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The impact-generated hydrothermal system of the East 

Clearwater Lake impact structure, Quebec, Canada 

Abstract 

Alteration mineralization at impact craters gives insight into the hydrothermal system 

generated post-impact. This is the first work to document the alteration mineralization to 

characterize the East Clearwater impact-generated hydrothermal system. The East Clearwater 

hydrothermal system in the impact melt rocks and melt-bearing breccias transitions from 

zeolite-smectite assemblages to chlorite-dominant assemblages with depth. pH evolution of 

the East Clearwater impact-generated hydrothermal system reflects magmatic-driven 

hydrothermal systems in granitic rocks. West Clearwater has a different alteration style. 

Given an impact forms a hydrothermal system, the style of alteration will not only vary 

dependent on target lithologies (i.e., crystalline, sedimentary, mixed target), but also due to 

paleogeographic setting (i.e., costal, shallow marine, intracontinental). The impact-generated 

hydrothermal system of East Clearwater contains millerite, vaesite-pyrite, and galena due to a 

percentage of impactor imparted into the melt. Given ideal impact velocities do not 

completely vapourize an impactor, alteration products, especially metals, can influence 

secondary mineralization. 
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Chapter 1   

1 Introduction and Literature Review 
Hydrothermal systems can be an important post-impact process in both simple and 

complex impact craters. Such systems are controlled by the heat sources (e.g., geothermal 

gradient uplift, shocke heating, and melt generation), fluid availability, and porosity and 

permeability due to shocked, fractured rocks and impactites. A hydrothermal system 

redistributes elements throughout the pathways it travels. This hydrothermal history can 

be seen through alteration mineral assemblages in vugs and veins present in lithologies in 

and around the impact crater. Alteration mineral assemblages can give insight into the 

temperature, longevity, pH, and reduction potential of the impact-generated hydrothermal 

system.  

1.1 Impact Craters 
The first documentation of impact craters occurred in 1610, when Galileo published his 

observations of the lunar landscape (Figure 1) (Galilei, 1610). In 1794, the idea that 

meteorites, specifically pallasites, were projectiles from space that formed fireballs in the 

sky as they fell contributed even more to the planetary sciences (Chladni, 1794). In 1893, 

it was proposed that the craters observed on the Moon may not be from volcanic 

processes, but must be formed from impact events (Gilbert, 1893). The first impact crater 

to be proposed on Earth was Barringer, or Meteor Crater in the early 1900s (Barringer, 

1905), although it was not accepted as fact by the scientific community. The general 

consensus amongst astronomers was that the lunar craters were giant volcanoes, and out 

of the few who theorized them to be impact craters, even fewer could fathom the Earth’s 

surface contained scars from celestial objects (Melosh, 1989). Planetary science would 

remain on the fringe until the 1960s, when interest in space rocketed astronomically. 

Barringer Crater was accepted as an impact crater with the discovery of the first natural 

occurance of coesite, a high-pressure polymorph of silica formed at pressures only 

attained during impacts and nuclear tests (Chao et al., 1960). The realization of impact 

craters as an important planet-forming geological process commenced with the 
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development of shock metamorphic criteria (French and Short, 1968) and the Space Age 

interest in space exploration dominantly via the Apollo Missions (Osinski and Pierazzo, 

2012). 
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Figure 1: Galileo's observation of the cratered lunar surface (Galilei, 1610). 
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1.1.1 Impacts and Earth 

Currently, 193 craters have been discovered on and under Earth’s surface (Impact Earth, 

2018), yet >380,000 impact craters with diameter ³1 km have been discovered on Mars 

(Robbins and Hynek, 2012). Earth has a diameter that is just under twice the size of Mars 

(Carr et al., 1980). Theoretical models have predicted that there may still be a few (~90) 

small-sized (1–6 km) impacts that have not yet been discovered on Earth (Hergarten and 

Kenkmann, 2015). However, overall it is not the lack of discovery, but the hydrology, 

atmosphere, and distribution that significantly reduces the number of impact craters 

observed on Earth. 

The persistent weathering process by the Earth’s hydrological cycle rapidly erodes 

impact craters over geological time. Smaller impact craters are lost more quickly due to 

weathering. For example, exposed impact structures of <20 km in diameter are 

recognizable for <600 Ma (Grieve and Robertson, 1979). Whereas impact craters with 

diameters of ~90 km can survive over geological timespans (~3 Ga) in absence of any 

unique geological circumstances (e.g., tectonism) (Grieve and Robertson, 1979; Johnson 

and Bowling, 2014). Smaller craters that are protected by overlying sedimentary units 

will be preserved so long as the cover is not removed (Grieve and Robertson, 1979). 

Earth’s atmosphere interferes with impacting bodies. Many celestial bodies (e.g., the 

Moon, Ceres) lack any significant atmosphere to interact with projectiles. On the lunar 

surface, meteoroid-sized impactors require a few kilometres per second velocity to shock 

melt the target lunar regolith (Ahrens and O’Keefe, 1972). On Earth, stony objects >50 m 

and iron bodies >20 m pass through the atmosphere with negligible effects on 

acceleration, amongst other deformations (Osinski and Pierazzo, 2012). These projectiles 

are affected by the full gravitational acceleration of the Earth and strike with the square 

root of the sum of the escape velocity of the Earth squared and the cosmic velocity of the 

projectile squared (French, 1998). 

𝑉"⃗ $%&'() = +𝑉"⃗ ,-.('&- + 𝑉"⃗ ,(0.%$( 
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Anything smaller than mentioned above, such as meteoroids, or loosely-consolidated 

projectiles will be negatively accelerated, deformed, ablated, and generally disrupted 

while passing through the atmosphere traversing towards the surface (Passey and Melosh, 

1980; Bland and Artemieva, 2003; Collins et al., 2012). Given a small projectile doesn’t 

completely burn up in the atmosphere, it will lose enough velocity resulting in metre-

sized, shockwave-lacking penetration craters (Osinski and Pierazzo, 2012). 

Impacts craters only form on land and in shallow marine settings. Land cover on Earth is 

~29% of the surface and the continental shelf covers ~7% of the Earth (National 

Research Council (US), 1979). These percentages have fluctuated over geological time, 

but most recorded impacts would have occurred under similar enough conditions 

(Kominz, 2001; Durack et al., 2012). Areas that are tectonically stable over geological 

time better preserve impact craters. Naturally, the majority of impacts are found in the 

Northern hemisphere (due to the larger land surface area) in the geologically stable North 

American and European cratons (Grieve and Robertson, 1979). Confirmed craters can be 

skewed by socioeconomics. Stable countries with well-funded geology programs, 

exploration, and academic institutions tend to find more crater and contain more 

individuals seeking them out (Grieve and Robertson, 1979). 

1.1.2 Impact Cratering Mechanics 

Impact craters form when a hypervelocity projectile (e.g., comet, asteroid) impacts into a 

larger target body. Both objects collide in a spatial sense, but the larger target constrains 

what occurs to the smaller projectile due to conservation of momentum (Melosh, 1989). 

After the impact, complex mechanisms produce an impact crater. There are three stages 

that constitute impact crater production and modification (Figure 2). Hydrothermal 

alteration can be considered as a 4th stage. These stages overlap and range from 

milliseconds to hundreds to thousands of years after impact (Gault et al., 1968; Gault et 

al., 1974; Melosh, 1989; Osinski and Pierazzo, 2012): 

(1) Contact and compression: the transfer of kinetic energy from impactor to 

target via a compressive shockwave; 

(2) Excavation: the resulting excavation of the crater from complex interactions; 
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(3) Modification: Post-impact modification of the impact basin by geologic 

processes; and  

(4) Alteration: chemical and physical alteration through hydrothermal processes 

of the entire crater complex (Kirsimäe and Osinski, 2012; Osinski and 

Pierazzo, 2012; Osinski et al., 2013). 

1.1.2.1 Contact and Compression 

An impact commences when the projectile contacts the surface of the target. The 

exception is bodies with atmospheres (see above, 1.1.1). Different compositions (i.e., 

porous cometary, stony, and iron) of impactors have quantitative and qualitative 

differences when connecting with the silicate surface of a planetary body. 

The pressure at the point of impact is comparable to a nuclear bomb; a stony or iron 

projectile with a velocity of 15–20 kms-1 will produce a sound-barrier breaking, 

compressive shockwave radiating pressures of several hundred GPa and temperatures 

exceeding 10,000 K (Shoemaker, 1959; Shoemaker, 1960; Grieve et al., 1977; 

Shoemaker, 1977; Collins et al., 2012). This shockwave is the boundary between high 

pressure, compressed material and uncompressed target rock (Figure 2). As the 

shockwave propagates, a rarefaction wave follows. The rarefaction wave is the boundary 

between the high-pressure zone and the low-pressure zone (Figure 2) (Ahrens and 

O’Keefe, 1972; Melosh, 1989). The increase in energy from shock compression and 

subsequent rarefaction is sufficient to induce shock metamorphism, melting, and/or 

vapourization of target material close to the point of impact (Ahrens and O’Keefe, 1972; 

Grieve et al., 1977; Osinski and Pierazzo, 2012).  

