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Early Treatment Response in First Episode Psychosis: A 7-Tesla Magnetic Resonance 

Spectroscopic Study of Glutathione and Glutamate  

Abstract  

Approximately one third of patients with schizophrenia fail to respond to dopamine-blocking 

antipsychotic medications. While treatment resistant schizophrenia (TRS) is generally thought to 

be present from the onset of first episode psychosis (FEP), prospective identification of these 

patients remains clinically challenging. We investigated the association of glutamate and 

glutathione with time to response in the anterior cingulate cortex (ACC) of minimally-treated 

patients with FEP (n=26) and healthy controls (n= 27) using an ultra-high field 7T MRI protocol. 

Higher ACC glutathione at baseline was associated with decreased time to achieve 50% 

symptom improvement. There were no significant differences between patients and controls on 

measures of glutamate, or glutathione. For the first time, we have demonstrated an association 

between glutathione and longitudinal treatment response. Interventions that increase brain 

glutathione may provide new treatment options for individuals with FEP. 
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Treatment resistant schizophrenia, first episode psychosis, antipsychotic response, magnetic 

resonance spectroscopy (MRS), glutamate, glutathione, anterior cingulate cortex  
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Chapter 1: Introduction 
 
1.1 What is Schizophrenia? 

Schizophrenia, a chronic psychotic disorder characterized by delusions, hallucinations, 

disorganized speech and behaviors, ranks among the top three most disabling medical conditions 

worldwide (Murray et al, 2012). Schizophrenia is relatively common, affecting approximately 

1% of the population (McGrath et al, 2008), with an onset generally in late adolescence or early 

adulthood. Thought to be neurodevelopmental in origin, the illness is complex, and the 

underlying pathogenesis remains poorly understood. Many individuals who eventually develop 

schizophrenia demonstrate a progressive period of social decline, often referred to as a 

“prodrome”, prior to developing overt symptoms of psychosis (Rossler and Rossler, 1998; 

Schultz-Lutter, 2009). Prodromal symptoms may present several years prior to the development 

of an acute psychotic episode, and may be characterized by attenuated symptoms of psychosis, 

and/or a general and non-specific decline in social and overall functioning. The advent of an 

acute psychotic episode is characterized by the onset of positive symptoms which may include 

hallucinations (most commonly auditory in nature, although visual, tactile, and olfactory are 

occasionally experienced), delusions (fixed false beliefs which go against cultural and social 

norms), and/or disorganized speech (thought form that is tangential and difficult to follow) and 

behaviors. Negative symptoms are experienced as a paucity of regular human affect and 

experience, and commonly endorsed negative symptoms include apathy, avolition, flattening of 

affective reactivity, and lack of social interest. Negative symptoms may be present for months to 

years prior to the onset of positive symptoms, and are generally less responsive to currently 

available treatment interventions. For a diagnosis of schizophrenia, the DSM-5 (American 

Psychiatric Association, 2013) requires the presence of two of: hallucinations, delusions, 
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disorganized speech, grossly disorganized or catatonic behavior, or negative symptoms, lasting 

for at least one month, with an overall 6 months of general functional decline. Though not 

currently reflected in formal diagnostic criteria, cognitive impairments are a well-established 

phenomenon experienced by the majority of patients with schizophrenia, are detectable even 

prior to the development of acute psychosis (Mesholam-Gately et al, 2009), and are associated 

with impaired functioning (Fujii and Wylie, 2003; Cervellione et al, 2007; Smith et al, 2002).  

The course of schizophrenia is heterogeneous (Modestin et al, 2003; Thara, 2004), and 

response to treatment is variable. While some individuals return to their previous functional level 

following the onset of psychosis, for many, the illness is characterized by periodic relapses, and 

some experience chronic psychotic symptoms with a deteriorating functional course (Bleuler, 

1972; Harding et al, 1987). However, in more recent years, compelling evidence has 

demonstrated that intervening earlier in the course of schizophrenia is associated with better 

outcomes longitudinally (Birchwood, Todd, and Jackson, 1998; Bertolote and McGorry, 2005; 

Malla et al, 2002). The first episode of psychosis (FEP) is of considerable clinical and research 

interest. Because the onset of psychosis occurs at a pivotal time in development (Hafner et al, 

1998) in terms of educational, occupational, and relational attainment, the development of a FEP 

has the potential to completely derail a young person’s life trajectory. It has increasingly become 

recognized that multiple interventions, including pharmacological, psychological, and social and 

educational supports, are warranted in order to optimize functioning and long-term prognosis in 

this group of young people.  

While there are several different antipsychotic medications available, many individuals 

only respond partially, or do not respond at all, to dopamine-blocking agents, which characterize 

the majority of agents to date with antipsychotic efficacy. Although some studies have 
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demonstrated superiority of certain medications over others (Leucht et al, 2003), given the 

extensive variation in presentation and course, it is difficult to apply clinical findings on an 

individualized basis. Though somewhat controversial, there is some evidence that untreated 

psychosis is associated with worse long-term outcomes, and may even be neurotoxic (Black et al, 

2001; McGlashan, 2006). In one of the most comprehensive longitudinal studies of first-episode 

psychosis patients to date, the overall cumulative duration of active psychosis predicted brain 

volume loss over the course of 7 years (Andreasen at al, 2013). It has been hypothesized that 

early psychopharmacological intervention improves the outcome and prognosis of schizophrenia 

(Wyatt, 1991), and therefore, a priority in the management of patients with FEP, should be to 

obtain sufficient response to an antipsychotic agent in a timely manner.  

1.2 Treatment Resistant Schizophrenia 

Since the introduction of chlorpromazine in the 1950’s, antipsychotic medications have 

been the primary biological treatment modality for patients with schizophrenia. These 

medications facilitate remission for many patients, and the discovery of this class of medications 

has allowed countless patients to live independently in the community, as opposed to being 

chronically institutionalized. Unfortunately, however, antipsychotic medications are not helpful 

for all patients with schizophrenia. Despite ongoing advances in neuroscience, and new drug 

development, approximately 20-33% of patients are considered to be treatment resistant (TR) 

(Meltzer, 1997; Lindenmayer, 2000) and continue to experience symptoms despite receiving 

evidenced-based antipsychotic therapy. Although some individuals who fail to respond to an 

initial agent, may respond to an alternative antipsychotic trial (while objective definitions of 

what constitutes a trial have varied, more recent guidelines (Howes et al, 2018) suggest that a 

trial should entail 4-6 weeks on an antipsychotic medication of adequate dose), response rates 
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decrease with subsequent medication trials, with response rates as low as 7% in patients who 

have failed two antipsychotic trials (Kinon et al, 1993). Currently, there are no objective methods 

to predict who will develop TR prospectively, leading to a period of medication trial and error, 

which is both frustrating for the patient who continues to suffer, and the clinician. Research that 

may facilitate prognostication of eventual treatment response may help guide early 

pharmacological intervention, and improve illness course, and recovery, for these particular 

patients.  

Treatment resistant schizophrenia (TRS) is associated with a tenfold higher cost of health 

care, and various other associated conditions that contribute to individual and societal burden 

(Kennedy et al, 2014).  In a systematic analysis of studies between 1996-2012, TRS patients 

were found to have more comorbidities (including cigarette smoking and alcohol and other drug 

abuse), were more likely to experience adverse medication events, had worse quality of life, 

were more likely to be unemployed, and were more likely to express suicidal ideation. TRS 

patients appear to have more severe cognitive deficits (De Bartolomeis et al, 2013; Frydecka et 

al, 2016) and are significantly more impaired on tasks of daily functioning (Iasevoli et al, 2016). 

Alarmingly, patients with TRS have also been shown to have a decreased life expectancy 

(Tandon et al, 2009) and higher rates of completed suicide (Green et al, 2007). In addition to the 

clear catastrophic personal costs associated with being afflicted by refractory illness, this 

condition is associated with considerable societal morbidity, including decreased employment 

(Marwaha and Johnson 2004) and significantly higher direct and indirect costs of healthcare 

(Zeidler et al. 2012). Despite the significant personal and societal costs associated with TRS, 

there is a paucity of evidence-based treatment options for this subgroup of patients, and the lack 

of available options may relate to a generally poor understanding of both the presentation, and 
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underlying pathophysiology of TRS.  

TRS may represent a distinct subtype of illness, with a varying course and 

pathophysiology from treatment-responsive schizophrenia. More recently, it appears possible to 

differentiate TRS from treatment responsive schizophrenia early on in the course of illness (Lally 

et al, 2016). While there are no objective measures to predict treatment resistance prospectively, 

several demographic and illness-related factors have been associated with poor treatment 

response including negative symptoms (Lindemayer et al, 2000), younger age at onset of illness 

(Jomli et al, 2012; Mohamed, 2013), poor premorbid adjustment and more severe cognitive 

impairment (Meltzer, 1997; Lindemayer, 2000), the presence of neurological soft signs (Smith et 

al, 1999), male gender, longer illness duration, and longer duration of untreated psychosis 

(Carbon and Correll, 2014). In a prospective study of 375 patients with first-episode, non-

affective psychosis investigating baseline sociodemographic, premorbid, and clinical predictors 

of antipsychotic response at 6 weeks, family psychiatric history, previous hospitalization, longer 

duration of untreated illness (DUI) and duration of untreated psychosis (DUP), and poor 

premorbid adjustment during adolescence were associated with poor antipsychotic response 

(Crespo-Facorro et al, 2013). It certainly appears that those patients, who are not functioning as 

well at initial presentation, have a higher likelihood of responding poorly to treatment. In a 

South-African study of 133 patients with first-episode psychosis, non-responders after 3-months 

of depot antipsychotic medication (to enhance compliance) were characterized by significantly 

poorer functional outcome, poorer quality of life, a greater burden of cognitive impairment, and 

had more neurological soft signs at initial presentation of illness (Bonginkosi et al, 2015). In a 

large prospective study of antipsychotic response in first-episode psychosis, shorter duration of 

untreated psychosis, longer duration of treatment, and higher baseline scores of general and 
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negative symptoms were associated with response (Zhang et al, 2014). While there are several 

clinical factors associated with eventual treatment resistance, these factors are non-specific, and 

it is difficult to extrapolate these findings to make individual clinical decisions.  

 A major barrier to advancing the understanding of TRS has been the lack of an objective, 

universally-accepted definition. While overtime, a few different criteria have been proposed, 

various research studies have defined the phenomenon slightly differently, making it difficult to 

compare results. Criteria for TRS generally necessitate first, a lack of response to antipsychotic 

treatment, although, what stipulates “lack of response” has been inconsistently defined. Most 

definitions additionally require an individual to demonstrate treatment failure on more than one 

medication, taken over variable periods of time. One of the most well cited definitions of 

treatment resistance by Kane et al (1998), required a failure to respond to at least 3 antipsychotic 

treatments in the preceding 5 years, with medications being from two different classes, and of at 

least 1000 mg chlorpromazine equivalents, with no significant period of good functioning during 

that time, and a symptom severity of >45 on the Brief Psychiatric Rating Scale (BPRS). While 

this definition is comprehensive, the time period required to meet criteria is substantial, and 

would contribute to significant delays in recognizing TRS early on in the illness course. More 

recent definitions have attempted to reconcile the clinical need for earlier recognition, and hence, 

intervention, of individuals with TRS.  

Many definitions have emphasized the requisite of several antipsychotic trials prior to 

making a determination of TRS status. For example, the UK National Institute for Clinical 

Excellence (NICE) defines treatment resistance as “unsatisfactory clinical improvement despite 

consecutive use of two antipsychotics, one of which should be an atypical agent for 6 to 8 weeks 

duration” (NICE, 2002). Defining resistance based on the prerequisite of having switched 
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medications without the use of objective symptom scales however, may be problematic. The 

decision to switch medications may be influenced by extraneous factors unrelated to lack of 

response. For example, an individual may refuse to switch medications for a variety of reasons 

(side effects, tolerability or lack of drug coverage). In addition, patients vocalizing higher levels 

of distress related to symptoms, may prompt more frequent switching relative to patients who 

continue to be symptomatic but are not as vocal, perhaps due to lack of insight. Therefore, the 

use of standardized symptom scales in defining resistance, is crucial, and unfortunately, has not 

been reflected in most traditional TRS definitions. However, defining resistance as failure to 

reach some predetermined, arbitrary symptom score may be additionally problematic. 

Application of an absolute symptom threshold in characterizing TRS risks over-categorizing 

resistance in individuals with high initial symptom burdens, who may never reach a defined 

threshold despite having improved considerably from baseline. Similarly, a patient with a milder 

presentation of illness in terms of symptom severity, may meet threshold criteria, without having 

experienced much improvement from their own baseline.  

The use of criteria that employ relative symptom improvement from baseline may control 

for some of the inherent variability in illness severity which may confound determination of 

whether a person has responded sufficiently. Until recently, there has been no consensus in the 

field regarding the extent of relative improvement necessary for defining adequate response. 

While Leucht et al (2007) have suggested that sufficient response be operationalized as a 50% 

reduction in scores on the Brief Psychiatric Rating Scale (BPRS), or Positive and Negative 

Syndrome Scale (PANSS), the Treatment Response and Resistance in Psychosis (TRRIP) 

working group has defined resistance as having a symptomatic reduction of less than 20% from 

baseline (Howes et al, 2017). However, given that most patients with FEP respond robustly to 
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antipsychotics (Robinson et al, 1999), a <20% improvement threshold may not be sufficiently 

sensitive to identify poor response at this stage of illness.  

In reality, response to treatment may be best conceptualized in a continuous manner, with 

some individuals being highly treatment resistant, others being highly treatment responsive, and 

the majority showing an intermediate response. Indeed, using growth mixture modelling (GMM), 

Marques et al (2011) found that positive symptom antipsychotic response over 6 weeks was best 

represented by four trajectories. 48% were partial responders and showed approximately a 20% 

improvement in symptoms. 22% were responders and showed a 50% improvement, while 10% 

were dramatic responders and showed a 75% improvement. Finally, approximately 20% were 

categorized as non-responders. Although there have been numerous studies investigating 

treatment resistance, including recent efforts at developing globally-applicable criteria (Howes et 

al, 2017), the optimal symptomatic improvement required for response is debatable, and has not 

been well-defined, particularly for patients with FEP. In addition to the lack of objective criteria 

in defining TRS, there are multiple factors, including medication non-adherence, substance use, 

and differences in individual pharmacokinetics, that lead to challenges in determining whether an 

individual is truly medication resistant.  

One of the biggest challenges in accurately identifying TRS relates to the issue of 

medication adherence. In general, non adherence to antipsychotic medications is associated with 

poorer outcomes including lower rates of remission, more time required in hospital (Caseiro et 

al, 2012), and non-adherent individuals may be mistakenly identified as being treatment resistant 

(Correll et al, 2011). The large CATIE study found rates of medication non adherence to be 

approximately 74% within 18 months (Lieberman et al, 2005). With non-adherence being the 

norm rather than the exception, it is exceedingly difficult to both estimate rates of true TRS, and 
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accurately identify it clinically. Given that partial adherence has been associated with an 

increased risk of relapse, a partially-adherent individual may appear to be treatment resistant if it 

is assumed they are taking their medication as prescribed. Many studies investigating TRS have 

failed to accurately separate poor adherence from true treatment resistance. More recently, the 

more frequent use of long acting injectable (LAI) antipsychotic medications may help address 

this concern. Another potential method of separating poor adherence from true resistance 

involves monitoring of antipsychotic serum levels; however, this is not available at many centres 

for all agents used, and may be undesirable from a patient perspective.  

In addition to poor medication adherence, ongoing use of illicit drugs may complicate an 

apparently treatment resistant presentation. In investigating treatment resistance, it is important 

to thoroughly screen for substance use, and continue to inquire regarding use patterns, 

particularly in patients who remain symptomatic. Urine toxicology screens may be helpful in 

determining drug use however, in many cases, frequent urine sampling is not practical or 

possible, and many newer drugs of abuse do not screen positive on current traditional drug 

panels.  

