
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-22-2019 11:30 AM

Gabor Filter Initialization And Parameterization Strategies In Gabor Filter Initialization And Parameterization Strategies In

Convolutional Neural Networks Convolutional Neural Networks

Long Pham
The University of Western Ontario

Supervisor

McIsaac, Kenneth

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Long Pham 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Pham, Long, "Gabor Filter Initialization And Parameterization Strategies In Convolutional Neural
Networks" (2019). Electronic Thesis and Dissertation Repository. 6155.
https://ir.lib.uwo.ca/etd/6155

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Fetd%2F6155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6155?utm_source=ir.lib.uwo.ca%2Fetd%2F6155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Acknowledgments

I would especially like to mention my advisor, Dr. Ken McIsaac, for supporting me throughout

the course of 3 years. Thank you for always being the friendly guy that could always provide

insight and providing a path during the course of this thesis. Thank you for supplying the tools

I needed to succeed in the research. I have grown to see past just doing research but enjoying

it as much as possible to become a better researcher, engineer, and friend.

I would like to mention my colleagues Justin Szoke-Sieswerda, Alexis Pascual, and Matt

Cross for mentoring and getting me through the hard times who have provided very informative

direction for my thesis.

I would like to thank my family who have supported me through my journey of writing this

thesis.

I would like to mention the Western Outdoors Club and all the friends I have met during

this experience that have helped relieve stress during the hard times and learning how to enjoy

life outside of academia.

Lastly, I would like to mention my loving girlfriend Hilary Scott for heavily supporting me

through university. You have always been there when I needed you the most.

i

Abstract

Convolutional neural networks (CNN) have been widely known in literature to be extremely

effective for classifying images. Some of the filters learned during training of the first layer

of a CNN resemble the Gabor filter. Gabor filters are extremely good at extracting features

within an image. We have taken this as an incentive by replacing the first layer of a CNN

with the Gabor filter to increase speed and accuracy for classifying images. We created two

simple 5-layer AlexNet-like CNNs comparing grid-search to random-search for initializing

the Gabor filter bank. We trained on MNIST, CIFAR-10, and CIFAR-100 as well as a rock

dataset created at Western University to study the classification of rock images using a CNN.

When training on this rock dataset, we use an architecture from literature and use our Gabor

filter substitution method to show the usage of the Gabor filter. Using the Gabor convolutional

neural network (GCNN) showed improvements in the training speed across all datasets tested.

We also found that the GCNN underperforms when dropout is added, even when overfitting

becomes an issue. The size of the Gabor filter bank becomes a hyperparameter that can be tuned

per dataset. Applying our Gabor filter replacement method to a 3-layer CNN reduced final

accuracy at epoch 200 by 1.16% but showed large improvements in the speed of convergence

during training with 93.44% accuracy on a validation set after 10 epochs compared to the

original network’s 82.19%.

Keywords: convolutional neural network, Gabor filter, initialization strategies, random-

search, grid-search, paramerization, dropout, GCNN

ii

Contents

Acknowledgments i

Abstract ii

List of Figures vi

List of Tables ix

List of Appendices xi

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 4

1.2.1 What is an Image? . 4
1.2.2 Details about CNN . 5
1.2.3 Gabor Filter . 7
1.2.4 Relationship between Gabor Filter and CNN Initialization 15

1.3 Goals . 17

2 Related Work 19
2.1 Brief History of CNN Model Breakthroughs 19
2.2 Noteworthy CNN Breakthroughs . 32

2.2.1 Dropout . 32
2.2.2 Visualizing and Understanding CNN 34

2.3 Initialization Strategies for CNNs . 37
2.3.1 Random search for hyper-parameter optimization (2012) 37
2.3.2 Region Proposed Convolutional Neural Networks (R-CNN) 39
2.3.3 Median Filtering Forensics Based on CNNs 40

2.4 CNNs using Gabor Filters . 42
2.4.1 Gabor Oriented Filters in CNNs . 44

3 Methodology 49
3.1 Datasets . 49

3.1.1 MNIST . 49
3.1.2 CIFAR-10 . 50
3.1.3 CIFAR-100 . 51
3.1.4 AlexisNet Rock Dataset . 51

iii

3.2 Gabor Filter Initialization . 53
3.2.1 Gabor Grid-Search Initialization . 53
3.2.2 Gabor Random Initialization . 55

3.3 Gabor CNN Structure (GCNN) . 55
3.3.1 MNIST, CIFAR-10, CIFAR-100 GCNN Architecture 56
3.3.2 AlexisNet GCNN Architecture . 57

4 Testing and Results 59
4.1 Experiment A . 60

4.1.1 Experiment Setup . 60
4.1.2 Results . 63

Sigma, σ . 63
Lambda, λ . 69
Theta, θ . 74
Gamma, γ . 81
Psi, ψ . 86

4.1.3 Summary . 90
4.2 Experiment B . 92

4.2.1 Experiment Setup . 92
4.2.2 Results . 94

Sigma, σ . 94
Lambda, λ . 98
Theta, θ . 102
Gamma, γ . 106
Psi, ψ . 110

4.2.3 Summary . 113
4.3 Experiment C . 115

4.3.1 Experiment Setup . 115
4.3.2 Results . 118

MNIST . 118
CIFAR-10 . 122
CIFAR-100 . 126
Comparing with Ozbulak’s Results . 130

4.3.3 Summary . 132
4.4 Experiment D . 133

4.4.1 Experiment Setup . 133
4.4.2 Results . 135

MNIST . 135
CIFAR-10 . 139
CIFAR-100 . 143

4.4.3 Summary . 147
4.5 Experiment E . 150

4.5.1 Experiment Setup . 150
4.5.2 Results . 151

MNIST . 151

iv

CIFAR-10 . 155
CIFAR-100 . 160

4.5.3 Summary . 164
4.6 Experiment F . 167

4.6.1 Experiment Setup . 167
4.6.2 Results . 168

Shuffled Dataset . 168
Non-Shuffled Dataset . 173
Frozen First Layer, Non-Shuffled Dataset 178
Pascual Comparison . 184

4.6.3 Summary . 189
4.7 Summary of All Experiments . 194

5 Conclusion 198
5.1 Summary . 198
5.2 Summary of Contributions . 201
5.3 Future Work . 203

Bibliography 205

A Building the Keras Environment 208
A.1 Development Platform . 208

A.1.1 Hardware . 208
A.1.2 Software . 208
A.1.3 Setup Environment . 209

Curriculum Vitae 210

v

List of Figures

1.1 Zeiler’s published CNN . 3
1.2 Image of a Dog represented as a matrix of numbers 5
1.3 Filtered image of a dog . 6
1.4 Gabor filters changing the kernel size on Lena 10
1.5 Gabor filters changing σ on Lena . 10
1.6 Gabor filters changing θ . 11
1.7 Gabor filters changing θ on Lena . 12
1.8 Gabor filters changing λ . 13
1.9 Gabor filters changing λ on Lena . 13
1.10 Gabor filters changing γ . 14
1.11 Gabor filters changing γ on Lena . 14
1.12 Gabor filters changing ψ . 15
1.13 Gabor filters changing ψ on Lena . 15

2.1 Activation functions . 20
2.2 AlexNet model . 20
2.3 Network in Network model . 21
2.4 Bounding boxes . 23
2.5 VGGNet Model . 25
2.6 GoogLeNet model . 27
2.7 ResNet’s residual module . 29
2.8 ResNet model . 30
2.9 DensNet Model . 32
2.10 Dropout in CNN . 33
2.11 DeConvNet . 35
2.12 Visualization of Layers in a CNN . 36
2.13 Epoch training per layer in CNN . 37
2.14 Random search versus Grid-Search . 39
2.15 R-CNN . 40
2.16 Example of a median filter used in a CNN . 41
2.17 Median-CNN . 42
2.18 Gabor CNN by Calderon . 43
2.19 Gabor Filter usage in all layers of a CNN . 44

3.1 MNIST dataset . 50
3.2 CIFAR-10 dataset . 51
3.3 A simple rock dataset . 52

vi

3.4 Grid-search versus random-search example 55
3.5 Architecture of GCNN . 57
3.6 Architecture of AlexisNet . 58

4.1 Experiment A: MNIST GCNN σ results . 65
4.2 Experiment A: CIFAR-10 GCNN σ results . 66
4.3 Experiment A σ trial . 67
4.4 Experiment A: MNIST GCNN λ results . 71
4.5 Experiment A: CIFAR-10 GCNN λ results . 72
4.6 A test showing the training results per epoch for when λ = 60 and dropout, D =

0, when using the Gabor filter as initialization in the first layer. In comparison
we can see how a Xavier initialization competes. In this static experiment,
CIFAR-10 is the dataset being used to train on. The legend item that says ’vary
Gabor’ signifies the results from when λ = 60. 73

4.7 Experiment A: MNIST GCNN θ results . 76
4.8 Experiment A: CIFAR-10 GCNN θ results . 77
4.9 Experiment A: σ trial on CIFAR-10 . 78
4.10 Experiment A: θ trials on CIFAR-10 . 80
4.11 Experiment A: MNIST GCNN γ results . 83
4.12 Experiment A: CIFAR-10 GCNN γ results . 84
4.13 Experiment A: γ trial on MNIST . 85
4.14 Experiment A: MNIST GCNN ψ results . 88
4.15 Experiment A: CIFAR-10 GCNN ψ results . 89
4.16 Experiment A: ψ trial on MNIST . 90
4.17 Experiment B: MNIST and CIFAR-10 GCNN simple σ search results 96
4.18 Experiment B: σ trial on MNIST . 97
4.19 Experiment B: MNIST and CIFAR-10 GCNN simple λ search results 100
4.20 Experiment B: λ trial on MNIST . 101
4.21 Experiment B: MNIST and CIFAR-10 GCNN simple θ search results 104
4.22 Experiment B: θ trial on MNIST . 105
4.23 Experiment B: MNIST and CIFAR-10 GCNN simple γ search results 108
4.24 Experiment B: γ trial on MNIST . 109
4.25 Experiment B: MNIST and CIFAR-10 GCNN simple ψ search results 112
4.26 Experiment B: ψ trial on MNIST . 113
4.27 Experiment C: MNIST GCNN results box graph 119
4.28 Experiment C: MNIST GCNN accuracy and loss using different dropout rates . 121
4.29 Experiment C: CIFAR-10 GCNN results box graph 123
4.30 Experiment C: CIFAR-10 GCNN trials comparing different dropout rates . . . 125
4.31 Experiment C: CIFAR-100 GCNN results box graph 127
4.32 Experiment C: CIFAR-100 GCNN trials comparing different dropout rates . . . 129
4.33 Experiment D: GCNN results on MNIST box graph 136
4.34 Experiment D: GCNN trials on MNIST showing different dropout rates 138
4.35 Experiment D: GCNN results on CIFAR-10 box graph 140
4.36 Experiment D: GCNN trials on CIFAR-10 showing different dropout rates . . . 142
4.37 Experiment D: GCNN trials on CIFAR-100 box graph 144

vii

4.38 Experiment D: GCNN trials on CIFAR-100 showing different dropout rates . . 146
4.39 Experiment E: GCNN of MNIST results box graph 152
4.40 Experiment E: GCNN of MNIST trials showing different dropout rates 154
4.41 Experiment E: GCNN of MNIST results box graph 156
4.42 Experiment E: GCNN of CIFAR-10 trials showing different dropout rates . . . 159
4.43 Experiment E: GCNN of CIFAR-100 results box graph 161
4.44 Experiment E: GCNN of CIFAR-100 trials showing different dropout rates . . . 163
4.45 Experiment F: GCNN box graph summary for using a shuffled dataset 169
4.46 Experiment F: random-initialized GCNN trials using a shuffled dataset showing

different dropout rates . 171
4.47 Experiment F: grid-search initialized GCNN trials using a shuffled dataset show-

ing different dropout rates . 172
4.48 Experiment F: GCNN box graph summary for using a non-shuffled dataset . . . 174
4.49 Experiment F: random initialized GCNN trials using a non-shuffled dataset for

different dropout rates . 176
4.50 Experiment F: grid-search initialized GCNN trials using a non-shuffled dataset

for different dropout rates . 177
4.51 Experiment F: GCNN box graph summary for using a non-shuffled dataset

freezing the first layer from learning . 179
4.52 Experiment F: random initialized GCNN summary for using a non-shuffled

dataset freezing the first layer from learning showing different dropout rates . . 182
4.53 Experiment F: grid-search initialized GCNN summary for using a non-shuffled

dataset freezing the first layer from learning showing different dropout rates . . 183
4.54 Experiment F: comparison between our GCNN to Pascual’s CNN 184
4.55 Experiment F: comparison showing 10 epochs of training for our GCNN to

Pascual’s CNN . 186
4.56 Experiment F: comparison between our GCNN to Pascual’s CNN 187
4.57 Experiment F: Pascual’s results using a 1, 2 and 3 layer CNN 192

5.1 Inserting our Gabor filter bank in other CNNs 204

viii

List of Tables

2.1 Sarwar GCNN Results . 44
2.2 Results from Luan’s GCNN . 45
2.3 Ozbulak’s MNIST results using a GCNN . 46
2.4 Ozbulak’s CIFAR-10 results using a GCNN 47
2.5 Ozbulak’s CIFAR-100 results using a GCNN 47

3.1 Ozbulak’s Parameters used in the Gabor filter 53
3.2 AlexisNet Results Training on a rock dataset 58

4.1 GCNN experiment table . 60
4.2 Experiment A static Gabor parameters . 61
4.3 Experiment A simple grid-search . 62
4.4 Experiment A: σ results on MNIST . 63
4.5 Experiment A: σ results on CIFAR-10 . 64
4.6 Experiment A: λ results on MNIST . 69
4.7 Experiment A: λ results on CIFAR-10 . 70
4.8 Experiment A: θ results on MNIST . 74
4.9 Experiment A: θ results on CIFAR-10 . 75
4.10 Experiment A: γ results on MNIST . 81
4.11 Experiment A: γ results on CIFAR-10 . 82
4.12 Experiment A: ψ results on MNIST . 86
4.13 Experiment A: ψ results on CIFAR-10 . 87
4.14 Summary of Experiment A . 91
4.15 Experiment B tests . 93
4.16 Experiment B: σ results on MNIST . 94
4.17 Experiment B: σ results on CIFAR-10 . 95
4.18 Experiment B: λ results on MNIST . 98
4.19 Experiment B: λ results on CIFAR-10 . 99
4.20 Experiment B: θ results on MNIST . 102
4.21 Experiment B: θ results on CIFAR-10 . 103
4.22 Experiment B: γ results on MNIST . 106
4.23 Experiment B: γ results on CIFAR-10 . 107
4.24 Experiment B: ψ results on MNIST . 110
4.25 Experiment B: ψ results on CIFAR-10 . 111
4.26 Experiment B summary . 114
4.27 Experiment C: MNIST GCNN epoch training example with no dropout 116
4.28 Experiment C: MNIST GCNN trial example with 0% dropout 116

ix

4.29 Experiment C: MNIST GCNN trial example with 25% dropout 117
4.30 Experiment C: MNIST GCNN trial example with 50% dropout 117
4.31 Experiment C: MNIST GCNN results . 118
4.32 Experiment C: CIFAR-10 GCNN results . 122
4.33 Experiment C: CIFAR-100 GCNN results . 126
4.34 Experiment C: Comparison of 10 epoch rounds during training using MNIST . 130
4.35 Experiment C: Comparison of 10 epoch rounds during training using CIFAR-10 131
4.36 Experiment C: Comparison of 10 epoch rounds during training using CIFAR-100131
4.37 Experiment D: GCNN trial on CIFAR-10 . 134
4.38 Experiment D: GCNN results on MNIST . 135
4.39 Experiment D: GCNN results on CIFAR-10 139
4.40 The following results are the averages of 10 trials for each test using CIFAR-

100 as the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5],
and the number of filters, F = [32, 64, 96]. Each row provides the accuracy,
loss, standard deviation, and variance for both training and validation results.
Note: Uniform is the term we are using to describe Ozbulak’s results in [16].
The results are from using a non-shuffled dataset instead of being shuffled like
experiment C (Section 4.3). 143

4.41 Experiment D: comparing training accuracy using a random initialized Gabor
filter bank . 148

4.42 Experiment D: comparing training accuracy using a grid-search initialized Ga-
bor filter bank . 149

4.43 Experiment D: comparing validation accuracy using a random initialized Gabor
filter bank . 149

4.44 Experiment D: comparing training accuracy using a grid-search initialized Ga-
bor filter bank . 150

4.45 Experiment E: GCNN of MNIST results . 151
4.46 Experiment E: GCNN of CIFAR-10 results 155
4.47 Experiment E: GCNN of CIFAR-100 results 160
4.48 Experiment E: comparing training accuracy using a random initialized Gabor

filter bank . 165
4.49 Experiment E: comparing training accuracy using a grid-search initialized Ga-

bor filter bank . 165
4.50 Experiment E: comparing validation accuracy using a random initialized Gabor

filter bank . 166
4.51 Experiment E: comparing validation accuracy using a grid-search initialized

Gabor filter bank . 166
4.52 Experiment F: GCNN summary for using a shuffled dataset 168
4.53 Experiment F: GCNN summary for using a non-shuffled dataset 173
4.54 Experiment F: GCNN summary for using a non-shuffled dataset freezing the

first layer from learning . 178
4.55 Experiment F: results of 10 epochs showing our GCNN to Pascual’s CNN . . . 188
4.56 Experiment F: results of 200 epochs showing our GCNN to Pascual’s CNN . . 189
4.57 Experiment F: model differences of AlexisNet versus our GCNN 193

x

List of Appendices

Appendix A Building the Keras Environment . 208

xi

Chapter 1

Introduction

1.1 Motivation

Since the inceptions of CNNs brought from the 1950s by Hubel and Wiesel [9], the brain’s

anatomy analogy brought the term “Neocognitron”, which is a model of how neurons within

the brain communicate to each other. A CNN takes the same idea of the Neocognitron where

we have an input (image) that is fed into a network of neurons and spits out the identification

of an image. Fifty years later, the architecture of CNNs have bloomed from this idea and

matured for the use of image processing to classify, localize, and detect images. Alexander

Krizhevsky’s neural network created in 2012 [12] brought forward and gave new life to the

meaning of convolutional neural networks. Krizhevsky’s AlexNet built a CNN used for the

ImageNet Large Scale Visual Recognition Competition (ILSVRC) competition in 2012 and

took first place with outstanding results with a top-5 error rate of 15.3%. The top-5 error rate

is the measurement of accurately classifying an image within a dataset using 5 predictions of

what the image is and comparing these results with the ground-truth (the correct answer). This

was a milestone because they had scored more than 10% better than second place. Not only did

this bring a faster, and more efficient way to do computations on images, it brought competition

to see who can build the best image classifier using these CNNs.

1

2 Chapter 1. Introduction

Six years later, we find ourselves using networks like ResNet, VGG-16, VGG-19, GoogLeNet,

DenseNet, and many more. These newer, faster networks provide higher scores in comparison

to DenseNet’s top-1 and top-5 error rates scoring 20.27% and a 5.17% respectively (DenseNet

was the best network in 2017 that won the ILSVRC competition). The latest networks are

marginally better than each other in terms of speed and accuracy and is dependent on the

dataset. No single network stands out as the “top”, or “go-to” network and each offer their

own advantages that will be described in Section 2. Finding faster and more efficient ways to

increase training speed while maintaining or increasing accuracy is the name of the game and

everyone in the field of deep learning is trying to create a faster, more efficient network.

Convolutional neural networks (CNN) performance are usually measured with 2 numbers:

the training time and the accuracy (or alternatively, the top-5/top-1 error rate. i.e., We can train

MNIST for 200 epochs each running 10 seconds resulting a top-5 error rate of 99.5%. People

can usually balance between the two metrics, i.e., a lower training time can result in lower error

rates and vice versa. The ultimate goal is to find a low training time, either by hardware (more

expensive) or software (less expensive) and have a high accuracy rate for a given dataset. Size

does matter in the case of datasets because of the limitations of computation.

The first use of CNNs in AlexNet, they had used Nvidia’s GTX580 card to do their com-

putations on ImageNet, which is a very large dataset and this took them approximately 6 days

to compute [12]. Nowadays, we have faster, more efficient cards that are more capable of pro-

cessing such a dataset. Having the right hardware is only half the battle in training models for

such datasets. Improving the software is the other half.

Although CNNs are currently the fastest method for image processing, they are still slow

to train on very large datasets. By improving the CNNs architecture, analyzing images can

become faster, and more efficient. Not only can we unlock new potential breakthroughs but we

can also reduce training times to create CNN models. This can be seen as a reduction in cost of

computing such large datasets, to using less energy, and ultimately saving time. Keeping these

benefits in mind, there’s always a need to make “things” faster, better, and more efficient. This

1.1. Motivation 3

was the driving factor of creating GoogLeNet [24].

The Gabor filter is a type of bandpass filter that specializes in finding features like edges

within an image. The filter is able modulate over an image to extract features on different

angles. The Gabor filter is a good candidate filter to be used before or during training [26].

Using a small variation on Krizhevsky’s network, and using his DeConvNet, he was able to

show visualizations of each layer in AlexNet. Within this network, the features extracted by

the network resembled the Gabor kernel itself (Figure 1.1). The question arises that if the

features gathered in a CNN resemble and/or are very similar to images of a Gabor kernel, then

is it possible to skip learning and training earlier stages of the network by using this filter?

There have already been many papers discussing the use of Gabor filters within their networks

[2] [15] [19] [16] that shows very promising results in terms of speed and accuracy for various

databases.

Figure 1.1: As seen from [26], we see the first layer that was learned during a simple AlexNet-
like CNN. We can see that in some of the filters that it learns, it appears to look like the Gabor
filter. Using this, we skip the step of learning the Gabor filter, and just insert the Gabor filter in
the first layer as a shortcut to training.

The purpose of this thesis is to introduce initialization strategies to try and effectively de-

crease the training times for individual neural networks. More specifically, there has been

recent interest in Gabor Filters. Using the implementation of Gabor filters instead of using

learned filters in earlier layers shows that training time can be reduced dramatically, while

4 Chapter 1. Introduction

maintaining similar, if not better, results at the end of training [19]. The question of how pa-

rameterize the Gabor filter within the early layers is still open. Finding a good setup for a

CNN can be a challenge for either known or unknown datasets. The goal of this thesis is to:

1) explore methods of implementing the Gabor filter, 2) find ways to enhance the speed and

accuracy for a given dataset, 3) and find when and how the Gabor filter can be used to effec-

tively reduce training times while keeping similar, if not better accuracy than the current the

state-of-the-art (SOTA).

1.2 Background

1.2.1 What is an Image?

Within the computing domain, we can describe an image as a matrix of numbers. These num-

bers are represented as different light intensities which altogether make up the image. A pixel

is the term representing the numbers within the matrix assorted in rows and columns. The pixel

values are data dependent and can range from a minimum to a maximum value. For simplic-

ity sake, let’s say that the pixel light intensity values are represented as an 8-bit number, or a

range of 0 to 255. The higher the value, the greater the intensity (the pixel appears brighter

with a higher intensity). Colored images are overlapping matrices with 3 separate channels:

red, green, and blue. In image processing, handling color images require more processing than

grayscale because there are 3 channels to compute on instead of 1. Because images are rep-

resented in terms of matrices full of intensity values, we can use computation to process and

analyze an image or an array of images.

1.2. Background 5

Figure 1.2: An RGB image of a dog that shows the following RGB matrix which has 3 separate
matrices, one for the red channel, one for the green channel, and one for the blue channel. If
the image was a grayscale image, there would only be one channel.

1.2.2 Details about CNN

In image processing, computers deal with images in terms of pixels. These pixels are numbers

that the computer knows how to read and understand (can be seen in the matrices in Figure 1.2

on the right). These numbers are known as intensity levels and they are usually arranged in a

matrix like fashion with rows and columns. Images can vary from small images of 128 × 128

pixels to larger images of, say, 2048 × 2048 pixels. Images themselves can also have up to

3 channels (for red, blue, and green channels) or alternatively, if the image is in grayscale,

there is only 1 channel. When using a neural network on an image, it accounts for just the

raw data (pixels) for the network to analyze and learn about the image. The larger the image,

the more time is required to process the image. Alternatively, if the neural network is fast and

efficient with the usage of good algorithms, the computation required to analyze the image can

be greatly reduced. Having good hardware can also reduce computation time but taking this

route is expensive.

Convolutional neural networks (CNN) are many filters or kernels that are usually small in

size (3 × 3, 5 × 5, 7 × 7, etc.) that are computed on top of the input image to produce feature

maps. These filters slide through the image from left to right, top to bottom with a term called

stride. The stride is just how many pixels the kernel moves within the image. Once the filter

moves through the image, it creates an array of feature maps. These feature maps are matrices

6 Chapter 1. Introduction

of numbers that correspond to the image’s features such as edges, or shapes. These feature

maps keep going through the network with the help of other layers like the pooling layer, or

the activation layer until it reaches the end where normally the last couple of layers are the

fully connected layers which help with classification. See Figure 2.12.

Figure 1.3: An input image of a dog getting fed into a convolution process, which is just a
matrix multiplication operation done on the original input image to produce the output image.
Here, the filter bank finds lines within the image and outputs the lines found from the original
image.

From Figure 1.3, we can see a simple convolutional process which happens within the

CNN. Different convolutions can happen throughout a CNN and during the training time, these

filters are “learned” by the neural network through many rounds iterations or epochs. Through

backpropagation, these filters will be updated through training in order to give a greater re-

sponse of finding such features. Backpropagation is the operation of computing the error

throughout the network and its goal is to reduce the error, and in turn, increase the accuracy

of the network. During training, if the loss function begins to increase, that signifies that the

model is starting to overfit on the dataset. Overfitting is the term used to describe a model

training on a dataset where it can correctly identify the classes within the training set, but when

new data appears, the model struggles to identify the class.

When the convolutions compute on the input image, the feature maps produced detect

low level features at first and then show higher level features the deeper the network is. For

example, in the first layer, the feature maps learned are usually detecting features like edges.

As the layers go down, these edges found become corners, and eventually can become basic

1.2. Background 7

shapes. As the pattern progresses, the feature maps will start to draw out classes that resemble,

for example, a picture of a dog’s face. It is important to note here that in the early stages of the

CNN, edge detection is commonly found first. This can be seen in [26]. This thesis is to find

the link between Gabor filters and using them in the first layer of a CNN because Gabor filters

are very good at detecting edge-like features (Figure 1.1).

Zeiler’s DeConvNet is essentially a backwards-flowing CNN [27] [26]. They produce im-

ages of the feature maps that have been learned within each of the layers from a modified

AlexNet (Figure 2.12). In the first layer of this figure, you can see that the CNN learns about

edges. It is very common for a CNN to learn about edges as a low level feature. As the net-

work progresses, more complex features are learned such as corners and arches, to shapes, and

patterns, which can also be seen from the figure previously mentioned.

The important piece here is that Gabor filters already look like the features that the CNN

learns within the early layers, if not just the first (Figure 1.6). These filters will be described in

the next section. With this observation, researchers have been interested in the usage of Gabor

filters with CNNs. There have been useful studies found that show and prove the efficiency of

using this filter. A typical scenario of using Gabor filter is that instead of the CNN “learning”

their own filters (which may take some or many epochs) it replaces the learning phase by

substituting the Gabor filter bank in the first layer of a CNN. This results better efficiency of

the network and reduces the training time [19] [16] since we are not training and consequently

learning from large networks or alternatively taking weights from a pre-trained network like

ImageNet. Training time for ImageNet takes a lot of resources and many hours of training time

and taking shortcuts, like inserting the Gabor filter bank in layer 1, can help cut down training

time.

1.2.3 Gabor Filter

The Gabor filter was named after Dennis Gabor in 1946 [4]. A Gabor filter is a type of bandpass

filter which computes on a range within a frequency to accept or reject computations done on

8 Chapter 1. Introduction

the filter. The Gabor filter is used for finding different textures, edges, and feature extractions

and is found from using a Gaussian kernel function that is modulated by a sinusoidal wave.

complex

g(x, y; λ, θ, ψ, σ, γ) = (−
x′2 + γ2′y′2

2σ2) exp(i(2π
x′

λ
+ ψ)) (1.1)

real

g(x, y; λ, θ, ψ, σ, γ) = (−
x′2 + γ2′y′2

2σ2) cos(2π
x′

λ
+ ψ) (1.2)

imaginary

g(x, y; λ, θ, ψ, σ, γ) = (−
x′2 + γ2′y′2

2σ2) sin(2π
x′

λ
+ ψ) (1.3)

where

x′ = x cos θ + y sin θ (1.4)

and

y′ = −x sin θ + y cos θ (1.5)

The Gabor filter’s complex equation given above (Equation 1.1) shows the combination of

the real and imaginary parts of the waveform (Equations 1.2 and 1.3). In Equations 1.4 and

1.5, these are what control the Gabor filter’s center frequency which show the highest response

of the filter. The power spectrum of the Gabor filter is made of 2 impulses of a sine wave and a

Gaussian. When we multiply these in the spatial domain, it is also known to be a convolution

in the frequency domain. Due to the uncertainty principle which says that we cannot know

the frequency of a particle if we look at the particle within a snapshot of time (or vice versa),

1.2. Background 9

we cannot accurately measure the its counterpart. Using this notion, the complex Gabor filter

equation (Equation 1.1 compromises the localization in the time and frequency domain [3].

Within the filter, it uses many parameters that can be tuned and changed to find and extract

information. These parameters each offer their own attribute to the filter and apply different

results to the image. Using the OpenCV library, we can parameterize the filter with the follow-

ing variables described below. With so many parameters it would be hard to find a solution for

small or large datasets.

Gabor Kernel Size, ksize

The ksize is the size of the kernel of the Gabor Filter that is specified by the user within the

OpenCV library. From Figure 1.4, we can see that with smaller kernels, the images appear

to find certain textures, while having larger kernels, seems to find an large objects. After the

kernel size, ksize = 31, there appears to be no change to the filtered image, which shows some

scaling invariance. Please note that the image input is of size 220 × 220 pixels. Using larger

images may have different results and at some point larger kernel sizes show no differences

in the filtered image. This is because as the filter size gets larger, it almost matches the input

image itself, showing only the Gaussian blurring effect.

10 Chapter 1. Introduction

(a) Original Image (b) 3 × 3 (c) 7 × 7 (d) 15 × 15 (e) 25 × 25

(f) 31 × 31 (g) 51 × 51 (h) 101 × 101 (i) 201 × 201 (j) 301 × 301

Figure 1.4: Given an input image of size 220 × 220 pixels, we change the ksize starting from
row 1 where ksize = [3, 7, 15, 25], and row 2 where ksize = [31, 51, 101, 201, 301] from left to
right. The parameters σ, θ, λ, γ, and ψ are fixed at [3.0, 0.0, 8.0, 0.3, 0.0] respectively.

Standard Deviation (in Gaussian Distribution), σ

Sigma, σ, within equation 1.2 is the standard deviation within the Gaussian function which

controls the spread within the function. From Figure 1.5, it appears that the image gets blurrier.

(a) Original Image (b) σ = 1.0 (c) σ = 2.0 (d) σ = 3.0 (e) σ = 4.0

Figure 1.5: Given an input image of size 220 × 220 pixels, we change σ = [1.0, 2.0, 3.0, 4.0]
from left to right. The parameters ksize, θ, λ, γ, and ψ are fixed at [15 × 15, 0.0, 10.0, 0.5, 0.0]
respectively.

Orientation, θ

Theta, θ, is a state within the sinusoidal wave that shows different orientations of the filter.

Traversing through this variable through the waveform will provide different features and ex-

1.2. Background 11

tractions from the image. In the Figure 1.7, we can see a “circling” effect. The filter is finding

the features and extractions from different angles based off of the theta. This is the most impor-

tant and influential variable. Some features may not be found, or will not be strongly visible

in certain angles, however, other angles may expose such features. By combining the different

extractions of the image, the features can be exposed more. We will see the effect of this later.

As we can see from Figure 1.6 we can see that the kernel appears to be rotating on itself which

will allow the filter to grab and detect edges on certain frequencies of the waveform.

(a) θ = 0 (b) θ = 45.0 (c) θ = 90.0

Figure 1.6: Given an input image of 100 × 100, the Gabor kernel provided is found using
the following parameters σ, λ, γ, and ψ that are set to [σ, 10.0, 0.5, 0.0] respectively, where
σ = 0.56λ [18].

12 Chapter 1. Introduction

(a) Original Image (b) θ = 0 (c) θ = 18 (d) θ = 36 (e) θ = 54

(f) θ = 72 (g) θ = 90 (h) θ = 108 (i) θ = 126 (j) θ = 144

(k) θ = 162 (l) θ = 180 (m) θ = 198 (n) θ = 216 (o) θ = 234

(p) θ = 252 (q) θ = 270 (r) θ = 288 (s) θ = 306 (t) θ = 324

(u) θ = 342 (v) θ = 360

Figure 1.7: Given an input image of size 220 × 220, we change the theta starting from
row 1 where θ = [0, 18, 36, 54], row 2 where θ = [72, 90, 108, 126, 144], row 3 where
θ = [162, 180, 198, 216, 234], row 4 where θ = [252, 270, 288, 306, 324], and row 5 where
θ = [342, 360] from left to right. The parameters ksize, σ, λ, γ, and ψ are fixed at [15 ×
15, 3.0, 10.0, 0.5, 0.0] respectively. Notice that the image is “rotating” around the center point
of the image.

1.2. Background 13

Wavelength of Sinusoidal factor, λ

Lambda, λ controls the size of the wavelength within the sinusoid. This controls the width of

the bars, from the Gabor filter. Having a larger λ will have a wider bar, while a lower value will

result in a more narrow bar. As a general guideline, the wavelength value should be smaller

than one fifth of the input image’s size. From the following Figure 1.9, we can see that as λ

gets to a larger value, the image becomes more clear. It appears less segmented due to the filter

being larger. We can see in Figure 1.8 that as λ increases, the kernel becomes larger [18].

(a) λ = 5.0 (b) λ = 10.0 (c) λ = 15.0

Figure 1.8: Given an input image of 100 × 100, the Gabor kernel provided is found using
the following parameters σ, θ, γ, and ψ that are set to [σ, 0.0, 0.5, 0.0] respectively, where σ =

0.56λ [18].

(a) Original Image (b) λ = 3.0 (c) λ = 4.5 (d) λ = 6.0 (e) λ = 9.0

Figure 1.9: Given an input image of size 220 × 220, we change λ where λ = [3.0, 4.5, 6.0, 9.0]
from left to right. The parameters ksize, σ, θ, γ, and ψ are fixed at [15 × 15, 3.0, 0.0, 0.5, 0.0]
respectively.

Ellipticity or Spatial Aspect Ratio, γ

Gamma controls the height of the filter. As the value gets lower, the filter approaches the size

of a pixel, while a larger value will span the filter to the size of the image. Figure 1.11 gets

less blurrier the higher the value. This resembles the kernel behaviour in Figure 1.10 where

14 Chapter 1. Introduction

the kernel size is smaller in height as the value increases. This would mean that as the kernel

slides through the image, more information can be gathered since the window is sliding more

often.

(a) γ = 0.5 (b) γ = 1.0

Figure 1.10: Given an input image of 100 × 100, the Gabor kernel provided is found using
the following parameters σ, θ, λ, and ψ that are set to [σ, 0.0, 10.0, 0.0] respectively, where
σ = 0.56λ [18].

(a) Original Image (b) γ = 0.2 (c) γ = 0.4 (d) γ = 0.6 (e) γ = 0.8

Figure 1.11: Given an input image of size 220×220, we change γ where γ = [0.2, 0.4, 0.6, 0.8]
from left to right. The parameters ksize, σ, θ, λ, and ψ are fixed at [15 × 15, 3.0, 0.0, 10.0, 0.0]
respectively.

Phase Offset, ψ

Psi, ψ, is usually not used, however, it still has some uses. As you can see from Figure 1.12,

the kernel “bands” are shifting either left or right. Because Gabor filters are used as a bank of

filters, finding the number of filters in the bank generally nullifies off-setting the frequency of

the sinusoidal.

1.2. Background 15

(a) ψ = 0.0 (b) ψ = 180.0 (c) ψ = −90.0 (d) ψ = 90.0

Figure 1.12: Given an input image of 100 × 100, the Gabor kernel provided is found using
the following parameters σ, θ, λ, and γ that are set to [σ, 0.0, 10.0, 0.5] respectively, where
σ = 0.56λ [18].

