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Abstract 

Speech identification in the presence of background noise is difficult for children with auditory processing 

disorder and adults with sensorineural hearing loss. The listening difficulty arises from deficits in their 

temporal, spectral, binaural, and/ or cognitive processing. Given the lack of improvement with conventional 

assistive hearing devices, alternate speech processing methodologies, which exaggerate the temporal and 

spectral cues, need to be developed to improve speech intelligibility for individuals who have poor temporal 

and/ or spectral processing.  

This thesis first, reports results from a series of experiments on subjective and objective assessments of two 

different schemes of envelope enhancement algorithms (dynamic and static) across different types and 

levels of background noise. The subjective results revealed that the speech intelligibility scores are lower 

for children with auditory processing disorder compared to children with normal hearing. The subjective 

results also demonstrated that enhancing the temporal envelope is much more beneficial for children with 

auditory processing disorder when compared to children with normal hearing. Comprehensive objective 

assessments, which were conducted by developing novel intrusive and non-intrusive objective speech 

intelligibility predictors, demonstrated that both dynamic and static envelope enhancement algorithms are 

only effective in improving speech intelligibility under certain processing conditions that depended on the 

type, level and location of the background noise. Furthermore, the application of noise reduction algorithms 

prior to the envelope enhancement techniques increased their range of effectiveness. Second, using the 

proposed objective predictors, the effectiveness of a companding architecture (which enhances both 

temporal and spectral cues) is shown to be better than temporal envelope enhancement alone, across 

different noisy environments in the presence of a noise reduction algorithm.  

Third, the application of the binaural dichotic processing is evaluated in stationary and non-stationary 

background noise environments through subjective experiments. The subjective results demonstrated that 

the dichotic processing is mainly effective in improving speech intelligibility for stationary background 

noise at poor signal to noise ratios. It is also shown that the incorporation of a noise reduction algorithm as 

a front-end to the dichotic hearing processing is inferior to increase its range of effectiveness regardless of 

the type and level of the background noise.   

KEYWORDS: Auditory processing disorder, Sensorineural hearing loss, Dynamic envelope enhancement, 

Static envelope enhancement, Dichotic hearing processing, Hearing aid speech perception index, 

Modulation spectrum area. 
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Chapter 1  

1 Introduction 

1.1 Overview 

Hearing assessment typically involves the measurement of hearing sensitivity in different frequency regions 

resulting in an audiogram [1]. While the audiogram is the front-line measurement of hearing loss, it does 

not adequately describe the functioning of the impaired auditory system. In particular, it does not capture 

the auditory processing capabilities such as auditory discrimination, auditory pattern recognition, auditory 

performance in noisy and reverberant environments, and the performance in the presence of competing 

signals [2].  Usually, researchers in the auditory signal processing field are interested in developing 

algorithms that modify speech to provide benefits in specific situations, for example, to increase speech 

intelligibility in noisy background environments [3]. Speech intelligibility indicates the ability of an 

individual to comprehend a speech signal and is a useful measure of auditory processing capabilities of 

hearing impaired listeners. Speech intelligibility can be assessed at the sentence, word or phoneme level, 

and is typically evaluated using subjective experiments. However, subjective measurements are costly and 

time consuming processes as they require individuals to participate in an experiment [4]. This thesis 

examines alternative signal processing algorithms that aim to enhance temporal, spectral and/or binaural 

features, and their performance in the presence of different types and levels of background noise is 

evaluated through subjective and objective speech intelligibility measurements.  

In this chapter, human hearing and different types of hearing disorders are introduced, as well as brief 

overview of conventional hearing aids and cochlear implants. Development platforms for implementing 

signal processing algorithms for assistive hearing devices are introduced next. After that, the problem 

statement, which highlights the limitations of the conventional hearing aid technologies, are discussed 

followed by an alternative class of signal processing algorithms. Finally, the objectives and the outline of 

the thesis are presented. 

1.2 Introduction and background 

1.2.1 Human hearing 

The sense of hearing involves the perception of sound through our auditory system. The human auditory 

system consists of the outer, middle, and inner ear as well as the central auditory nervous system. The basic 
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anatomy of the human ear is illustrated in Figure 1-1 [5]. As can be seen from Figure 1-1, the outer ear 

consists of the pinna and the external auditory canal, which leads to the tympanic membrane. The middle 

ear consists of the tympanic membrane and three middle ear bones, the malleus, incus and stapes classified 

as ossicles. The inner ear deals with neural processing, and has three parts, the semicircular canals, the 

vestibule and the cochlea. The cochlea is the organ where vibrations are converted to electrical signals that 

are processed by the central auditory nervous system [6]. 

 

Figure 1-1: Anatomy of the human ear [6] 

1.2.2 Hearing disorders 

Over the last 20 years, the proportion of people suffering from hearing loss has been increasing steadily 

[1]. In general, hearing loss can be divided into two categories: conductive and sensorineural. Conductive 

hearing loss is a disorder caused by a problem with the conduction of pressure vibrations from the outer ear 

to the cochlea. Problems with this type of hearing disorder can occur at several places such as blocking the 

ear canal or fluid building up in the middle ear which can disrupt the normal mechanisms of the ossicles 

[6].  Conductive hearing loss is improved by performing surgery to remove fluids or applying bone 

anchored hearing aids that can allow sound to be conducted through the bone instead of the middle ear [1]. 

Sensorineural hearing loss (SNHL) is a disorder that reduces hearing sensitivity when the sensory or neural 

cells or their connections within the cochlea are absent or not functioning well. This type of hearing loss is 

caused by noise exposure, ototoxic drugs, and aging. Hearing aids with nonlinear compression feature can 
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provide benefits for patients with sensorineural hearing loss, especially for those who have loudness 

recruitment[1].  

Within the broader category of sensorineural hearing loss lies the Auditory Processing Disorder (APD). 

Individuals with APD may have deficits in temporal, spectral, or binaural processing [7]. In general, 

individuals with APD  have disruptions in their  auditory nerve and central auditory pathways that  

significantly degrade their auditory processing capabilities [8]. It is estimated that about 3-5 % of children 

suffer from APD, which directly impacts their ability to learn from what is heard and to communicate with 

others [9].  Auditory processing deficits are also prevalent in adults, particularly in adults over 60 [9]. 

In addition, the Auditory Neuropathy Spectrum Disorder (ANSD) can be considered as a subset of the 

broader APD category. People suffering from ANSD may have near-normal cochlear function, but not well-

functioning auditory nerves. This type of hearing disorder affects the timing of neural activity in the 

auditory pathway and disrupts temporal aspects of auditory perception. ANSD can result from damage to 

the inner hair cells, or the synapse between the inner hair cells and/or the auditory nerve [10],[11]. However, 

the exact causes and treatment methods are not well understood. It is estimated that ANSD patients 

constitute approximately 10% of the hearing impaired population [12].  

Temporal processing which consists of modulation thresholds, gap detection , and frequency discrimination 

are areas of significant impairment for individuals with ANSD [10]. The poor speech identification in 

individuals with ANSD is mainly due to reduced ability to follow the envelope (amplitude modulations) of 

the speech signal. Conventional hearing aids do not enhance the temporal envelope of the signal to 

compensate for temporal processing deficits in individuals with ANSD. In addition, conventional hearing 

aids reduce the amplitude fluctuations when a nonlinear amplitude compression feature is used, and this 

may result in the deterioration of performance in hearing sensitivity for people who have ANSD [10]. 

Hence, when designing assistive hearing devices to increase speech intelligibility for these patients, 

techniques to bring the temporal and spectral characteristics of speech within their thresholds should be 

given the priority.   

1.2.3 Conventional hearing aid technology 

Figure 1-2 illustrates processing stages of a high-end hearing aid. At the beginning, the acoustic signal is 

captured by microphones, then the microphone signals are processed into a single signal with the directional 

microphone unit [13]. The resulting mono-signal is further processed separately in different frequency 
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ranges. Generally, it requires an analysis filterbank and the corresponding signal synthesis filterbank. The 

main frequency-dependent processing steps are noise reduction and signal amplification combined with the 

dynamic compression processing blocks. These processing blocks as well as the directional microphone 

unit are discussed briefly in the following subsections.    

1.2.3.1 Amplitude compression  

The major role of compression technology is to reduce the dynamic range of signals in the environment so 

that all signals of interest can fit within the restricted dynamic range of a hearing-impaired person. This 

means that intense sounds must be amplified less than weak sounds. A compression technology uses a 

compressor, which is an algorithm that automatically reduces its gain as the signal level somewhere within 

the hearing aid rises. It should be mentioned that this type of technology is beneficial for patients who are 

suffering from sensorineural hearing loss as they have restricted dynamic range of hearing [1].   

1.2.3.2 Directional microphone technology 

This technology is effective when there is spatial separation of a signal of interest (speech), and unwanted 

signal (noise). A typical directional processing system in current generation hearing aids is constructed 

either with two ports on a single microphone or with multiple independent microphones, whose outputs are 

appropriately delayed or mixed electronically. This procedure reduces sound originating from behind the 

hearing aid wearer while amplifying sounds coming from the front [1].  The major disadvantage of this 

technology is that it is ineffective when desired and undesired sounds are spatially collocated.  