Although many definitions of treatment resistance stipulate a lowest acceptable 

antipsychotic dosage threshold, several other factors may influence how a particular individual 

responds to a given dose of an antipsychotic medication. Factors such as gender, body habitus, 

general health status, gastrointestinal absorption, and other drug interactions may influence the 

effective dosage that an individual receives. Therefore, while a person may be taking a 

seemingly effective dose, due to pharmacokinetics and pharmacodynamics, they may not be 

absorbing a truly effective dose for them. Of particular relevance, is the fact that CYP 1A2 is 

induced by cigarette smoking (Hukkanen et al, 2011), which decreases the effective dosage of 
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many antipsychotic medications. Therefore, while outlining minimal dose thresholds in defining 

treatment resistance is helpful, it is important to keep in mind that several extraneous factors may 

influence the absolute dosage a particular individual will receive.  

Overall, while some objective definitions of TRS have been proposed, the use of these 

definitions is variable, and there continue to be problems related to lack of objectivity in utilizing 

these criteria. 

1.3 Time Course of Treatment Resistance 

Historically, chronicity has frequently been assumed as being a prerequisite for 

resistance, and it was previously speculated that TRS developed overtime following a longer 

duration of psychosis, and successive relapses. While there is a subset of patients who seem to 

develop resistance following a period of initial response, in general, evidence has shown that a 

treatment-resistant course often declares itself from the onset of illness (Agid et al, 2011). In a 

retrospective study of treatment response 2-20 years after an initial diagnosis of schizophrenia, 

the majority of TRS patients developed resistance early and remained resistant throughout the 

course of their illness (Kolakowska et al, 1985). Two studies have specifically investigated the 

prevalence of TR in FEP. Lally et al (2016) used retrospective chart analyses to investigate the 

course of treatment resistance following a FEP. They found that 34% of patients met criteria for 

treatment resistance at 5-year follow-up, and that of these, 70% did not respond to antipsychotic 

medications from illness onset. In another 10-year retrospective study of treatment resistance 

after FEP, 23% of patients met criteria for treatment resistance, and of these, 84% were 

characterized as being resistant from treatment initiation (Demjaha et al, 2017). Differences 

between these studies may relate to the application of variable criteria for TRS. Lally et al (2016) 

considered patients to be treatment resistant if they were on clozapine at any point, or showed 
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“little symptomatic improvement” after being on two different antipsychotic medications. 

Demajaha et al (2017) classified those who continued to have positive symptoms (a rating of at 

least one or more positive symptoms of at least “moderate” severity) after two antipsychotic 

trials as treatment resistant. In addition, neither of these studies applied stringent measurements 

of medication compliance. Overall, it seems that for the majority, treatment resistance may 

represent a stable, neurobiological phenomena, present from the first episode of illness, though 

recognizing it at that time, remains clinically challenging. 

While treatment resistance, in many ways, is poorly understood, there appears to be a 

better understanding of the time course of antipsychotic treatment response, which is closely 

related to the concept of resistance.  As the bulk of antipsychotic response occurs within the first 

few weeks (Agid et al, 2003) following drug initiation (a meta-analysis by Suzuki et al (2011) of 

patients with chronic schizophrenia found that two-thirds of the response occurred within the 

first three weeks), longer drug trials may be unproductive and result in negative clinical 

outcomes. Applying a diagnostic test review model of studies investigating early treatment 

response in patients with primarily chronic schizophrenia, Samra et al (2015) found that failing 

to achieve at least a minimal response (characterized by improving by 20% on the PANSS or 

BPRS) at week 2, predicted failing to achieve a 50% improvement at 4-12 weeks. A similar 

pattern of treatment response being evident within the first few weeks following antipsychotic 

initiation has been demonstrated in FEP samples. Logistic regression analyses were applied to a 

large sample of patients with FEP registered in the European First Episode Schizophrenia Trial 

(EUFEST) to test whether response at 2, 4, or 6 weeks predicted remission at one-year. 2-week 

treatment response predicted remission status at one-year at a rate of 61%. Including response at 

4 and 6 weeks improved correct classification of remission to 63% and 68% respectively (Derks 



 12 

et al, 2010). In another group of antipsychotic-naïve patients with first-episode psychosis, 

treatment response at week 4 was associated with categorical treatment response at one-year 

(Ucok et al, 2011). Based on analyses of response patterns, Schennach-Wolff et al, (2010) 

concluded that patients with FEP should improve by at least 30% in total symptoms by week 2 in 

order to achieve response and remission. However, Gallego et al, (2011) found that in FEP, the 

estimated cumulative response to antipsychotic medications was 39.58% by week 8, and 65.16% 

by week 16, but did not find that earlier response patterns (at weeks 2, 4, or 8) were predictive of 

response at week 16. Therefore, while treatment resistance can be recognized early on in FEP, 

and treatment response in the initial weeks following antipsychotic initiation may be highly 

predictive of overall eventual responsiveness, it is unclear exactly when response should be 

noted in terms of predicting longer term illness trajectory.  

 

Chapter 2: Defining Treatment Resistance in a First Episode 
Psychosis Sample 
 
2.1 Rationale for Study 

The course of schizophrenia is heterogeneous, with variable response to treatment. 

Approximately one third of patients (Meltzer, 1997; Lindenmayer, 2000) continue to experience 

symptoms despite treatment with dopamine-blocking antipsychotic agents, with response rates as 

low as 7% in patients who have failed two antipsychotic trials (Kinon et al, 1993). It appears that 

a treatment-resistant course may declare itself early in the course of illness (Kolakowska et al, 

1985; Agid et al, 2011) with approximately 23-34% of patients being treatment resistant (TR) 

from their first episode of schizophrenia (FES) (Lally et al, 2016; Demjaha et al, 2017).  

Recently, the Treatment Response and Resistance in Psychosis (TRRIP) working group 
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published consensus guidelines (Howes et al, 2017) for defining treatment resistance. According 

to these guidelines, insufficient response is defined as <20% improvement on symptom domains 

(with positive, negative, and cognitive domains measured separately), with TR being defined as 

insufficient response achieved with two trials of antipsychotic medications of adequate duration 

and sufficient dosage. However, it is unclear whether the threshold of 20% symptom 

improvement will be appropriate for a FES sample where response rates are generally high 

(Derks et al, 2010). Alternative criteria for defining TR specific to FES are warranted in order to 

promote earlier recognition of TR. Furthermore, the role of negative symptoms in defining TR at 

FES has not yet been characterized. In this report, we study the utility of applying a “time-based” 

response cut-off, irrespective of the number of antipsychotic trials, that considers negative 

symptom improvement in predicting “probable TR” in a prospective FES sample. We studied the 

utility of a 20% response threshold (as defined by TRIPP), as well as a more stringent 50% 

response threshold (identified as a “good response” cut-off for clinical trials by Aboraya et al, 

2017) in the domains of positive, negative, and total symptoms 6 months following FES. In 

keeping with previous literature (Meltzer et al, 1997; Lindenmayer et al, 2000) we hypothesized 

that the most valid criteria would categorize approximately 33% of the sample as probable TR. 

We hypothesized that approximately one third of individuals with FES would meet probable TR 

criteria at as early as 6 months after commencing antipsychotic treatment, and that negative 

symptoms would be important in characterizing probable TR in a FES sample.  

2.2 Methods 

2.2.1 Sample  

Data were analysed retrospectively using a longitudinal, naturalistic sample of patients 

treated at the Prevention and Early Intervention Program for Psychosis (PEPP) in London, 
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Ontario between February 1997 and February 2002. This program provides assessment and 

treatment to individuals presenting with first-episode, non-affective psychoses using an assertive 

case-management model. Criteria for acceptance to the program include age between 16 and 50, 

symptoms meeting criteria for a Diagnostic and Statistical Manual of Mental Disorders (Fourth 

Edition) (DSM-IV) psychotic disorder, and having never received prior antipsychotic treatment 

for greater than one month. Approval for the study was obtained from the University Human 

Ethics Committee for Health Sciences at the University of Western Ontario. Patients treated by 

the program during that time were invited to participate in a study involving symptoms and 

functional outcomes.  

Diagnoses were established using the Structured Clinical Interview for DSM-IV (First 

and Gibbon, 1997) by trained research assistants, and confirmed by two senior psychiatrists and 

a clinical research psychologist, with consensus diagnosis conferences occurring at one-year 

follow-up. Individuals that ended up meeting criteria for a mood disorder with psychotic 

features, or any substance-induced psychosis, were excluded from the analysis. Positive and 

negative symptoms of psychosis were assessed using the SAPS (Andreasen, 1984) and SANS 

(Andreasen, 1983) at baseline, and at months 1, 2, 3, and 6. Interrater reliability on the SAPS and 

SANS demonstrated agreement within one point 93% of the time (Malla et al, 2005). Duration of 

untreated illness (DUI) was calculated as the period between the onset of any psychiatric 

symptoms and the time to antipsychotic treatment. Duration of untreated psychosis (DUP) was 

defined as the time between the onset of psychotic symptoms and the time to adequate (at a 

minimally effective dose) antipsychotic treatment. Premorbid adjustment was measured using 

the Premorbid Adjustment Scale (PAS) (Cannon-Spoor et al, 1982), with higher values 

indicating worse premorbid functioning. Symptom change overtime was calculated as the 
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difference between a particular symptom domain from baseline divided by the baseline symptom 

score (e.g. positive symptom improvement over month 1= ((SAPSbaseline - SAPSmonth 

1)/SAPSbaseline)x100%). 

 Adherence monitoring to antipsychotic medication treatment was accomplished via a 

weekly adherence log (as described in Malla et al, 2006). Adherence was scored on a scale of 0-4 

(0=not adherent, 1=0-25%, 2=25-50%, 3=50-75%, 4=75-100% of prescribed doses taken). 

Scores were obtained through reports of case managers (who have frequent contact with patients 

and their families), in discussion with the primary psychiatrist. Patient and family reports were 

considered in making adherence assessments, as well as reviews of prescriptions and pill counts. 

Individuals were considered to be adherent if they scored a 4, meaning their compliance was 

estimated to be between 75-100%. Individuals that were not medication adherent (scores of 0, 1, 

2, or 3) based on 6-month adherence measures were not included in the sample.  

2.2.2 Defining Treatment Resistance  

Probable TR status was investigated at 6 months after entry into the first episode 

psychosis program based on meeting defined thresholds for symptom change from baseline, in 

those who were medication adherent. We identified all individuals who were not responding to 

antipsychotic treatment based on 2 different response thresholds, regardless of whether or not 

alternative treatment options were tried. For positive, negative, and total symptom domains, we 

used 20%, and less than 50% improvement as cut-offs to identify subjects satisfying “probable 

TR” criteria. Following identifying “probable TR” individuals, individual item scores on the 

SAPS and SANS (as applicable) were examined at baseline to ensure that individuals meeting 

criteria met the threshold of at least moderate severity (more than one individual item >2) in 

terms of symptomology, as suggested by TRIPP (Howes et al, 2017). 
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2.2.3 Statistical Analysis  

Goodness-of-fit tests based on chi-square statistics were performed on the 6 definitions of 

probable TRS. We tested the observed proportions against the expected proportion of 30% 

subjects being treatment resistant (Meltzer, 1997; Lindenmayer, 2000). Chi-square analyses were 

then performed to determine the univariate association between variables (ie, substance abuse, 

family history, gender) and probable TR status at 6 months, and t-tests were used to assess the 

association between continuous (ie, duration of untreated psychosis, age at onset) variables and 

probable TR status. For all t-tests, Levine’s test for homogeneity of variances was conducted. 

For variables showing significant heterogeneity of variance, the corrected p-value was used. 

Logistic regression analyses were then applied to create a model predicting membership within 

the probable TR group using only the definitions that corresponded closely to estimated rates of 

TR of about 1/3 (Meltzer, 1997; Lindenmayer, 2000). All demographic and clinical factors found 

to be significantly associated with probable TR status using chi-square analyses or independent t-

tests were included in the prediction models. Mann-Whitney U Tests were then used to compare 

the number of antipsychotic medication trials in individuals with probable and non-TR for each 

symptom improvement threshold.  

2.3 Results 

2.3.1 Final Sample 

129 patients met criteria for a first episode schizophrenia spectrum disorder and were 

considered for inclusion in the analysis. Using only individuals that were medication adherent, 

resulted in a sample size of 93 FES patients (74 male and 19 female), while 36 (30.23%) were 
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not included due to being categorized as non-adherent. One male was missing SANS scores and 

therefore the total sample size was 92 for analyses assessing negative symptoms.  

2.3.2 Rates of TR  

We first investigated the prevalence of probable TR at 6 months using 20% and 50% 

symptom improvement thresholds for positive, negative and total symptoms (see table 2-1). 

Total symptom probable TR<50% and negative TR<20% at 6 months resulted in rates closest to 

those previously described in the literature (Meltzer, 1997; Lindenmayer, 2000) (rates of 37% 

and 33% respectively). We further tested the goodness of fit of these models using one-sample 

chi-square tests with the null hypothesis being that the proportion of TR individuals would be 

33% for each criterion. The null hypothesis was rejected for all definitions, with the exception of 

TR negative <20% and TR total <50%, meaning the expected frequency of TR for these criteria 

was approximately 33%. Of those meeting criteria for TR negative <20%, 77% also met criteria 

for total symptom TR<50%, suggesting there was a high degree of overlap between these two 

categorizations of TR. Next, we investigated the predictive ability of demographic factors, and 

early symptom improvement, in determining membership to these classifications of probable TR 

(total symptoms <50%, and negative symptoms <20% criterion).  

Table 2-1. Rates of Probable TR and mean number of antipsychotic trials using various 

criteria (n=92).  

 

Domain Criteria # Prob TR  # AP trials 
M (SD) 

# non TR # AP trials 
M (SD) 

Positive symptoms     <20% 2 (2%) 2.00 (1.41) 91 (98%) 1.30 (0.50) 

<50% 13 (14%) 1.38 (0.65) 80 (86%) 1.30 (0.05) 

Negative symptoms    <20% 30 (33%) 1.23 (0.50) 62 (67%) 1.34 (0.54) 

<50% 56 (61%) 1.30 (0.54) 36 (39%) 1.31 (0.52) 

Total symptoms          <20% 11 (12%) 1.36 (0.67) 81 (88%) 1.29 (0.51) 

<50% 34 (37%) 1.32 (0.59) 58 (63%) 1.29 (0.49) 
M = mean; SD = standard deviation. 
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Table 2-2. Chi-Square Analyses for Goodness of Fit of Various TR Definitions.  
  

 TR Pos<50 TR Pos<20 TR Neg<50 TR Neg<20 TR 
Total<50 

TR 
Total<20 

Chi-square 15.22 40.03 32.31 .01 .65 18.43 
Significance .000 .000 .000 .936 .420 .000 

Df= 1 for all tests 

 

2.3.3 Factors Associated with Total Probable TR <50% at 6 months  

Patients meeting criteria for probable TR based on having a less than 50% total symptom 

improvement had worse premorbid functioning  (M= .37, SD=.13) than patients not meeting 

probable TR criteria (M=.28, SD=.17) (t(80)= -2.526, p=.014), a longer duration of untreated 

illness (probable TR: M= 386.21, SD= 340.78; non TR: M=236.31, SD= 211.28), (t(48.37)= -

2.31, p= 0.025), a lower baseline SAPS score (probable TR: M= 9.35, SD= 3.52; non TR: 

M=11.21, SD= 3.47), (t(90)= 2.463, p= .016) and less total symptom percentage improvement 

over 1 month (probable TR: M=16.39%, SD= 26.37; non TR: M=37.38%, SD= 23.46), (t(57)= 

3.048, p=0.003), and 2 months (probable TR: M=20.87%, SD= 27.05; non TR: M= 48.70%, SD= 

29.83),  (t(60)=3.59, p=0.001).  

Table 2-3. Factors Associated with Probable TR (<50% improvement on total symptoms). 