(a) Original Image (b) ψ = 1.0 (c) ψ = 2.0 (d) ψ = 3.0 (e) ψ = 4.0

(f) ψ = 5.0 (g) ψ = 6.0 (h) ψ = 7.0 (i) ψ = 9.0 (j) ψ = 12.0

Figure 1.13: Given an input image of size 220 × 220, we change ψ where ψ =

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12.0] from left to right. The parameters ksize, σ, θ, λ, and
γ are fixed at [15 × 15, 3.0, 0.0, 10.0, 1.0] respectively.

1.2.4 Relationship between Gabor Filter and CNN Initialization

Because the Gabor filter is able to find edges and features at different frequencies, the Gabor

filter can be used as a filtering method for datasets or to the extent of using them within the

CNNs since they share the same behaviour of extracting such features. The large advantage

of using Gabor filters is that the CNN does not need to learn the Gabor filter but instead is

just given the filter as a starting place. This implies that the network can save training time

since the network has a strong starting place. Note however, that this benefit in training time

16 Chapter 1. Introduction

may not apply in all datasets, since the search process required in finding the right Gabor filter

parameters can sometimes swamp the savings in training time.

Since AlexNet, researchers have been trying to find many ways to improve the speed and/or

accuracy of these networks. There are many different ways that a CNN can be improved upon.

Techniques and strategies such as pre-filtering images before feeding the data into the CNN

[10], altering layers or changing layer structures such as dropout layers or pooling layers [7],

finding ways to decrease or increase the number of parameters or finding parameters that allow

a CNN to converge efficiently, using and/or manipulating different types of filters (static or

dynamic).

With the rise in usage of Gabor filters, we will discuss the idea of using and manipulating

Gabor filters within the first layer and expanding to other layers within a network.

New strategies such as dropout [7] [12] have been used in increase accuracy for CNNs.

Dropout is a tool used when training CNNs to drop dependencies between neurons in the

network. When these dependendices are dropped, the CNN is less likely to overfit on its

training data. Overfitting is when the model accuractly predicts its training data but when

exposed to unseen data, the CNN struggles or fails to identify the image. New structures of

CNNs were formed based off of AlexNet and eventually formed new networks of their own,

such as ResNet [6]. Researchers have been trying to find new ways for improving neural

networks using different and new initialization methods. The first paper linked to Gabor filters

within neural networks was created by Caldern et. al. [2]. Their proposed network was very

similar to a typical AlexNet [12] whereas the biggest change was replacing the initial (first)

layer with a Gabor layer. By including their ’boosting’ method, they had achieved a 0.68%

misclassification accuracy; impressive for a network created in 2003.

For the next 14 years, there was unnoticed research done using Gabor filters within CNNs.

Then came Mr. Sarwar in 2017 [19] who found and rediscovered that using Gabor Filters

within the CNN architecture is beneficial by obtaining similar results in terms of accuracy with

a large benefit of being faster computationally and more efficient according to their efficiency

1.3. Goals 17

algorithm [19]. Ozbulak in 2018 [16] used Gabor filters with the commonly tested MNIST,

CIFAR-10, and CIFAR-100 datasets (Section 3.1). His results using a basic AlexNet-like CNN

architecture scored 99.25%, 75.73%, and 28.55% test accuracies respectively. In comparison,

they had compared their results to a common initialization method for their first layer using the

Xavier distribution and the resulting accuracy they obtained had scored higher than the Xavier

distribution method [16].

Ozbulak [16] created his Gabor filter bank using a grid search method spreading the Gabor

filters across a range of the parameters (σ, λ, θ, γ, ψ) across 96 filters, his simple grid search

did not fill every possible variation, but was enough to provide a boost in training and testing

accuracies. This gave insight on whether we can improve once more that the Gabor filter can

be tuned further by tightening the ranges of the parameter intervals.

As a solution to improve on the Gabor filter initialization, this thesis is about finding the

ideal parameterization of the Gabor filter, finding ideal ranges of these parameters, and ex-

plaining how each parameter impacts the results. Additionally, instead of using the grid search

method for the Gabor filter, by using what Bergstra found [1], we will describe a simple method

for randomizing the distribution of the Gabor parameters to see whether randomization of the

Gabor filter bank is an improvement.

1.3 Goals

In this thesis we will show the following:

1. Confirm that the Gabor filter as a substitution for the first layer is powerful enough to

extract features in a dataset.

2. Show the difference between using a simple or complex dataset using the Gabor filter

bank in the CNN as the network of choice. We design experiments to include changing

how many filters we include for the Gabor filter bank for the first layer.

18 Chapter 1. Introduction

3. Show how each parameter within the Gabor filter impacts the training within MNIST

and CIFAR-10. The parameters, θ, ψ σ, λ, and γ can be tuned but we show they must be

linked to a range. We show that the Gabor parameters have independent effects during

training.

4. Show that the Gabor filter bank used in the CNN’s first layer is just as powerful as

training with a non-Gabor filter bank CNN.

5. Show that the Gabor filter bank inserted in the first layer of a CNN is able to train faster

in the early phases of training than other notable methods like an Xavier initialization for

layers in the network.

6. Show the difference between using a random-search or a grid-search for the Gabor filter

bank and how it can be used within a CNN. Show how using the initialized Gabor filter

bank can train on multiple datasets.

7. Show how dropout impacts the CNN using a Gabor filter bank in the first layer for a

CNN.

Chapter 2

Related Work

2.1 Brief History of CNN Model Breakthroughs

This section will describe some of the known CNN structures that have improved the error rate

of analyzing ImageNet beginning from 2012 to 2018. The networks will be briefly summarized

and described to point out the main contribution to a better neural network structure that we

use today for image processing.

The first notable CNN implemented to handle very large datasets (ImageNet) was called

AlexNet which was created by Alexander Krizhevsky. He and his team gave new meaning to

CNNs with his outstanding win for the ILSVRC-2012 challenge with a top-5 error of 15.3%.

A top-5 error rate is the rate at which the labelled image is classified correctly within 5 predic-

tions. Having a lower error rate is better. Krizhevsky and his team were able to do this through

new breakthroughs such as the use of dropout layers [12], using rectified linear units (ReLU)

instead of typical tanh functions for neuron activations, and data augmentation techniques in

order to reduce overfitting in their model.

For their dropout layers, they found that it was most effective when using the dropout

layers towards the end of their network. In the first and second fully connected layers of their

network, it was used with a 50% probability to zero out hidden neurons. For a neuron to

19

20 Chapter 2. RelatedWork

become activated, it was found that by using the rectified linear units (ReLU) instead of the

equivalent function tanh, training times could be reduced by up to factor of 4 as they have

shown [12]. A ReLU looks like the tanh function that has mapped all negative values to 0,

while positive values are mapped to the same positive values. With their data augmentation

techniques, they created duplicate images from translations, simple horizontal reflections, and

color calibrations on images. This allowed their model to achieve a better top-5 error rate by

about 1%. These newer techniques used lead them to receive first place in their competition

beating the second place’s top-5 error rate of 26.2%.

Figure 2.1: Activation functions of a Sigmoid, tanh, and ReLU that are used after each convo-
lutional layer within a CNN.

Figure 2.2: AlexNet architecture [12].

CNNs did not really become feasible until this breakthrough. This paper was likely the

foundation or beginning point where CNNs were finally fast and/or efficient enough for people

to use. The error rates do not seem to sound impressive by today’s standards but AlexNet was

2.1. Brief History of CNN Model Breakthroughs 21

noted with praise because of the error rate gap between previous models versus the convolu-

tional neural networks. AlexNet can be thought of as the beginning of CNNs for this reason.

Networks created and modified in later years are using AlexNet as the foundation of where to

start. As we will see in other works, either slight modifications or newer breakthroughs will be

used on top of what AlexNet architecture.

It is important to note that with new techniques, it can drastically reduce error rates of such

large datasets. Since then, researchers have been improving and creating new architectures that

were based off of the AlexNet while using these new techniques or altering them.

Lin, Chen, and Yao [14] proposed the idea of creating small networks within the CNN

layers in 2013. Specifically, they claimed that providing the layers within a typical CNN with

another network, which was an MLP, resulted in faster and better scoring benchmarks on the

datasets of CIFAR-10. CIFAR-100, and MNIST. Their claim was that using typical CNNs’

simple linear models do not provide enough feature extractions, which they referred to as

abstractions. It was better to provide a non linear model on top of the feature extraction part

of the layers to provide better results. They created what they called “Network in Network” or

NIN which adds multiple non-linear activation functions that is mapped from a local patch’s

input. The MLP used shared all its information for all of the local receptive fields of the input.

Figure 2.3: NiN multilayer perceptron (MLP) [14].

With new techniques to work around or with CNNs, training times can result in better

22 Chapter 2. RelatedWork

scoring accuracy and speed for completion of training. The authors who created NIN reinforced

that using dropout will reduce overfitting and increase accuracy of training data. It is worth

noting that feature extraction is very important for the performance of the network and how we

find these features can make a very large impact on the end result. The authors claimed that

feature extractions are generally non-linear and by using non-linear filters over linear filters,

higher abstractions could be found. Higher abstractions are better for the CNN overall since it

extracts more information and different variations of the input.

Gabor filter are used to find different variations of the same input map. The Gabor filter as

described previously can extract the input space at different angles which can provide features

that linear filters may not all see. Although linear filters can extract information, one must use

many linear filters to find the variations of an input.

Lin, Chen, and Yao [14] stated that using non-linear functions on the inputs result in higher

abstractions because the abstractions found are variations of the input. Using a Gabor filter on

top of this (or replacing these non-linear functions) is likely to produce these higher abstrac-

tions because of the nature of the Gabor function. This is a promising find that Gabor filters

can naturally produce such variations and is likely to work well with CNNs’ inputs since they

can be quite non-linear.

Sermanet [20] furthered AlexNet by implementing what they called a sliding window over

multiple scales throughout the network. Submitting their network, that they called OverFeat,

to the 2013 ImageNet challenge won them first place for localization and detection, and fourth

place for classification. Their resulting top-5 error rate was 14.2% in the competition and post

competition after some minor tweaks, resulted in a 13.6% top-5 error rate.

Sermanet focused on their novel idea of sliding a window at multiple scales. Although,

not a new invention for image processing, it was never used in CNNs since OverFeat. The

sliding window is essentially a linear filter applied to the entire image. This filter is then used

at multiple scales to provide the network with more images. Another novelty they used was

the idea of finding the areas of where objects are located and provide a bounding box over

2.1. Brief History of CNN Model Breakthroughs 23

the region. Combining both of the ideas mentioned provided the network a large amount of

evidence for their training and testing. The network was very similar to the original AlexNet

using the same number of layers, and the dropout novelty to reduce overfitting.

Figure 2.4: Examples of bounding boxes used from OverFeat [20]

One year later after seeing the ground breaking AlexNet reach a high scoring classification

on a very large network of over a million images of a thousand classes (ImageNet), Over-

Feat focused on improving the architecture just shortly after. Using a similar architecture as

AlexNet, they applied ideas brought from the past to improve the network’s accuracy. Because

there were more operations done due to the sliding window at multiple scales [20], it did not

necessarily speed up the network, but it did improve the accuracy, i.e., the top-5 and top-1 error

rates. This change to improve the accuracy was done internally within the CNN for each of

24 Chapter 2. RelatedWork

the layers but it did mention that by helping isolate specific objects within the data using these

bounding boxes, the network was able to compute on better data after being pre-processed.

The idea of pre-processing such data reduced the computational complexity and resulted in a

lower scoring accuracy.

With OverFeat’s novel approach to using a sliding window over multiple scales throughout

the network and applying bounding boxes to objects within an image, it increased the accuracy

of the network winning them top places in the 2013 ImageNet challenge. By finding such ob-

jects with their bounding boxes, computation throughout the network done on these bounding

boxes allowed for lower scoring top-5 and top-1 accuracy.

Simonyan and Zisserman in 2014 [22] dwell into the idea of having even deeper nets than

the previous winners of the ImageNet competition. The main contribution that these authors

have done was to find whether an increased amount of layers within a network resulted in a

better performing network. It is worth noting that this architecture scored first in localization

and second in classification for the 2014 ImageNet challenge. To add to their contribution, they

also found that by using a smaller 3× 3 convolutional filter (or receptive field) across the entire

network, the network had performed better as well. Although the amount of layers within their

network increased the number of parameters, it was only a mere 8% increase from 11 layers to

19 layers (a difference from 133 million parameters to 144 million parameters.

To keep their architecture and novelty focused on just the layering of their convolutional

neural network, they implemented their architecture that was similarly structured to previous

state of the art winners of the ImageNet competition. As well, the training and validation

was done in a similar manner. One thing that was noted to reduce the training epochs in

comparison to previous ImageNet winners, was that they used pre-initialized training weights

for their deeper networks. They had used the weights learned from their first network with 11

layers and pre-initialized their other deeper architectures’ first couple of layers and the fully

connected layers.

Their research notes that although increasing or decreasing convolutional filter sizes is not

2.1. Brief History of CNN Model Breakthroughs 25

new, using this method along with deeper networks is. The result of their findings show that by

having more layers with smaller receptive fields, they are able to produce a better performing

network in comparison to the more shallow and larger receptive field networks.

Figure 2.5: A visual representation of VGGNet-16’s architecture.

With a simple idea of changing one aspect of a network’s architecture, they are able to

achieve better performing networks. Simonyan and Zisserman [22] found that by using pre-

initialized layers, the network performed at a faster rate. By changing their initialization strate-

gies, they are able to achieve their results faster and better with their deeper networks. im-

plementing such tactics for initialization seems to lead to either faster training times that also

improve performance.

The result of changing the depth of a convolutional neural network lead to breakthroughs

for top-1 and top-5 error rates. Placing first and second for localization and classification

respectively in the 2014 ImageNet competition using their findings of smaller convolutional

filters (receptive fields) and consequently the initialization strategies implemented have shown

massive improvement over previous state-of-the-art (SOTA) networks used in previous com-

petitions.

Furthering the research done on deep neural networks, Szegedy [24] focused on the idea of

even more layers in their network, while also implementing Lin’s work for having a network in

26 Chapter 2. RelatedWork

a network. Their main goal with their network, which they called GoogLeNet (aka, Inception),

was to optimize convolutional neural networks such that it reduces the amount of resources

for computation as much as possible. They kept in mind that “in practice, the computational

budget is always finite, [and] an efficient distribution of computing resources is preferred to

an indiscriminate increase of size, even when the main objective is to increase the quality of

results” [24]. What this means is that by focusing on reducing computation, neural networks

can ultimately become better by being faster with less parameters. The GoogLeNet that was

submitted for the 2014 had outstanding results that had 12× less parameters than AlexNet

(submitted in 2012). Not only did GoogLeNet have less parameters, but a higher scoring top-5

accuracy of 6.67%.

The motivation to better networks was the fact that resources, i.e. GPUs, are finite. GPU

architectures have a hard time computing non-uniform, sparse data so Szegedy tried to link

having dense data for their network but at the same time keeping the data sparse in order

to keep parameter numbers down. Dense data is easier to compute while sparse data is more

intensive to compute due to the constant overhead of lookups and cache hits/misses for locating

data. This was the definition of the Hebian principle: neurons that fire together, wire together.

Combining this with “Inception” modules created the GoogLeNet.

The inception module is what allowed GoogLeNet to reduce their parameters. By clustering

local data with different filter sizes and reducing the dimensionality (when needed), the network

was able to grow at each stage without having a blow-up in computational complexity. Using

the filter sizes of 1×1, 3×3 and 5×5 (by designer’s choice) for local regions to larger patches,

were used to avoid patch alignment issues. It was found that by using 1 × 1 filter reduction

before the more expensive 3 × 3 and 5 × 5 convolutions, the complexity was reduced while

keeping data as sparse as possible.

2.1. Brief History of CNN Model Breakthroughs 27

Figure 2.6: GoogLeNet’s architecture [24]

Following through with previous networks novelties, GoogLeNet also found that dropout

was used throughout and was essential to their networks high-scoring results. Concurrently,

using Lin, Simonyan and Zisserman’s VGG-Net idea of having a network within a network

and having more layers respectively, gave insight to the inception model of going even deeper

by adding additional layers and modules to the neural network for a deeper and wider network.

Although GoogLeNet did not change anything for initialization strategies, it was worth

noting that their network beat the R-CNN done by [5], where they focused on locating “regions

of interest” and then feeding these regions into a general CNN. There are many areas in which

we can improve the network, whether it is pre-processing data, or within the network itself.

Using different strategies, new novelties and adding them on top of each other only makes

networks better and faster.

Reducing the computation complexity while maintaining similar or better results is the

absolute goal for all researchers finding ways to better CNNs. GoogLeNet has made a good

observation that resources are finite and the real goal isn’t obtaining a high-scoring accuracy

at any cost, but by obtaining these results with minimal resources. By adding more novelties

to state-of-the-art networks and continuing previous architectures, it furthers the speed and

accuracy of such networks. GoogLeNet, as of 2014, furthered research from previous state-

of-the-art networks. As we continue the history of CNNs, new novelties will be added which

will show improvements, whether it is minor or major, but ultimately focusing on reducing

complexity and maintaining accuracy or improvement on accuracy.

With the recent trend for networks to go even deeper, ResNet managed to go from 2014’s

28 Chapter 2. RelatedWork

winner, GoogLeNet, of 22 layers to Microsoft’s ResNet of 152 layers [6]. It was notable that

ResNet won first place for many competitions, most notably the 2015 ImageNet competition

with a top-5 error rate of 3.57%.

The trend to go deeper started with the VGG-Net and was shown promising work that by

adding more layers, networks are able to achieve better error rates. One question arose which

Kaiming He sought to answer was, how much deeper can a network go? They found that

although going deeper did achieve better accuracy, there came to a point where adding more

depth saturated the accuracy.

In a small test Kaiming He ran using their “plain” 34-layer network [6], He showed that it

had a higher training and test error than an 18-layer network. Conversely, with their ResNet

network with the respective layers showed the opposite, where the more layers provided lower

scoring accuracies. To solidify their findings, as they added more layers, the top-5 and top-1

error rates steadily decreased [6].

ResNet is useful because of its intuitive residual layers. These layers allow the input to

“skip” over layers with what they called shortcut connections. This allows the inputs from

each layer the ability to skip over layers and output to the next layer. This process is extremely

useful because it does not add extra parameters or adds computational complexity to their

network. Additional, the parameters (measured in FLOPS(float operations like multiply and

add)) that were used within ResNet was only 18% of VGG-Net-19 (estimated at 19.6 billion

FLOPS). By doing these skips, it allows for smooth propagation in both forward and backwards

directions.

2.1. Brief History of CNN Model Breakthroughs 29

Figure 2.7: A residual module found in ResNet [6]

30 Chapter 2. RelatedWork

Figure 2.8: A comparison between VGGNet-19 and the 34-layer ResNet. The plain ResNet
shows no “skips” being done which is also much slower to converge than the ResNet architec-
ture with these “skips” included [6]

2.1. Brief History of CNN Model Breakthroughs 31

Using the basis of AlexNet up until GoogLeNet as a foundation for improvement, ResNet

was the next step to speed up CNNs. There are still many areas of improvement that researchers

are still finding today for which networks can gain more speed, reduce complexity, and/or

increasing accuracy results. Initialization strategies were not mentioned and were likely not

the focus at all for ResNet which gives this aspect of CNNs a large space to look into. By

reducing the overhead of inputs, it should advance the field of CNNs even further.

The novelty of the residual layers allowed CNNs to improve the error rates for the future

of neural networks. Although Kaiming He ignored any sort of initialization strategy, they used

previous state-of-the-art networks as their basis to improve CNNs. Regardless, by finding a

smoother transaction between layers within the network using their residual layers, it made

CNNs better, and faster.

As the trend to make networks even deeper, DenseNet created networks going up to 250

layers. These deeper networks ultimately reduced training times and with DenseNet’s com-

petitive advantage, reduced a large amount of parameters required to achieve their top-5 and

top-1 error rates. Although it was not a significant improvement for the ImageNet comparison,

it is worth noting that their tests were not optimized and used ResNet’s hyperparameters and

settings to achieve their results in order to directly compare to the previous state-of-the-art. It

was found that although not as accurate, it was more efficient. Smaller datasets used however

have shown that DenseNet excels for reduced parameters and best scoring accuracies.

DenseNet brought forward a similar approach to ResNet where the inputs were able to

feed forward through these “skip connections” (as discussed in ResNet) which were identity

functions that passed inputs along the network without additional computation. DenseNet

differs from ResNet in that each layer is able to skip to all preceding layers in the network.

This is done in order to alleviate the vanishing gradient problem since it was found that by

going deeper within networks, this problem becomes more apparent. Another difference that

DenseNet compares with ResNet is that for all of the skip connections that can occur, the

features learned are concatenated rather than summed. Other advantages of DenseNet are that

32 Chapter 2. RelatedWork

features learned can be reused instead of learning redundant features, and strengthen feature

propagation to ultimately reduce the parameter list. The parameter list can be shortened by a

factor of two times (table 2 of [8]) when comparing to previous state-of-the-art architectures

such as Wide-ResNet, and FractalNet when using the CIFAR dataset.

Figure 2.9: Huang’s architecture of a small DenseNet architecture showing the skips within
each DenseBlock to other layers in the network [8].

Furthering the network by diving deeper in the network for more additional layers resulted

in better scores for the top-5 and top-1 error rates. By combating the vanishing gradient prob-

lem and keeping in mind training efficiency like GoogLeNet, DenseNet became a top performer

in 2017. There was no intent to optimize their network because they directly wanted to chal-

lenge other state-of-the-art networks which leads for room to improve.

2.2 Noteworthy CNN Breakthroughs

This section will describe the most popular breakthroughs used to improve the quality of life of

these CNNs with visualizations, deeper understandings of these networks and also increasing

the training times and accuracy of classifying objects of CNNs.

2.2.1 Dropout

Following up from Hinton’s original paper [12] to help defend their winning model, AlexNet,

dropout was more thoroughly studied to show the effects of dropout. Dropout is the notion

of dropping neurons within hidden and visible layers (including input). This is done by tem-

porarily taking out a neuron along with the inputs and outputs (see Figure 2.10). Dropout can

also be used as a hyperparameter by tuning the rate of dropping these neurons (between 0 and

2.2. Noteworthy CNN Breakthroughs 33

1). The main goal of dropout is to reduce overfitting by breaking up dependencies between the

neurons within the layers which lowers generalization errors.

Figure 2.10: Visually showing how dropout works showing the difference between having
dropout and not having dropout [23].

Multiple test cases were done, from small datasets, like MNIST, to larger datasets like

ImageNet. From these cases, it was found that dropout is a “general technique that is not

specific to any domain” and inherently improves training accuracy by breaking up the co-

adaptation within the hidden layers of the network. By adding in dropout to the network, it

makes each neuron within the layers to become independent on other neurons in the layer(s). It

was shown that adding dropout achieves state-of-the-art results and maximizing these results by

using a dropout rate between D = [0.4, 0.8], however, when used on smaller datasets, the gains

were not as large. As a negative side effect of including dropout, it does add more computation

to train such networks and increases the training time, which brings a trade-off between time

versus accuracy.

Dropout is used as a tool to improve test accuracy, which was a major finding that is widely

used across all state-of-the-art networks in the past and current. Although there is the inher-

ent feature of more training time, the staggering increases in accuracy, especially for larger

34 Chapter 2. RelatedWork

datasets, are more than worth the trade-off.

2.2.2 Visualizing and Understanding CNN

Zeiler and Fergus’ [26] work for creating a visualization technique was found to be very useful

in order to debug their convolutional network. Relating their work to the previous state-of-the-

art in 2012, AlexNet, they found improvements just by identifying the image activation maps

found from their DeConvolutional Neural Network (which they called DeConvNet). This De-

ConvNet sole purpose in this work was to project feature activations back into the pixel space.

To put it simply, a DeConvNet is the reverse of a traditional convolutional neural network

where filters are applied, activations are used (ReLU), and then (optionally) pooling is used.

After studying the images obtained through their DeConvNet, they found multiple findings,

all of which were tested and verified. Zeiler and Fergus found that features learned are not just

random; and that they are indeed “intuitively desirable properties” such as edges, corners, grids,

to faces and other classes as the layers go deeper. Other findings were as simple as looking at

their results and seeing a difference in frequencies that were resolved just by changing strides

to a lower value. In comparison, AlexNet used a stride, s = 4, Zeiler used s = 2, and the filter

sizes from AlexNet used F = 11 × 11, Zeiler used F = 7 × 7).

Another analysis to test for image transformations and the effects lead to great results. They

found that images are less prone to be falsely identified if images are shifted or scaled, however,

images that are rotated have a hard time being identified. It was concluded that features that are

learned are invariant to translations and scaling. Objects with rotational symmetry are invariant

as well [26].

Not only did they use these DeConvNets to study the activations within the network, they

studied occlusions within their tests which randomly cropped and grayed out areas in an image.

They found that if the main (labelled) object is occluded, the probability to correctly guess the

image significantly drops which shows that visualizations correspond to the image structure.

2.2. Noteworthy CNN Breakthroughs 35

Figure 2.11: Zeiler shows how Deconvolution is done from [27].

36 Chapter 2. RelatedWork

Figure 2.12: Visualization of each layers from 1 to 5 of a modified AlexNet [26]. The original
images are to the right of the kernel blocks.

2.3. Initialization Strategies for CNNs 37

Figure 2.13: Visual representations of features learned through each layer organized by the
number of epochs (from left to right [1,2,5,10,20,30,40,64]) [26].

One finding that was very worth going over was when they stated through their tests that

the lower layers of the model can be seen to converge within a few epochs. However, the

upper layers only develop after a considerable number of epochs(40 to 50), demonstrating the

need to let the models train until they fully converge. This is a very good finding because

as we learned through the history of CNNs, there are many ways we can better CNNs and

providing a head start for the network to progress which can definitely lead to better features,

and possibly impact the training time as well. This leads to the question to consider how

important is learning within the first layer and whether earlier layers provide more impact than

later layers.

2.3 Initialization Strategies for CNNs

This section will describe some of the ways researchers have tried to use to improve the learning

phase of training by changing or implementing different ways to initialize the CNN.

2.3.1 Random search for hyper-parameter optimization (2012)

Bergstra and Bengio in 2012 [1] that in general, random hyper-parameter optimization is more

efficient and in most cases more accurate than using a grid search. Grid search is very common

and is still widely used as a safe way to find ideal parameters but the cost to use this safe

method is high computation if the resolution of the parameter list is very fine. Grid search is

easy because it is simple and easy to implement and is relatively reliable in a low dimensional

38 Chapter 2. RelatedWork

parameter space architecture. However, with a larger dimensional space for parameters, grid

search suffers from “the curse of dimensionality”. The reason is because adding parameters

is exponential when it comes to finding the “right” value for hyper parameters. They also

found that when training with a large dimensional space, some of the dimensions, if not most,

are useless and offer minimal results to the final product which in turn takes up time and

computation.

With random search taking random draws from the space input space as a regular grid,

they show that it is not only more efficient, but very simple and easy to implement as well.

They found that even with smaller dimension spaces, random search still exceeded grid search

results in both low and high dimension spaces. The bonus to using random search as well is

that when training with random search hyper parameter optimization, trials done through the

iterations can be asynchronous, and be added or removed without consequence, and testing can

be stopped at any moment. This is very useful in real situations where a power surge (or other

real life issues) fails or more of your trials failed and did not complete.

Through multiple experiments that were done on multiple datasets, Bergstra and Bengio

found that although the trials done with grid search and random search needed many trials

to find a successful accuracy rate, random search competed with a higher score and required

less iterations than grid search. There were only some cases in which random search was

less dominant, but not by a large margin. Keep in mind that they had only tested on what is

considered smaller datasets in reference to large datasets like ImageNet. Perhaps using this

with the Gabor filter bank in [16]’s work, we can see an improvement.

2.3. Initialization Strategies for CNNs 39

Figure 2.14: An example of how Grid versus Random optimization can affect parameterization
[1]

2.3.2 Region Proposed Convolutional Neural Networks (R-CNN)

The R-CNN involves feeding in images that have already been localized and segmented with

bounding boxes and therefore passed “good” data to the neural net. The R-CNN found that

to produce major improvements in accuracy. This can be thought of as another pre-processing

method or initialization method for convolutional neural networks.

In Girshick’s first paper [5], he found that by extracting around 2000 region proposals per

image using selective search and then warping the image by normalizing its dimensions before

feeding into the CNN, it increased the mean average precision (mAP) of the VOC-2012 dataset

by more than 30%, achieving a result of 53.3%. mAP calculates the average of the maximum

precision of different recalls. Precision is the accuracy of an object being correct, while recall

is the rate at which you can find the all of the positive objects. The technique to pre-process

images before feeding into a network is not novel, but Girshick was able to create this region

proposal effectively such that the proposals themselves had a large impact by selecting the most

“right” regions.

40 Chapter 2. RelatedWork

Figure 2.15: High level architecture showing how R-CNN works [5]

In later work, through 2 major iterations, they have reached a new R-CNN which they

called, Faster R-CNN. The improvements were to find a new way to reduce the bottleneck of

such region proposals. After restructuring, they found that by adding common convolutions

to both the region proposals and the convolutional network, they were able to simultaneously

predict objects, score them, and feed them through the network. This change resulted in a new

high-scoring mAP of 70.4% for the VOC-2012 dataset. The best part, is that because of this

change, the average time to process images was about 10ms (compared to 13 seconds on a

GPU from their initial inception, R-CNN) and also used only 300 object proposals, 1700 less

than their original network.

2.3.3 Median Filtering Forensics Based on CNNs

With the recent rise of CNNs since AlexNet, researchers explored using these networks in

order to automatically find features rather than finding them manually. Chen [10] explored

using CNNs alongside median filters to improve the field of forensics analysis. They created a

CNN network that included the median filter as their first layer in their network. The benefits

of using a median filter are for finding non-linearities and preserving edge information–which

Gabor filter does as well. By using the median filter alongside the CNN network, image edges

and textures can be suppressed and minimized which allows the CNN to learn features much

2.3. Initialization Strategies for CNNs 41

easier.

Figure 2.16: Chen (2015) [10] describes this images as (a) an image with a boat that has already
been filtered with the median filter; in (b) showing a new image of a different background; in
(c) showing the boat from (a) cropped into (b). The green regions show the true positives while
false positives are marked in red. In (d) shows the median CNN working well with more true
positives than false positives, while in (e) and (f) showing the Global Local Feature (GLF) and
Auto Regressive (AR) methods with much more false positives than (d).

They ran two experiments in order to show that a median filter fed into a CNN network

results in higher scoring accuracies than without using it. In their first experiment for finding

fingerprints for small and compressed image blocks, it was found that by using their modified

CNN, it improved the detection accuracy by 9.27%, from using a regular CNN with a result

of 77.92% detection accuracy. As a bonus to this experiment, it beat the top 3 state-of-the-

art methods for using median filters. In their second experiment for the cut-and-paste forgery

detection, their method beat two other conventional methods (GLF and AR), shown in Figure

2.16.

42 Chapter 2. RelatedWork

Figure 2.17: Architecture of a median initiated first layer CNN [10]

This new technique to implement a filtering layer for datasets is an ingenious way to isolate

better features within the images. By implementing and modifying conventional CNNs and

adding in the median filter as a first layer, Chen was able to produce better accuracies when

comparing to previous state-of-the-art methods and in multiple experiments. Using Chen’s

ideas of using a pre-determined filter as the initial layer of the CNN, the next sections will

introduce using the Gabor filters within the network, either in one layer or multiple layers.

2.4 CNNs using Gabor Filters

After exploring the major breakthroughs and the history of the CNNs, we will now explore

Gabor variations that have been done on CNN networks. From the previous median filtered

CNN network and the R-CNN network, we can see that images that are filtered for a purpose

and then fed into the CNN can lead to much better results.

In 2003, Caldern [2] proposed networks to explore Dennis Gabor’s filter using CNNs 9

years prior to AlexNet. Caldern proposed an early stage of the CNN architectures to add a

Gabor feature extracting layer as the first layer within their network. They implement a 5 layer

network: the first being their Gabor filter layer, and then alternating subsampling (pooling)

layer and convolutional layers, until the final fully connected output layer. On top of this

proposed GCNN architecture, they implemented a boosting method that considers the best

result among different test cases. The boosting method that was described is another method

like dropout that was useful for the dataset to generalize on test data better. The results showed

2.4. CNNs using Gabor Filters 43

that from using the MNIST training dataset that their GCNN (with their proposed boosting

protocol) achieved a 0.68% error percentage for classifying the incorrect image. This beat

LeNet-5’s results which gave an error percentage at 0.95%.

Figure 2.18: Architecture showing how the Gabor filter was used and implemented [2].

We can see that even in the earlier stages of the development of CNNs, Gabor filters can

have an impact on CNNs. Although there was only a small difference in error percentage,

the CNN architecture’s back in 2003 are not nearly as good as they are in their current state

(i.e. DenseNet, ResNet, VGGNet, etc.). Caldern created this GCNN in order to utilize Gabor

filters benefits of extracting features and empowering these feature detectors through the use

of feeding them through a CNN. Over time, Gabor filters alongside CNNs improved accuracy

and training time.

Sarwar [19] furthered the research of other similar Gabor CNNs by implementing their

own CNN using the Gabor filter in the first and second convolutional layers. The structure of

their GCNN was as follows: 2 convolutional layers, each followed by a sub-sampling layer and

finally ending off with a fully connected layer. Their proposed architecture was using a Gabor

filter bank (which are a set of fixed Gabor kernels) in place of the first layer of their network.

They also tested a variation of their network to include the Gabor filter bank as the second layer

of their network. Their main objective was to find energy savings in terms of computation time

by reducing the complexity of the network by exploiting error resilience.

Backpropagation, gradient computation, and weight updates within the layers are known

to be highly expensive in terms of computation. By replacing the trained layers in the net-

44 Chapter 2. RelatedWork

work with fixed Gabor kernels, it means that the CNN does not have to use these expensive

computation methods within their layers.

Configuration Accuracy

Loss

Energy

Savings

Training Time

Reduction1st Conv.

Layer Kernels

2nd Conv.

Layer Kernels

Trainable Trainable – – –

Fixed Gabor Trainable 0.62% 20.70% 9.47%

Fixed Gabor Fixed Gabor 5.85% 48.28% 42.48%

Fixed Gabor Half Fixed Gabor & Half Trainable 1.14% 34.49% 22.30%

Table 2.1: Sarwar (2017) [19] showing the accuracy loss, energy savings, and training time
reductions from testing on MNIST with 100 epochs using their GCNN architecture with the
first and/or second layers replaced with a Gabor filter bank.

When testing on the MNIST dataset, their GCNN architecture found great improvements

in terms of energy savings and training time reduction, at the cost of a 0.62% accuracy loss.

Using their energy savings calculator that they implemented saved up to 20.70% computations

and reducing the training time by 9.47%. These numbers were generated using the Gabor filter

bank within the first layer of their architecture. Following this test, they proceeded to test using

their first and second layers of their architecture to use the Gabor filter bank. It was found that

although the energy savings and training time was reduced (48.28% and 53% respectively),

the accuracy loss was far greater at 5.85%. They predicted that with a more complex dataset

(i.e. ImageNet), similar numbers would be shown for energy savings and time reduction while

impacting the accuracy loss even further. This can be seen in table 2.1.

2.4.1 Gabor Oriented Filters in CNNs

Figure 2.19: Luan (2017) [15] GCNN architecture showing a 5-layer network.

2.4. CNNs using Gabor Filters 45

Luan [15] focused their work with GCNNs by implementing their Gabor filter bank on the

entirety of the network’s convolution layers as shown in Figure 2.19. Their main goal was

to find a way to reduce the cost of training datasets by either reducing the training time or

the amount of parameters used during the training. The network learns its traditional filters

during the convolution phase and then the learned filters are modulated with a Gabor filter

bank through an element by element product operation. This process creates what they have

called a Gabor of filters (GoF) which are the filters that finds the features within the inputs.

This process does not require additional parameters but enhances the features obtained from

the dataset. Because of this additional GoF, the weight updating process via backpropagation

for the learned filter is the only filter it needs to apply the updates to.

Method VGGNet R-110 R-172 G-R-40 G-R-28 ORN-40 ORN-28

of Parameters 20.3M 1.7M 2.7M 2.2M 1.4M 2.2M 1.4M

Accuracy (%) 95.66 95.8 95.88 96.9 96.86 96.35 96.19

Table 2.2: Luan [15] showing the number of parameters used, and the accuracy from the SVHN
dataset. G is short for GCNN and R is short for ResNet

Their tests were done on multiple datasets that include MNIST, CIFAR-10, CIFAR-100,

SVHN, and more importantly, ImageNet-100. For MNIST, their accuracy using a 3 × 3 Gabor

kernel bank was 0.63% using 0.25M (million) parameters. In contrast, their baseline CNN

scored a 0.73% error rate using 3.08M parameters. For their next test using the SVHN dataset

(table 2.2), the authors provided a modified ResNet using their GoFs applied. Two networks

were created from this: a 28-layer GCNN-ResNet-28 and a 40-layer GCNN-ResNet-40. Both

of these new networks created beat VGGNet and ResNet-110 using less parameters and scoring

a higher accuracy. A similar pattern comes across on the CIFAR-10 and CIFAR-100 datasets

as well as the ImageNet-100 dataset. For more of their results, refer to [15].