Due to the resistivity of the target rocks, part of the shockwave is reflected into the 

negatively accelerating projectile, producing the highest shock pressures during the 

impact process (Ahrens and O’Keefe, 1972). The shockwave propagates through the 

impactor and is reflected as a rarefaction or tensile wave at the impactor-atmosphere 

boundary (Ahrens and O’Keefe, 1972). As this rarefaction wave propagates into the 

impactor, it unloads the shock pressure, resulting in the melting and vapourizing of the 

projectile (Gault et al., 1968; Melosh, 1989; Osinski and Pierazzo, 2012). The projectile 
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will only penetrate 1 to 2 times its diameter before it unloads all of its kinetic impact 

energy into the target rock (Kieffer and Simonds, 1980; O’Keefe and Ahrens, 1982). 

Once the projectile is completely unloaded, the contact and compression stage ends 

(Melosh, 1989).  

1.1.2.2 Excavation 

The transition between the contact and compression stage and the excavation stage is a 

continuum (Figure 2) (Melosh, 1989; Osinski and Pierazzo, 2012). Excavation is a 

reaction to both the shockwaves and rarefaction waves from the contact and compression 

stage and is a relatively low pressure, large-scale deformation and flow of target material 

(Croft, 1980). The impact crater is opened by interactions with the shockwave and the 

target rock, as pressure approaches zero after the shockwave passes and particle velocity 

drops to about 1/5th the peak velocity of the shock wave (Melosh, 1985; Melosh and 

Ivanov, 1999). The projectile is no longer contributing energy into the system (Osinski 

and Pierazzo, 2012). 

The shockwave continues to radiate out hemispherically from the deepest point impacted 

and into the surrounding target rock, decreasing in pressure with distance (Figure 2) 

(Melosh, 1989). The projectile is now in a very different physical and chemical state and 

the rarefaction wave that was that originated from the impactor-atmosphere boundary 

travels into the target sequence (Melosh, 1989; Osinski and Pierazzo, 2012). The 

combination of the rarefaction wave and hemispherical shockwaves results in 1) in shock 

melting from target lithologies unloading (Ahrens and O’Keefe, 1972; Grieve et al., 

1977; Osinski and Pierazzo, 2012); 2) formation of a near-surface zone of interference 

(Dence, 1968; Dence et al., 1977; Croft, 1980; Grieve and Cintala, 1981; Melosh, 1989), 

and 3) formation of a transient crater from excavation and displacement of target material 

(Dence, 1968; Dence et al., 1977; Croft, 1980; Grieve and Cintala, 1981; Melosh, 1989). 
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Figure 2: The first three stages of impact crater conception. Modified from Osinski 

and Pierazzo, 2012. 
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Shock melting occurs in all impacts. On the lunar surface, silicate impactors with 

velocities of 7–12 kms-1 are able to vapourize quartz and periclase. Silicate and iron 

impactors with velocities of 3–4 kms-1 are able to induce shock melting in basaltic and 

diabasic soils (similar to lunar regolith) (Ahrens and O’Keefe, 1972). Iron meteorites 

impacting at speed from 4–6 kms-1 are able to induce shock melting in quartz, 

plagioclase, olivine, and pyroxene (Ahrens and O’Keefe, 1972). Melt at impact craters is 

found as ejecta, impact melt-bearing breccias, and impact melt sheets that line the crater 

floor (Grieve et al., 1977). Impacts into sedimentary and mixed targets produce carbonate 

and siliceous melt, whereas impacts in crystalline targets produce almost exclusively 

siliceous melt (Osinski et al., 2018). Sedimentary targets have significantly larger volatile 

contents, which escape readily and contribute to hydrothermal systems post- crater 

formation (Kieffer and Simonds, 1980).  

It is suggested material from the top third of the transient crater is ballistically ejected and 

material in the bottom two-thirds is mostly displaced within the transient crater (Stöffler 

et al., 1975). A mixture of melt and rock debris form a lining of the transient cavity 

(French, 1998; Osinski and Pierazzo, 2012). However, material from the bottom two-

thirds can be transported in a second episode of ejecta emplacement consisting of melt-

rich ground flows at the terminus of excavation and into the modification stage (Osinski 

et al., 2011). During the second ejecta emplacement, high-velocity melt will flow or eject 

over the transient cavity rim and melt with lower velocities remain in the transient crater 

(Grieve et al., 1977; Osinski et al., 2011; Osinski and Pierazzo, 2012). Eventually the 

shockwaves and rarefaction waves become so weak that they no longer excavate or 

displace any more material, and excavation ends (French, 1998; Osinski and Pierazzo, 

2012). 

1.1.2.3 Modification 

The transition between excavation and modification is a continuum, as parts of the crater 

commence modification while excavation continues elsewhere (Figure 2). The extent of 

modification is determined by the parent body, size of the transient crater, and the target 

lithologies (Melosh, 1989; Melosh and Ivanov, 1999; Osinski and Pierazzo, 2012). The 

depth of the transient cavity depends on the impactor depth. The diameter of the transient 
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crater is about three times its depth (Maxwell, 1977; Croft, 1985; French, 1998). The 

appearance of the final crater is largely dependent on the size of the impact, and planetary 

gravity. There are two different types of craters observed on Earth that get their final 

appearance during modification: 1) simple craters and 2) complex craters.  

Simple craters are bowl-like depression with only minor uplift and other almost 

negligible modifications to the transient crater (Figure 2) (Dence, 1965; Grieve et al., 

1977; Melosh, 1989; Osinski and Pierazzo, 2012). Complex craters possess a central 

uplift, an annular trough, and an outer faulted rim (Figure 2) (Dence, 1965; Grieve, 1991; 

Grieve and Therriault, 2004). The type of impact crater is affected by the gravitational 

field of the parent body. Higher gravitational fields result in lower transitional boundary 

between simple and complex craters from higher gravitational acceleration (Melosh, 

1989). On Earth, simple craters generally have diameters <~2–4 km and complex craters 

have diameters >~2–4 km. The target lithologies can affect the morphology and 

morphometry of the crater, with boundaries between simple and complex craters being 

~2 km in sedimentary targets and ~4 km in crystalline targets (Osinski and Pierazzo, 

2012). 

Complex craters form when the transient crater is gravitationally unstable (Dence, 1965). 

This results in the central uplift of the transient crater, and collapse of the transient crater 

to form a shallower, gravitationally stable crater geomorphology (Quaide et al., 1965; 

Grieve, 1991; Osinski and Pierazzo, 2012). The maximum stratigraphic central uplift 

possible is about one tenth the final crater diameter (Ivanov et al., 1982; Melosh, 1989). 

The central uplift of the transient crater floor exposes lithologies from below the crater 

floor creating a surrounding annular trough (Dence, 1965; Osinski and Pierazzo, 2012). 

The uplift of rocks elevates the geothermal gradient, creating a second thermal anomaly 

with a geothermal gradient on the order of 100 °Ckm-1 (Naumov, 2005). The temperature 

increase in the central uplift is on the orders of 100–200 °C in impact craters with 

diameters of ~20–30 km to <1000 °C in impact craters on the scale of hundreds of 

kilometres in diameter (Grieve et al., 1977; Ivanov, 2004; Kirsimäe and Osinski, 2012). 
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Less deformed breccias on the crater walls form terraces that slump into the annular 

trough, interlayering with materials inside the crater and ejecta. This results in an 

intermixture of impact breccia and melt inside the crater (Dence, 1965; Grieve et al., 

1977; Melosh, 1989; Grieve, 1991; Osinski and Pierazzo, 2012). 

1.2 Impact-generated Hydrothermal systems 
Impact-generated hydrothermal systems are an important process that effects the 

physical, chemical, and even biological properties of an impact crater. Hydrothermal 

alteration is known to be associated with over 70 craters on Earth (Naumov, 2002; 

Naumov, 2005; Osinski et al., 2013). Many studies have been done on impact-generated 

hydrothermal systems (e.g., Newsom, 1980; Daubar and Kring, 2001; Osinski et al., 

2001; Naumov, 2002; Hode et al., 2003; Osinski et al., 2004; Abramov and Kring, 2005; 

Naumov, 2005; Osinski, 2005; Pirajno, 2009; Osinski et al., 2013; Sapers et al., 2016).  

Hydrothermal systems are the redistribution of mass and energy through thermal, 

chemical, and mechanical processes caused by circulating H2O fluids and molecular 

diffusion (Norton, 1984). H2O fluid circulation stabilizes chemical differences and occurs 

due to the difference in entropy between a heat source and its cooler surroundings 

(Norton, 1984). Impact-generated hydrothermal systems are not always formed due to 1) 

the size of the crater (proportional to energy production and presence of high-gradient 

heat sources) and 2) lithological properties (porosity, availability of water) (Naumov, 

2002; Naumov, 2005). The majority of impact-generated hydrothermal systems form in 

complex craters (>2–4 km) on Earth, however, some do form in simple craters (Osinski et 

al., 2013). Any hypervelocity impact capable of forming a complex crater will generate a 

hydrothermal system so long as there is water present (Kirsimäe and Osinski, 2012; 

Osinski and Pierazzo, 2012).  

1.2.1 Heat sources 

There are three potential heat sources for hydrothermal systems at impact craters (Osinski 

et al., 2005; Osinski and Pierazzo, 2012; Osinski et al., 2013): 

(1) Impact melt rocks and melt-bearing breccias; 
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(2) Elevated geothermal gradient in the central uplift; and 

(3) Heat in the central uplift due to the passage of shock- and rarefaction waves.  