 

Characteristic Prob TR Non TR t or2 df p-
value 

PAS 0.37/.17 0.28 -2.526 80 0.014* 
DUP (Weeks) 104.04/134.98 68.10/105.38 -1.421 90 0.159 
DUI (Weeks) 386.21/340.78 236.31/211.28 -2.313 48 0.025* 
Age of Onset 23.96/8.66 24.45/7.80 0.275 90 0.784 
SAPS baseline 9.35/3.52 11.21/3.47 2.463 90 0.062 
SANS baseline 11.38/4.64 13.47/5.35 1.890 90 0.062 

Total Sx1month (%)  16.39 37.38 2.048 57 0.003* 

Total Sx2month (%) 20.87 48.71 3.585 60 0.001* 

Substance abuse/dep. 
Y/N 

9/25 14/44 0.062 1 0.803 

Mode of onset I/A 23/9 44/14 0.172 1 0.678 
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Gender M/F 28/6 45/13 0.297 1 0.586 
Family History Y/N 12/16 20/33 0.201 1 0.654 
Number of AP switches 0.2941 0.2759 -0.186 90 0.853 
Cpz eq over 6 months 249.51 213.92 -0.884 56 0.381 
PAS= premorbid adjustment scale. DUP= duration untreated psychosis. DUI= duration untreated illness. Total 
symp change ratio is difference between baseline symptoms and 1, and 2 month symptoms/Baseline symptoms. 
I= insidious. A= acute. Y=yes. N= no. M= male. F= female. AP= antipsychotic. Cpz eq= chlorpromazine 
equivalence over 6 months. Note that for all t-tests, Levine’s test for homogeneity of variances was conducted. 
For variables showing significant heterogeneity of variance, the corrected p-value was used. 

 

Next, a logistic regression analysis was conducted to predict TR total <50% criteria using 

all predictors found to be associated with TR in univariate analyses (premorbid functioning, 

duration of untreated illness, baseline SAPS score, and total symptom change over months 1 and 

2). A test of the full model was significant, indicating the model as a whole could reliably 

identify probable TR (total<50%) (χ2= 15.90, p= .007, df= 5). Prediction success overall was 

82.2% (96.9% for non probable TR and 46.2% for probable TR), indicating the model was much 

stronger at ruling out TR. In analyzing the independent predictors in the model (see table 2-4), 

none of the variables independently predicted TR status, although total symptom change over 2 

months demonstrated trend-level significance (p=.064). We tested for multicolinearity using the 

variance inflation factor (VIF) among the predictors using a threshold of 2, (with a tolerance of 

less than 0.9 for all predictors) with no evidence of multicolinearity detected.  

Table 2-4. Binary logistic regression analysis of Probable TR total symptom <50% 

improvement criteria.  

 

Predictor    Odds Ratio (95% CI) P-value 

Premorbid adjustment                                        35.56 (.17-7520.22)                                           .168 
Duration of untreated illness                                1.00 (.999-1.01)                                               .249 
SAPS baseline  1.04 (.83-1.31)                                                 .733 

Total Sx1month (%) .98 (.94-1.02)                                                .227 

Total Sx2month (%) .96 (.93-1.00)                                                .059 

Total symp change ratio = (Baseline total symptoms – N month total symptoms)/Baseline total symptoms. χ
2 

= 

1590; P= 0.007, Nagelkerke r
2

=0.426; B=-.901; SE= .329; Wald= 7.501; P= 0.006; Exp(B)= .406.  
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2.3.4 Factors Associated with TR Negative <20% at 6 months   

Patients meeting criteria for TR based on having a less than 20% improvement of 

negative symptoms had worse premorbid functioning (probable TR: M=.38, SD= .18, non TR: 

M=.28, SD= .14), (t(80)=-2.79, p= .007), a longer duration of untreated illness (probable TR: M= 

419.52, SD= 337.27, non TR: M=229.75, SD= 215.55), (t(41.02)=-2.81, p=.008), a lower SAPS 

score at baseline (probable TR: M= 9.2, SD=3.45, non TR: M= 11.16, SD= 3.49; t(90)=2.53, 

p=.013) and a lower SANS score at baseline (probable TR: M=10.13, SD= 4.41, non TR: 

M=13.94, SD= 5.09), (t(90)= 3.53, p= .001).  

Table 2-5. Factors Associated with Probable TR (<20% improvement on negative 

symptoms). 

 

Characteristic Prob TR Non TR t or2 df p-
value 

PAS 0.38/.18 0.28/.14 -2.788 80 0.007* 
DUP (Weeks) 89.98/120.79 77.22/117.04 -.485 90 0.629 
DUI (Weeks) 419.52/337.27 229.75/215.55 -2.812 41.021 0.008* 
Age of Onset 25.11/8.51 23.86/7.91 -.699 90 0.480 
SAPS baseline 9.2/3.45 11.16/3.49 2.535 90 0.013* 
SANS baseline 10.13/4.41 13.94/5.09 3.53 90 0.001* 

Negative Sx1month (%)  .12 18.98 1.647 57 0.105 

Negative Sx2month (%) 14.35 27.47 1.239 60 0.220 

Substance abuse/dep. 
Y/N 

7/23 16/46 0.066 1 0.797 

Mode of onset I/A 21/7 16/46 0.007 1 0.935 
Gender M/F 26/4 47/15 1.455 1 0.228 
Family History Y/N 12/14 20/35 0.708 1 0.400 
Number of AP switches 0.20/.41 0.32/.47 1.285 65.714 0.203 
Cpz eq over 6 months 213.89/170.18 233.77/176.90 0.510 89 0.611 

*=p<.005. PAS= premorbid adjustment scale. DUP= duration untreated psychosis. DUI= duration untreated illness. 
I= insidious. A= acute. Y=yes. N= no. M= male. F= female. Neg symp change ratio is difference between baseline 
negative symptoms and 1, and 2 month negative symptoms/Baseline negative symptoms. AP= antipsychotic. Cpz 
eq= chlorpromazine equivalence over 6 months. Note that for all t-tests, Levine’s test for homogeneity of variances 
was conducted. For variables showing significant heterogeneity of variance, the corrected p-value was used. 
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Finally, a logistic regression analyses was conducted to predict TR negative <20% 

criteria using all predictors found to be associated with TR in univariate analyses (premorbid 

adjustment, duration of untreated illness, and SAPS and SANS at baseline). The overall model 

was significant in its ability to differentially classify probable TR based on negative symptom 

improvement <20% criterion, from those not meeting this criterion at 6 months (χ2= 26.80, 

p<.000, df= 4). The overall prediction success of the model was 79.3% (93.1% for treatment 

responsiveness and 45.8% for treatment resistance, indicating our model was better at correctly 

identifying those who were not probable TR). Duration of untreated illness (OR= 1.003, 95% 

CI= 1.001-1.006, p= .008) and SANS score at baseline (OR= .836, CI= .723-.926, p=.015) 

remained independent predictors of TRS negative symptom <20% criterion at 6 months. We 

tested for multicolinearity using the variance inflation factor (VIF) among the predictors using a 

threshold of 2, (with a tolerance of less than 0.9 for all predictors) with no evidence of 

multicolinearity detected. 

Table 2-6. Binary logistic regression analysis of Probable TR negative symptom <20% 

improvement criteria.  

 

Predictor Odds Ratio (95% CI)                                          P-value 

Premorbid adjustment 20.38 (.343-1212.99)                                              .148 
Duration of untreated illness                           1.003 (1.001-1.006 .008* 
SAPS baseline                                                   .896 (.740-1.085)                                                .261 
SANS baseline                                                   .836 (.723-.966)                                               .015* 

*=p<.005. χ
2 

= 26.798; P= 0.000; Nagelkerke r
2

=0.379; B=-.882; SE= .243; Wald= 13.217; P= 0.000; Exp(B)= .414.  

2.3.5 Probable TR and Antipsychotic Trials  

 Mann-Whitney U tests were used to compare the number of antipsychotic medication 

trials in individuals with probable and non-TR for each symptom improvement threshold. For 

probable TR positive, there were no significant differences in number of antipsychotic trials for 

the 20% improvement threshold (U=871.5, Z=-.657, p=.511) or the 50% improvement threshold 
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(U= 834.0, Z=-.803, p=.422). For probable TR negative, there were no differences in the number 

of antipsychotic medication trials for the 20% improvement threshold (U=744.0, Z=-1.22, 

p=.223) or the 50% threshold (U=850.0, Z=-.082, p=.935). Similarly, there were no significant 

differences in the number of antipsychotic medication trials for those with probable and non-TR 

total symptom improvement for the thresholds of <20% (U=853.00, Z=-.077, p=.939), or <50% 

improvement (U=840.0, Z=-.187, p=.852).  

 

2.4 Discussion 

2.4.1 Summary of Results  

This is the first study to our knowledge to investigate the applicability of response 

thresholds proposed by TRIPP (Howes et al, 2017) in a FES sample. In addition, there have been 

no other studies looking specifically at the importance of negative symptom persistence in 

predicting TR in early psychosis.  

Our results suggest that at 6 months of treatment, the most ecologically valid definition, 

based on the expected rate of 30% subjects having a resistant form of schizophrenia, is the 

failure to improve in total symptoms by 50%, or negative symptoms by 20%. In keeping with our 

hypothesis, inclusion of negative symptoms in defining TR appears to be crucial to identify the 

probability of TRS in an acceptable proportion of individuals with FES. Definitions of TR 

relying solely on positive symptomology were inadequate in identifying cases of probable TR 

(probable TR rates were 2.2% for the 20% threshold, and 14% for the 50% threshold) likely in 

keeping with the fact that positive symptom improvement is robust early in the course of 

schizophrenia (Robinson et al, 1999). The 20% symptom improvement criteria as suggested by 
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TRIPP (Howes et al, 2017), appears efficacious when considering only negative symptom 

improvement, but fails to identify the expected proportion of patients when using positive, and 

total symptoms in a FES sample. Our results provide preliminary evidence that individuals with 

probable TR can be identified at as early as 6-months following the onset of FES, regardless of 

the number of antipsychotic trials, and that inclusion of negative symptom improvement is 

essential in risk-stratification for probable TR in early psychosis.  

In retrospective studies on clinical samples, consistent risk factors of TRS have been 

male sex, earlier age-of onset or longer duration of illness (Lally et al, 2016), poor premorbid 

functioning, lack of early treatment response, and higher baseline illness severity (indexed by 

prior hospitalization in some studies) (Schennach et al, 2012). Of these, our 2 prospective 

categories of probable TR were associated with poor premorbid adjustment, higher severity of 

symptoms at baseline, longer illness duration as well as lack of early treatment response. The 

lack of association with male sex is likely to be due to the smaller number of females in the 

sample; it is also worth noting that a large population-based study failed to note the association 

of sex and TRS (Wimberley et al, 2017).  

 

2.4.2 Clinical Implications  

We have demonstrated the feasibility of prospectively identifying a group of FES  

subjects that share the risk factors for later TRS, even before 2 antipsychotic failures can be 

observed. In our sample, lack of early symptom improvement (at months 1, and 2) was a robust 

predictor of meeting criteria for probable TR at 6 months. Given that TR status at 6 months is 

associated with poor response at as early as 1 month, clinicians should closely monitor 

individuals who fail to improve symptomatically over the first couple of months following 
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antipsychotic initiation. Furthermore, lower premorbid adjustment, and having a longer duration 

of untreated illness were associated with probable TR at 6 months for both the <50% 

improvement in total symptoms, and the <20% improvement in negative symptoms criterion, 

suggesting that individuals with greater impairments at the onset of psychosis are at increased 

risk for a resistant course.  Active monitoring for probable TRS in early intervention programs 

can aid in treating these individuals at the earliest possible opportunity, and avoid interventional 

relapse (Emsley et al, 2013) and subsequent resistance (Takeuchi et al, 2018).  

Clozapine is the only antipsychotic medication with superior efficacy in TR individuals 

Siskind et al, 2016) and current guidelines necessitate failure of two antipsychotic agents prior to 

initiating a trial of clozapine. The requirement of consecutive antipsychotic trials may contribute 

to delays in clozapine initiation. In addition, a disproportionate focus on positive symptoms in 

determining clozapine-eligibility, as well as an emphasis on chronicity in defining TR, may also 

contribute to unnecessary delays in initiating this potentially disease-altering medication. 

Response rates to clozapine following failed antipsychotic trials have been shown to be more 

robust in patients with FES (75%) (Agid et al, 2011), relative to chronic samples (40%) (Siskind 

et al, 2017), and therefore, developing objective clinical indicators of clozapine eligibility 

earlier-on is of pivotal importance. Our results suggest that TR may be determined by 6 months 

following FES, and that time-based criteria for TR may be reliable in identifying patients for 

potential consideration of clozapine. Patients who fail to improve in total symptoms by 50%, or 

negative symptoms by 20% by 6 months following FES, should be closely assessed for TR. 

Particular importance should be given to negative symptoms that persist over the first few 

months following a first episode of psychosis. As positive symptom improvement is significant 
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at this early stage, focusing exclusively on positive symptom improvement may lead to under-

identification of TR individuals.  

In a naturalistic practice setting, when considering treatment-compliant subjects, the 

number of AP trials does not differ between probable TRS and non-TRS.  In other words, in the 

absence of the explicit clinical knowledge of the risk factors, pharmacological practice does not 

change for patients who are likely to later need clozapine. This is an important aspect to consider 

in our efforts aimed at mitigating the delay in timely clozapine use. Our results suggest that 

irrespective of the number of AP trials attempted, if a patient with FES shows less than 50% total 

symptom burden or 20% total negative symptom improvement by 6 months of early intervention, 

then fast-tracking to clozapine may be warranted. This highlights the need for measurement-

based care in FES settings (Correl et al, 2012). 

2.4.3 Strengths and Limitations  

The use of standardized improvement thresholds based on severity of initial presentation 

is a relative strength of our study. Without using objective improvement criteria, individuals 

presenting with milder symptoms at baseline may be judged as achieving sufficient response, 

even if their improvement has been sub-par. Similarly, individuals who are severely unwell at 

baseline, may improve substantially but never meet arbitrary absolute thresholds in terms of 

symptom severity and be defined as TR despite having improved significantly. In addition, our 

breakdown of positive and negative symptom domains in defining TR has not previously been 

employed in a FES sample and contributes important information to the understanding of the 

early progression of a TR course.  

In terms of potential limitations, while formal assessments of medication adherence were 

completed, we cannot be certain whether or not individuals were compliant as antipsychotic 
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serum levels were not performed. However, our measure of assessing adherence has been 

validated, and has been shown to be related to pill counts (Cassidy et al, 2010). In addition, 

symptom data were available at discrete intervals. However, the relapse status of individuals 

between assessments was not recorded for the purposes of this analysis. It is possible that 

individuals who experienced relapse, particularly prior to 6 months when TR status was 

assessed, may have been mislabelled as having inadequate response simply because their 

symptoms were higher at the time of assessment secondary to relapse. However, the fact that TR 

status at 6 months was associated with impaired symptom improvement during the early months, 

suggests that for the majority, the development of TR was occurring early on, and was not 

simply related to an acute symptomatic relapse. Finally, because the analysis included only 

individuals who were rated as being medication adherent at 6 months, our analyses may have 

missed individuals who were in fact TR if they were not medication-adherent at that particular 

time point.  

2.4.4 Future Directions  

Going forward, it would be important to investigate whether individuals identified as 

being probable TR based on these criteria, also met criteria for more traditional definitions of TR 

which necessitate two failed antipsychotic trials, and evaluate the ability of these criteria to 

identify clozapine-eligibility. While informative regarding the clinical characteristics associated 

with the eventual development of TR in early psychosis, our prediction models demonstrate 

much better ability to predict response relative to resistance. Future studies are warranted using 

brain-based measures, in addition to demographic and clinical characteristics, to attempt to 

improve our ability to prospectively identify TR in FES. Furthermore, prospective studies using 
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this time-based approach to TR identification are warranted to validate these findings in other 

samples of patients with FES.  

Chapter 3: Neurobiological Markers of Treatment Resistance 

Given that TRS remains difficult to define clinically, investigation of underlying 

neurobiological correlates of a treatment resistant course may improve both understanding of the 

underlying pathogenesis, and support prospective identification of individuals with TRS.  

