σ0(x).∫ 1

−1
f (x)eiωg(x) dx =µ[σ0](1)eiωg(1) − µ[σ0](−1)eiωg(−1) +

1
iω

∫ 1

−1

(f (x) − µ[σ0](x))
g′(x)

(iωg′(x)eiωg(x)) dx

(4.15)∫ 1

−1
f (x)eiωg(x) dx = µ[σ0](x)eiωg(x)

∣∣∣1
−1

+
1
iω

[
(f (x) − µ[σ0](x))

g′(x)
eiωg(x)

]∣∣∣∣∣∣1
−1

−

−
1
iω

∫ 1

−1

d
dx

(
(f (x) − µ[σ0](x))

g′(x)

)
eiωg(x) dx (4.16)

Now let σ1(x) := d
dx

(
(f (x)−µ[σ0](x))

g′(x)

)
.

∫ 1

−1
f (x)eiωg(x) dx = µ[σ0](x)eiωg(x)

∣∣∣1
−1

+
1
iω

[
(f (x) − µ[σ0](x))

g′(x)
eiωg(x)

]∣∣∣∣∣∣1
−1

−

−
1
iω

∫ 1

−1
σ1(x)eiωg(x) dx (4.17)

38 Chapter 4. Moment FreeMethods

And now applying the exact same procedure to the integral in (4.17) and inductively we con-
struct the expansion. The pattern is identical to when we last did this in section (2.2). Let

σ0(x) := f (x) (4.18)

σk+1(x) :=
d
dx

(
σk(x) − L[µ[σk]](x)

g′(x)

)
(4.19)

Then we have the expansion

I[f] ∼
∞∑

k=0

1
(iω)k

(
µ[σk](x)eiωg(x)

)∣∣∣∣∣∣∣
1

−1

+

∞∑
k=0

1
(iω)k+1

(
σk(x) − L[µ[σk]](x)

g′(x)

)∣∣∣∣∣∣∣
1

−1

. (4.20)

And truncating to the first p terms gives us the moment-free asymptotic method,

QÃ
p[f , g] ≡

p−1∑
k=0

1
(iω)k

(
µ[σk](x)eiωg(x)

)∣∣∣∣∣∣∣
1

−1

+

p−1∑
k=0

1
(iω)k+1

(
σk(x) − L[µ[σk]](x)

g′(x)

)∣∣∣∣∣∣∣
1

−1

. (4.21)

Notice that we have placed a tilde on the A to separate it from the classic asymptotic method
presented in section (2.2).

Next noting that
µ[σk](±1) = O(ω−1/r)

the asymptotic error of truncating the expansion readily follows as

I[f] − QÃ
p[f , g] ∼ ω−p−1/(r+1) ω→ ∞.

4.1. Moment-Free AsymptoticMethod 39

4.1.1 Numerical Examples

Example 4.1.1 Consider the integral∫ 1

−1
cos(x)eiω(7x2+x3) dx (4.22)

The g(x) here has two stationary points but only one of them lies inside the interval [−1, 1]
and has order 1. Another feature to emphasize here is that the second derivative is non-zero
away from 0 in [−1, 1]. So, we can use the moment free asymptotic method here.

0 20 40 60 80 100

10 13

10 11

10 9

10 7

10 5 QA
1

QA
2

QA
3

Figure 4.1: Log plot of the absolute error for the moment-free asymptotic method with 2,3 and
4 terms applied to integral (4.22).

0 20 40 60 80 100
0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

0.000016
QA

1

QA
2

QA
3

Figure 4.2: Absolute error scaled by ω+p+1/2 for the moment free asymptotic method with for
p = 1, 2, 3 applied to (4.22).

40 Chapter 4. Moment FreeMethods

Figures (4.1) and (4.2) show that the method evaluates the integral successfully. In Figure
(4.2), we see that the error scaled by ω9/2 for p = 3 increases after a certain point, which is
not something we would expect. This however is due to the fact that we fixed Maple’s precision
to 16 digits and as seen in Figure (4.1), QÃ

3 attains this.

4.1. Moment-Free AsymptoticMethod 41

Example 4.1.2 Consider the integral∫ 1

−1

1
1 + x2 eiω(1−cos(x)−x2/2+x3) dx (4.23)

0 20 40 60 80 100
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 QA
1

QA
2

QA
3

Figure 4.3: Log plot of the absolute error for the moment-free asymptotic method with 2,3 and
4 terms applied to integral (4.23).

0 20 40 60 80 1000

1

2

3

4

5 QA
2

QA
3

QA
4

Figure 4.4: Absolute error scaled by ωp+1/3 for the moment free asymptotic method with for
p = 1, 2, 3 applied to (4.23).

Both the plots show exactly what we would expect of the method. The result improves with
additional terms and so does the rate of asymptotic error decay.

42 Chapter 4. Moment FreeMethods

4.2 Moment-Free Filon Method
The moment-free Filon method is derived even more effortlessly than the moment-free asymp-
totic method. Instead of interpolating in the monomial basis, we simply interpolate in the new
basis we derived earlier in this section.

Let g(x) be a function with a single rth order stationary point. Let {τk}
N−1
k=0 be N ≥ 3 distinct

points in [−1, 1] such that a = τ0 < τ1 < . . . < τν = ξ < . . . < τN−1 = b. With each interpolation
point τi, associate a confluency si ∈ N\{0, 1}. So far we have the following two vectors,

τ = [τ0, τ1, . . . , τN−2, τN−1],
s = [s0, s1, . . . , sN−2, sN−1].

Then let

f̃ (x) =

d−1∑
k=0

ckL[φr,k](x) (4.24)

where d = (−1 +
∑N−1

i=0 si). At each node τi with confluency si, we match our interpolating
polynomial up to the (si − 1)th derivative of f at that point. That is,

f̃ (τi) = f (τi)

f̃ ′(τi) = f ′(τi)
...

f̃ (si−2)(τi) = f (si−2)(τi)

f̃ (si−1)(τi) = f (si−1)(τi)

for i = 0, 1, . . . ,N − 1.
Then the Nth order Moment-free Filon method is given by

QF̃
N,s[f , g] ≡

∫ 1

−1
f̃ (x)eiωg(x) dx =≡

N−1∑
k=0

ckI[L[φr,k]]

QF̃
N,s[f , g] ≡

d−1∑
k=0

ck

(
φr,k(1)eiωg(1) − φr,k(−1)eiωg(−1)

)
. (4.25)

where s = min(s0, sN−1) and sν = (2 · s − 1) · (r − 1) then the error decays as

I[f] − QF̃
N,s[f , g] ∼ ω−s−1/r ω→ ∞. (4.26)

4.2. Moment-Free FilonMethod 43

4.2.1 Numerical Examples
Example 4.2.1 Consider integrals of the form,∫ 1

−1
cos(x)eiωxr

dx (4.27)

for r ≥ 2. The function g(x) has a stationary point of order r at x = 0. The exact expressions
for the moments

∫ 1

−1
xmeiωxr

dx are known and we can use the classic Filon method to solve
them (see Example 3.3.2).

Let’s consider the case when r = 4. Then we need to sample at the stationary point node
up to the (2 · s − 1)(3) derivatives. Figures (4.5) and (4.6) show the results.

0 25 50 75 100 125 150 175 20010 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2
QF

3, 1

QF
5, 1

QF
7, 1

Figure 4.5: Absolute error on a log scale for number of nodes N = 3, 5, 7 with confluency 1 at
the endpoints.

0 25 50 75 100 125 150 175 200

10 13

10 11

10 9

10 7

10 5

10 3
QF

3, 1

QF
3, 2

QF
3, 3

Figure 4.6: Absolute error on a log scale for 3 nodes with confluency s = 1, 2, 3 at the end-
points.

44 Chapter 4. Moment FreeMethods

In Figure (4.5) we see that increasing the number of nodes decreases the magnitude of the
absolute error. Figure (4.6) shows that the sampling derivatives of f (x) at the endpoint has the
same effect.

Example 4.2.2 Consider the integral∫ 1

−1

1
1 + x2 eiω(1−cos(x)−x2/2+x3) dx (4.28)

0 20 40 60 80 100
10 6

10 5

10 4

10 3

QF
3, 2

QF
5, 2

QF
7, 2

Figure 4.7: Log plot of the absolute error for the moment free Filon method applied to the
integral (4.28) with the number of nodes N = 3, 5, 7.

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

QF
3, 2

QF
3, 3

QF
3, 4

Figure 4.8: Absolute error scaled by ωs+1/3 for the moment free Filon method with 3 nodes,
with confluencies {s, 2 · (2s − 1), s} for s = 1, 2, 3.

4.2. Moment-Free FilonMethod 45

We conclude this chapter with a brief summary:

• Both the moment-free Filon and asymptotic method were derived by using the special
basis constructed at the beginning of the chapter. This basis had the property that the
expressions for the moments are always known.

• The basis depends on g(x) and requires that g′′(x) not vanish anywhere besides 0 and
g(r+1)(0) > 0.

• Maple implementation for both these methods can be found in Appendix (A.4.2) and
(A.4.3).

Chapter 5

Levin Type Methods

The idea behind Levin integration is to turn the problem of highly oscillatory quadrature into
a problem of solving a polynomial ODE without boundary conditions. In general, numerically
solving an ODE is much more difficult than quadrature but in this instance, because we restrict
the solution to be polynomial, it makes the problem easier.

Consider the indefinite integral, ∫
f (x)eiωg(x) dx.

Assume that we have an antiderivative in closed form; namely that there is a function P(x) ∈
C1([a, b]) such that the following equality holds∫

f (x)eiωg(x) dx = P(x)eiωg(x).

Then the definite integral can be evaluated easily by the fundamental theorem of calculus as∫ b

a
f (x)eiωg(x) dx = P(b)eiωg(b) − P(a)eiωg(a) .s (5.1)

This only works provided we can find such a P(x). By changing the integrand if necessary, we
will be able to do so.

We solve for P(x) by differentiating both sides with respect to x,

d
dx

∫
f (x)eiωg(x) dx =

d
dx

(
P(x)eiωg(x)

)
f (x)eiωg(x) = P′(x)eiωg(x) + P(x)g′(x)eiωg(x)

The exponential function eiωg(x) > 0 for all x ∈ R, so we have

f (x) = P′(x) + P(x)g′(x). (5.2)

In effect, the problem of quadrature has been reduced to solving a first order ODE without
boundary conditions. We solve this ODE using spectral methods that use differentiation ma-
trices. This implicitly restricts P(x) to be polynomial, and approximates our original f (x) by
another function (polynomial if g′(x) is polynomial).

46

5.1. Levin-Hermite Quadrature 47

5.1 Levin-Hermite Quadrature
Given a set of n + 1 Chebyshev-Lobatto nodes spanning the interval [a, b],

{τk}
n
k=0 =

{
a + b

2
+

(b − a)
2

cos
(
π(n − k)

n

)}n

k=0
∈ [a, b]

and values of the function { f (τk)}nk=0, we can find a unique polynomial p(z) of degree at most
n, called the Lagrange interpolating polynomial, which has the property

p(τi) = f (τi), i = 0, · · · , n. (5.3)

The first barycentric form (see [2] and [8]) of the Lagrange interpolating polynomial is given
by

p(z) = w(z)
n∑

k=0

βkρk

z − τk
,

where

w(z) =

n∏
i=0

(z − τi), βk =
1∏n

i=0
i,k

(τk − τi)
and ρi = f (τi).

If the Lagrange coefficients ρk are collected into a vector

~ρ =
[
ρ0 ρ1 · · · ρn

]T
,

we can construct a matrix DL, called the Lagrange differentiation matrix1, such that

~ρ′ = DL~ρ,

where the vector ~ρ′ are the Lagrange coefficients of the derivative of f , f ′(t).
The entries of DL are given by

[DL]i j =

−β j

βi(τi−τ j)
i , j

−
∑n

k=0
k,i

[DL]ik i = j
. (5.4)

With the differentiation matrix at hand, the ODE (5.2) is approximately solved by solving
the following linear system,

~f =
(
DL + iωIn+1~g′

)
~P,

where
~f =

[
f (τ0) f (τ1) · · · f (τn)

]T
,

~g′ =
[
g′(τ0) g′(τ1) · · · g′(τn)

]T
.

And In+1 is an identity matrix of size n + 1.

From which, the value of the integral is
1In [17], the authors call this the Chebyshev differentiation matrix.

48 Chapter 5. Levin TypeMethods

∫ b

a
f (x)eiωg(x) dx = Pneiωg(τn) − P0eiωg(τ0), (5.5)

where P0 and Pn are the first and last entries of the solution vector ~P.

This is the method described in [17]. However, instead of using Chebyshev polynomials,
we have arrived at it using Lagrange interpolation (which can be performed on any set of
discrete nodes, although some sets of nodes are better than others). The approach here can
be extended to use Hermite interpolation, which allows us to use the information about the
derivatives of f at the nodes.