The generation of these heat sources occur during excavation and modification of an 

impact crater and are dependent on size of the size of the impact and the target rocks. The 

melt-bearing impactites are the dominant contributor of heat, giving a magnitude of tens 

to hundreds of times more energy than the elevated geothermal gradient in the central 

uplift (Daubar and Kring, 2001). However, when shock heating is factored in, the heat 

contribution from the structural uplift is similar to the heat contribution from the melt-

bearing impactites (Thorsos et al., 2001). The duration of thermal output is dependent on 

the size of the crater. When compared to the impact melt sheet, the thermal output 

duration from the central uplift is longer in craters <~130 km in diameter and shorter in 

craters >~130 km in diameter (Daubar and Kring, 2001). The contribution of heat from 

central uplifts due to the shock- and rarefaction waves is not yet quantified, although it is 

assumed to be a very minor heat source (Osinski et al., 2005; Osinski and Pierazzo, 2012; 

Osinski et al., 2013). 

1.2.2 Fluid Sources 

H2O is required as it is the primary fluid circulated in a hydrothermal system (Norton, 

1984). Hydrothermal systems have been theorized to be associated with impact events on 

planetary bodies that are rich in H2O (Newsom, 1980; Naumov, 2005; Osinski et al., 

2013). Due to the abundance of H2O on Earth, hypervelocity impacts should disrupt the 

hydrosphere with the exception of small craters and craters formed in arid environments 

(Osinski et al., 2001; Naumov, 2002; Osinski, 2005; Osinski et al., 2013). Depending on 

geological setting, seawater and/or meteoric water are the principal sources for 

hydrothermal fluids at impact craters. Volatiles from the target rocks do contribute, 

especially early on in sedimentary target lithologies (Kieffer and Simonds, 1980; 

Naumov, 2005).  

1.2.3 Porosity and permeability 

An impact-generated hydrothermal system requires an environment favorable for 

transport. The shocked, fragmented, and displaced nature of impactites at impact craters 
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result in high porosity and permeability in (allochthonous) impact melt-bearing and lithic 

breccias, in-situ (autochthonous) target lithologies, and near surface impactites from 

crater modification (Pilkington and Grieve, 1992). Impact-generated hydrothermal 

mineralization occurs in porous areas, such as vesicles and fractures, within these units 

(Naumov, 2005; Osinski, 2005; Osinski et al., 2013). 

1.2.4 Alteration Setting 

Hydrothermal alteration is characterized by the zonal distribution of alteration minerals 

and products related to the mass transfer between minerals and the circulating fluids as 

temperature decreases over the lifespan of the hydrothermal system (Helgeson, 1969; 

Kirsimäe and Osinski, 2012). Shocked minerals are more soluble and, therefore, more 

elements are readily available to enter the hydrothermal system. Silicates shocked to from 

pressures of 7.5 to 22 GPa show a magnitude upwards of 20 times mass-normalized 

increase of silicon release into a substrate when compared to their non-shocked 

counterparts (Boslough and Cygan, 1988). Fracture distribution, porosity, permeability, 

and the distance and energy from heat sources influence the geospatial distribution and 

morphology of the zones of alteration (Gudmundsson et al., 2002; Meunier, 2003; 

Kirsimäe and Osinski, 2012). Mineralization can occur at contacts, such as the top and 

bottom of melt sheets. These contacts act fluid highways, areas where fluids have the 

path of least resistance to flow (Gudmundsson et al., 2002). It has been proposed that 

post-impact hydrothermal alteration can occur in six main locations within and proximal 

to an impact crater (Figure 3) (Osinski et al., 2013): 

(1) Crater fill impact melt rocks and melt-bearing breccias; 

(2) Interior of the central uplift; 

(3) Outer margin of the central uplift; 

(4) Impact ejecta deposits; 

(5) Crater rim; and 

(6) Post-impact crater lake sediments.  
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Figure 3: Impact-generated hydrothermal deposits found at typical complex craters. 

From Osinski et al., 2013. 

1.2.4.1 Crater fill impact melt rocks and melt-bearing breccias 

These melt-bearing impactites are themselves a major heat source for potential 

hydrothermal systems. These systems form zoned alteration phases that change with 

depth. The system can produce a range of alteration styles from discrete cavity and 

fracture-filling (e.g., Haughton; see Osinski et al., 2001) to complete and pervasive (e.g., 

Ries. See Osinski, 2005). 

1.2.4.2 Interior of the Central Uplift 

Central uplifts comprise of fault-bounded blocks of coherent to brecciated target rock 

cross-cut by injection dykes of melt-bearing or lithic breccias (Osinski et al., 2013). The 

main heat source driving alteration in the central uplift is the elevated geothermal 

gradient (Naumov, 2005). Alteration can be zoned generally restricted to discrete vug and 

vein filling cavities and fractures (Osinski et al., 2013).  

1.2.4.3 Outer margin of the central uplift 

These regions are structural ring of highly fractured and faulted, uplifted, sub-vertical-to-

overturned strata due to the interaction between the inward-collapsing crater wall and the 

outward-collapsing edge of the central uplift (Kenkmann and Dalwigk, 2000; Osinski and 
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Spray, 2005). Alteration is present in the form of fracture-infilling vein networks (Hode 

et al., 2003; Osinski et al., 2005). It is likely these regions were buried by crater fill 

impact melt rocks and breccias (Osinski et al., 2005).    

1.2.4.4 Impact ejecta deposits 

Ejecta is found at relatively fresh impact craters on Earth. Ejecta deposits comprise of 

two layers (Osinski et al., 2011). The first deposited is ambient temperature deposited 

lithic breccias. Overlying these breccias are melt-bearing breccias that would have been 

emplaced at much higher temperatures (e.g., >750–900 °C at Ries) (Osinski et al., 2004). 

The intensity of alteration varies in ejecta from the same crater, and is affected by the 

presence of water, such as crater lake (Osinski et al., 2004; Osinski, 2005; Osinski et al., 

2013). The heat source of ejecta deposits is entirely from the deposits themselves. Larger 

craters will contain higher melt volumes , which will result in longer lasting impact ejecta 

hydrothermal systems (Grieve and Cintala, 1992). 

1.2.4.5 Crater rim 

Comprised of km-scale, usually listric, extensional faults that along with the surrounding 

fractured rocks host potential fluid pathways (Osinski et al., 2013). Most craters on Earth 

do not have well preserved surface exposure of these faults. Haughton has a faulted rim 

complex dotted with hydrothermal “pipe” structures that are likely hydrothermal vents 

expressed as hot springs and/or fumaroles (Osinski et al., 2005).  

1.2.4.6 Post-impact crater lake sediments  

Impact craters can form a sedimentary basin. Impact crater lakes are relatively common 

on Earth. If the lake formed shortly after impact, sediments of the crater lake would have 

experienced alteration by the hydrothermal system of the impact crater (Osinski et al., 

2013).  

1.3 Outro 
East and West Clearwater are respectively ~26 km and ³36 km impact craters located 

~125 km east of Hudson’s Bay in northern Quebec at 56°10'N, 74°20’W (Grieve, 2006; 
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Schmieder et al., 2015; Osinski, 2015). Observations from a drilling program that lasted 

from 1963–1964 suggested both East and West Clearwater were impact craters (Dence et 

al., 1965). Previous work has been done on the impact melt sheet (e.g., Palme et al., 

1979) and to find the impactor (e.g., Grieve et al., 1981; Evans et al., 1993; Shukolyukov 

and Lugmair, 2001; McDonald, 2002; Koeberl et al., 2007), and to constrain the age (e.g., 

Reimold et al., 1981; Bottomley et al., 1990; Schmieder et al., 2015). The impact-

generated hydrothermal system has not been a focus until this paper. The intent of this 

paper is to characterize the secondary minerology, zones of alteration, and comparative 

analysis to other impact-generated hydrothermal system. 
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Chapter 2  

2 Impact-generated hydrothermal system at East 
Clearwater 

2.1 Introduction 
A hydrothermal system is the redistribution of mass and energy through thermal, 

chemical, and mechanical processes caused by circulating H2O fluids and molecular 

diffusion (Norton, 1984). Many impacts on Earth are associated with hydrothermal 

alteration (Osinski et al., 2013). Evidence of past hydrothermal systems are from the 

alteration mineralization produced. This study is the first dedicated to the characterization 

of the hydrothermal alteration at the East Clearwater impact structure.  

2.2 Wiyâshâkimî (Clearwater Lake) Complex 
Clearwater Lake, lac Wiyâshâkimî in Cree, Lac à l'Eau Claire in French, or Allait 

Qasigialingat (Cree Lake where there are fresh water seals) in Inuit (Commission de 

toponymie, 2016), is situated in the Tursujuq Provincial Park in Northern Quebec ~125 

km east of Hudson’s Bay at 56°10'N, 74°20’W (Figure 4). The two impact crater lakes, 

the ³36 km West Clearwater (56°13'N, 74°30’W) and ~26 km East Clearwater (56°05'N, 

74°07’W) impact craters are have apparent diameters of 36 km and 26 km, respectively 

(Grieve, 2006; Schmieder et al., 2015; Osinski, 2015). 