Structural, functional, as well as changes in neural metabolite levels have been demonstrated in 

TRS individuals relative to general schizophrenia samples. Differential neurobiological patterns 

in these patients, supports the need for alternative therapeutics targeting individualized brain 

changes characteristic of a treatment resistant course. In this chapter, we review existing 

literature on brain abnormalities demonstrated in TRS, with a focus on studies investigating FEP 

samples.  

3.1 Structural Brain Changes in Treatment Resistant 

Schizophrenia 

Structural differences have been demonstrated in the brains of patients with TRS relative 

to responders since the advent of neuroimaging techniques. However, results have been 

inconsistent, likely as a result of the use of heterogeneous populations, and variable 

neuroimaging protocols. While very early Computerized Tomography (CT) studies demonstrated 

an association between enlarged ventricles and treatment resistance (Weinberger et al, 1979), 

subsequent studies have not replicated this finding (Friedman et al. 1992; Borgio et al. 2010). 

Using structural Magnetic Resonance Imaging (MRI), numerous studies have demonstrated 

reduced frontal grey matter in resistant patients relative to responsive patients (Anderson et al, 
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2015; Quarentelli et al, 2014; Kubera et al, 2014; Zugman et al, 2013; Mitelman et al, 2005; 

Molina et al, 2008; Anderson et al, 2015; Quarantelli et al, 2014) and in general, cortical atrophy 

has been associated with lower rates of response to treatment (Bilder et al, 1994; Stern et al, 

1993). Increased white matter volume was also found to differentiate resistant from responsive 

patients in one study (Molina et al, 2008), although the difference was not significant in another 

(Anderson et al, 2015). Overall, it appears that in chronic schizophrenia, patients with poor 

treatment response are more likely to demonstrate volumetric deficits, with these deficits being 

most specific to frontal areas. However, because this population would have been exposed to 

numerous neuroleptics, frequently over the course of several years, medication effects on brain 

volume cannot be ruled out.  

Volumetric studies of patients with FEP are important, as treatment exposure is minimal 

in this group. In an MRI study of patients with FEP, those with increased cortical thickness were 

more likely to be treatment-responsive, and responded more quickly to antipsychotic medications 

(Szeszko et al, 2012). Consistent with the concept of impaired neurodevelopment in 

schizophrenia, Palaniyappan et al (2013) found that non-responders to antipsychotics at 12-

weeks displayed hypogyrification in bilateral insular, left frontal, and right temporal regions, 

relative to responders. Therefore, it appears that cortical thickness, and gyrification patterns may 

represent biological indicators of poor treatment response in early psychosis. Structural brain 

changes overall may be longstanding, and support a theory of neurodevelopmental abnormalities 

in patients that go on to be treatment resistant.  

3.2 Functional Brain Changes in Treatment Resistant 
Schizophrenia 
 

In addition to structural differences between responders and non-responders to 
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medication, there is evidence for altered neural connectivity in patients with TRS, measured 

using functional imaging techniques. Reduced white matter integrity in patients with FEP was 

found to be a predictor of poor treatment response (Reis et al, 2014). In a study of 63 patients 

with FEP, lower functional anisotropy in the uncinate, cingulum, and corpus callosum at baseline 

was associated with antipsychotic non-response at 12 weeks, while responders to antipsychotic 

medication were not significantly different with respect to functional anisotropy relative to 

healthy controls (Marques et al, 2014). In another study using resting state MRI, greater 

functional connectivity was demonstrated in treatment resistant patients between the dorsomedial 

prefrontal cortex and frontotemporal areas, and reduced connectivity was found between the 

ventromedial prefrontal cortex and the anterior cingulate cortex (Alonso Solis et al, 2015). 

Deepak et al (2016) investigated striatal functional connectivity nodes and non-response in a 

sample of FEP patients using resting-state functional MRI and found that greater posterior-

striatal connections at baseline were associated with better response, and greater frontal-striatal 

connections were associated with non-response. Furthermore, antipsychotic response may be 

associated with progressive changes in functional connectivity in relevant brain areas. In a 12-

week prospective study of patients with FEP, a greater reduction in positive symptoms was 

related to increased functional connectivity between the right dorsal caudate and prefrontal areas 

including the orbitofrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex 

(Deepak et al, 2015).  Therefore, in addition to structural alterations, treatment resistance appears 

to be associated with aberrant neuronal connection patterns in both FEP, and chronic 

schizophrenia samples. While intriguing, findings of global structural and functional alterations 

in TRS patients do not support the development of alternative treatments. Investigation of the 

brain chemistry underlying TRS is crucial as determination of metabolite differences may 
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facilitate targeted treatment development, which is grossly lacking in this population.  

3.3 The Dopaminergic Theory of Schizophrenia 

For many years, the dopamine hypothesis of schizophrenia represented the field’s best 

understanding of the underlying pathophysiology of schizophrenia. There are several lines of 

evidence supporting a hyperdopaminergic state as being intrinsically associated with psychosis. 

First of all, dopamine agonists, such as amphetamines, lead to positive symptoms of psychosis, 

and exacerbate psychotic symptoms in individuals with established psychotic disorders. In 

addition, the effectiveness of antipsychotic medications has been directly linked to their capacity 

to block D2 receptors in the striatum (Seeman et al, 1975; Creese et al, 1976). Individuals with 

schizophrenia have been found to have increased dopamine synthesis capacity, elevated synaptic 

dopamine levels, and increased dopamine release (Howes et al, 2012) relative to healthy 

controls, and elevated presynaptic striatal dopamine has been associated with the severity of 

positive symptoms (Abi-Dargham & Grace, 2011). Similar findings, albeit to a lesser extent, are 

seen in individuals at clinical high risk (CHR) for psychosis (Howes et al, 2009), with 

dopaminergic perturbations being more specific to those eventually going on to develop a 

psychotic disorder (Howes et al, 2011). Furthermore, in a longitudinal study, dopamine synthesis 

capacity increased at the onset of acute FEP in patients followed from a clinical high risk state 

(Howes et al, 2011b). Clearly, dopaminergic abnormalities are implicated in the neurobiological 

final common pathway in many patients experiencing psychosis. However, more recent evidence 

suggests that dopaminergic abnormalities are not present in a subset of patients with 

schizophrenia. In addition, it has become clear that alternative neurotransmitter systems (in 

addition to dopaminergic abnormalities) are involved in the pathophysiology of schizophrenia 

and may interact intricately with the dopaminergic system.  



 31 

As has been described, approximately one third of patients with schizophrenia are 

categorized as being treatment resistant. Given that all first-line antipsychotic medications act to 

block dopamine, and that these medications are essentially ineffective for these patients, it has 

been speculated that poor responders may not have an inherent dopaminergic abnormality 

(Demjaha et al. 2014). Furthermore, clozapine, the only medication with clinical evidence of 

effectiveness in TRS patients (Taylor and Duncan-McConnell, 2000; McEvoy et al, 2006), has 

very little intrinsic dopamine activity. In TRS patients, dopamine-blocking antipsychotic 

medications may fail as these individuals do not have a hyperdopaminergic state to begin with. 

Supportive of this, blood homovanillic acid (HVA) levels, the major metabolite of dopamine, are 

lower in those who do not respond to antipsychotic treatment, and higher in those who 

demonstrate a good response (Yoshimura et al. 2003; Mazure et al. 1991; Pickar et al. 1984). In 

addition, increased synaptic dopamine has been associated with better subsequent antipsychotic 

response (Abi-Dargham et al, 2000). Demjaha et al (2012) found that patients with TRS had 

decreased striatal dopamine synthesis capacity relative to patients achieving a good response to 

treatment, and dopamine synthesis capacity did not differ between TRS patients and healthy 

controls. All in all, the data suggests that while dopamine is inherently involved in the 

pathophysiology of psychosis for many patients, there appears to be a subset of patients in whose 

symptomatology cannot be explained exclusively by dopaminergic abnormalities. Furthermore, 

in those without biological indicators of elevated dopamine activity, response to traditional 

antipsychotics is not as robust.  

3.4 Measuring Brain Metabolites in Schizophrenia 

 Advances in neuroimaging have granted us the opportunity to assess brain metabolites in 

vivo. Specifically, 1H-MRS is a non-invasive technique that has contributed significantly to our 
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understanding of schizophrenia. In this technique, 1H (which has a magnetic dipole moment), can 

be excited by the use of a magnetic field induced by a radiofrequency head coil (Williamson, 

2006). The protons then return to resting state and the time it takes for the protons to return to a 

low energy state can be measured, and provides information about the environment of the 

protons in a particular molecule. After being excited by a particular magnetic field, different 

protons will be affected differently secondarily to varying environments that the proton is in, 

determining the proton’s resonance frequency. A particular molecule will have a specific spectral 

signature depending on the composition of the hydrogen atoms of that molecule, and can be 

distinguished this way from other metabolites in a particular voxel, or area of interest, in the 

brain. Spectral signatures are quantified in parts-per-million (ppm) which provides a relative 

measurement of the compound of interest. Signals from a generated spectrum are determined 

based on how far off they are from a chosen reference compound. Two of the molecular 

compounds that can be measured by this technique, glutamate and glutathione, have been 

implicated in the pathophysiology of schizophrenia.  

3.5 A Glutamatergic Theory of Schizophrenia 

More and more studies have demonstrated that glutamate, the most prominent excitatory 

neurotransmitter in the brain (Fonnum, 1984), is implicated in the pathophysiology of 

schizophrenia. It has been hypothesized that NMDAR (N-methyl-D-aspartate receptor; an 

ionotropic glutamatergic receptor that is ubiquitous throughout the brain) hypofunction on 

GABAergic interneurons may lead to increased glutamatergic activity (Moghaddam & Krystal, 

2012; Lisman et al, 2008; Carlsson et al, 2001). The NMDA glutamate receptor, when 

antagonized by drugs such as phencyclidine (PCP), leads to the full spectrum of symptoms that 

are characteristic of schizophrenia, including positive, negative, and cognitive symptoms (Luby 
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et al, 1962; Javitt and Zukin, 1991), and blockade of the NMDA receptor with ketamine or PCP 

leads to paradoxical glutamate release (Adams and Moghaddam, 1998; Moghaddam et al, 1997; 

Kraguljac et al, 2017). Glutamine, the major metabolite of glutamate, is synthesized in astrocytes 

following the uptake of glutamate from the synaptic cleft (Shen et al, 1999). In the astrocyte, 

glutamine is subsequently converted back to glutamate via the enzyme glutaminase (Kanamori et 

al, 2002; Mason et al, 1995; Rothman et al, 2003). It has been shown that approximately 80% of 

glutamine takes part in the glutamate cycle (Magistretti and Pellerin, 1999; Rothman et al, 1999) 

and therefore, glutamine levels are often used as a proxy measure of glutamate activity. 

Glutamate has several important functions including being a precursor for glutathione (GSH), 

and GABA, and functions as a building block for protein synthesis (Brosnan and Brosnan, 2013; 

Wu et al, 2004; Duarte and Gruetter, 2013; Matthews and Diamond, 2003). Given the fact that 

glutamatergic excess leads to symptoms characteristic of schizophrenia, it is reasonable to 

speculate that perturbations in this system may be implicated in the underlying pathophysiology 

of psychosis.  

While glutamatergic abnormalities theoretically may be involved in the neurobiology of 

psychosis, findings from different studies have not always been consistent and abnormalities in 

the glutamatergic system may vary overtime as a function of the stage of illness. In FEP, 

elevated glutamatergic metabolites have been demonstrated in the prefrontal cortex (Bartha et al, 

1997), and ACC (anterior cingulate cortex) (Theberge et al, 2002; Theberge et al, 2007) and have 

been associated with cognitive impairments (Dempster et al, 2015). However, others have not 

found significant differences in glutamatergic metabolites between FEP patients who had 

received minimal treatment and controls (Bustillo et al, 2010). In a comprehensive literature 

review, it was concluded that in general, glutamatergic metabolites are elevated in FEP (Poels et 
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al, 2014), and glutamatergic excess has been associated with progressive loss of brain volume 

(Hulshoff Pol and Kahn, 2008). Some have proposed that this loss of brain volume provides 

evidence for an excitotoxic effect of glutamatergic excess (Plitman et al, 2016), however, the 

pathophysiology underlying volumetric loss is difficult to interpret given that the majority of 

patients included in studies are taking antipsychotic medications, which may contribute to 

longitudinal grey matter decline. Furthermore, medication status may influence glutamatergic 

metabolite measurements, even at this early stage. Kegeles et al (2012) found that while 

unmedicated patients with FEP had higher Glx (a composite measurement of glutamate and 

glutamine) levels, there was no difference between medicated FEP patients and healthy controls. 

Glutamatergic abnormalities appear to predate the onset of an acute FEP. Consistent with 

findings in patients with FEP, glutamate and glutamine may be elevated in those at high risk of 

developing schizophrenia (de la Fuente-Sandoval et al, 2011; Stone et al, 2009; Tandon et al, 

2013; Tibbo et al, 2004), although others have found no difference in Glx levels (Purdan et al, 

2008; Keshevan et al, 2009; Yoo et al, 2009), and glutamate levels in the ACC (Fusar Poli et al, 

2011; Valli et al, 2011) in patients at clinical high risk for psychosis.  

While overall, there appears to be a state of glutamatergic excess in FEP (Poels et al, 

2014), findings in chronic schizophrenia have not been as consistent. However, most studies 

have found glutamatergic metabolites to be unchanged or lower following the FEP (Kraguljac et 

al, 2012; Lukenhoff et al, 2010; Reid et al, 2010; Rowland et al, 2013; Théberge et al, 2003; 

Wood et al, 2007; Ohrmann et al, 2000; Tayoshi et al, 2009). Specifically in the ACC, several 

studies have not found any difference in glutamate between patients with chronic schizophrenia 

and healthy controls in the dorsal ACC (Wood et al, 2007), bilateral dorsal ACC (Reid et al, 

2010); Kraguljac et al, 2012) and bilateral anterior cingulate (Ongur et al, 2010). In one study, 
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however, glutamine and Gln/Glu ratio were found to be elevated in the dorsal ACC in patients 

relative to controls, and glutamine levels were correlated with the severity of psychotic 

symptoms (Bustillo et al, 2014). Overall, it appears that the state of glutamatergic metabolite 

excess seen in many studies of patients with FEP transitions to a state of lower glutamate levels 

as patients progress to a more chronic phase of illness. The reason for the differential findings 

depending on phase of illness are not clear but may be related to medication exposure overtime, 

or may represent an intrinsic neurobiological progression inherent to the illness itself.  

Variable findings from studies analyzing glutamatergic metabolites in schizophrenia may 

be attributable to several issues including medication usage, age, and the use of different 

spectroscopic measurement techniques. There is some evidence that medication status may 

influence glutamate levels, and there are very few studies that have been conducted on 

completely antipsychotic naïve individuals with schizophrenia. Chronic antipsychotic usage has 

been shown to decrease glutamate in the frontal cortex (Goto et al, 2012), associative striatum 

(de la Fuente-Sandoval et al, 2013), and other brain regions (Aoyama et al, 2011; Szulc et al, 

2011; de la Fuente-Sandavol et al, 2013) and in the ACC after 6 months (Choe et al, 1996), and 1 

month (Egerton et al, 2017) of treatment. However, other studies have found no association 

between antipsychotic treatment and ACC glutamate levels in patients with FEP after 1 (Szulc et 

al, 2005), 30 (Theberge et al, 2007) and 80 (Ayoma et al, 2011) months of treatment. For the 

most part, the effect of specific antipsychotic medications on glutamate status has not been 

explored.  

In addition to medication status, ageing may affect glutamatergic metabolite 

measurements. Using 3T MRS, Witjenberg et al. (2017) found that ACC glutamate was lower in 

patients with schizophrenia relative to healthy controls, and that there was a decline with age in 
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both groups, while the inverse was true of glutamine. Glutamine levels increased in general with 

age, and were significantly higher in patients with schizophrenia relative to healthy controls. In a 

meta analysis, glutamate was found to be lower in patients with schizophrenia, while glutamine 

was elevated in the ACC, although both metabolites declined with age (Marsman et al, 2013). 