Ozbulak in 2018 [16] explored a novel use of the Gabor filter. His objective was to find

whether transfer learning could be replaced by Gabor filter initialization instead. What this

means is that instead of using pre-trained model and transferring the model to an unknown

46 Chapter 2. RelatedWork

dataset then fine tuning it, a Gabor filter bank can play the role of the pre-trained network. It

was described in [25] that the low level features learned in the first layer resemble the Gabor

filter naturally which can also be seen in layer 1 of Figure 2.12. Using this intuition, Ozbulak

created a modified CNN network using a uniform distribution (a sample of a grid search) of

Gabor filters as the first layer within the CNN.

MNIST Training Test

Epoch Gabor Glorot Gabor Glorot

1 87.36 63.01 96.6 94.71

2 97.56 95.85 98.26 97.71

3 98.35 97.55 98.69 98.53

4 98.70 98.18 98.74 98.58

5 98.89 98.54 98.70 98.65

6 99.03 98.71 99.23 98.80

7 99.15 98.90 99.22 99.11

8 99.21 99.03 98.97 98.86

9 99.31 99.13 99.25 99.07

10 99.33 99.20 99.25 99.13

Table 2.3: The following results show the progression of training a custom 5-layer CNN using
either the Gabor filter initialization or the Xavier distribution as the initialization method in the
first layer using the MNIST dataset [16].

2.4. CNNs using Gabor Filters 47

CIFAR-10 Training Test

Epoch Gabor Glorot Gabor Glorot

1 32.44 24.05 45.00 35.95

2 52.50 43.73 59.21 50.28

3 61.77 54.59 62.24 57.59

4 66.72 61.57 66.64 59.10

5 70.60 65.99 69.80 63.54

6 73.36 69.26 70.90 68.93

7 75.62 71.87 73.54 71.51

8 77.33 74.08 74.40 70.92

9 79.26 76.01 74.85 73.34

10 80.50 77.51 75.73 74.22

Table 2.4: The following results show the progression of training a custom 5-layer CNN using
either the Gabor filter initialization or the Xavier distribution as the initialization method in the
first layer using the CIFAR-10 dataset [16].

CIFAR-100 Training Test

Epoch Gabor Glorot Gabor Glorot

1 2.51 0.87 5.06 0.68

2 7.66 2.13 10.16 2.31

3 11.68 2.92 12.72 3.12

4 14.32 4.48 16.03 5.5

5 17.34 7.15 18.49 7.48

6 20.12 8.47 20.71 9.28

7 22.75 10.04 23.45 10.66

8 24.75 11.66 24.33 12.52

9 26.71 13.39 26.64 13.11

10 27.89 14.68 28.55 15.06

Table 2.5: The following results show the progression of training a custom 5-layer CNN using
either the Gabor filter initialization or the Xavier distribution as the initialization method in the
first layer using the CIFAR-100 dataset [16].

His results showed on three different datasets, MNIST, CIFAR-10, and CIFAR-100 that

there was an improvement of approximately 2%, 1.5% and 13% respectively after running for

10 epochs for each dataset. These differences were compared with the Glorot distribution [16].

48 Chapter 2. RelatedWork

It was concluded that Gabor filters are indeed a good replacement for transfer learning. These

results can be seen in the following tables 2.3, 2.4, and 2.5

As we progress through this thesis, we will learn more and describe the architecture of

Ozbulak’s work and his work will be used within our tests to further the usage of Gabor filters.

Chapter 3.3 will define the architecture in detail and describe how Ozbulak created his network.

Chapter 3

Methodology

3.1 Datasets

In this section, we will describe the databases used within the GCNN detailed in Section 3.3.

For each database, we created a training and testing set using either the databases recom-

mended splits (MNIST ,CIFAR-10, CIFAR-100) or a common data split ratio of 70% training,

15% validation, and 15% test sets. The training set we used to train the CNNs and the test set

was used to report the performance of the CNN on unseen data. we used test data performance

to compare the various initialization strategies.

3.1.1 MNIST

The first dataset that will be used and tested on is the MNIST database [13]. This collection of

data is a subset of the NIST database and consists of fixed-sized grayscale images containing

the numerical digits 0 to 9. The images are of size 28 × 28 pixels and have 60,000 training

images and 10,000 test images.

49

50 Chapter 3. Methodology

Figure 3.1: A set of images generated from [13] showing 16 different numerical digits from 0
to 9.

3.1.2 CIFAR-10

The second dataset that will be used and tested on is the CIFAR-10 database [11]. This collec-

tion of data was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The images

are of size 32 × 32 pixels, are in full RGB color (3 channels to operate on), consisting of 10

classes. Each class consists of 6,000 images, for a total of 60,000 images. The training set is

50,000 images, while the test set consists of 10,000 images. Images in the dataset are mutually

exclusive from one another which means that there is no overlap between other classes in the

picture for complete consistency among training.

3.1. Datasets 51

Figure 3.2: Images CIFAR-10 showing 10 different images of 10 different classes [?].

3.1.3 CIFAR-100

The third dataset created by Hinton and Krizhevsky is an extension of the CIFAR-10 dataset,

the CIFAR-100 [11]. The only difference is that there are now 100 classes, where each class

has 600 images for a total of 60,000 images. 50,000 images are for training, and 10,000 are for

testing.

3.1.4 AlexisNet Rock Dataset

The fourth and final dataset that we will use is a custom generated dataset generated by Lei Shu

[21]. The images were collected at Western University from a digital camera and an optical

microscope. This dataset consists of 9 different rock classes for a total of about 80 images per

class. The total amount of images is approximately 700 images. To make up for the very small

dataset, Lei applies image augmentation to the original image. The notion of augmentation for

images is applying translations, rotations, blurring and scaling to an original image to create

52 Chapter 3. Methodology

an entirely new image. These images are added to the dataset which increases the total number

of Lei’s database to 2,233 images. The images were split into a training and testing using a

80%/20% split.

(a) Rhyolite (b) Granite (c) Red Granite

(d) Volcanic Breccia (e) Andesite (f) Peridotite

(g) Limestone (h) Oolitic Limestone (i) Dolostone

Figure 3.3: A simple rock database consisting of 9 different rock types used in AlexisNet
described in Section 3.3.2.

3.2. Gabor Filter Initialization 53

3.2 Gabor Filter Initialization

In this section, we will discuss how the Gabor filter bank was created and how it will be used

within the CNN structure defined in the next section. We will describe the parameters used and

how they are initialized. By default, when using Keras framework, the default initializer for the

convolutional layers is an Xavier (or sometimes referred as Glorot) uniform distribution. When

we are using the Gabor filter initilization, we are using the Gabor filter bank in place of the

Xavier distribution. This method is also used and compared with [16]’s results. Below we will

describe how the Gabor filter bank is created using 2 methods, grid-search and randomization.

As a reference for a visualization, refer to Figure 2.14.

3.2.1 Gabor Grid-Search Initialization

Parameter Range

ksize 5 × 5

sigma [2,21]

lambda [8,100]

theta [0,360]

gamma [0,300]

psi [0,360]

Table 3.1: Ozbulak shows the ranges and values given for the Gabor filter used in his GCNN
[16]. The ksize represents the size of the Gabor filter (or sometimes referred to as kernel). The
sigma represents the standard deviation of the Gaussian envelope. The lambda represents the
wavelength of the sinusoidal factor. The theta represents the orientation of the normal to the
parallel strips of the Gabor functoin. The gamma represents the spatial aspect ratio and spcifies
the ellipticity of the Gabor function. Finally, the psi represents the phase offset between the
bands.

The idea of finding parameters using grid-search is not a novelty, however Ozbulak thought

that it was a good starting place to use it within his custom 5-layer network because of the

natural strength of feature extraction while using the filter. The notion of a grid-search is to

54 Chapter 3. Methodology

find parameters at the cost of brute forcing all possible choices within a test. This can be done

by using a fixed interval within the range of a parameter. For example, in a parameter, p, given

a range, R = [0, 100], and using an interval value I = 1, there would be 100 possible choices

to choose from. The Gabor filter has many parameters that can be tuned, and finding the best

initialization strategy for the CNN can be time-consuming, and can cost a lot of computation.

The parameters that can be tuned are the kernel size, sigma, lambda, theta, gamma, and psi

(ksize, σ, λ, θ, γ, and ψ). These parameters are described in Section 1.2.3. Ozbulak randomly

selected a finite range for each of these parameters listed in table 3.1.

These ranges were used as the minimum and maximum data points using an interval that

was dependent on how many number of filters was used in the first layer. In Ozbulak’s case,

it was 96 filters (or intervals). Therefore, for each parameter, it was divided into 96 equal

intervals and each interval for each parameter created 1 Gabor filter for a total of 96 Gabor

filters. This is important to distinguish because it is not a perfect grid search, but a cheap

method to find the bulk of the grid search. Otherwise, their would not be enough space in the

hardware to store 96 filters with 96 intervals of 5 parameters. Another note to keep in mind is

that the Gabor filter’s parameter’s ranges are dependent on how many filters was used in the

first layer. We use this as a study for comparing Gabor filter bank sizes, F = [32, 64, 96, 128].

In the next section, for each test case, it will describe how many filters were used to initialize

and create the Gabor filter bank.

The grid-search initialization method [16] was used as the preferred initialization method

over transfer learning and was trained on MNIST, CIFAR-10, and CIFAR-100. This Gabor fil-

ter bank was only used in layer 1 because [19] found that there was a small return of improve-

ment for using the Gabor filter in consequent layers and in some cases reduced the performance

of the CNN.

LEI

3.3. Gabor CNN Structure (GCNN) 55

3.2.2 Gabor Random Initialization

Similar to the Gabor grid-search method described above, the random initialization spreads

the parameters values randomly across the ranges per parameter with no specific distribution.

Using the same parameter ranges that [16] had used, we can directly compare whether grid-

search or randomization is better for initializing the CNN. Using what Bergstra and Bengio

had found in their research [1], random-search for parameterization was found to be faster, and

in most cases, more efficient when training a network which we will see in the next section.

Figure 3.4: An example of how grid search versus random search is done for a given parameter.
Grid search will offer a uniformity but can miss certain parameterizations, while randomness
can fill those holes. Here, we can see if we add more density to the search, we can fill more
holes, but will require more resources to do so.

3.3 Gabor CNN Structure (GCNN)

Below we will be describing two different architectures used for different datasets. The Alexis-

Net described is a smaller network with a different architecture, but instead of an Xavier normal

distribution, we will use our Gabor initialization method instead.

56 Chapter 3. Methodology

3.3.1 MNIST, CIFAR-10, CIFAR-100 GCNN Architecture

Similarly to Ozbulak’s architecture [16], we use the same architecture as well for a direct

comparison on whether different initialization methods affect the final results.

The architecture is an AlexNet-like architecture and is as follows: the first layer is a con-

volutional layer that containes 96 filters of size 5 × 5. Each of these filters is then activated by

a Rectified Linear Unit (ReLU). This is perhaps the most important layer in the architecture as

we will change the initialization of this layer from the default Xavier uniform distribution to

our Gabor filter initialization. The second layer is a convolutional layer that has 96 filters of

size 1 × 1 and uses ReLU activation as well. The data then gets passed through a max-pooling

filter of size 3 × 3 with a stride of 2. Once pooled, the data goes through a third convolutional

layer of 192 filters of size 5 × 5. Once again, these channels are activated by ReLU and are

fed into the fourth convolutional layer. The fourth layer has 192 filters of size 1 × 1 and are

activated by ReLU. The data then gets fed through another max pooling layer of size 3 × 3

with a stride of 2. Once pooled, the data gets fed into the fifth convolutional layer where there

are 192 filters of size 3 × 3 and activated by ReLU. Once activated, it gets fed into the sixth

convolutional layer with 192 filters of size 1 × 1 and activated by ReLU. The seventh and final

convolutional layer has 10 filters of size 1 × 1 and is pushed through an average pooling layer

of size 6×6. The output from here is then fed into a fully connected layer using a softmax acti-

vation for classification. Dropout is used during training before the softmax activation (Figure

3.5). All convolutional layers aside from the first layer are initialized with the Xavier uniform

distribution for the parameters. Biases are all initialized with zero. The optimization algorithm

that was used throughout is the stochastic gradient descent (SGD). The chosen hyperparame-

ters for learning rate, momentum and learning rate decay are 0.01, 0.9, and 0.0005 respectively.

The loss function is based off of the Categorical cross entropy.

3.3. Gabor CNN Structure (GCNN) 57

Figure 3.5: Architecture of the GCNN used during training for MNIST, CIFAR-10, CIFAR-
100. C1 to C7 are the convolutional layers, and FC is the fully connected layer. C1 is the only
layer in the network that has the ability to change how it is initialized with either a grid-search,
random, or an Xavier uniform distribution.

As we will see in the next section, the first layer is important in the architecture because

we are able to manipulate the initialization and the number of filters that are used during the

training phase. The number of filters that can be used is important because of how many Gabor

filters are created from it. Recall that we are going to use a grid search versus a random-search

to see whether randomness improves the results from training and/or speeds up the training

process. We also include dropout at the end of the network in some of our tests for most of the

experiments.

3.3.2 AlexisNet GCNN Architecture

From AlexisNet [17], the author performed multiple tests to optimize his small CNN archi-

tecture. In the first experiment, Pascual was determining the optimal number of filters to be

used within the convolutional layers that provided the best results. It was found that having a

smaller number of filters was more optimal as there were less parameters to train and maintain-

ing a higher accuracy over the other tests with larger number of filters.

Using his methodical approach to find his optimal setup, we will be using his latest archi-

tecture that consists of 3 convolutional layers, followed by a fully connected layer. After each

convolutional layer, the data is max-pooled before getting fed into the next convolutional layer.

58 Chapter 3. Methodology

Between each convolutional layer it is activated by ReLU. The pooling layers are all of size

2 × 2 and each of the filter kernel sizes within the convolutions are of size 3 × 3. Before using

softmax towards the end, there is a dropout layer of 50%. Refer to the following Figure 3.6 for

a visual representation of the architecture.

Figure 3.6: Architecture of AlexisNet used during training for his custom dataset described
in Section 3.1.4. C1 to C3 are the convolutional layers, and FC is the fully connected layer.
C1 is the only layer in the network that has the ability to change how it is initialized with
either a grid-search, random, or an Xavier uniform distribution. In the original paper [17], the
initialization method he had used was the Xavier uniform distribution

By using this test, we are able to see how well the Gabor filter performs on a small, custom

dataset, and not just the standard datasets that are readily available. It is also worth noting that

the architecture is not a complete replica of our given architecture, but a much simpler one.

The tests will be done solely based on the first layer with different initialization strategies used.

We will compare the results from using various filter sizes, different Gabor initializations and

dropout, and compare these directly with the author’s results that uses the Xavier distribution

among a fixed filter size, F = 32, in the first layer.

Experiment Model
Training Standard Deviation

Accuracy Loss Accuracy Loss

A

1 layer, 32 filters 0.9363 0.1851 0.0518 0.0184

1 layer, 64 filters 0.9080 0.2499 0.0663 0.1963

1 layer, 96 filters 0.8933 0.2827 0.0207 0.2860

B
2 layer, 32 filters 0.9700 0.0763 0.0262 0.0637

3 layer, 32 filters 0.9960 0.0160 0.0055 0.0195

Table 3.2: We see the results from using Pascual’s network described in Section 3.3.2 to obtain
his results when training on the rock dataset (Section 3.1.4 [17]). The results obtained are the
average of 10 trials using the same hyperparameters in all trials.

Chapter 4

Testing and Results

In this chapter, we design and describe how each experiment will be done, and what results

they should provide. To clear up potential confusions, we are going to describe what each

experiment, test and trial are. In each experiment, there are t number of tests that have n

number of trials and e number of epochs. In the following chapter, the results will be shown

for each section (A, B, C, D, E, F). Each section will describe the experiment, show a summary

of the results, include example plots from tests within the experiment and will conclude with

a discussion. At the end, there will be a summary for all of the experiments and our findings.

All results are rounded to 4 decimal places, and for values that are less than 1/10000, we use

scientific notation (for variance and standard deviation mostly). We use 4 decimal places to

show more precision because in some cases, some of the results taken are similar (i.e., MNIST

results are very close to each other). Please note that the term “uniform” is used as a grid-search

and vice-versa throughout this section.

In the first 2 experiments, we will be exploring each parameter used in the Gabor filter.

We will conclude whether parameters have a larger or lower impact on the CNN. We will also

explore the impact of dropout, and changing the resolution of the parameter space for each

parameter in the Gabor filter.

The next 4 experiments, we will explore using the grid search or the random search initial-

59

60 Chapter 4. Testing and Results

ization methods for the Gabor filter bank that is used in the first layer. Here we test using 4

different datasets with different complexity (colour versus grayscale, small set of classes versus

large set of classes, etc.). The goal here in these experiments is to see how the initialization

affects each dataset and show which method of initialization is better per dataset. We do these

different initializations to see whether if random search is faster than grid search for the Gabor

filter bank used in the CNN.

Following each experiment from C and onwards, we summarize our findings. In each

case, we use a coloured header to classify findings. We and show confirmations with yellow

highlight and new results with purple highlight.

Summary of Experiments

A: Importance of Gabor Parameters Training on MNIST, CIFAR-10

B: Search of a Single Parameter in the Gabor Filter Training on MNIST, CIFAR-10

C: Grid Search Vs. Random Search with Shuffled Datasets Training on MNIST, CIFAR-10, CIFAR-100

D: Grid Search Vs. Random Search with Non-Shuffled Datasets Training on MNIST, CIFAR-10, and CIFAR-100

E: Grid Search Vs. Random Search with a Non-Trainable First Layer

and Non-Shuffled Datasets Training on MNIST, CIFAR-10, and CIFAR-100

F: Grid Search Vs. Random Search with a Simple Rock Database

Table 4.1: A summary of all of the experiments from A to F for this thesis.

4.1 A: Importance of Gabor Parameters Training on MNIST,

CIFAR-10

4.1.1 Experiment Setup

In this first experiment, we describe the architecture of the Gabor filter bank used to see the

impact of each parameter. The Gabor filter bank created will be static across all tests where

each parameter is tested, and changed once per test. For example, in one test, the parameter list

will look like the following: [σ= x, λ= 1, θ= 0, γ= 0, ψ= 0], where x is a static number given

4.1. Experiment A 61

from the closed interval of I = [a, b], which describes the minimum value at a and maximum

value at b of that parameter. This filter generated will be the same across all filters in the Gabor

filter bank. The architecture described in Section 3.3 will be used. Each test trains for 10

epochs for a total of 5 tests. The filter size never changes for this experiment at 96 filters in

layer 1. For CIFAR-10, we introduce more channels (colours) for computation.

The Gabor filter bank will be static for each test and during training, the generated Gabor

filters will be able to learn through training. The datasets used will be shuffled per trial and the

final results will be taken as an average of the trials done. The values chosen are to resemble

the values given from [16] in order to compare with in the upcoming tests. Additionally, we

will be testing how dropout affects the final results. We will test 3 different dropouts of 0%,

25% and 50% (D = [0, 0.25, 0.50]). The parameters selected are based off of [16].

Parameter Interval Chosen Values

Sigma, σ [2, 22] [2, 6, 10, 14, 18, 22]

Lambda, λ [0, 100] [0, 20, 40, 60, 80, 100]

Theta, θ [0, 360] [0, 60, 120, 180, 240, 300]

Gamma, γ [0, 300] [0, 60, 120, 180, 240, 300]

Psi, ψ [0, 360] [0, 60, 120, 180, 240, 300]

Table 4.2: A list of the parameters that can be tuned within the Gabor Filter. The ranges
given are inclusive. For the sake of using an even interval, the ranges are slightly tuned. As a
reminder, Section 1.2.3 describes each parameter within the Gabor filter. Note that for Theta
and Psi, calculating at 0◦ and 360◦ is the same result.

For MNIST, CIFAR-10, and CIFAR-100, the each test will have 10 epochs for 5 trials. As

a reminder, each trial will have the dataset shuffled so that no trial is similar. The number of

Gabor kernels created will be fixed at 96 filters. Each test is done once per parameter change.

For example, in one test run, σ = 2 while other variables in the Gabor filter are fixed. The

next test, σ will be a fixed increment and the other variables are fixed. Each parameter tests

6 different values within the range given and the increments between each test are fixed (for

62 Chapter 4. Testing and Results

example, σ’s given interval I = [2, 22], the values chosen will be I = [2, 6, 10, 14, 18, 22]

inclusive. The tables following this section shows the best results in bold.

Test Case Dropout Ksize Sigma Lambda Theta Gamma Psi

A: Sigma [0,0.25,0.50] 5 × 5 [2,22] 50 0 150 0

B: Lambda [0,0.25,0.50] 5 × 5 10 [0,100] 0 150 0

C: Theta [0,0.25,0.50] 5 × 5 10 50 [0,300] 150 0

D: Gamma [0,0.25,0.50] 5 × 5 10 50 0 [0,300] 0

E: Psi [0,0.25,0.50] 5 × 5 10 50 0 150 [0,300]

Table 4.3: Each tests from A through E listed, one parameter will change while the other
parameters will remain static. Dropout has 3 test cases, D = [0, 0.25, 0.50] while the other
parameters (σ, λ, θ, γ, ψ) changes with 6 evenly divided intervals between the maximum and
the minimum inclusive. Therefore in each test case, we have a total of 18 tests. This experiment
has a grand total of 90 tests.

4.1. Experiment A 63

4.1.2 Results

Sigma, σ

Gabor

Parameters
Dataset Dropout Sigma

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

lambda = 50

theta = 0

gamma = 150

psi = 0

MNIST

0

2 0.9756 0.0797 0.9802 0.0649

6 0.9772 0.0746 0.9790 0.0682

10 0.9783 0.0701 0.9824 0.0576

14 0.9789 0.0695 0.9808 0.0598

18 0.9784 0.0713 0.9785 0.0662

22 0.9780 0.0727 0.9806 0.0631

0.25

2 0.8731 0.3679 0.9715 0.1133

6 0.8867 0.3295 0.9741 0.0975

10 0.8806 0.3295 0.9741 0.1050

14 0.8875 0.3362 0.9737 0.1021

18 0.8897 0.3129 0.9741 0.0900

22 0.8860 0.3242 0.9732 0.0969

0.50

2 0.6686 0.8465 0.9624 0.2138

6 0.6867 0.8187 0.9599 0.2194

10 0.6977 0.7933 0.9626 0.1988

14 0.6829 0.8121 0.9606 0.2073

18 0.6951 0.7923 0.9663 0.1815

22 0.6880 0.7934 0.9604 0.2041

Table 4.4: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the MNIST dataset. The layers are able to learn during training. In this test, σ is the only
variable that is changing in a range given as [2, 6, 10, 14, 18, 22] inclusive. σ changes 6 times
for each different dropout given.

64 Chapter 4. Testing and Results

Gabor

Parameters
Dataset Dropout Sigma

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

lambda = 50

theta = 0

gamma = 150

psi = 0

CIFAR-10

0

2 0.4315 1.5970 0.4320 1.5918

6 0.3618 1.7474 0.3544 1.7667

10 0.4061 1.6529 0.4172 1.6335

14 0.4277 1.6035 0.4295 1.5932

18 0.4335 1.5939 0.4262 1.6137

22 0.4230 1.6151 0.4256 1.6120

0.25

2 0.0975 1.9121 0.3546 1.8238

6 0.2676 1.9656 0.3346 1.8238

10 0.2669 1.9761 0.3401 1.8746

14 0.2770 1.9587 0.3308 1.8690

18 0.2561 1.9932 0.3134 1.9030

22 0.2831 1.9342 0.3498 1.8346

0.50

2 0.1871 2.1287 0.2696 2.0327

6 0.2113 2.0948 0.3019 1.9916

10 0.1679 2.1740 0.2189 2.0988

14 0.1709 2.1768 0.2335 2.1105

18 0.1780 2.1582 0.2448 2.0777

22 0.1582 2.1928 0.2187 2.1346

Table 4.5: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the CIFAR-10 dataset. The layers are able to learn during training. In this test, σ is the only
variable that is changing in a range given as [2, 6, 10, 14, 18, 22] inclusive. σ changes 6 times
for each different dropout given.

4.1. Experiment A 65

(a)

(b)

Figure 4.1: Here we see a different representation of Table 4.4 showing the training and vali-
dation accuracy of the GCNN using MNIST for σ. Each colored bar in the legend shows the
dropout rate used during training.

66 Chapter 4. Testing and Results

(a)

(b)

Figure 4.2: Here we see a different representation of Table 4.5 showing the training and val-
idation accuracy of the GCNN using CIFAR-10 for σ. Each colored bar in the legend shows
the dropout rate used during training.

4.1. Experiment A 67

Discussion

Training and validation accuracy drops when the CNN introduces dropout. We can see that

the error increases, as well, but with dropout, it should workout in the long term in terms

of generalization when training to avoid overfitting the dataset; however, this is not the case.

Overfitting is the result of training a dataset to correctly identify the dataset’s classes, but when

introduced to new external data, the CNN will have a harder time identifying. There appears

to be a very small pattern in terms of improvement where the results become greater as σ

increases and then decreases almost like a Gaussian curve. We can see this in Table 4.4 where

the values increase up until the bolded results and then decreases. This pattern appears in the

MNIST dataset more than the CIFAR-10 dataset. This could be the result of how random the

datasets are, especially when CIFAR-10 introduces colour in their dataset.

Figure 4.3: A test showing the training results per epoch for when σ = 18 and dropout, D = 0,
when using the Gabor filter as initialization in the first layer. In comparison we can see how a
Xavier initialization competes. In this static experiment, MNIST is the dataset being used to
train on. The legend item that says ’vary Gabor’ signifies the results from when σ = 18.

We can see that for a simpler dataset, i.e., MNIST, σ has a low impact on the final re-

sults, but when we introduce colour (CIFAR-10 dataset), we can see that σ has much more

68 Chapter 4. Testing and Results

of an affect. There is no specific pattern that can be seen on the CIFAR-10 dataset. As men-

tioned previously, this is likely due to how random the datasets can appear to the network, or

alternatively, adding colour adds more complexity and makes training harder, more sporadic.

4.1. Experiment A 69

Lambda, λ

Gabor

Parameters
Dataset Dropout Lambda

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

theta = 0

gamma = 150

psi = 0

MNIST

0

0 0.1124 2.3012 0.1135 2.3010

20 0.9784 0.0706 0.9812 0.0608

40 0.9787 0.0697 0.9811 0.0603

60 0.9778 0.0719 0.9762 0.0749

80 0.9783 0.0718 0.9821 0.0582

100 0.9777 0.0724 0.9797 0.0644

0.25

0 0.1124 2.3012 0.1135 2.3010

20 0.8798 0.3488 0.9728 0.1012

40 0.8825 0.3370 0.9747 0.1000

60 0.8753 0.3662 0.9706 0.1165

80 0.8750 0.3582 0.9744 0.0996

100 0.8789 0.3606 0.9706 0.1219

0.50

0 0.1124 2.3012 0.1135 2.3010

20 0.6779 0.8412 0.9624 0.2027

40 0.6907 0.8065 0.9642 0.1946

60 0.6918 0.8102 0.9666 0.1967

80 0.7029 0.7945 0.9629 0.2031

100 0.6894 0.8064 0.9662 0.2002

Table 4.6: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the MNIST dataset. The layers are able to learn during training. In this test, λ is the only
variable that is changing in a range given as [0, 20, 40, 60, 80, 100] inclusive. λ changes 6 times
for each different dropout given.

70 Chapter 4. Testing and Results

Gabor

Parameters
Dataset Dropout Lambda

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

theta = 0

gamma = 150

psi = 0

CIFAR-10

0

0 0.0981 2.3026 0.1000 2.3026

20 0.4055 1.6482 0.4147 1.6396

40 0.4078 1.6541 0.4127 1.6469

60 0.4082 1.6479 0.4041 1.6549

80 0.3989 1.6733 0.3913 1.6904

100 0.3993 1.6659 0.4018 1.6611

0.25

0 0.0975 2.3026 0.1000 2.3026

20 0.2981 1.9014 0.3593 1.7958

40 0.2404 2.0244 0.2921 1.9402

60 0.2547 1.9945 0.3023 1.9145

80 0.2901 1.9168 0.3514 1.8089

100 0.2367 2.0250 0.2883 1.9403

0.5

0 0.0975 2.3026 0.1000 2.3026

20 0.1603 2.2097 0.2167 2.1619

40 0.2093 2.1000 0.3075 1.9852

60 0.1449 2.2081 0.2040 2.1510

80 0.1716 2.1724 0.2328 2.0989

100 0.1736 2.1763 0.2432 2.1038

Table 4.7: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the CIFAR-10 dataset. The layers are able to learn during training. In this test, λ is the only
variable that is changing in a range given as [0, 20, 40, 60, 80, 100] inclusive. λ changes 6 times
for each different dropout given.

4.1. Experiment A 71

(a)

(b)

Figure 4.4: Here we see a different representation of Table 4.6 showing the training and vali-
dation accuracy of the GCNN using MNIST for λ. Each colored bar in the legend shows the
dropout rate used during training.

72 Chapter 4. Testing and Results

(a)

(b)

Figure 4.5: Here we see a different representation of Table 4.7 showing the training and vali-
dation accuracy of the GCNN using CIFAR-10 for λ. Each colored bar in the legend shows the
dropout rate used during training.

4.1. Experiment A 73

Discussion

The highest scoring results here are bolded in Tables 4.6 and 4.7. We can see that the results are

very close to each other for the MNIST dataset and sporadic once again like the σ results for

the CIFAR-10 dataset. For both of the datasets, λ tends to be the best between [40, 80]. When

dropout is introduced like σ, we can see that the results drop in performance in both datasets,

but drops more significantly for the CIFAR-10 dataset.

Figure 4.6: A test showing the training results per epoch for when λ = 60 and dropout, D = 0,
when using the Gabor filter as initialization in the first layer. In comparison we can see how a
Xavier initialization competes. In this static experiment, CIFAR-10 is the dataset being used
to train on. The legend item that says ’vary Gabor’ signifies the results from when λ = 60.

There are no patterns that can be extracted from these results. One thing we can learn from

using λ is that when λ = 0, we can see from the results that a 0 value should never be used. The

network has trouble achieving to learn when there is no value given to lambda for both MNIST

and CIFAR-10. This is likely due to the 2-D formula given for the Gabor filter in Section 1.2.3,

where λ must be a value greater than 0. Otherwise, the resulting formula should not function

at all. Due to the dataset being shuffled in CIFAR-10, the results for λ has a harder time to be

consistent but the results are all reasonably within a range that shows no significant impact on

74 Chapter 4. Testing and Results

the results as a whole.

Theta, θ

Gabor

Parameters
Dataset Dropout Theta

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

gamma = 150

psi = 0

MNIST

0

0 0.9787 0.0702 0.9803 0.0634

60 0.9720 0.0940 0.9767 0.0785

120 0.9749 0.0835 0.9771 0.0737

180 0.9783 0.0711 0.9794 0.0651

240 0.9732 0.0886 0.9777 0.0715

300 0.9736 0.0885 0.9756 0.0777

0.25

0 0.8883 0.3299 0.9753 0.0954

60 0.8627 0.4016 0.9682 0.1283

120 0.8773 0.3581 0.9704 0.1100

180 0.8839 0.3341 0.9743 0.0947

240 0.8410 0.4330 0.9671 0.1358

300 0.8715 0.3753 0.9714 0.1149

0.5

0 0.7017 0.8104 0.9657 0.2046

60 0.6770 0.8434 0.9557 0.2539

120 0.6579 0.8815 0.9610 0.2402

180 0.6894 0.8132 0.9615 0.2190

240 0.6769 0.8273 0.9651 0.1973

300 0.6593 0.8813 0.9602 0.2362

Table 4.8: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the MNIST dataset. The layers are able to learn during training. In this test, θ is the only
variable that is changing in a range given as [0, 60, 120, 180, 240, 300] inclusive. θ changes 6
times for each different dropout given.

4.1. Experiment A 75

Gabor

Parameters
Dataset Dropout Theta

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

gamma = 150

psi = 0

CIFAR-10

0

0 0.4106 1.6504 0.4199 1.6226

60 0.4579 1.4883 0.4697 1.4493

120 0.4666 1.4663 0.4751 1.4520

180 0.3564 1.7564 0.3594 1.7467

240 0.4775 1.4377 0.4877 1.4192

300 0.4631 1.4785 0.4704 1.4620

0.25

0 0.2435 2.0116 0.2992 1.9358

60 0.3141 1.8347 0.3910 1.7004

120 0.3241 1.8053 0.3932 1.6748

180 0.2374 2.0302 0.2780 1.9829

240 0.3330 1.7656 0.4052 1.6456

300 0.3245 1.7883 0.4016 1.6699

0.5

0 0.1547 2.2069 0.1984 2.1633

60 0.2317 2.0155 0.3254 1.8722

120 0.2352 1.9988 0.3352 1.8672

180 0.1626 2.1864 0.2171 2.1262

240 0.2400 1.9741 0.3418 1.8409

300 0.2271 2.0102 0.3196 1.8627

Table 4.9: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the CIFAR-10 dataset. The layers are able to learn during training. In this test, θ is the only
variable that is changing in a range given as [0, 60, 120, 180, 240, 300] inclusive. θ changes 6
times for each different dropout given.

76 Chapter 4. Testing and Results

(a)

(b)

Figure 4.7: Here we see a different representation of Tables 4.8 showing the training and val-
idation accuracy of the GCNN using MNIST for θ. Each colored bar in the legend shows the
dropout rate used during training.

4.1. Experiment A 77

(a)

(b)

Figure 4.8: Here we see a different representation of Table 4.9 showing the training and vali-
dation accuracy of the GCNN using CIFAR-10 for θ. Each colored bar in the legend shows the
dropout rate used during training.

78 Chapter 4. Testing and Results

Discussion

When we tune θ for the MNIST dataset, and when we include dropout, the results tend to

drop. We can see that there is no pattern that we can recognize and the results are very close

to one another. It appears that when θ = 0, it shows the highest results in MNIST and when

θ = 240 for CIFAR-10, the results are the highest. Perhaps due to the complexity of multiple

channels, rotating the filter (example in Figure 1.7) for one channel is much easier to obtain

than rotating for 3 different channels (like in CIFAR-10 dataset). This could also mean that

when using different angles of the Gabor filter, CIFAR-10 reacts more, especially because the

objects within the images are not just numbers but cars, animals, buildings, etc.

Figure 4.9: A test showing the training results per epoch for when θ = 0 and dropout, D = 0.25,
when using the Gabor filter as initialization in the first layer. In comparison we can see how a
Xavier initialization competes. In this static experiment, CIFAR-10 is the dataset being used
to train on. The legend item that says ’vary Gabor’ signifies the results from when θ = 0.

In both datasets, MNIST and CIFAR-10, the results are random as we increase θ. We can

say the same as σ and λ where the parameter does not greatly affect the results so long as the

values exist. Due to the nature of the Gabor filter, by rotating the Gabor filters, we can extract

different features at each frequency which is believed to be why the Gabor filter is said to be

4.1. Experiment A 79

a good alternative from transfer learning [16]. The results drop the same from the previous 2

tests with σ and λ for both datasets.

80 Chapter 4. Testing and Results

(a) θ = 0 (b) θ = 60

(c) θ = 120 (d) θ = 180

(e) θ = 240 (f) θ = 300

Figure 4.10: 6 different variations of training on CIFAR-10 focusing on θ, where θ =

[0, 60, 120, 180, 240, 300] from (a) through (f). The other Gabor parameters are static, where
σ = 10, λ = 50, γ = 150, ψ = 0 for all variations of the Gabor filter bank. There is no dropout
added to the network

4.1. Experiment A 81

Gamma, γ

Gabor

Parameters
Dataset Dropout Gamma

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

psi = 0

MNIST

0

0 0.9808 0.0628 0.9786 0.0669

60 0.9779 0.0724 0.9814 0.0599

120 0.9777 0.0724 0.9796 0.0659

180 0.9773 0.0736 0.9803 0.0612

240 0.9781 0.0712 0.9798 0.0651

300 0.9776 0.0734 0.9799 0.0656

0.25

0 0.8879 0.3287 0.9728 0.1016

60 0.8892 0.3220 0.9766 0.0915

120 0.8897 0.3283 0.9729 0.1034

180 0.8769 0.3481 0.9726 0.1006

240 0.8832 0.3360 0.9741 0.0945

300 0.8834 0.3422 0.9717 0.1048

0.5

0 0.7041 0.7990 0.9617 0.2101

60 0.6918 0.8105 0.9660 0.2081

120 0.6919 0.8055 0.9622 0.2023

180 0.6908 0.8172 0.9605 0.2128

240 0.6847 0.8094 0.9633 0.1931

300 0.6737 0.8535 0.9609 0.2306

Table 4.10: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the MNIST dataset. The layers are able to learn during training. In this test, γ is the only
variable that is changing in a range given as [0, 60, 120, 180, 240, 300] inclusive. γ changes 6
times for each different dropout given.