Given a set of n + 1 Chebyshev-Lobatto nodes {τk}
n
k=0 spanning [a, b], and at each τk, in-

formation of the function f upto the (sk − 1)th derivative, we can then express a function f (t)
as

f (z) = w(z)
n∑

i=0

si−1∑
j=0

j∑
k=0

βi, jρi,k(z − τi)k− j−1

where βi, j are the barycentric weights and ρi,k are the polynomial coefficients given by ρi,k :=
f (k)(τi)

k! . The barycentric weights βi, j are calculated by calculating the partial decomposition as
follows,

n∏
i=0

1
(z − τi)si

=

n∑
i=0

si−1∑
j=0

βi, j

(z − τi) j+1 . (5.6)

As with Lagrange interpolation, if we put all of these coefficients ρi,k into a vector of size
1 + d

(
d = −1 +

∑n
k=0 sk

)
,

~ρ = [ρ0,0, ρ0,1, · · · , ρ0,s0−1, · · · , ρi,0, · · · , ρi,si−1, · · · , ρn,sn−1]T

= [ρ1, ρ2, · · · , ρsi , · · · , ρs0+···+si , · · · , ρs0+···+si+si , · · · , ρ1+d]T ,

we can define a (1 + d)× (1 + d) matrix DH, called the Hermite differentiation matrix, such that

~ρ′ = DH~ρ. (5.7)

A derivation of the entries of DH can be found in [4]. We have only presented the final result
here.

In order to shorten notation, we define s−1 = 0 and our row and column numbering starts
from 1. For each k = 0, · · · , n, if sk > 1, the set of rows enumerated by

kth trivial rows set = {s−1 + s0 + s1 + · · · + sk−1 + 1 + η}sk
η=0,

is a (sk − 1) × d matrix,
0 · · · 0︸ ︷︷ ︸

s−1+s0+···+sk−1+1

1 0 · · · 0
0 2 0 · · · 0

...
...

. . .
...

0 0 · · · 0 (sk − 1) 0 · · · 0

 .

5.1. Levin-Hermite Quadrature 49

This leaves the non-trivial rows to be defined. These are the rows enumerated by the set

Non-trivial rows = {s0, s0 + s1, · · · , s0 + s1 + · · · + sk, · · · , 1 + d}.

In order to write clean expressions for this, first we define

βi, j;k = −

si−1∑
µ= j

βi,µ(τk − τi) j−1−µ,

where the βi, j on the right hand side are the generalized barycentric weights calculated by the
partial fraction decomposition described in (5.6).

With this, the action of the kth non-trivial row is given by

f (sk)(τk)
sk!

=
1

βk,sk−1

− sk−2∑
j=0

βk, j
f (j+1)(τk)
(j + 1)!

+

−

n∑

i=0
i,k

si−1∑
j=0

βi, j(τk − τi)− j−1

 f (τk)

−

n∑
i=0
i,k

si−1∑
j=0

βi, j;k
f (j)(τi)

j!

 .
So the kth non-trivial row is given by

[DH]Rk ,ν =
1

βk,sk−1
·

(
−βk, j

)
, s0 + · · · + sk + 1 < ν <

s0 + · · · + sk + sk,

−

(∑n
i=0
i,k

∑si−1
j=0 βi, j(τk − τi)− j−1

)
, ν = s0 + · · · + sk

−βi, j;k, i = 0, · · · , n; i , k
j = 1, · · · , si,

ν = si−1 + j.

.

where R = {s0, s0 + s1, · · · , s0 + s1 + · · ·+ sk, · · · , 1 + d}. Note that the kth non-trivial row is not
the kth row of the matrix, it is the Rkth row of the matrix.

Now with the matrix DH defined, we can approximately solve the ODE (5.2) in the Hermite
interpolational basis.

At each node τk, we need to solve for {P(τk), P′(τk),
P′′(τk)

2! , · · · , P(sk−1)(τk)
(sk−1)! }. To solve for the sk

unknowns at each node, we require the ODE (5.2) to be satisfied upto the (sk − 1)th derivative,

50 Chapter 5. Levin TypeMethods

f (τk) = P′(τk) + iωg′(τk)P(τk),
f ′(τk) = P′′(τk) + iω(g′′(τk)P(τk) + g(τk)P′(τk)),

...

f (j)(τk) = P(j+1)(τk) +

j−1∑
`=0

(
j − 1
`

)
P(`)(τk)g(j−`)(τk), (5.8)

...

f (sk−1)(τk) = P(sk)(τk) +

sk−2∑
`=0

(
j − 1
`

)
P(`)(τk)g(sk−2−`)(τk),

which gives up a total of d + 1 equations for d + 1 unknowns (sk unknowns and equations at
each τk and d = −1 +

∑n
k=0 sk). In order to take the derivatives of P, we use the differentiation

matrix DH. The construction of the system of equations is clear from the definition of DH and
the equations (5.8) at each node τk.

Upon solving these equations, the integral approximation is calculated by∫ b

a
f (x)eiωg(x) dx = Pd−sn+1eiωg(b) − P1eiωg(a). (5.9)

Note that if sk = 1 for all k, then the Levin-Hermite method reduces to the Levin-Lagrange
method.

Python code for generating the differentiation matrix and performing the integration will
be made available through Github2.

5.2 Levin-Bernstein Quadrature
The set of n + 1 Bernstein polynomials of degree n,

{Bn
k(x)}nk=0 =

{(
n
k

)
xk(1 − x)n−k

}n

k=0
,

forms a basis for polynomials of degree n over [0,1]. We define the modified Bernstein poly-
nomials by,

{B̃n
k(x)}nk=0 =

{(
n
k

)
(x − a)k(b − x)n−k

(b − a)n

}n

k=0
,

which forms a basis for polynomials of degree n over [a, b].
Because these constitute a polynomial basis, we can interpolate continuous functions in

this basis. The coefficients are calculated by solving the following system:

2https://github.com/jeettrivedi/highly-oscillatory/

https://github.com/jeettrivedi/highly-oscillatory/

5.2. Levin-Bernstein Quadrature 51

B̃n

0(τ0) B̃n
1(τ0) · · · B̃n

n(τ0)
B̃n

0(τ1) B̃n
1(τ1) · · · B̃n

n(τ1)
...

...
B̃n

0(τn) B̃n
1(τn) · · · B̃n

n(τn)

f0

f1
...
fn

 =

f (τ0)
f (τ1)
...

f (τn)

 . (5.10)

If we put the coefficients fk into a vector ~f =
[
f0 f1 · · · fn

]T
, we can define an (n +

1) × (n + 1) matrix DB̃, called the modified Bernstein differentiation matrix, which satisfies the
following equality,

~f ′ = DB̃
~f ,

where ~f ′ are the coefficients which interpolate f ′(x) in the modified Bernstein basis.
The modified Bernstein differentiation matrix is a tridiagonal matrix. Its entries are as

follows (see [1] for a proof):

[DB̃]i, j =
1

(b − a)
·

2i − n i = j
−i j = i − 1
n − i j = i + 1

. (5.11)

The following is the Bernstein differentiation matrix over [a, b] for 4 nodes,

[DB̃]i, j =
1

(b − a)
·

−3 3 0 0
−1 −1 2 0
0 −2 1 1
0 0 −3 3

 .
For two functions f and g expressed in the modified Bernstein basis of order n, their product

f g can be expressed in the modified Bernstein basis of order 2n. The coefficients of the product
are given by

{(f g)i}
2n
i=0 =

min(i,2n)∑

j=max(0,i−n)

(
n
j

)(
n

i− j

)
(

2n
i

) gi− j f j

2n

i=0

. (5.12)

Using the product formula (5.12) and the coefficients ~f of f (x) in the modified Bernstein basis
of order n, we define a (2n + 1) × (n + 1) matrix M f , which acts as follows

−→
f g = M f~g

where
−→
f g are the coefficients of the product (f g)(x) in the modified Bernstein basis of order 2n.

The entries of the banded matrix M f are as follows:

[
M f

]
i, j

=

(n

j)(n
i− j)

(2n
i)

fi− j max(0, i − n) ≤ j ≤ min(i, 2n)

0 otherwise
. (5.13)

52 Chapter 5. Levin TypeMethods

Using these matrices, we can solve the polynomial ODE (5.2) in the modified Bernstein basis
by solving the following overdetermined system of linear equations,

~f = (M1 + iωMg′)~P. (5.14)

We solve this using Singular Value Decomposition (SVD) and find the solution with minimal
2-norm.

Lastly note that the modified Bernstein basis has the property,

B̃n
k(a) = δ0,k,

B̃n
k(b) = δn,k.

This implied the first and last coefficients determine the value of solution at each of the end
points respectively. With this, the value of the integral is given by

∫ b

a
f (x)eiωg(x) dx = Pneiωg(b) − P0eiωg(a).

5.3 Levin-Compact Finite Difference Quadrature (Levin-CFD)

The idea of this method is very similar to that of Levin-Lagrange quadrature. Using the method
of Compact-Finite differences, we define a matrix DC, which given a set of nodes and values
of a function at these nodes, {τk}

n
k=0 ∈ [a, b] and { f (τk)}nk=0; can be used to calculate an approx-

imation to the derivative of f at the nodes.
The derivation of such a matrix for the case of a uniform grid is covered in [16] and for

the case of the non-uniform grid in [6, 4]. We simply present the matrix here for an arbitrary
non-uniform grid {τk}

n
k=0. Define hi ≡ τi+1 − τi. Then the matrix DC is given by

DC = A−1B (5.15)

where the matrices A and B are defined as follows:

[A]i, j =

1
(h0+h1)(h0+h1+h2) i = 0, j = 0

1
2(h1)(h1+h2) i = 0, j = 1

1
(hi+hi−1)2 0 < i < n, j = i − 1
1
h2

i
0 < i < n, j = i

h2
i−1

(hi+hi−1)2h2
i

0 < i < n, j = i + 1
1

hn−2(hn−2+hn−3) i = n, j = n − 1
1

(hn−1+hn−2)(hn−1+hn−2+hn−3) i = n, j = n

5.3. Levin-Compact Finite Difference Quadrature (Levin-CFD) 53

[B]i, j =

4h2
0+6h0h1+3h0h2+2h2

1+2h1h2

(h0+h1)2(h0+h1+h2)2(h0) i = 0, j = 0
(−2h1+h0)h2+2h1(−h1+h0)

h0h2
1(h1+2)2 i = 0, j = 1

−h2
0

(h0+h1)2h2
1h2

i = 0, j = 2
h2

0
(h0+h1+h2)2(h1+h2)2h2

i = 0, j = 3
4hi−1+2hi

hi−1(hi−1+hi)3 0 < i < n, j = i − 1
2(hi−1−hi)

hi−1h3
i

0 < i < n, j = i

−
(4hi+2hi−1)h2

i−1
(hi+hi−1)3h3

i
0 < i < n, j = i + 1

−
h2

n−1
(hn−3+hn−2+hn−1)2(hn−3+hn−2)2hn−3

i = n, j = n − 3
h2

n−1
(hn−2+hn−1)2h2

n−2hn−3
i = n, j = n − 2

(2hn−2−hn−1)hn−3+2hn−2(hn−2+hn−1)
hn−1h2

n−2(hn−3+hn−2)2 i = n, j = n − 1

−
4h2

n−1+hn−1(6hn−2+3hn−3)+2hn−2(hn−3+hn−2)
hn−1(hn−2+hn−1)2(hn−3+hn−2+hn−1)2 i = n, j = n

Using the matrix DC, ODE (5.2) is approximately solved by solving the following system
of equations:

~f =
(
DC + iωI~g′

)
~P.

Matrix inversion is computationally costly so instead of explicitly calculating DC, we solve
the following equivalent system,

A ~f =
(
B + iωA~g′

)
~P (5.16)

From the solution of (5.16), the integral is calculated by∫ b

a
f (x)eiωg(x) dx = Pneiωg(b) − P0eiωg(a)

54 Chapter 5. Levin TypeMethods

5.4 Numerical Experiments

Example I1 =
∫ 1

−1
(x3 + x2 + x)eiωx dx

This integral can be calculated exactly using integration by parts,

[I1]exact = −
e−iω

ω4 (3iω3e2iω − 8iωe2iω − 6ω2e2iω − 4iω + 2ω2 − 6).

f is a 3rd order polynomial, so we expect the Levin-Lagrange and Levin-Bernstein to be
exact with 4 nodes and Levin-Hermite with 2 nodes of confluency 2 each. For the Levin-CFD
method, we also expect the result to be exact with 5 nodes.

20 40 60 80 100
0.0

0.5

1.0

1e 15

20 40 60 80 100
0.0

0.5

1.0

1e 15

Figure 5.1: Absolute error using the Levin-Lagrange method (Left) with 4 Chebyshev nodes
and Levin-Hermite method with 2 nodes each with confluency 2 (Right).

20 40 60 80 100
0.0

0.5

1.0

1e 15

20 40 60 80 100
0.0

0.5

1.0

1.5
1e 14

Figure 5.2: Absolute error using the Levin-Bernstein method (Left) with 4 Chebyshev nodes
and Levin-CFD method with 5 nodes (Right).