In 1956, it was suggested that the Clearwater lakes were of an impact origin (Beals et al., 

1956). Material from Clearwater lake drill core was recovered in 1963 and 1964. The 

presence of allochthonous breccias and recrystalized fragments in a heavily vesiculated 

crystalline matrix was indicative of an impact origin (Dence, 1964; Dence et al., 1965). 

Simultaneously, it was proposed that East and West Clearwater were an impact doublet 

formed from a binary asteroid (Dence et al., 1963; Dence et al., 1965).   



24 

 

 

Figure 4: Landsat image of the Clearwater Lakes. Modified from (Landsat 8, 2013). 

While both East and West Clearwater have similar target lithologies, East Clearwater has 

geochemical evidence of an impactor, while West Clearwater does not (Palme et al., 

1978; Grieve et al., 1981). Initial PGE values indicated the impactor of East Clearwater 

to be a carbonaceous chondrite (Palme et al., 1978; Grieve et al., 1981), although further 

PGE work involving Cr indicated it could be an ordinary chondrite (Palme et al., 1979; 

Evans et al., 1993). However, observed 53Cr/52Cr ratios are high, which are indicative of 

ordinary chondrites, as carbonaceous chondrites have low 53Cr/52Cr ratios (Shukolyukov 

and Lugmair, 2001; Koeberl et al., 2007). Chromium isotope and more recent PGE ratio 

analysis indicates it is an ordinary chondrite, and either L– (Evans et al., 1993; 

McDonald, 2002; Koeberl et al., 2007) or H– (Shukolyukov and Lugmair, 2001; Koeberl 

et al., 2007) chondrite. 
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The age of East Clearwater was determined through mineral isochron Rb-Sr dating to be 

287 ± 26 Ma (Reimold et al., 1981). The use of 40Ar-39Ar dating indicated the maximum 

age of the East Clearwater impact was ≤460 Ma (Bottomley et al., 1990). Further 40Ar-
39Ar dating of the East Clearwater impact melt sheet samples indicate West Clearwater 

impacted in the Permian (286.2 ± 2.2 Ma) and East Clearwater impacted in the 

Ordovician (~460–470 Ma) (Schmieder et al., 2015). 

Both West and East Clearwater, at only ~30 km from centre to centre, impacted into 

similar target lithologies in the Canadian Shield (Figure 5). Geologically, West and East 

Clearwater impacted into the northern section of the Bienville Domain, Minto 

Subprovince, Superior Province (Simard et al., 2008). The Superior Province is an 

expansive Archean craton that forms the core of the Canadian Shield (Gill, 1949; Wilson, 

1949). The Minto Subprovince is a composite volcano-plutonic terrain (Leclair et al., 

2006; Simard et al., 2008). The majority of the rocks in the Bienville Domain are of 

plutonic origin (Simard et al., 2008). Two different lithologies dominate the target rocks 

of the Clearwater impacts (Figure 5): 1) The Loups Marins Suite (Alma1 & Alma2) 

(Gosselin and Simard, 2001; Simard et al., 2008); and 2) The Desbergères Suite (Adeb) 

(Simard et al., 2001; Simard et al., 2008). 

Minor components such as the Châteauguay Suite (Achg) are found near the rim of East 

Clearwater and are certainly part of the target rocks. Other minor units, such as the 

Qullinaaraaluk Suite (Aluk) (Almost certainly apart of West Clearwater), the Tramont 

Suite (Atra), the Lesdiguières/Favard Suite (Alsd/ Afav), the Coursolles Suite (Acou), the 

Sem suite (Asem), and the Maurel Suite (Amau) may have part of the target, but not are 

found at the rim of the East Clearwater impact crater (See (Simard et al., 2008) for 

descriptions). The unit descriptions below are translated from (Simard et al., 2008) and 

related publications. 
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Figure 5. The Geology of the East Clearwater crater complex. From youngest to 

oldest: Tramont Suite (Atra), Maurel Suite (Amau), Qullinaaraaluk Suite (Aluk), 

Loups Marins Suite (Cpx-bearing is Alma1; Opx-bearing is Alma2), Desbergères 

Suite (Adeb), Lesdiguières/Favard Suite (Alsd/Afav), Châteauguay Suite (Achg), 

Sem suite (Asem), and Coursolles Suite (Acou). Modified from (Simard et al., 2008). 

2.2.1 Loups Marins Suite (Alma1 & Alma2) 

These highly magnetic rocks show a variable heterogeneity due to partially assimilated 

enclaves of amphibolite, diorite, and paragniess, and the variation in granitic material in 

the rocks. The Loups Marins Suite comprises intrusive pyroxene-bearing felsic rocks that 

are divided into a clinopyroxene-bearing unit and an orthopyroxene-bearing unit 

(Gosselin and Simard, 2001). 
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The clinopyroxene-bearing unit (Alma1) comprises equigranular to porphyritic rocks that 

are medium to course grained, massive to slightly foliated, with a purplish hue. The 

lithologies of the clinopyroxene-bearing unit include tonalite, quartz diorite, granodiorite, 

and granite. Burgundy plagioclase is responsible for the purplish hue. The age of the 

clinopyroxene-bearing unit is 2715 to 2705 Ma, although ages in the range of the 

orthopyroxene-bearing rocks have been found (Gosselin and Simard, 2001; Simard et al., 

2008). 

The orthopyroxene-bearing unit (Alma2) comprises rocks that are medium to course 

grained, massive to foliated, with a green-brown colouration. The lithologies of the 

orthopyroxene-bearing unit includes enderbite and hypersthene bearing quartz diorite, 

with small amounts of opdalite and charnockite. Kilometer-sized lenses are present, 

composed of gabbronite, hypersthene diorite, and a small amount of ultramafic rocks. 

The age of the orthopyroxene-bearing unit is 2735 and 2720 Ma, although younger dates 

have been found in this unit (Simard et al., 2008). 

2.2.2 Desbergères Suite (Adeb) 

The Desbergères Suite is composed of homogenous granodiorite and granite that are 

medium to course grained, massive to slightly foliated, with a grey or pink colouration. 

These rocks contain 1–8% is biotite in granite and both biotite and hornblende in 

granodiorite. Generally, 5% is 5 cm potassic feldspar phenocrysts, although localities can 

be greater than 25%. Kilometre-scale porphyritic intrusions can contain 15–35% potassic 

feldspar. Tonalite enclaves are present near diffuse contacts (Simard et al., 2001; Simard 

et al., 2008; Simard, 2008). The rocks are dated to 2720–2710 Ma (Simard et al., 2008). 

2.2.3 Châteauguay Suite (Achg) 

This unit comprises granoblastic, intermediate to ultramafic, massive to foliated dykes 

and sills. They contain injected white felsic material that gives the rocks a brecciated 

appearance. The dykes and sills are a few meters thick by kilometers long. Intermediate 

rocks include diorite and rarely quartz diorite. Mafic rocks are dominated by gabbro and 

gabbronorite. Ultramafic rocks include peridots, pyroxenites, and hornblende. No date 
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has been measured, but observations indicate between 2740 and 2710 Ma (Simard et al., 

2001; Simard et al., 2008). 

2.2.4 Impactites 

Material from East Clearwater was recovered during a drilling program in 1963 and 1964 

(Dence, 1964; Dence et al., 1965). Drilling occurred in the winter on the frozen lake, 

penetrating through 87 m of water, 46 m of unconsolidated glacial debris including 

boulders, and glacial sediments consisting of interbedded limestone, shale, and gritty 

sandstone until a core depth of 245 m (233 m in actual depth) (Dence et al., 1963; Dence 

et al., 1965). As drilling proceeded, the drill angle continued to deviate from the normal. 

Once the drill had reached the impact melt sheet, it was off by 30°. As a result, most of 

the core above the melt sheet was not recovered, and only the top 46 m of the impact 

melt-bearing breccias and melt sheet were extracted before drilling had to be terminated 

(Palme et al., 1979). The impact melt sheet at East Clearwater has been described in past 

studies (Dence et al., 1965; Palme et al., 1979). This study agrees with the past 

descriptions, except for the top of the melt sheet. The impactites can be divided into three 

petrographic units: 

1) Breccia unit: Dark green inclusion-rich fine-grained impact melt-bearing 

breccia (~4.5m thick); 

2) Vesicular impact melt rock: Light grey vesicular impact melt rock (~7.5m 

thick); 

3) fine-grained coherent impact melt rock: Dark green fine-medium (increasing 

with depth) grained impact melt rock (~34m thick)  
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Figure 6: A. Upper Zone 1. section from the impact melt-bearing breccia at 271.6 m 

(sample 948.5). B. Lower Zone 1. Vesicular impact melt rock. 279.4 m (sample 2-63-

978). C. Zone 2. Fine-grained coherent impact melt rock. 308.7 m (sample 1089). 

2.2.5 Previous Noted Alteration 

Impact-induced hydrothermal alteration has been observed throughout the melt sheet of 

East Clearwater, but only in passing. Chloritization of the melt sheet was noticed in 

(Dence, 1965). Accounts from Grieve et al. (1981) noted there were secondary 

mineralization in the form of millerite, galena, and sphalerite. Palme et al. (1979) noted 

the presence of clay minerals, quartz, calcite, fluorite, chalcopyrite, sphalerite, and 

millerite, and interpreted the sulfides to have formed from a sulfur-rich vapour phase that 

rose to the top during conductive cooling. 