82 Chapter 4. Testing and Results

Gabor

Parameters
Dataset Dropout Gamma

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

psi = 0

CIFAR-10

0

0 0.0982 2.3026 0.1000 2.3026

60 0.4279 1.6067 0.4272 1.6145

120 0.4285 1.6015 0.4301 1.5953

180 0.4069 1.6570 0.4041 1.6559

240 0.4205 1.6195 0.4216 1.6144

300 0.3521 1.7696 0.3398 1.7873

0.25

0 0.0979 4.1272 0.1002 4.7433

60 0.2689 1.9685 0.3354 1.8564

120 0.2952 1.9152 0.3560 1.8138

180 0.2723 1.9555 0.3394 1.8479

240 0.2275 2.0638 0.2753 1.9882

300 0.2467 2.0047 0.2983 1.9205

0.5

0 0.1245 2.2561 0.1521 2.2269

60 0.1992 2.1114 0.2702 2.0227

120 0.1593 2.2106 0.2077 2.1591

180 0.1956 2.1250 0.2756 2.0359

240 0.1810 2.1504 0.2397 2.0795

300 0.1775 2.1671 0.2441 2.0873

Table 4.11: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the CIFAR-10 dataset. The layers are able to learn during training. In this test, γ is the only
variable that is changing in a range given as [0, 60, 120, 180, 240, 300] inclusive. γ changes 6
times for each different dropout given.

4.1. Experiment A 83

(a)

(b)

Figure 4.11: Here we see a different representation of Tables 4.8 showing the training and
validation accuracy of the GCNN using MNIST for γ. Each colored bar in the legend shows
the dropout rate used during training.

84 Chapter 4. Testing and Results

(a)

(b)

Figure 4.12: Here we see a different representation of Table 4.9 showing the training and
validation accuracy of the GCNN using CIFAR-10 for γ. Each colored bar in the legend shows
the dropout rate used during training.

4.1. Experiment A 85

Discussion

Gamma seems to have almost no effect on the MNIST dataset. The results seem to gradually go

lower as we increase γ. The trend for adding dropout will reduce the results for both datasets.

When we look at the CIFAR-10 dataset however, the response we get seem to change. γ = 0

does not fair well but as we increase the values, the results increase and remain steady. γ wants

to be from the range of [60, 120] and outside of this range the results drop (but not significantly)

for CIFAR-10 but for MNIST, the results are very close to each other.

Figure 4.13: A test showing the training results per epoch for when γ = 120 and dropout,
D = 0.25, when using the Gabor filter as initialization in the first layer. In comparison we can
see how a Xavier initialization competes. In this static experiment, CIFAR-10 is the dataset
being used to train on. The legend item that says “vary Gabor” signifies the results from when
γ = 120.

Like the other parameters tested, it seems that there is no huge impact for having γ except

for when testing with MNIST, γ = 0 should not be used. This is likely due to the added

complexity of colour.

86 Chapter 4. Testing and Results

Psi, ψ

Gabor

Parameters
Dataset Dropout Psi

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

gamma = 150

MNIST

0

0 0.9782 0.0719 0.9768 0.0769

60 0.9730 0.0873 0.9746 0.0808

120 0.1124 2.3012 0.1135 2.3010

180 0.1124 2.3012 0.1135 2.3010

240 0.1124 2.3012 0.1135 2.3010

300 0.9735 0.0871 0.9780 0.0708

0.25

0 0.8860 0.3266 0.9725 0.0997

60 0.8705 0.3867 0.9672 0.1303

120 0.1124 2.3012 0.1135 2.3010

180 0.1124 2.3012 0.1135 2.3010

240 0.1124 2.3012 0.1135 2.3010

300 0.8763 0.3616 0.9687 0.1168

0.5

0 0.6922 0.7809 0.9628 0.1785

60 0.6715 0.8472 0.9579 0.2370

120 0.1124 2.3012 0.1135 2.3010

180 0.1124 2.3012 0.1135 2.3010

240 0.1124 2.3012 0.1135 2.3010

300 0.6483 0.9060 0.9549 0.2682

Table 4.12: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the MNIST dataset. The layers are able to learn during training. In this test, ψ is the only
variable that is changing in a range given as [0, 60, 120, 180, 240, 300] inclusive. ψ changes 6
times for each different dropout given.

4.1. Experiment A 87

Gabor

Parameters
Dataset Dropout Psi

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

gamma=150

MNIST

0

0 0.3834 1.7045 0.3925 1.6903

60 0.4191 1.6293 0.4196 1.6343

120 0.0973 2.3026 0.1000 2.3026

180 0.0973 2.3026 0.1000 2.3026

240 0.0981 2.3026 0.1000 2.3026

300 0.4198 1.6189 0.4300 1.6013

0.25

0 0.2102 2.0855 0.2527 2.0165

60 0.2915 1.9097 0.3617 1.8041

120 0.0965 2.3026 0.1000 2.3026

180 0.0979 2.3026 0.1000 2.3026

240 0.0965 2.3026 0.1000 2.3026

300 0.2960 1.8953 0.3595 1.7946

0.5

0 0.1892 2.1578 0.2511 2.0836

60 0.1925 2.1228 0.2722 2.0299

120 0.0976 2.3026 0.1000 2.3026

180 0.0974 2.3026 0.1000 2.3026

240 0.0972 2.3026 0.1000 2.3026

300 0.2200 2.0731 0.3106 1.9545

Table 4.13: Running a simple test showing a static first layer using a Gabor filter bank, testing
on the CIFAR-10 dataset. The layers are able to learn during training. In this test, ψ is the only
variable that is changing in a range given as [0, 60, 120, 180, 240, 300] inclusive. ψ changes 6
times for each different dropout given.

88 Chapter 4. Testing and Results

(a)

(b)

Figure 4.14: Here we see a different representation of Tables 4.8 showing the training and
validation accuracy of the GCNN using MNIST for ψ. Each colored bar in the legend shows
the dropout rate used during training.

4.1. Experiment A 89

(a)

(b)

Figure 4.15: Here we see a different representation of Table 4.9 showing the training and
validation accuracy of the GCNN using CIFAR-10 for ψ. Each colored bar in the legend shows
the dropout rate used during training.

90 Chapter 4. Testing and Results

Discussion

We can see from the Tables 4.12 and 4.13 that there is a range the ψ prefers. Values that

are within the ranges [120, 240] are values that ψ should never be in. The network has a

very hard time training within these intervals. Otherwise, ψ follows the same trend as the

other parameters where adding dropout tends to drop the results. When ψ is not within the

range mentioned previously, the results are similar in that aspect and does not affect the dataset

significantly, so long as it exists. The dataset chosen does not make a different but we must

note that when training on CIFAR-10, the results drop significantly. This is likely due to the

complexity of adding colour to the network.

Figure 4.16: A test showing the training results per epoch for when ψ = 0 and dropout, D = 0.5,
when using the Gabor filter as initialization in the first layer. In comparison we can see how a
Xavier initialization competes. In this static experiment, MNIST is the dataset being used to
train on. The legend item that says ’vary Gabor’ signifies the results from when ψ = 0.

4.1.3 Summary

The parameters in the Gabor filter are responsive based on the 2-D mathematical expression

given in Section 1.2.3. When σ, λ and γ are 0, the network fails to converge and does not train

4.1. Experiment A 91

(or does not train well). When γ = 0 for testing on MNIST, we see that the network is able to

converge, but when testing on CIFAR-10, we see that it cannot converge at all. We also learned

that when ψ is within a range of [120, 240], the network fails to provide any meaningful results

as well.

Because the Gabor filter depends on its rotational behaviour to find features,θ should have

the most impact but in our test using single parameters for θ offer no noticeably different impact

than other parameters. One thing that was found however, was that θ has higher results overall

than other parameters in the CIFAR-10 dataset. The MNIST dataset is much too simple to

compare the significance from other parameters.

We can also say that when training on a more complex dataset like CIFAR-10 versus

MNIST, the results tend to drop in both testing and validation when there are more channels

(colour).

In conclusion, σ, λ, and γ should not be equal to 0 ever. ψ should not be in a range between

[120 − 240] as far as this experiment shows. θ and ψ have the most impact overall . As for all

other parameters, as long as they are > 0, they will now a lower impact than no impact at all.

Parameter Impact Overall Best Found Value(s) Worst Found Value(s)

Sigma Low [10-18] 0

Lambda Low [20-80] 0

Theta High 0 N/A

Gamma Low > 0 0

Psi High 0, 300 [120-240]

Table 4.14: A summary of the impact of the parameters for using a static variable for 96 filters
given in the first layer (i.e., A trial has 96 filters consisting of values of σ = 2, λ = 40, θ = 0,
γ = 120, and ψ = 0). The parameters that have a larger impact overall are θ and ψ. The other
paremeters offer no noticeable impact to the final results. Values that appear to provide higher
results are listed in the “best found value(s)” column and values that provide lower results are
listed in the “worst found value(s)” column.

92 Chapter 4. Testing and Results

4.2 B: Search of a Single Parameter in the Gabor Filter Train-

ing on MNIST, CIFAR-10

4.2.1 Experiment Setup

For the second experiment, we will be using a Gabor filter bank that assumes a grid search

for one variable at a time. The other variables will remain static (like experiment A). The

values that the parameters will take are values within Table 4.2. Within the ranges given, the

parameters will be equally divided by the number of filters generated. For example, if there

are 32 filters that layer 1 uses and the range given is between [1, 32] inclusive, there will be 32

values equally distributed (i.e., I = [1, 2, 3, ..., 32]). Each test will have 10 epochs per trial with

a total of 5 trials.

The Gabor filter bank will change how many filters are generated per test. There will be

3 different variations in layer 1 that will have either 32, 64, or 96 Gabor kernels which will

impact how spaced out the grid search is within each variable (refer to example given above).

Additionally, dropout will be added to each variation.

MNIST, CIFAR-10, and CIFAR-100 are used in each of the 5 trials and each test is shuffled

so that none are the same. Like the first experiment, the averages of each test will be recorded

which includes the training accuracy and loss, and the validation accuracy and loss.

4.2. Experiment B 93

Test Case # of Filters Dropout Sigma Lambda Theta Gamma Psi

A: Sigma [16,32,48,64,80,96] [0,0.25,0.5] [2,22] 50 0 150 0

B: Lambda [16,32,48,64,80,96] [0,0.25,0.5] 10 [0,100] 0 150 0

C: Theta [16,32,48,64,80,96] [0,0.25,0.5] 10 50 [0,300] 150 0

D: Gamma [16,32,48,64,80,96] [0,0.25,0.5] 10 50 0 [0,300] 0

E: Psi [16,32,48,64,80,96] [0,0.25,0.5] 10 50 0 150 [0,300]

Table 4.15: Each tests from A through E listed, one parameter will change will the other param-
eters will remain static. Dropout has 3 test cases, 0%, 25%, and 50%. The other parameters (σ,
λ, θ, γ, ψ) will be distributed evenly by dividing the maximum and the minimum (inclusive) by
the number of filters. Therefore in each test case, we have a total of 18 tests. This experiment
has a grand total of 90 tests.

94 Chapter 4. Testing and Results

4.2.2 Results

Sigma, σ

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = vary

lambda = 50

theta = 0

gamma = 150

psi=0

MNIST

0

16 0.9708 0.0962 0.9746 0.0795

32 0.9735 0.0882 0.9778 0.0717

48 0.9763 0.0782 0.9755 0.0776

64 0.9750 0.0813 0.9738 0.0822

80 0.9790 0.0695 0.9787 0.0674

96 0.9778 0.0728 0.9810 0.0627

0.25

16 0.8636 0.3985 0.9669 0.1281

32 0.8733 0.3665 0.9678 0.1214

48 0.8601 0.3877 0.9732 0.1097

64 0.8748 0.3685 0.9670 0.1199

80 0.8838 0.3391 0.9740 0.0993

96 0.8865 0.3304 0.9726 0.1046

0.5

16 0.6743 0.8745 0.9523 0.2651

32 0.6916 0.8408 0.9532 0.2498

48 0.6849 0.8280 0.9650 0.2006

64 0.6744 0.8606 0.9572 0.2356

80 0.6948 0.7848 0.9654 0.1783

96 0.7033 0.7893 0.9608 0.1994

Table 4.16: Running a simple test showing a varying, given first layer using a Gabor filter
bank, testing on the MNIST dataset. The layers are able to learn during training. In this
test, σ is the only variable that is given a range changing from the intervals given in Table
4.2. The test here is dependent on the number of filters given in the first layer ranging from
[16, 32, 48, 64, 80, 96] inclusive. Sigma changes 6 times based on the number of filters for each
different dropout given.

4.2. Experiment B 95

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = vary

lambda = 50

theta = 0

gamma = 150

psi = 0

CIFAR-10

0

16 0.4110 1.6471 0.4162 1.6305

32 0.4198 1.6273 0.4181 1.6313

48 0.4441 1.5618 0.4419 1.5571

64 0.4125 1.6441 0.4137 1.6456

80 0.4282 1.6042 0.4250 1.6129

96 0.4319 1.5954 0.4293 1.5994

0.25

16 0.2892 1.9167 0.3529 1.8191

32 0.2756 1.9519 0.3391 1.8459

48 0.2943 1.9156 0.3614 1.8123

64 0.2858 1.9335 0.3420 1.8310

80 0.2867 1.9252 0.3490 1.8135

96 0.2409 2.0216 0.2969 1.9354

0.5

16 0.2122 2.0982 0.3033 1.9842

32 0.2100 2.0939 0.2937 1.9855

48 0.1954 2.1150 0.2706 2.0196

64 0.1927 2.1428 0.2700 2.0558

80 0.1925 2.1313 0.2669 2.0390

96 0.1635 2.1823 0.2153 2.1114

Table 4.17: Running a simple test showing a varying, given first layer using a Gabor filter
bank, testing on the CIFAR-10 dataset. The layers are able to learn during training. In this
test, σ is the only variable that is given a range changing from the intervals given in Table
4.2. The test here is dependent on the number of filters given in the first layer ranging from
[16, 32, 48, 64, 80, 96] inclusive. Sigma changes 6 times based on the number of filters for each
different dropout given.

96 Chapter 4. Testing and Results

(a)

(b)

Figure 4.17: Here we see a different representation of Tables 4.16 and 4.17 showing the training
and validation accuracy of the GCNN using MNIST and CIFAR-10 for σ. Each colored bar in
the legend shows the training and validation results. The Gabor filter bank has dropout and a
fixed number of filters.

Discussion

compare top results in both mnist and cifar. is there a pattern? are the results close to each

other? conclude if using a lower filter count makes more sense or not

For the MNIST dataset, there appears to be a pattern where if we increase the number of

4.2. Experiment B 97

filters forσ, the results are better. In this case, we have higher scores when there are more filters

but in CIFAR-10, the opposite appears to happen (except for when dropout is 0%. In 4 of the

6 different scenarios of dropout, the trend seems to want to increase the results performance

if there are more filters, i.e., more variations of the Gabor filter. When dropout is added in

the mix, results drop for both datasets. This happens more in the CIFAR-10 database but is

not as noticeable in the MNIST database. This is, like experiment A, likely due to the added

complexity of colours. The results are all within a close range of each other so we can say that

by using less filters, we use less parameters and as a result obtain similar performance.

Figure 4.18: A test showing the training results per epoch for σ when the number of filters,
F = 96 and dropout, D = 0.5, when using the Gabor filter as initialization in the first layer.
In comparison we can see how a Xavier initialization competes. In this experiment for using
a grid search for one parameter, MNIST is the dataset being used to train on. The legend item
that says ’vary Gabor’ signifies using σ as the parameter being tested on.

98 Chapter 4. Testing and Results

Lambda, λ

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = vary

theta = 0

gamma = 150

psi = 0

MNIST

0

16 0.9712 0.0959 0.9737 0.0834

32 0.9730 0.0883 0.9778 0.0707

48 0.9771 0.0754 0.9774 0.0701

64 0.9745 0.0837 0.9711 0.0903

80 0.9802 0.0649 0.9815 0.0596

96 0.9781 0.0712 0.9791 0.0641

0.25

16 0.8591 0.4136 0.9652 0.1399

32 0.8711 0.3766 0.9688 0.1177

48 0.8780 0.3556 0.9721 0.1014

64 0.8660 0.3933 0.9669 0.1273

80 0.8828 0.3432 0.9753 0.0933

96 0.8812 0.3566 0.9732 0.0996

0.5

16 0.6562 0.9125 0.9479 0.3092

32 0.6884 0.8337 0.9575 0.2421

48 0.6796 0.8524 0.9601 0.2452

64 0.6745 0.8380 0.9581 0.2303

80 0.6958 0.8103 0.9620 0.2168

96 0.6967 0.7836 0.9673 0.1629

Table 4.18: Running a simple test showing a varying, given first layer using a Gabor filter bank,
testing on the MNIST dataset. The layers are able to learn during training. In this test, λ is the
only variable that is given a range changing from the intervals given in Table 4.2. The test here
is dependent on the number of filters given in the first layer ranging from [16, 32, 48, 64, 80, 96]
inclusive. Lambda changes 6 times based on the number of filters for each different dropout
given.

4.2. Experiment B 99

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = vary

theta = 0

gamma = 150

psi = 0

CIFAR-10

0

16 0.4454 1.5413 0.4504 1.5242

32 0.4295 1.5954 0.4342 1.5851

48 0.4684 1.4984 0.4745 1.4832

64 0.3834 1.7147 0.3920 1.7000

80 0.3499 1.7724 0.3500 1.7747

96 0.3507 1.7704 0.3534 1.7674

0.25

16 0.3100 1.8516 0.3822 1.7262

32 0.2685 1.9555 0.3341 1.8457

48 0.2431 2.0343 0.3046 1.9286

64 0.2859 1.9281 0.3489 1.8330

80 0.2959 1.9017 0.3599 1.7996

96 0.2799 1.9393 0.3444 1.8353

0.5

16 0.2263 2.0518 0.3259 1.9344

32 0.2010 2.1097 0.2920 2.0014

48 0.1795 2.1630 0.2482 2.0866

64 0.2083 2.1125 0.3035 2.0025

80 0.1880 2.1368 0.2663 2.0396

96 0.1689 2.1775 0.2228 2.1058

Table 4.19: Running a simple test showing a varying, given first layer using a Gabor filter
bank, testing on the CIFAR-10 dataset. The layers are able to learn during training. In this
test, λ is the only variable that is given a range changing from the intervals given in Table
4.2. The test here is dependent on the number of filters given in the first layer ranging from
[16, 32, 48, 64, 80, 96] inclusive. Lambda changes 6 times based on the number of filters for
each different dropout given.

100 Chapter 4. Testing and Results

(a)

(b)

Figure 4.19: Here we see a different representation of Tables 4.18 and 4.19 showing the training
and validation accuracy of the GCNN using MNIST and CIFAR-10 for λ. Each colored bar in
the legend shows the training and validation results. The Gabor filter bank has dropout and a
fixed number of filters.

Discussion

For the MNIST dataset, like the σ test, we see the same pattern where the training on MNIST

is more accurate as we add more filters (Table 4.18). It appears to show a progression where

the number of filters influence the performance but as a reminder, with more filters we add

4.2. Experiment B 101

more complexity and parameters to the entire network. The results are very close to each other,

for example, in a test running Dropout, D = 0, the difference between having 16 filters and 96

filters is 0.71%. This means that we can sacrifice the number of filters for MNIST to obtain

reasonable results. That said, MNIST is a very simple dataset.

For CIFAR-10, like experiment A, we can see that it follows a similar pattern where having

a lower number of filters results in a higher performance. By adding more filters, the perfor-

mance drops gradually as well. We can say that using less filters likely produces better results.

The complexity of colour in CIFAR-10 is likely the factor that reduces the performance of the

CNN. Both MNIST and CIFAR-10 produce similar performance results.

Figure 4.20: A test showing the training results per epoch for λ when the number of filters,
F = 64 and dropout, D = 0, when using the Gabor filter as initialization in the first layer. In
comparison we can see how a Xavier initialization competes. In this experiment for using a
grid search for one parameter, MNIST is the dataset being used to train on. The legend item
that says ’vary Gabor’ signifies using λ as the parameter being tested on.

102 Chapter 4. Testing and Results

Theta, θ

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = vary

gamma = 150

psi = 0

MNIST

0

16 0.9726 0.0900 0.9763 0.0773

32 0.9731 0.0897 0.9759 0.0760

48 0.9733 0.0896 0.9765 0.0763

64 0.9748 0.0844 0.9774 0.0713

80 0.9735 0.0879 0.9778 0.0725

96 0.9753 0.0814 0.9797 0.0649

0.25

16 0.8607 0.3961 0.9674 0.1338

32 0.8626 0.4006 0.9665 0.1320

48 0.8661 0.3853 0.9653 0.1309

64 0.8740 0.3738 0.9701 0.1147

80 0.8766 0.3697 0.9704 0.1167

96 0.8767 0.3610 0.9719 0.1084

0.5

16 0.6535 0.8978 0.9530 0.2744

32 0.6629 0.8880 0.9565 0.2544

48 0.6532 0.9102 0.9540 0.2922

64 0.6762 0.8431 0.9606 0.2272

80 0.6694 0.8576 0.9598 0.2243

96 0.6773 0.8427 0.9616 0.2204

Table 4.20: Running a simple test showing a varying, given first layer using a Gabor filter bank,
testing on the MNIST dataset. The layers are able to learn during training. In this test, θ is the
only variable that is given a range changing from the intervals given in Table 4.2. The test here
is dependent on the number of filters given in the first layer ranging from [16, 32, 48, 64, 80, 96]
inclusive. Theta changes 6 times based on the number of filters for each different dropout given.

4.2. Experiment B 103

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = vary

gamma = 150

psi = 0

CIFAR-10

0

16 0.4659 1.4668 0.4786 1.4494

32 0.4917 1.4017 0.5009 1.3729

48 0.4966 1.3855 0.5078 1.3617

64 0.5028 1.3705 0.4980 1.3781

80 0.4714 1.4690 0.4766 1.4578

96 0.4936 1.3918 0.5020 1.3579

0.25

16 0.3340 1.7648 0.4099 1.6414

32 0.3474 1.7284 0.4117 1.6189

48 0.3422 1.7339 0.4167 1.6174

64 0.3369 1.7614 0.4236 1.6228

80 0.3095 1.8337 0.3895 1.7039

96 0.3366 1.7618 0.4089 1.6477

0.5

16 0.2494 1.9352 0.3630 1.7780

32 0.2487 1.9577 0.3568 1.8067

48 0.2474 1.9645 0.3679 1.8047

64 0.2546 1.9435 0.3693 1.7963

80 0.2041 2.0790 0.2850 1.9720

96 0.2634 1.9163 0.3904 1.7354

Table 4.21: Running a simple test showing a varying, given first layer using a Gabor filter
bank, testing on the CIFAR-10 dataset. The layers are able to learn during training. In this
test, θ is the only variable that is given a range changing from the intervals given in Table
4.2. The test here is dependent on the number of filters given in the first layer ranging from
[16, 32, 48, 64, 80, 96] inclusive. Theta changes 6 times based on the number of filters for each
different dropout given.

104 Chapter 4. Testing and Results

(a)

(b)

Figure 4.21: Here we see a different representation of Tables 4.20 and 4.21 showing the training
and validation accuracy of the GCNN using MNIST and CIFAR-10 for θ. Each colored bar in
the legend shows the training and validation results. The Gabor filter bank has dropout and a
fixed number of filters.

Discussion

For this test, we see that the results from testing on MNIST and CIFAR-10 are much higher on

average than the previous 2 tests. We also see the same similarities when testing on MNIST

where the results perform better with more filters. The biggest difference we can see is that

4.2. Experiment B 105

when we test on the CIFAR-10, the results do not make any noticeable pattern except for having

higher results than previous tests.

Using CIFAR-10 as the dataset, it is likely to have better scores when using more filters.

This may be because of the rotational benefits of the Gabor filter extracting different features

within the dataset. We can see this trend continue from the first experiment where θ obtains

higher results than other parameters. Adding dropout to both training sets follow the trend of

reducing the performances in both training and validation.

Figure 4.22: A test showing the training results per epoch for θ when the number of filters,
F = 96 and dropout, D = 0.5, when using the Gabor filter as initialization in the first layer.
In comparison we can see how a Xavier initialization competes. In this experiment for using
a grid search for one parameter, MNIST is the dataset being used to train on. The legend item
that says ’vary Gabor’ signifies using θ as the parameter being tested on.

106 Chapter 4. Testing and Results

Gamma, γ

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

gamma = vary

psi = 0

MNIST

0

16 0.9695 0.0985 0.9718 0.0877

32 0.9717 0.0932 0.9723 0.0859

48 0.9760 0.0794 0.9789 0.0665

64 0.9738 0.0846 0.9756 0.0777

80 0.9786 0.0698 0.9814 0.0613

96 0.9778 0.0718 0.9754 0.0763

0.25

16 0.8632 0.4015 0.9636 0.1397

32 0.8599 0.4036 0.9660 0.1321

48 0.8685 0.3760 0.9685 0.1212

64 0.8809 0.3641 0.9697 0.1193

80 0.8857 0.3362 0.9729 0.1082

96 0.8782 0.3463 0.9729 0.1010

0.5

16 0.6664 0.8803 0.9522 0.2483

32 0.6685 0.8548 0.9559 0.2339

48 0.6861 0.8343 0.9597 0.2223

64 0.6701 0.8472 0.9577 0.2283

80 0.6948 0.8137 0.9618 0.2217

96 0.6864 0.8154 0.9598 0.2008

Table 4.22: Running a simple test showing a varying, given first layer using a Gabor filter bank,
testing on the MNIST dataset. The layers are able to learn during training. In this test, γ is the
only variable that is given a range changing from the intervals given in Table 4.2. The test here
is dependent on the number of filters given in the first layer ranging from [16, 32, 48, 64, 80, 96]
inclusive. Gamma changes 6 times based on the number of filters for each different dropout
given.

4.2. Experiment B 107

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

gamma = vary

psi = 0

CIFAR-10

0

16 0.4428 1.5498 0.4501 1.5290

32 0.3000 1.8933 0.2971 1.9111

48 0.3949 1.6785 0.4018 1.6588

64 0.4161 1.6319 0.4138 1.6406

80 0.4219 1.6189 0.4105 1.6404

96 0.2927 1.8889 0.2948 1.8820

0.25

16 0.2806 1.9239 0.3509 1.8078

32 0.2477 2.0038 0.3049 1.9222

48 0.2445 2.0153 0.2920 1.9374

64 0.2255 2.0642 0.2677 1.9960

80 0.2429 2.0052 0.2954 1.9205

96 0.2432 2.0149 0.2931 1.9455

0.5

16 0.1993 2.0989 0.2707 1.9950

32 0.2192 2.0676 0.3098 1.9539

48 0.1728 2.1830 0.2363 2.1074

64 0.1656 2.1873 0.2293 2.1132

80 0.1698 2.1853 0.2147 2.1345

96 0.1486 2.2226 0.1958 2.1707

Table 4.23: Running a simple test showing a varying, given first layer using a Gabor filter
bank, testing on the CIFAR-10 dataset. The layers are able to learn during training. In this
test, γ is the only variable that is given a range changing from the intervals given in Table
4.2. The test here is dependent on the number of filters given in the first layer ranging from
[16, 32, 48, 64, 80, 96] inclusive. Gamma changes 6 times based on the number of filters for
each different dropout given.

108 Chapter 4. Testing and Results

(a)

(b)

Figure 4.23: Here we see a different representation of Tables 4.22 and 4.23 showing the training
and validation accuracy of the GCNN using MNIST and CIFAR-10 for γ. Each colored bar in
the legend shows the training and validation results. The Gabor filter bank has dropout and a
fixed number of filters.

Discussion

Gamma, γ, shows a pattern similar to λ for when we use MNIST, the results tend to get better

as we increase the number of filters within the first layer. The results in MNIST are very close

together in both training and validation. For example, when using 16 filters versus 80 filters,

4.2. Experiment B 109

the performance difference in terms of accuracy is 0.94% which is a very small gain in terms

of performance vs complexity. Both datasets reduce performance when dropout is added.

We can also see the same trend where if we use the CIFAR-10 dataset, the results decrease

as we add filters. This is likely due to the fact that CIFAR-10 has colour which adds additional

complexity in the CNN. We can conclude in saying that γ is more optimized if we use less

filters, especially if the dataset is coloured (or complex).

Figure 4.24: A test showing the training results per epoch for γ when the number of filters,
F = 80 and dropout, D = 0.25, when using the Gabor filter as initialization in the first layer.
In comparison we can see how a Xavier initialization competes. In this experiment for using
a grid search for one parameter, MNIST is the dataset being used to train on. The legend item
that says ’vary Gabor’ signifies using γ as the parameter being tested on.

110 Chapter 4. Testing and Results

Psi, ψ

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

gamma = 150

psi = vary

MNIST

0

16 0.9607 0.1361 0.9642 0.1194

32 0.9712 0.0963 0.9763 0.0755

48 0.9721 0.0919 0.9764 0.0751

64 0.9728 0.0898 0.9782 0.0706

80 0.9691 0.1026 0.9743 0.0863

96 0.9721 0.0927 0.9762 0.0770

0.25

16 0.8297 0.4912 0.9528 0.2050

32 0.8588 0.4126 0.9700 0.1282

48 0.8610 0.3993 0.9685 0.1237

64 0.8614 0.4034 0.9677 0.1303

80 0.8250 0.4986 0.9584 0.1823

96 0.8415 0.4433 0.9682 0.1314

0.5

16 0.6287 0.9693 0.9401 0.3704

32 0.6548 0.9009 0.9513 0.3150

48 0.6544 0.9238 0.9538 0.3126

64 0.6292 0.9594 0.9427 0.3331

80 0.6205 0.9734 0.9244 0.3856

96 0.6609 0.8682 0.9596 0.2457

Table 4.24: Running a simple test showing a varying, given first layer using a Gabor filter bank,
testing on the MNIST dataset. The layers are able to learn during training. In this test, ψ is the
only variable that is given a range changing from the intervals given in Table 4.2. The test here
is dependent on the number of filters given in the first layer ranging from [16, 32, 48, 64, 80, 96]
inclusive. Psi changes 6 times based on the number of filters for each different dropout given.

4.2. Experiment B 111

Gabor

Parameters
Dataset Dropout

of

Filters

Training Validation

Accuracy Loss Accuracy Loss

ksize = 5 × 5

sigma = 10

lambda = 50

theta = 0

gamma = 150

psi = vary

CIFAR-10

0

16 0.4841 1.3909 0.4780 1.4067

32 0.5138 1.3351 0.5094 1.3483

48 0.5331 1.2814 0.5382 1.2712

64 0.5483 1.2412 0.5328 1.2770

80 0.5095 1.3547 0.5095 1.3452

96 0.5551 1.2249 0.5497 1.2379

0.25

16 0.3322 1.7267 0.4003 1.6046

32 0.3566 1.6754 0.4348 1.5358

48 0.3936 1.5976 0.4724 1.4414

64 0.3811 1.6165 0.4605 1.4797

80 0.3579 1.6848 0.4241 1.5606

96 0.3896 1.6056 0.4641 1.4702

0.5

16 0.2652 1.8770 0.3717 1.7143

32 0.2692 1.8777 0.3726 1.6982

48 0.2794 1.8521 0.4016 1.6589

64 0.3003 1.8029 0.4297 1.6013

80 0.2668 1.8981 0.3704 1.7323

96 0.2911 1.8248 0.3943 1.6565

Table 4.25: Running a simple test showing a varying, given first layer using a Gabor filter
bank, testing on the CIFAR-10 dataset. The layers are able to learn during training. In this
test, ψ is the only variable that is given a range changing from the intervals given in Table
4.2. The test here is dependent on the number of filters given in the first layer ranging from
[16, 32, 48, 64, 80, 96] inclusive. Psi changes 6 times based on the number of filters for each
different dropout given.

112 Chapter 4. Testing and Results

(a)

(b)

Figure 4.25: Here we see a different representation of Tables 4.24 and 4.25 showing the training
and validation accuracy of the GCNN using MNIST and CIFAR-10 for ψ. Each colored bar in
the legend shows the training and validation results. The Gabor filter bank has dropout and a
fixed number of filters.

Discussion

Following the trend from the previous tests, increasing the number of filters within the first

layer appears to increase the performance for the MNIST dataset as well as CIFAR-10. Like

θ, we can see that for both datasets, the results show that there is no noticeable pattern. The

4.2. Experiment B 113

performance for both datasets resemble the θ test previously as well where the results obtained

on average are higher than the other parameters’ results. This could be based on shifting the

filter and seeing features that blurring (σ) or width of the band (λ) cannot extract.

Adding dropout to both datasets results in a decreased performance following the trend

from previous tests. This can be seen for both training and validation. We can conclude by

saying that training with more filters on both datasets, which changes the interval rate of ψ,

offers higher results. We can also conclude that when we adjust ψ, the results appear to be

higher than average.

Figure 4.26: A test showing the training results per epoch for ψ when the number of filters,
F = 96 and dropout, D = 0.5, when using the Gabor filter as initialization in the first layer.
In comparison we can see how a Xavier initialization competes. In this experiment for using
a grid search for one parameter, MNIST is the dataset being used to train on. The legend item
that says ’vary Gabor’ signifies using ψ as the parameter being tested on.

4.2.3 Summary

In summary for this experiment, by varying one parameter at a time and changing the number

of filters (which also changes the intervals for each parameter), we can conclude in saying that

σ, λ, and γ offer similar impact to the Gabor filter. We have shown that the results in MNIST

114 Chapter 4. Testing and Results

for these parameters are close to each other by a small percentage which tells us that we can

use less parameterization here. It especially shows when we compare with using CIFAR-10 as

the dataset instead of the MNIST dataset, where results drop linearly with more filters added.

The other two parameters, θ and ψ, offer different results where the results from testing

on both datasets yield higher results than σ, λ, and γ. For MNIST, the results are very close,

but for CIFAR-10, there is no noticeable pattern. It also appears that increasing the number of

filters increases the results for both datasets but this is unknown until there is more data. For

now, we can say there is no added benefit for the number of filters used for θ and ψ.

In conclusion, this experiment shows that the number of filters or variations used per pa-

rameter affect the results. In particular, for simple datasets, like MNIST, using less filters yields

lower results. Variations of θ and ψ offer higher results overall and σ, λ, and γ are offer less

impact for overall results. Using less filters for σ, λ, and γ is more beneficial if complexity is

a problem. There is no seen benefits of adding or reducing filters for θ and ψ.

Parameter Impact Overall Filters

Sigma Low Less

Lambda Low Less

Theta High No Effect

Gamma Low Less

Psi High No Effect

Table 4.26: A summary of the impact of each parameter in the Gabor filter when used in
the CNN. σ and ψ offer a higher impact overall, and the other 3 variables offer the same
impact. When using less filters, σ, λ, and γ offers similar results dropping a small performance
percentage of < 1% when using, for example 16 filters versus 96 filters. σ and ψ offer no
benefit of using more or less filters.

4.3. Experiment C 115

4.3 C: Grid Search Vs. Random Search with Shuffled Datasets

Training on MNIST, CIFAR-10, and CIFAR-100

4.3.1 Experiment Setup

For the third experiment, we will be using the Gabor filter bank described in [16]. In compari-

son we will use our randomly initialized Gabor filter bank described in Section 3.3. The values

for the parameters are listed in Table 4.2 which will be used on both the randomization test and

the grid-search test. Please note that for the remainder of this section, the term uniform is used

to describe the grid-search that Ozbulak has created in [16]. Other hyperparameters are used

as discussed in Section 3.3. Below, we will see how the 2 different initialization methods work

with 3 different datasets that are shuffled for each trial. There are a total of 9 tests, each with

10 trials.

For each test, we change the number of filters. This changes the number of variations of

the Gabor filter bank. The Gabor filter bank is created based on the number of filters generated

in layer 1 of the CNN. This parameter will be tuned in this experiment and is used in both the

uniform and random tests.