As seen in Figure 5.1 and 5.2, the results are exact upto machine epsilon, as expected.
The next three examples demonstrate the asymptotic order of each of the method asω→ ∞.

All four methods retain the property that the accuracy increases as ω increases.

5.4. Numerical Experiments 55

Example I2 =
∫ 1

−1
(1

1+x2)eiωx dx

20 40 60 80 100
0.0

0.2

0.4

0.6

20 40 60 80 100
0.0

0.2

0.4

0.6

Figure 5.3: Absolute error multiplied by ω2 using the Levin-Lagrange method (Left) with 4
Chebyshev nodes and Levin-Hermite method with 4 nodes each with confluency 2 multiplied
by ω3 (Right).

20 40 60 80 100
0.00

0.05

0.10

0.15

20 40 60 80 100
0.0

0.1

0.2

0.3

Figure 5.4: Absolute error multiplied by ω using the Levin-Bernstein method (Left) with 4
Chebyshev nodes and Levin-Composite Finite Difference method with 5 nodes multiplied by
ω2 (Right).

56 Chapter 5. Levin TypeMethods

Example I3 =
∫ 2

1
(1

1+x2)eiωx2
dx

50 100 150 200
0.010

0.012

0.014

0.016

0.018

50 100 150 200

0.00035

0.00040

0.00045

Figure 5.5: Absolute error multiplied by ω2 using the Levin-Lagrange method (Left) with 4
Chebyshev nodes and Levin-Hermite method with 4 nodes each with confluency 2 multiplied
by ω3 (Right).

50 100 150 200
0.0005

0.0006

0.0007

50 100 150 200

0.0025

0.0030

0.0035

Figure 5.6: Absolute error multiplied by ω using the Levin-Bernstein method (Left) with 3
Chebyshev nodes and Levin-CFD method with 5 nodes multiplied by ω2 (Right).

5.4. Numerical Experiments 57

Example I4 =
∫ 2

1
(ex)eiωcosh(x) dx

50 100 150 200
0.030

0.035

0.040

50 100 150 200
0.00175

0.00200

0.00225

0.00250

0.00275

Figure 5.7: Absolute error multiplied by ω2 using the Levin-Lagrange method (Left) with 4
Chebyshev nodes and Levin-Hermite method with 4 nodes each with confluency 2 multiplied
by ω3 (Right).

50 100 150 200
0.0004

0.0006

0.0008

0.0010

0.0012

50 100 150 200
0.007

0.008

0.009

Figure 5.8: Absolute error multiplied by ω using the Levin-Bernstein method (Left) with 3
Chebyshev nodes and Levin-Composite Finite Difference method with 4 nodes multiplied by
ω2 (Right).

Example I5 =
∫ 1

−1

∫ 1

−1
f (x, y)eiωg(x,y) dx

The Levin-Hermite method and the Levin-CFD method can be used to evaluate multiple in-
tegrals over rectangular domains using the method of delaminating quadrature. This approach
for Levin integration was proposed in [18]. The extension of Levin-Hermite and Levin-CFD to
do multiple integrals of this form is straightforward. We present here the case of Levin-Hermite
with confluency 2 at each node.

I5 =

∫ 1

−1

∫ 1

−1
f (x, y)eiωg(x,y) dx, (5.17)

where g(x, y), f (x, y) are continuous.
First calculate the inner integral of (5.17),∫ −1

−1
f (x, y)eiωg(x,y) dy,

58 Chapter 5. Levin TypeMethods

using 1 dimensional Levin integration method, which requires us to solve the PDE

f = py + iωgy p,

where the subscripts denote partial derivative with respect to that variable.
This leads to ∫ −1

−1
f (x, y)eiωg(x,y) dy = p(x, 1)eiωg(x,1) − p(x,−1)eiωg(x,−1). (5.18)

So, the complete integral can be calculated by substituting the right hand side of (5.18) in place
of the inner integral in (5.17),∫ 1

−1

∫ 1

−1
f (x, y)eiωg(x,y) dy dx =

∫ 1

−1
p(x, 1)eiωg(x,1) − p(x,−1)eiωg(x,−1) dx,

which is two 1 dimensional integrals, which we can solve, once we have found p(x, y).
Construct a tensor grid of Chebyshev-Lobatto nodes that spans the domain with N2 nodes.

Label them
{(x j, yk)}N−1

j,k=0.

For each j = 0, · · · ,N − 1, we have to solve the following 2N equations,

py(x j, ym) + iωgy(x j, ym)p(x j, ym) = f (x j, ym), m = 0, · · · ,N − 1

and

pyy(x j, ym) + iω(gyy(x j, ym)p(x j, ym) + gy(x j, ym)py(x j, ym)) = fy(x j, ym),
m =0, · · · ,N − 1.

The complete set of solutions gives us the values of p(x, y) and py(x, y) at the grid points.
Now we are in the position to solve the two integrals, which we do as follows.∫

p(x, 1)eiωg(x,1) = Q1(x)eiωg(x,1)

where Q1(x) is sufficiently continuously differentiable. Now, we solve the associated ODE

dQ1(x)
dx

+ ω
g(x, 1)

dx
Q1(x) = p(x, 1)

by solving the following N equations,

(Q1)x(xk, 1) + iωgx(xk, 1)(Q1)(xk, 1) = f (xk, 1) k = 0, · · · ,N − 1

which gives us the values of Q1(x), with which we calculate the integral. And so the above
integral has the value∫ 1

−1
p(x, 1)eiωg(x,1) = Q1(1)eiωg(1,1) − Q1(−1)eiωg(−1,1)

5.4. Numerical Experiments 59

Similarly we solve the second integral,∫ 1

−1
p(x,−1)eiωg(x,−1) = Q2(1)eiωg(1,−1) − Q2(−1)eiωg(−1,−1)

And thus the complete integral is given by∫ 1

−1

∫ 1

−1
f (x, y)eiωg(x,y) dy dx =Q1(1)eiωg(1,1) − Q1(−1)eiωg(−1,1)

− (Q2(1)eiωg(1,−1) − Q2(−1)eiωg(−1,−1))

We demonstrate this with the following intergral,

I5 =

∫ 1

−1

∫ 1

−1
cos(x + y)eiω(x+y) dy dx. (5.19)

The exact value of this integral is given by

[I5]exact = −
1

ω4 − 2ω2 + 1

(
e4iω cos(2)ω2 − 2ie4iω sin(2)ω

+e4iω cos(2) − 2e2iωω2 + 2iω sin(2) − 2e2iω + cos(2)
)

(5.20)

When we evaluate the outer integral, we are only using the information of p(x, y) and not
its derivative, so we expect the error to decay as O(ω−2).

40 50 60 70 80 90 100
0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

40 50 60 70 80 90 100
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Figure 5.9: Absolute error using the Levin-Hermite method (Left) with 5 Chebyshev nodes,
each with confluency 2 and the absolute error of the results scaled by ω2 (Right).

As seen in the figure, we get 4 digits of accuracy with 5 nodes and the absolute error decays
as O(ω−2).

5.4.1 Stability of Methods

Next, we demonstrate the stability of the methods with two examples. For both, we fix ω to
200 and raise the number of nodes used.

60 Chapter 5. Levin TypeMethods

Example I6 =
∫ 2

1
(1

1+x2)e200ix2
dx

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of nodes (N)

10 18

10 16

10 14

10 12

10 10

10 8

10 6
Ab

so
lu

te
 e

rro
r

Levin-Lagrange method
Levin-Hermite method (s=2)
Levin-Bernstein method
Levin-CFD method

Figure 5.10: Log plot of the error as a function of the number of nodes for each of the methods
starting from 5 nodes and going up to 20 nodes.

Example I7 =
∫ 2

1
(1

1+x2)e200icosh(x) dx

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of nodes (N)

10 15

10 13

10 11

10 9

10 7

10 5

Ab
so

lu
te

 e
rro

r

Levin-Lagrange method
Levin-Hermite method (s=2)
Levin-Bernstein method
Levin-CFD method

Figure 5.11: Log plot of the error as a function of the number of nodes for each of the methods
for I7 starting from 5 nodes and going up to 20 nodes.

Lastly we show that for the Levin-Hermite method, the method is stable with respect to
raising of the confluency at the nodes.

Example I4 =
∫ 2

1
(ex)e200icosh(x) dx

5.4. Numerical Experiments 61

0 2 4 6 8
Confluency at each node (s)

10 14

10 12

10 10

10 8

10 6

Ab
so

lu
te

 E
rro

r

Figure 5.12: Log plot of the absolute error for Levin-Hermite method as a function of the
confluency at the 2 nodes (one at each endpoint) for I4.

Chapter 6

Hybrid Method & Concluding Remarks

Each of the methods described in the chapters before either works only in the absence of
stationary points or requires there to be only one stationary point in the integration interval.
Furthermore, the moment free methods have additional constraints which have to be taken into
account before it can be used.

Apart from the constraints, the methods require additional information such as the station-
ary points and their orders. The idea of the hybrid method presented here is to abstract away
this complexity from the user and allows for easy inclusion into existing integration packages.

The details of the method are fairly straightforward and don’t require a great deal of elabo-
ration. We sum up the essential idea of the method in the steps below:

1. Find all the stationary points by solving g′(x) = 0 and keep only the ones that lie in [a, b].

2. For each stationary points, evaluate further derivatives of g(x) at that point until a non-
zero derivative is reached. This gives us the order of each stationary point.

3. Find all the points in [a, b] where the second derivative vanishes but the first derivative
doesn’t.

4. For each stationary point, make a list of all the problematic points that lie to the left of
it and to the right of it. Using this list, we can extract an interval centered around the
stationary points that excludes all of these points. Over each such interval, we need to
use a method that can handle stationary points.

• If g(r+1)(stationary point) > 0, use moment-free Filon method on this interval.

• If g(r+1)(stationary point) < 0, use the regular Filon method on this interval.

5. Lastly check what parts of the interval are not covered by the previous step and apply
Levin-Hermite method on these intervals.

Using these ideas, it is easy enough to write a an implementation in the computer algebra
system of your choice. We have included a Maple implementation in Appendix (A.5).

62

63

This brings us to the last part of this thesis, the concluding remarks. It is worth noting that
at the time of writing, neither Maple nor Mathematica have special methods implemented for
highly oscillatory integrals of the form discussed in this thesis. The code included in this thesis
along with the hybrid method is a first step in this direction.

That being said, the Maple prototype presented in Appendix (A.5) is a very naive imple-
mentation of the idea and is a long way from what one would expect of a final product. We
conclude this work with suggestions for further work in the direction of improving this code.

An obvious improvement would be to add some form of error control in the method. A
good starting point for this is the paper [12] which provides error bounds for both the Filon and
the Asymptotic method. There is an even simpler approach to error control when calculating
integrals for a large range of ω. For the lowest ω value in the range, compute the absolute error.
We know the rate at which the error decays with ω and so using this information, we can adjust
our parameters accordingly to reach the desired tolerance.

An equally important improvement would be generalizing the moment-free basis discussed
in chapter (4) to include the case where g(r+1)(stationary point) < 0. In the original paper [21],
the author states that this condition can be relaxed at the expense of complicating proofs. This
would indicate that such a generalization is trivial but all attempts so far appear to indicate
otherwise.

Besides this, additional methods such as analytic continuation and steepest descent (de-
scribed in [9]) can be incorporated into this method as well. Other directions one could take
is to consider other oscillatory kernels such as the Bessel kernel (see [3],[23]) and the more
general class of integrals explored in [24] and extend the method to account for those. Imple-
mentations for methods for multivariate highly oscillatory integrals (see [11],[14]) can also be
added.

There is sufficient reliable literature on the topic of numerical quadrature of highly oscilla-
tory integrals to warrant the creation of an integration package that will be able to solve a large
number of problems arising in applications. This thesis is a first step in the direction of this
goal.

Bibliography

[1] Amirhossein Amiraslani, Robert M. Corless, and Madhusoodan Gunasingham. Differen-
tiation matrices for univariate polynomials. submitted, 2018.

[2] Jean-Paul Berrut and Lloyd N Trefethen. Barycentric Lagrange interpolation. SIAM
review, 46(3):501–517, 2004.

[3] Ruyun Chen. Numerical approximations to integrals with a highly oscillatory bessel
kernel. Applied Numerical Mathematics, 62(5):636–648, 2012.

[4] Robert M Corless and Nicolas Fillion. A graduate introduction to numerical methods.
AMC, 10:12, 2013.

[5] Louis Napoleon George Filon. Iii.—on a quadrature formula for trigonometric integrals.
Proceedings of the Royal Society of Edinburgh, 49:38–47, 1930.

[6] L Gamet, F Ducros, Franck Nicoud, and Thierry Poinsot. Compact finite difference
schemes on non-uniform meshes. application to direct numerical simulations of com-
pressible flows. International Journal for Numerical Methods in Fluids, 29(2):159–191,
1999.

[7] Richard M Goody and Yuk Ling Yung. Atmospheric radiation: theoretical basis. Oxford
university press, 1995.