Declining glutamate levels with age in patients with schizophrenia may be related to duration of 

illness, exposure to medication, or both.  

Finally, disparaging findings between MRS studies of glutamate in schizophrenia may 

not only be related to the effects of antipsychotic usage and ageing, but may be influenced by the 

technique used to quantify glutamatergic metabolites. The majority of studies to date have used 

1.5-4T MRI scanners, and definitively separating glutamate and glutamine at lower field 

strengths is challenging. More recently, a few studies have taken advantage of the increased 

precision and ability to definitively separate glutamate and glutamine signals associated with the 

use of a higher field, 7T MRI (Mekle et al, 2009; Pradhan et al, 2015; Tkac et al, 2009).  

To date, only a handful of studies have utilized ultra high-field 7 tesla MRS to investigate 

patients with schizophrenia, with the majority of these being in patients with chronic 

schizophrenia. Using 7T MRS, patients with chronic schizophrenia have not been shown to have 

significantly different glutamate levels relative to healthy controls in the ACC (Brandt et al, 

2016) and medial prefrontal cortex (Marsman et al, 2014), although Rowland et al (2016) found 

higher Gln/Glu ratios in patients relative the healthy controls in the ACC. Findings may vary 

however, depending on specific characteristics of the sample. Brandt et al (2016) found that 

ACC glutamate decreased with age in patients with chronic schizophrenia, while levels remained 

more constant in healthy controls. Kumar et al (2018) found decreased glutamate levels in 

patients with stable schizophrenia relative to healthy controls, however, much of this effect was 
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related to a portion of the sample with residual schizophrenia. Takkhar et al (2017) found 

decreased occipital cortex glutamine in patients with chronic schizophrenia relative to their 

unaffected siblings, with both groups having decreased levels relative to controls. No differences 

in glutamatergic metabolites were observed in the basal ganglia. In a 7T MRS study of patients 

within the first two years following an initial episode of psychosis, patients had significantly 

lower levels of glutamate relative to controls (Reid et al, 2018). Although these patients were 

considered “first episode”, the majority of patients had already been receiving antipsychotic 

medications for close to one year at the time of scanning.  To date, no studies have been 

published examining glutamatergic metabolites in first-episode, antipsychotic-naïve patients 

using a 7T MRI.  

Another potential explanation for the apparent inconsistencies in studies assessing 

glutamatergic metabolites in schizophrenia, may be related to the fact that various subgroups of 

patients with schizophrenia may have distinct glutamatergic abnormalities, while others may not. 

Therefore, depending on the characteristics of the overall sample, group differences from healthy 

controls may or may not be evident. Specifically, TRS may be associated with glutamatergic 

abnormalities that are distinct from the overall population with schizophrenia. Several studies 

have found higher levels of glutamate in the ACC to be associated with lack of treatment 

response, in both samples of chronically unwell, and in FEP, patients. In patients with chronic 

schizophrenia, non-responders to antipsychotic medications have been shown to have 

significantly higher glutamate to creatine levels (Mouchlianitis et al, 2016), and Glx/Cr levels 

(Szulc et al., 2013) relative to responders in the ACC. Demjaha et al (2014) found that patients 

with resistant schizophrenia had higher ACC glutamate than healthy controls, and that glutamate 

levels in healthy controls were not significantly different from patients with good treatment 
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response. Interestingly, in the same group of patients, they were also able to demonstrate that 

those with TRS had lower striatal dopamine synthesis. This represents the only study examining 

both dopaminergic and glutamatergic neurotransmission in the same cohort of patients, and 

suggests that in TRS, glutamatergic abnormalities may be prominent, while dopaminergic excess 

may not be. Only a couple of studies have investigated glutamate and response to treatment in 

FEP samples. In patients with FEP who were treated with antipsychotic medications for at least 6 

months, higher levels of glutamate in the ACC were found in non-remitters, relative to those 

achieving remission (Egerton et al, 2012). However, even at this early stage of illness, 

medication effects cannot be ruled out. Only one study has examined the relationship between 

ACC glutamate prior to antipsychotic usage and treatment response prospectively. Using a 3T 

MRI, Egerton et al (2018) found that higher levels of Glu/Cr in the ACC were associated with 

non-remission at one month. However, no studies have investigated this association using a 

higher resolution 7T MRI. Furthermore, this study did not describe any measures for assessing 

medication compliance which may have contributed to lack of remission in some patients. 

Further studies are warranted to evaluate the association between ACC glutamate and treatment 

response prospectively, ideally with efforts to control for medication adherence which may 

greatly impact response and remission rates.  

3.6 Glutathione Abnormalities in Schizophrenia 

Along with abnormalities in the glutamatergic system, oxidative stress (Wood et al, 2009) 

and exaggerated neural free radical production (Mahadik and Mukherjee, 1996; Reddy and Yao, 

1996) have been hypothesized to be intricately involved in the pathophysiology of psychotic 

disorders. Specifically, glutathione (GSH), the brain’s primary intracellular antioxidant, has been 

speculated to play a role in maintaining neural health by protecting against damage from reactive 
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oxygen species (Cohen, 1983; Meister and Anderson, 1983), and is thought to be implicated in 

neuropsychiatric disorders, including schizophrenia (Mahadik and Mukherjee, 1996). There is 

some evidence that schizophrenia may be associated with an impaired ability to synthesize GSH 

as a neuroprotective defense against oxidative stress (Gysin et al, 2007). Animal studies have 

demonstrated that under normal conditions, GSH acts as an agonist at NMDA receptors (Kohr et 

al, 1994; Leslie et al, 1992). Under conditions of oxidative stress, GSH levels may become 

depleted which may lead to NMDA hypofunction (Steullet et al, 2007, Kantrowitz and Javitt, 

2010; Stone et al, 2009), and reduced GSH synthesis may in turn lead to increased glutamate 

concentrations (Koga et al, 2011). Glutamatergic excess has been shown to activate free radical 

pathways (Bains and Shaw, 1997), potentially leading to neural damage due to oxidative stress 

(Volterra et al, 1994). Without sufficient GSH activity to combat oxidative stress and free radical 

formation, this may result in a cycle of ongoing toxicity. While the specific role of GSH in the 

pathophysiology of schizophrenia has not been fully delineated, there is sufficient evidence to 

suggest that GSH is important for neutralizing oxidative stress that may be perpetuated by 

glutamatergic dysfunction.  

There have been a few studies measuring GSH levels in patients with schizophrenia, 

although most have been completed in samples of chronically unwell patients. In patients with 

schizophrenia who were currently antipsychotic-free (the sample consisted of patients in varying 

phases of illness), GSH was found to be reduced in the cerebrospinal fluid (CSF) and medial 

prefrontal cortex relative to healthy controls (Do et al, 2000), and post-mortem in the prefrontal 

cortex (Gawryluk et al, 2011). However, other studies have found no significant differences in 

GSH levels in patients relative to controls in the posterior medial frontal cortex (Monin et al, 

2015), the mPFC (Matsuzawa et al, 2008; Xin et al, 2016), and the ACC (Terpstra et al, 2005; 
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Brandt et al. 2016), although low GSH levels have been associated with the severity of negative 

symptoms (Matsuzawa et al, 2008).  

In FEP, elevated GSH has been demonstrated in the medial temporal lobe (Wood et al, 

2009), and decreased GSH levels have been associated with cognitive impairments (Martinez-

Cengotitabengoa et al, 2012) and grey matter volumetric deficits longitudinally (Fraguas et al, 

2012), and at initial presentation (Langbein et al, 2017). However, other studies have found 

decreased GSH in the brain (Mico et al, 2011) and in erythrocytes and plasma in FEP patients 

(Pavlovic et al, 2002; Altunas et al, 2000; Raffa et al, 2011). In one study comparing drug-naïve 

patients with FEP to healthy controls, plasma GSH reductase activity, an enzyme essential for 

catalyzing the reaction converting oxidized GSH to reduced GSH, was lower in patients, and 

inversely correlated with negative symptoms (Langbein et al, 2017). Overall, the findings are 

mixed regarding GSH perturbations in schizophrenia and may depend on factors specific to the 

population being studied such as the severity of illness, the duration of untreated illness, and the 

overall burden of negative symptoms. Further studies are warranted to elucidate the role of GSH 

in schizophrenia, and determine whether specific subgroups may be characterized by 

abnormalities in GSH.  

As described above, glutamate and GSH interact reciprocally with eachother, although, 

only a few studies have investigated glutamate and GSH in the same group of patients. In one 

study using 7T MRS, glutamate and GSH in the ACC were significantly positively correlated in 

a sample of patients with schizophrenia, and both were reduced relative to healthy controls 

(Kumar et al, 2018). The known close association of glutamate and GSH levels in vivo supports 

the notion that these two systems interact interchangeably. As may be the case with glutamate, 

differential GSH findings in schizophrenia may relate to neurobiological variations inherent in 
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specific subgroups of patients; certain individuals may be adept at mounting a GSH response in 

the face of early oxidative stress, whereas others may not. In addition, the ability to synthesize 

GSH overtime may diminish under conditions of chronic, longitudinal oxidative stress. Given the 

evidence that glutamatergic dysfunction may be implicated in treatment resistance, abnormalities 

in mounting a GSH response may be expected in patients with TRS. However, to date, no studies 

have specifically examined the role of GSH in TRS.  

An improved understanding of the neurobiological correlates of TRS is grossly needed in 

order to enhance our ability to accurately characterize TRS at earlier stages, and to target new 

treatments for this subgroup of patients. The identification of early biomarkers suggestive of 

treatment resistance may support selective treatments for individuals at risk for a resistant course. 

For example, preliminary results have suggested that N-acetyl cysteine (NAC) treatment, an 

antioxidant that is thought to be neuroprotective (Dean et al, 2011), may increase GSH in the 

brain (Dringen and Hirrlingen, 2003), and is thought to play a role in glutamatergic function 

(Baker et al, 2002). Unfortunately, GSH itself is not bioavailable, and therefore, cannot be 

administered directly. There is some evidence that NAC may be therapeutic in patients with 

schizophrenia and in early psychosis patients, it has been shown to increase GSH brain levels 

(Conus et al, 2018). Furthermore, NAC has been shown to be efficacious in treating total (Zeng 

et al, 2018), negative (Berk et al, 2008; Farokhnia et al, 2014; Breier et al, 2018) as well as 

cognitive symptoms (Conus et al, 2018; Rapado-Castro et al, 2017), and has even demonstrated 

some benefit in TRS (Bulut et al, 2009). While promising, it remains unclear which patients may 

benefit from NAC treatment. One randomized-placebo controlled study found that those with a 

longer duration of untreated psychosis benefited most from NAC adjuvant therapy (Rapado-

Castro et al, 2015). It is possible that early in the course of illness, most individuals are able to 
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mount a response to cellular antioxidant stress, by increasing GSH in some capacity, but that 

overtime, their capacity to defend against reactive oxygen species decreases. In addition, there 

may be a subgroup of patients with FEP whom for various reasons, are not able to mount a 

neuroprotective response by increasing GSH. The establishment of an association between GSH 

and treatment response may support the use of NAC treatment (and potentially other anti-oxidant 

therapies), particularly in patients demonstrating abnormalities in GSH at their first episode of 

psychosis.  

Chapter 4: Anterior Cingulate Cortex Glutamate and 
Glutathione at First-Episode Psychosis and Subsequent 
Antipsychotic Treatment Response 
 
4.1 Introduction 

Early treatment response has been identified as one of the most robust predictors of 

longer-term clinical outcomes in schizophrenia (Agid et al, 2003; Emsley et al, 2007; 

Schennach-Wolff et al, 2010). In particular, the lack of an early response to antipsychotic 

treatment appears to be strongly indicative of subsequent non-response (Stauffer et al, 2011), 

failure to achieve full remission (Emsley et al, 2006), as well as higher rates of treatment 

discontinuation (Kinon et al, 2008). Approximately one third of patients with schizophrenia are 

considered to be treatment resistant (Meltzer, 1997; Lindenmayer, 2000), with the majority of 

these failing to respond appreciably to dopamine-blocking antipsychotic medications from their 

first episode of psychosis (Agid et al, 2011; Lally et al, 2016; Demjaha et al, 2017). The majority 

(84%) of patients who eventually develop treatment-resistant schizophrenia are poor responders 

to first-line antipsychotics even during the first episode (Demjaha et al, 2017). Nevertheless, the 
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neurochemical mechanism of early response is poorly understood, precluding efforts to prevent 

or reduce the rates of treatment failure and persistent disability.  

  

Individuals who respond poorly to dopamine blocking medications may be characterized 

by alternative neurochemical profiles relative to patients who demonstrate an adequate response. 

The first episode of non-affective psychosis (FEP) is characterized by a relative state of 

glutamatergic excess (Kegeles et al, 2012; Poels et al, 2014; Merritt et al 2016; Marsman et al, 

2013). Elevated anterior cingulate cortex (ACC) glutamate has been associated with lack of 

remission in certain samples of chronic (Mouchlianitis et al, 2016; Szulc et al., 2013; Demjaha et 

al, 2014) or first-episode schizophrenia (Egerton et al, 2012; 2018 [UK sample]), but this has not 

been a consistent observation. For example, in a sample of patients with established 

schizophrenia Iwata et al (2018) reported no difference in dorsal ACC glutamate levels between 

treatment-responsive and resistant groups.  Similarly, the samples in 2 out of 3 sites in Egerton et 

al (2018) study showed no glutamate excess in patients with FEP who do not achieve remission 

by 1 month. Nevertheless, the relative glutamatergic excess appears to be specific to early stages 

of illness (Marsman et al, 2013), and relates to more severe symptoms at presentation (Egerton 

2018), as well as subsequent longitudinal grey matter decline (Aoyoma et al, 2011), cognitive 

(Dempster et al, 2015) and functional (Egerton et al, 2012; 2018) impairments in schizophrenia. 

 

Glutathione (GSH), the brain’s most prominent intracellular antioxidant has been 

suspected to play a key protective role in free-radical-mediated damage to neurons (Mahadik and 

Mukherjee, 1996), giving rise to the redox dysregulation hypothesis of schizophrenia (Do et al, 

2009). MRS studies have found a small but significant GSH deficit in the ACC in patients with 
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schizophrenia (Gawryluk et al, 2011; Wang et al., 2019), indicating the presence of subgroups of 

patients with different redox profile (Das et al, 2018). A recent observation indicates that the 

most prominent reduction in GSH seems to occur particularly in patients with persistent residual 

symptoms, indicating that low levels of GSH may be associated with poor response to 

antipsychotics (Kumar et al 2018). Furthermore, N-acetyl-cysteine (NAC), precursor of GSH, 

appears to increase the rate of symptomatic response when used as an adjunct to antipsychotics 

in early stages of psychosis (Klauser et al, 2018). 

Glutamate is a precursor of GSH (Persson et al, 2006) while GSH acts as a neuronal 

reservoir for glutamate synthesis (Sedlak et al, 2019). As a result, when neuro-glial metabolic 

integrity is intact, glutamate and glutathione levels remain tightly linked in the brain. 

Glutamatergic excess can result in neurotoxic oxidative stress (Volterra et al, 1994), while a 

concomitant elevation of GSH may offer a neuroprotective ‘gate-keeping’ effect (Frade et al, 

2008), thus a strong covariance between the two may be a marker of a healthy state. 

Nevertheless, repeated or prolonged exposure to excess glutamate can deplete GSH levels (Shih 

et al, 2006), resulting in a state of reduced GSH-glutamate covariance. Furthermore, the GSH-

glutamate homeostasis can also be disrupted in patients with schizophrenia due to deficiencies in 

GSH synthesis (Fournier et al, 2017), thus leading to a reduced GSH-glutamate covariance in 

patients with FEP compared to healthy controls.  