Each test will have 10 trials, and 10 or 100 epochs. Due to the simplicity of MNIST, we

will use 10 epochs because it converges to a 97% accuracy at about epoch 3. As for the other

2 datasets, CIFAR-10 and CIFAR-100, we will use 100 epochs since they are more complex

and require more training which we found in the previous 2 experiments. The averages of

these trials will be taken in to compare whether using randomization or uniformity offers better

results. The datasets will be shuffled to test the randomization of tests. In the next experiment

we will not shuffle the datasets to see whether randomness can outweigh the brute force-like

method, grid search. Once the results have been collected for this experiment, we will take

the average of the 10 trials. There are 3 different dropouts, D = [0, 0.25, 0.5] and 6 different

filter variations, F = [32, 64, 96] for a total of 18 tests (1 test has 10 trials of either 10 or 100

116 Chapter 4. Testing and Results

epochs). An example of a complete test set will be shown in the following tables below.

MNIST

Dropout Filter Size Epoch

Random Uniform

Training Validation Training Validation

Acc Loss Acc Loss Acc Loss Acc Loss

0 32

1 0.8367 0.4811 0.9799 0.0693 0.7985 0.5827 0.9719 0.0920

2 0.9757 0.0800 0.9818 0.0578 0.9721 0.0927 0.9823 0.0581

3 0.9838 0.0545 0.9881 0.0362 0.9807 0.0621 0.9858 0.0456

4 0.9871 0.0431 0.9905 0.0294 0.9850 0.0481 0.9900 0.0330

5 0.9893 0.0362 0.9898 0.0303 0.9878 0.0398 0.9874 0.0361

6 0.9903 0.0321 0.9896 0.0313 0.9889 0.0351 0.9906 0.0288

7 0.9916 0.0286 0.9914 0.0252 0.9907 0.0308 0.9908 0.0275

8 0.9925 0.0254 0.9916 0.0231 0.9919 0.0276 0.9901 0.0283

9 0.9931 0.0239 0.9923 0.0232 0.9923 0.0259 0.9917 0.0274

10 0.9933 0.0225 0.9922 0.0226 0.9924 0.0239 0.9904 0.0258

Table 4.27: A table representing one trial run showing the performance gains from a total of 10
epochs using the MNIST dataset. The trial is initialized with 32 Gabor filters in the first layer
and shows how random initializations fairs against a grid-search initialization.

MNIST

Dropout

#

of

Filters

Trial

Random Uniform

Training Validation Training Validation

Acc Loss Acc Loss Acc Loss Acc Loss

0

32

1 0.9933 0.0225 0.9922 0.0226 0.9924 0.0239 0.9904 0.0258

2 0.9939 0.0201 0.9922 0.0227 0.9926 0.0244 0.9906 0.0265

3 0.9928 0.0236 0.9932 0.0230 0.9925 0.0245 0.9909 0.0261

4 0.9931 0.0222 0.9933 0.0210 0.9916 0.0267 0.9908 0.0297

5 0.9929 0.0230 0.9921 0.0247 0.9927 0.0235 0.9907 0.0266

6 0.9933 0.0216 0.9930 0.0220 0.9921 0.0257 0.9913 0.0271

7 0.9930 0.0229 0.9923 0.0213 0.9918 0.0271 0.9917 0.0268

8 0.9936 0.0211 0.9919 0.0240 0.9924 0.0251 0.9905 0.0290

9 0.9928 0.0226 0.9898 0.0297 0.9931 0.0224 0.9916 0.0241

10 0.9934 0.0207 0.9921 0.0239 0.9937 0.0223 0.9907 0.0269

Average 0.9932 0.0220 0.9922 0.0235 0.9920 0.0246 0.9910 0.0269

Standard Deviation 3.55E-04 1.12E-03 9.85E-04 2.47E-03 6.10E-04 1.63E-03 4.57E-04 1.59E-03

Variance 1.26E-07 1.24E-06 9.70E-07 6.09E-06 3.72E-07 2.65E-06 2.08E-07 2.53E-06

Table 4.28: Results showing a test run with 10 trials for when we use uniform and random
initialization of the Gabor filter. The ranges of the Gabor parameter are given in Table 4.2. The
dataset, MNIST, dropout, D = 0, and the number of filters, F = 32, are the parameters we are
testing. The other parameters are described in Section 3.3. The dataset is also shuffled for each
test. Here we list the accuracy and lossfor both training and validation results. Please note that
the term uniform is used in place of the grid-search that Ozbulak had created in [16].

4.3. Experiment C 117

MNIST

Dropout

#

of

Filters

Trial

Random Uniform

Training Validation Training Validation

Acc Loss Acc Loss Acc Loss Acc Loss

0.25

64

1 0.9938 0.0200 0.9916 0.0266 0.9934 0.0218 0.9922 0.0254

2 0.9930 0.0220 0.9919 0.0225 0.9940 0.0205 0.9917 0.0224

3 0.9936 0.0216 0.9915 0.0226 0.9936 0.0215 0.9924 0.0249

4 0.9940 0.0203 0.9924 0.0219 0.9934 0.0215 0.9938 0.0211

5 0.9933 0.0219 0.9922 0.0234 0.9928 0.0235 0.9908 0.0273

6 0.9932 0.0216 0.9893 0.0317 0.9928 0.0235 0.9870 0.0408

7 0.9918 0.0254 0.9928 0.0229 0.9934 0.0202 0.9910 0.0279

8 0.9940 0.0196 0.9922 0.0219 0.9933 0.0222 0.9917 0.0241

9 0.9944 0.0183 0.9926 0.0224 0.9937 0.0211 0.9934 0.0197

10 0.9932 0.0217 0.9912 0.0254 0.9931 0.0226 0.9923 0.0236

Average 0.9930 0.02120 0.9920 0.0241 0.9930 0.0218 0.9920 0.0257

Standard Deviation 7.27E-04 1.90E-03 1.00E-03 3.06E-03 3.71E-04 1.13E-03 1.88E-03 5.90E-03

Variance 5.28E-07 3.59E-06 1.01E-06 9.39E-06 1.38E-07 1.28E-06 3.53E-06 3.48E-05

Table 4.29: Results showing a test run with 10 trials for when we use uniform and random
initialization of the Gabor filter. The ranges of the Gabor parameter are given in Table 4.2. The
dataset, MNIST, dropout, D = 0.25, and the number of filters, F = 64, are the parameters we
are testing. The other parameters are described in Section 3.3. The dataset is also shuffled for
each test. Here we list the accuracy and lossfor both training and validation results. Please note
that the term uniform is used in place of the grid-search that Ozbulak had created in [16].

MNIST

Dropout

#

of

Filters

Trial

Random Uniform

Training Validation Training Validation

Acc Loss Acc Loss Acc Loss Acc Loss

0.5

96

1 0.9939 0.0209 0.9930 0.0222 0.9931 0.0228 0.9915 0.0246

2 0.9944 0.0186 0.9929 0.0221 0.9938 0.0197 0.9919 0.0227

3 0.9943 0.0194 0.9931 0.0211 0.9936 0.0210 0.9933 0.0204

4 0.9935 0.0226 0.9924 0.0238 0.9937 0.0206 0.9911 0.0264

5 0.9938 0.0198 0.9926 0.0212 0.9938 0.0210 0.9929 0.0215

6 0.9934 0.0217 0.9912 0.0270 0.9936 0.0213 0.9920 0.0274

7 0.9933 0.0221 0.9903 0.0270 0.9934 0.0214 0.9911 0.0264

8 0.9924 0.0249 0.9913 0.0243 0.9938 0.0218 0.9927 0.0253

9 0.9943 0.0192 0.9925 0.0235 0.9938 0.0208 0.9930 0.0224

10 0.9938 0.0207 0.9933 0.0225 0.9936 0.0201 0.9928 0.0216

Average 0.9940 0.0210 0.9920 0.0235 0.9940 0.0210 0.9920 0.0239

Standard Deviation 6.01E-04 1.90E-03 9.90E-04 2.14E-03 2.38E-04 8.77E-04 8.15E-04 2.46E-03

Variance 3.61E-07 3.63E-06 9.80E-07 4.58E-06 5.65E-08 7.69E-07 6.65E-07 6.06E-06

Table 4.30: Results showing a test run with 10 trials for when we use uniform and random
initialization of the Gabor filter. The ranges of the Gabor parameter are given in Table 4.2. The
dataset, MNIST, dropout, D = 0.5, and the number of filters, F = 96, are the parameters we
are testing. The other parameters are described in Section 3.3. The dataset is also shuffled for
each test. Here we list the accuracy and lossfor both training and validation results. Please note
that the term uniform is used in place of the grid-search that Ozbulak had created in [16].

118 Chapter 4. Testing and Results

4.3.2 Results

MNIST

MNIST

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9932 0.0220 3.55E-04 1.12E-03 1.26E-07 1.24E-06 0.9922 0.0235 9.85E-04 2.47E-03 9.70E-07 6.09E-06

64 0.9934 0.0212 7.27E-04 1.90E-03 5.28E-07 3.59E-06 0.9918 0.0241 1.00E-03 3.06E-03 1.01E-06 9.39E-06

96 0.9937 0.0210 6.01E-04 1.90E-03 3.61E-07 3.63E-06 0.9923 0.0235 9.90E-04 2.14E-03 9.80E-07 4.58E-06

Uniform

32 0.9925 0.0246 6.10E-04 1.63E-03 3.72E-07 2.65E-06 0.9909 0.0269 4.57E-04 1.59E-03 2.08E-07 2.53E-06

64 0.9933 0.0218 3.71E-04 1.13E-03 1.38E-07 1.28E-06 0.9916 0.0257 1.88E-03 5.90E-03 3.53E-06 3.48E-05

96 0.9936 0.0210 2.38E-04 8.77E-04 5.65E-08 7.69E-07 0.9922 0.0239 8.15E-04 2.46E-03 6.65E-07 6.06E-06

0.25

Random

32 0.9342 0.1977 1.08E-02 2.34E-02 1.16E-04 5.47E-04 0.9880 0.0471 1.77E-03 8.01E-03 3.12E-06 6.41E-05

64 0.9414 0.1838 8.64E-03 2.30E-02 7.47E-05 5.29E-04 0.9881 0.0486 1.64E-03 7.83E-03 2.70E-06 6.13E-05

96 0.9339 0.1939 6.61E-03 2.17E-02 4.36E-05 4.71E-04 0.9883 0.0461 2.42E-03 1.01E-02 5.83E-06 1.03E-04

Uniform

32 0.9432 0.1775 6.47E-03 1.85E-02 4.19E-05 3.41E-04 0.9874 0.0472 2.03E-03 8.17E-03 4.12E-06 6.68E-05

64 0.9406 0.1943 8.52E-03 3.79E-02 7.25E-05 1.43E-03 0.9872 0.0525 1.95E-03 1.40E-02 3.80E-06 1.96E-04

96 0.9382 0.1898 1.21E-02 3.44E-02 1.48E-04 1.19E-03 0.9887 0.0461 1.83E-03 1.12E-02 3.35E-06 1.25E-04

0.5

Random

32 0.7867 0.6206 1.51E-02 4.37E-02 2.29E-04 1.91E-03 0.9804 0.1283 5.94E-03 4.93E-02 3.53E-05 2.43E-03

64 0.7966 0.6156 2.65E-02 5.76E-02 7.05E-04 3.32E-03 0.9800 0.1322 5.32E-03 3.98E-02 2.82E-05 1.59E-03

96 0.7838 0.6436 2.87E-02 9.19E-02 8.25E-04 8.45E-03 0.9798 0.1487 5.86E-03 7.14E-02 3.44E-05 5.10E-03

Uniform

32 0.7851 0.6355 4.27E-02 1.01E-01 1.83E-03 1.02E-02 0.9801 0.1406 3.94E-03 4.99E-02 1.55E-05 2.49E-03

64 0.7935 0.5996 1.76E-02 4.90E-02 3.11E-04 2.41E-03 0.9826 0.1079 2.31E-03 2.81E-02 5.33E-06 7.89E-04

96 0.7544 0.6934 7.31E-02 2.05E-01 5.34E-03 4.20E-02 0.9595 0.2000 4.70E-02 1.84E-01 2.21E-03 3.37E-02

Table 4.31: The following results are the averages of 10 trials for each test using MNIST as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. Here we have a shuffled dataset for each epoch for all trials.

4.3. Experiment C 119

(a)

(b)

Figure 4.27: Here we see a different representation of Table 4.31 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the shuffled MNIST dataset in both training and
validation sets.

120 Chapter 4. Testing and Results

Discussion

When we add dropout to the MNIST dataset, we can see a drop in training and validation

results. Although it is not a significant drop, there is still a noticeable pattern that when we add

dropout, results tend to drop. This was seen and discussed in the 2 previous experiments as

well. We can also see that the loss increases on average as we increase the dropout.

When we use different numbers of filters in layer 1, we can see a pattern where if we

increase the filters, we can see an improvement for results. This pattern is shown when dropout,

D = [0, 0.25], but when D = 0.5, we see the opposite trend where the performance drops. This

can be explained with using the standard deviation and the variance though. The test where

D = 0.5 and the number of filters, F = 96 shows an increase for the standard deviation and

variance which signifies that there is more variance for the results. Assuming this value is

unreliable compared to it’s neighboring tests, we can assume the value is not as accurate as it

could be. The trend would continue where if we increase the filter numbers, we would increase

the performance. This happens in both uniform and random tests. That said, the difference

between using 32 and 96 filters is small. The benefits of using a smaller filter size here would

benefit the network more than using a larger number of filters.

Out of the 9 different tests comparing a uniform initialization method versus a random

initialization method, MNIST appears to favor random initialization more than a uniform dis-

tribution. To add to this point, using a smaller filter size favours random initialization. The 2

tests that beat the random distribution had 96 filters as their first layer. The other 7 tests were

all favoured for random initialization.

In summary, adding dropout decreases the performance. MNIST favours random initial-

ization more than a grid-search like initialization. Using more filters provides a more accurate

result overall, but with a small gain over using a smaller number of filters. One can accomplish

the same goals if they were to use a smaller filter size all while reducing the complexity and

the number of parameters within the CNN.

4.3. Experiment C 121

(a) Accuracy: D = 0, F = 96 (b) Loss: D = 0, F = 96

(c) Accuracy: D = 0.25, F = 96 (d) Loss: D = 0.25, F = 96

(e) Accuracy: D = 0.50, F = 96 (f) Loss: D = 0.50, F = 96

Figure 4.28: Training on MNIST shows a drop in performance when we add dropout to the
network. The performance finds its peak very fast, likely due to the simplicity of the dataset.
We can see a performance drop when we switch to a dataset with colour such as CIFAR-
10. This is likely do to the extra overhead of dealing with colour in the network. To see an
example, refer to 4.30. Using random or grid-search initialization for the Gabor filters shows
similar training results and testing results.

122 Chapter 4. Testing and Results

CIFAR-10

CIFAR-10

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 1.0000 0.0021 9.66E-06 3.52E-04 9.33E-11 1.24E-07 0.7758 1.6800 8.21E-03 1.11E-01 6.74E-05 1.24E-02

64 1.0000 0.0020 1.03E-05 7.75E-04 1.07E-10 6.01E-07 0.7805 1.6166 5.05E-03 7.14E-02 2.55E-05 5.10E-03

96 0.7292 0.6920 4.36E-01 1.11E+00 1.90E-01 1.24E+00 0.5736 1.8701 3.27E-01 3.02E-01 1.07E-01 9.14E-02

Uniform

32 1.0000 0.0021 1.05E-05 2.33E-04 1.11E-10 5.44E-08 0.7782 1.6554 3.67E-03 4.42E-02 1.35E-05 1.95E-03

64 1.0000 0.0020 8.43E-06 3.15E-04 7.11E-11 9.91E-08 0.7829 1.6095 5.65E-03 5.31E-02 3.20E-05 2.82E-03

96 0.9852 0.0425 4.68E-02 1.28E-01 2.19E-03 1.64E-02 0.7644 1.6372 2.49E-02 2.30E-01 6.20E-04 5.27E-02

0.25

Random

32 0.6458 0.9419 3.28E-01 8.29E-01 1.07E-01 6.87E-01 0.5686 1.3385 2.56E-01 5.39E-01 6.57E-02 2.91E-01

64 0.6321 0.9654 3.70E-01 9.24E-01 1.37E-01 8.54E-01 0.5436 1.4020 3.06E-01 6.26E-01 9.38E-02 3.91E-01

96 0.8774 0.3639 2.81E-02 7.38E-02 7.91E-04 5.45E-03 0.7334 1.0769 1.11E-02 9.48E-02 1.23E-04 8.99E-03

Uniform

32 0.7696 0.6280 2.21E-01 5.68E-01 4.88E-02 3.23E-01 0.6683 1.1372 1.60E-01 3.38E-01 2.56E-02 1.15E-01

64 0.8309 0.4752 1.23E-01 3.22E-01 1.52E-02 1.04E-01 0.7221 1.0346 4.98E-02 9.94E-02 2.48E-03 9.89E-03

96 0.8596 0.4005 3.70E-02 9.25E-02 1.37E-03 8.56E-03 0.7295 1.0285 9.80E-03 6.67E-02 9.60E-05 4.45E-03

0.5

Random

32 0.4254 1.4979 2.37E-01 5.82E-01 5.63E-02 3.39E-01 0.4738 1.4871 2.64E-01 5.77E-01 6.96E-02 3.33E-01

64 0.4067 1.5416 2.76E-01 6.77E-01 7.60E-02 4.59E-01 0.4365 1.5611 2.91E-01 6.41E-01 8.47E-02 4.11E-01

96 0.5654 1.1586 2.49E-01 6.05E-01 6.20E-02 3.66E-01 0.5648 1.3284 2.45E-01 5.19E-01 6.02E-02 2.69E-01

Uniform

32 0.5588 1.1567 1.73E-01 4.22E-01 2.98E-02 1.78E-01 0.6112 1.1801 1.80E-01 3.96E-01 3.25E-02 1.57E-01

64 0.6507 0.9526 3.44E-02 7.11E-02 1.18E-03 5.06E-03 0.6837 1.0256 1.36E-02 6.02E-02 1.86E-04 3.63E-03

96 0.4956 1.3215 2.00E-01 4.85E-01 4.00E-02 2.35E-01 0.5700 1.2466 2.02E-01 4.58E-01 4.09E-02 2.09E-01

Table 4.32: The following results are the averages of 10 trials for each test using CIFAR-10 as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. Here we have a shuffled dataset for each epoch for all trials.

4.3. Experiment C 123

(a)

(b)

Figure 4.29: Here we see a different representation of Table 4.32 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the shuffled CIFAR-10 dataset in both training and
validation sets. Longer bars just shows the range in values are more spread apart. In some
cases of shuffling the dataset, training does not even start up and is never able to converge.

124 Chapter 4. Testing and Results

Discussion

From out results, we can see that the network is overfitting on the CIFAR-10 dataset. The

overfitting starts to happen around the 20th epoch and as we add dropout, the point at which

the CNN overfits increases as described in the figure below. There is no benefit of adding

dropout here in this case because we find that by adding dropout, our performance drops in

both training and validation.

Increasing the number of filters appears to improve the performance for the network for

both uniform and random initialization methods. The results shown in Table 4.32 shows that

as we increase the filters from 32 to 96, there is a small improvement for accuracy and loss.

The pattern appears to break on certain tests but the standard deviation and variance are larger

than normal. This could mean that the result is not as accurate as the pattern suggests.

When training on CIFAR-10, the dataset leans towards using a grid-search initialization

over a random initialization. Out of 9 tests comparing the different initialization methods, 8 of

the 9 tests favours grid-search. Also, the overall performance of the network is increased and

produces a higher accuracy when using grid-search compared to randomness.

In summary, when testing with CIFAR-10, the dataset favours using a grid-search for ini-

tialization instead of random initialization. Not only does it favour grid-search as the initial-

ization method, it produces higher results and performs better. Dropout is not needed when

training on this network because the dataset overfits for all tested scenarios. If dropout is in-

cluded, the results drop as well. Using more filters improves the performance of the network

with a small gain.

4.3. Experiment C 125

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 64 (f) Loss: D = 0.50, F = 64

Figure 4.30: Training on the CIFAR-10 dataset results in overfitting even with dropout using
our network described in Section 3.3. As we add dropout to both random and uniform initial-
ization methods, we increase the epoch at which we reach the point where the CNN overfits.
When dropout, D = 0, we can see that around epoch, E = 18 the network starts to overfit.
When D = 0.25, we see that the network overfits around E = 30, and finally when D = 0.50,
the epoch at which it overfits is about E = 35. The performance of the network surprisingly
drops with an increased dropout. Using random or grid-search initialization for the Gabor
filters shows similar training results and testing results.

126 Chapter 4. Testing and Results

CIFAR-100

CIFAR-100

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.6315 1.2221 1.03E-01 4.05E-01 1.06E-02 1.64E-01 0.3625 3.0255 2.13E-02 4.99E-01 4.53E-04 2.49E-01

64 0.7852 0.6660 5.06E-02 1.57E-01 2.56E-03 2.45E-02 0.3481 3.9916 2.31E-02 5.94E-01 5.33E-04 3.53E-01

96 0.6407 1.3513 2.91E-01 1.37E+00 8.49E-02 1.88E+00 0.3123 3.8403 1.14E-01 8.34E-01 1.29E-02 6.96E-01

Uniform

32 0.7485 0.7814 4.25E-02 1.33E-01 1.80E-03 1.78E-02 0.3464 3.7686 2.57E-02 3.49E-01 6.63E-04 1.22E-01

64 0.8104 0.5940 2.19E-02 6.74E-02 4.82E-04 4.55E-03 0.3596 3.9668 1.28E-02 2.06E-01 1.64E-04 4.26E-02

96 0.8028 0.6128 3.23E-02 9.88E-02 1.04E-03 9.76E-03 0.3485 4.0598 1.79E-02 3.97E-01 3.22E-04 1.57E-01

0.25

Random

32 0.1921 3.1185 2.36E-02 1.62E-01 5.58E-04 2.62E-02 0.2669 2.9259 2.50E-02 1.40E-01 6.26E-04 1.96E-02

64 0.2089 2.9971 1.54E-02 1.09E-01 2.36E-04 1.20E-02 0.2799 2.8390 1.34E-02 6.91E-02 1.80E-04 4.78E-03

96 0.2059 3.0114 3.09E-02 2.11E-01 9.54E-04 4.45E-02 0.2789 2.8465 2.79E-02 1.57E-01 7.81E-04 2.46E-02

Uniform

32 0.1953 3.0779 1.95E-02 9.21E-02 3.81E-04 8.48E-03 0.2725 2.8888 1.91E-02 9.55E-02 3.64E-04 9.12E-03

64 0.2275 2.8772 1.21E-02 6.62E-02 1.46E-04 4.38E-03 0.2979 2.7567 1.22E-02 4.37E-02 1.50E-04 1.91E-03

96 0.2251 2.8946 1.50E-02 9.44E-02 2.26E-04 8.91E-03 0.2935 2.7709 1.53E-02 5.73E-02 2.33E-04 3.28E-03

0.5

Random

32 0.0841 3.7936 9.91E-03 1.00E-01 9.82E-05 1.01E-02 0.1654 3.4995 1.79E-02 1.24E-01 3.20E-04 1.54E-02

64 0.0908 3.7511 1.47E-02 1.24E-01 2.15E-04 1.53E-02 0.1738 3.4591 2.43E-02 1.32E-01 5.89E-04 1.73E-02

96 0.0800 3.8273 1.70E-02 1.56E-01 2.89E-04 2.43E-02 0.1558 3.5403 3.83E-02 2.13E-01 1.46E-03 4.52E-02

Uniform

32 0.0891 3.7426 1.15E-02 9.54E-02 1.31E-04 9.10E-03 0.1714 3.4429 2.18E-02 1.15E-01 4.77E-04 1.32E-02

64 0.0978 3.6493 4.92E-03 4.38E-02 2.43E-05 1.92E-03 0.1948 3.3219 9.29E-03 5.60E-02 8.63E-05 3.13E-03

96 0.0986 3.6632 9.11E-03 7.36E-02 8.31E-05 5.42E-03 0.1914 3.3450 1.08E-02 7.88E-02 1.17E-04 6.21E-03

Table 4.33: The following results are the averages of 10 trials for each test using CIFAR-10 as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. Here we have a shuffled dataset for each epoch for all trials.

4.3. Experiment C 127

(a)

(b)

Figure 4.31: Here we see a different representation of Table 4.33 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the shuffled CIFAR-100 dataset in both training and
validation sets.

128 Chapter 4. Testing and Results

c

Discussion

When we are training with CIFAR-100, we know that it is more complex adding 90 classes

more than CIFAR-10. With 100 classes, the results are decreased substantially. Adding dropout

with these tests reduces the results even further. Adding a dropout, D = 0.50, is about half

as accurate than having no dropout at all. This happens for both initialization methods and

continues the trend from the other datasets, MNIST and CIFAR-10.

Following the same trend from using the other 2 datasets, for CIFAR-100, increasing the

number of filters increases the performance of the CNN. Although it appears that the results on

average are less accurate, the loss is increased and the standard deviation and variation is much

greater. We can say, that because of this it does follow the trend. Similar to the other datasets as

well, the performance for adding more filters offers a small gain. For example, for 32 filters and

25% dropout initialized randomly, we see that there is a 1.5% increase in validation accuracy

when using 96 filters with the same dropout.

When using our architecture (described in Section 3.3), we see the same trend when training

on the CIFAR-10 dataset where the CNN favours CIFAR-100 if it is initialized using grid-

search. In all of the 9 tests run comparing the initialization methods, 8 tests scored higher using

a grid search initialization. On average, using grid-search also improves the results compared to

using random initialization. For example, the test with dropout, D = 0.50, and filters, F = 64,

the difference between random and grid-search is 2.1% improved validation accuracy.

In summary, using dropout reduces the performance of the network when training on

CIFAR-100. Using a 50% dropout compared to having no dropout reduces the (validation)

accuracy by almost half. Increasing the number of filters in either initialization method pro-

vides a higher validation accuracy and lower loss. CIFAR-100 favours a grid search initializa-

tion method over randomization. On average, using grid-search initialization also boosts the

validation accuracy.

4.3. Experiment C 129

(a) Accuracy: D = 0, F = 96 (b) Loss: D = 0, F = 96

(c) Accuracy: D = 0.25, F = 96 (d) Loss: D = 0.25, F = 96

(e) Accuracy: D = 0.50, F = 96 (f) Loss: D = 0.50, F = 96

Figure 4.32: Training on the CIFAR-100 dataset shows a drop in performance when we add
dropout which shows no benefit in adding dropout. This follows our findings from training
with other datasets. We can also see that there is overfitting happening where dropout, D = 0
at around epoch, E = 20. The performance begins to level off around epoch, E = 100 which
shows the maximum performance we can obtain based on our given architecture (Section 3.3).
Using random or grid-search initialization for the Gabor filters shows similar training results
and testing results.

130 Chapter 4. Testing and Results

Comparing with Ozbulak’s Results

MNIST

Dropout
Filter

Size
Epoch

Training Validation

Random Uniform Ozbulak Random Uniform Ozbulak

0 96

1 85.27 84.67 87.36 97.67 97.49 96.60

2 97.73 97.56 97.56 98.32 98.55 98.26

3 98.47 98.45 98.35 98.63 98.96 98.69

4 98.84 98.74 98.70 99.08 98.97 98.74

5 98.99 98.95 98.89 99.26 99.01 98.70

6 99.14 99.10 99.03 99.19 99.05 99.23

7 99.28 99.21 99.15 98.98 99.23 99.22

8 99.33 99.26 99.21 99.33 99.20 98.97

9 99.40 99.36 99.31 99.29 99.23 99.25

10 99.44 99.38 99.33 99.29 99.30 99.25

Table 4.34: A comparison table of the first 10 epochs of training for MNIST. Here we compare
the 2 different initialization methods, random vs grid-search (labelled uniform on the following
table). Ozbulak’s results are on the third column to compare what he has found and whether
the results are consistent or not. Note the dropout that is used and the filter size. For a list of
the hyperparameters, and parameter ranges in the Gabor filter, please refer to Table 4.2. In our
tests, we use multiple dropouts and different filter sizes.

4.3. Experiment C 131

CIFAR-10

Dropout
Filter

Size
Epoch

Training Validation

Random Uniform Ozbulak Random Uniform Ozbulak

0 96

1 27.66 27.26 32.44 39.55 39.35 45.00

2 46.54 43.83 52.50 54.73 52.00 59.21

3 56.91 54.20 61.77 62.56 56.76 62.24

4 63.43 60.64 66.72 61.70 60.93 66.64

5 67.39 64.94 70.60 67.28 66.08 69.80

6 70.93 68.43 73.36 70.11 65.87 70.90

7 73.77 71.18 75.62 67.71 70.71 73.54

8 75.54 73.74 77.33 73.41 70.69 74.40

9 77.97 75.61 79.26 71.63 73.80 74.85

10 79.36 77.21 80.50 75.06 73.77 75.73

Table 4.35: A comparison table of the first 10 epochs of training for CIFAR-10. Here we
compare the 2 different initialization methods, random vs grid-search (labelled uniform on the
following table). Ozbulak’s results are on the third column to compare what he has found and
whether the results are consistent or not. Note the dropout that is used and the filter size. For a
list of the hyperparameters, and parameter ranges in the Gabor filter, please refer to Table 4.2.
In our tests, we use multiple dropouts and different filter sizes.

CIFAR-100

Dropout
Filter

Size
Epoch

Training Validation

Random Uniform Ozbulak Random Uniform Ozbulak

0 96

1 2.20 1.86 2.51 3.98 3.37 5.06

2 4.99 5.16 7.66 6.67 7.02 10.16

3 9.09 8.70 11.68 9.48 10.60 12.72

4 12.04 12.35 14.32 13.82 14.08 16.03

5 14.60 14.68 17.34 16.04 15.90 18.49

6 17.12 16.76 20.12 17.41 18.29 20.71

7 19.20 19.01 22.75 20.76 19.69 23.45

8 21.45 21.27 24.75 20.94 22.63 24.33

9 23.10 23.38 26.71 23.70 23.48 26.64

10 24.50 25.01 27.89 25.05 23.97 28.55

Table 4.36: A comparison table of the first 10 epochs of training for CIFAR-100. Here we
compare the 2 different initialization methods, random vs grid-search (labelled uniform on the
following table). Ozbulak’s results are on the third column to compare what he has found and
whether the results are consistent or not. Note the dropout that is used and the filter size. For a
list of the hyperparameters, and parameter ranges in the Gabor filter, please refer to Table 4.2.
In our tests, we use multiple dropouts and different filter sizes.

132 Chapter 4. Testing and Results

Discussion

Looking at Tables 4.34, 4.35, and 4.36, we can see that using either initialization method

gives similar results. In our tests, we do 10 trials and we show the first 10 epochs of training

for the CNN. Please note that Ozbulak uses a grid-search like method to initialize his CNN

using the Gabor filter in the first layer. We can see that in most cases, Ozbulak’s results are

the highest when we look at the CIFAR-10 and CIFAR-100 datasets. This follows the trend

of having a uniform (grid-search) distribution provides a higher performance for the network

when working with these more complex datasets. For MNIST, the results are very close to

each other with no noticeable difference. Ozbulak’s results also show a higher training and

testing accuracy per epoch on average which cannot be explained other than the results are not

reproducible. All 3 datasets show this pattern, all of which cannot be reproduced. It is more

noticeable in the CIFAR-10 and CIFAR-100 datasets.

4.3.3 Summary

[New: Dropout adds no benefits] Adding dropout is not necessary when training on MNIST,

CIFAR-10, and CIFAR-100. By adding dropout, it reduces the performance of the CNN and in

some cases, it will cut the performance by half. Training with CIFAR-10 was the only dataset

where we saw overfitting even with dropout.

[New: Increasing filters adds performance] On average, increasing the number of filters

improves the performance of the network with a small gain in accuracy and a reduction in loss.

For MNIST, using a smaller filter size is more optimal as the performance gain is very small

for the amount of extra filters (and hence more parameters) added. For CIFAR-10 and CIFAR-

100, if a small performance boost is required, using more filters is advised since there is more

features to extract with the Gabor filter and more variations can offer more extracted features.

[New: MNIST→random GCNN, CIFAR-10 and CIFAR-100→grid-search GCNN] MNIST

favours a randomized initialization for the Gabor filter, while both CIFAR-10 and CIFAR-100

favour a grid search initialization. In the CIFAR-10 and CIFAR-100 tests, using grid-search is

4.4. Experiment D 133

far superior because on average the validation accuracy was much higher than using a random

initialization. Depending on the dataset, it appears that random initialization is superior for

simple datasets like MNIST, and grid-search is superior for datasets that are more complex,

like CIFAR-10 and CIFAR-100.

4.4 D: Grid Search Vs. Random Search with Non-Shuffled

Datasets Training on MNIST, CIFAR-10, and CIFAR-

100

4.4.1 Experiment Setup

In this experiment, the Gabor bank is the same as Section 4.3. The hyperparameters used are

the same from Section 4.3 and as described in Section 3.3. This experiment has a total of 9

tests, each with 10 trials. The averages of the trials are taken and are shown in the following

tables below.

The Gabor filter bank will change depending on the number of filter supplied to the first

layer. There are 3 different number of filters to change for 3 different dropouts. The random-

ization and grid-search parameter ranges are listed in Table 4.2.

This experiment’s main focus is to see how well the Gabor filter bank (either random or

grid-search initialized) performs on a non-shuffled dataset. What this means is that for each

trial, the dataset used is in the same order, no shuffling occurs. This also happens within each

epoch so that there is absolutely no shuffling of the dataset. The validation data is not shuffled

as well. Here we can compare the results with Section 4.3, where the dataset is shuffled for all

epochs, trials, and tests.

134 Chapter 4. Testing and Results

CIFAR-10

Dropout Filter Size Epoch

Random Uniform

Training Validation Training Validation

Acc Loss Acc Loss Acc Loss Acc Loss

0.5 96

1 0.2843 1.8616 0.4272 1.5425 0.2920 1.8398 0.4407 1.4968

10 0.7849 0.6065 0.7272 0.7824 0.7912 0.5958 0.7304 0.7994

20 0.8936 0.3125 0.7394 0.8878 0.8984 0.3066 0.7594 0.8038

30 0.9498 0.1607 0.7762 0.9372 0.9483 0.1642 0.7666 0.9772

40 0.9779 0.0793 0.7732 1.1691 0.9768 0.0829 0.7766 1.0662

50 0.9969 0.0240 0.7851 1.3590 0.9941 0.0345 0.7778 1.2876

60 0.9996 0.0090 0.7833 1.5250 0.9990 0.0127 0.7826 1.4072

70 1.0000 0.0034 0.7842 1.6205 1.0000 0.0047 0.7758 1.5899

80 1.0000 0.0022 0.7843 1.6795 1.0000 0.0028 0.7848 1.5924

90 1.0000 0.0016 0.7849 1.7193 1.0000 0.0020 0.7873 1.6336

100 1.0000 0.0013 0.7838 1.7478 1.0000 0.0016 0.7877 1.6624

Table 4.37: A trial run showing how our Gabor initialized CNN trains on the CIFAR-10 dataset.
There are a total of 100 epochs, where each epoch runs the same non-shuffled dataset. Aside
from the first epoch, every 10th epoch is recorded. The dropout, D = 0, and the number of
filters, F = 96, show that there is overfitting occurring around epoch 20.