[8] Nicholas J Higham. The numerical stability of barycentric Lagrange interpolation. IMA
Journal of Numerical Analysis, 24(4):547–556, 2004.

[9] Daan Huybrechs and Stefan Vandewalle. On the evaluation of highly oscillatory integrals
by analytic continuation. SIAM Journal on Numerical Analysis, 44(3):1026–1048, 2006.

[10] A Iserles, SP Nørsett, and S Olver. Highly oscillatory quadrature: The story so far. In
Numerical mathematics and advanced applications, pages 97–118. Springer, 2006.

[11] Arieh Iserles and Syvert Nørsett. Quadrature methods for multivariate highly oscillatory
integrals using derivatives. Mathematics of computation, 75(255):1233–1258, 2006.

[12] Arieh Iserles and Syvert P Nørsett. On quadrature methods for highly oscillatory integrals
and their implementation. BIT Numerical Mathematics, 44(4):755–772, 2004.

64

BIBLIOGRAPHY 65

[13] Arieh Iserles and Syvert P Nørsett. Efficient quadrature of highly oscillatory integrals us-
ing derivatives. In Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, volume 461, pages 1383–1399. The Royal Society, 2005.

[14] Arieh Iserles and Syvert P Nørsett. From high oscillation to rapid approximation iii:
Multivariate expansions. IMA journal of numerical analysis, 29(4):882–916, 2009.

[15] John David Jackson. Classical electrodynamics, 1999.

[16] Sanjiva K Lele. Compact finite difference schemes with spectral-like resolution. Journal
of computational physics, 103(1):16–42, 1992.

[17] JianBing Li, Xuesong Wang, and Tao Wang. A universal solution to one-dimensional
oscillatory integrals. Science in China Series F: Information Sciences, 51(10):1614–
1622, 2008.

[18] Jianbing Li, Xuesong Wang, Tao Wang, and Chun Shen. Delaminating quadrature method
for multi-dimensional highly oscillatory integrals. Applied Mathematics and Computa-
tion, 209(2):327–338, 2009.

[19] FWJ Olver. Error bounds for stationary phase approximations. SIAM Journal on Mathe-
matical Analysis, 5(1):19–29, 1974.

[20] Sheehan Olver. Moment-free numerical integration of highly oscillatory functions. IMA
Journal of Numerical Analysis, 26(2):213–227, 2006.

[21] Sheehan Olver. Moment-free numerical approximation of highly oscillatory integrals
with stationary points. European Journal of Applied Mathematics, 18(4):435–447, 2007.

[22] EM Stein. Harmonic analysis: Real variable methods, orthogonality and oscillatory inte-
grals vol. 43 of the princeton math. Series. Princeton U. Press. Princeton, NJ, 1993.

[23] Shuhuang Xiang, Yeol Je Cho, Haiyong Wang, and Hermann Brunner. Clenshaw–curtis–
filon-type methods for highly oscillatory bessel transforms and applications. IMA Journal
of Numerical Analysis, 31(4):1281–1314, 2011.

[24] Shuhuang Xiang and Haiyong Wang. Fast integration of highly oscillatory integrals with
exotic oscillators. Mathematics of Computation, 79(270):829–844, 2010.

Appendix A

Computer Code

All of the code in the Appendix can be downloaded for use from Github using the following
link: https://github.com/jeettrivedi/highly-oscillatory/.

A.1 Asymptotic-Type Methods

A.1.1 Asymptotic Method in the absence of stationary points

1 Asymptotic_Method_no_stat:=proc(f_t,g_t,a,b,p,omega_range::

list)

2

3 description "Computes Highly Oscillatory integrals with an

rth order stationary point in the interval";

4 local Q_A, f, g, h, k, mu, omega, rho, vals, xi;

5

6 # Transforming the integral

7 f:=x->f_t(x*(b-a)+a);

8 g:=x->g_t(x*(b-a)+a);

9

10 # Calculating the coefficients

11 rho[0]:= f(x);

12 for k from 1 to p-1 do

13 rho[k]:= diff(rho[k-1]/diff(g(x),x),x);

14 od;

15

16 # Calculating the integral values

17 return [seq(evalf(eval(-(b-a)*add(1/(-I*w)ˆ(m+1)*(eval(exp(

I*w*g(x))*rho[m]/diff(g(x),x),x=1)-eval(exp(I*w*g(x))*rho

[m]/diff(g(x),x),x=0)),m=0..p-1),w=omega)),omega =

omega_range)]:

18

19 end proc;

66

https://github.com/jeettrivedi/highly-oscillatory/

A.1. Asymptotic-TypeMethods 67

A.1.2 Asymptotic Method in the presence of stationary points

1 Asymptotic_Method_stat_points:=proc(f_t,g_t,a,b,xi_t,r,p,

omega_range::list)

2

3 # description "Computes Highly Oscillatory integrals of the

form

4 # int(f(x)*exp(I*w*g(x)),x=a..b)

5 # with an rth order stationary point in the interval and w

in omega_range":

6

7 local f,g,xi,mu,rho,k,h,vals,omega:

8

9 Digits := 16:

10

11 # Transforming the integral

12 f:=x->f_t(x*(b-a)+a);

13 g:=x->g_t(x*(b-a)+a);

14 xi:=(xi_t-a)/(b-a);

15

16 # The ‘‘simpler’’ highly oscillatory integrals

17 mu := (n, omega, xi)->int((x-xi)ˆn*exp(I*omega*g(x)), x =

0..1);

18

19 # Calculating the coefficients

20 rho[0]:= F(x);

21 for k from 1 to p-1 do

22 rho[k]:= Diff((rho[k-1]-add((Limit((Diff(rho[k-1], [x$j]))

/factorial(j), x = xi))*(x-xi)ˆj, j = 0 .. r-1))/(Diff(

G(x), x)), x);

23 od:

24

25 for k from 0 to p-1 do

26 rho[k] := simplify(value(eval(rho[k], {F(x) = f(x), G(x) =

g(x)})));

27 od:

28

29 return [seq(evalf(value(add(evalf(mu(j, omega, xi))*add((

Limit(value(diff(rho[m], [x$j])), x = xi))/(-I*omega)ˆm,

m = 0 .. p-1)/factorial(j), j = 0 .. r-1))-add((exp(I*

omega*g(1))*(map(w->eval(w, x = 1),rho)[m]-map(w->limit(w

, x = xi), rho)[m])/(eval(diff(g(x), x), x = 1))-exp(I*

omega*g(0))*(map(w->eval(w, x = 0),rho)[m]-map(w->limit(w

, x = xi),rho)[m])/(eval(diff(g(x),x), x=0)))/(-I*omega)

ˆ(m+1), m = 0 .. p-1))*(b-a), omega=omega_range)]:

68 Chapter A. Computer Code

30

31

32 end proc;

A.2. Filon-TypeMethods 69

A.2 Filon-Type Methods

A.2.1 Filon-Lagrange Method

1 Filon_Method_No_Stat:=proc(f_t::algebraic ,g_t::algebraic ,a::

numeric,b::numeric,N::integer,omega_range::list)

2 description "Computes highly oscillatory integrals of the

form

3 Int(f(x)*exp(I*w*g(x)),x=a..b).

4 using Filon-Lagrange integration. The method requires that g

(x) have no stationary points in the interval [a,b].";

5

6

7 local Int_f, array_of_funcs , f, f_tau, g, i, j, p, tau, vals

, wts, wts_pre_calc;

8 Digits:=16:

9

10 # Transforming the integral

11 f := x->f_t(x*(b-a)+a);

12 g := x->g_t(x*(b-a)+a);

13

14 # Generating interpolation points

15 tau := [seq((1+cos(Pi*i/(N-1)))*(1/2), i = N-1 .. 0, -1)];

16 f_tau := [seq(f(tau[i+1]), i = 0 .. N-1)];

17

18 # Calculating the moments

19 wts := [seq(int(xˆi*exp(I*omega*g(x)), x = 0 .. 1), i = 0 ..

N-1)];

20

21 # Interpolation

22 p := z->CurveFitting[PolynomialInterpolation](zip(‘[]‘, tau,

f_tau), z);

23 p := collect(p(z), z);

24 Int_f := (b-a)*((subs(z = 0, p)*wts[1]+add(coeff(p, zˆ(i-1))

*wts[i], i = 2 .. N)));

25

26 # Calculation of the integral

27 return [seq(evalf(subs(omega = w, Int_f)),w=omega_range)]:

28

29 end proc:

A.2.2 Filon-Hermite Method

1 Filon_Method_Stat_Pts:=proc(f_t::algebraic ,g_t::algebraic ,a,b,

N::integer,s_t,xi_t,r::integer,omega_range::list)

2 description "Computes highly oscillatory integrals of the

70 Chapter A. Computer Code

form

3 Int(f(x)*exp(I*w*g(x)),x=a..b).

4 using Filon-Hermite integration. The method requires that g(

x) have only 1 stationary point in [a,b]";

5

6 local appended_zero ,Int_f, array_of_funcs , f, f_tau, g, i,

interpolant_coeffs , j, p, s, tau, vals, wts, wts_pre_calc

, xi, xy;

7

8 Digits:=16:

9 # Transforming the integral

10 f:=x->(b-a)*f_t(x*(b-a)+a);

11 g:=x->g_t(x*(b-a)+a);

12 xi:=(xi_t-a)/(b-a);

13

14 # Generating interpolation points

15 tau := Array([seq((1+cos(Pi*i/(N-1)))*(1/2), i = N-1 .. 0,

-1)]);

16

17 # Adding stat point as a node if it is not a node already

18 appended_zero := false:

19 if(not(has(evalf(tau),evalf(xi)))) then

20 tau := ArrayTools[Append](tau,xi):

21 appended_zero := true:

22 end if:

23

24 # make confluency vector

25 s:=Array([seq(1,j=1..ArrayTools[Size](tau)[2])]):

26 s[1] := s_t:

27

28 if(appended_zero) then

29 s[ArrayTools[Size](tau)[2]] := s_t*(r+1):

30 s[ArrayTools[Size](tau)[2]-1] := s_t:

31 else

32 s[ArrayTools[Size](tau)[2]] := s_t:

33 s[(ArrayTools[Size](tau)[2]+1)/2] := s_t*(r+1):

34 end if;

35

36 # Hermite interpolation

37 xy:=evalf([seq([tau[m], seq(eval(diff(f(x), [x$j]), x = tau[

m]), j = 0 .. s[m]-1)], m = 1 .. ArrayTools[Size](tau)

[2])]);

38 p:=x->add(alpha[i]*xˆ(i-1), i = 1 .. add(s));

39 interpolant_coeffs := solve({seq(seq(eval(diff(p(x), [x$i]),

x = xy[j][1]) = xy[j][i+2],i = 0 .. s[j]-1), j = 1 ..

A.2. Filon-TypeMethods 71

ArrayTools[Size](tau)[2])}):

40 p:=x->add(rhs(interpolant_coeffs[i])*xˆ(i-1), i=1..add(s));

41

42 # Calculating the moments

43 wts:=map(c->value(c),Array([seq(Int(xˆi*exp(I*omega*g(x)), x

= 0 .. 1), i = 0 .. add(s)-1)])):

44

45 Int_f := p(0)*wts[1]+add(rhs(interpolant_coeffs[i])*wts[i],

i = 2 .. add(s)):

46

47 # Calculation of the integral

48 return [seq(evalf(subs(omega = w, Int_f)),w=omega_range)]:

49

50 end proc:

72 Chapter A. Computer Code

A.3 Levin-Type Methods

A.3.1 Levin-Hermite Method

Python Code

1 def Genbarywts(tau,s):

2 ’’’

3 Generates Barycentric Weights given a set of nodes tau with

4 confluency vector s

5 ’’’

6 import numpy as np

7 from scipy.special import factorial

8

9 n = len(tau)

10 s_max = max(s)

11 d = sum(s)

12

13 delta_tau = np.zeros([n,n])

14 beta = np.zeros(n)

15 [u,v,w] = [np.zeros([n,s_max]),np.zeros([n,s_max+1]),np.

zeros([n,s_max])]

16

17 for i in range(0,n):

18 v[i,0] = 1

19 for j in range(0,n):

20 delta_tau[i,j] = tau[i]-tau[j]

21 delta_tau = delta_tau+np.eye(n)

22 delta_tau_recip = 1/(delta_tau)

23

24 for i in range(0,n):

25 delta_tau_recip[:,i] = delta_tau_recip[:,i]**s[i]

26

27 def range_inc(a,b):

28 ’’’

29 Modified range function that will include the right end

point in the

30 return array.