1.2.3.3 Noise reduction algorithm 

Adaptive noise reduction technology aims to reduce the amplification of noise compared to speech. This 

can be achieved by determining the noise segments which are significantly intense compared to speech and 

applying less amplification to these segments. In hearing aids that apply this technology, speech is detected, 

followed by estimations of the speech and noise levels at some point in time and across frequency to 

determine the appropriate gain reduction for each frequency region [1]. There are several techniques to 

perform adaptive noise reduction. However, most systems use either Wiener filtering or spectral subtraction 

[1]. These two techniques can decrease the gain in each frequency region where the Signal to Noise Ratio 

(SNR) is deteriorated. It should be noted that these types of techniques can enhance the overall SNR, but 

they cannot modify the SNR in any narrow frequency band. Furthermore, since background noise can 

change its characteristics within a short period of time, both Wiener filter and spectral subtraction do not 
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register any information about new noise and are trying to remove a noise that is no longer present. Hence, 

these techniques are most suitable for stationary noises such as machinery and air conditioning noise.     

 

Figure 1-2: Processing stages of a high-end hearing aid [13] 

1.3 Cochlear implants 

Cochlear implants (CIs) are devices that bypass the inner ear and provide direct electrical stimulation to the 

auditory nerve. They involve a surgical implantation of an array of electrodes into the cochlea; hence, they 

are invasive and expensive. Cochlear implantation is routinely performed on patients with sensorineural 

losses where the cochlea is the primary section of dysfunction [14]. 

CIs for individuals with ANSD is a debatable issue. If the site of the dysfunction is the cochlea, then 

bypassing the inner hair cells with direct stimulation of the vestibulocochlear nerve should provide a good 

benefit in terms of the speech perception. However, if the pathological condition lies in the nerve itself, the 

CI might not be beneficial in improving the speech perception in patients with ANSD.  

Despite the potential benefits of CIs, drawbacks also exist. These drawbacks include high cost, standard 

surgical risks, cochlear damage resulting from insertion of the electrode array (thus destroying residual 

hearing) [15] and no guarantee of oral speech communication skills development [14].   
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Furthermore, there is a considerable variability in the outcomes of children with ANSD receiving cochlear 

implants [16].  Some studies have shown considerable speech perception improvement with cochlear 

implantation, while others have shown no improvement. Therefore, as concluded  in [16], hearing aid trials 

should be given to all the cases diagnosed with ANSD and those who received intermediate benefit from 

hearing aids should be considered for CIs. 

1.4 Development platforms 

Research and development in the field of speech and audio signal processing consists of three development 

stages: offline development, real-time development, and system integration for the fully developed 

algorithm [3]. In general, a new signal processing algorithm is firstly developed for offline processing, 

which consists of the evaluation of the algorithm performance by using an offline development database 

(e.g. speech database). For real-time development, the algorithm is evaluated by considering real-time 

issues (e.g. short time latency) before implementing on an embedded system. Finally, the algorithm is 

integrated and realized as a prototype [3].  It is pertinent to point out that in most cases, only the first two 

stages of algorithm development is conducted in academic institutions [3].  

Both offline and real-time processing require specific development platforms. The platform design should 

specify the hardware and software as well as the rules that describe how these two should fit together. In 

existing offline development platforms, high-level programming languages such as MATLAB, Simulink, 

and C/C++ are used on a personal computer (PC) platform [3]. It should be noted that by considering today’s 

computing power, any complex signal processing algorithm can be easily developed for offline processing.  

On the other hand, the real-time development platforms are much more complex compared to offline 

development platforms. The existing real-time platforms typically consist of at least signal input/output 

(I/O) devices, analog-to-digital converter (ADC), central processing unit (CPU), random-access-memory 

(RAM), and a digital-to-analog-converter (DAC). Furthermore, the real-time platforms need a faster 

processor and an operating system conducive for real-time processing. In the next chapter of the thesis, a 

literature review of the existing platforms for offline and online processing will be examined and discussed. 

1.5 Problem statement 

Although several research works have been proposed toward assistive hearing devices to improve 

communication for the affected people, today’s commercial hearing aids have some restrictions in 

providing benefits for hearing impaired listeners. For example, Wide Dynamic Range Compression 
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(WDRC) algorithm, which is available in today’s commercial hearing aids, can deteriorate the speech 

intelligibility of an individual with SNHL in noisy environments [17]. Furthermore, individuals with SNHL, 

who have a dead zone in a high-frequency range, cannot hear the sound components in the dead zone region 

at any gain values of the WDRC [17].  In addition, conventional hearing aids and assistive listening devices 

offer little benefit to listeners with auditory processing deficits. For example, Mathai and Appu [18] 

investigated the effect of four different hearing aid settings on speech perception of seventeen adults with 

late onset ANSD. Results showed no significant differences between unaided and aided performance, 

indicating the lack of benefit from conventional amplification.   Walker et al. [19] compared the speech 

perception capabilities of children with ANSD and children with SNHL, and found that the ANSD children 

demonstrated inferior speech recognition in a noisy environment even with the provision of a hearing aid. 

In a similar vein, Kuk [20] reported data on hearing aid benefits collected from 14 children diagnosed with 

APD, which showed that some but not all participants demonstrated improved performance with hearing 

aids. Researchers have also investigated the effectiveness of remote microphone (RM) assistive listening 

devices for APD and ANSD populations ([21] and [22]). A recent systematic review by Reynolds et al. [23] 

found moderate benefits from RM systems for children with APD, although the practicality of using an RM 

in a number of ecologically valid situations has been questioned by Kuk [20].  Therefore, alternative signal 

processing strategies for APD/ANSD and SNHL individuals need to be developed and validated. 

1.6 Thesis objectives 

This thesis addresses the abovementioned problem through the development of alternative signal processing 

algorithms and comprehensively evaluating their performance across a variety of environmental conditions.  

Three classes of algorithms were investigated: envelope enhancement, companding, and dichotic 

processing. 

Envelope enhancement (EE) algorithms, which attempt to mitigate temporal modulation processing 

deficiencies by enhancing the temporal peaks and valleys of a speech signal, form the initial foci of this 

thesis, as evidence exists that such a strategy can indeed be effective for individuals with ANSD and SNHL 

[24], [10], [25], [26], and [27].  The first objective is to evaluate the performance of two different schemes 

of EE algorithms subjectively with children with APD at sentence-level speech perception. For this purpose, 

Hearing in Noise Test (HINT) database [28] was used as a clean speech, where sets of phonetically balanced 

sentences are presented at different processing conditions. The speech intelligibility in noise is measured 

using custom software developed in our laboratory.  



 

 

8 

 

 The second objective is to benchmark the effectiveness of the EE algorithms across a number of noisy 

conditions. However, subjective testing of the EE algorithms at different types and levels of background 

noise can become an onerous task. Therefore, objective instrumental measures that employ computational 

models to predict the speech quality and intelligibility are attractive [4], [29], [30], [31]. A good objective 

metric that correlates well with subjective data can be used as a surrogate for benchmarking the performance 

of signal processing algorithms and allows for a more comprehensive assessment of the signal processing 

algorithms across a number of noise types and levels. It should be noted that in this thesis, the 

comprehensive assessments of the EE algorithms are conducted by developing new intrusive and non-

intrusive objective instrumental predictors of speech intelligibility.  Furthermore, the application of noise 

reduction algorithms prior to the EE algorithms is investigated at different levels and types of background 

noise in terms of speech intelligibility. 

The third objective is to benchmark the performance of companding algorithms.  Companding algorithms 

enhance both the spectral and temporal contrast in such a way that the compression is prevented from 

degrading spectral contrast in regions close to a strong spectral peak while allowing the benefits of improved 

audibility in regions distant from the spectral peaks [32], [33], and [34]. Previous research demonstrated 

that hearing aids incorporating a companding strategy, which enhances spectral and temporal contrast, may 

be beneficial to individuals with ANSD [34].   In this thesis, the proposed objective intelligibility predictors 

are used to comprehensively evaluate the performance of companding algorithm in different noisy 

environments, in the presence and absence of a noise reduction algorithm. 

Finally, there is evidence that dichotic signal processing algorithm, which uses a pair of comb filters with 

complementary pass bands and stop bands, can reduce the spectral masking thresholds in individuals with 

SNHL and improve frequency selectivity of this group of hearing impaired listeners [35], [36], [37], [38] 

and [17]. The rationale behind dichotic processing is that the spectral components that are likely to mask 

or get masked by each other are presented to opposite ears. Hence, the spectral masking may be reduced 

[38].  Thus, the fourth objective is to implement a new binaural dichotic processing scheme and investigate 

its speech intelligibility performance with individuals with SNHL across different types and levels of 

background noise. Furthermore, the effectiveness of incorporating a noise reduction algorithm as a front-

end to the application of binaural dichotic processing is evaluated across different processing conditions.  
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1.7 Thesis outline 

The thesis is organized as follows. In Chapter 2, current envelope enhancement, companding and binaural 

dichotic processing algorithms are described as well as the published evidence. In addition, two objective 

metrics of speech intelligibility are examined and presented. Then, a literature review of portable platforms 

for hearing aid applications is presented, followed by a description of the open Master Hearing Aid 

(openMHA) portable platform. Finally, a single-channel-noise reduction plugin of the openMHA platform 

and the log Minimum-Mean-Square-Error (logMMSE) noise reduction (NR), are described and explained. 