2.3 Methods 

2.3.1 Samples 

All of the samples in this study come from one drill core (2-63) from East Clearwater. Of 

the two cores drilled at East Clearwater, this is the only drill core that sampled the impact 
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melt sheet. From 37 pieces of East Clearwater 2-63 core, 38 thin sections were produced. 

All thin sections were cut, polished, and mounted in the absence of water to preserve 

hydrologically sensitive and potentially friable minerals including zeolites, chlorites, and 

clays. All samples cut for this study are from the impact-bearing breccias and impact melt 

sheet. Some samples from West Clearwater were briefly observed for comparison 

purposes. Most agreed with descriptions in previous work (e.g., Phinney et al., 1978), and 

a centemetre-scale wide hematite vein was found. 

2.3.2 Analytical methods 

Samples were investigated using a combination of optical petrography, Electron Micro-

Probe Analysis (EMPA), in-situ X-ray Diffraction (XRD), Raman spectroscopy, and UV-

Vis-NIR spectroscopy via Analytical Spectral Device (ASD) on thin sections and drill 

cores to characterize the secondary mineral assemblages. Veins and vugs were the 

primary targets, as these features are related to the hydrothermal system and contain 

alteration minerals. 

The Electron MicroProbe Analyzer (EMPA) used was a JEOL JXA-8530F Field 

Emission Electron Probe Microanalyzer. It is able to detect elements from B to U. 

Samples were carbon coated. Qualitative assessments were made using Energy 

Dispersive X-ray Spectroscopy (EDS) techniques, and quantitative measurements by 

Wavelength Dispersive X-ray Spectroscopy (WDS). Qualitative element maps were 

produced from both EDS and WDS. 

General hydrous silicate standards (20 nA probe current at 15 kV; 5 µm beam diameter): 

albite (Si, Al, Na); anorthite (Ca); fayalite (Fe); diopside (Mg); orthoclase (K); pollucite 

(Cs, Rb); barite (Ba); celestite (Sr); and apatite (P).  

Zeolite standards (20 nA probe current at 20 kV; 5 µm beam diameter): albite (Si, Al, 

Na); diopside (Ca, Mg); fayalite (Fe); orthoclase (K); pollucite (Cs); RbTiOPO4 (Rb); 

barite (Ba); celestite (Sr); and apatite (P). 
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Sulfide standards (60 nA probe current at 20 kV; 1 µm beam diameter): sphalerite (Zn, 

S); pyrite (Fe, S); galena (Pb, S); millerite (Ni); chalcopyrite (Cu, Fe); tin (Sn); sliver 

(Ag); cadmium (Cd); and indium (In).  

In-situ micro X-ray diffraction (µXRD) analysis was completed using a Bruker AXS D8 

Discover microdiffractometer. µXRD used Cu Ka radiation (l = 1.5418 Å), producing a 

500 µm diameter beam on a triple axis mobile stage. Raman spectroscopy was gathered 

using a Renishaw InVia Reflex Raman Spectrometer with three available wavelengths 

(785nm, 633nm, 514nm). The ASD spectrometer used is a Malvern Panalytical ASD 

FieldSpec 4 Hi-Res: High Resolution Spectroradiometer. It has a 3 nm VNIR (700 nm) 

and an 8 nm SWIR (1400/2100 nm) spectral resolution. A full range solar irradiance 

spectral range (350–2500 nm) with spectral sampling (bandwidth) of 1.4 nm for 350–

1000 nm and 1.1 nm for 1001–2500 nm.  

2.4 Results 
Based on optical petrography and EMPA analyses, 2 hydrothermal zones have been 

defined, characterized by distinct types of hydrothermal alteration (Figure 17). Zone 1 is 

defined by the zeolite and clay assemblages. Zone 2 is defined by chlorite and to a lesser 

extent, radial quartz assemblages. The petrographic division between the vesiculated melt 

and the non-vesiculated melt line up closely with hydrothermal alteration styles, 

however, multiple altered glass spherules that occasionally contain orthoclase at the 

centre surrounded by chlorite exist at the topmost of the impact melt-bearing breccia unit 

(Figure 17).  

2.4.1 Zone 1 

Zone 1 is characterized by centimetre- to decimetre- wide vugs filled with nickel-rich 

sulfides (i.e., millerite, vaesite-pyrite) and zeolites (i.e., clinoptilolite-Ca, heulandite-Ca). 

Pb-Zn-Cu-Fe sulfides (i.e., galena, sphalerite, chalcopyrite, pyrite), quartz, calcite and 

smectites (i.e., saponite) and other clays are also present in lesser amounts. Upper Zone 1 

(Figure 6) contains vugs that are 75-100% filled with zeolites, sulfides, quartz, and clays. 

These vugs are filled with visible red and white material (Figure 6A). The white material 
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is mostly zeolites with minor quartz, and the red colour is caused by the oxidation haloes 

surrounding nickel rich sulfides of vaesite-pyrite and millerite that is encased in a radial 

heulandite. All occurrences of these sulfides in Zone 1 are always encased by zeolites. 

Lower Zone 1 (Figure 6B) contains largely empty vugs that can be filled 0–10% by 

millerite, and by <5% zeolites. No oxidation is visible, and millerite exists as centemetre 

long needles that are not encased. In the impact melt-bearing breccias, chlorite is present 

in altered glass beads occasionally surrounding orthoclase, and as a pervasive 

chloritization is present in the silicate melt of the first, giving the matrix a dark green 

colour (Figure 6). 

2.4.1.1 Sulfides 

Two groups of sulfides are observed in the vugs at the top of the melt sheet of East 

Clearwater. The first group consists of the nickel-rich sulfides of millerite and vaesite-

pyrite. The second group contains galena, sphalerite, pyrite, and chalcopyrite. 

2.4.1.1.1 Nickel-iron Sulfides 

This sulfide group consists of the nickel-rich sulfides of millerite [Ni(0.95–0.98)Fe(0.02–

0.05)S(0.99–1.01)] (Figure 7; Table 1) and a solid solution on the vaesite-pyrite scale [Ni(0.49–

0.66)Fe(0.34–0.51)S(2.00–2.01)] (Figure 7; Table 1). Most vugs in lower Zone 1 only contain 

these sulfides and no other, or very minor zeolite mineralization. Millerite occurs 

throughout Zone 1 and is acicular and radial from nucleation points along the walls of 

vugs. Lower Zone 1, millerite crystals are prominent enough that they can be seen with 

the naked eye in many vugs. In upper Zone 1, millerite is relatively intact and does not 

seem to have been greatly affected by the growth of radial clinoptilolite-Ca (Figure 7; 

Figure 8). Vaesite-pyrite is not observed as frequently, but when present it is associated 

with millerite. Vaesite-pyrite is found as octahedral crystals at nucleation points that 

millerite radiates from and is slightly to almost completely oxidized (Figure 7). A red 

oxidation halo of hematite (Figure 8) is almost always associated with both these nickel-

rich sulfides, although sometimes no sulfides are seen at their centres. The oxidation 

halos are a few millimetres wide and are observed in most of the thin sections in upper 
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Zone 1 (Figure 8). These oxidation haloes are iron-rich spheres of hematite that are 

encased within radial clinoptilolite-Ca.  

 

Figure 7: Millerite (Mlr) and vaesite-pyrite (Va-Py). Millerite is acicular and 

radiates out from a point. Vaesite-pyrite is octahedral and moderately altered. 

Table 1: Ni-Fe Sulfide WDS. Millerite and Vaesite-pyrite. b.d. indicates “below 

detection”. 

 Millerite Vaesite-pyrite 
Mass% 1 2 3 4 5 

S 35.645 35.745 53.384 53.794 53.539 
Ni 62.622 64.062 32.176 23.791 30.055 
Fe 3.323 1.561 15.902 23.837 17.668 
Pb 0.082 0.175 0.129 0.175 0.168 
Co b.d. b.d. 0.016 0.036 0.039 
Ag b.d. 0.01 0.014 0.007 b.d. 
Cu b.d. b.d. b.d. 0.027 b.d. 
Cd b.d. 0 b.d. b.d. 0 
In b.d. 0.001 b.d. b.d. b.d. 
Zn b.d. b.d. b.d. b.d. 0.001 
Sn b.d. b.d. b.d. b.d. b.d. 

Total 101.672 101.554 101.621 101.667 101.47 
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Figure 8: Red Oxidation Halo emanating from millerite (Mlr) and vaesite-pyrite at 

271.2 m depth. A. Oxidation halos visible from the top of the melt sheet. The red box 

indicates the location of images B-D in this figure B. PPL image of the alteration 

haloes. They are inside clinoptilolite-Ca (Cpt-Ca) crystals. C. XPL image showing 

the tabular nature of the clinoptilolite-Ca. Two points of nucleation are present. D. 

BSE reveals the millerite at the centre of the alteration halo on the left. There 

appears to be none in the one on the right. 
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2.4.1.1.2 Pb-Zn-Cu-Fe Sulfides 

The Pb-Zn-Cu-Fe group of sulfides consist of galena [Pb(0.98)Zn(0.01–0.02)Cu(0.00–0.01)S(0.99–

1.00)], sphalerite [Zn(0.99–1.00)Fe(0.00–0.01)Cd(0.00–0.01)S(1.00)], chalcopyrite [Cu(0.50)Fe(0.49)S(0.98)] 

or [Cu(1.01)Fe(0.99)S(1.96)], and pyrite (Figure 9, 

Table 2). These sulfides are all found in upper Zone 1 and are usually at the edge of 

radial clinoptilolite-Ca or within the botryoidal heulandite-Ca (Figure 9). Galena and 

sphalerite are also commonly found in lower Zone 1. 