31

32 It will also return an array of size 1 if a=b (as opposed

33 to an empty array returned by regular arange)

34 a = lower limit

35 b = upper limit

36 ’’’

37 if a==b:

A.3. Levin-TypeMethods 73

38 return np.full(1,a)

39 else:

40 return np.arange(a,b+1)

41

42 def strainer_array(i,n):

43 ’’’

44 Returns an array of size n with a 0 in the iˆth position

45 and 1’s for all the other entries

46 ’’’

47 temp = np.full(n,1)

48 temp[i] = 0

49 return temp

50

51 for i in range_inc(0,n-1):

52 for m in range_inc(0,s_max -1):

53 u[i,m] = np.sum(strainer_array(i,n)*s*delta_tau[:,i]**(-

m-1))

54

55 for m in range_inc(0,s_max -1):

56 v[i,m+1] = np.sum(u[i,0:m+1]*v[i,0:m+1][::-1])/(m+1)

57

58 beta[i] = np.prod(delta_tau_recip[i,:])

59

60 for m in range_inc(1,s[i]):

61 w[i,m-1] = beta[i]*v[i,s[i]-m]

62

63

64 ’’’

65 Hermitian differentiation matrix calculation below

66 ’’’

67 D = np.zeros([d,d])

68 brks = np.cumsum([0]+s)

69 irow = 0

70 sum_range = np.arange(0,n)

71

72 for k in range(0,n):

73 # Trivial Rows

74 for j in np.arange(0,s[k]-1):

75 D[irow,brks[k].astype(int)+j+1] = j+1

76 irow += 1

77

78 # Non-Trivial Rows

79 for i in sum_range[sum_range!=k]:

80 for j in np.arange(0,s[i]):

81 g = 0

74 Chapter A. Computer Code

82 for mu in np.arange(j,s[i]):

83 g = g + w[i,mu]*(tau[k]-tau[i])**(j-1-mu)

84 D[irow,brks[i].astype(int)+j] = g/w[k,s[k]-1]

85

86 D[irow,brks[k]+1:brks[k]+s[k]] = -w[k,0:s[k]-1]/w[k,s[k

]-1]

87 D[irow,brks[k]] = -np.sum(D[irow,brks[0:len(brks)-1]])

88 D[irow,:] = D[irow ,:]*s[k]

89 irow += 1

90

91 return [D,w]

1 def Levin_Int(F,G,tau,s,omega_range):

2 # Package imports

3 import sympy as sp

4 import pprint

5 import numpy as np

6 from scipy.integrate import quad

7 from scipy.special import factorial ,comb

8 import matplotlib.pyplot as pl

9 from sympy import diff,Symbol,limit,evalf,sqrt,sin,cos,root,

log,exp,simplify

10 from genbarywts import Genbarywts

11 import jeet_mod_methods as jt

12

13 x = sp.Symbol(’x’)

14

15 def f(x):

16 return F(x)

17

18 def g(x):

19 return G(x)

20

21 g_num = sp.lambdify(x,g(x))

22 Levin = np.full(len(omega_range),np.complex(0,0))

23

24 Number_Of_Nodes = len(tau)

25 d = sum(s)

26

27 # Calculating the function and derivative values of f(x) at

the nodes

28 #

29 # p = [[f(t_0),f’(t_0),...,fˆ(s_0-1)(t_0)],...,[f(t_n),f’(

t_n),...,fˆ(s_n-1)(t_n)]]

30 p = np.full([Number_Of_Nodes ,max(s)],np.complex(0,0))

31 p_rhs = np.full([Number_Of_Nodes ,max(s)],np.complex(0,0))

A.3. Levin-TypeMethods 75

32 for i in range(0,len(tau)):

33 for j in range(0,s[i]):

34 p[i,j] = simplify(sp.diff(f(x),x,j).subs(x,tau[i]))/

factorial(j)

35 p_rhs[i,j] = simplify(sp.diff(f(x),x,j).subs(x,tau[i]))

36

37 p = jt.Decompress(p,s)

38 p_rhs = jt.Decompress(p_rhs,s)

39

40 [D,w] = Genbarywts(tau.tolist(),s.tolist())

41

42 tau_decompressed = np.zeros(d)

43 k = 0

44 for i in range(0,len(tau)):

45 for j in range(0,s[i]):

46 tau_decompressed[k] = tau[i]

47 k+=1

48 u = g_num(tau_decompressed)

49

50

51 Sum_s = np.cumsum([0]+s.tolist())[0:-1]

52

53 i = 0

54 for omega in omega_range:

55

56 # Create a Coefficient matrix for the linear system

57 # f = (D + iwg’)*P

58 # The non-trivial work here is calculating the product

term g’P

59 Coeff_matrix = np.full([d,d],np.complex(0,0))

60 k = 0

61 for j in Sum_s:

62 for s_i in range(0,s[k]):

63 Coeff_matrix[j+s_i,:] = D[j+s_i,:]*factorial(s_i)

64 for l in jt.range_inc(1,s_i):

65 Coeff_matrix[j+s_i,:] = Coeff_matrix[j+s_i,:] + np.

complex(0,omega)*comb(s_i,l)*factorial(l-1)*D[j+l

-1,:]*diff(g(x),x,s_i-l+1).subs(x,tau[k])

66

67 Coeff_matrix[j+s_i,:] = Coeff_matrix[j+s_i,:]+ np.

complex(0,omega)* np.eye(d)[j,:]*diff(g(x),x,s_i+1)

.subs(x,tau[k])

68 k+=1

69

70 # Solving f = (D + iwg’)*P

76 Chapter A. Computer Code

71 P = np.linalg.solve(Coeff_matrix ,p_rhs)

72

73 Levin[i] = (P[-s[-1]])*np.exp(complex(0,omega)*u[-1])-P

[0]*np.exp(complex(0,omega)*u[0])

74 i+=1

75

76

77 return Levin

A.3. Levin-TypeMethods 77

Maple Code

1 #

2 # BHIP: Barycentric Hermite Interpolation Program

3 #

4 # (c) Robert M. Corless, December 2007, August 2012

5 #

6 # Compute the barycentric form of the unique Hermite

interpolant

7 # of the polynomial given by values and derivative values of

8 # p(t) at the nodes tau.

9 #

10 # CALLING SEQUENCES

11 #

12 # (p, gam) := BHIP(flist, tau, t);

13 # (p, gam) := BHIP(ftayl, tau, t, ’Taylor’ = true, ’

Denominator ’ = q);

14 # (p, gam, DD) := BHIP(ftayl, tau, t, <opts>, ’Dmat’=true

)

15 #

16 # Processing: local Laurent series.

17 # This approach is different to that of

18 # Reference: C. Schneider & W.Werner, "Hermite

19 # Interpolation: The Barycentric Approach",

20 # Computing 46, 1991, pp 35-51.

21 #

22 BHIP :=

23 proc(pin::list, tau::list, t::name,

24 {Taylor::truefalse:=true},

25 {Conditioning::truefalse:=false},

26 {Dmat::truefalse:=false},

27 {Denominator::{algebraic ,list}:=1})

28 local brks, d, DD, denr, dens, dgam,

29 dr, g, gam, ghat,h, i, irow, j,

30 k, mu, n, numr, nums,

31 p, P, q, r, rs, rt, s, smax, sq;

32

33 n := nops(tau);

34 if nops(pin) <> n then

35 error "Mismatched size of node list and data list"

36 end if;

37

38 if nops(convert(tau,set)) < n then

39 error "Nodes must be distinct, with confluency

explicitly specified."

78 Chapter A. Computer Code

40 end if;

41

42 p := map(t -> ‘if‘(t::list,t,[t]),pin); # singletons ok

43 s := map(nops,p); # confluency

44 smax := max(op(s));

45 if smax = 0 then

46 error "At least one piece of data is necessary."

47 end if;

48 d := -1 + add(s[i], i=1..nops(s)); # degree bound

49 p := ‘if‘(Taylor, p, [seq([seq(p[i][j]/(j-1)!,j=1..s[i])

],i=1..n)]);

50

51 gam := Array(1..n, 0..smax-1); #default 0

52 if Conditioning then

53 dgam := Array(1..n, 0..smax-1, 1..n); #default 0

54 end if;

55

56 # The following works for n>=1

57 for i to n do

58 if s[i] > 0 then # ignore empty lists

59 h[i] := mul((t-tau[j])ˆs[j], j = 1..i-1)*

60 mul((t-tau[j])ˆs[j], j=i+1..n);

61 r[i] := series(1/h[i], t=tau[i], s[i]);

62 for j to s[i] do

63 gam[i,s[i]-j] := coeff(r[i], t-tau[i], j-1) ;

#op(2*j-1, r[i]);

64 end do;

65 if Conditioning then

66 # We could compose a series for 1/(t-tau[k])

with

67 # what we know, but using the kernel function "

series"

68 # is likely faster.

69 for k to i-1 do

70 dr[i,k] := series(s[k]/h[i]/(t-tau[k]), t=

tau[i], s[i]);

71 for j to s[i] do

72 dgam[i, s[i]-j, k] := coeff(dr[i,k], t-

tau[i], j-1);

73 end do;

74 end do;

75 # We could reuse earlier series, and do one O(n

ˆ2)

76 # computation to get gam[i,-1], but it’s

simpler to

A.3. Levin-TypeMethods 79

77 # use series (and likely faster because series

is in the kernel)

78 dr[i,i] := series(1/h[i], t=tau[i], s[i]+1);

79 # We implicitly divide this by t-tau[i], and

take

80 # coefficients one higher.

81 for j to s[i] do

82 dgam[i,s[i]-j,i] := j*coeff(dr[i,i], t-tau[

i], j);

83 end do;

84 for k from i+1 to n do

85 dr[i,k] := series(s[k]/h[i]/(t-tau[k]), t=

tau[i], s[i]);

86 for j to s[i] do

87 dgam[i, s[i]-j, k] := coeff(dr[i,k], t-

tau[i], j-1);

88 end do;

89 end do;

90 end if;

91 end if;

92 end do;

93

94 if not (Denominator::algebraic and Denominator=1) then

95 # adjust gam by folding in q

96 if Denominator::list then

97 if nops(Denominator)<>n then

98 error "Denominator list (q) has the wrong length

."

99 end if;

100 q :=‘if‘(Taylor, q, [seq([seq(q[i][j]/(j-1)!,j=1..

s[i])],i=1..n)]);

101 else

102 ghat := Array(1..n);

103 for i to n do

104 sq := series(Denominator ,t=tau[i],s[i]);

105 ghat[i] :=[seq(coeff(sq,t-tau[i],j),j=0..s[i]-1)

];

106 end do;

107 q := [seq(ghat[i],i=1..n)];

108 end if;

109 ghat := Array(1..n, 0..smax-1);

110 for i to n do

111 for j from 0 to s[i]-1 do

112 ghat[i,j] := add(gam[i,j+k]*q[i][k+1], k=0..s[i

]-j-1);

80 Chapter A. Computer Code

113 end do;

114 end do;

115 gam := ghat;

116 end if;

117

118 P := mul((t-tau[i])ˆs[i],i=1..n)*

119 add(add(gam[i,j]/(t-tau[i])ˆ(1+j)*

120 add(p[i][1+k]*(t-tau[i])ˆk, k=0..j),

121 j=0..s[i]-1),

122 i=1..n);

123

124 # Translated from Matlab. Nearly working.

125 if Dmat then

126 # Compute differentiation matrix

127 DD := Matrix(d+1, d+1);

128 brks := [seq(add(s[j],j=1..i-1),i=1..nops(s))]; #cumsum

([0,s.’]);

129 irow := 0;

130 for k to n do

131 # trivial rows

132 for j to s[k]-1 do

133 irow := irow+1;

134 # next available row

135 DD[irow,brks[k]+j+1] := j; # result is in Taylor

form

136 end;

137 # Nontrivial row

138 irow := irow+1;

139 for i in [seq(j,j=1..k-1),seq(j,j=k+1..n)] do

140 for j to s[i] do

141 g := 0;

142 for mu from j-1 to s[i]-1 do

143 g := g + gam[i,mu]*(tau[k]-tau[i])ˆ(j-2-mu);

144 end;

145 DD[irow,brks[i]+j] := g/gam[k,s[k]-1];

146 end;

147 end;

148 DD[irow,brks[k]+2..brks[k]+s[k]] := -gam[k,0..s[k

]-2]/gam[k,s[k]-1];

149 # Final entry

150 DD[irow,brks[k]+1] := -add(DD[irow,brks[j]+1], j=1..

nops(brks));

151 DD[irow ,1..-1] := DD[irow ,1..-1]*s[k]; # want Taylor

form of derivative

152 end;

A.3. Levin-TypeMethods 81

153 end if;

154

155 return P, gam, ‘if‘(Conditioning ,dgam,NULL), ‘if‘(Dmat,DD

,NULL) ;

156 end proc:

1 read "BHIP.mpl":

2

3 unroll := proc(p,s)

4 local ret_arr,i,j,k:

5 ret_arr := []:

6 for i from 1 to nops(p) do

7 for j from 1 to s[i] do

8 ret_arr := [op(ret_arr),p[i,j]]:

9 od:

10 od:

11 return ret_arr:

12 end proc:

13

14 Levin_Hermite := proc(F,G,tau_in,N_in,s_in,omega_range)

15 local D, Levin, P, Sum_s, a, b, d, gam_t, i, j, k, l, p,

p_rhs, p_t, s, s_i, tau, w, Coeff_matrix , num_nodes ,

tau_unrolled:

16 Levin := Matrix(nops(omega_range),1,fill=0):

17

18

19 num_nodes := N_in:

20 a := tau_in[1]:

21 b := tau_in[2]:

22 tau := [seq((a+b)/2+(b-a)*cos(Pi*(num_nodes -k)/(num_nodes -1)

)/2, k = 1 .. num_nodes)]:

23 s := [seq(1,k=1..num_nodes)]:

24 s[1] := s_in:

25 s[num_nodes] := s_in:

26 d := add(s[k], k=1 .. nops(s)):

27

28

29 p := []:

30 p_rhs := []:

31

32 for i from 1 to nops(tau) do

33 p := [op(p),[seq(eval(diff(F(x),[x$(j-1)]),x=tau[i])/

factorial(j),j=1..s[i])]]:

34 p_rhs := [op(p_rhs),[seq(eval(diff(F(x),[x$(j-1)]),x=tau

[i]),j=1..s[i])]]:

35 od:

82 Chapter A. Computer Code

36

37

38 (p_t, gam_t, D) := BHIP(p, tau, t, ’Dmat’=true):

39 p := unroll(p,s):

40 p_rhs := unroll(p_rhs,s):

41 tau_unrolled := Matrix(d,1,fill=0):

42 k := 1:

43 for i from 1 to num_nodes do

44 for j from 1 to s[i] do

45 tau_unrolled[k] := tau[i]:

46 k := k + 1:

47 od:

48 od:

49 Sum_s := Statistics[CumulativeSum]([0,op(s)])[1..nops(s)]:

50

51 i := 1:

52 for w in omega_range do

53 Coeff_matrix := Matrix(d,d,fill=0):

54 k := 1:

55 for j in Sum_s do

56 j := convert(j,rational):

57 for s_i from 0 to s[k]-1 do

58 Coeff_matrix[j+1+s_i] := D[j+1+s_i]*factorial(s_i):

59 for l from 1 to s_i do

60 Coeff_matrix[j+1+s_i] := Coeff_matrix[j+1+s_i]+I*w*D

[j+l]*eval(diff(G(x),[x$(s_i-l+1)]),x=tau[k])*

factorial(l-1)*combinat[numbcomb](s_i,l):

61 od:

62 Coeff_matrix[j+s_i+1] := Coeff_matrix[j+s_i+1] +

Matrix(d,d,shape=identity)[j+1]*eval(diff(G(x),[x$(

s_i+1)]),x= tau[k])*I*w:

63 od:

64 k:= k + 1:

65 od:

66

67

68

69 P := LinearAlgebra[LinearSolve](evalf(Coeff_matrix),

LinearAlgebra[Transpose](convert(p_rhs,Matrix))):

70 Levin[i] := (P[LinearAlgebra[Dimensions](P)[1]-s[nops(s)

]+1]*exp(I*w*G(b))-P[1]*exp(I*w*G(a))):

71 i := i + 1:

72 od:

73

74 return convert(Levin,list):

A.3. Levin-TypeMethods 83

75 end proc:

76

77 (*

78

79 N := 4:

80 tau := [seq(cos(Pi*(N-k)/(N-1)), k = 1 .. N)]:

81 s := [seq(2,k=1..N)]:

82 f := x -> cos(x):

83 g := x -> (x):

84 w_range := [seq(k,k=2 .. 2)]:

85 # F,G,tau_in,N_in,s_in,omega_range

86 intg := Levin_Hermite(f,g,[-1,1],5,2,w_range):

87 exact_vals := [seq(evalf(int(f(x)*exp(I*w*g(x)),x=tau[1]..tau[

N])),w=w_range)]:

88 err := [seq(abs(intg[k]-exact_vals[k]),k=1..nops(exact_vals))

]:

89 print(exact_vals):

90 print(evalf(intg)):

91 print(evalf(err)):

92 *)

84 Chapter A. Computer Code

A.3.2 Levin-Bernstein Method

1 import numpy as np

2 import matplotlib.pyplot as pl

3 from scipy.special import comb

4 from scipy.integrate import quad

5 from sympy import diff,limit,evalf,sqrt,sin,cos,root,log,exp,

simplify ,lambdify ,Symbol

6 import jeet_mod_methods as jt

7 # from Hermite_Levin import Internal_Quad

8

9 def B(x,n,k,a=0,b=1):

10 ’’’

11 Input:

12 x = point at which Bernstein polynomial needs to be

evaulated

13 n = degree of the polynomial

14 k = kˆth bernstein polynomial of degree n

15 Output:

16 scalar or array of real/complex numbers

17 ’’’

18 from scipy.special import comb

19 return comb(n,k,exact=True)*(x-a)**k*(b-x)**(n-k)/(b-a)**n

20

21 def Coeff_to_Poly(coeff_list ,x,a=0,b=1):

22 ’’’

23 "Synthesis" Operator: Given a sequence of coefficients , this

returns the value of the

24 polynomial at a point x (or for an array of points xran)

25

26 coeff_list = array of coefficients (real or complex

numbers)

27 x = point at which polynomial needs to be evaluated

28 ’’’

29 degree = len(coeff_list)-1

30 result = 0

31 for j in range(0,degree+1):

32 result += coeff_list[j]*B(x,degree,j,a,b)

33 return result

34

35 def Bern_Interpolate(tau,ftau,a=0,b=1):

36 ’’’

37 Interpolates the set of points {(tau,f(tau))} in the

Bernstein Basis

38 (Using the obvious approach and not a fast algorithm for

A.3. Levin-TypeMethods 85

simplicity)

39 ’’’

40 n = len(tau)-1

41 [a,b] = [tau[0],tau[-1]]

42 c = np.full(n+1,0)

43 A = np.zeros([n+1,n+1])

44 for i in range(0,n+1):

45 for j in range(0,n+1):

46 A[i,j] = B(tau[i],n,j,a,b)

47 return np.linalg.solve(A,ftau)

48

49

50 def Bernstein_diff_matrix(n,a=0,b=1):

51 ’’’

52 n = order of the family of Bernstein polynomials that

53 we want the diff matrix for

54 (nˆth order family has n+1 elements)

55 ’’’

56 D = np.zeros([n+1,n+1])

57 D[0,0] = -n

58 D[0,1] = n

59 D[-1,-1] = n

60 D[-1,-2] = -n

61 for i in range(1,n):

62 D[i,i] = 2*i-n

63 D[i,i-1] = -i

64 D[i,i+1] = n-i

65 return D/(b-a)

66

67 def Mul_Operator_Matrix(f):

68 ’’’

69 This method creates the multiplication matrix for a function

f

70 ’’’

71 n = len(f)-1

72 w = np.zeros([2*n+1,n+1])

73 for i in range(0,2*n+1):

74 for j in range(max(0,i-n),min(n,i)+1):

75 w[i,j] = comb(n,j)*comb(n,i-j)/comb(2*n,i)*f[i-j]

76 return w

77

78 def Levin_Bern_int(F,G,tau,omega_range):

79 ’’’

80 Levin-Bernstein integration method

81 ’’’

86 Chapter A. Computer Code

82 n = len(tau)-1

83 [a,b] = [tau[0],tau[-1]]

84

85 coef_f = Bern_Interpolate(jt.Cheb_nodes(a,b,2*n+1),F(jt.

Cheb_nodes(a,b,2*n+1)),a,b)

86 coef_one = np.ones(n+1)

87 coef_g = Bern_Interpolate(tau,G(tau),a,b)

88

89 D = Bernstein_diff_matrix(n,a,b)

90 coef_dg = np.dot(D,coef_g)

91

92 Levin = np.full(len(omega_range),np.complex(0,0))

93

94 k = 0

95 for w in omega_range:

96 A = np.dot(Mul_Operator_Matrix(coef_one),D)+np.complex(0,w

)*Mul_Operator_Matrix(coef_dg)

97 Augmented_A = np.column_stack((A,coef_f))

98 V = np.linalg.svd(Augmented_A)[2].conj()

99

100 if(V[-1,-1]!=0):

101 sol = -1/V[-1,-1]*V[-1,:-1]

102

103 Levin[k] = sol[-1]*np.exp(complex(0,w)*G(tau[-1]))-sol[0]*

np.exp(complex(0,w)*G(tau[0]))

104 k+=1

105 return Levin

A.3. Levin-TypeMethods 87

A.3.3 Levin-Compact Finite Difference (CFD)

1 def Compact_diff_matrix(tau):

2 # Non regularized version

3 import numpy as np

4 import matplotlib.pyplot as pl

5

6 N = len(tau)

7 [A,B] = [np.zeros([N,N]),np.zeros([N,N])]

8 h = np.diff(tau)

9

10 for i in range(1,N-1):

11 A[i,i-1] = 1.0/(h[i]+h[i-1])**2

12 A[i,i] = 1.0/h[i]**2

13 A[i,i+1] = h[i-1]**2/(h[i]+h[i-1])**2/h[i]**2

14 B[i,i-1] = (4*h[i-1]+2*h[i])/h[i-1]/(h[i-1]+h[i])**3

15 B[i,i] = 2*(h[i-1]-h[i])/h[i-1]/h[i]**3

16 B[i,i+1] = -(4*h[i]+2*h[i-1])*h[i-1]**2/(h[i]+h[i-1])**3/h

[i]**3

17

18 A[0,0] = 1/(h[0]+h[1])/(h[0]+h[1]+h[2])

19 A[0,1] = 1/h[1]/(h[1]+h[2])

20 B[0,0] = ((4*h[0]**2+6*h[0]*h[1]+3*h[0]*h[2]+2*h[1]**2+2*h

[1]*h[2])

21 /(h[0]+h[1])**2/(h[0]+h[1]+h[2])**2/h[0])

22 B[0,1] = (1/h[0]*((-2*h[1]+h[0])*h[2]+2*h[1]*(-h[1]+h[0]))/

23 h[1]**2/(h[1]+h[2])**2

24)

25 B[0,2] = -h[0]**2/(h[1]+h[0])**2/h[1]**2/h[2]

26 B[0,3] = h[0]**2/(h[2]+h[1]+h[0])**2/(h[2]+h[1])**2/h[2]

27

28 A[-1,-2] = 1/h[-2]/(h[-2]+h[-3])

29 A[-1,-1] = 1/(h[-1]+h[-2])/(h[-1]+h[-2]+h[-3])

30 B[-1,-4] = -h[-1]**2/(h[-3]+h[-2]+h[-1])**2/(h[-3]+h[-2])

**2/h[-3]

31 B[-1,-3] = h[-1]**2/(h[-2]+h[-1])**2/h[-2]**2/h[-3]

32 B[-1,-2] = (1/h[-1]*((2*h[-2]-h[-1])*h[-3]+2*h[-2]*(h[-2]-h

[-1]))/h[-2]**2/

33 (h[-3]+h[-2])**2

34)

35 B[-1,-1] = -((4*h[-1]**2+(6*h[-2]+3*h[-3])*h[-1]+2*h[-2]*(h

[-3]+h[-2]))

36 /h[-1]/(h[-2]+h[-1])**2/(h[-3]+h[-2]+h[-1])**2

37)

38

88 Chapter A. Computer Code

39 return [-A,B]

40

41

42 def Levin_Int_Comp_diff(F,G,tau,omega_range):

43 # Package imports

44 import numpy as np

45 from scipy.integrate import quad

46 from scipy.special import factorial ,comb

47 import matplotlib.pyplot as pl

48 from sympy import diff,Symbol,limit,evalf,sqrt,sin,cos,root,

log,exp,simplify ,N

49 from genbarywts import Genbarywts

50 import jeet_mod_methods as jt

51

52 x = Symbol(’x’)

53

54 def f(x):

55 return F(x)

56

57 def g(x):

58 return G(x)

59

60 Levin = np.full(len(omega_range),np.complex(0,0))

61 Number_Of_Nodes = len(tau)

62

63 p = np.full([Number_Of_Nodes],np.complex(0,0))

64 g_matrix = np.diag(np.ones(Number_Of_Nodes))

65

66 for i in range(0,Number_Of_Nodes):

67 g_matrix[i,i] = diff(g(x),x).subs(x,tau[i])

68 p[i] = f(tau[i])

69

70 [A,B] = Compact_diff_matrix(tau)

71

72 i = 0

73 for omega in omega_range:

74 # P = np.linalg.solve(B+np.complex(0,omega)*np.dot(A,

g_matrix),np.dot(A,p))

75 P = jt.TSVD_Solve(B+np.complex(0,omega)*np.dot(A,g_matrix)

,np.dot(A,p),1e-13)

76 Levin[i] = (P[-1]*np.exp(np.complex(0,omega)*float(N(g(tau

[-1]))))-

77 P[0]*np.exp(np.complex(0,omega)*float(N(g(tau[0]))))

)

78 print(Levin[i])

A.3. Levin-TypeMethods 89

79 i+=1

80 return Levin

90 Chapter A. Computer Code

A.4 Moment-Free Methods

A.4.1 Moment-Free Basis Verification Code

1 restart:

2 Digits := 15:

3

4 # The expression for phi. The basis elements are given by L(

phi). We want to check whether the "nicer" expression ,

L_phi, given for L(phi) holds.