In Chapter 3, the development of the dynamic EE algorithm for RM applications is described. In addition, 

the subjective data collection procedure for children with suspected APD is described, and the results are 

analyzed for statistical significance. Furthermore, an optimal objective speech intelligibility metric is 

derived to predict the perceptual impact of the dynamic EE algorithm followed by the objective assessment 

of the dynamic EE in the presence of different types and levels of background noise. Finally, the 

effectiveness of incorporating noise reduction algorithms (viz. logMMSE and MHA) as a front-end to the 

dynamic EE is discussed. 

  In Chapter 4, the performance of the static EE for hearing aid applications will be evaluated subjectively 

for children with APD, followed by a statistical analysis of the subjective scores. In addition, the optimal 

objective predictor will be derived in a manner like Chapter 3, which is utilized to predict the subjective 

scores across different levels of non-stationary background noise experiment, followed by the effectiveness 

of the application of (logMMSE and MHA) noise reductions as a front-end to the static EE. 

 In Chapter 5, the robustness of the individual objective predictors, which are derived in Chapter 3 and 4, 

is investigated followed by the derivation of a generalized intrusive and non-intrusive objective models. 

Then, the effectiveness of companding architecture is evaluated by utilizing the non-intrusive generalized 

objective predictor, followed by the effectiveness of incorporating a NR algorithm (MHA) as a front-end 

to the companding architecture.  

In Chapter 6, the performance of dichotic processing is investigated subjectively with hearing impaired 

(HI) listeners with SNHL. Furthermore, the effectiveness of the same binaural dichotic processing 

algorithm is evaluated by incorporating an additional noise reduction algorithm (MHA) as a front-end to 

the application of dichotic processing. 
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 Chapter 7 summarizes the findings of this thesis, highlights the contributions, and provides 

recommendations for future work, which consists of techniques and suggestions for practical real-time 

implementation of these signal processing algorithms as signal processing plugins of openMHA portable 

platform as well as proposing methods for customizing the algorithm parameters. 
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Chapter 2  

2  Literature Review 

This chapter discusses various speech enhancement algorithms including the dynamic EE, deepen band 

modulation (DBM) technique, companding architecture, and binaural dichotic processing as well as their 

application to improve speech recognition in people with ANSD and SNHL.  Furthermore, a literature 

review of existing portable platforms for hearing aid applications is presented, followed by an introduction 

of the openMHA portable platform.  Finally, two objective metric indices of speech intelligibility are 

examined followed by the description of the logMMSE and MHA NR algorithms. 

2.1 Envelope enhancement algorithm 

Most of the work completed in the field of ANSD speech enhancement has been related to EE [10],  [24],  

and [25]. These studies have shown an increase in word identification scores when the envelope of the 

speech was enhanced, prior to the contamination by background noise.   

2.1.1 Principles 

As mentioned in the previous chapter, studies indicate that there are three major psychoacoustic 

impairments that likely contribute the most to degraded speech perception in people with ANSD: temporal 

modulation thresholds, gap detection thresholds and frequency discrimination. The primary focus of the EE 

concentrates on compensating for the poor modulation detection thresholds by reinforcing temporal speech 

cues. Slow temporal envelope modulations in the 4-10 Hz range have been shown to provide useful cues 

for speech perception [4]. Hence, enhancing the speech envelope over these slow modulation rates can 

exaggerate the useful cues. An example of an envelope-enhanced signal is shown in Figure 2-1. 
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Figure 2-1: Comparison of speech signals with and without EE for the speech sample, “The 

car is going too fast”. 

The procedure used to expand the speech envelope is described in greater detail in Chapter 3. It is pertinent 

to point out that in this thesis,  the EE technique that was adopted from Narne et al. [25] is termed as 

‘dynamic EE’, as the amount of envelope enhancement is not fixed and varies with respect to the minimum 

and instantaneous values of the envelope amplitude. 

2.1.2 Published results 

The performance of the dynamic EE algorithm was evaluated with ANSD subjects by Narne and Vanaja in 

[10], [24], and [25] (for various conditions), and the results from these studies are discussed next in detail. 

The effect of envelope enhancement on speech perception in individuals with auditory neuropathy was 

investigated in [24]. More specifically, the objectives were to investigate the ability of individuals with 

ANSD to identify consonant-vowel (CV) stimuli for different modulation enhancement bandwidths. In 

other words, an ideal cut-off frequency for temporal envelope extraction (and thus enhancement) was being 

sought after. Eight people with ANSD were tested. The results showed that speech identification improved 

with envelope enhancement. Furthermore, the greatest improvement was found for an enhancement 

bandwidth of 3-30 Hz.  
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Perception of envelope-enhanced speech in the presence of noise by individuals with auditory neuropathy 

was investigated in [25]. Considering people with ANSD have particularly poor speech discrimination in 

noise, the motivations for this study were clear. Fifteen people with ANSD were tested and significant 

improvements due to envelope enhancement were found in quiet and +10 dB SNR for all subjects. Four 

subjects with a less severe case of ANSD, improvements were also significant at +5 and 0 dB SNR.   

The perception of speech with envelope enhancement in individuals with ANSD and simulated loss of 

temporal modulation processing was studied in [10]. Results from two experiments were reported in [10]. 

In Experiment I, an ANSD simulator was used to test the effectiveness of the envelope enhancement on 12 

normal hearing listeners. The parameters of the ANSD simulator were adjusted to simulate mild, moderate, 

severe and profound degrees of neuropathy. The test stimuli consisted of bi-syllabic words in Kannada (a 

language spoken in a southern state of India). Speech scores were calculated by counting the number of 

words correctly repeated and converting to a percentage of total words presented.  Results revealed a 

significant main effect of degree of ANSD and a significant interaction between the degree of ANSD and 

stimuli (processed vs. unprocessed) and a significant difference between mean identification scores across 

all degrees of simulation. 

In the second experiment, 12 people with ANSD and 12 normal hearing listeners were recruited to compare 

the results of envelope-enhanced speech to unprocessed speech. Word recognition scores were obtained 

using the same test stimuli from Experiment I. Statistical analysis of the recognition data showed a 

significant improvement in speech scores for envelope-enhanced stimuli with ANSD subjects, but no 

significant differences were found with normal hearing subjects. 

2.1.3 Significance to Thesis 

EE has been shown to benefit speech identification for people with ANSD. However, previous studies only 

explored the assessment of EE algorithms after application to short segments of speech (consonants, 

vowels, and words). In addition, a comprehensive assessment of the impact of background noise on the 

performance of EE is lacking. To elaborate on this further, consider Figure 2-2 which represents a typical 

RM setup where the RM is placed close to the source and the listener is wearing the hearing aid, which is 

connected wirelessly to the RM. Depending on where the EE algorithm is implemented (either in the RM 

or the hearing aid), background noise can add to the desired signal before and after the EE algorithm and 

can potentially create a differential impact. In previous studies, the background noise was only added after 

the speech signal is enhanced and ready to be transferred to a listener. In addition to the noise location, the 
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impact of different noise types (stationary vs. non-stationary) has not been previously investigated. Finally, 

all the previous research work only considered the subjective evaluation of the EE algorithm. However, as 

mentioned in the previous chapter, benchmarking the EE algorithm across a variety noisy conditions can 

become a costly and time-consuming procedure. Therefore, to make further contribution to the field in this 

research area, this thesis applies EE to sentence-level speech perception tasks and objectively benchmarks 

the EE algorithm across different types and levels of the background noise. A good objective metric that 

correlates well with subjective data is proposed as a surrogate for benchmarking EE algorithm performance 

across a number of noise types and SNRs. To the best of our knowledge, this thesis is the first study 

conducted to show that the benefit of EE in children with suspected APD for RM applications.  

Figure 2-2: Block diagram of a typical assistive listening device setup incorporating the EE 

strategy. 

2.2 Deepen Band Modulation (DBM) 

The second EE strategy is the DBM technique. The effects of temporal envelope enhancement using the 

DBM technique on speech perception  in quiet and in the presence of background noise were evaluated 

with individuals with ANSD and SNHL with promising results in [26] and [27]. 

2.2.1 Principles 

DBM technique is another technique of envelope enhancement, which was recently evaluated by Shetty 

and Kooknoor [27] using an algorithm adopted from Nagarajan et al. [39]. This EE methodology was 

applied to speech stimuli using the “Deepen band modulation” feature in the Praat software (version 6.0.25, 

Institute of Phonetic Science, University of Amsterdam, Netherlands).  In this thesis, this EE technique is 
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labeled as ‘static EE’ since it applies a fixed modulation boost over a restricted acoustic frequency range. 

An example of deepen band modulation signal is shown in Figure 2-3. 