4.4. Experiment D 135

4.4.2 Results

MNIST

MNIST

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9931 0.0229 4.58E-04 1.44E-03 2.10E-07 2.08E-06 0.9905 0.0276 8.92E-04 2.45E-03 7.96E-07 5.99E-06

64 0.9936 0.0214 6.76E-04 2.09E-03 4.57E-07 4.37E-06 0.9907 0.0280 1.26E-03 3.50E-03 1.58E-06 1.23E-05

96 0.9938 0.0212 7.50E-04 2.37E-03 5.62E-07 5.63E-06 0.9913 0.0256 9.39E-04 2.68E-03 8.82E-07 7.16E-06

Uniform

32 0.9926 0.0249 4.12E-04 1.39E-03 1.70E-07 1.93E-06 0.9899 0.0306 9.65E-04 3.21E-03 9.32E-07 1.03E-05

64 0.9930 0.0241 7.81E-04 2.84E-03 6.10E-07 8.05E-06 0.9899 0.0311 1.60E-03 5.46E-03 2.57E-06 2.98E-05

96 0.9933 0.0229 4.55E-04 1.32E-03 2.07E-07 1.74E-06 0.9906 0.0282 6.81E-04 1.94E-03 4.63E-07 3.77E-06

0.25

Random

32 0.9363 0.1878 6.15E-03 1.49E-02 3.78E-05 2.23E-04 0.9885 0.0423 1.20E-03 3.64E-03 1.44E-06 1.33E-05

64 0.9379 0.1883 1.18E-02 4.59E-02 1.39E-04 2.11E-03 0.9873 0.0501 2.14E-03 1.54E-02 4.58E-06 2.36E-04

96 0.9350 0.1984 1.75E-02 4.32E-02 3.05E-04 1.87E-03 0.9875 0.0505 2.34E-03 1.53E-02 5.46E-06 2.35E-04

Uniform

32 0.9399 0.1830 6.72E-03 1.89E-02 4.52E-05 3.57E-04 0.9874 0.0496 1.59E-03 7.83E-03 2.52E-06 6.14E-05

64 0.9411 0.1772 4.22E-03 1.62E-02 1.78E-05 2.64E-04 0.9877 0.0453 1.76E-03 9.11E-03 3.09E-06 8.30E-05

96 0.9434 0.1717 5.31E-03 1.32E-02 2.82E-05 1.76E-04 0.9878 0.0432 2.42E-03 6.83E-03 5.86E-06 4.66E-05

0.5

Random

32 0.7730 0.6519 1.67E-02 8.28E-02 2.78E-04 6.86E-03 0.9756 0.1516 5.18E-03 5.34E-02 2.69E-05 2.86E-03

64 0.7915 0.6023 3.15E-02 6.97E-02 9.95E-04 4.86E-03 0.9817 0.1149 3.70E-03 4.22E-02 1.37E-05 1.78E-03

96 0.8007 0.5884 2.55E-02 3.57E-02 6.49E-04 1.27E-03 0.9824 0.1098 3.02E-03 1.91E-02 9.10E-06 3.63E-04

Uniform

32 0.7891 0.6095 1.99E-02 4.46E-02 3.96E-04 1.99E-03 0.9815 0.1257 3.04E-03 3.60E-02 9.25E-06 1.29E-03

64 0.7297 0.7834 2.21E-01 5.48E-01 4.87E-02 3.00E-01 0.8925 0.3644 2.74E-01 6.88E-01 7.50E-02 4.74E-01

96 0.7966 0.5916 2.87E-02 5.78E-02 8.23E-04 3.34E-03 0.9803 0.1306 4.40E-03 4.44E-02 1.94E-05 1.97E-03

Table 4.38: The following results are the averages of 10 trials for each test using MNIST as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. The results are from using a non-shuffled dataset instead of being
shuffled like experiment C (Section 4.3).

136 Chapter 4. Testing and Results

(a)

(b)

Figure 4.33: Here we see a different representation of Table 4.38 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the non-shuffled MNIST dataset in both training and
validation sets.

4.4. Experiment D 137

Discussion

When training on the MNIST dataset using a non-shuffled dataset, we see that there is a drop

when we introduce dropout to the network. As we increase the dropout, we see a linear drop in

terms of accuracy, and an increase in loss as well. This is a continuous trend we see from the

previous experiments A, B, and C (Sections 4.1, 4.2, and 4.3. There is no benefit for adding

dropout.

In all of the test trials we run for this experiment, we see that as we increase the number of

filters, the validation accuracy increases. The only test that does not show an improvement is

the final test where dropout, D = 0.50, using a uniform (grid-search) distribution. This result

appears to be unreliable as the error is higher than normal, as well as the standard deviation

and variances are much higher than other tests. The trend of increasing the number of filters

appears in all of the experiments discussed so far and continues in this experiment. One thing

to note however is that because the results are so close together, there is no real benefit in

adding more filters to the network.

In both initialization methods, using random and uniform (grid-search) distributions for the

first layer show an increase in performance by adding more filters. For MNIST, the trend was

to see a random initialization method outperforming the uniform distribution, which is still

noticeable here. 5 of the 9 tests provided when comparing 3 different dropouts at 3 different

number of filters, shows that random performs better than using a grid-search initialization for

the Gabor filter in the first layer. For example, when there is 50% dropout with 96 filters, there

is a 0.21% increase for using a random initialization. Although it is an improvement for using

a random initialization, it is not significant.

In summary for working with MNIST, adding dropout reduces the performance of the net-

work. Increasing the number of filters improves the performance of the network, but not by

much. If speed is the goal, using less filters will be more beneficial since there will conse-

quently be less parameters to tune. Random initialization for the Gabor filter in the first layer

is more successful than using a uniform (grid-search) distribution, but the differences are very

138 Chapter 4. Testing and Results

marginal.

(a) Accuracy: D = 0, F = 64 (b) Loss: D = 0, F = 64

(c) Accuracy: D = 0.25, F = 64 (d) Loss: D = 0.25, F = 64

(e) Accuracy: D = 0.50, F = 64 (f) Loss: D = 0.50, F = 64

Figure 4.34: Training on the MNIST dataset shows with no shuffling for the dataset shows
a fast training with high results. We continue the trend of seeing a dip in the performance
when we add dropout, albeit, an insignificant amount. Using either initialization method offers
similar performance. Comparing with Figure 4.28, we can see that shuffling the dataset almost
offers no difference. The Gabor CNN plateaus its performance very early.

4.4. Experiment D 139

CIFAR-10

CIFAR-10

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9096 0.2324 2.86E-01 7.27E-01 8.17E-02 5.29E-01 0.7046 1.7995 2.13E-01 1.87E-01 4.52E-02 3.51E-02

64 1.0000 0.0020 2.15E-05 5.56E-04 4.62E-10 3.09E-07 0.7767 1.7504 5.51E-03 5.69E-02 3.04E-05 3.24E-03

96 1.0000 0.0016 1.03E-05 4.90E-04 1.07E-10 2.40E-07 0.7771 1.7585 7.89E-03 7.80E-02 6.23E-05 6.09E-03

Uniform

32 1.0000 0.0024 1.26E-05 2.32E-04 1.60E-10 5.37E-08 0.7740 1.7617 6.45E-03 6.45E-02 4.16E-05 4.16E-03

64 1.0000 0.0020 1.03E-05 3.11E-04 1.07E-10 9.68E-08 0.7758 1.7632 7.26E-03 8.60E-02 5.28E-05 7.39E-03

96 1.0000 0.0019 1.40E-05 3.08E-04 1.96E-10 9.47E-08 0.7753 1.7642 5.97E-03 5.76E-02 3.56E-05 3.32E-03

0.25

Random

32 0.8269 0.4735 4.97E-02 1.36E-01 2.47E-03 1.86E-02 0.7199 1.0167 1.40E-02 8.27E-02 1.97E-04 6.83E-03

64 0.7504 0.6768 2.41E-01 5.97E-01 5.80E-02 3.56E-01 0.6556 1.1764 1.95E-01 4.12E-01 3.82E-02 1.70E-01

96 0.6753 0.8621 3.45E-01 8.57E-01 1.19E-01 7.34E-01 0.5764 1.3589 2.65E-01 5.14E-01 7.04E-02 2.64E-01

Uniform

32 0.8297 0.4809 1.03E-01 2.79E-01 1.07E-02 7.78E-02 0.7127 1.0833 3.94E-02 1.04E-01 1.55E-03 1.08E-02

64 0.8734 0.3638 1.02E-02 2.87E-02 1.04E-04 8.26E-04 0.7348 1.0497 5.93E-03 4.77E-02 3.52E-05 2.28E-03

96 0.8082 0.5297 1.68E-01 4.18E-01 2.81E-02 1.75E-01 0.6869 1.1551 1.05E-01 1.73E-01 1.11E-02 3.01E-02

0.5

Random

32 0.5554 1.1667 1.83E-01 4.44E-01 3.33E-02 1.97E-01 0.5956 1.2421 1.80E-01 3.88E-01 3.22E-02 1.51E-01

64 0.4113 1.5269 2.64E-01 6.51E-01 6.99E-02 4.24E-01 0.4425 1.5664 2.66E-01 5.76E-01 7.06E-02 3.32E-01

96 0.3937 1.5701 2.90E-01 7.10E-01 8.43E-02 5.04E-01 0.4048 1.6590 2.87E-01 5.98E-01 8.26E-02 3.58E-01

Uniform

32 0.4917 1.3337 2.25E-01 5.50E-01 5.07E-02 3.03E-01 0.5324 1.3551 2.34E-01 5.14E-01 5.49E-02 2.64E-01

64 0.6177 1.0186 7.27E-02 1.62E-01 5.29E-03 2.62E-02 0.6549 1.1139 2.90E-02 8.10E-02 8.39E-04 6.56E-03

96 0.4466 1.4363 2.51E-01 6.19E-01 6.28E-02 3.83E-01 0.4804 1.4922 2.65E-01 5.67E-01 7.02E-02 3.21E-01

Table 4.39: The following results are the averages of 10 trials for each test using CIFAR-10 as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. The results are from using a non-shuffled dataset instead of being
shuffled like experiment C (Section 4.3).

140 Chapter 4. Testing and Results

(a)

(b)

Figure 4.35: Here we see a different representation of Table 4.39 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the non-shuffled CIFAR-10 dataset in both training
and validation sets.

4.4. Experiment D 141

Discussion

When training on the CIFAR-10 dataset, we see the same trend we have seem in all previous

experiments, where by adding dropout, the performance of the network is reduced. This occurs

in all filters given and in both initialization methods of random versus grid-search. There

is no benefit for adding dropout to the network. We can see from the training results that

the network is overfitting as well. This is the same result from experiment C (Section 4.3)

where increasing the dropout only gives the network a couple more epoch rounds and finally

overfitting regardless of what dropout percentage is used (Figure 4.36).

From the results that we have obtained after averaging the 10 trials for each permutation, no

dropout results with a linear trend that increasing the filters improves the validation accuracy

of the network. Having dropout shows that there is no noticeable pattern. This is inconsis-

tent in what we have seen from experiment C where adding more filters should improve the

performance of the network. Looking at the standard deviation and the variance for these in-

consistencies shows that the results may be inconsistent and unreliable because the values are

higher than the tests where we check the number of filters, F = 32. This could mean that the

trend can still exist, but requires more tests.

Using random initialization versus grid-search initialization show when training with CIFAR-

10, a grid-search distribution is favoured. 5 of the 9 tests comparing both methods shows that

uniform initialization provides a higher validation accuracy. Not only does the network per-

form better with grid-search, the average results are higher than using a random initialization.

Adding dropout to the network when training on CIFAR-10 shows that the performance

drops significantly. The network will overfit on this simple AlexNet-like architecture regardless

of how much dropout is given (seen in Figure 4.36) which means that there is no benefit of

introducing dropout to this dataset. This is consistent with experiment C. Changing the number

of filters in the first layer shows that the performance increases in terms of validation accuracy

and a reduction in loss. This continues the trend seen in experiment C. Finally, grid-search is

more preferred when training with CIFAR-10, just like experiment C.

142 Chapter 4. Testing and Results

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 64 (f) Loss: D = 0.50, F = 64

Figure 4.36: Training on the CIFAR-10 dataset results in overfitting even with dropout using
our network described in Section 3.3. As we add dropout to both random and uniform initial-
ization methods, we increase the epoch at which we reach the point where the CNN overfits.
When dropout, D = 0, we can see that around epoch, E = 18 the network starts to overfit.
When D = 0.25, we see that the network overfits around E = 30, and finally when D = 0.50,
the epoch at which it overfits is about E = 35. The performance of the network surprisingly
drops with an increased dropout. This is similar to the result found in Table 4.30.

4.4. Experiment D 143

CIFAR-100

CIFAR-100

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.6722 1.0659 3.55E-02 1.32E-01 1.26E-03 1.75E-02 0.3375 3.5132 1.98E-02 4.09E-01 3.91E-04 1.67E-01

64 0.7062 0.9318 5.67E-02 1.90E-01 3.22E-03 3.61E-02 0.3289 3.9445 3.05E-02 5.77E-01 9.28E-04 3.33E-01

96 0.7641 0.7462 3.49E-02 1.13E-01 1.22E-03 1.27E-02 0.3128 4.5071 3.11E-02 6.74E-01 9.68E-04 4.54E-01

Uniform

32 0.7064 0.9331 2.25E-02 6.69E-02 5.08E-04 4.48E-03 0.3192 3.9506 1.48E-02 2.91E-01 2.20E-04 8.48E-02

64 0.7662 0.7433 2.41E-02 7.20E-02 5.79E-04 5.19E-03 0.3232 4.3605 1.84E-02 4.15E-01 3.40E-04 1.72E-01

96 0.7649 0.7368 3.38E-02 1.03E-01 1.14E-03 1.06E-02 0.3150 4.5593 1.34E-02 3.62E-01 1.80E-04 1.31E-01

0.25

Random

32 0.1940 3.1275 2.37E-02 1.58E-01 5.59E-04 2.50E-02 0.2710 2.9229 2.27E-02 1.27E-01 5.13E-04 1.62E-02

64 0.2033 3.0405 4.33E-02 3.21E-01 1.88E-03 1.03E-01 0.2687 2.9031 5.17E-02 3.06E-01 2.67E-03 9.33E-02

96 0.1955 3.0788 4.09E-02 2.88E-01 1.67E-03 8.31E-02 0.2630 2.9373 4.18E-02 2.30E-01 1.74E-03 5.31E-02

Uniform

32 0.2107 2.9898 1.23E-02 7.17E-02 1.52E-04 5.14E-03 0.2864 2.8185 1.20E-02 5.82E-02 1.43E-04 3.39E-03

64 0.2309 2.8630 1.47E-02 8.04E-02 2.17E-04 6.47E-03 0.2906 2.7904 1.37E-02 6.48E-02 1.87E-04 4.20E-03

96 0.2137 2.9684 2.95E-02 1.90E-01 8.69E-04 3.60E-02 0.2835 2.8331 2.39E-02 1.26E-01 5.72E-04 1.58E-02

0.5

Random

32 0.0834 3.8118 1.18E-02 1.02E-01 1.40E-04 1.04E-02 0.1629 3.5217 2.13E-02 1.27E-01 4.55E-04 1.61E-02

64 0.0796 3.8442 2.69E-02 2.94E-01 7.24E-04 8.66E-02 0.1529 3.5695 5.47E-02 3.91E-01 2.99E-03 1.53E-01

96 0.0908 3.7211 1.66E-02 1.93E-01 2.76E-04 3.73E-02 0.1704 3.4356 3.57E-02 2.43E-01 1.27E-03 5.89E-02

Uniform

32 0.0859 3.7851 1.16E-02 1.05E-01 1.34E-04 1.10E-02 0.1685 3.4851 1.77E-02 1.16E-01 3.12E-04 1.35E-02

64 0.0924 3.7101 1.48E-02 1.34E-01 2.19E-04 1.79E-02 0.1784 3.4198 2.81E-02 1.70E-01 7.89E-04 2.88E-02

96 0.0911 3.7255 6.56E-03 5.91E-02 4.31E-05 3.49E-03 0.1811 3.4135 9.24E-03 6.01E-02 8.54E-05 3.62E-03

Table 4.40: The following results are the averages of 10 trials for each test using CIFAR-100
as the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. The results are from using a non-shuffled dataset instead of being
shuffled like experiment C (Section 4.3).

144 Chapter 4. Testing and Results

(a)

(b)

Figure 4.37: Here we see a different representation of Table 4.40 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the non-shuffled CIFAR-100 dataset in both training
and validation sets.

4.4. Experiment D 145

Discussion

Similar to experiment C, when dropout is introduced to the network, the performance drops

dramatically. Here in this case, we see that by adding 50% dropout, there is almost half the

performance as if we added no dropout to the network. This means that there is no added

benefit of adding dropout to the network. There is no visible overfitting as well within the 100

epochs, but the accuracy and loss curves start to plateau towards 100 epochs.

As with previous experiments and datasets, when we increase the number of filters, we see

that the network improves its performance when training on CIFAR-100 dataset. The results

that fail to show this trend have a higher loss, standard deviation, and variance, which shows

that the result is unreliable. For example, when the network has a dropout, D = 0.50, and the

number of filters, F = 32, the network’s validation accuracy increases by 2% when comparing

with its neighbor of 96 filters (F = 96). This can be seen in Table 4.40.

The difference between using random search versus grid-search shows when training with

CIFAR-100. The dataset prefers a grid-search distribution as the initialization method for the

first layer when using the Gabor filter. In all 9 tests comparing both the initialization methods,

7 tests favoured using grid-search. Using grid-search as the initialization method also allows

the network to perform better. The average performance in terms of both training and accuracy

is much higher than using a random initialization. This can be seen for all permutations of

dropout and the number of filters for both initialization methods.

146 Chapter 4. Testing and Results

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.38: Training on the CIFAR-100 dataset shows a drop in performance following the
trend when we add dropout to the Gabor CNN. We have seen this from previous tests, and also
in experiment C. When dropout, D = 0, we see that the network is overfitting at around epoch,
E = 20. The performance begins to converge towards the end of training (epoch, E = 100).
Training with a random initialization for the Gabor filter bank shows a decrease in performance
in comparison to being initialized randomly.

4.4. Experiment D 147

In summary, when training with CIFAR-100, there is no added benefit of using dropout.

The performance drops dramatically when dropout is used, and in some cases, is almost half

as bad. Adding more filters will generally produce higher results for all cases shown in Table

4.40. CIFAR-100 also favours grid-search instead of random-search for the first layer Gabor

filter initialization.

4.4.3 Summary

[Confirm that dropout adds no benefits] Just like experiment C (Section 4.3), we see that by

adding dropout, the network performs worse which means that there is no added benefit for

using dropout. Even in the case of CIFAR-10, the graphs in Figure 4.30 and Figure 4.36 show

that overfitting is not solved with adding dropout. This applies for all datasets that this network

trains on (MNIST, CIFAR-10, and CIFAR-100).

[Confirm that increasing filters adds performance] Adding more filters show that there is

an increase in performance for all datasets tested on. Although not very noticeable according

to the averages taken, the errors, standard deviations, and variances of the results that seem

out of place are higher than results that fit the trend. Adding more filters for MNIST is not as

beneficial because there is a marginal loss in terms of both training and validation accuracy of

the network. In contrast, it is more beneficial to use more than less filters when training on

CIFAR-10 and CIFAR-100.

[Confirm MNIST→random GCNN, CIFAR-10 and CIFAR-100→grid-search GCNN] In

this experiment, using a random initialization method for the Gabor filter in the first layer is

only useful for the MNIST dataset. This trend continues from experiment C as well. For the

other two datasets, CIFAR-10 and CIFAR-100, the grid-search initialization method is more

preferred in both datasets. As a bonus to using the grid-search for these 2 datasets, the perfor-

mance is boosted on average when comparing to the random initialization.

[New: Non-shuffled datasets slightly drop performance] When we see the results from us-

ing either initialization methods, there is no noticeable difference in terms of both training and

148 Chapter 4. Testing and Results

validation accuracy (this can be seen in Tables 4.41, 4.42, 4.43, and 4.44). We can conclude

in saying that when using a shuffled dataset versus a non-shuffled dataset that the Gabor filter

bank used as the first layer trains regardless of initialization method learns its weights normally

like any other network. Testing the randomization of sets, we see that the Gabor filter bank has

no impact on having a shuffled dataset or a non-shuffled dataset during training.

[Summary of Experiment D] In summary, there is no benefit in adding dropout. Increas-

ing the number of filters results in higher performance. In the case of training on MNIST, using

less filters is more beneficial because there is no large gain in performance. When training on

CIFAR-10 and CIFAR-100, adding more filters provides a larger boost in performance. Using

a random initialization method for the Gabor filter bank in the first layer appears to be bet-

ter when used on MNIST. Using grid-search initialization is preferred when training on both

CIFAR-10 and CIFAR-100 datasets. When using a non-shuffled dataset, it compares similarly

to having a shuffled dataset for MNIST, but for CIFAR-10 and CIFAR-100, the performances

of using a non-shuffled dataset seem to be lower than using a shuffled dataset.

Random Search

Dropout

#

of

Filters

Training Accuracy

Shuffled Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9932 1.0000 0.6315 0.9931 0.9096 0.6722

64 0.9934 1.0000 0.7852 0.9936 1.0000 0.7062

96 0.9937 0.7292 0.6407 0.9938 1.0000 0.7641

0.25

32 0.9342 0.6458 0.1921 0.9363 0.8269 0.1940

64 0.9414 0.6321 0.2089 0.9379 0.7504 0.2033

96 0.9339 0.8774 0.2059 0.9350 0.6753 0.1955

0.50

32 0.7867 0.4254 0.0841 0.7730 0.5554 0.0834

64 0.7966 0.4067 0.0908 0.7915 0.4113 0.0796

96 0.7838 0.5654 0.0800 0.8007 0.3937 0.0908

Table 4.41: Here are the results of the random search initialization method used for the Gabor
filter that initialized the first layer in the network. The training accuracy of each dataset in
terms of the dropout and the number of filters given in each test are listed.

4.4. Experiment D 149

Grid Search

Dropout

#

of

Filters

Training Accuracy

Shuffled Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9925 1.0000 0.7485 0.9926 1.0000 0.7064

64 0.9933 1.0000 0.8104 0.9930 1.0000 0.7662

96 0.9936 0.9852 0.8028 0.9933 1.0000 0.7649

0.25

32 0.9432 0.7696 0.1953 0.9399 0.8297 0.2107

64 0.9406 0.8309 0.2275 0.9411 0.8734 0.2309

96 0.9382 0.8596 0.2251 0.9434 0.8082 0.2137

0.50

32 0.7851 0.5588 0.0891 0.7891 0.4917 0.0859

64 0.7935 0.6507 0.0978 0.7297 0.6177 0.0924

96 0.7544 0.4956 0.0986 0.7966 0.4466 0.0911

Table 4.42: Here are the results of the grid-search initialization method used for the Gabor filter
that initialized the first layer in the network. The training accuracy of each dataset in terms of
the dropout and the number of filters given in each test are listed.

Random Search

Dropout

#

of

Filters

Validation Accuracy

Shuffled Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9922 0.7758 0.3625 0.9905 0.7046 0.3375

64 0.9918 0.7805 0.3481 0.9907 0.7767 0.3289

96 0.9923 0.5736 0.3123 0.9913 0.7771 0.3128

0.25

32 0.9880 0.5686 0.2669 0.9885 0.7199 0.2710

64 0.9881 0.5436 0.2799 0.9873 0.6556 0.2687

96 0.9883 0.7334 0.2789 0.9875 0.5764 0.2630

0.50

32 0.9804 0.4738 0.1654 0.9756 0.5956 0.1629

64 0.9800 0.4365 0.1738 0.9817 0.4425 0.1529

96 0.9798 0.5648 0.1558 0.9824 0.4048 0.1704

Table 4.43: Here are the results of the random search initialization method used for the Gabor
filter that initialized the first layer in the network. The validation accuracy of each dataset in
terms of the dropout and the number of filters given in each test are listed.

150 Chapter 4. Testing and Results

Grid Search

Dropout

#

of

Filters

Validation Accuracy

Shuffled Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9909 0.7782 0.3464 0.9899 0.7740 0.3192

64 0.9916 0.7829 0.3596 0.9899 0.7758 0.3232

96 0.9922 0.7644 0.3485 0.9906 0.7753 0.3150

0.25

32 0.9874 0.6683 0.2725 0.9874 0.7127 0.2864

64 0.9872 0.7221 0.2979 0.9877 0.7348 0.2906

96 0.9887 0.7295 0.2935 0.9878 0.6869 0.2835

0.50

32 0.9801 0.6112 0.1714 0.9815 0.5324 0.1685

64 0.9826 0.6837 0.1948 0.8925 0.6549 0.1784

96 0.9595 0.5700 0.1914 0.9803 0.4804 0.1811

Table 4.44: Here are the results of the grid-search initialization method used for the Gabor
filter that initialized the first layer in the network. The validation accuracy of each dataset in
terms of the dropout and the number of filters given in each test are listed.

4.5 E: Grid Search Vs. Random Search with a Non-Trainable

First Layer and Non-Shuffled Datasets Training on MNIST,

CIFAR-10, and CIFAR-100

4.5.1 Experiment Setup

In our fifth experiment, we extend what we have learned from using the non-shuffled and

shuffled variants of the datasets and add another limiting factor for the Gabor filter. Instead of

allowing the Gabor filter bank in the first layer to learn during training, we disallow the layer

to learn new weights at all. We can see that from using a shuffled or a non-shuffled datasets,

the Gabor CNN is unaffected (shown in Tables 4.41, 4.43, 4.42, and 4.44). Because we are

freezing the first layer’s weights as the Gabor filter bank, we can see the effects of the Gabor

filter bank on each of the datasets.

During the tests in this experiment, we will explore changing the filters and dropout once

4.5. Experiment E 151

again. We will see 9 different permutations of 3 different dropouts, D = [0, 0.25, 0.50], and 3

different number of filters, F = [32, 64, 96]. Other than this, there are no other changes to the

network except as described above by freezing the weights learned in the Gabor filter.

The datasets used are MNIST, CIFAR-10, and CIFAR-100. This experiment is similar to

experiment C (Section 4.1) and experiment D (Section 4.4). These datasets will not be shuffled

as we have found that there is no change in performance if we shuffle the dataset.

4.5.2 Results

MNIST

MNIST

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9914 0.0285 6.05E-04 1.89E-03 3.66E-07 3.58E-06 0.9890 0.0330 8.29E-04 2.46E-03 6.87E-07 6.05E-06

64 0.9922 0.0257 6.12E-04 1.76E-03 3.75E-07 3.09E-06 0.9900 0.0302 1.03E-03 3.25E-03 1.07E-06 1.05E-05

96 0.9931 0.0229 7.08E-04 2.14E-03 5.01E-07 4.57E-06 0.9900 0.0293 1.56E-03 3.94E-03 2.43E-06 1.55E-05

Uniform

32 0.9909 0.0302 6.13E-04 1.85E-03 3.76E-07 3.41E-06 0.9887 0.0334 9.17E-04 2.83E-03 8.40E-07 8.02E-06

64 0.9911 0.0293 5.73E-04 1.75E-03 3.28E-07 3.06E-06 0.9885 0.0341 6.52E-04 1.86E-03 4.25E-07 3.47E-06

96 0.9919 0.0271 6.73E-04 1.92E-03 4.53E-07 3.69E-06 0.9885 0.0343 2.58E-03 6.11E-03 6.67E-06 3.74E-05

0.25

Random

32 0.9283 0.2152 5.51E-03 1.75E-02 3.04E-05 3.06E-04 0.9842 0.0572 2.07E-03 9.27E-03 4.27E-06 8.59E-05

64 0.9353 0.2007 6.82E-03 1.93E-02 4.65E-05 3.71E-04 0.9850 0.0560 1.98E-03 7.03E-03 3.90E-06 4.94E-05

96 0.9256 0.2262 3.31E-02 9.73E-02 1.10E-03 9.46E-03 0.9830 0.0661 6.58E-03 4.28E-02 4.32E-05 1.83E-03

Uniform

32 0.9349 0.1987 5.26E-03 1.33E-02 2.77E-05 1.76E-04 0.9848 0.0528 3.11E-03 1.00E-02 9.70E-06 9.99E-05

64 0.9257 0.2183 2.14E-02 5.62E-02 4.57E-04 3.16E-03 0.9836 0.0640 5.63E-03 2.49E-02 3.17E-05 6.21E-04

96 0.9332 0.1996 8.31E-03 2.06E-02 6.90E-05 4.25E-04 0.9858 0.0526 1.14E-03 5.23E-03 1.30E-06 2.73E-05

0.5

Random

32 0.7707 0.6737 4.48E-02 1.20E-01 2.01E-03 1.45E-02 0.9723 0.1797 1.01E-02 9.99E-02 1.02E-04 9.97E-03

64 0.7755 0.6253 3.14E-02 7.01E-02 9.89E-04 4.91E-03 0.9796 0.1269 2.57E-03 3.32E-02 6.63E-06 1.10E-03

96 0.7937 0.6282 3.03E-02 8.03E-02 9.20E-04 6.44E-03 0.9766 0.1492 9.27E-03 8.14E-02 8.59E-05 6.62E-03

Uniform

32 0.7722 0.6498 2.72E-02 7.68E-02 7.40E-04 5.90E-03 0.9767 0.1492 4.41E-03 6.44E-02 1.94E-05 4.15E-03

64 0.7897 0.6224 2.60E-02 5.21E-02 6.74E-04 2.71E-03 0.9759 0.1434 4.25E-03 3.70E-02 1.81E-05 1.37E-03

96 0.7839 0.6191 1.59E-02 3.16E-02 2.52E-04 9.95E-04 0.9775 0.1434 5.50E-03 4.58E-02 3.03E-05 2.10E-03

Table 4.45: The following results are the averages of 10 trials for each test using MNIST as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. The results are from using a non-shuffled dataset instead of being
shuffled like experiment C (Section 4.3). The first layer in the CNN is also untrainable to see
how well the Gabor filter bank can extract features without learning.

152 Chapter 4. Testing and Results

(a)

(b)

Figure 4.39: Here we see a different representation of Table 4.45 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the non-shuffled MNIST dataset in both training and
validation sets. The first layer within the network is frozen as well so it cannot learn during
training.

4.5. Experiment E 153

Discussion

We can see that when we add dropout to the network, the performance drops (Figure 4.40).

This follows what we have found in previous experiments. Another pattern that we see is

that although dropout drops the performance of the network, when we train on MNIST, the

performance drop is very minimal (< 1% difference). We see this pattern for all permutations

in this experiment for MNIST. This could be that MNIST is a very simple dataset, that being

grayscale, 1 channel of data, and a set of 10 classes.

Although not noticeable at first, in Figure 4.39, we can see that there is a pattern where we

increase the number of filters in the first layer for the Gabor filter, we increase the number if

different randomly initialized Gabor filters which increases the performance. Albeit, a minimal

gain when training on MNIST. We can see this for all initialization methods (random versus

grid-search) and for all levels of dropout.

By comparing the validation accuracy from each trial using either random or grid-search

initialization, we see that 6 times random initialization provides a higher result than grid-search.

This follows the pattern we have seen in previous experiments.

In summary, adding dropout offers no benefit to training the dataset. We see that the training

converges very quickly and no overfitting is found in all cases of dropout (Figure 4.40). Adding

more filters in the first layer for the Gabor filter gives a small performance boost, but also adds

more complexity/parameters to the network. Using random initialization for the Gabor filter

is likely faster than using a grid-search as in our case, out of 9 tests, we see that random

initialization for the Gabor filter in the first layer performs better.

154 Chapter 4. Testing and Results

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.40: Training on the MNIST dataset shows that the training converges very fast result-
ing a high accuracy and low loss. Adding dropout to the network shows a drop in performance
in all cases which continues what we have found in previous experiments. Using a grid-search
initialization for the Gabor filter bank compared to being initialized with a random distribution
in the Gabor filter bank shows no significant boost in performance. In most cases, randomiza-
tion outperforms grid-search, but the difference is insignificant.

4.5. Experiment E 155

CIFAR-10

MNIST

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9005 0.2768 2.83E-01 7.13E-01 8.00E-02 5.08E-01 0.6653 1.7172 2.01E-01 2.90E-01 4.06E-02 8.43E-02

64 0.9965 0.0239 5.87E-03 2.69E-02 3.44E-05 7.26E-04 0.7402 1.7238 1.66E-02 1.18E-01 2.76E-04 1.40E-02

96 0.9015 0.2594 2.84E-01 7.22E-01 8.07E-02 5.21E-01 0.6886 1.7602 2.08E-01 2.69E-01 4.31E-02 7.26E-02

Uniform

32 0.9093 0.2398 2.86E-01 7.25E-01 8.16E-02 5.25E-01 0.6851 1.8035 2.06E-01 1.93E-01 4.23E-02 3.72E-02

64 1.0000 0.0061 1.84E-05 1.14E-03 3.38E-10 1.29E-06 0.7540 1.7919 9.41E-03 8.47E-02 8.86E-05 7.18E-03

96 1.0000 0.0064 4.99E-05 1.41E-03 2.49E-09 1.98E-06 0.7497 1.8189 8.09E-03 7.47E-02 6.55E-05 5.58E-03

0.25

Random

32 0.6524 0.9284 2.14E-01 5.36E-01 4.59E-02 2.88E-01 0.5945 1.1841 1.80E-01 4.04E-01 3.25E-02 1.63E-01

64 0.7451 0.6859 2.30E-01 5.72E-01 5.29E-02 3.27E-01 0.6474 1.1339 1.93E-01 4.17E-01 3.72E-02 1.74E-01

96 0.7522 0.6687 2.35E-01 5.86E-01 5.50E-02 3.43E-01 0.6474 1.1589 1.94E-01 4.14E-01 3.77E-02 1.72E-01

Uniform

32 0.7625 0.6470 1.69E-01 4.25E-01 2.86E-02 1.81E-01 0.6661 1.0967 1.14E-01 2.44E-01 1.30E-02 5.97E-02

64 0.7455 0.6845 2.33E-01 5.80E-01 5.41E-02 3.36E-01 0.6456 1.1575 1.92E-01 4.05E-01 3.69E-02 1.64E-01

96 0.8323 0.4668 1.33E-02 3.18E-02 1.78E-04 1.01E-03 0.7067 1.0657 7.94E-03 5.08E-02 6.30E-05 2.58E-03

0.5

Random

32 0.4795 1.3364 1.21E-01 2.88E-01 1.47E-02 8.27E-02 0.5477 1.2954 1.27E-01 2.49E-01 1.61E-02 6.20E-02

64 0.5591 1.1468 4.86E-02 1.17E-01 2.36E-03 1.38E-02 0.6195 1.1563 3.34E-02 8.43E-02 1.12E-03 7.11E-03

96 0.4839 1.3418 1.38E-01 3.44E-01 1.92E-02 1.18E-01 0.5647 1.2416 1.65E-01 3.75E-01 2.72E-02 1.41E-01

Uniform

32 0.5783 1.0977 4.09E-02 9.78E-02 1.67E-03 9.56E-03 0.6345 1.1340 2.67E-02 7.78E-02 7.15E-04 6.05E-03

64 0.5488 1.1850 1.48E-01 3.66E-01 2.18E-02 1.34E-01 0.6116 1.1824 1.42E-01 3.09E-01 2.01E-02 9.54E-02

96 0.4835 1.3238 1.42E-01 3.57E-01 2.03E-02 1.28E-01 0.5674 1.2428 1.67E-01 3.78E-01 2.78E-02 1.43E-01

Table 4.46: The following results are the averages of 10 trials for each test using CIFAR-10 as
the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. The results are from using a non-shuffled dataset instead of being
shuffled like experiment C (Section 4.3). The first layer in the CNN is also untrainable to see
how well the Gabor filter bank can extract features without learning.

156 Chapter 4. Testing and Results

(a)

(b)

Figure 4.41: Here we see a different representation of Table 4.46 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the non-shuffled CIFAR-10 dataset in both training
and validation sets. The first layer within the network is frozen as well so it cannot learn during
training.

4.5. Experiment E 157

Discussion

The results in Table 4.46 show a similar pattern found from previous experiments (C and D)

which show that as we increase the dropout (in all permutations of this experiment) we see a

drop in performance. For example, the dropout found in the test using a grid-search initializa-

tion for the Gabor filter with dropout and the number of filters, D = [0, 0.5], and F = 96, we

see a difference of 12.4% validation accuracy. This shows that there is no benefit in adding

dropout to the network when training on CIFAR-10. We also see that when using our archi-

tecture (Section 3.3), we see that training on CIFAR-10 results in overfitting in with dropout

layers of 25% and 0%. (shown in Figure 4.42).

As we increase the number of filters, we see an increase in performance when we train on

CIFAR-10. This happens in all levels of dropout and for both initialization methods for the

Gabor filter used in layer 1. This continues the pattern found from previous experiments and

tests (Sections 4.3 and 4.4). The difference in performance varies more than the MNIST results

in this experiment. This could be the result of training a more complex dataset in comparison

to MNIST.

Training on the CIFAR-10 dataset, we see a similar pattern once again found from previous

experiments where using a grid-search initialization for the Gabor filter is more preferred over

random initialization. In this test, we see that 7 out of 9 tests, the validation accuracy favours a

grid-search Gabor filter bank. This is consistent in our findings and shows here in this test once

again. This is likely due to the complexity of the dataset, that of which having 2 additional

channels over the MNIST dataset. Not only does CIFAR-10 favour a grid-search Gabor filter

bank, it also performs (on average) better than using the random initialization. The average

results appear to be around 5% higher in terms of validation accuracy. The loss is much lower

when using a grid-search as well.

In summary, adding dropout adds no benefit to the system because it decreases the per-

formance of the network. CIFAR-10 overfits unless we add a dropout layer of at least 50%

when training with 100 epochs. Increasing the number of filters when training on CIFAR-10

158 Chapter 4. Testing and Results

performs better than having less number of filters. Using the grid-search initialization for the

Gabor filter bank performs, on average, higher than using a random initialization method for

the Gabor filter bank. CIFAR-10 also favours using the grid-search method.