5

6 L := (F,G) -> diff(F,x)+I*w*diff(G,x)*F;

7

8 _Envsignum0 := 0:

9 phi := (x_t,r_t,k_t,g_t)->eval(piecewise(x_t<0,piecewise(modp(

r_t,2)=0,(-1)ˆk_t,modp(r_t,2)=1,(-1)ˆk_t*exp(-(1+k_t)/r_t*I

*Pi)),x_t>=0,-1)*wˆ(-(k_t+1)/r_t)/r*exp(-I*w*g_t+(1+k_t)

/(2*r_t)*I*Pi)*(GAMMA((1+k_t)/r_t,-I*w*g_t)-GAMMA((1+k_t)/

r_t,0)),x=x_t);

10

11 # The "nicer" expression in question

12 L_phi := (x_t,r_t,k_t,g_t)-> signum(x_t)ˆ(r_t+k_t+1)*abs(g_t)

ˆ((k_t+1)/r_t-1)*diff(g_t,x)/r_t;

13

14 # The pieces of piecewise phi

15 phi_l_odd := (x_t,r_t,k_t,g_t)->eval((-1)ˆk_t*exp(-(1+k_t)/r_t

*I*Pi)*wˆ(-(k_t+1)/r_t)/r*exp(-I*w*g_t+(1+k_t)/(2*r_t)*I*Pi

)*(GAMMA((1+k_t)/r_t,-I*w*g_t)-GAMMA((1+k_t)/r_t,0)),x=x_t)

;

16 phi_l_even := (x_t,r_t,k_t,g_t)->eval((-1)ˆk_t*wˆ(-(k_t+1)/r_t

)/r*exp(-I*w*g_t+(1+k_t)/(2*r_t)*I*Pi)*(GAMMA((1+k_t)/r_t,-

I*w*g_t)-GAMMA((1+k_t)/r_t,0)),x=x_t);

17 phi_r := (x_t,r_t,k_t,g_t)->eval(-wˆ(-(k_t+1)/r_t)/r*exp(-I*w*

g_t+(1+k_t)/(2*r_t)*I*Pi)*(GAMMA((1+k_t)/r_t,-I*w*g_t)-

GAMMA((1+k_t)/r_t,0)),x=x_t);

18

19 # Simplify the basis elements expression with a fixed g(x).

This g(x) has a stationary point of order r+1 at x=0.

20 # A few notes to anyone playing with this code:

21 # try

22 # g := x -> -xˆr:

23 # The compact expression doesn’t match L(phi) in this case. So

it is likely that the assumption eval(diff(g(x),[x$r]),x

=0)>0 is used to gain this compact expression.

24

A.4. Moment-FreeMethods 91

25 r := 2:

26 g := x -> xˆr:

27

28 assume(w::real):

29 additionally(w>1):

30

31 odd_exp := simplify(L(phi_l_odd(x,r,k,g(x)),g(x)));

32 even_exp := simplify(L(phi_l_even(x,r,k,g(x)),g(x)));

33 right_exp := simplify(L(phi_r(x,r,k,g(x)),g(x)));

34

35 if(not modp(r,2)=0) then

36

37 for k from 1 to 10 do

38 p[k] := plot(L_phi(x,r,k,g(x)),x=-1..0,color=green,title =

"Compact expression"):

39 q[k] := plot(odd_exp,x=-1..0,color=red, title = "L(phi)

expression"):

40 b[k] := plot(odd_exp-L_phi(x,r,k,g(x)),x=-1..0,color=red,

style = point):

41 od:

42 plots[display](seq({p[k]},k=1..10));

43 plots[display](seq({q[k]},k=1..10));

44 plots[display](seq({b[k]},k=1..10));

45

46 else

47

48 for k from 1 to 10 do

49 p[k] := plot(L_phi(x,r,k,g(x)),x=-1..0,color=green, title

= "Compact Expression"):

50 q[k] := plot(even_exp,x=-1..0,color=red, title = "L(phi)

expression"):

51 b[k] := plot(even_exp-L_phi(x,r,k,g(x)),x=-1..0,color=red,

style = point , title = "Residual"):

52 od:

53 plots[display](seq({p[k]},k=1..10));

54 plots[display](seq({q[k]},k=1..10));

55 plots[display](seq({b[k]},k=1..10));

56

57 end if;

58

59 for k from 1 to 10 do

60 p[k] := plot(L_phi(x,r,k,g(x)),x=0..1,color=green, title = "

Compact Expression"):

61 q[k] := plot(right_exp ,x=0..1,color=red, title = "L(phi)

expression"):

92 Chapter A. Computer Code

62 b[k] := plot(right_exp -L_phi(x,r,k,g(x)),x=0..1,color=red,

style = point , title = "Residual"):

63 od:

64 plots[display](seq({p[k]},k=1..10));

65 plots[display](seq({q[k]},k=1..10));

66 plots[display](seq({b[k]},k=1..10));

A.4.2 Moment-Free Asymptotic Method

1 Calc_Coefficients := proc(f_t,g_t,r_t::numeric)

2 # Computes the interpolation coefficients by solving a

system of equations

3

4 local eq_sys,sols,c,rhs_eqs,L_phi:

5

6 phi := (x_t,r_t,k_t,g_t)->eval(piecewise(x<0,piecewise(modp(

r_t,2)=0,(-1)ˆk_t,modp(r_t,2)=1,(-1)ˆk_t*exp(-(1+k_t)/r_t

*I*Pi)),x>0,-1)*wˆ(-(k_t+1)/r_t)/r*exp(-I*w*g_t+(1+k_t)

/(2*r_t)*I*Pi)*(GAMMA((1+k_t)/r_t,-I*w*g_t)-GAMMA((1+k_t)

/r_t,0)),x=x_t);

7

8 L_phi := (x_t,r_t,k_t,g_t)-> signum(x_t)ˆ(r_t+k_t+1)*abs(g_t

)ˆ((k_t+1)/r_t-1)*diff(g_t,x)/r_t;

9

10 rhs_eqs := [seq((diff(f_t,[x$j])),j=0..r_t-2)];

11

12 rhs_eqs := map(h->limit(h,x=0),rhs_eqs);

13 eq_sys := [seq(diff(add(c[k+1]*L_phi(x,r_t,k,g_t),k=0..r_t

-2) ,[x$j]),j=0..r_t-2)];

14 eq_sys := map(h->limit(h,x=0),eq_sys);

15 sols := solve({seq(eq_sys[j+1]=rhs_eqs[j+1],j=0..r_t-2)},{

seq(c[j+1],j=0..r_t-2)});

16

17 return [seq(rhs(sols[i]),i=1..nops(sols))]:

18

19 end proc:

20

21

22 Moment_free_asymp := proc(F,G,tau_in::list,xi,r,p,w_range)

23

24 local L_phi,mu_f,L,a,b,f,g,xi_t,sig_coef,sigma,func_arr_l ,

func_arr_r ,L_func_arr_l ,L_func_arr_r ,sigma_arr_l ,

sigma_arr_r ,l_term_2,r_term_2,sum_terms_2 ,l_term_1,

r_term_1 ,sum_terms_1 ,phi:

25

26 Digits := 16:

A.4. Moment-FreeMethods 93

27 _Envsignum0 := 0:

28

29 # Transforming the integral to the correct interval

30 a := tau_in[1]:

31 b := tau_in[2]:

32 f := x -> F(x*(b-a)/2+(b+a)/2):

33 g := x -> G(x*(b-a)/2+(b+a)/2):

34 xi_t := (2*xi-a-b)/(b-a):

35

36 # basis functions

37 phi := (x_t,r_t,k_t,g_t)->eval(piecewise(x<0,piecewise(modp(

r_t,2)=0,(-1)ˆk_t,modp(r_t,2)=1,(-1)ˆk_t*exp(-(1+k_t)/r_t

*I*Pi)),x>0,-1)*wˆ(-(k_t+1)/r_t)/r*exp(-I*w*g_t+(1+k_t)

/(2*r_t)*I*Pi)*(GAMMA((1+k_t)/r_t,-I*w*g_t)-GAMMA((1+k_t)

/r_t,0)),x=x_t);

38

39 L_phi := (x_t,r_t,k_t,g_t)-> signum(x_t)ˆ(r_t+k_t+1)*abs(g_t

)ˆ((k_t+1)/r_t-1)*diff(g_t,x)/r_t;

40

41 mu_f := (c,r_t,x,g_t) -> add(c[k+1]*phi(x,r_t,k,g_t),k=0..

r_t-2);

42

43 L := (F,G) -> diff(F,x)+I*w*diff(G,x)*F;

44

45 # Computing the series

46 sigma[0] := f(x):

47

48 for k from 1 to p do

49 sig_coef[k-1] := Calc_Coefficients(sigma[k-1],g(x),r):

50 sigma[k] := diff((sigma[k-1] - add(sig_coef[k-1][j+1]*

L_phi(x,r,j,g(x)),j=0..r-2))/diff(g(x),x) ,x);

51 od:

52 sig_coef[p] := Calc_Coefficients(sigma[p],g(x),r):

53

54 func_arr_r := [seq(phi(1,r,k,g(x))*exp(I*w*g(1)),k=0..r-2)

]:

55 func_arr_l := [seq(phi(-1,r,k,g(x))*exp(I*w*g(-1)),k=0..r

-2)]:

56

57 L_func_arr_l := [seq(eval(L_phi(-1,r,k,g(x)),x=-1),k=0..r

-2)]:

58 L_func_arr_r := [seq(eval(L_phi(1,r,k,g(x)),x=1),k=0..r-2)

]:

59

60 sigma_arr_l := [seq(eval(sigma[k],x=-1) ,k=0..p)]:

94 Chapter A. Computer Code

61 sigma_arr_r := [seq(eval(sigma[k],x=1) ,k=0..p)]:

62

63 l_term_2 := [seq((sigma_arr_l[k+1] - add(sig_coef[k][j+1]*

L_func_arr_l[j+1],j=0..r-2))*exp(I*w*g(-1))/eval(diff(g(x

),x),x=-1),k=0..p)]:

64

65 r_term_2 := [seq((sigma_arr_r[k+1] - add(sig_coef[k][j+1]*

L_func_arr_r[j+1],j=0..r-2))*exp(I*w*g(1))/eval(diff(g(x)

,x),x=1),k=0..p)]:

66

67 sum_terms_2 := r_term_2 - l_term_2:

68

69 l_term_1 := [seq(add(sig_coef[k][j+1]*func_arr_l[j+1],j=0..

r-2),k=0..p)]:

70 r_term_1 := [seq(add(sig_coef[k][j+1]*func_arr_r[j+1],j=0..

r-2),k=0..p)]:

71

72 sum_terms_1 := r_term_1 - l_term_1:

73

74 Q_A := add(1/(-I*w)ˆk*sum_terms_1[k+1],k=0..p)-add(1/(-I*w)

ˆ(k+1)*sum_terms_2[k+1],k=0..p):

75

76 return [(b-a)/(2)*seq(evalf(eval(Q_A,w=w_range[j])),j=1..

nops(w_range))]:

77

78 eval(vals)

79

80 end proc:

A.4.3 Moment-Free Filon Method

1 Moment_free_filon := proc(F,G,tau_in::list,xi,r,s_in,N_in,

w_range)

2 local L_phi, phi, N, Q_F, a, b, f, f_ap, g, i, n, varphi, s,

s_t, tau, vals, xi_t, xy, func_arr_l , func_arr_r ,

int_coeffs , s_end_pts , s_stat_pt , stat_pt_pos ,

interpolant_coeffs_free_var:

3

4 Digits := 16:

5 _Envsignum0 := 0:

6

7 # Transforming the integral to [-1,1]

8 a := tau_in[1]:

9 b := tau_in[2]:

10 f := x -> F(x*(b-a)/2+(b+a)/2):

11 g := x -> G(x*(b-a)/2+(b+a)/2):

A.4. Moment-FreeMethods 95

12 xi_t := (2*xi-a-b)/(b-a):

13

14 # setting the confluencies appropriately

15 N := N_in:

16 s_t := 1:

17 s_end_pts := s_in:

18 s_stat_pt := (2*s_end_pts -1)*(r-1):

19 tau := Array([seq((cos(Pi*i/(N-1))), i = N-1 .. 0, -1)]);

20

21 # Adding stat point as a node if it is not a node already

22 if(not(has(evalf(tau),xi_t))) then

23 tau := sort((ArrayTools[Append](tau,xi_t))):

24 end if:

25

26 stat_pt_pos := 2:

27 for i from 2 to nops(tau)-1 do

28 if(evalf(tau[i])=xi_t) then

29 break:

30 else

31 stat_pt_pos := stat_pt_pos + 1:

32 end if

33 od:

34

35 # make confluency vector

36 N := ArrayTools[Size](tau)[2]:

37 s := Array([seq(s_t,j=1..N)]):