 

Figure 9: The Pb-Zn-Cu-Fe group of sulfides found at East Clearwater at 271.2 m 

depth. A. Reflected light image of a large sphalerite (Sp) with other sulfides encased 

in it. The white box indicates the location of B in this figure. B. A section of A 

showing all four sphalerite, galena (Gn), chalcopyrite (Ccp), and pyrite (Py). C&D. 
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Plane polarized light and back scattered electron image showing the botryoidal 

heulandite-Ca (Hul-Ca), respectively. 

 

Table 2: Geochemistry of the Pb-Zn-Cu-Fe sulfides. b.d. indicates “below 

detection”. 

 Sphalerite Chalcopyrite Galena 
Mass% 1 2 3 4 5 6 7 8 

S 33.005 33.022 32.465 33.06 34.874 34.864 13.762 13.626 
Zn 66.902 67 65.871 66.689 0.048 0.107 0.432 0.208 
Fe 0.121 0.083 0.029 0.329 30.569 30.579 0.039 0.069 
Cu 0.059 0.071 0.03 0.249 35.497 35.48 0.095 0.158 
Pb 0.124 0.097 0.06 0.071 0.118 0.104 86.648 86.958 
Ni 0.001 0.002 0.004 b.d. 0.006 0.002 b.d. 0 
Cd 0.506 0.612 0.414 0.411 b.d. b.d. 0.042 0.236 
Ag 0.002 0.005 0.006 b.d. 0.002 0.007 b.d. b.d. 
Sn b.d. 0.001 b.d. b.d. 0.002 b.d. b.d. 0.008 
Co b.d. 0.004 0.004 0.021 0.037 0.037 b.d. b.d. 
In b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. 

Total 100.72 100.897 98.883 100.83 101.153 101.18 101.018 101.263 

 

2.4.1.2 Zeolites 

Clinoptilolite-Ca and heulandite-Ca are found throughout Zone 1 but are in larger 

amounts at the top. Both in-situ XRD (Figure 10) and Raman (Figure 11) indicate the 

peaks best match clinoptilolite-Ca and heulandite-Ca. 
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Figure 10: µXRD of zeolites at 271.2 m depth. XRD scan with both clinoptilolite-Ca 

and heulandite-Ca for reference. 
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Figure 11: Raman Spectroscopy of zeolites at 271.2 m depth. Measured Raman 

peaks, closely resembling the signatures of both clinoptilolite-Ca and heulandite-Ca. 

After determining that either, or both, clinoptilolite-Ca and heulandite-Ca were present, 

the minerals were distinguished through EMPA techniques (Table 4, Table 3). Both 

zeolites occur at the top of the melt sheet in Zone 1. Clinoptilolite-Ca is found as radial, 

tabular crystals. The crystals radiate out from oxidized material that is from the first 

sulfide group that is deposited. Radial clinoptilolite-Ca is observed in a few different 

localities within Zone 1. The highest abundance of zeolites is at 271.2m. The formula 

calculated from WDS microprobe analysis for the radial clinoptilolite-Ca is: 

 (Ca2.05Sr0.53Ba0.03Fe0.01Mg0.16Na0.36K0.08)[Al7.20Si29.11O72]•21.79H2O.  

Heulandite-Ca is found as non-oriented tabular crystals intersected by circular botryoidal 

features. These features have been found to comprise heulandite-Ca, smectites, and 

quartz (Figure 12, Figure 14). The formula calculated from microprobe analysis for the 

botryoidal heulandite-Ca at 271.2 m is: 

(Ca2.26Sr0.77Ba0.04Fe0.01Mg0.24Na0.39K0.10)[Al7.85Si28.33O72]•19.76H2O.  
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Table 3: Clinoptilolite-Ca and heulandite-Ca in Zone 1. Clinoptilolite-Ca has a TSi ≥ 

80 and an Si:Al  ≥ 4. Heulandite-Ca has a TSi < 80 and an Si:Al  < 4 (Coombs et al., 

1997; Coombs et al., 1998). 

Depth (m) Habit Mineral TSi Si:Al 

27
1.

2 Radial, tabular Clinoptilolite-Ca 0.802 4.05 

Botryoidal, tabular Heulandite-Ca 0.783 3.61 

27
1.

6 

Rim, poorly defined Heulandite-Ca 0.792 3.81 

Radial, tabular Clinoptilolite-Ca 0.813 4.35 

Botryoidal, tabular Heulandite-Ca 0.770 3.34 

 



40 

 

 

Figure 12: Radial clinoptilolite-Ca (Cpt-Ca) and botryoidal heulandite-Ca (Hul-Ca). 

A. Scanning electron image highlights the radial nature, indicated by the red 

arrows, of the tabular clinoptilolite-Ca. B. Element map of strontium. The 

botryoidal heulandite-Ca contains a higher amount of strontium. C. Plane polarized 

light image centred on the oxidation halo. The oxidation of the nickel-iron sulfides is 

evident (millerite and vaesite-pyrite) encased in the radial heulandite. D. Silica over 

aluminum element map. The different zeolites are highlighted by Si:Al ratios. 

Quartz (Qtz) is highlighted amongst the botryoidal heulandite.  
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Table 4: Geochemical data from clinoptilolite-Ca and heulandite-Ca in Zone 1 at 

271.2 m depth. *H2O was assumed as the remaining mass (100-total) **Total value 

not including H2O. 

 Radial Clinoptilolite Botryoidal Heulandite 
Mass% 1 2 3 4 5 6 7 8 9 

SiO2 64.593 64.105 64.508 65.549 61.841 63.247 62.894 63.173 64.159 
Al2O3 14.127 13.804 13.477 12.841 14.652 14.986 15.09 14.839 14.597 
FeO 0.032 0.022 0.003 0.019 0.047 0 0.079 0.013 0.04 
MgO 0.3 0.206 0.208 0.224 0.32 0.393 0.36 0.379 0.32 
CaO 4.225 4.354 4.355 4.052 4.605 4.784 4.653 4.723 4.716 
Na2O 0.661 0.424 0.276 0.279 0.234 0.476 0.515 0.51 0.482 
K2O 0.111 0.097 0.171 0.182 0.101 0.178 0.207 0.216 0.183 
BaO 0.135 0.147 0.161 0.138 0.228 0.224 0.221 0.25 0.242 
SrO 2.103 2.132 2.106 1.8 3.039 2.915 3.034 2.878 2.988 

Rb2O nd nd nd nd nd nd nd nd nd 
Cs2O nd nd 0 nd nd 0.001 nd nd nd 
P2O5 0 nd nd 0 nd 0.007 nd 0.009 nd 
H2O* 13.713 14.709 14.735 14.916 14.933 12.789 12.947 13.01 12.273 

Total** 86.287 85.291 85.265 85.084 85.067 87.211 87.053 86.99 87.727 

 

Slightly lower in upper Zone 1 at 271.6 m depth, three different zeolites are observed. 

Two are similar in character to the ones found at 271.2 m. The third is a heulandite-Ca 

defined only by geochemical, not crystal boundaries that encases the others, located at the 

base of the radial clinoptilolite-Ca (Figure 14). The calculated formulas for each are 

below: 

Radial clinoptilolite-Ca: 

(Ca1.92Sr0.42Ba0.02Fe0.01Mg0.12Na0.78K0.08)[Al6.78Si29.46O72]•17.65H2O; 

Botryoidal heulandite-Ca: 

(Ca2.40Sr0.85Ba0.06Fe0.06Mg0.31Na0.21K0.17)[Al8.33Si27.83O72]•20.41H2O; and 
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Rim heulandite-Ca: 

(Ca2.24Sr0.60Ba0.03Fe0.16Mg0.19Na0.60K0.07)[Al7.50Si28.60O72]•19.62H2O. 

2.4.1.3 Clays 

In-situ XRD analysis revealed that smectites, such as saponite, montmorillonite, and 

kaolinite, are present at East Clearwater. Saponite at 271.6 m (Figure 14) was calculated 

from EMPA WDS data to have the chemical formula of: 

(Ca0.22Na0.03K0.01)(Fe0.74Mg2.18)[Al0.70Si3.39O10](OH)2•6.54H2O. 

Clays signatures, specifically smectites, are present mostly in Zone 1, although trace 

amounts may exist in Zone 2 from ASD spectra (Figure 13).  

 

Figure 13: UV-Vis-NIR spectroscopy of Zone 1 and 2 compared to smectites. 
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Figure 14: Radial clinoptilolite-Ca (Cpt-Ca), botryoidal heulandite-Ca (Hul-Ca), 

and rim heulandite-Ca at 271.6 m depth A. Composite image highlighting the 

presence of galena (Gn) and the structure of the zeolites. B. Elemental map of 

strontium. Higher concentrations are also apparent in the rim heulandite-Ca. C. 

Magnesium element map. Mg-rich saponite (Sap) is found in the botryoidal 

structures surrounded by heulandite-Ca. D. Silica over Aluminum element map. 