4.5. Experiment E 159

(a) Accuracy: D = 0, F = 96 (b) Loss: D = 0, F = 96

(c) Accuracy: D = 0.25, F = 96 (d) Loss: D = 0.25, F = 96

(e) Accuracy: D = 0.50, F = 96 (f) Loss: D = 0.50, F = 96

Figure 4.42: Training on the CIFAR-10 dataset results in overfitting if we do not add a dropout,
where D = 0.50. The overfitting occurs around epoch, E = 10, which is much lower than
previous experiments. The performance of the network drops with an increased dropout which
is similar to what we have found from previous experiments. Using a grid-search initialization
for the Gabor filter bank improves the performance of training and testing for CIFAR-10 when
compared to being initialized with a random distribution in the Gabor filter bank.

160 Chapter 4. Testing and Results

CIFAR-100

MNIST

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.4929 1.7824 8.75E-02 3.91E-01 7.65E-03 1.53E-01 0.3209 2.8907 3.33E-02 1.88E-01 1.11E-03 3.54E-02

64 0.6111 1.2945 4.11E-02 1.41E-01 1.69E-03 1.98E-02 0.3260 3.2319 1.98E-02 1.83E-01 3.93E-04 3.35E-02

96 0.6483 1.1443 3.22E-02 9.40E-02 1.04E-03 8.84E-03 0.3195 3.5552 3.82E-02 5.52E-01 1.46E-03 3.05E-01

Uniform

32 0.6010 1.3345 2.82E-02 9.72E-02 7.94E-04 9.45E-03 0.3328 3.1162 2.75E-02 2.96E-01 7.57E-04 8.74E-02

64 0.6636 1.1208 1.59E-02 5.17E-02 2.54E-04 2.67E-03 0.3411 3.2862 9.67E-03 1.65E-01 9.35E-05 2.72E-02

96 0.6689 1.0950 1.35E-02 4.15E-02 1.81E-04 1.72E-03 0.3353 3.4237 1.51E-02 1.90E-01 2.28E-04 3.62E-02

0.25

Random

32 0.1545 3.3734 2.32E-02 1.55E-01 5.40E-04 2.41E-02 0.2266 3.1499 3.17E-02 1.60E-01 1.00E-03 2.55E-02

64 0.1773 3.2184 1.92E-02 1.09E-01 3.69E-04 1.18E-02 0.2523 3.0114 2.30E-02 1.13E-01 5.29E-04 1.28E-02

96 0.1906 3.1179 1.94E-02 1.24E-01 3.78E-04 1.54E-02 0.2667 2.9358 2.16E-02 1.04E-01 4.66E-04 1.09E-02

Uniform

32 0.1853 3.1597 1.25E-02 6.57E-02 1.57E-04 4.31E-03 0.2603 2.9585 1.24E-02 5.68E-02 1.54E-04 3.23E-03

64 0.2069 3.0178 1.72E-02 1.02E-01 2.96E-04 1.04E-02 0.2768 2.8644 1.62E-02 7.60E-02 2.61E-04 5.78E-03

96 0.1973 3.0629 1.56E-02 9.17E-02 2.45E-04 8.40E-03 0.2716 2.9059 1.78E-02 8.54E-02 3.16E-04 7.29E-03

0.5

Random

32 0.0727 3.9313 1.61E-02 1.43E-01 2.61E-04 2.03E-02 0.1450 3.6636 3.61E-02 1.90E-01 1.30E-03 3.59E-02

64 0.0757 3.8917 2.50E-02 2.67E-01 6.25E-04 7.12E-02 0.1496 3.6332 5.28E-02 3.59E-01 2.79E-03 1.29E-01

96 0.0812 3.8213 1.58E-02 1.47E-01 2.50E-04 2.15E-02 0.1582 3.5549 2.88E-02 1.83E-01 8.28E-04 3.35E-02

Uniform

32 0.0758 3.8776 1.33E-02 1.22E-01 1.76E-04 1.49E-02 0.1527 3.5891 3.25E-02 1.73E-01 1.06E-03 2.99E-02

64 0.0867 3.7625 1.47E-02 1.30E-01 2.16E-04 1.68E-02 0.1687 3.4769 2.71E-02 1.48E-01 7.37E-04 2.19E-02

96 0.0902 3.7356 8.04E-03 6.35E-02 6.46E-05 4.03E-03 0.1789 3.4365 1.22E-02 6.22E-02 1.49E-04 3.87E-03

Table 4.47: The following results are the averages of 10 trials for each test using CIFAR-100
as the dataset. Each test we run have a different dropout, D = [0, 0.25, 0.5], and the number of
filters, F = [32, 64, 96]. Each row provides the accuracy, loss, standard deviation, and variance
for both training and validation results. Note: Uniform is the term we are using to describe
Ozbulak’s results in [16]. The results are from using a non-shuffled dataset instead of being
shuffled like experiment C (Section 4.3). The first layer in the CNN is also untrainable to see
how well the Gabor filter bank can extract features without learning.

4.5. Experiment E 161

(a)

(b)

Figure 4.43: Here we see a different representation of Table 4.47 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends are
each permutation of the experiment using the non-shuffled CIFAR-10 dataset in both training
and validation sets. The first layer within the network is frozen as well so it cannot learn during
training.

162 Chapter 4. Testing and Results

Discussion

Like the previous tests in this experiment, we see a drop in performance when we add a dropout

layer when training on CIFAR-100. This is a continuous trend that we see from previous

experiments and training on CIFAR-100 with a frozen first layer follows suit. We also see that

by adding a 50% dropout layer to the network, the performance is almost halved in terms of

validation accuracy. There is no added benefit for having dropout included in our architecture.

Both initialization methods for the Gabor filter show this pattern as well. With no dropout layer

added, we see that the network overfits (Figure 4.44).

Increasing the number of filters helps improve the performance for all tests in this exper-

iment. The performance boost seems to be very little (for example, when looking at a grid-

search initialization method for the Gabor filter using a dropout, D = 0.25, we see an increase

in performance by 1.13% in terms of validation accuracy when comparing 2 different number

of filters, F = [32, 96]. This follows the trend seen in previous tests and experiments.

When training on CIFAR-100, we see that with our network, it favours using the grid-search

initialization method for the Gabor filter bank rather than the random initialization method.

In all of the 9 different comparisons for the initialization methods, we see that all 9 cases

favour the grid-search in terms of validation accuracy. The performance of using a grid-search

also boosts the performance over using a random initialization by roughly 1%-2% in terms of

validation accuracy.

In summary, adding dropout adds no benefit to the network. Although the network requires

dropout to overcome overfitting, with dropout the performance of the network drops. Adding

more Gabor filters in the first layer boosts performance but the increase is not very high. When

we initialize the Gabor filter bank with a random distribution versus a grid-search distribution,

CIFAR-100 does better and outperforms random initialization when using a grid-search for the

Gabor filter bank.

4.5. Experiment E 163

(a) Accuracy: D = 0, F = 96 (b) Loss: D = 0, F = 96

(c) Accuracy: D = 0.25, F = 96 (d) Loss: D = 0.25, F = 96

(e) Accuracy: D = 0.50, F = 96 (f) Loss: D = 0.50, F = 96

Figure 4.44: Training on the CIFAR-100 dataset results in overfitting if we do not add a
dropout. The overfitting occurs around epoch, E = 10, when dropout, D = 0. The performance
of the network drops with an increased dropout which is similar to what we have found from
previous experiments. Using a grid-search initialization for the Gabor filter bank improves the
performance of training and testing for CIFAR-100 when compared to being initialized with a
random distribution in the Gabor filter bank.

164 Chapter 4. Testing and Results

4.5.3 Summary

[Confirm that dropout adds no benefits] In terms of dropout for this experiment, we see the

same trend we have seen in previous experiments where adding dropout (although in some

cases reduces and minimizes overfitting) reduces the performance of the network in terms of

validation accuracy. Adding dropout to overcome overfitting (in CIFAR-10 and in some cases

CIFAR-100) isn’t necessary because of the reduction in performance. The network eventually

converges to a lower accuracy than a network without dropout. This is because when overfitting

occurs, it occurs at an earlier epoch with a higher accuracy using less dropout. As we add more

dropout, the point of overfitting is extended, but the network achieves a lower accuracy overall.

[Confirm that increasing filters adds performance] Just like experiment C and D, we see

the same result for filters: adding more filters improves the performance of the network. For

the MNIST dataset and the CIFAR-100 dataset, the performance boost is very small. For the

CIFAR-10 dataset, the boost can be large or small (requires more testing).

[Confirm MNIST→random GCNN, CIFAR-10 and CIFAR-100→grid-search GCNN] The

same pattern shows in this experiment where if we train on MNIST, we see that it is more likely

to achieve a better performing network when initialized with a random distribution for the Ga-

bor filter bank in the first layer. When training with CIFAR-10 and CIFAR-100, we see the

opposite happening where it prefers using a grid-search initialization instead for the Gabor fil-

ter bank. Using either initialization method for MNIST shows similar performances. Using

grid-search initialization for CIFAR-10 and CIFAR-100 however, results in a boost on average

in terms of validation accuracy over using random initialization.

[Confirm that non-shuffled datasets slightly drop performance]

[New: Freezing the Gabor filter bank drops performance but still converges] Freezing the first

layer (the Gabor filter bank) shows only a small drop in performance when compared to giving

the network the ability to learn in the first layer. The Gabor filter when initialized via random or

a grid-search distribution is just as effective Gabor filters that are able to learn through training.

We can see these small differences in Tables 4.48 to 4.51. The performance drop in terms of

4.5. Experiment E 165

validation accuracy and training accuracy are insignificant for MNIST, but for CIFAR-10 and

CIFAR-100, the difference is more noticeable.

Random Search

Dropout

#

of

Filters

Training Accuracy

Shuffled Non-Shuffled Frozen First Layer, Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9932 1.0000 0.6315 0.9931 0.9096 0.6722 0.9914 0.9005 0.4929

64 0.9934 1.0000 0.7852 0.9936 1.0000 0.7062 0.9922 0.9965 0.6111

96 0.9937 0.7292 0.6407 0.9938 1.0000 0.7641 0.9931 0.9015 0.6483

0.25

32 0.9342 0.6458 0.1921 0.9363 0.8269 0.1940 0.9283 0.9093 0.6010

64 0.9414 0.6321 0.2089 0.9379 0.7504 0.2033 0.9353 1.0000 0.6636

96 0.9339 0.8774 0.2059 0.9350 0.6753 0.1955 0.9256 1.0000 0.6689

0.50

32 0.7867 0.4254 0.0841 0.7730 0.5554 0.0834 0.7707 0.6524 0.1545

64 0.7966 0.4067 0.0908 0.7915 0.4113 0.0796 0.7755 0.7451 0.1773

96 0.7838 0.5654 0.0800 0.8007 0.3937 0.0908 0.7937 0.7522 0.1906

Table 4.48: Using a random initialized Gabor filter bank in the first layer, we compare the
results from using a shuffled network, a non-shuffled network, and a non-shuffled untrainable,
first layer network in terms of training accuracy.

Grid Search

Dropout

#

of

Filters

Training Accuracy

Shuffled Non-Shuffled Frozen First Layer, Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9925 1.0000 0.7485 0.9926 1.0000 0.7064 0.9909 0.9093 0.6010

64 0.9933 1.0000 0.8104 0.9930 1.0000 0.7662 0.9911 1.0000 0.6636

96 0.9936 0.9852 0.8028 0.9933 1.0000 0.7649 0.9919 1.0000 0.6689

0.25

32 0.9432 0.7696 0.1953 0.9399 0.8297 0.2107 0.9349 0.7625 0.1853

64 0.9406 0.8309 0.2275 0.9411 0.8734 0.2309 0.9257 0.7455 0.2069

96 0.9382 0.8596 0.2251 0.9434 0.8082 0.2137 0.9332 0.8323 0.1973

0.50

32 0.7851 0.5588 0.0891 0.7891 0.4917 0.0859 0.7722 0.5783 0.0758

64 0.7935 0.6507 0.0978 0.7297 0.6177 0.0924 0.7897 0.5488 0.0867

96 0.7544 0.4956 0.0986 0.7966 0.4466 0.0911 0.7839 0.4835 0.0902

Table 4.49: Using a grid-search initialized Gabor filter bank in the first layer, we compare the
results from using a shuffled network, a non-shuffled network, and a non-shuffled untrainable,
first layer network in terms of training accuracy.

166 Chapter 4. Testing and Results

Random Search

Dropout

#

of

Filters

Validation Accuracy

Shuffled Non-Shuffled Frozen First Layer, Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9922 0.7758 0.3625 0.9905 0.7046 0.3375 0.9890 0.6653 0.3209

64 0.9918 0.7805 0.3481 0.9907 0.7767 0.3289 0.9900 0.7402 0.3260

96 0.9923 0.5736 0.3123 0.9913 0.7771 0.3128 0.9900 0.6886 0.3195

0.25

32 0.9880 0.5686 0.2669 0.9885 0.7199 0.2710 0.9842 0.5945 0.2266

64 0.9881 0.5436 0.2799 0.9873 0.6556 0.2687 0.9850 0.6474 0.2523

96 0.9883 0.7334 0.2789 0.9875 0.5764 0.2630 0.9830 0.6474 0.2667

0.50

32 0.9804 0.4738 0.1654 0.9756 0.5956 0.1629 0.9723 0.5477 0.1450

64 0.9800 0.4365 0.1738 0.9817 0.4425 0.1529 0.9796 0.6195 0.1496

96 0.9798 0.5648 0.1558 0.9824 0.4048 0.1704 0.9766 0.5647 0.1582

Table 4.50: Using a random initialized Gabor filter bank in the first layer, we compare the
results from using a shuffled network, a non-shuffled network, and a non-shuffled untrainable,
first layer network in terms of validation accuracy.

Grid Search

Dropout

#

of

Filters

Validation Accuracy

Shuffled Non-Shuffled Frozen First Layer, Non-Shuffled

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

0

32 0.9909 0.7782 0.3464 0.9899 0.7740 0.3192 0.9887 0.6851 0.3328

64 0.9916 0.7829 0.3596 0.9899 0.7758 0.3232 0.9885 0.7540 0.3411

96 0.9922 0.7644 0.3485 0.9906 0.7753 0.3150 0.9885 0.7497 0.3353

0.25

32 0.9874 0.6683 0.2725 0.9874 0.7127 0.2864 0.9848 0.6661 0.2603

64 0.9872 0.7221 0.2979 0.9877 0.7348 0.2906 0.9836 0.6456 0.2768

96 0.9887 0.7295 0.2935 0.9878 0.6869 0.2835 0.9858 0.7067 0.2716

0.50

32 0.9801 0.6112 0.1714 0.9815 0.5324 0.1685 0.9767 0.6345 0.1527

64 0.9826 0.6837 0.1948 0.8925 0.6549 0.1784 0.9759 0.6116 0.1687

96 0.9595 0.5700 0.1914 0.9803 0.4804 0.1811 0.9775 0.5674 0.1789

Table 4.51: Using a grid-search initialized Gabor filter bank in the first layer, we compare the
results from using a shuffled network, a non-shuffled network, and a non-shuffled untrainable,
first layer network in terms of validation accuracy.

4.6. Experiment F 167

4.6 F: Grid Search Vs. Random Search with a Simple Rock

Database

4.6.1 Experiment Setup

In this experiment, we take our Gabor filter bank initialization methods and input them within

another network created by Pascual [17]. We will be supplying the Gabor filter bank within the

first layer following our own architecture. His architecture is described in Section 3.3.2 and a

visual representation of the architecture is in Figure 3.6. The main purpose of this experiment is

to see how our Gabor filter bank created in the first layer reacts to a custom dataset. This dataset

was also described in Section 3.1.4. It is a simple dataset consisting of 9 rock classes, and the

images collected are in colour. This will add complexity just like the CIFAR-10 dataset, except

all of the classes are a type of rocks rather than different objects (such as cars, food, etc.).

Just like the other experiments from C through E (Sections 4.3, 4.4, 4.5), we will use

a permutation of dropouts and a change in the number of filters, D = [0, 0.25, 0.5], and

F = [32, 64, 96, 128] respectively. We will use 128 filters in the first layer only for a more di-

rect comparison with Pascual’s results obtained in his simple CNN. The only difference when

comparing our results to his is that the first layer will be generated based on a Gabor filter ran-

dom initialization or a grid-search initialization. We can include our findings of dropout and

tuning the number of filters within the first layer and compare these results as well.

We will explore and solidify our findings from previous experiments for using a shuffled

dataset, a non-shuffled dataset, and using an non-trainable first layer along with a non-shuffled

dataset. These results will be listed in the following subsections.

168 Chapter 4. Testing and Results

4.6.2 Results

Shuffled Dataset

AlexisNet-9

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9891 0.0369 1.32E-02 4.53E-02 1.75E-04 2.05E-03 0.9772 0.0731 2.38E-02 8.28E-02 5.64E-04 6.85E-03

64 0.9040 0.2470 2.73E-01 6.84E-01 7.46E-02 4.67E-01 0.9031 0.2449 2.80E-01 6.93E-01 7.84E-02 4.80E-01

96 0.8203 0.4562 3.64E-01 9.15E-01 1.32E-01 8.37E-01 0.8041 0.4734 3.84E-01 9.15E-01 1.48E-01 8.36E-01

128 0.9001 0.2557 2.76E-01 6.82E-01 7.59E-02 4.65E-01 0.8850 0.3174 2.67E-01 6.73E-01 7.15E-02 4.53E-01

Uniform

32 0.9884 0.0370 1.08E-02 3.66E-02 1.17E-04 1.34E-03 0.9763 0.0718 3.25E-02 8.83E-02 1.06E-03 7.79E-03

64 0.9857 0.0510 1.47E-02 5.44E-02 2.17E-04 2.96E-03 0.9738 0.0944 2.21E-02 9.39E-02 4.87E-04 8.82E-03

96 0.9871 0.0393 1.20E-02 3.63E-02 1.44E-04 1.32E-03 0.9684 0.0998 2.00E-02 6.92E-02 3.98E-04 4.78E-03

128 0.9812 0.0564 1.19E-02 2.90E-02 1.43E-04 8.39E-04 0.9734 0.0797 2.73E-02 6.11E-02 7.43E-04 3.73E-03

0.25

Random

32 0.9857 0.0480 1.24E-02 3.97E-02 1.54E-04 1.58E-03 0.9847 0.0497 8.89E-03 3.35E-02 7.91E-05 1.12E-03

64 0.9819 0.0613 1.40E-02 5.57E-02 1.96E-04 3.10E-03 0.9778 0.0741 1.41E-02 4.29E-02 1.98E-04 1.84E-03

96 0.8999 0.2580 2.74E-01 6.81E-01 7.52E-02 4.64E-01 0.8988 0.2704 2.68E-01 6.78E-01 7.17E-02 4.59E-01

128 0.8019 0.5089 3.58E-01 8.89E-01 3.59E-01 8.98E-01 0.8128 0.4926 1.28E-01 7.91E-01 1.29E-01 8.06E-01

Uniform

32 0.9855 0.0511 8.31E-03 2.85E-02 6.90E-05 8.14E-04 0.9775 0.0851 1.42E-02 4.38E-02 2.01E-04 1.92E-03

64 0.9721 0.1023 2.16E-02 1.07E-01 4.66E-04 1.14E-02 0.9697 0.1413 4.21E-02 2.13E-01 1.78E-03 4.54E-02

96 0.8881 0.2918 2.70E-01 6.72E-01 7.29E-02 4.51E-01 0.8822 0.3026 2.74E-01 6.69E-01 7.49E-02 4.48E-01

128 0.8837 0.3061 2.66E-01 6.64E-01 7.06E-02 4.41E-01 0.8681 0.3418 2.65E-01 6.56E-01 7.00E-02 4.30E-01

0.5

Random

32 0.9851 0.0515 1.00E-02 3.02E-02 1.01E-04 9.13E-04 0.9741 0.1062 3.21E-02 1.78E-01 1.03E-03 3.18E-02

64 0.8837 0.3207 2.68E-01 6.61E-01 7.17E-02 4.37E-01 0.8813 0.3300 2.70E-01 6.66E-01 7.28E-02 4.43E-01

96 0.8007 0.5152 3.57E-01 8.86E-01 1.28E-01 7.85E-01 0.7806 0.5920 3.54E-01 8.62E-01 1.26E-01 7.43E-01

128 0.5446 1.1493 4.44E-01 1.10E+00 1.97E-01 1.21E+00 0.5369 1.1527 4.51E-01 1.10E+00 2.03E-01 1.22E+00

Uniform

32 0.9468 0.1577 1.80E-02 6.30E-02 3.22E-04 3.97E-03 0.9400 0.1845 5.21E-02 1.46E-01 2.71E-03 2.14E-02

64 0.9628 0.1257 2.69E-02 9.35E-02 7.26E-04 8.75E-03 0.9553 0.1950 3.94E-02 2.28E-01 1.55E-03 5.22E-02

96 0.7151 0.7371 4.05E-01 1.01E+00 1.64E-01 1.01E+00 0.6894 0.8166 4.08E-01 9.87E-01 1.66E-01 9.74E-01

128 0.6210 0.9696 4.26E-01 1.05E+00 1.82E-01 1.11E+00 0.6078 0.9907 4.29E-01 1.04E+00 1.84E-01 1.09E+00

Table 4.52: The following results are the averages of 10 trials for each test using a simple
rock dataset consisting 9 different rocks. Each test we run have a different dropout, D =

[0, 0.25, 0.5], and the number of filters, F = [32, 64, 96]. Each row provides the accuracy, loss,
standard deviation, and variance for both training and validation results. Note: Uniform is the
term we are using to describe Ozbulak’s results in [16]. Here we have a shuffled dataset for
each epoch for all trials.

4.6. Experiment F 169

(a)

(b)

Figure 4.45: Here we see a different representation of Table 4.52 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends is each
permutation of the experiment using a shuffled rock dataset in both training and validation sets.

170 Chapter 4. Testing and Results

Discussion

When using a shuffled rock dataset, we see a similar trend that we have found and explored in

our experiments (Sections 4.3, 4.4, and 4.5). Adding dropout reduces the performance of the

network and we can see this in Table 4.52, for all permutations of dropout and changing the

number of filters. Visually, we can see a drop in Figure 4.46, although it is not noticeable in

the graph because the network converges very quickly to a high accuracy (or low loss). As we

increase the dropout, we also see that in some cases, the network cannot converge and does not

train. We can see this directly within the Figure 4.45 where the models with the longer bars

show a larger variance in the data.

Likely the most surprising finding that we see from using this dataset is a change in the

trend where if we add more filters to layer 1, we see a drop in performance in terms of both

accuracy and loss. This could be due to multiple reasons within the architecture, but this finding

was also true with Pascual’s results as well [17]. This is why he chose to use a smaller number

of filters in his first layer. Perhaps it is due to the smaller network size when compared to our

experiments above.

When comparing the different initialization methods (random versus grid-search), we see

that when we shuffle the rock dataset in our tests that it prefers either method. Out of the 12

tests comparing the random method versus the grid-search method for the Gabor filter bank in

the first layer, they both fair the same. From Table 4.52, we see that when we use a random

initialization method, it can offer higher results in terms of validation accuracy, but it can also

offer a very low validation accuracy. We see that using a grid-search initialization, that the

results are consistently close to each other (for validation accuracy).

In summary, when we use the network from Pascual’s network and replacing his first layer

with our Gabor filter bank, we see that by adding dropout, it reduces the performance of the

network, adding more filters in layer 1 decreases the performance, and using either method

of initialization for the Gabor filter bank shows no performance boost over each other. Using

the random initialization method can offer higher results, but can also offer lower results when

4.6. Experiment F 171

compared to the consistency of using a grid-search.

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.46: Training on the rock dataset provided by Pascual shuffling the dataset in both
training and validation sets, we use his architecture but replace his first layer with our Gabor
filter bank that is initialized randomly. We see that as we increase the dropout, we reduce the
performance. The training converges much slower as we add more dropout.

172 Chapter 4. Testing and Results

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.47: Training on the rock dataset while shuffling the dataset in both training and vali-
dation sets, we use Pascual’s architecture but replace his first layer with our Gabor filter bank
that is initialized with a grid-search. We see that as we increase the dropout, we reduce the
performance. The training converges much slower as we add more dropout.

4.6. Experiment F 173

Non-Shuffled Dataset

AlexisNet-9

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.9887 0.0377 0.0105 0.0346 0.0001 0.0012 0.9806 0.0632 0.0154 0.0688 0.0002 0.0047

64 0.9854 0.0459 0.0128 0.0444 0.0002 0.0020 0.9797 0.0634 0.0178 0.0527 0.0003 0.0028

96 0.9019 0.2495 0.2744 0.6836 0.0753 0.4673 0.8975 0.2641 0.2739 0.6805 0.0750 0.4631

128 0.9897 0.0317 0.0093 0.0262 0.0001 0.0007 0.9863 0.0512 0.0071 0.0365 0.0001 0.0013

Uniform

32 0.9909 0.0287 0.0078 0.0256 0.0001 0.0007 0.9728 0.1212 0.0394 0.2282 0.0016 0.0521

64 0.9896 0.0308 0.0072 0.0213 0.0001 0.0005 0.9753 0.0797 0.0297 0.0996 0.0009 0.0099

96 0.9888 0.0376 0.0109 0.0414 0.0001 0.0017 0.9834 0.0498 0.0128 0.0365 0.0002 0.0013

128 0.9007 0.2532 0.2718 0.6818 0.0739 0.4649 0.8897 0.2911 0.2769 0.6753 0.0767 0.4561

0.25

Random

32 0.9839 0.0519 0.0115 0.0359 0.0001 0.0013 0.9813 0.0771 0.0291 0.1547 0.0008 0.0239

64 0.9816 0.0626 0.0125 0.0393 0.0002 0.0015 0.9747 0.0935 0.0326 0.1141 0.0011 0.0130

96 0.8909 0.2942 0.2691 0.6692 0.0724 0.4478 0.8869 0.3048 0.2743 0.6719 0.0752 0.4514

128 0.8946 0.2739 0.2737 0.6753 0.0749 0.4561 0.8872 0.3020 0.2758 0.6687 0.0761 0.4472

Uniform

32 0.9785 0.0677 0.0176 0.0545 0.0003 0.0030 0.9738 0.1008 0.0167 0.0556 0.0003 0.0031

64 0.9851 0.0547 0.0106 0.0518 0.0001 0.0027 0.9706 0.1151 0.0337 0.1539 0.0011 0.0237

96 0.9787 0.0687 0.0127 0.0426 0.0002 0.0018 0.9809 0.0573 0.0138 0.0432 0.0002 0.0019

128 0.8880 0.2969 0.2684 0.6666 0.0721 0.4444 0.8481 0.4418 0.2642 0.6613 0.0698 0.4373

0.5

Random

32 0.9790 0.0740 0.0141 0.0563 0.0002 0.0032 0.9844 0.0525 0.0074 0.0254 0.0001 0.0006

64 0.9697 0.1057 0.0216 0.0846 0.0005 0.0072 0.9822 0.0797 0.0115 0.0765 0.0001 0.0058

96 0.9676 0.0982 0.0201 0.0550 0.0004 0.0030 0.9778 0.0776 0.0140 0.0531 0.0002 0.0028

128 0.8829 0.3266 0.2680 0.6626 0.0718 0.4390 0.8881 0.2809 0.2706 0.6738 0.0732 0.4541

Uniform

32 0.9764 0.0853 0.0095 0.0473 0.0001 0.0022 0.9691 0.1051 0.0163 0.0609 0.0003 0.0037

64 0.9719 0.0936 0.0111 0.0375 0.0001 0.0014 0.9706 0.0960 0.0178 0.0570 0.0003 0.0032

96 0.7779 0.5969 0.3460 0.8474 0.1197 0.7181 0.7934 0.5402 0.3558 0.8750 0.1266 0.7656

128 0.7685 0.5973 0.3422 0.8499 0.1171 0.7223 0.7694 0.5821 0.3582 0.8616 0.1283 0.7424

Table 4.53: The following results are the averages of 10 trials for each test using a simple
rock dataset consisting 9 different rocks. Each test we run have a different dropout, D =

[0, 0.25, 0.5], and the number of filters, F = [32, 64, 96]. Each row provides the accuracy,
loss, standard deviation, and variance for both training and validation results. Note: Uniform
is the term we are using to describe Ozbulak’s results in [16]. The results are from using a
non-shuffled dataset instead of being shuffled like experiment C (Section 4.3).

174 Chapter 4. Testing and Results

(a)

(b)

Figure 4.48: Here we see a different representation of Table 4.52 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends is each
permutation of the experiment using a non-shuffled rock dataset in both training and validation
sets.

4.6. Experiment F 175

Discussion

In this experiment we compare the difference between the datasets, but keep everything else

the same as the last test. We see that when we add dropout, it shows a similar result when

the dataset is shuffled or not shuffled. Adding dropout results in a drop in performance for the

network. This is consistent among all experiments done. We can see the results in Table 4.53

that by adding 25% or 50% dropout, we see a reduction in terms of validation accuracy. The

reduction in performance is minimal, like the previous test as well.

Adding more filters to the network in layer 1 results in a similar fashion as seen previously.

We see that the results are lower which is opposite of what we have found in our tests using our

architecture (Section 3.3). These findings are consistent with Pascual’s work. Having a lower

number of filters performs better in all tests we do in this section and we can see this in Table

4.53.

In our findings for using the different initialization methods when the dataset is not shuffled

for both training and validation sets, we see that the network favours using a random initial-

ization for the Gabor filter bank in the first layer. In the 12 tests comparing the initialization

methods, using the random distribution wins 10 times out of the 12 tests. What’s more fascinat-

ing is that the network performance is boosted by roughly 1% in terms of validation accuracy

when compared to using the grid-search initialization using the exact same hyperparameters.

In summary, we find that when we use a non-shuffled rock dataset using Pascual’s architec-

ture (Section 3.3.2, we see similar results obtained from using a shuffled rock dataset. There

are 2 noticeable differences: first, when we use a different initialization method (random ver-

sus grid-search) for the Gabor filter in the first layer, using a non-shuffled dataset prefers the

random search more than using a grid-search (according to our 10 trials). Using the random

search also offers a performance boost over a grid-search. Secondly, we see that there is a

performance difference on average that using a non-shuffled version of the dataset performs

better than using a shuffled dataset. We use shuffling to avoid overfitting in the network, but in

all of the tests done, we find that there is no overfitting occurring, even with no dropout added

176 Chapter 4. Testing and Results

(shown in Table 4.57.

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.49: Training on the rock dataset provided by Pascual without shuffling the dataset in
both training and validation sets, we use his architecture but replace his first layer with our
Gabor filter bank that is initialized randomly here. We see that as we increase the dropout, we
reduce the performance. The training converges much slower as we add more dropout.

4.6. Experiment F 177

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.50: Training on the rock dataset provided by Pascual without shuffling the dataset in
both training and validation sets, we use his architecture but replace his first layer with our
Gabor filter bank that is initialized with a grid-search. We see that as we increase the dropout,
we reduce the performance. The training converges much slower as we add more dropout.

178 Chapter 4. Testing and Results

Frozen First Layer, Non-Shuffled Dataset

AlexisNet-9

Dropout
Test

Type

#

of

Filters

Training Validation

Acc Loss
Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss
Acc Loss

Std. Dev

Acc

Std. Dev

Loss

Var

Acc

Var

Loss

0

Random

32 0.8668 0.3405 0.2669 0.6679 0.0712 0.4462 0.8566 0.4079 0.2704 0.6451 0.0731 0.4162

64 0.9871 0.0401 0.0113 0.0339 0.0001 0.0011 0.9613 0.1668 0.0199 0.1048 0.0004 0.0110

96 0.9821 0.0556 0.0138 0.0469 0.0002 0.0022 0.9413 0.2253 0.0700 0.2701 0.0049 0.0730

128 0.8094 0.4854 0.3628 0.9003 0.1317 0.8106 0.7909 0.5572 0.3543 0.8749 0.1255 0.7655

Uniform

32 0.9832 0.0466 0.0069 0.0195 0.0000 0.0004 0.9591 0.1505 0.0248 0.1029 0.0006 0.0106

64 0.9782 0.0668 0.0092 0.0311 0.0001 0.0010 0.9513 0.2249 0.0370 0.1941 0.0014 0.0377

96 0.9771 0.0669 0.0297 0.0799 0.0009 0.0064 0.9413 0.1965 0.0506 0.1774 0.0026 0.0315

128 0.8589 0.3598 0.2596 0.6518 0.0674 0.4248 0.8484 0.4244 0.2619 0.6392 0.0686 0.4085

0.25

Random

32 0.9729 0.0857 0.0251 0.0690 0.0006 0.0048 0.9531 0.1898 0.0167 0.0723 0.0003 0.0052

64 0.9583 0.1268 0.0212 0.0630 0.0004 0.0040 0.9450 0.2331 0.0706 0.3387 0.0050 0.1147

96 0.9589 0.1170 0.0425 0.1071 0.0018 0.0115 0.9550 0.1838 0.0265 0.1127 0.0007 0.0127

128 0.8804 0.3189 0.2651 0.6595 0.0703 0.4350 0.8663 0.3897 0.2647 0.6538 0.0701 0.4275

Uniform

32 0.9689 0.0992 0.0128 0.0464 0.0002 0.0022 0.9513 0.1745 0.0584 0.2352 0.0034 0.0553

64 0.9741 0.0824 0.0131 0.0412 0.0002 0.0017 0.9581 0.2033 0.0274 0.1614 0.0008 0.0260

96 0.9195 0.2164 0.0611 0.1437 0.0037 0.0206 0.9006 0.2697 0.0620 0.1462 0.0038 0.0214

128 0.8502 0.3935 0.2584 0.6412 0.0668 0.4111 0.8200 0.5179 0.2491 0.6055 0.0621 0.3667

0.5

Random

32 0.8567 0.3852 0.2577 0.6391 0.0664 0.4084 0.8591 0.4521 0.2715 0.6996 0.0737 0.4894

64 0.8556 0.3875 0.2669 0.6473 0.0712 0.4191 0.8531 0.4227 0.2614 0.6522 0.0683 0.4253

96 0.7421 0.6666 0.3322 0.8191 0.1104 0.6709 0.7428 0.6949 0.3456 0.8110 0.1195 0.6577

128 0.6847 0.8153 0.3883 0.9588 0.1507 0.9194 0.6791 0.8499 0.4041 0.9473 0.1633 0.8973

Uniform

32 0.9495 0.1561 0.0126 0.0440 0.0002 0.0019 0.9647 0.1076 0.0158 0.0427 0.0002 0.0018

64 0.9206 0.2135 0.0715 0.1574 0.0051 0.0248 0.9169 0.2707 0.0554 0.1639 0.0031 0.0269

96 0.6630 0.8564 0.3753 0.9263 0.1408 0.8581 0.6769 0.8355 0.3855 0.9416 0.1486 0.8867

128 0.6528 0.8822 0.3683 0.9106 0.1356 0.8293 0.6616 0.9101 0.3767 0.8901 0.1419 0.7922

Table 4.54: The following results are the averages of 10 trials for each test using a simple
rock dataset consisting 9 different rocks. Each test we run have a different dropout, D =

[0, 0.25, 0.5], and the number of filters, F = [32, 64, 96]. Each row provides the accuracy, loss,
standard deviation, and variance for both training and validation results. Note: Uniform is the
term we are using to describe Ozbulak’s results in [16]. The results are from using a non-
shuffled dataset instead of being shuffled like experiment C (Section 4.3). The first layer in
the CNN is also untrainable to see how well the Gabor filter bank can extract features without
learning.

4.6. Experiment F 179

(a)

(b)

Figure 4.51: Here we see a different representation of Table 4.52 showing the mean, maximum
and minimum values as well as the mean of the validation accuracy. Within the legends is each
permutation of the experiment using a non-shuffled rock dataset in both training and validation
sets. The first layer within the network of each test is also frozen so that it cannot learn during
training.

180 Chapter 4. Testing and Results

Discussion

Following the trend within this section, we see that by freezing the first layer and disallowing

the layer to learn through training, adding dropout still reduces the performance of the network.

It does not appear if we look at the results from using 32 filters within the first layer, but when

we increase the number of filters and increase dropout, we see that the performance in terms

of validation accuracy drops. This is consistent among all experiments and tests when we use

the Gabor filter bank in the first layer. The accuracy and loss still obtain a good results which

shows that the Gabor filter is indeed a contender in extracting features and using it within the

network to train the CNN. We can see the drop in performance in Figures 4.52 and 4.53.

When we change the number of filters in the first layer, we can see that the performance

drops in all aspects of the network. This is a consistent pattern found throughout this exper-

iment. This is also consistent with Pascual, where he had found that increasing the number

of filters also decreases the performance of his network. This can be seen for both initial-

ization methods with the Gabor filter as well as the different levels of dropout used (D =

[0, 0.25, 0.50]).