4.2 Purpose of Study  

In this study, we use ultra-high field 7T MRS for the first time to test the relative 

contribution of anterior cingulate GSH deficiency and glutamatergic excess in predicting the 

early treatment response in FEP. Given the gatekeeper role of GSH in tackling oxidative stress 

that results from various converging processes (Steullet et al, 2016), we expected GSH to be a 
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more critical determinant of early treatment response in FEP. We hypothesized that patients with 

FEP with higher GSH levels will be able to mount a swift response to increased oxidative stress, 

and thus show a rapid symptom reduction upon starting antipsychotic treatment (hypothesis 1). 

As not all patients with FEP will be able to increase GSH in accordance with glutamate levels, 

we expected a reduction in the strength of correlation between the GSH and glutamate levels in 

patients compared to healthy controls (hypothesis 2). Furthermore, in light of the excitotoxic 

theory of acute schizophrenia (Plitman et al, 2016), we expected both reduced GSH and 

increased glutamate levels to predict impaired Social and Occupational Functioning at the onset 

of illness (hypothesis 3). 

4.3 Methods 

4.3.1 Participants 

 The sample consisted of 37 consecutive new referrals to the PEPP (Prevention 

and Early Intervention for Psychosis Program) at London Health Sciences Centre between April, 

2017 and January, 2018. The PEPP program provides assessment and treatment to individuals 

16-39 experiencing FEP using an assertive case-management model. All potential participants 

provided written, informed consent prior to participation as per the approval provided by the 

Western University Health Sciences Research Ethics Board, London, Ontario. Inclusion criteria 

for study participation were as follows: individuals experiencing a first episode of psychosis, and 

having received antipsychotic treatment for less than 14 days in their lifetime. Both inpatients 

and outpatients were eligible to participate, so long as they could provide informed consent, and 

could safely participate in the MRI protocol. A consensus diagnosis was established using the 

best estimate procedure (as described in Leckman et al, 1982) for all participants after 

approximately 6 months by 3 psychiatrists (KD/LP and the primary treatment provider) based on 
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the Structured Clinical Interview for DSM-5 (APA, 2013; First et al, 2016). Based on the 6-

month consensus diagnosis, participants meeting criteria for bipolar disorder with psychotic 

features, major depressive disorder with psychotic features, or suspected drug-induced psychoses 

were excluded from further analyses. Study participants received care-as-usual through their 

psychiatrist and other allied health members within the PEPP program. Antipsychotic 

medications were chosen by the treating psychiatrist and the patient and/or their substitute 

decision maker in a collaborative manner. In accordance with current national guidelines for the 

treatment of FEP, individuals were offered the option of treatment with a long acting injectable 

at the earliest opportunity (Remington et al, 2017).  

Healthy control subjects were recruited through the use of posters advertising the 

opportunity to participate in a neuroimaging study involving tracking outcomes following FEP. 

Healthy control subjects had no personal history of mental illness, and no family history of 

psychotic disorders. Group matching with the FEP cohort for age, sex, and parental education 

was maintained. Exclusion criteria for both the FEP and healthy control groups involved meeting 

criteria for a substance use disorder in the past year according to DSM-5 criteria (DSM-5; APA, 

2013), having a history of a major head injury (leading to a significant period of unconsciousness 

or seizures), having a significant, uncontrolled medical illness, or having any contraindications to 

undergoing MRI.  

  

 4.3.2 Medication Adherence 

Individuals were treated with long-acting injectable (LAI) medications whenever 

clinically appropriate. Patients taking LAI’s received their injection from a nurse at the PEPP 

clinic and therefore, it was known if an individual had missed, or was late for their scheduled 
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dose. Assessments of medication adherence were also recorded at each clinical encounter, taking 

into account information provided by the patient, their family, and/or case manager using a 5-

point rating scale (ranging from 0 for individuals not taking medication to 4 for those being 

adherent 75–100% of the time). This measure has been found to correlate with pill counts 

(Cassidy et al, 2010). We only included subjects who had >75% recorded adherence, and thus 

patients who dropped out due to medication intolerance were not included in this study. 

4.3.3 Measures of Treatment Response 

The proportion of patients with FEP in remission at any given time appears to be 

relatively consistent longitudinally, but it is often not the same individuals who remain in 

remission at each time point (Norman et al, 2018). Additionally, while remission reflects a 

specific clinical status, it is not necessarily informative of direct treatment effects. The use of 

absolute criteria in defining remission is highly dependent on initial illness severity, with 

individuals with a higher initial symptom burden being much less likely to achieve remission 

(Harvey and Bellack, 2009). As a result, we studied the continuous measure of time to response 

as the primary clinical outcome of interest, and used the cross-sectional remission criterion 

(Andreasen et al, 2005) as a secondary measure of interest, as well as the percent symptom 

reduction at 1 month.  

 

The 8 items of the Positive and Negative Syndrome Scale capturing the core symptoms 

critical in defining remission (PANSS-8; Andreasen et al, 2005) was administered at the 

baseline, 2 weeks, 4 weeks, and at every clinical encounter thereafter on a 2-4 weekly basis. The 

PANSS-8 has acceptable internal consistency and comparable sensitivity to early improvement 

in psychotic symptoms (Lin et al, 2018) relative to the PANSS-30 (Kay et al, 1987). The time to 
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achieve a 50% PANSS-8 improvement from baseline (as per Leucht et al, 2007), sustained for at 

least 2 consecutive visits 2 weeks apart, was used as a continuous measure of treatment response. 

A 50% symptom improvement from baseline roughly equates to a Clinical Global Impression- 

Schizophrenia (CGI-S; Haro et al, 2003) scale score of “much improved” thus, is clinically 

meaningful (Correll et al, 2011). Relative PANSS8 improvement was calculated as 

(PANSS8baseline - PANSS8endpoint)/(PANSS8baseline - 8) in order to adjust for the minimal possible 

PANSS8 score is 8 (as per Obermeier et al, 2010). All patients were observed clinically for a 

period of at least 6 months, and no patients failed to reach this milestone within this time frame.  

In addition to continuous treatment response measurements, we also assessed binary 

remission status after the first month of treatment (remission or not in remission). Symptomatic 

remission was allocated based on remission criteria proposed by Andreasen et al (2005) which 

categorize remission as achieving scores of mild (3) or less on all PANSS8 items, without any 

stipulation of a duration criteria, in line with Egerton et al (2012, 2018).  Finally, social 

functioning was assessed at baseline using the Social and Occupational Functioning Assessment 

Scale (SOFAS, Goldman et al, 1992).  

4.3.4 
1
H-MRS   

Metabolite concentrations (glutamate and GSH) were estimated using single-voxel 1H-

MRS data acquired with a Siemens/Agilent MAGNETOM 7.0T head-only MRI (Siemens, 

Erlangen, Germany; Agilent, Walnut Creek, California, USA) using an 8-channel transmit/32-

channel receive head coil at the Centre for Functional and Metabolic Mapping of Western 

University in London, Ontario. A 2.0 x 2.0 x 2.0 cm (8cm3) 1H-MRS voxel was placed in the 

bilateral dorsal ACC (see figure 1) using a two-dimensional anatomical imaging sequence in the 

sagittal direction (37 slices, TR=8000ms, TE=70ms, flip-angle (α)=120°, thickness = 3.5mm, 
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field of view = 240×191mm). The posterior end of the voxel was set to coincide with the 

precentral gyrus and the caudal face of the voxel coincided with the most caudal location not part 

of the corpus callosum. The angulation of the voxel was determined to be tangential to the 

corpus callosum. A total of 32 channel-combined, water-suppressed spectra were acquired using 

a semi-LASER 1H-MRS pulse sequence (TR=7500ms, TE=100ms) during each scan session, 

while participants were at rest and asked to stare at a white cross on a black screen for 4 minutes. 

Water suppression was achieved using the VAPOR preparation sequence (Tkáć et al, 2005), and 

water-unsuppressed spectra were acquired for spectral quantification and line shape 

deconvolution reference. The 32 spectra were corrected for frequency and phase drifts as 

described in Near et al, (2015) prior to averaging and lineshape deconvolution using QUECC 

(Bartha et al, 2000). Residual water peaks were removed from the averaged spectrum using 

HSVD57 (Bartha et al, 1999). Metabolite quantification was acquired using Barstool (Wong, 

Schranz and Bartha, 2018). Water-subtracted spectra were modelled using the fitMAN (Bartha et 

al, 1999), a-prior-knowledge based minimization algorithm, and a quantification template 

including 17 metabolite spectral signatures derived from simulation (Wong, Schranz and Bartha, 

2018). Our fitting template included 17 metabolites (alanine, aspartate, choline, creatine, GABA, 

glucose, glutamate, glutamine, glutathione, glycine, lactate, myo-inositol, N-acetyl aspartate, N-

acetyl aspartyl glutamate, phosphorylethanolamine, scyllo-inositol, and taurine). Importantly, at 

this long echo time, no macromolecules were included in the spectra as their signal had decayed 

below noise level. Metabolite concentrations were corrected for gray and white matter volumes 

using the anatomical MRI images and previously described methods (Stanley et al, 1995). All 

spectra and spectral fit were inspected visually for quality and Cramer-Rao lower bounds 

(CRLB) were assessed for each metabolite. 
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Figure 4-1. Voxel in Dorsal ACC. 

 

Glutamate, glutamine, and GSH were measured in the ACC due to considerable evidence 

implicating this brain area in the pathophysiology of schizophrenia (Roberts et al, 2015; Fornito 

et al, 2009; Lahti et al, 2006; Wood et al, 2007). Specifically, the ACC plays a critical role in 

attention, emotion, and cognition (Benes, 2009; Reid et al, 2010), is thought to be important for 

mediating executive functioning (Barch et al, 2001; Braver et al, 2001) and has been shown to be 

impaired during cognitive processing tasks in schizophrenia (Quintana et al, 2004; Dehaene et al, 

2003; Carter et al, 2001; Laurens et al, 2003; Heckers et al, 2004; Kerns et al, 2005; Stern et al, 

2009; Minzberg et al, 2009; Salgada-Pineda et al, 2004; Snitz et al, 2005; Laurens et al, 2005). 

Furthermore, previous studies have demonstrated elevated glutamatergic metabolites in the ACC 
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in patients with FEP (Theberge et al, 2002, 2007), and elevated ACC glutamate has previously 

been associated with TRS (Mouchlianitis et al, 2016; Szulc et al., 2013; Demjaha et al, 2014) and 

with poor response in FEP (Egerton et al, 2012; Egerton et al, 2018).  

4.3.5 Statistical Analyses  

All statistical tests were performed using IBM SPSS Statistics version 24. Differences in 

demographic and baseline factors between patients and controls were calculated using t-tests for 

continuous variables, and chi-square analyses for dichotomous variables. A linear regression 

analysis was used to assess the association between metabolites (glutamate and GSH), and both 

time to response, and social functioning (Hypotheses 1 and 3). Using ANOVA, we then 

compared glutamate and GSH measures among patients achieving remission at one month, no 

remission at one month, and healthy controls. Finally, Pearson correlation coefficients were used 

to assess the association between glutamate and GSH in patients and healthy controls. 

Differences in the magnitude of these correlations were then evaluated using Fisher’s r-to-Z 

transformation (Hypothesis 2).  

4.4 Results  

4.4.1 Patient Characteristics  

37 patients completed baseline scanning. Of these, 27 met criteria for a schizophrenia 

spectrum disorders (SSD: schizophrenia, schizoaffective disorder, or schizophreniform disorder). 

Of the patients not included in the analysis, 3 met criteria for major depressive disorder with 

psychotic features, 4 for bipolar disorder with psychotic features, and 3 for unspecified psychotic 

disorders. Follow-up outcome data were not available for one female patient who was transferred 
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to a different hospital shortly after scanning. In one male patient, time to response was not 

available due to irregular follow-up however, remission status at one month was obtained. 

Therefore, the final sample consisted of 26 patients with SSD, with time to response measures 

available for 25 patients (see Table 4-1).  

9 patients (34.6%) were antipsychotic naïve at the time of scanning. Of those who had 

already started antipsychotic treatment, (17; 65.4%), the median days of treatment was 6 (range 

of 3-12 days). The mean total defined daily dose-days (DDD X days on medication) for 

antipsychotic use was 2.27 days. At one month, 11 (42.31%) patients met remission criteria, 

while 15 (57.69%) did not, and 12 (46.15%) were taking a long acting injectable medication.  

Table 4-1. Sample Demographic and Clinical Characteristics. 

 

Characteristic Patient Group 
(N=26) 

Healthy 
Controls 
(N=27) 

t or2 p-
value 

Gender (Male/Female) 21/5 17/10 2.07 0.15 
Diagnosis (S/SA/SF) 21/2/3    
Marital Status (M/S) 3/23 1/26 1.17 0.28 
Inpatient (Y/N) 13/13    
Family Hx (Y/N/DK) 10/12/4    
AP Dur (M/SD; days) 6.94/3.3    
Total DDD-days at scan (M/SD)                  2.27/2.7    
DUP (weeks) (M/SD)                           28.34/65.03    
Drug use past year (Y/N) 18/8 8/16 6.44 0.01* 
Age (M/SD) 24.04/5.4 21.48/3.57 -2.05 0.05* 
SOFAS (M/SD) 38.12/10.29 80.56/4.41 19.07 0.00* 
PANSS-8 Total (M/SD) 25.23/5.08    
Time to res (M/SD; weeks)           6.6/5.4    
On LAI 1 month (Y/N) 12/14    
AP 1 month 
(O/A/P/B/M/S/C/NM)                       

 
7/2/3/1/4/7/1/1   

   

Glutamate (M/SD) 8.51/2.05 8.35/2.30 -2.66   0.79 
Glutamine (M/SD) 1.25/0.56 1.27/0.50 0.14   0.89 
Glutathione (M/SD) 1.74/0.39 1.68/0.52 -0.41   0.68 

P-values for differences between groups were calculated using chi-square analyses for categorical variables, and 

independent t-tests for continuous variables. S= schizophrenia; SA= schizoaffective disorder; SF= schizophreniform 

disorder; Mar= married; S= single; Hx= history; Y= yes; N= no; DK= don’t know; AP= antipsychotic; Dur=duration; 
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DDD= defined daily dose; M= mean; SD= standard deviation; DUP= duration untreated psychosis; res= response. 

O= olanzapine; A= Aripiprazole; P= paliperidone; B= brexiprazole; M= Aripiprazole LAI; S= paliperidone LAI; C= 

risperidone LAI; NM= not taking meds. 

4.4.2 
1

H-MRS Data Quality 

The mean glutamate CRLB percentages did not differ between healthy controls and 

patients (mean(SD) in % = 3.4 (1.0) in controls; 3.7(1.2) in FEP; t=1.16, p=0.25).  Mean GSH 

CRLBs were (mean(SD) in % = 10.5(3.9) in controls; 11.5(4.9) in FEP; t=0.81, p=0.42). The 

percent coefficient of variation (%CV), calculated as the standard deviation divided by the mean 

of a sample, was 20.4% and 24.1% for healthy control and FEP glutamate measurements, 

respectively and 24.8% and 22.6% for healthy control and FEP GSH measurements, respectively 

(control vs FEP - p>0.6 for both metabolites). The average line width of the water-unsuppressed 

spectra did not differ between the 2 groups (mean(SD) = 7.6(1.2) in controls; 7.5(1.4) in FEP; 

t=0.4,p=0.7). The NAA peak-area signal-to-noise ratio was also not different (mean(SD) = 109.9 

(18.4) in controls; 102.2 (24.5) in FEP; t=1.29,p=0.20). 

Figure 4-2. Example of Spectral Fit. 

 

 Chemical Shift (ppm)
4.500 4.000 3.500 3.000 2.500 2.000 1.500 1.000
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The figure above is an example of a spectral fit using the fitMAN software. The yellow line represents the 
raw data, the red line represents the fitted data, and the teal line represents the residual. 

 

Figure 4-3. Metabolite Breakdown from Spectral Fit. 