 

Figure 2-3: Comparison of speech signals with and without DBM technique for the speech sample, 

“The car is going too fast”. 

2.2.2  Published results 

The effect of DBM technique on speech identification was evaluated in four groups of 10 people, young 

and old normal hearing, young and old hearing impaired listeners with mild to moderate SNHL in [26]. The 

results of this study generally showed that consonant identification scores in DBM conditions were 

significantly higher compared to unprocessed conditions, in both quiet and at 5 dB and 10 dB SNRs with 

multi-talker babble as the background noise, regardless of participant groups.   In addition, the statistical 

analysis of their results revealed that younger adults achieved better consonant identification scores 

compared to older adults in both normal hearing and hearing-impaired participant groups irrespective of 

the processing condition and SNRs. 

The goal of the research study conducted in [27] was to investigate the effect of DBM on phrase perception 

in quiet and stationary noise upon individuals with ANSD and SNHL. Twenty normal hearing listeners, 20 

hearing impaired listeners with moderate SNHL, and 20 hearing impaired listeners with ANSD participated 

in the study. Four lists of phrases were used that each list comprised 10 phrases. Phrase recognition scores 

were evaluated in quiet and in the presence of stationary background noise at -1, -3, and -5 dB SNRs. These 
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experimental results in general revealed that in each participants’ group, the phrase perception score was 

better in DBM condition compared to unprocessed condition regardless of the SNR value. Furthermore, the 

statistical analysis of their results showed that phrase perception scores in quiet processing condition were 

not statistically different between DBM and unprocessed condition irrespective of the participant groups. 

However, the DBM phrase perception scores were statistically better compared to unprocessed condition 

at SNRs of -1 dB, -3 dB, and -5 dB for both SNHL and ANSD hearing impaired listeners. 

2.2.3 Significance to Thesis 

DBM technique has been shown to benefit speech perception for people with ANSD and SNHL. However, 

to date it has only been evaluated at phrase level and not sentence level for ANSD and SNHL subjects. In 

addition, in previous studies, the background noise was only added after the speech signal is enhanced and 

ready to be transferred to a listener. In this thesis, the DBM technique (static EE) is implemented in 

MATLAB for hearing aid applications, and its impact on speech intelligibility by children with APD is 

evaluated. Figure 2-4 represents a block diagram of the EE implementation for a typical hearing aid 

application, where the microphone of the hearing aid can pick up both speech and noise. In such a system, 

a NR block is potentially beneficial to separate speech from noise before enhancing the envelope of the 

speech signal, due to the fact that noise can reduce the modulation depth and create spurious modulations 

to the speech signal. In addition, the impact of applying different noise reduction algorithms as a front-end 

to the EE algorithm has not been previously investigated. Finally, a good objective metric that correlates 

well with subjective data is proposed as a surrogate for benchmarking static EE technique performance 

across a number of noise types and SNRs.  To the best of our knowledge, this thesis is the first study 

conducted to show that there is a benefit of DBM technique to children with APD for hearing aid 

applications, as shown in Chapter 4. 

 

Figure 2-4: Block diagram for implementing of EE in hearing aid application. 
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2.3 Companding architecture 

Poor frequency discrimination at lower frequencies (< 2000 Hz) is a common characteristic of people with 

ANSD [40]. Companding is a process that emphasizes the spectral peaks and valleys (as opposed to 

emphasizing the temporal peaks and valleys in EE) to aid with frequency discrimination. A research study 

conducted by Narne et al. [34] has evaluated the benefit of companding algorithm with ANSD subjects.   

2.3.1 Principles 

Turicchia and Sarpeshkar [32] proposed a companding architecture, which combines two-tone suppression 

– a non-linear phenomenon arising from complex interaction between outer hair cells of the inner ear and 

the basilar membrane – and dynamic gain control in order to increase the spectral contrast. By conducting 

such a strategy, a weak tone at one frequency is strongly amplified in such a way that is concurrently audible 

with a weakly amplified strong tone at another frequency. Hence, the asymmetric amplification due to 

compression degrades the spectral contrast, but when two-tone suppression strategies, which enhance 

contrast, are also simultaneously present, the compression is prevented from degrading spectral contrast in 

regions close to a strong spectral peak, while allowing the benefits of improved audibility in regions distant 

from the spectral peak [32].  Figure 2-5 compares the long-term averaged spectra of clean and companded 

speech signals. It can be seen from Figure 2-5 that companding does sharpen the spectral peaks. 

 

Figure 2-5: Effect of companding on the spectral peaks of the speech sample, “The car is going too 

fast”. 
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2.3.2 Published results 

Bhattacharya & Zeng [41] have examined the advantage of companding as a front-end noise suppression 

technique  in listeners with cochlear implants. Both normal-hearing (NH) listeners and CI users performed 

phoneme and sentence recognition tests in quiet and steady-state speech-shaped noise. They observed that 

CI users showed significant improvements in both phoneme and sentence perception in noise. In general, 

their experimental results reveled that companding improved speech perception scores by 10 – 20 % in 

steady-state background noise.  Recently, the effect of companding on speech perception in quiet and  

stationary background noise at different SNRs for individuals with ANSD and normal hearing  was 

evaluated [34]. Speech perception was evaluated in two different experiments. In the first experiment, 

speech recognition threshold in Noise (SRTN) was evaluated at the sentence level in background noise at 

different SNRs ranging from 20 dB to -10 dB. The results from their first experiment revealed that mean 

difference in SRTN between original and companded stimuli was significantly different in both participant 

groups. In addition, the difference in SRTN between companded and original stimuli was more for ANSD 

subject compared to normal hearing subjects. 

In their second experiment, consonant identification scores in quiet and at different SNRs, 15, 10, 5, and 0 

dB were investigated. Their experimental results from the second experiment showed that companding 

showed marginal improvement only at 0 dB SNR in NH listeners. Listeners with ANSD showed a 

significant reduction in consonant identification scores in noise compared to NH listeners. In addition, none 

of the listeners with ANSD could identify any consonant at 0 dB SNR. Furthermore, listeners with ANSD 

showed significant improvements in consonant identification in quiet and 15 dB SNR with companding 

compared to the original stimuli.    

2.3.3 Significance to Thesis 

Companding technique has been shown to benefit speech perception for people with ANSD. However, to 

date it has only been evaluated subjectively with ANSD subjects in the presence of stationary background 

noise for hearing aid applications (viz. the background noise is added before companding). Hence, this 

thesis investigates the companding technique in the following steps. First, the companding algorithm is 

developed on the iPad platform for non-real time processing. This development platform allows a clinician 

to quickly change the algorithm parameters to compensate the patient deficit in frequency selectivity task 

procedure. Second, the performance of the companding is evaluated by applying an optimal objective index. 

Third, as previous research has shown that the effectiveness of the companding algorithm reduces in the 
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presence of background noise [34], in this thesis, the effectiveness of a NR algorithm is evaluated  as a 

front-end to companding algorithm for different types and levels of  background noise. The objective 

evaluation of the companding algorithm for hearing aid application will be examined in Chapter 5.  

2.4 Dichotic processing 

Dichotic hearing may improve the frequency selectivity of individuals with HI. The bandwidths of the 

auditory filters of HI individuals are generally wider than those of NH persons, which is referred to as 

spectral smearing [42]. Hence, the frequency selectivity of HI individuals is relatively low.  Binaural 

dichotic processing reduces the spectral masking threshold and improve the frequency selectivity of HI 

individuals. However, the clinical benefits of dichotic hearing on speech intelligibility are currently debated 

as dichotic processing improved speech recognition in some studies  [38] and [42] , but other studies [43] 

and [44] showed that dichotic hearing did not improve speech recognition.  

2.4.1 Principles 

For dichotic processing, the input speech signal is processed by a pair of comb filters with fixed bandwidth 

or critical bandwidth for spectral splitting of the input speech signal. Then, the output signal of the odd 

filters is added together, and this summed signal is heard in the left ear. Furthermore, the output signals of 

the even filters were added together, and this summed signal is heard in the right ear at the same time. 

Figure 2-6 shows the block diagram of dichotic processing, wherein the input signal is processed by a 

complementary pair of comb filters. As mentioned before, splitting the speech into two complementary 

parts on the basis of frequency and presenting it binaurally may increase its intelligibility due to the fact 

that the spectral masking effect is reduced [42]. 

 

Figure 2-6: Spectral splitting for binaural dichotic processing. 
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2.4.2 Published results 

Research study conducted by Chaudhari and Pandey [42] investigated the effectiveness of binaural dichotic 

processing  on  speech perception for vowel-consonant-vowel (VCV) and consonant-vowel (CV) words 

with HI participants. They utilized an 18 channel filterbank to split the speech signal into odd and even 

bands. Results associated with their study showed that employing dichotic signal processing improved 

recognition scores and reduced the response time for both VCV and CV words.  

Murase et al. [43] reported that when they played recordings of VCV and CV syllables to four HI subjects 

in four different combinations (viz. diotic, diotic with amplitude -6 dB, dichotic with cross-over frequency 

0.8 kHz, and dichotic with cross-over frequency 1.6 kHz), and the ranking of speech recognition 

performance scores was dichotic (0.8 kHz) > diotic > diotic (-6 dB) > dichotic (1.6 kHz).  