Si:Al highlights the difference between the two zeolites. 
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2.4.2 Zone 2 

Zone 2 (Figure 6C) contains fewer vugs. Many are no larger than a few centemetres filled 

70–100% by chlorite, radial quartz, calcite, and sulfides, such as galena, pyrite, and 

sphalerite, and cassiterite. A few are vugs centemetre- to decimetre- wide filled 100% 

filled by calcite, with minor quartz and sparse galena, pyrite, and sphalerite (Figure 15). 

Besides the vugs, a pervasive chloritization is present in the silicate melt, giving the 

matrix a dark green colour (Figure 6). 

2.4.2.1 Chlorite 

The chlorite zone of the East Clearwater core contains little to no free space, as most 

vugs are filled by chlorite and radial quartz (Figure 15). Clinochlore-chamosite is the 

dominate chlorite present. The formula calculated from WDS microprobe analysis for the 

clinochlore-chamosite at 290.4 m depth is: 

(Mg2.93Fe1.45Ca0.07Mn0.04)[Al1.74Si3.28O10][(OH)8.69F0.04]. 

2.4.2.2 Calcite 

Calcite exists in vugs with quartz and few sulfides including galena, pyrite, and 

sphalerite. It is zoned with lighter calcite being more enriched in manganese and iron 

(Figure 16). Calcite is not found in vugs associated with chlorite and vice versa. 
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Figure 15: The mineralization style of vugs in the chlorite zone. A) Radial quartz 

(Qtz) in a vug at 280.1 m depth. B) Chlorite (Chl) infilling vug with magnetite (Mgt) 

found in a clast at 290.4 m. C & D) Quartz dominated vug with chlorite, biotite (Bt), 

and pyrite (Py) at 295.3 m. 

2.4.2.3 Sulfides 

Both the nickel-iron and Pb-Zn-Cu-Fe sulfides as described in Zone 1 are present in Zone 

2 in smaller amounts. Primary sulfides show exsolution textures, with some of them 

containing secondary sulfides nearby. For example, a pentlandite bordering carbonate 

melt at 308.9 m depth contains exsolved galena with secondary pyrite and sphalerite 

residing nearby (Figure 16).  
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Figure 16: A. Large Pentlandite crystal at 308.9 m depth. Galena (Gn) exsolution in 

pentlandite (Pn), precipitation of sphalerite (Sp) and pyrite (Py) on the rim. B. 

Zoned calcite (Cal) with quartz (Qtz). The lighter shades are caused by higher Mn 

and Fe.  
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Figure 17: Mineralization with depth in East Clearwater Core 2-63. Black means 

minerals have been identified. Dashed lines indicate trace amounts. Units from top 

to bottom: Impact melt-bearing breccia; Vesicular impact melt rock; Fine-grained 

coherent impact melt rock. Zones from top to bottom: Zone 1; Zone 2. Zones are 

defined by the transition between the zeolites and clays and the chlorite. 
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2.5 Discussion 

2.5.1 Heat Sources 

The majority of the heat for the East Clearwater system at the observed areas would have 

come from the impact melt sheet itself. Impact craters of similar diameter, e.g., Haughton 

(24 km) and Ries (~24 km) have structural uplifts of 1–2 km (Osinski et al., 2001; 

Osinski, 2005). The elevated geotherm provides a maximum temperature of ~40–70 °C 

assuming a geothermal gradient of 30 °C km-1 and a surface temperature of ~10 °C. 

While this elevated geotherm may have been more important elsewhere in the crater 

(such as the central uplift), the heat driving the observations made here would have been 

from the melt sheet itself. The vertical extent, let alone the volume, of the impact melt 

rocks and melt-bearing breccias is unknown, as only the top ~46 m of these impactites 

were recovered (Dence et al., 1965). 

2.5.2 Fluid sources 

No pre-impact sediments are found as clasts in East Clearwater impact breccias like they 

are in West Clearwater (Palme et al., 1979). These sediments would have been present 

during the impact at East Clearwater, but it is likely they were either not formed or not 

consolidated at the time of impact. East Clearwater impacted into a shallow marine or 

costal environment of the paleocontinent of Laurentia (Schmieder et al., 2015). It is likely 

that a major source of the hydrothermal fluids would have come from seawater. This is 

supported by the observation that there are significant amounts of strontium in both 

clinoptilolite-Ca and heulandite-Ca. Further isotopic analysis would have to be conducted 

to determine the source.  

2.5.3 Early Stage 

The hydrothermal system at East Clearwater precipitated many different minerals as the 

system matured. The Ni-Fe sulfides of millerite and vaesite-pyrite were some of the first 

minerals to be deposited. At East Clearwater, the impactor was only partially vaporized 

with a significant portion being incorporated into the melt, therefore enriching metal 

content (Grieve et al., 1981). It is likely these siderophile-rich metals were some of the 
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first materials to be mobilized in the hydrothermal system, which would result in an early 

stage of secondary sulfide deposition. 

2.5.4 Main Stage pH and temperature constraints 

Radial clinoptilolite-Ca nucleated from the nickel-iron sulfides. Temperature decreased 

as clinoptilolite-Ca grew, the nickel-iron sulfides were oxidized, leaving hematite 

oxidation haloes imprinted in the clinoptilolite-Ca. Pb-Zn-Cu-Fe sulfides primarily 

composed of galena and sphalerite, with minor chalcopyrite and pyrite deposited along 

the edges of the radial clinoptilolite-Ca with botryoidal heulandite-Ca, quartz, and 

smectites.  

Observations at Putchez Katunki indicate the increase Si:Al ratio in zeolites and 

phyllosilicates is caused by an increase in pH with decreasing depth (Donahoe and Liou, 

1985; Naumov, 2005). As temperature decreases throughout magmatic-generated 

hydrothermal systems in granitic rocks, the fluid becomes Na- and Ca- enriched, pH 

increases, and it becomes more oxidizing all due to mass balancing as chloride complexes 

dissociate (Dolejš and Wagner, 2008). The majority of the East Clearwater target rocks 

consist of slightly metamorphosed to relatively undeformed plutonic rocks (Simard et al., 

2008), so one may expect a similar fluid trend in an impact-generated hydrothermal 

system here. A decrease in Si:Al ratios can be seen in individual cavities at East 

Clearwater. Radial clinoptilolite-Ca was the first zeolite to form on the edge of the vugs, 

followed by the botryoidal heulandite-Ca. This suggests the pH of the East Clearwater 

impact-driven hydrothermal system increased not only with depth, but within individual 

cavities over the progression of the system. A decrease in the Si:Al ratios in zeolites can 

be caused by 1) a decrease of the Si:Al ratio in the hydrothermal fluid (Lechert, 2001), 2) 

or an increase in pH (Donahoe and Liou, 1985; Lechert, 2001) in the fluid. The presence 

of quartz with the botryoidal heulandite-Ca indicates that silica content was still relatively 

high in the fluid. This may indicate that the Si:Al ratio did not decrease by a significant 

amount, but rather the increasing pH had more of an effect on the transition between 

clinoptilolite-Ca and heulandite-Ca.  
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This can be further constrained as the Pb-Zn-Cu-Fe sulfides grew with botryoidal 

heulandite-Ca. Chalcopyrite is stable at pH values of less than ~7 and precipitates at 

temperatures ~200 °C (Reed and Palandri, 2006). As pH increases and temperature 

decreases, bornite replaces chalcopyrite and CuCl is preferred over chalcopyrite 

precipitation, respectively (Reed and Palandri, 2006). Sphalerite and galena can 

precipitate under lower temperature and higher pH conditions. Deeper into the melt sheet 

(Zone 2) chalcopyrite is absent, while sphalerite and galena are present. As lower in the 

system retained heat for longer, it is likely conditions were too alkaline or low 

temperature to form chalcopyrite, although no bornite has been found. 

Higher Na:Ca ratios indicate formation at a lower temperature (Senderov and Khitarov, 

1970; Naumov, 2005). The Na:Ca ratios remain the same within the zeolites. This would 

tend to indicate that temperature in the system did not decrease significantly over the time 

of pH decrease. The porous nature of zeolites and the longevity and proximity of their 

formation would likely have allowed for cation exchanges to occur. This means that the 

Na:Ca ratios in the zeolites likely reflect the lower limits of the temperature of formation 

as it progressively cooled. The transition from a smectite-dominant to chlorite dominant 

hydrothermal zones is ~200 °C (Kristmannsdottir, 1979). The assemblage of high silica 

zeolites and dioctahedral smectites is stable <80–130 °C (Rychagov et al., 1993; 

Naumov, 2005). 

The pervasive chloritization of the top of Zone 1 and all of Zone 2 likely occurred during 

this stage. Interactions between the wall rock and clinoptilolite-Ca post-deposition is 

likely for the occasional appearance of the poorly-defined rim heulandite-Ca. 



51 

 

 

Figure 18: The formation of minerals over the temperature of the East Clearwater 

hydrothermal system. 

2.5.5 Comparison with other impact-generated hydrothermal systems 

West Clearwater is directly adjacent East Clearwater at just ~30 km centre to centre, so 

one might expect similar alteration products. Mg-rich saponitic clays and calcite-

dominant vugs have been observed in fine-grained impact melt rock at West Clearwater 

(Phinney et al., 1978; Kerrigan and Osinski, 2015). These are similar to the saponite and 

other smectites and calcite vugs observed in this paper at East Clearwater. However, this 

is where the observed hydrothermal similarities end. The overall alteration style at West 

Clearwater is very different from the results on East Clearwater reported in this paper. 