38 s[stat_pt_pos] := s_stat_pt:

39 s[1] := s_end_pts:

40 s[N] := s_end_pts:

41 n := add(s[i],i=1..N);

42

43 # Basis functions and interpolation

44 phi := (x_t,r_t,k_t,g_t)->eval(piecewise(x<0,piecewise(

modp(r_t,2)=0,(-1)ˆk_t,modp(r_t,2)=1,(-1)ˆk_t*exp(-(1+

k_t)/r_t*I*Pi)),x>0,-1)*wˆ(-(k_t+1)/r_t)/r_t*exp(-I*w*

g_t+(1+k_t)/(2*r_t)*I*Pi)*(GAMMA((1+k_t)/r_t,-I*w*g_t)-

GAMMA((1+k_t)/r_t,0)),x=x_t);

45

46 L_phi := (x_t,r_t,k_t,g_t) -> signum(x_t)ˆ(r_t+k_t+1)*abs(

g_t)ˆ((k_t+1)/r_t-1)*diff(g_t,x)/r_t:

47

48 f_ap := x -> add(c[j]*L_phi(x,r,j-1,g(x)),j=1..n):

49

50 xy:=evalf([seq([tau[m], seq(eval(diff(f(x), [x$j]), x =

tau[m]), j = 0 .. s[m]-1)], m = 1 .. N)]):

96 Chapter A. Computer Code

51

52 interpolant_coeffs_free_var := fsolve([seq(seq(limit(diff(

f_ap(x), [x$i]), x = xy[j][1],right) = xy[j][i+2],i = 0

.. s[j]-1), j = 1 .. N)]);

53

54 int_coeffs := [seq(rhs(interpolant_coeffs_free_var[j]),j

=1..n)];

55

56 # Evaluation of the integral

57 func_arr_r := [seq(phi(1,r,k,g(x))*exp(I*w*g(1)),k=0..n

-1)]:

58 func_arr_l := [seq(phi(-1,r,k,g(x))*exp(I*w*g(-1)),k=0..n

-1)]:

59

60 Q_F := add(int_coeffs[j+1]*(func_arr_r[j+1]-func_arr_l[j

+1]),j=0..n-1):

61

62 vals := [(b-a)/2*seq(evalf(eval(Q_F,w=w_range[j])),j=1..

nops(w_range))]:

63

64 return vals:

65

66 end proc:

A.5 Hybrid Method

1 Digits := 16:

2

3 # Setup the problem

4 f := x -> 1:

5 g := x -> -(x-0.1)ˆ2:

6 a := 0:

7 b := Pi:

8 w_range := [seq(k,k=10..100,1)]:

9

10 # Finding all the stationary points

11 stat_points_set := {(solve(diff(g(x),x),x))}:

12

13 stat_points := []:

14 int_limits := []:

15

16 # Separating the points that lie within [a,b] from the rest

17 for i from 1 to nops(stat_points_set) do

18 if(normal(Im(stat_points_set[i]))=0) then

19 if(evalf(stat_points_set[i]-b)<0 and evalf(

A.5. HybridMethod 97

stat_points_set[i]-a)>0) then

20 stat_points := [op(stat_points), stat_points_set[i]]

21 end if:

22 end if:

23 od:

24 stat_points := sort(evalf(stat_points)):

25

26 # Finding the order of each of the stationary points

27 orders := [seq(2,i=1..nops(stat_points))]:

28 for i from 1 to nops(stat_points) do

29 for j from 2 to 15 do

30 if(eval(diff(g(x),[x$j]),x=stat_points[i])=0) then

31 orders[i] := orders[i]+1:

32 else

33 break:

34 end if:

35 od:

36 od:

37

38 # Checking whether the second derivative vanishes away from

the stationary points

39 second_deriv_zero_set := [op({solve(diff(g(x),[x$2])=0)})]:

40 real_second_deriv_zero_set := []:

41

42 if(second_deriv_zero_set = []) then

43 # If the second derivative vanishes everywhere in [a,b],

continue

44 real_second_deriv_zero_set := []:

45 else

46 for i from 1 to nops(second_deriv_zero_set) do

47 # use evalf on any sols that have a RootOf

48 if(type(second_deriv_zero_set[i],RootOf)) then

49 second_deriv_zero_set[i] := evalf(allvalues(

second_deriv_zero_set[i])):

50 end if:

51 # Ignore all the points which have a non-zero complex

part

52 if(Im(second_deriv_zero_set[i])=0) then

53 # Add a point to the list if the second derivative

vanishes but the first doesn’t

54 if(not(member(second_deriv_zero_set[i],stat_points

))) then

55 if(evalf(second_deriv_zero_set[i])>a and evalf

(second_deriv_zero_set[i])<b) then

56 real_second_deriv_zero_set := [op(

98 Chapter A. Computer Code

real_second_deriv_zero_set),

second_deriv_zero_set[i]]:

57 end if:

58 end if:

59 end if:

60 od:

61 end if:

62 real_second_deriv_zero_set := sort(real_second_deriv_zero_set)

:

63

64 # If there are no stationary points in the interval, use Levin

-Hermite on the entire interval.

65 if(nops(stat_points)=0) then

66 int_limits := []:

67 else

68 # For each stationary point, make a list of

69 # 1. stationary points to its left

70 # 2. stationary points to its right

71 # 3. and 4. The same but for points where the second

derivative vanishes

72 for i from 1 to nops(stat_points) do

73 Left_stat_point_set := []:

74 Right_stat_point_set := []:

75 Left_second_deriv_zero_set := []:

76 Right_second_deriv_zero_set := []:

77 Left_interesting_points := []:

78 Right_interesting_points := []:

79

80

81 for j from 1 to nops(real_second_deriv_zero_set) do

82 if(not normal(real_second_deriv_zero_set[j]) =

normal(stat_points[i])) then

83 if(normal(real_second_deriv_zero_set[j])<

normal(stat_points[i])) then

84 Left_second_deriv_zero_set := [op(

Left_second_deriv_zero_set),

real_second_deriv_zero_set[j]]:

85 else

86 Right_second_deriv_zero_set := [op(

Right_second_deriv_zero_set),

real_second_deriv_zero_set[j]]:

87 end if:

88 end if:

89 od:

90

A.5. HybridMethod 99

91 for j from 1 to nops(stat_points) do

92 if(not (i=j)) then

93 if(normal(stat_points[j])<stat_points[i]) then

94 Left_stat_point_set := [op(

Left_stat_point_set),stat_points[j]]:

95 else

96 Right_stat_point_set := [op(

Right_stat_point_set),stat_points[j]]:

97 end if:

98 end if:

99 od:

100

101 Left_second_deriv_zero_set := convert(sort(

Left_second_deriv_zero_set),float):

102 Right_second_deriv_zero_set := convert(sort(

Right_second_deriv_zero_set),float):

103 Left_stat_point_set := convert(sort(

Left_stat_point_set),float):

104 Right_stat_point_set := convert(sort(

Right_stat_point_set),float):

105

106 # Concatenate the lists into two lists as follows:

107 # 1. stationary points on the left + points where second

derivative vanishes to the left

108 # 2. Same but for the right side

109 Left_interesting_points := {op(

Left_second_deriv_zero_set),op(Left_stat_point_set)

}:

110 Right_interesting_points := {op(

Right_second_deriv_zero_set),op(

Right_stat_point_set)}:

111

112 # Take a small enough symmetric interval around each

stationary point which excludes all the points in the

list

113 dist_left := 0:

114 dist_right := 0:

115 if(Left_interesting_points = {}) then

116 Lower_limit := a:

117 dist_left := abs(stat_points[i]-a):

118 else

119 Lower_limit := (max(Left_interesting_points)+

stat_points[i])/2:

120 dist_left := abs(stat_points[i]-max(

Left_interesting_points)):

100 Chapter A. Computer Code

121 end if:

122

123 if(Right_interesting_points = {}) then

124 Upper_limit := b:

125 dist_right := abs(stat_points[i]-b):

126 else

127 Upper_limit := (stat_points[i]+min(

Right_interesting_points))/2:

128 dist_right := abs(stat_points[i]-min(

Right_interesting_points)):

129 end if:

130

131 radius_interval := min(dist_right ,dist_left)/2:

132 int_limits := [op(int_limits),[stat_points[i]-

radius_interval ,stat_points[i]+radius_interval]]:

133 od:

134 end if:

135

136 # Make a list of intervals which have not already been

included

137 levin_int_limits := []:

138 if(int_limits = []) then

139 levin_int_limits := [[a,b]]:

140 else

141 if(not int_limits[1][1] = a) then

142 levin_int_limits := [[a,int_limits[1][1]]]:

143 end if:

144

145 for i from 1 to nops(int_limits)-1 do

146 if(not int_limits[i][2] = int_limits[i+1][1]) then

147 levin_int_limits := [op(levin_int_limits),[

int_limits[i][2],int_limits[i+1][1]]]:

148 end if:

149 od:

150

151 if(not int_limits[nops(int_limits)][2] = b) then

152 levin_int_limits := [op(levin_int_limits),[int_limits[

nops(int_limits)][2],b]]:

153 end if:

154 end if:

155

156

157 printf("The stationary points which lie in the integration

domain are \n"):

158 print(stat_points):

A.5. HybridMethod 101

159 printf("The orders of the stationary points are \n"):

160 print(orders):

161 printf("Integration limits over with Moment free filon needs

to be used are:\n"):

162 print(int_limits):

163 printf("Integration limits over with Levin integration is to

be used are:\n"):

164 print(levin_int_limits):

165

166 read "Levin_Hermite_Maple.mpl":

167 read "Moment_free_Filon.mpl":

168 read "filon_stat_point_proc.mpl":

169

170 int_g := [seq(0,k=1..nops(w_range))]:

171

172

173 for i from 1 to nops(stat_points) do

174 print("Filon Method Called"):

175 if(not evalf(g(stat_points[i]))=0) then

176 st_pt := stat_points[i]:

177 g_norm := x -> g(x)-g(st_pt):

178 if(diff(g(x),[x$r])<0) then

179 temp := Filon_Method_Stat_Pts(f,g_norm,

int_limits[i][1],int_limits[i][2],5,2,

stat_points[i],orders[i]-1,1,w_range):

180 else

181 temp := Moment_free_filon(f,g_norm,int_limits[

i],stat_points[i],orders[i],2,5,w_range):

182 end if:

183 int_g := int_g + [seq(temp[k]*exp(I*w_range[k]*g(st_pt

)),k=1..nops(w_range))]:

184 else

185 if(diff(g(x),[x$r])<0) then

186 int_g := int_g + Filon_Method_Stat_Pts(f,g,

int_limits[i][1],int_limits[i][2],5,2,

stat_points[i],orders[i]-1,1,w_range):

187 else

188 int_g := int_g + Moment_free_filon(f,g,int_limits[

i],stat_points[i],orders[i],2,4,w_range);

189 end if:

190 end if:

191 od:

192

193 for i from 1 to nops(levin_int_limits) do

194 int_g := int_g + Levin_Hermite(f,g,levin_int_limits[i

102 Chapter A. Computer Code

],5,2,w_range):

195 od:

Curriculum Vitae

Name: Jeet Trivedi

Post-Secondary University of Western Ontario
Education and London, Ontario
Degrees: 2017 - 2019 MSc. Applied Mathematics

Trent University
Peterborough, Ontario
2013 - 2017 Honors BSc. Mathematical Physics

Honours and Scholarships Western Graduate Research Scholarship
Trent International Global Citizenship Full Tuition Scholarship

103

	A Survey Of Numerical Quadrature Methods For Highly Oscillatory Integrals
	Recommended Citation

	Certificate of Examination
	Abstract
	List of Figures
	Introduction
	Failure of Classical Quadrature

	Asymptotic Type Methods
	In The Absence of Stationary Points
	Numerical Examples

	In The Presence of Stationary Points
	Numerical Examples

	Filon Type Methods
	Method Derivation
	Filon-Lagrange Method
	Filon-Hermite Method

	Moment Free Methods
	Moment-Free Asymptotic Method
	Numerical Examples

	Moment-Free Filon Method
	Numerical Examples

	Levin Type Methods
	Levin-Hermite Quadrature
	Levin-Bernstein Quadrature
	Levin-Compact Finite Difference Quadrature (Levin-CFD)
	Numerical Experiments
	Stability of Methods

	Hybrid Method & Concluding Remarks
	Bibliography
	Computer Code
	Asymptotic-Type Methods
	Asymptotic Method in the absence of stationary points
	Asymptotic Method in the presence of stationary points

	Filon-Type Methods
	Filon-Lagrange Method
	Filon-Hermite Method

	Levin-Type Methods
	Levin-Hermite Method
	Python Code
	Maple Code

	Levin-Bernstein Method
	Levin-Compact Finite Difference (CFD)

	Moment-Free Methods
	Moment-Free Basis Verification Code
	Moment-Free Asymptotic Method
	Moment-Free Filon Method

	Hybrid Method

	Curriculum Vitae