Mani et al. [45] reported that when they conducted sentence recognition experiments with eight bilateral 

nucleus-24 implant users in three different processing conditions ( diotic, low-high dichotic, and odd-even 

dichotic), the ranking of speech recognition performance was diotic > odd-even dichotic>low-high dichotic.  

Kolte and Chaudhari [44] reported that when they conducted a recording of VCV words processed by an 

18-band dichotic comb filter to seven HI subjects, the speech perception score increased for four subjects, 

but decreased for three subjects. Furthermore, the response time decreased for five subjects but, increased 

for two subjects. 

 Kulkarni and Pandey [38] reported that when they played a recording of VCV words processed by an 18-

band  dichotic comb filters based on fixed and auditory bandwidth achieved improvement in consonant 

recognition and source direction identification. Furthermore, the improvement was significantly more for 

comb filters with auditory bandwidth when compared to ones with fixed bandwidth.   

Hwang et al. [17], reported that  the simultaneous application of nonlinear frequency compression and 

dichotic hearing on CVC recognition showed almost the same performance compared to the sole application 

of nonlinear frequency compression in a severe hearing loss simulation setting environment. 

More recently, the research study conducted by Ozmeral et al. [46] investigated the impact of dichotic 

listening with  NH participants and individuals with mild-to-moderate SNHL on VCV recognition test in 

the presence of asynchronous masker. The results associated with their study demonstrated that all 

participant groups achieved higher VCV recognition scores from dichotic presentation compared to diotic 
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processing. However, the beneficial of dichotic signal processing was much less for HI compared to NH 

participants. 

2.4.3 Significance to thesis 

Dichotic processing has been shown to benefit speech perception for people with SNHL. However, to date 

it has only been evaluated with a restricted set of algorithm parameters, stimuli, and processing conditions 

as discussed in the following paragraph. 

Some studies ( e.g. [38]) evaluated the performance of dichotic processing with SNHL patients only in quiet 

environments. The studies that had the background noise present, it was only added after the speech signal 

was processed dichotically, and limited types of background noise (e.g. white/pink noise) were considered. 

Hence, to make novel contributions to the field in this research area, this thesis evaluated an efficient 

implementation of the dichotic processing algorithm by using analysis and synthesis gammatone filterbanks 

in MATLAB.  The algorithm is evaluated subjectively with HI listeners with SNHL in the presence of 

different levels and types of background noise (viz. stationary versus non-stationary) for binaural hearing 

aid applications, where the background noise is added before dichotic processing. In addition, the 

incorporation of a NR algorithm as a front-end to dichotic processing is investigated.  The subjective 

assessment and evaluation of the dichotic processing algorithm for hearing aid applications is detailed in 

Chapter 6.  

2.5 Portable platforms 

Literature review indicates that portable hearing aid platforms could either be PC-based Digital Signal 

Processing (DSP) platforms or Smartphones. The former one can process high amount of audio data, 

whereas the later one is more portable, but harder to program and configure. However, in most cases, users 

can not modify the algorithm parameters during the use of the device. In the following, a summary of some 

of the more recent development platforms are examined. 

Magotra [47] and [48] developed a portable digital hearing aid platform which consists of a laboratory-

based PC system with a TMS320C30 DSP card and a wearable unit based on the TMS320C3X DSP chip. 

The proposed platform is a binaural hearing aid with two input microphone signals that can be sampled up 

to 32 kHz per channel and driving a stereo headphone at the output. Various algorithms such as frequency 

shaping, noise suppression, multi-band amplitude compression, and frequency dependent interaural time 
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delay were programmed in the platform and tested on hearing impaired subjects in the real world as well 

as in the laboratory. 

Researchers in [49] developed a high performance platform based on the Motorola DSP56309 signal 

processor. The device consists of a high quality external stereo ADCs and DACs with 20-bit word length. 

The user can only adjust the input/output gains by using controlled potentiometers. The algorithm 

parameters can be adjusted by a developed software suite that is accessed from an external PC. The authors 

indicated that such a platform can be helpful to evaluate new advanced hearing aid algorithms. The authors 

developed a more sophisticated system later on that worked based on a newer fixed-point DSP Motorola 

DSP56002. The new DSP platform was considered as embedded in a complete stand-alone system [50]. 

Authors in [51] developed a PC based platform for audio processing. The goal of the research work was to 

separate hardware and algorithm programming issues to allow the designer to develop algorithms without 

dealing with the hardware issues. The platform worked on a commercial PC (Pentium IV, 1800MHz) to 

implement an acoustic echo control unit that has two inputs and two output channels. The platform sampling 

rates were designed to be between 8 to 32 kHz range. 

The research reported in [52] aimed to compare a smartphone-based hearing aid application with 

commercial hearing aids based on the traditional hearing aid algorithms that were discussed earlier in this 

thesis. Objective testing revealed similar electroacoustic results between smartphone-based applications 

housed on the iPod and the traditional hearing aids. In addition, most of the smartphone-based applications 

provided the opportunity to the user to adjust volume, frequency-gain response or both.  

The authors in [53] developed a portable, user friendly, and flexible platform called the MHA platform. 

The platform employed a netbook computer with a custom audio interface to facilitate portability and 

flexibility. The platform offers a low-cost alternative to implementing hearing aid algorithms directly on 

hearing aids by replacing the digital hearing aid with a standard off-the-shelf PC. The platform provides an 

opportunity for evaluating complex hearing aid algorithms as it provides greater computational power. In 

addition, the platform allows modification of the algorithm parameters easily without the need for hardware 

modification. A dynamic range of over 90 dB for two and six input channel setups was reported. Recently, 

the same research group evaluated a high-performance platform in combination with the MHA framework 

to implement more processing algorithms such as binaural processing algorithms. The proposed platform 

allows researchers to run the MHA software framework on the integrated dual core ARM processor. New 

algorithms can be implemented as software/hardware plugins in the MHA software framework. In addition, 
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the proposed platform can support up to eight audio input channels to support multichannel audio 

processing which consists of high quality external stereo ADCs and DACs with 24-bit word length and a 

sample rate of from 8 to 96 kHz [54].  

2.5.1 Significance to thesis 

2.5.1.1 iPad platform 

It should be noted that the dynamic EE and companding architecture were implemented as iOS applications 

for an iPad platform. The Xcode development system was utilized as the Integrated Development 

Environment (IDE), which was found to be a highly productive environment for building applications for 

Mac, iPhone, and iPad [55]. In addition, Swift was used as the programming language to develop 

application for iOS due to its versatility and intuitiveness. Furthermore, the VDSP portion of the Accelerate 

Framework was used to implement the required digital signal processing functions (e.g. vector and matrix 

arithmetic, Fourier transform, convolution and correlation, and filtering) [55]. It is important to note that 

this phase of development was motivated for non-real-time applications, and also because our Centre, the 

National Centre for Audiology, has developed software to conduct the psychoacoustic tests (viz. temporal 

modulation, gap detection, and frequency discrimination) on the iPad platform. Accessibility to the 

algorithms through the psychoacoustic test system will allow a clinician to quickly gauge their 

effectiveness, in case of abnormal psychoacoustic test results. 

2.5.1.2 Hortech open MHA 

In February 2017, HorTech and Oldenburg University  published  the openMHA on GitHub under an open-

source license (AGPL3) [56]. OpenMHA is a development and evaluation software platform that can 

execute hearing aid signal processing in real-time on standard computing hardware with a low latency 

between input and output sound [56]. As illustrated in Figure 2-7 , the openMHA consists of the following 

major components as discussed below [56].    

1) The openMHA command line application (MHA) 

It acts as a plugin host, which can load signal processing plugins as well as audio input-output modules 

(IO). 

2) Signal processing plugins  
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It provides the audio signal processing capabilities and audio signal handling. In general, one openMHA 

plugin implements one specific algorithm. A complete virtual hearing aid signal processing can be achieved 

by a combination of several open MHA plugins. 

3) Audio input-output modules (IO) 

It can provide the proper interface for different applications of the openMHA. For real-time signal 

processing, the openMHA MHAIOJack module is used, which provides an interface to the Jack Audio 

Connection Kit (JACK). For offline processing, the module MHAIOFile provides audio file access. 

4) The openMHA toolbox library (libopenmha) 

It provides an easy-to-use mechanism to integrate real-time safe runtime configuration updates into every 

plugin. 

 

Figure 2-7: Layered structure of the open Master Hearing Aid [56]. 

It should be noted that in addition to the iPad implementation  of the dynamic EE, this algorithm is also 

implemented as a new plugin for the openMHA platform by implementing a C++ class derived from a 

generic base class, implementing the methods and compiling it to a shared object [56]. It is also pertinent 

to point out  that the computational complexity of the developed dynamic EE is addressed by using Intel’s 

Performance Primitive library (IPP) [57]. 
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2.6 Objective metrics 

Various computer-based objective measurement methods have been proposed to estimate speech 

intelligibility in the presence/absence of a background noise [30], [4], [29], and [31]. Generally, objective 

measurement methods can be divided [4] into two categories, intrusive or non-intrusive. The intrusive ones 

perform measurement in comparison to a reference speech signal, whereas the non-intrusive ones perform 

measurement independent of the reference speech signal. This thesis employs two objective metrics, viz. 