The bright, red rocks of West Clearwater are a stark contrast to the dark green rocks of 

East Clearwater. In the fine-grained impact melt rock, quartz dominated vugs and calcite 

dominant vugs have been observed, and in highly vesicular regions, some amygdales 

(i.e., alteration mineral filled vesicles) have red-to-purple haloes (Kerrigan and Osinski, 

2015). A pervasive and partial hematization of many of the impact melt rocks and melt-

bearing breccias and veins of pure hematite that are centemetre-scale wide indicates a 

very oxidative environment. In contrast, oxides found in the melt of East Clearwater have 

been partially reduced. There is a lack of hydrothermal oxides, with the exception of 

cassiterite in Zone 2 and hematite from oxidation haloes in Zone 1, although the 
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oxidation is of the alteration minerals vaesite-pyrite and millerite. The differences in the 

oxidative/reducing environments is likely due to conditions of impact. Both Clearwater 

impacts have virtually the same target lithologies (Figure 5), therefore the target rocks are 

not responsible for the differences in alteration styles between the two craters. The 

difference in ages, with West and East Clearwater impacted into the Permian (286.2 ± 2.2 

Ma) and Ordovician (~460-470 Ma) respectively (Schmieder et al., 2015), it is likely the 

paleogeological setting that had the largest effect on the styles observed. East Clearwater 

impacted into a near-coastal to shallow marine environment on the paleocontinent of 

Laurentia; while West Clearwater impacted into continental Pangea (Schmieder et al., 

2015). Theses paleogeological setting differences suggest that there would have been 

different sources for hydrothermal fluids. East Clearwater would be affected by seawater, 

while West Clearwater would be affected by meteoric water and possibly freshwater. As 

more extensive hydrothermal work is done on West Clearwater, more comparisons and 

contrast will be made. 

The Boltysh impact crater is 25km in diameter and impacted into minor Paleozoic 

sediments and Precambrian granites and gneisses of the Ukrainian shield at 65.17 ± 0.64 

Ma (Kelley and Gurov, 2002; Gurov et al., 2015). This is not a near-costal or shallow-

marine impact like East Clearwater, but similar alteration has been observed here. 

Boltysh impact breccias contain hydrothermal minerals including K-feldspar, smectites 

(saponite-nontronite), zeolites (i.e., clinoptilolite), calcite, epidote, garnet, pyrite, and 

chlorite (Naumov, 2002; Williams, 2012; Williams et al., 2013). Smectite, chlorite, 

calcite, zeolites, stilpnomelane, sulfides (i.e., pyrite, sphalerite) and elemental metals 

(copper, silver, platinum, and cuproplatinum) exist in the impact melt rocks (Naumov, 

2002; Gurov et al., 2015). The smectites and zeolites are mostly located higher up in the 

column, while chlorites are below them (Naumov, 2002). A range of native metals is 

found at Boltysh in the upper unit of the impact melt rocks. They range from copper, 

silver, platinum, and cuproplatinum. sphalerite, and pyrite They form at the margins of 

chlorite grains in veins and vein-like structures (Gurov et al., 2015). These zones of 

alteration are similar to observations on East Clearwater made in this paper (Figure 17). 

The main alteration differences are K-feldspar, epidote, garnet, and elemental veins have 
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not been observed at East Clearwater and secondary millerite, vaesite-pyrite, and galena 

have.  

2.5.6 The significance of millerite and vaesite-pyrite 

An impactor that is partially incorporated into the melt would influence hydrothermal 

mineralization, especially with regards to metal oxides and sulfides. Geochemical 

evidence of an impactor at West Clearwater has not been observed. At East Clearwater, 

8% of the melt is impactor derived and nickel is enriched by ~115% according to mixing 

models using the target rocks and an ordinary chondrite (Grieve et al., 1981). No such 

nickel enrichment has been observed at West Clearwater (Phinney et al., 1978; Grieve et 

al., 1981). At Boltysh impact crater, pyrrhotite spheres are present in glassy melt rocks 

lower in the stratigraphic column, although none are present in the upper impact melt 

rock unit (Gurov et al., 2015). It is supposed that during the alteration of the upper impact 

melt rock, pyrrhotite was dissolved into the hydrothermal medium and was a primary 

source for the secondary elemental metal veins (Gurov et al., 2015).  From observations 

made in this paper, the early availability of nickel and other siderophiles likely provided 

the nickel to form secondary millerite and vaesite-pyrite.  

2.5.7 Conclusions 

The East Clearwater hydrothermal system in the impact melt rocks and melt-bearing 

breccias transitions from zeolite-smectite assemblages to chlorite-dominant assemblages 

with depth. The pH evolution in impact-generated hydrothermal systems in crystalline 

targets is similar to magmatic-driven hydrothermal systems in granitic rocks. Given an 

impact occurs in a water-rich (i.e., non-arid) environment to form a hydrothermal system, 

the style of alteration will not only vary dependent on target lithologies (i.e., crystalline, 

sedimentary, mixed target), but also due to on paleogeographic setting (i.e., coastal, 

shallow marine, intracontinental). The impact-generated hydrothermal system of East 

Clearwater contains millerite and vaesite-pyrite due to the percentage of impactor 

imparted into the melt. Given ideal impact velocities do not completely vapourize an 

impactor, alteration products, especially with regards to metals, can ultimately influence 

secondary mineralization. 
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Chapter 3  

3 Conclusions 
This paper is the first to explore alteration assemblages at East Clearwater and provide 

insight into the nature of the East Clearwater hydrothermal system. Two zones of 

alteration assemblages are noted. The first is defined by smectites (i.e., saponite) and 

zeolites (i.e., heulandite-Ca, clinoptilolite-Ca). The second is defined by chlorite and 

radial quartz.  

Zone 1 contains centimetre- to decimetre- wide vugs. The nickel-iron sulfates millerite 

and vaesite-pyrite are present in just about every vug in Zone 1. In upper Zone 1, radial 

clinoptilolite-Ca nucleated off Ni-Fe sulfides as they were oxidized. The radial growth of 

tabular clinoptilolite-Ca encased red oxidation haloes of hematite. Heulandite-Ca, quartz 

and smectites formed botryoidal features beyond the radial clinoptilolite-Ca. Pb-Zn-Cu-

Fe sulfides of galena, sphalerite, chalcopyrite, and pyrite were precipitated along the 

radial clinoptilolite-Ca and with botryoidal heulandite-Ca. These vugs are filled 75–

100%. In lower Zone 1, millerite exists as centemetre-long needles. The majority of the 

Ni-Fe sulfides are not encased. A thin layer of zeolites rim the vugs. These vugs are only 

5–15% filled. Calcite is generally found in other, much smaller vugs throughout Zone 1. 

At the top of the impact melt-bearing breccias, chlorite is present in altered glass beads, 

occasionally surrounding orthoclase, and as a pervasive chloritization is present in the 

silicate melt of the first, giving the matrix a dark green colour (Figure 6). 

Zone 2 contains centemetre-wide vugs filled 70–100% by chlorite, radial quartz, calcite, 

sulfides such as galena, pyrite, and sphalerite, and cassiterite. Calcite-dominated vugs are 

centimetre- to decimetre- wide and 100% filled by Mn- and Fe- zoned calcite, with minor 

quartz, and sparse sulfides of galena, pyrite, and sphalerite. A pervasive chloritization of 

the silicate melt gives the matrix a dark green colour. 

The understanding of the hydrothermal minerology at East Clearwater can be improved 

upon from beyond this paper. Utilizing clay separation techniques to form individual clay 

powders that are analyzed by XRD is crucial to fully understanding the alteration 
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assemblages. Stable isotopic work of the clays and zeolites can provide insights into the 

water source they precipitated from and the temperature of formation.  

The similar diameter Boltysh crater impacted into similar crystalline target lithologies as 

East Clearwater. The Boltysh impact was in an intra-continental setting; whereas, East 

Clearwater was costal to shallow marine. However, many similarities exist within the 

hydrothermal systems of both craters, especially with regards to their assemblages, with 

zones dominated by smectites and zeolites at the top, and others dominated by chlorite 

lower down in the column.  

The paleogeographic setting, composition of the melt (i.e., the mixing of target 

lithologies and impactor), and the size of the crater (i.e., longevity of the system) greatly 

influences the hydrothermal mineralization formed at impact craters. The Clearwater 

Complex provides an excellent example of the effect of paleogeographic settings on 

alteration style with a controlled setting. The target lithologies of both East and West 

Clearwater are virtually the same. East Clearwater was dominantly affected by seawater; 

whereas, West Clearwater was dominantly affected by meteoric water. The other notable 

differences are that West Clearwater is ~10 km larger in diameter than East Clearwater, 

and a percentage of the East Clearwater impactor mixed with the melt; whereas, the 

composition of the meteorite at West Clearwater is unknown. In addition to enhancing 

the study of East Clearwater hydrothermal mineralization, an in-depth characterization of 

the hydrothermal alteration at West Clearwater will provide further insights into 

paleogeological differences. 
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