 

 

The figure above depicts metabolite components of interest used in the Barstool software. The first line represents 
the residual between the raw and the fitted data. The lines marked as Data/Fit represent the raw (grey line) and 
the fitted data (superimposed black line). The grey line marked ‘Others’ represents the sum of 14 metabolites used 
in the fitting model; the next four grey lines represent the separated glutathione, glutamate, glutamine and GABA 
contributions toward the total fit data. 
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4.4.3 Glutamate and Treatment Outcomes 

We first examined the association between glutamate and measures of treatment response 

(time to improve from baseline by 50% on the PANSS-8, and percent symptom reduction at one 

month) using correlational analyses. Scatterplots of the data were obtained and as there was 

evidence of non-normality of distribution, Spearman rank order correlations were used. While 

ACC glutamate was not significantly associated with time (in weeks) to improve by 50%, rho= -

.366, p= .072 (see figure 4-4), higher glutamate was significantly associated with a greater 

reduction in psychotic symptoms at one month relative to baseline; rho = .470, p= .027 (see 

figure 4-5).  

Figure 4-4. Baseline ACC Glutamate and Time to Response. 
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Figure 4-5. Baseline ACC Glutamate and Percent Symptom Reduction 1 Month.  

 

The association between ACC glutamate and remission status at one month was explored 

using binary logistic regression analyses and was not found to be significant (χ2= .236; p= .627; 

Nagelkerke R2= .012; B=-.096; SE= .198; Wald= .234; p= .628; Exp(B)= .909) (see figure 4-6).  

 

Figure 4-6. Baseline ACC Glutamate Levels in Remission Versus Not at 1 Month.  

 

4.4.4 Glutamine and Treatment Outcomes 
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 While glutamine was not found to be significantly associated with time to improve by 

50% (rho = -.356, p= .081) (see figure 4-7), higher glutamine at baseline was significantly 

associated with a greater percent symptom reduction at one month (rho= .553, p=.008) (see 

figure 4-8).  

Figure 4-7. Baseline ACC Glutamine and Time to Response.  

 

Figure 4-8. Baseline ACC Glutamine and Percent Symptom Reduction 1 Month.  
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Based on binary logistic regression analyses, glutamine was not significantly associated 

with remission status at one month (χ2= .499; p= .480; Nagelkerke R2= .026; B= -.517; SE= .738; 

Wald= .490; p=.484; Exp(B)= .587) (see figure 4-9).  

Figure 4-9. Baseline ACC Glutamine Levels in Remission Versus Not at 1 Month. 

 

4.4.5 Glutathione and Treatment Outcomes 

Higher GSH was associated with both time to improve symptomatically by 50% (rho= -

.535, p= .006) (see figure 4-10) and percent symptom reduction at one month (rho= .594; p= 

.004) (see figure 4-11).  
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Figure 4-10. Baseline ACC GSH and Time to Response.  

 

Figure 4-11. Baseline ACC GSH and Percent Symptom Reduction 1 Month.  

 

However, GSH was not significantly associated with remission status at one month using 

binary logistic regression analyses (χ2= 1.829; p= .176; Nagelkerke R2= .091; B= -1.463; SE= 

1.143; Wald= 1.638; p=.201; Exp(B)= .231) (see figure 4-12).  
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Figure 4-12. Baseline ACC GSH Levels in Remission Versus Not at 1 Month.  

 

4.4.6   Model Using Baseline Metabolite Levels to Predict Time to Response 

Multiple regression analysis was used to test if GSH and glutamate significantly 

predicted the time taken by patients with FEP to respond to antipsychotic treatment. The results 

of the regression indicated the two predictors explained 31% of the variance (R2 =.0.31, 

F(2,24)=4.86, p=0.018). Higher levels of GSH predicted a shorter time to response (β = -0.65, 

p=0.017) while glutamate was not a significant predictor (β = 0.15, p=0.563). A very low level of 

multicollinearity was present (VIF = 1.98 for both GSH and glutamate).  Results remained 

unchanged after controlling for age, sex, and daily dose of antipsychotics. 

 

4.4.7 Metabolites and Social Functioning 

Multiple regression analysis was used to test if GSH and glutamate significantly 

predicted the SOFAS scores in patients with FEP. The results of the regression indicated the two 

predictors explained 33% of the variance (R2 =.0.33, F(2,24)=5.33, p=0.013). Higher levels of 

glutamate predicted lower SOFAS scores (β = -0.70, p=0.008) (see figure 4-13) while GSH was 
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not a significant predictor (β = 0.22, p=0.376). A very low level of multicollinearity was present 

(VIF = 1.89 for both GSH and glutamate).  Results remained unchanged after controlling for age, 

sex, and daily dose of antipsychotics. 

Figure 4-13. Baseline ACC Glutamate and Social Functioning.  

 

Table 4-2. Summary of Correlational Findings. 

Metabolite 
Significant 
(Yes or No) 

Time to Response Percent Symptom 
Improvement 1 Month 

Remission at 1 month 

Glutamate No Yes No 

Glutamine No Yes No 
Glutathione Yes Yes No 

_____________________________________________________________________________

4.4.8 Metabolites in Healthy Controls versus Patients in Remission and Not  

One-way ANOVAs were conducted to evaluate the differences in metabolite levels 

among patients in remission or non-remission at one month and healthy control subjects. There 

were no significant difference between groups for glutamate (F(2,50)=.134, p=.875) or GSH 

(F(2,50)=.712, p=.496) (see Table 4-2). There were no significant differences between patients 
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(as a single group) and controls on measures of glutamate (t(51)= -.266, p= .791) or GSH (t(51)= 

-.412, p=.682.  

Table 4-3. Baseline Metabolite Levels in Patients in Remission, Not in Remission, and 

Healthy Controls. 

Metabolite 
   (M/SD) 

Total Group  
(N=53) 

Remission 
(N=11) 

No Remission 
(N=15) 

HC  
 (N=27) 

Glutamate 8.43/2.16 8.73/2.30 8.34/1.91 8.35/2.30 

Glutamine 1.26/0.50 1.34/0.55 1.18/0.57 1.27/0.50 
Glutathione 1.71/0.46 

 
1.85/0.48 1.65/0.30 1.68/0.52 

_____________________________________________________________________________

Remission status was calculated at one month. HC= healthy controls.  

 

4.4.9 Correlations Between Metabolite Levels  

The association between glutamate and GSH was tested using Pearson correlation 

coefficients. There was a positive association between levels of ACC glutamate and GSH in both 

healthy control subjects (r= .91, p< .001), and in patients with FEP (r= .69, p< .001). We then 

used Fisher’s r-to-z transformation to test the significance of difference between the correlations, 

and found that the correlation between glutamate and GSH was significantly weaker in patients 

compared to the healthy control subjects (Z= 2.26, p= .023) (see figure 4-14).  
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Figure 4-14. Correlation between Glutamate and Glutathione in Patients and Healthy 

Controls.  

 

4.5 Discussion 

4.5.1 Summary of Results  

Contrary to our original hypothesis, we did not find an association between elevated 

glutamate (or glutamine) at baseline, and poorer subsequent treatment response. In fact, higher 

glutamate and glutamine were both associated with greater relative percent symptom reduction at 

one month. When included in a linear regression model with GSH however, neither glutamate or 

glutamine were independently associated with time to response in weeks. In keeping with our 

original hypothesis, higher baseline ACC glutamate was associated with worse social functioning 

at baseline, while glutamine and GSH were not independent predictors in the overall model. 

GSH was found to be significantly associated with both time to improve by 50% and relative 

psychotic symptom reduction at 1 month. GSH remained a significant predictor of time to 

response when included in a model with glutamate and glutamine. None of the metabolites were 

associated with binary remission status at one month and there were no significant differences in 
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glutamate, glutamine, or GSH between healthy controls, patients in remission at one month, and 

patients not in remission. Finally, glutamate, glutamine, and GSH were all significantly 

positively correlated in the overall sample, including healthy controls, however, when compared 

to healthy controls, GSH levels in patients are dissociated from glutamate levels. 

This is the first study to use ultra high-field 7T MRS to investigate the role of glutamate 

and GSH in early response to antipsychotics. This is also the first 7T MRS study on minimally 

medicated FEP subjects. A previous 7T MRS study included FEP subjects with an average of 55 

weeks of antipsychotic exposure (Reid et al, 2018; Overbeek et al, 2018), compared to 6 days of 

median exposure in our sample. A more recent study (Wang et al, 2019) included FEP subjects 

with up to 2 years of illness duration, while we recruited all subjects during the acute first 

episode (mean SOFAS score of 38.1). We report 3 major findings (1) Patients with FEP with 

higher GSH levels in ACC show a rapid symptom reduction upon starting antipsychotic 

treatment (2) When compared to healthy controls, GSH levels in patients are dissociated from 

glutamate levels (3) Glutamate excess predicts the degree of Social and Occupational 

dysfunction seen at the time of presentation with FEP. Taken together, these results indicate that 

markers of cortical redox integrity influence the putative glutamatergic toxicity and early 

treatment response in psychosis.   

4.5.2 Glutamatergic Metabolites and Treatment Response  

Given the mounting lack of evidence for dopaminergic abnormalities in individuals with 

TRS (Yoshimura et al, 2003; Mazure et al, 1991; Pickar et al, 1984; Abi-Dargham et al, 2000; 

Demjaha, 2012), it has been speculated that alternative neurobiological mechanisms may be 

implicated in the approximately one third of individuals who do not respond to dopamine-
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blocking antipsychotic medications. To date, the most compelling support exists for a 

glutamatergic theory of treatment resistance. Several studies have found treatment resistant 

individuals to have higher ACC glutamate in both chronic schizophrenia (Mouchlianitis et al, 

2016; Szulc et al, 2013) and in FEP (Egerton et al, 2012; Egerton et al, 2018). Tying the 

dopaminergic and glutamatergic findings together, Demjaha et al (2014) investigated both 

striatal dopamine synthesis, and ACC glutamate, in the same population of individuals with 

schizophrenia and found those with TRS to be characterized by lower striatal dopamine 

synthesis, and higher ACC glutamate. Only a few studies have examined the association between 

ACC glutamate and treatment response in FEP samples. Egerton et al (2012) found that 

individuals with FEP who had not achieved remission after 6 months demonstrated higher levels 

of ACC glutamate than those achieving remission. While interesting, these results may have 

been influenced by medication effects as all individuals were assumed to have been taking 

prescribed antipsychotic medications. In the first study to examine the association of ACC 

glutamate and subsequent treatment response prospectively, Egerton et al (2018) found that 

baseline ACC glutamate was associated with lack of remission at one month. While providing 

valuable information regarding the relationship between treatment response and ACC glutamate, 

the exclusive use of binary measures of response may be problematic as response to treatment is 

more likely represented on a spectrum, with some individuals being very responsive to treatment, 

and others being very resistant, with the majority falling somewhere in between. Furthermore, 

the decision to assess remission status at one month is relatively arbitrary; an individual not in 

remission at one month may achieve remission at 6 weeks, for example. Finally, the use of 

criteria applying absolute thresholds in defining remission without regard for baseline severity 

presents the risk of biasing individuals with milder illness presentations as being more likely to 
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achieve remission, despite potentially improving very little from baseline. Ours was the first 

study to apply both continuous and binary measures in evaluating the association between ACC 

glutamate and treatment response.  

Given we did not find an association between high ACC glutamate and early treatment 

response (or lack thereof), our results differ from all studies published to date. Furthermore, we 

found that higher ACC glutamate and glutamine were both associated with greater symptom 

reduction at one month from baseline, although neither was significantly associated with time to 

improve by 50%, or with binary remission status at one month. Only one study has similarly 

investigated the association of ACC glutamate and subsequent treatment response prospectively 

(Egerton et al, 2018), and there are several differences between this study and ours that are worth 

noting, and may underlie differences reported. Our study was the first to use a 7T MRI to 

investigate the association of ACC glutamate and treatment response. The use of a scanner of 

higher field strength may have contributed to increased precision in separating glutamate from 

glutamine (Mekle et al, 2009; Pradhan et al, 2015; Tkáč et al, 2009). Second, while we used 

water as a reference for measuring metabolites, the Egerton et al (2018) study calculated a ratio 

of glutamate to creatine. Though frequently employed in spectroscopy research, the use of 

creatinine as a reference may be problematic if creatine values vary systematically in individuals 

with schizophrenia, or in individuals with treatment resistant disease. While some studies have 

found significant differences in absolute creatine levels in individuals with schizophrenia relative 

to healthy controls in the ACC (Ongur et al, 2009), others have not (Deiken et al, 1997; 

Prenkumar at al, 2010). No studies have investigated whether there are any differences in 

creatine between patients with good and poor antipsychotic response. The population of FEP 

patients in our studies may have also varied significantly. With a higher proportion of 
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outpatients, and no patients receiving compulsory treatment, it is reasonable to speculate that the 

Egerton et al (2018) study may have been analyzing a less severely unwell population of 

individuals with FEP.  

Elevated ACC glutamate levels may be characteristic of a more severe presentation of 

psychotic illness, and general decreased tendency to comply with treatment. All patients in the 

Egerton et al (2018) study were administered oral antipsychotic medications, and no methods of 

assessing treatment adherence are described. Given the generally high rates of medication non-

adherence in schizophrenia (one study of patients with FEP found that only 40% of individuals 

persisted with recommended treatment for 30 days or more (Tiihonen et al, 2011)), it is 

reasonable to speculate that many individuals in their sample may have not been compliant with 

oral medication as prescribed. Lack of treatment adherence may have varied systematically 

between remission subgroups, presenting a major confounding variable in interpreting results. In 

fact, failure to comply with medication treatment may underlie metabolite differences reported, 

wherein the non-remitted group may have higher rates of non-adherence. Indeed, individuals 

who do not achieve remission of positive and negative symptoms have been shown to be more 

likely to discontinue medication (Mustafa et al, 2017). Egerton et al (2018) found that glutamate 

levels in the ACC decreased after one month relative to baseline, suggesting that antipsychotic 

administration may lead to a dampening of glutamate levels, even over the short-term. 

Individuals who are not adherent with treatment, would not be expected to demonstrate this 

lowering of glutamate from baseline, and would also be more likely to continue to experience 

psychotic symptoms. Therefore, the apparent association between elevated glutamate and lack of 

remission reported in previous studies may be reflective of early medication adherence patterns 

(or lack thereof) and not indicative of a general association between high glutamate and poor 
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response. Due to our increased use of injectable antipsychotic medications, as well as frequent 

clinical assessments of treatment adherence, we can be more confident in ruling out the 

confounding effect of non-adherence.  

While we did not find evidence to support an association between elevated ACC 

glutamate and treatment response in FEP, our results do support a hyperglutamatergic state as 

being associated with a generally worse prognosis, particularly with regards to social 

functioning. In our study, higher ACC glutamate and glutamine were both associated with 

greater symptom reduction at one month. Individuals who are more unwell initially, would be 

expected to demonstrate greater improvements in absolute symptoms from baseline. 

Comparatively fewer studies have investigated associations of glutamatergic metabolites and 

social and/or functional outcomes. Egerton et al (2012) similarly found that in a sample of 

patients with FEP, higher levels of ACC glutamate were associated with worse social 

functioning. However, in another longitudinal study, while decline in glutamate and glutamine in 

the thalamus was associated with impaired function, no such relationship was found for the ACC 

(Aoyama et al, 2011). The association of elevated glutamate and poorer social functioning may 

be in keeping with a hyperglutamatergic state as being a biomarker of a more severe presentation 

of illness, with poor functioning being just one manifestation. As has been discussed, individuals 

who are more severely unwell, may additionally struggle with reliable medication adherence, 

leading to poorer outcomes, and lack of remission.  