HASPI and ModA, to predict the speech intelligibility scores, as they have been shown to correlate well 

with subjective data [58], [31]. In the following paragraph, these two metrics are briefly described. 

2.6.1 Hearing Aid Speech Perception Index (HASPI) 

The feasibility of HASPI metric in predicting perceptual impact of speech in commercial hearing aids  is 

recently evaluated by Kates et al. [58], which revealed that HASPI, has capability of measuring the 

differences that appear across different  devices and processing settings. HASPI is an example of an 

intrusive metric and  predicts speech intelligibility by utilizing an auditory model [30]. The auditory model 

consists of the middle ear transfer function, auditory filterbank, outer hair cell dynamic range compression, 

two tone suppression, and the temporal firing rate mechanism of the inner hair cells. The inputs to the 

auditory model are clean speech (reference speech) and processed speech (degraded speech). It should be 

noted that the model for the processed signal is adjusted based on the peripheral hearing loss. Generally, 

the auditory model compares the clean (reference speech), and the processed (degraded speech) inputs in 

terms of the temporal envelope and fine structure, and computes the envelope cepstral correlation, and 

three-level for fine structure covariance between the reference and processed speech signal. In the next 

stage, these raw features of HASPI (e.g. cepstral correlation and three-level fine structure covariances) are 

transformed into an estimated intelligibility score between 0 and 1, where 0 and 1 imply poor and excellent 

intelligibility respectively. Equation 2.1, shown below, illustrates the HASPI computational equation:  

𝑝 = −9.047 + 14.817 ∗ 𝐶 + 0.0 ∗ 𝑎𝐿𝑜𝑤 + 0.0 ∗ 𝑎𝑀𝑖𝑑 + 4.616 ∗ 𝑎𝐻𝑖𝑔ℎ                             (2.1) 

𝐻 =
1

1 + 𝑒−𝑝
 

where H is the estimated intelligibility score, C represents the cepstral correlation, and aLow, aMid, and aHigh 

are the three-level fine structure covariances [30].  
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2.6.2 Modulation spectrum area (ModA) 

The ModA [31] objective metric is an example of non-intrusive metric. First, the processed signal is limited 

(i.e., normalized) within a fixed amplitude level (i.e., [-0.8 0.8]). After that, the normalized input signal is 

decomposed into N = 4 bands spanning the signal from 300-7600 Hz. The frequency splitting is 

implemented by a series of fourth-order Butterworth filters. Then, the temporal envelope of each band is 

computed using the Hilbert transform, followed by down sampling to the rate of (2×fcut), and fcut = 10 Hz. 

Hence, limiting the envelope modulation rate to fcut = 10 Hz. For the next stage, the mean-removed envelope 

is passed through bandpass filters with center frequencies from 0.5-8 Hz. After that, the mean-removed 

root-mean-square (RMS) output of each bandpass filter is computed to generate the modulation spectrum 

within each acoustic frequency band. Then, the modulation indices, which cover the 0.5- 10 Hz modulation 

rate, are summed up to compute the area Ai under the modulation spectrum of each frequency band. Finally, 

as shown in Equation 2.2, the Ai values are averaged across all acoustic frequency bands to compute the 

average modulation-spectrum area (ModA). It should be mentioned that in the Equation 2.2, the ModA 

denotes the average modulation area across all acoustic frequencies for N = 4 as th number of acoustic 

bands. The rationale behind ModA is that as more noise is added to the signal, the modulation spectrum of 

the noise-masked envelopes becomes flat and shift downs (across all modulation frequencies) relative to 

the modulation spectrum of the clean envelope. As a result, the area under the modulation spectrum is 

reduced as the SNR decreases. 

ModA =
1

N
∑ Ai

N
i=1                                                                       (2.2) 

2.7 Noise reduction (NR) 

Generally, NR algorithms can be categorized into four broad groups; spectral subtractive algorithms, 

Wiener filtering algorithms, statistical model-based algorithms, and subspace algorithms [59]. However, 

investigating and/or comparing the performance of all available NR techniques is out of scope and not 

considered as an objective for the present study. Hence, in this thesis, the performance of the well-known 

NR algorithm, viz. the logMMSE, and a single-channel NR plugin of openMHA, termed as “MHANR” are 

investigated as a front-end to the application of alternative signal processing algorithms. The reason to 

choose logMMSE and MHANR algorithms is because both of these NR techniques generate fewer artifacts 

(“musical noise”), that are typically associated with available NR techniques ([59] and [60]).  In the 

following paragraph, the logMMSE and MHA NR techniques are introduced briefly. 
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2.7.1 logMMSE NR 

The logMMSE algorithm belongs to the statistical-model-based noise reduction techniques and an example 

of algorithms based on maximum likelihood estimation. The algorithm estimates the log magnitude spectra 

by minimizing the mean square-error [61].  

2.7.1.1 Maximum likelihood estimation 

Assuming that the input signal y(n) is the sum of a speech signal s(n) and an uncorrelated additive noise 

signal u(n), where n is the sample index. In the short-time Fourier transform (STFT) domain, the speech 

signal and noise are defined as S (K, L) and U (K, L) respectively, where K and L are the frequency and 

frame index respectively. Hence, the noisy speech, Y (K, L) is given by Y (K, L) = S (K, L) + U (K, L). A 

priori Signal-to-Noise-Ratio (SNR), 𝜉, is defined as the ratio of the speech power, ƛs(K) = E{|S(K)|2}, and 

the noise power, ƛu(K) = E{|U(K)|2}. A maximum likelihood (ML) estimate,  𝜉𝑚𝑙(𝐾, 𝐿), of the a priori 

SNR given a posteriori SNR 𝛾(𝐾, 𝐿) =
|𝑌(𝐾,𝐿)|2

ƛ𝑢(K)
, can be computed as shown in Equation 2.3. 

𝜉𝑚𝑙(𝐾, 𝐿) =  𝛾(𝐾, 𝐿) − 1      (2.3)  

It can be noted that any deviation of the noise power from its expected value, ƛu(K), results in fluctuations 

in the ML SNR estimate. These fluctuations resulted in unwanted artifacts called musical noise [60].  

It should be noted that in state-of-the-art speech enhancement algorithms (e.g. logMMSE) the a priori SNR 

is estimated in a decision-directed way [60], [59], and [61]. In general, the logMMSE NR estimates a priori 

SNR by adaptively smoothing its maximum likelihood estimate in the frequency domain. 

2.7.1.2 Decision-directed approach 

A priori SNR is estimated based on a previous clean-speech estimation, S̃(K, L-1) as illustrated in the 

Equation 2.4 [60]. 

𝜉(𝐾, 𝐿) = 𝑚𝑎𝑥 {𝛼𝑑𝑑.
|𝑆̃(𝐾,𝐿−1)|2

𝜆̃𝑢(𝐾,𝐿−1)
+ (1 − 𝛼𝑑𝑑)𝜉𝑚𝑙(𝐾, 𝐿), 𝜉𝑚𝑖𝑛𝑚} (2.4) 

where λ̃u is the estimated noise power, and ξ̃ml is the estimated ML which can be computed by estimating 

λ̃u. As can be seen from the Equation 2.4, 𝛼𝑑𝑑 and 𝜉𝑚𝑖𝑛𝑚 are the parameters that can control the trade-off 

between the noise reduction and speech distortion.  
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2.7.2 MHA NR 

The MHA NR algorithm is an example of Wiener filtering algorithms that works in the short-time Fourier 

transform (STFT) domain. The main difference between statistical-model-based methods and Wiener filter 

models is that in the latter, the goal is to estimate the complex spectrum of the speech while in the former, 

the focus is on estimating the magnitude of the speech spectrum [59]. The block diagram of the Wiener 

filter is shown in Figure 2-8, where y(n) is the noisy speech, d(n) is the clean speech, estimated y(n) is the 

denoised (enhanced) speech. The goal of the Wiener filter is to compute the filter coefficients to minimize 

the mean-square-estimation error which is computed by (E[e2(n)]). 

The estimation of the a priori SNR is a critical stage of NR algorithms [61]. Hence, an erroneous estimation 

of this parameter leads to speech distortion, musical noise, or reduced noise reduction especially for a non-

stationary noisy environment since the estimation of the a priori SNR is significantly difficult [61]. In 

addition, the MHA NR algorithm uses temporal smoothing in the cepstral domain to conduct the estimation 

of the maximum likelihood estimate of the SNR. In the cepstral domain the noisy speech signal is 

decomposed into coefficients related mainly to the speech envelope, the excitation, and noise [60]. The 

coefficients that represent the speech envelope are represented by the small set of cepstral coefficients, 

while the coefficients that represent the excitation can be found by searching for a cepstral peak in a defined 

range. The remaining coefficients are dominated by noise. Hence, the selective temporal smoothing can be 

applied to the cepstral representation of a maximum likelihood estimate of the speech power spectral density 

(viz. strong smoothing to the coefficients that are dominant by noise, and little smoothing to the coefficients 

representing speech). Breithaupt et al. [60] showed that estimating the a priori SNR based on cepstral 

domain approach outperforms the decision-directed approach for both stationary and non-stationary noise 

in terms of several instrumental measures.  