Comparing the initialization methods for the Gabor filter, we see that when we work with

Pascual’s network, by substituting the first layer with our Gabor filter bank, we see that the

rock datasets does not have a preference. In the 12 tests where we compare the different

initialization methods, they are equal. Random initialized tests appear to show higher results

but also show lower results than the grid-search. The grid-search initialized tests show that the

results obtained are consistent and are close to each other more so than the random initialized

tests (Figure 4.51).

In comparison to the network where we enable the first layer to learn through training, these

results obtained are fairly similar. The network approaches convergence just as fast as having

a network where we disable the ability to learn through training for the first layer. We can see

these similarities in Figures 4.52 and 4.53 for the non-trainable first layer network and Figures

4.49 and 4.50 for the trainable first layer network.

4.6. Experiment F 181

In summary, freezing the first layer in the network using a Gabor filter bank affects the

performance slightly which shows that the Gabor filter is superb in extraction of features re-

gardless of training or not. Adding dropout to the network in this experiment shows a drop in

performance in all aspects of the network. Increasing the number of filter in the first layer for

the Gabor filter bank shows a decrease in performance. Using either method of initialization

for the Gabor filter bank will generate a good result, but using a grid-search shows more con-

sistency. Random search here shows it can obtain higher results than grid-search but also lower

results than the grid-search.

182 Chapter 4. Testing and Results

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.52: Training on the rock dataset [17] without shuffling the dataset in both training and
validation sets, we use his architecture but replace his first layer with our Gabor filter bank that
is initialized randomly here. We also disable the ability for the first layer in the network to learn.
We see that as we increase the dropout, we reduce the performance. The training converges
much slower as we add more dropout. We also see a drop in performance in comparison to
having the first layer learn through training.

4.6. Experiment F 183

(a) Accuracy: D = 0, F = 32 (b) Loss: D = 0, F = 32

(c) Accuracy: D = 0.25, F = 32 (d) Loss: D = 0.25, F = 32

(e) Accuracy: D = 0.50, F = 32 (f) Loss: D = 0.50, F = 32

Figure 4.53: Training on the rock dataset [17] without shuffling the dataset in both training
and validation sets, we use his architecture but replace his first layer with our Gabor filter
bank that is initialized with a grid-search. We also disable the ability for the first layer in the
network to learn. We see that as we increase the dropout, we reduce the performance. The
training converges much slower as we add more dropout. We also see a drop in performance
in comparison to having the first layer learn through training.

184 Chapter 4. Testing and Results

Pascual Comparison

(a) Accuracy: L = 3, F = 32, D = 0.50 (b) Loss: L = 3, F = 32, D = 0.50

(c) Accuracy: L = 3, F = 32, D = 0 (d) Loss: L = 3, F = 32, D = 0

(e) Accuracy: L = 3, F = 32, D = 0 (f) Loss: L = 3, F = 32, D = 0

Figure 4.54: In figures (a) and (b), we show the training curve using Pascual’s network. In
figures (c), (d), (e), and (f), we see Pascual’s network training on the Rock dataset but instead
we use our random or grid-search initialized Gabor filter bank in the first layer in place of his
Xavier initialized first layer. We see that our results show that the network converges faster
(specifically in the first 25 epochs).

4.6. Experiment F 185

The following tables below (Tables 4.55 and 4.56), we will show how the training progresses

for each of the networks created using Pascual’s architecture as the base. We use our Gabor

filter bank that is initialized either randomly or using a grid-search algorithm. We compare to

his results where he uses an Xavier distribution within his first layer. All 3 networks use the

same hyperparameters, and the number of filters in the first layer do not change (staying at 32

filters).

186 Chapter 4. Testing and Results

Figure 4.55: A visual representation of the results found in Table 4.55 showing that our network
with the Gabor filter bank within the first layer trains faster within the initial epochs of training.
Here, we show the validation accuracy results during training.

4.6. Experiment F 187

Figure 4.56: A visual representation of the results found in Table 4.56 showing that our net-
work with the Gabor filter bank within the first layer trains faster within the initial epochs of
training but in the end, Pascual’s network without the Gabor filter performs the best, in terms
of validation accuracy

188 Chapter 4. Testing and Results

AlexisNet-9

Filter Dropout Epoch
Training Validation

Pascual Random Uniform Pascual Random Uniform

32

0.50

1 0.2565 0.2217 0.1701 0.3938 0.2969 0.2344

2 0.4260 0.3443 0.3463 0.5875 0.4344 0.3938

3 0.5151 0.4367 0.4575 0.5844 0.4281 0.5781

4 0.6021 0.4829 0.5573 0.7500 0.5313 0.6656

5 0.6316 0.5539 0.6524 0.6656 0.6656 0.6594

6 0.6859 0.5352 0.7019 0.7781 0.7063 0.7875

7 0.7160 0.5988 0.6524 0.8906 0.7469 0.6469

8 0.7388 0.6477 0.7120 0.6969 0.7469 0.8563

9 0.7843 0.6939 0.7435 0.8625 0.8250 0.7781

10 0.7984 0.6685 0.7837 0.8219 0.8469 0.8563

0

1 - 0.3610 0.2525 - 0.4781 0.3531

2 - 0.5117 0.4555 - 0.5438 0.4813

3 - 0.6484 0.5466 - 0.6469 0.5000

4 - 0.7649 0.6792 - 0.7594 0.6406

5 - 0.8319 0.6839 - 0.8594 0.6875

6 - 0.9163 0.7334 - 0.9156 0.7625

7 - 0.9089 0.8024 - 0.8688 0.7438

8 - 0.9283 0.8205 - 0.9656 0.8188

9 - 0.9350 0.8553 - 0.9469 0.8781

10 - 0.9330 0.8855 - 0.9344 0.8813

Table 4.55: Comparing the results obtained from Pascual’s work, here we see the training and
validation results of the first 10 epochs. In Pascual’s work, we find that the training is much
slower in comparison to our network created with the Gabor filter bank in the first layer. The
network used in this experiment are all the same except for how the first layer is initialized
(either a random Gabor filter bank, grid-search Gabor filter bank, or an Xavier distribution).
We show that without adding dropout to the network in our tests, the network converges even
faster.

4.6. Experiment F 189

AlexisNet-9

Filter Dropout Epoch
Training Validation

Pascual Random Uniform Pascual Random Uniform

32 0.50

1 0.2565 0.2217 0.1701 0.3938 0.2969 0.2344

10 0.7984 0.6685 0.7837 0.8219 0.8469 0.8563

20 0.8339 0.8667 0.8506 0.8750 0.8875 0.8938

30 0.8647 0.9076 0.9042 0.9375 0.9281 0.9469

40 0.9330 0.9290 0.9036 0.9750 0.9719 0.9469

50 0.9451 0.9136 0.9056 0.9750 0.9656 0.9625

60 0.9551 0.9263 0.9350 0.9906 0.9156 0.9188

70 0.9692 0.9632 0.9444 0.9906 0.9156 0.9469

80 0.9283 0.9337 0.9665 0.9250 0.9625 0.9781

90 0.9759 0.9665 0.9739 0.9969 0.9844 0.9875

100 0.9679 0.9779 0.9605 0.9844 0.9781 0.9594

110 0.9310 0.9625 0.9732 0.9406 0.9938 0.9250

120 0.9772 0.9444 0.9719 0.9625 0.9344 0.9375

130 0.9766 0.9752 0.9772 0.9938 0.9969 0.9375

140 0.9732 0.9712 0.9377 0.9344 0.9969 0.8375

150 0.9712 0.9886 0.9250 0.9969 0.9969 0.9656

160 0.9705 0.9826 0.9786 0.9875 0.9781 0.9656

170 0.9839 0.9712 0.9732 0.9969 0.9844 0.9781

180 0.9839 0.9946 0.9612 0.9500 0.9906 0.9719

190 0.9745 0.9658 0.9772 0.9938 0.9781 0.9750

200 0.9826 0.9766 0.9853 1.0000 0.9906 0.9906

Table 4.56: Comparing the results obtained from Pascual’s work, here we see the training and
validation results of the of all 200 epochs. In Pascual’s work, we find that the training is much
slower in comparison to our network created with the Gabor filter bank in the first layer for the
initial epochs, but afterwards, Pascual’s network starts surpass the performance of our network.
The network used in this experiment are all the same except for how the first layer is initialized
(either a random Gabor filter bank, grid-search Gabor filter bank, or an Xavier distribution).
Pascual’s network eventually beats our network at the end of its training.

4.6.3 Summary

[Confirm that dropout adds no benefits] We see that by adding dropout results in a drop in

performance for the network. We can see these results across all aspects (accuracy, loss for

both training and validation). This is a consistent trend when we use the Gabor filter bank in

the first layer rather than using a defaulted initialization method such as the Xavier distribution.

190 Chapter 4. Testing and Results

[New: Increasing filters drops performance] Adding more filters in the first layer to the

network seems to add more complexity and ultimately reduces the performance of the network

when we use both our Gabor filter bank and a normal distribution (Xavier distribution) like

Pascual’s network. This is a slight advantage because it reduces the amount of parameters that

are used during training which reduces the complexity of the CNN.

[New: Rock dataset→random GCNN] There is no clear advantage of using either initial-

ization method for the Gabor filter bank. It appears that when the dataset is not shuffled, the

random search for the Gabor filter performs better overall while boosting the performances

over the grid-search initialization method of the Gabor filter. Grid-search initialization offers

a consistent approach to obtaining the results from training, while using a random search can

provide higher values in terms of accuracy and a lower error as well. Although random search

can provide higher results, it can also produce lower results when comparing to the grid-search.

[New: Non-shuffled datasets slightly increase performance] In terms of validation accu-

racy, we see better results when the dataset is not shuffled. When the dataset is shuffled, results

become more unreliable, especially as we increase the dropout and increase the number of

filters. We can see these directly within the results, or visually from Figures 4.45, 4.48, and

4.51.

[New: GCNN initially trains faster than AlexisNet] When comparing the results that Pas-

cual obtained from his network, we see that it converges very quickly and reaches a high ac-

curacy (99.7% accuracy). When we compare our work to his, we see that our network fails to

reach his performance but we obtain a faster convergence in the beginning phases of training.

During the first couple of epochs, our Gabor CNN manages to reach a higher accuracy faster

while maintaining a lower loss. We can see this in Figure 4.54 showing both random initializa-

tion and a grid-search initialization of the Gabor filter bank in the first layer. The architecture

is the same and more specifically, the dropout used is the same at 50% and the number of filters

in the first layer is the same (32 filters).

[Summary of Experiment F] In summary for experiment F for using Pascual’s network

4.6. Experiment F 191

and dataset, we see that it is a simple dataset like the MNIST dataset, while colourful like the

CIFAR-10 dataset. It was expected to act more like the CIFAR-10 dataset, but in reality, the

dataset was too simple so the network converged fast with high accuracy. We also see that the

network performs better with the rock dataset not shuffled. Adding dropout and increasing the

number of filters reduces the performance of the network. Using either method of initialization

for the Gabor filter in the first layer is optimal. Freezing the first layer in the network will

reduce the performance but still shows that the Gabor filter is able to extract features at a high

impact rate.

192 Chapter 4. Testing and Results

(a) Accuracy: L = 1, F = 32 (b) Loss: L = 1, F = 32

(c) Accuracy: L = 2, F = 32 (d) Loss: L = 2, F = 32

(e) Accuracy: L = 3, F = 32 (f) Loss: L = 3, F = 32

Figure 4.57: We show Pascual’s progression of improved results on the rock dataset. In his
findings, he obtains his best score using a smaller number of filters (here he is using 32 fil-
ters) in his first layer and simultaneously increasing the number of layers from 1 to 3. In his
architecture, he uses a dropout of 50% for all of his experiments.

4.6. Experiment F 193

Experiment Model Dropout
Testing Standard Deviation

Accuracy Loss Accuracy Loss

Pascual-A

1 layer, 32 filters

0.50

0.9363 0.1851 0.0518 0.0184

1 layer, 64 filters 0.9080 0.2499 0.0663 0.1963

1 layer, 96 filters 0.8933 0.2827 0.0207 0.2860

Pascual-B
2 layer, 32 filters 0.9700 0.0763 0.0262 0.0637

3 layer, 32 filters 0.9960 0.0160 0.0055 0.0195

Pham

3 layer, 32 filters, shuffled,

random initialization

0

0.9772 0.0731 0.0238 0.0828

3 layer, 32 filters, non-shuffled,

random initialization
0.9806 0.0632 0.0154 0.0688

3 layer, 32 filters, non-shuffled,

random initialization, untrainable first layer
0.8566 0.4079 0.2704 0.6451

3 layer, 32 filters, shuffled,

grid-search initialization
0.9763 0.0718 0.0325 0.0883

3 layer, 32 filters, non-shuffled,

grid-search initialization
0.9728 0.1212 0.0394 0.2282

3 layer, 32 filters, non-shuffled,

grid-search initialization, untrainable first layer
0.9591 0.1505 0.0248 0.1029

3 layer, 32 filters, shuffled,

random initialization

0.50

0.9741 0.1062 0.0321 0.1783

3 layer, 32 filters, non-shuffled,

random initialization
0.9844 0.0525 0.0074 0.0254

3 layer, 32 filters, non-shuffled,

random initialization, untrainable first layer
0.8591 0.4521 0.2715 0.6996

3 layer, 32 filters, shuffled,

grid-search initialization
0.9400 0.1845 0.0521 0.1463

3 layer, 32 filters, non-shuffled,

grid-search initialization
0.9691 0.1051 0.0163 0.0609

3 layer, 32 filters, non-shuffled,

grid-search initialization, untrainable first layer
0.9647 0.1076 0.0158 0.0427

Table 4.57: The following table is the summary of results obtained from Alexis’ work (Table
3.2) and our work. We compare the differences of his results using either 1 to 3 layers (with
a variation of the number of filters in the first layer) and compare with our network with a
replaced first layer using the Gabor filter bank that is either initialized with a random distri-
bution or a grid-search. There are 2 variations of our work that contains 2 different levels of
dropout. We have found earlier that adding dropout to our network reduces the performance of
the network which continues the trend of using the Gabor filter in the first layer.

194 Chapter 4. Testing and Results

4.7 Summary of All Experiments

Experiment A

In our first experiment, we see whether the parameters within the Gabor filter impact the net-

work’s training or not by setting static filters in the first layer based on the Gabor filter. We find

that the parameters that change the frequency (orientation of the filter) have the most impact

on the images that it is training on. Those parameters are θ and ψ which have more impact

on the network than the other 3 parameters in the Gabor filter (σ, λ, and γ). There are certain

values that we have found that these parameters should not be (see Table 4.14). These values

are mostly because of the way the 2-D formula works for the Gabor filter (Section 1.2.3).

Experiment B

In the second experiment we give these parameters more space within the filter space to train

on. We initialize the Gabor filters bank using a range provided in Table 4.2 initializing one

parameter at a time, while keeping the rest of the parameters static. From this test, we solidify

our findings where we see that θ and ψ have the most impact on the network. We also found

that with a different number of filters used, θ and ψ show no noticeable effect to the network

but the other 3 parameters, σ, λ, and γ, give a better result using less filters. We concluded

with using experiment A and B by saying that the parameters that largely affect the CNN are θ

and ψ, however the other parameters should still exist and be non-zero.

Experiment C, D, and E

In the third, fourth, and fifth experiment, we get more serious with the Gabor filter bank and

the CNN. Here, we use 2 different initialization methods for the Gabor filter bank and insert

the bank in the first layer of the CNN. Then we give the CNN 3 different levels of dropout

(D = [0, 0.25, 0.50]) and 3 different numbers of filters within the first layer (F = [32, 64, 96]).

We have 18 different permutations or tests, but we compare the results in terms of initialization

4.7. Summary of All Experiments 195

methods as listed in Section 4.3. The datasets that we tested on are MNIST, CIFAR-10, and

CIFAR-100. The datasets are shuffled in experiment C, not shuffled in experiment D, and lastly

for experiment E, we use a non-shuffled dataset while disabling the ability to learn in the first

layer for the CNN.

We find that when we add dropout to the CNN, the performance of the network decreases

dramatically. For MNIST, it is not as noticeable and the drop is insignificant but for the other

2 datasets, the drop becomes more visible. We conclude by saying that when training with

the Gabor filter in a CNN, adding dropout adds no benefit. In cases where it helps reduce

overfitting, the accuracy is still reduced when training at the point of overfitting when compared

to having no dropout added. For the most extreme cases when training on CIFAR-100, we see

a drop in performance by almost half when compared to having no dropout at all.

We also find that increasing the number of filters within all datasets improves the network’s

performance. When testing on MNIST, we see a small insignificant boost, but for CIFAR-10

and CIFAR-100 we can see an improvement by up to 5% in terms of validation accuracy. This

boost happens for all levels of dropout and for either initialization method used for the Gabor

filter.

Using the random initialization method for the Gabor filter bank in the first layer is favoured

when we are working the the MNIST dataset. Using the grid-search initialization method for

the Gabor filter bank is favoured for both CIFAR-10 and CIFAR-100 datasets. Not only do

CIFAR-10 and CIFAR-100 favour grid-search for the Gabor filter, it also gives a performance

boost by up to 5% in terms of validation accuracy.

When we compare the results from looking at a shuffled versus a non-shuffled dataset,

we cannot see any noticeable patterns when comparing the validation accuracy. When we

compare using the trainable first layer versus not having a trainable first layer, we see a dip in

the performance, although the results are still close. We can conclude by saying that the Gabor

filter is strong and robust at extracting features within the images regardless of the image it

receives.

196 Chapter 4. Testing and Results

Experiment F

In the final experiment, F, we use Pascual’s architecture and his dataset as well. We compare

what he found with his 3-layer network and compare it by substituting our Gabor filter bank

in his first layer using the same hyperparameters as his architecture. The only change we do in

order to compare directly is the initialization of the first layer. He used an Xavier distribution,

we used the Gabor filter bank initialized either randomly or with a grid-search.

We found that when we add dropout, it reduces the performance of the network, just like

what we have found in experiments C through E. Training on the rock dataset never overfits so

there is no benefit in adding dropout to this Pascual’s architecture.

Adding filters to the first layer using either initialization method offers a lower performance

overall. This was also found in Pascual’s work as well. We conclude with his statement here

that adding more filters does not benefit the system and should be avoided. This is completely

opposite to what we have found in our experiments but it could be because of how simple

the architecture is using a 3 layer network. Using our findings from experiment B, we see that

using less filters forσ, λ, and γ gives a higher performance in terms of validation accuracy. This

could be the one of the reasons why increasing the number of filters decreases the performance.

Using either method of initialization for the Gabor filter does show a difference, but there

is not enough data to say anything conclusive. The only thing we can say with the results we

have is that either method is fine. Using a random initialization method for the Gabor filter

can sometimes offer a higher performance in terms of validation accuracy, but can also offer

a lower validation accuracy. Using a grid-search offers a consistent performance but doesn’t

high the highs like the random search.

Using a non-shuffled rock dataset, we gain more accuracy than when we are shuffling the

dataset. This pattern is more clear using this rock dataset, but for the experiments from C

through E, we cannot find any clear patterns. Freezing the first layer in the network reduces the

performance which is also found in our experiments (C through E). Although the performance

is reduced when we freeze the first layer, it is not a large performance drop, which shows that

4.7. Summary of All Experiments 197

the Gabor filter is very robust when extracting features.

Comparing our results to Pascual’s results, we find that using the Gabor filter bank in the

first layer rather than the Xavier distribution, we see a speed increase as the network converges

much faster in the earlier phases of training (up to 10 to 20 epochs). Once the early phases of

the training passes, Pascual’s network trains reaches a higher accuracy with a consistently low

loss.

Summary of All Experiments

In conclusion, using the Gabor filter as a feature extractor in the CNN can be very powerful and

can match other networks that do not use the Gabor filter. Using dropout always reduces the

performance, even when overfitting occurs during training. Adding filters to the network’s first

layer appears to be dataset-specific, but for MNIST, CIFAR-10, and CIFAR-100, we see a trend

where if we increase the filters, the performance is boosted. The opposite happens in Pascual’s

rock dataset. Random initialized Gabor filters used in the first layer favours more simpler

datasets like MNIST, and in some cases, like Pascual’s rock dataset. Grid-search is more

favoured for complex datasets like CIFAR-10 and CIFAR-100 and also provides a significant

boost in performance over using a random search.

Chapter 5

Conclusion

5.1 Summary

Based off of the Zeiler’s findings [26] in Figure 2.12, we see that some of the filters that layer 1

learns is the Gabor filter itself. The Gabor feature is a very strong feature extractor able to find

features that other filters may not see due to the natural rotational capabilities of the filter. We

take this example of the CNN learning these Gabor filters in the first layer and use it to see the

benefits of how strong the Gabor filter truly is. We use the Gabor filter and create a filter bank

and substitute the first layer of CNN with it instead. By skipping the notion of learning Gabor

filters, we can see performance boosts in the early phases of training.

In chapter 2, we discover the revival of convulational neural networks and how they have

become better over the length of 7 years. Since AlexNet’s achievement which included Hin-

ton’s work on dropout [23], many other researchers studying CNNs have brought up what we

use today in our image identification tasks. These researchers have improved the performance

on obtaining accurate results on the ImageNet which is considered a very hard task. From this,

we find other ways to improve features within the CNN.

There are many new or improved additions that helped improve neural networks for what

they are today. For example, Hinton’s work on dropout was extraordinary in reducing overfit-

198

5.1. Summary 199

ting. The surprising thing about dropout in our network we created is that dropout does not

improve the performance of our network, even when overfitting occurred.

Another addition to our work is the usage of using randomization over grid-search for

parameterization. Bergstra and Bengio [1] found that by using a randomization over grid-

search for finding parameters within a large space, it was more optimal to find parameters

using a random approach. We use this finding in our experiments and we see the trend where

random search offers in some cases, higher performances, but also in other cases can reduce

the performance when compared to a grid-search. The grid-search initialization method we

use shows consistency with the results we obtained. In more complex datasets, we see that

the grid-search parameterization of the Gabor filter offers a performance boost over using the

random search. This was more effective in CIFAR-10 and CIFAR-100.

We study different initialization techniques involving the newest addition of the Gabor filter.

The Gabor filter was created by Dennis Gabor in 1946 and the specializes in extracting features

using different frequencies within the filter. The rotational aspect of the filter is able to extract

very good features and our results show very promising results. In our experiments, we disable

the ability for the Gabor filter bank to learn and achieves results similar to those when learning

is allowed. This work we do is similar to the work that Chen used in his research on using the

median filter.

In chapter 3, we have stated our software and hardware requirements for the thesis listing

all of the details used in our experiments. We explain how we are using the MNIST, CIFAR-10,

CIFAR-100, and Pascual’s rock dataset, and how much data we are training from. We see that

Pascual’s rock dataset resembles MNIST in terms of simplicity, but has colour like CIFAR-10

and CIFAR-100.

We have described 2 architectures that we used throughout our experiments. The first is

similar to the AlexNet architecture of 5 layers with dropout, and the second is Pascual’s 3-

layer network with dropout. We test using different dropout percentages, and using different

number of filters within the first layer. The first layer of our network is changed to our Gabor

200 Chapter 5. Conclusion

filter bank.

The Gabor filter bank is used with either Ozbulak’s grid-search algorithm or a randomiza-

tion for the parameters within the Gabor filter bank. We show how we use the Gabor filter bank

within the CNN, where we insert the filter bank within the first layer of the CNN, in place of

using other initialization methods (such as the Xavier distribution).

In our thesis, we provided 6 experiments listed as experiments A through F (sections 4.1,

4.2, 4.3, 4.4, 4.5, and 4.6) using the Gabor filter as an initialization technique for the CNN.

The first 2 experiments, find that the Gabor parameters indeed impact the filter. This is based

on the 2-D equation found in Section 1.2.3 and we find that in fact, some parameters cannot be

zero. Some of the parameters cannot be within a range or otherwise the filter becomes useless.

θ and ψ impact the Gabor filter the most because of the way they extract features. The other 3

parameters, σ λ, and γ show that as long as they are non-zero, they will be okay. There were

some optimal ranges found in our tests, but there were no conclusive statements that we could

say due to a small number of trials done.

In the third, fourth, and fifth experiment, we replace the first layer within our custom-made

CNN with a Gabor filter layer, and initialize the Gabor layer with either a grid-search or a

random search algorithm based on Bergstra and Bengio. Testing with the number of trials given

in each experiment, we found on average that for simpler datasets, MNIST favoured using

the random-search approach more than the grid-search. It also produced a small insignificant

performance boost when training on MNIST. Grid-search was more favoured for the complex

datasets such as CIFAR-10 and CIFAR-100 and also produced a significant performance boost

in terms of validation accuracy for the network. Using more complex datasets (with more

channels, color, and classes) drops the performance of our Gabor CNN but this is common for

a simple CNN architecture.

The findings from these experiments show that whenever we add dropout, we lose a signif-

icant amount of performance when comparing with the same architecture but with no dropout

included. In the case where we saw CIFAR-10 and in some cases CIFAR-100 overfitting, by

5.2. Summary of Contributions 201

adding dropout it reduced the overfitting. The results from adding dropout however lowered

the performance overall when compared to having no dropout. As a conclusive statement for

dropout in our simple Gabor CNN, adding dropout is not necessary, adds no benefit, and should

not be used.

Changing the number of filters for the Gabor filter bank shows that as we increase the

filters, we increase the performance of the network. This is very clear in Figure 4.43a where

it shows the increased number of filters, for all levels of dropout. This pattern was seen in all

of our experiments except for the last experiment, F. We also saw that when we are training on

MNIST, increasing the filters for the Gabor filter bank did not provide a significant performance

boost when compared to training on CIFAR-10 and CIFAR-100. This could be that with more

Gabor filters, more features could be extracted and hence provide a better result.

In comparison to using either initialization methods for the Gabor filter (grid-search versus

random-search), we find that it is dataset-specific. Following what Bergstra and Bengio have

found, we see that a randomization of parameters in the Gabor filter does indeed help produce

higher results more than grid-search for the Gabor parameters. The downside to this, is that in

some of the trials we run, the performance can score really low in terms of accuracy. In some

cases, we see that the network cannot even begin training because the randomly initialized

Gabor filter bank is using parameters that are ineffective or not useful at all. The grid-search

initialized Gabor filter however is normally consistent in obtaining results. Furthermore, grid-

search offers a performance boost for complex datasets like CIFAR-10 and CIFAR-100. Per-

haps in future tests, we can use other complex datasets to see if the Gabor CNN is only useful

for simpler datasets or not.

5.2 Summary of Contributions

The following contributions are as follows:

1. Gabor filters can be used as a substitute instead of learning in CNNs for the first

202 Chapter 5. Conclusion

layer. We have found that the Gabor filter used as a substitution for the first layer in a

CNN is roughly 5% less accurate when under the same hyperparameters, CNN architec-

tures, and training parameters (epoch, trials, etc.) comparing to a CNN that is able to

learn through training under normally used methods (i.e. Xavier uniform distribution is

used to initialize the weights in the layers).

2. The Gabor filter bank used in a CNN prefers simple datasets. We have found that for

simple datasets like MNIST, and Pascual’s dataset, using a smaller number of filters in

the Gabor filter bank results in better accuracy. For more complex datasets, adding more

filters to the Gabor filter bank results in a higher performance.

3. Gabor parameters do matter. The parameters in the Gabor filter each have a different

impact on training where certain values decrease the performance or increase perfor-

mance. We found that θ and ψ have a higher impact on the training and have similar

impact with one another. We also found that the other 3 parameters are similar to each

other (σ, λ, and γ), where they cannot be a zero value. If they are non-zero, they behave

similarly to each other when used in training for the CNN.

4. The Gabor filter bank used in a CNN is best used on with objects that are similar

(rocks) or objects with clear edges (numerical black/white digits). The Gabor filter

bank when substituted in the first layer of our custom 5 layer CNN shows that it is able

to converge similarly to a normal CNN (initialized with Xavier uniform distribution in

the first layer rather than our Gabor filter bank). It is especially stronger when training

on simpler datasets with smaller number of classes, or objects with strong edges, and

similar features (rocks) rather than complex datasets that are colourful, contain a large

number of classes that are uniquely different from each other and also with features that

are different from each object (cat versus airplane).

5. The Gabor filter bank used in a CNN trains faster initially. We show that the Gabor

filter bank is able to train faster in the early phases of training by up to 10% in terms

5.3. FutureWork 203

of accuracy under the same amount of epochs. This can help convergence and reduce

training time. We show that during training while using the Gabor filter bank, the initial

learning period (up to 10 epochs of training) performs better than the Xavier distribution

that is used in Pascual’s network.

6. Using a random initialized Gabor filter bank in the CNN is faster on simpler datasets.

Using the Gabor filter bank, we show that using a random-search or a grid-search for the

parameters in the Gabor filter are dataset specific. For simpler datasets, random-search

for the Gabor filter is more optimal while grid-search is more optimal for more complex

datasets, especially because it gives a performance boost over using a random-search.

Using random-search can provide higher results, but also lower results in some cases.

Using a grid-search results in consistent results when compared to random-search.

7. GCNNs using Dropout adds no benefit using the datasets we tested. Adding dropout

when using a Gabor filter bank in the first layer for a CNN is not necessary as it adds no

benefit to the network. Even when there is visible evidence of overfitting (like training

on CIFAR-10) and dropout should be used to reduce overfitting, when the network is

finished training, the performance is lower than using the same network without dropout.

5.3 Future Work

We have found that the Gabor filter is a very strong contender for extracting features. By

freezing the first layer and consequently using raw Gabor filters in the first layer of a CNN, we

see that it is able to achieve results similar the Xavier distribution and also results where we

enable the first layer to learn. Following our simple architecture using 5 layers, and in Pascual’s

architecture of 3 layers, we can extend the Gabor filter using it the architectures that have been

created recently like DenseNet, GoogleNet, and find whether the Gabor filter can be seeded

into these networks.

Seeing the results from working on Pascual’s dataset, we have seen a speed increase for

204 Chapter 5. Conclusion

training in the early epochs, which helps convergence speed. We could potentially create a

more customized network where we use the Gabor filter in the earlier stages and later switch

out the layer mid training. We have seen that in Pascual’s dataset when we use our Gabor CNN,

that it trained much faster but in the end resulted with a slightly lower accuracy.

Training on different datasets would give us a more clear picture of how the Gabor filter

works as well. We have seen patterns emerging from the 4 datasets but in some cases, like

working with Pascual’s dataset, the patterns are dataset specific. Perhaps, by expanding our

datasets using the same architecture we can see whether if the Gabor filter used in the first

layer is dataset specific and not just a general filter bank we can use for all datasets.

Figure 5.1: Future work of including the Gabor filter within present architectures such as
GoogleNet, VGG-16/VGG-19, DenseNet, etc. Here, C1 is the first layer within the network
and the other layers would remain the same as what they would be originally.

Bibliography

[1] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization.
Journal of Machine Learning Research, 13:281–305, 2012.

[2] Andres Calderon, Sergio Roa, and Jorge Victorino. Handwritten Digit Recognition using
Convolutional Neural Networks and Gabor filters. International Congress of Computa-
tional Intelligence, 2003.

[3] Konstantinos G Derpanis. Gabor filters. York University, 2007.

[4] D Gabor. Theory of communication. Part 1: The analysis of information. Journal of
the Institution of Electrical Engineers - Part III: Radio and Communication Engineering,
93(26):429–441(12), nov 1946.

[5] Ross Girshick. Fast R-CNN. Proceedings of the IEEE International Conference on
Computer Vision, 2015 Inter:1440–1448, 2015.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors. CoRR, abs/1207.0, 2012.

[8] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, 2017-Janua:2261–2269, 2017.

[9] D. H. Hubel and T. N. Wiesel. Receptive Fields of Single Neurones in the Cat’s Striate
Cortex. Journal of Physiology, 148:574–591, 1959.

[10] Jiansheng Chen, Xiangui Kang, Ye Liu, and Z. Jane Wang. Median Filtering Forensics
Based on Convolutional Neural Networks. Ieee Signal Processing Letters, 22(11):1849–
1853, 2015.

[11] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. University of
Toronto, 44(8):1–60, 2009.

205

206 BIBLIOGRAPHY

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. ImageNet Classification with Deep Convolutional
Neural Networks, pages 1097–1105, 2012.

[13] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learn-
ing Applied to Document Recognition. proc. OF THE IEEE, 1998.

[14] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. International Confer-
ence on Learning Representations, 2013.

[15] Shangzhen Luan, Baochang Zhang, Siyue Zhou, Chen Chen, Jungong Han, Wankou
Yang, and Jianzhuang Liu. Gabor Convolutional Networks. Pattern Recognition Let-
ters, 2018.

[16] Gökhan Özbulak, Hazm Kemal Ekenel, and Assoc Prof. Gabor Initialized Convolutional
Neural Networks for Transfer Learning. Signal Processing and Communications Appli-
cation Conference, 26, 2018.

[17] A. D. Pascual. Autonomous and Real Time Classification of Rock Images. Electronic
Thesis and Dissertation Repository, 6059, 2019.

[18] N Petkov and M.B. Wieling. Gabor filter for image processing and computer vision,
2008.

[19] Syed Shakib Sarwar, Priyadarshini Panda, and Kaushik Roy. Gabor Filter Assisted En-
ergy Efficient Fast Learning Convolutional Neural Networks. IEEE ACM International
Symposium on Low Power Electronics and Design, pages 1–6, 2017.

[20] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann Le-
Cun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional
Networks. International Conference on Learning Representations, 2013.

[21] Lei Shu. Automatic Image Classification for Planetary Exploration. PhD thesis, Western
University, 2018.

[22] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. International Conference on Learning Representations, 2014.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfittin.
Journal of Machine Learning Research 15, 15:1929–1958, 2014.

[24] Christian Szegedy, Scott Reed, Pierre Sermanet, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. IEEE CVPR, 2014.

[25] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are fea-
tures in deep neural networks? NIPS, 27, 2014.

[26] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Net-
works. European Conference on Computer Vision, 2014.

BIBLIOGRAPHY 207

[27] Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus. Adaptive deconvolutional net-
works for mid and high level feature learning. Proceedings of the IEEE International
Conference on Computer Vision, pages 2018–2025, 2011.

Appendix A

Building the Keras Environment

A.1 Development Platform

A.1.1 Hardware

CPU Intel i8700k 6-core processor @ 3.7GHz

GPU MSI Seahawk 1080Ti @ 1600Mhz with 11GB GDDR5X

RAM 32GB @ 3200Mhz Dual Channel

OS Windows 10

A.1.2 Software

Python Version Anaconda 3.6

Deep Learning
Framework

Keras with Tensorflow 1.9.0 backend

Programming
Language

Python 3.6

GPU Language Cuda ToolKit 9.0 with CuDNN 7.1.4

208

A.1. Development Platform 209

A.1.3 Setup Environment

The following environment that I developed my code on can be found on my GitHub. Here is

the link to the master’s thesis which will provide the thesis and the code for all results obtained

throughout the thesis.

1. Clone the GitHub repository https://github.com/longmpham/mastersthesis.git or down-

load the files you need if cloning is not your first choice.

2. Follow the directory “./Installations/Install Keras with Anaconda/spec-file.txt” to ob-

tain the specifications sheet for the Python Environment used in Anacondda 3.6.

3. If you would like to create the environment, please follow the instructions provided in

the same directory. You will need to install Python, Cuda, CuDNN, Keras, Tensorflow.

These are the major ones.

To run the programs used to obtain the results, please follow the instructions below:

1. Go to the Code directory

2. To use the GCNN code, go deeper into the directory following the GCNN directory.

There you will find files labelled as “long gcnn [dataset].py” and “gabor init.py”.

3. In most of the directories, you will need to adjust the hyperparameters and match the

file directories, and setup the hyperparameters such as filter size, dropout, initialization

method, etc. Please make sure you change your hyperparameters to get proper re-

sults! Do not forget!

4. To run the code, type in your Anaconda environment (or preferred Python environ-

ment) the following: “python long gcnn [dataset].py”. This file will depend on the

“gabor init.py” so make sure you set the file directories correctly. I cannot stress this

enough. For some reason, Python does not allow adding strings to function calls (that I

know of).

210 Chapter A. Building the Keras Environment

5. Let it run (hardware dependent)! You can also limit your GPU’s processing power or

limit the number of GPUs used. This can be controlled at the top of the code.

Curriculum Vitae

Name: Long Pham

Post-Secondary Western University
Education and London, ON, CA
Degrees: 2012 - 2016 B.E.Sc.

Related Work Teaching Assistant
Experience: Western University

2016 - 2019

211

	Gabor Filter Initialization And Parameterization Strategies In Convolutional Neural Networks
	Recommended Citation

	tmp.1556741768.pdf.87PW6