4.5.3 Glutathione and Treatment Response  

 Given that oxidative stress (Wood et al, 2009), and excess free radical production 

(Mahadik and Mkherjee, 1996; Reddy and Yao, 1996), have been hypothesized as being 
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implicated in the pathophysiology of schizophrenia, GSH, an intracellular antioxidant, may play 

a role in early treatment response. GSH appears to be an important regulator of glutamatergic 

activity. Specifically, it has been hypothesized that a state of low GSH can contribute to 

glutamatergic excess (Koga et al, 2011), and that under oxidative stress, GSH levels may become 

deplete and lead to NMDA receptor dysfunction (Steullet et al, 2007). Glutamatergic excess in 

turn, has been shown to activate free radical pathways (Bains and Shaw, 1997), leading to further 

oxidative stress (Volterra et al, 1994). Therefore, any association of glutamate and eventual 

treatment response, may also depend on the activity of GSH, and specifically, on the balance and 

interaction between glutamate and GSH. No studies to date have examined the association of 

GSH, in addition to glutamate, with early treatment response.  

 For the first time, we report a positive association between GSH in the ACC at initial 

presentation of FEP, and treatment response. The overall pathophysiology of GSH in 

schizophrenia remains unclear as previous studies have produced inconsistent results regarding 

alterations in this key neural regulator of the glutamatergic system. In chronic schizophrenia, 

while some studies have found deficits in GSH relative to controls (Do et al, 2000; Gawryluk at 

al, 2011, Das et al, 2018), others have not (Monin et al, 2015; Matsuzawa et al, 2008; Xin et al, 

2016; Terpstra et al, 2005; Brandt et al, 2016). One study of patients with FEP found GSH to be 

elevated (Wood et al, 2009), with lower GSH levels being associated with cognitive impairment 

(Martinez-Cengotitabengoa et al, 2012) and grey matter volume deficits (Fraguas et al, 2012; 

Langbein et al, 2017). However, others have found decreased GSH in FEP patients relative to 

controls (Mico et al, 2011). It may be that GSH abnormalities are uniquely present in sub-

populations of patients with schizophrenia, as opposed to characterizing a unifying 

neurobiological signature of all patients with this heterogeneous illness. In addition, GSH levels 
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may vary depending on the stage of illness. Our results suggest that some individuals with FEP 

appear able to mount a compensatory response to psychosis by increasing GSH in some capacity. 

It is unclear whether GSH levels are higher in these individuals even before the onset of 

psychosis, or if levels increase secondarily to the development of a psychotic episode and 

associated neurobiological perturbations. Regardless, in individuals with higher GSH levels, the 

response to antipsychotic medications appears to be more robust, and there are several 

potentially promising clinical implications of this finding. 

Specifically, our finding of increased GSH being associated with better early treatment 

response may have direct implications for the development of innovative treatments for 

psychosis. Given that GSH is a major intracellular antioxidant and is thought to be 

neuroprotective (Cohen, 1983; Meister and Anderson, 1983), our results suggest that antioxidant 

activity may be important for response/remission in early FEP. In contrast to agents targeting 

glutamate excess which have generally not proven successful to date, targeting GSH as a 

treatment mechanism may be more feasible in terms of both efficacy and safety. In particular, N-

acetyl cysteine (NAC) treatment has demonstrated benefit for schizophrenia in some trials (Berk 

et al, 2008, Farokhnia et al, 2014; Brier et al, 2018; Conus et al, 2018; Zeng et al, 2018), and has 

been shown to increase GSH in the brain (Dringen and Hirrlingen, 2003). It remains unclear 

which patients specifically may benefit from treatments like NAC. Perhaps those patients who 

are unable to mount a compensatory elevation in GSH would benefit from additional 

therapeutics, such as NAC, while others may not. GSH may be particularly important at earlier 

illness stages when glutamatergic excess is present (Poels et al, 2014), as there is some evidence 

that ongoing glutamatergic activity may be inherently neurotoxic (Plitman et al, 2014) and the 

FEP may represent a particularly vulnerable period in terms of potential neurodegenerative 
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effects. To date, no studies have investigated whether agents increasing GSH may protect against 

neurodegeneration and longitudinal grey matter decline. As there are currently no available 

neuroprotective agents for the treatment of early schizophrenia, further studies investigating the 

potential of NAC and other agents targeting GSH may lead to revolutionary advancements in our 

understanding and treatment of FEP.  

We found evidence that despite their significant within-group correlation, when 

compared to healthy controls, glutamate and GSH levels were less tightly correlated among 

patients with FEP. A similar dissociation was also reported by Xin et al, (2016) in a first episode 

sample, especially among patients with a GCLC-risk genotype affecting GSH synthesis. These 

results indicate that in a subset of patients with FEP, concomitant GSH response fails to occur 

when demands arise due to glutamatergic excess. Such patients are likely to be vulnerable to 

neurotoxic damage (Hulshoff Pol and Kahn, 2008), poor treatment response, and greater 

functional decline as a result of unchecked neuronal/glial damage (Steullet et al, 2006; 

Kantrowitz and Javitt, 2010; Stone et al, 2009). Interestingly in healthy controls, when 

glutamatergic synapses are active due a task demand, GSH levels appear to increase 

concomitantly with glutamate (Lin et al, 2012). It remains to be seen if the resting-state 

dissociation between GSH and glutamate levels in FEP persists even when task demands arise. 

Such a persistent dissociation, if observed in FEP, may allow us to infer disruptions in the 

metabolic pathways linking synaptic glutamate dynamics to GSH synthesis. 

4.5.4 Strengths, Limitations, and Future Directions  

One of the biggest strengths of our study was our use of a 7T MRI scanner. There are 

only a limited number of studies that have examined glutamatergic perturbations in FEP using a 
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scanner of this field strength, and no studies have specifically explored treatment response and 

resistance in early psychosis. There is evidence that the use of higher field strengths allows for 

increased precision in measuring glutamate, and distinguishing it from glutamine (Mekle et al, 

2009; Pradhan et al, 2015; Tkáč et al, 2009). Second, our sample size was reasonably large for a 

neuroimaging study, and participants received frequent clinical monitoring to allow for detection 

of early symptom improvement at discrete intervals. This close clinical monitoring allowed us to 

determine treatment response measures in a continuous manner. To date, all other studies of 

treatment response and resistance in FEP have applied dichotomous outcomes in measuring 

treatment response. In reality, response to treatment is more likely represented on a spectrum, 

with individuals varying between both extremes (no response, and complete response). 

Furthermore, the chosen timing of assessing dichotomous responsiveness is arbitrary; an 

individual who is not in remission at 4 weeks, may be in remission at 6 weeks, for example. 

Finally, the use of binary criteria with an absolute threshold for defining remission runs the risk 

of over-categorizing those with milder presentations as being in remission. Individuals with 

higher symptom scores at baseline will be much less likely to meet remission criteria, even if 

they display significant symptomatic improvement from baseline, particularly if a short follow-

up interval is employed. An additional strength of our study was the fact that our sample 

consisted of patients with a wide spectrum of illness severities. Many other neuroimaging studies 

of TRS have consisted primarily of outpatients. The use of a sample that is less “severely 

unwell” may skew results, and would be less likely to include patients with severe treatment 

refractoriness. Because we incorporated a relatively balanced mix of inpatients and outpatients, 

including those requiring compulsory treatment, our sample may have been more closely 

representative of the general population of patients with FEP treated in clinical settings. Finally, 
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our use of long acting injectable antipsychotic medications represents an additional strength of 

our study as these patients could be assumed to be adherent to their medication. Many other 

studies of TRS have not employed reliable means of assessing medication adherence, and in 

these studies, “pseudo-resistance” cannot be ruled out.  

While our results contribute considerably to the understanding of the early neurobiology 

of treatment resistant schizophrenia, there are some limitations that should be noted. First, 

although our population consisted of minimally-treated patients with FEP, it is possible that 

antipsychotic usage, although limited, may have influenced metabolite levels. The research is 

conflicting regarding the effect of antipsychotic administration and changes in glutamate levels 

longitudinally. Chronic antipsychotic usage has been associated with decreased glutamate in the 

ACC after six months (Choe et al, 1996), and one month (Egerton et al, 2017) of treatment. 

However, other studies have found no association between antipsychotic treatment and ACC 

glutamate levels in patients with FEP after one (Szulc et al, 2005), thirty (Theberge et al, 2007) 

and eighty (Ayoma et al, 2011) months of treatment. Importantly, changes in glutamate levels 

overtime cannot be assumed to be solely related to antipsychotic usage and may be a result of 

physiological changes related to the underlying illness itself. Furthermore, acute glutamatergic 

effects of short-term antipsychotic usage (as employed in our study) are unclear as no studies 

have assessed the association between same-day antipsychotic administration and immediate 

glutamatergic change. In addition, no studies have examined the effect of antipsychotic treatment 

on GSH levels in the ACC. Overall, while it is unlikely that the use of low dose antipsychotic 

medications for less than fourteen days would have an acute effect on brain glutamate, 

glutamine, and GSH levels, this possibility cannot be ruled out definitively. Under ideal 

conditions, all patients would have been scanned in a completely drug-naïve state, however, for 
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ethical and practical reasons, this was not possible for all cases.  

 Similarly, the fact that patients in our sample were treated with several different 

antipsychotic medications, may have influenced the results of our study, although no studies 

have examined brain glutamatergic changes in relation to specific antipsychotic agents. While 

controlling for this potential confounding variable by treating all patients with the same 

medication according to a standardized algorithm would have been ideal, this would have 

decreased our ability to recruit patients into the study. In addition, in real-world clinical practice, 

patients are treated with a variety of antipsychotic medications and therefore, our results may 

have been more generalizable. That said, because clinicians could choose to increase medication 

doses at their discretion (no algorithm was used), patients treated more aggressively (ie, having 

their medication increased at a faster rate), may have improved more quickly.  

 Although we employed methods to attempt to ensure medication compliance, non-

adherence with antipsychotic medication may have influenced results. Rates of antipsychotic 

non-adherence are high in schizophrenia; 74% of patients were non-adherent to medications 

within eighteen months in the CATIE study (Lieberman et al, 2005) and similarly high rates have 

been reported in FEP (Hill et al, 2010; Levy et al, 2012; Miller at al, 2011).  Non-adherence may 

lead to falsely identifying a particular person as being resistant to treatment (Correll et al, 2011). 

Many studies to date that have examined neurobiological correlates of treatment resistance have 

employed limited, or have used no, assessments of adherence. Without protocols for monitoring 

adherence, lack of improvement may be simply due to failure to take medication. Furthermore, 

recent evidence has demonstrated that patients who obtain remission of positive and negative 

symptoms are most likely to remain adherent to treatment in FEP (Mustafa et al, 2018), 

suggesting that TRS patients are the most likely to demonstrate poor compliance patterns with 
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medication recommendations. We attempted to improve adherence in our sample by offering all 

patients the option to be treated with long acting injectable antipsychotic medications. Because 

our clinic protocol is to provide injections on-site, we are immediately aware if someone has 

missed, or is late for a dose of their injection. However, many patients elected to remain on oral 

antipsychotic medications. In these patients, adherence status at each clinical visit was assessed, 

incorporating feedback from the patient, their family (if involved in their care), and other allied 

mental health professionals. Although all efforts were employed to ensure compliance, we 

cannot be definitively certain that patients on oral medications were adhering to treatment as 

prescribed, and cannot rule out non-adherence as a potential confounder of our results.  

 In addition to non-adherence with medication, substance use may influence the early 

clinical trajectory of FEP. Rates of substance use in patients with schizophrenia are high ranging 

between 40% (Ziedonis and Fisher, 1994), and 70% (Strakowski et al, 1993). Although our 

sample did not include patients meeting criteria for DSM-5 (APA, 2013) substance use disorders, 

patients may have been using drugs recreationally during the study period. We did inquire about, 

and record use of, substances at each clinical visit however, urine drug screens were not 

performed as part of the study protocol. It is possible that ongoing drug use may have both 

influenced metabolite levels, and contributed to poorer treatment response. Particularly, as is 

seen in the general population of patients with FEP (estimates range between 8% (Strakowski et 

al, 1994) and 71% (Lambert et al, 2005)), many patients in our study used marijuana 

recreationally. While an entire sample of non-marijuana users would not be representative of 

today’s general FEP patient, we cannot rule out the effect of marijuana specifically on our 

results. There has been one study demonstrating that chronic cannabis users (without other 

mental health diagnoses) had decreased glutamate in the ACC relative to those who had never 
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used cannabis (Prescott et al 2011; 2013), although these results were not replicated in another 

study (Sung et al, 2013). That said, no studies have specifically examined the effects of acute, 

same-day marijuana usage on glutamate or GSH levels, and no studies have examined this 

association in a schizophrenia or FEP sample.  

In the future, there will be several opportunities to expand upon our current findings. All 

study participants continue to be monitored clinically, with symptom scales being completed at 

each clinical encounter. Going forward, we plan to continue to analyze outcomes in these 

patients to assess the association of baseline glutamate and GSH with longer term treatment 

response and remission. Specifically, it would be interesting to assess whether baseline 

metabolite levels have any association with eventual clozapine-eligibility, or clozapine usage. 

For individuals with TRS, clozapine has been shown to be more effective than other first-line 

antipsychotic medications (Chakos et al, 2011; Lewis et al, 2006; McEvoy et al, 2006). Currently 

in Canada, there remain significant delays in initiating clozapine therapy in suitable patients, and 

overall, this medication is thought to be grossly under-utilized (Bogers et al, 2016). While the 

reasons for this are multifactorial, some of the delay may be associated with the difficulty in 

determining treatment resistance early-on, and the lack of objective biomarkers suggestive of 

clozapine-eligibility. The ability to demonstrate an association between neurobiological 

alterations at baseline and eventual clozapine use would contribute considerably to the 

understanding of treatment resistance, and may promote reformatting of current clozapine 

guidelines. While current guidelines mandate a trial of two antipsychotic medications prior to 

clozapine being initiated (NICE, 2014), the necessity of two medication trials has been 

questioned (Remington et al, 2013; Kahn et al, 2018), particularly as recent evidence has 

indicated that a treatment resistant course can be reliably predicted within weeks following a 
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FEP (Agid et al, 2003; Suzuki et al, 2011; Samra et al, 2015; Derks et al, 2010; Ucock et al, 

2011). Recently, a large, multi-center, three-phase switching study found that there was no added 

benefit to a second antipsychotic trial in patients with FEP who did not achieve remission after 

one month (Kahn et al, 2018). The authors go onto suggest that these results support 

reformulation of guidelines such that only one failed antipsychotic trial should be required prior 

to determining clozapine-eligibility. Neurobiological parameters indicative of a higher risk of 

resistance may further support triaging of certain patients towards clozapine at an earlier stage.  

In keeping with phase-specific neurobiological alterations in early psychosis, future 

studies investigating the association of glutamate and GSH in those at clinical high risk (CHR) 

for psychosis are warranted. It would be beneficial to evaluate whether abnormalities in these 

metabolites prior to the development of acute psychosis have any association with eventual 

treatment response once FEP occurs (in those patients who go onto develop psychosis). To date, 

no studies have examined GSH in a CHR sample, and its association with developing psychosis. 

A demonstrated association between GSH levels in the at-risk state, and development of 

psychosis, would support the potential for use of antioxidant treatments, and other therapeutics 

that may increase GSH, at this vulnerable stage. Disease-modifying treatments for individuals at 

risk for schizophrenia are currently lacking, and are grossly needed.  

4.5.5 Conclusion  

While we did not replicate previous findings that have demonstrated an association 

between elevated ACC glutamate and lack of treatment response in FEP, we are the first to 

report an association between levels of GSH and early treatment response. We found that higher 

ACC glutamate was associated with worse baseline social functioning, supporting the 
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proposition that elevated glutamate may be neurotoxic, and associated with a more severe 

presentation of illness. Our results suggest that neuroinflammation may be implicated in early 

lack of treatment response. The finding of an association between GSH and response to 

treatment is clinically useful as this may promote the development of novel treatment 

mechanisms. Specifically, agents with a targeted mechanism to increase GSH may be beneficial 

as adjuvants to antipsychotic medications, particularly in the one third of patients who fail to 

respond well to these agents alone. 
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Tkáć I, Gruetter R. (2005). Methodology of 1 H NMR spectroscopy of the human brain at very 

high magnetic fields. Applied Magnetic Resonance, 29, 139–157. 
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