 

Figure 2-8: Block diagram of a Wiener filter. 
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2.8 Summary 

This chapter presented various signal processing techniques that may be beneficial for individuals with 

SNHL and ANSD, followed by a literature review of previous research work conducted on these algorithms. 

In addition, the implementation and assessment stages of these algorithms were introduced. Furthermore, a 

literature review of the existing portable platforms examined, followed by an introduction of the iPad and 

openMHA platforms. Finally, the two objective indices (viz.  HASPI and ModA) were introduced as metrics 

to predict speech intelligibility across different processing conditions in this thesis, followed by introducing 

the two types of NR techniques (viz. logMMSE and MHA) NR as front-end applications to the introduced 

signal processing techniques. The next chapter examines the implementation and assessment of the dynamic 

envelope enhancement algorithm subjectively and objectively for hearing assistive devices. 
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Chapter 3  

3  Dynamic Envelope Enhancement Algorithm 

In the previous chapter, the effectiveness of the dynamic EE for speech perception in ANSD patients was 

discussed. In this chapter, the development and assessment of the dynamic EE algorithm for typical RM 

applications is investigated. Although the dynamic EE is implemented on iPad and openMHA platforms, 

the dynamic EE development, debugging, and testing is completed using MATLAB 2016a. It should be 

noted that, in this chapter, offline evaluation of the dynamic EE is considered, and realtime implementation 

of the dynamic EE algorithm is out of scope for the present study.  

As described in the previous chapter in Section 2.1, the benefit of the dynamic EE for speech perception in 

ANSD has been achieved for word recognition tasks. The main goal of the present study is to evaluate the 

effectiveness of the dynamic EE on sentence-level speech perception for children with suspected APD 

across different processing conditions. It is also pertinent to point out that the dynamic EE algorithm 

described by Narne et al. [25] is modified for the purpose of testing at the sentence level as explained later 

on in this chapter. In general, this chapter contributes new results on the performance of the dynamic EE 

algorithms by answering the following research questions: (1) does the dynamic EE algorithm enhance 

speech intelligibility for children with suspected APD? (2) can a new objective speech intelligibility metric 

be derived to predict the perceptual impact of this type of algorithm? and (3) how does the dynamic EE 

perform in a variety of noisy conditions as evaluated using the new validated objective metric?        

3.1 Implementation of dynamic EE 

3.1.1 MATLAB implementation 

The dynamic EE algorithm is depicted in the block diagram shown in Figure 3-1. 

The input speech signal is split into a specified number of bands (in this case, four) by 6th order Butterworth 

bandpass filters to provide frequency-dependent processing.  This proved to provide robust and accurate 

results [25]. The cut-off frequencies for the bandpass filters were specified as 150-550 Hz, 550-1550 Hz, 

1550-3550 Hz, and 3550-8000 Hz. 
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Figure 3-1:Block diagram of the dynamic EE algorithm. 

3.1.1.1 Envelope extraction 

Next, the temporal envelope in each frequency channel is extracted through a combination of full-wave 

rectification and a first order low pass Butterworth filter with a cutoff frequency of 32 Hz as shown by 

Narne et.al. [25].  This cutoff frequency provided optimal results. Although it was not specified in [25], 

careful attention is given to the filter delay to ensure that the extracted envelope does not lag the actual 

envelope of the signal. Hence, the zero-phase filtering approach is applied to extract the envelope of the 

signal for offline evaluation of the EE algorithm. However, the zero-phase filtering technique is not 

practical for realtime implementation of this algorithm. While realtime implementation of the dynamic EE 

algorithm is out of scope for this thesis, for realtime implementation, we can refer  to sample papers on this 

topic by Clarkson & Bahgat [62] and Koutsogiannaki et al. [63]. 

3.1.1.2 Envelope expansion 

The extracted envelope in the ith band is exaggerated by raising it to the power of kbi, which is calculated in 

each band separately through an exponential function shown in Equation 3.1.  

 

𝑘𝑏𝑖 = 𝑒
(𝐸𝑏𝑚𝑖𝑛−𝐸𝑏𝑖)

𝜏
  (𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛)+ 𝑘𝑚𝑖𝑛  (3.1) 

 

where kmin = 0.3, kmax = 4, Ebmin is the minimum amplitude of the envelope in the ith band, Ebi is the 

instantaneous amplitude value of the envelope in the ith band, and  is the time constant for the exponent. It 

is pertinent to point out that both kbi and Ebmin are calculated for each band independently. 
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Next, an instantaneous correction factor is obtained for each sample by computing the ratio of the expanded 

envelope to the original envelope. The correction factor is then multiplied with the original bandpass signal 

on a sample-by-sample basis to obtain the expanded signal. The individual expanded signals in the four 

bands are subsequently combined, and the output is filtered by a 3rd order Butterworth low pass filter with 

a cutoff frequency of 8000 Hz. The enhanced output is then scaled such that its Root-Mean-Square (RMS) 

amplitude is equated to that of the original input signal.   

3.1.1.3 Selection of time-constant () 

Narne et al. [10], used a value of 0.5 for  for all their stimuli when applying the dynamic EE algorithm. 

However, when applied to sentences, it was found that a value of 0.5 for  is too large. In practice, the value 

of  determines how much kbi will fluctuate between its minimum and maximum values as the signal 

amplitude changes. If  is too large, k will remain fairly constant as the exponential function decays slowly 

with respect to the envelope amplitude based on Equation 3.1. It should be noted that through 

experimentation, values of 0.00001, 0.0001, and 0.001 for τ proved to consistently produce a large variation 

in k for the sentences used for the assessment of the dynamic EE. Figure 3-2 compares the effect of different 

τ values on k in the 4th acoustic band (viz. 3550-8000 Hz).  

 

Figure 3-2: Effect of time-constant selection (τ) on k variations for the stimulus “the car is going too 

fast”. 



 

 

33 

 

Furthermore, Figure 3-3 illustrates the impact of choosing different  values on the enhancement of a sample 

speech envelope in the 4th acoustic band (viz. 3550-8000 Hz). Figure 3-3a shows the unprocessed envelope 

in this band, while Figure 3-3[b-d] depict the enhanced envelopes for  = 0.00001, 0.001, and 0.5, 

respectively. It is evident that the first two s exaggerate the speech envelope to different degrees, but the 

final  value leads to a flattening of the envelope leading to a dramatic suppression of almost the entire 

speech signal. Hence, at least for sentence-level envelope enhancement, lower  values are essential for an 

effective operation of the dynamic EE.   It should be noted that, in Figure 3-3, the y-axis amplitude scale 

was deliberately left different to show the envelope variations. 

 

Figure 3-3: Effect of the τ parameter on envelope enhancement in the high frequency band for a 

sample speech stimulus (“the car is going too fast”). (a) unprocessed envelope, (b) enhanced with τ = 

0.00001, (c) enhanced with τ = 0.001, and (d) enhanced with τ = 0.5 

Figure 3-4 shows an alternative visualization of the effect of the dynamic EE algorithm. This set of plots 

display the modulation spectrograms which show the distribution of modulation energy as a function of the 

modulation frequency and acoustic frequency, averaged over all speech frames. Figure 3-4a depicts the 

modulation spectrogram for the unprocessed speech, where modulation energy is concentrated in the 4-10 

Hz and lower frequency acoustic channels. Modulation spectrograms for the dynamic EE with  = 0.00001,  

 = 0.0001, and   = 0.001 are shown in Figure 3-4b, c, and d, respectively, where the spread of modulation 

energy across mid- and high-frequency acoustic channels is apparent. It is well-known that slow temporal 
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envelope modulations in the 4-10 Hz provide useful cues for speech perception [4]. It is evident from Figure 

3-4 that the dynamic EE algorithm exaggerates these useful cues. 

 

Figure 3-4: Modulation spectrograms for the original and enhanced speech samples. (a) original 

speech, (b) dynamic EE with τ = 0.00001, (c) dynamic EE with τ = 0.0001, and (d) dynamic with τ = 

0.001. 

3.2 iPad implementation 

The dynamic EE algorithm was implemented for an iPad platform as an iOS application for offline 

processing as mentioned in the previous chapter. The application is developed by converting the MATLAB 

script of dynamic EE line-by-line into Swift programming by utilizing Xcode as an IDE and the VDSP 

portion of the Accelerate Framework [55]. As we mentioned in the previous chapter, the iPad platform 

development of the dynamic EE is motivated since our centre at the Western University (National Centre 

for Audiology) has developed a software to conduct the temporal modulation test on the iPad platform. 

Hence, integrating the dynamic EE algorithm within the temporal modulation test on the iPad platform 

allows a clinician to change the  parameter of the dynamic EE to compensate the patient’s temporal 

modulation deficit.  

Figure 3-5 is an example stimulus that shows the dynamic EE output speech based on iOS implementation, 

which is identical to the dynamic EE output speech generated from MATLAB. In order to verify that the 

implemented dynamic EE based on the iOS generates the same output as the MATLAB implementation, 
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the output speech file from iOS is first converted to binary file. Then, the binary file from iOS is loaded in 

MATLAB.  

 

Figure 3-5: Comparison of the dynamic EE speech stimulus between MATLAB and iPad platforms. 

3.3 OpenMHA implementation 

As we mentioned in the first chapter of the thesis, the dynamic EE is also implemented as a signal processing 

plugin into an openMHA platform for offline processing. This implementation is motivated due to the fact 

that we can use a single-channel noise reduction plugin of openMHA (viz. MHANR) as a front-end to the 

application of the dynamic EE. It is well- known that for hearing aid applications, the proper strategy is to 

first separate speech from noise and then enhance the envelope of the speech because background noise 

reduces the modulation depth and creates spurious modulations to the speech signal [25]. Hence, we do not 

need to consider the implementation of an extra NR block as a priori processing block to the dynamic EE 

processing block for both offline and online processing stages of the dynamic EE into openMHA platform.  

Dynamic EE is implemented as a new plugin for the openMHA similar to its MATLAB implementation. 

The dynamic EE plugin is implemented by defining it as a C++ class, which is derived from a generic base 

class, followed by implementing its methods and compiling to a shared object. As mentioned in the previous 

chapter, the computational complexity of the dynamic EE implementation managed through the use of 

optimized IPP functions.  
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Figure 3-6 is an example stimulus which shows that the dynamic EE output speech based on openMHA 

platform is identical to the dynamic EE output speech generated from MATLAB. In order to verify that the 

developed dynamic EE based on openMHA platform generates the same output as the MATLAB 

development, the output speech file from the openMHA platform is first converted to binary file. Then, the 

binary file from the openMHA platform is loaded in MATLAB.  

 

Figure 3-6: Comparison of the dynamic EE speech stimulus between MATLAB and openMHA 

platforms. 

As we mentioned earlier in section 3.1 of this chapter, the assessment and evaluation of the dynamic EE is 

performed based on its MATLAB implementation for offline processing. 

3.4 Subjective data collection for the dynamic EE 

3.4.1 Database 

A noisy speech database was created for collecting the speech intelligibility data from the participants. The 

clean speech sentences were taken from the HINT database [28] which contains 25 lists of 10 sentences 

each that are phonetically balanced  and considered equally difficult. It should be noted that the clean speech 

samples taken from the HINT speech database have an original sampling rate of 44100 Hz which were 

subsequently down-sampled to 16000 Hz for our application. The clean speech sentences were passed 

through the dynamic EE algorithm with varying values of . No background noise was added prior to the 
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application of the dynamic EE algorithm, while the HINT background noise (speech-shaped noise or SSN) 

was mixed in at different SNRs after enhancement, which is defined as the LSNR. In total, the database 

comprised of 25 HINT lists x 10 sentences per list x 4  values (  = 0.00001, 0.0001, 0.001, and 

unprocessed) x 4 LSNRs (3 dB, 0 dB, -3 dB, and -6 dB) = 4000 stimuli. 

3.4.2 Participants  

The dynamic EE algorithm was evaluated subjectively by three different groups of participants: 11 children 

with suspected APD, 12 children with normal hearing (NH), and 12 adults with NH. The children with 

normal hearing ranged between 8-15 years in age, while the adults ranged between 18-30 years. The normal 

hearing groups had no history of any auditory problems or listening difficulties. The children with suspected 

APD ranged between 7-15.5 years and were referred to the Audiology clinic at the University of Western 

Ontario based on complaints of listening difficulties by their parents or teachers.  It should be noted that 

these children did not undergo the test battery recommended by the American Speech and Hearing 

Association (ASHA) [64]. 

3.4.3 Audio presentation and speech intelligibility measurement 

Speech perception in noise was measured using custom software developed in our laboratory. Speech 

stimuli were played via the interface shown in Figure 3-7.  Participants were seated in a double-walled 

sound booth and listened to stimuli over Sennheiser HDA 200 headphones at the most comfortable level. 

Participants were told that they would hear sentences in background noise, and they would hear each 

sentence just once. The participants had to repeat the speech token heard by them and the number of 

correctly reported key words were logged before presenting the next sentence in the list. It can be observed 

from Figure 3-7 that each word has an equal score in terms of intelligibility, and the averaged speech 

intelligibility score for each condition was computed by averaging the scores from ten sentences in a 

randomly selected list. It is also pertinent to point out that to ensure that fatigue was not a confound, this 

experiment lasted about half-an-hour and participants were encouraged to take break if they felt fatigued. 
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Figure 3-7: Graphical user interface (GUI) for collecting speech intelligibility scores from 

participants. 

3.5 Subjective score analysis 

Figure 3-8 – Figure 3-10 depict the averaged speech intelligibility scores for children with suspected APD, 

adults with normal hearing, and children with normal hearing respectively, where the “up” and “Tau” 

conditions represent the unprocessed and dynamic EE speech with different time-constant ( ) values that 

were mixed with background noise at different SNR values respectively. In these figures, the error bars 

represent one standard deviation. The subjective results in Figure 3-8 – Figure 3-10 demonstrate the benefits 

accrued from the dynamic EE algorithm regardless of the LSNR condition and participant groups. The 

amount of improvement was significantly better for poorer LSNRs (i.e., LSNR = -3 and LSNR = -6 dB) 

across groups. The results also demonstrate that for all groups,  (Tau = 0.0001) achieved the highest speech 

intelligibility mean scores for LSNR = 3, 0, and -3 dB conditions. On the other hand,  (Tau = 0.00001) 

achieved the highest speech intelligibility mean score, but only for LSNR = -6 dB condition. In order to 

quantify the significance of these differences, a thorough statistical analysis was performed. 
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Figure 3-8: Averaged speech intelligibility scores for children with suspected APD. 

 

Figure 3-9: Averaged speech intelligibility scores for adults with NH. 

 

Figure 3-10: Averaged speech intelligibility scores for children with NH. 
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3.6 Statistical analysis 

To determine whether these differences are statistically significant, repeated measures ANOVA was 

conducted with the results obtained from the children with normal hearing and children with suspected 

APDs using IBM SPSS software, Version 25.0. It should be noted that the raw scores were first transformed 

to rationalized arcsine units (RAUs). The rationalized arcsine transform is used to transform data obtained 

from speech intelligibility tests in order to make them suitable for parametric statistical analyzes [65]. 

Studebaker [65] proposed equations to perform  RAUs: (1) arcsine unit transform equation, as shown in 

Equation. 3.2, where s is the number of correct responses and N is the number of trials performed, (2) 

Rationalized arcsine units transform equation, which converts radians into RAUs, shown in Equation 3.3.  

𝐴𝑢 = 𝑠𝑖𝑛−1 √
𝑠

𝑁+1
+ 𝑠𝑖𝑛−1 √

𝑠+1

𝑁+1
     (3.2) 

𝑅𝐴𝑈𝑠 = (
146

𝜋
) ∗ 𝐴𝑢 − 23   (3.3) 

The repeated measures ANOVA was performed with  and LSNR as the within-subject factors. It should 

be noted that Mauchly’s test of sphericity was violated for the LSNR variable (χ2(5) = 12.43, p =.03), so 

the Greenhouse-Geisser correction was used for this condition (ε = 0.71). There were significant main 

effects of  (F (3, 63) = 218.47, p < 0.001) and LSNR (F (2.12, 44.58) = 284.27, p < 0.001) parameters. 

There was no statistically significant interaction between the , LSNR parameters and the subjective group 

(normal vs. suspected APD), indicating that changing the  and LSNR values had a similar effect across 

both groups. There was a significant interaction between  and LSNR variables (F (9, 189) = 47.45, p < 

0.001), suggesting that the relative performance of the dynamic EE for a given  depended on the LSNR.  

To further probe this interaction, post-hoc comparisons between the subjective data at different  and LSNR 

values were conducted with Bonferroni correction. Salient outcomes of this analysis include: (i) the scores 

associated with  = 0.0001 were significantly better than unprocessed scores at all LSNRs, whereas  = 

0.00001 and  = 0.001 were better only at LSNRs of -6 and -3 dB respectively; and (ii) the performance of 

 = 0.00001 and  = 0.0001 was statistically similar at LSNRs -3 and -6 dB, while  = 0.0001 is statistically 

better than  = 0.00001 at LSNRs of 0 and 3 dB. It should be noted that SPSS outputs from subjective 

experiment of the dynamic EE algorithm can be found in Appendix A of this thesis.  
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3.7 Objective evaluation 

3.7.1 Subjective vs. objective measures 

An ideal objective metric should be able to predict the subjective speech intelligibility scores with high 

accuracy. Various statistics can be conducted to evaluate the performance of the objective metrics. The two 

most common ones are Pearson’s correlation coefficient (ρ)  and the standard deviation of error [66], which 

were used to evaluate the performance of the two-objective metrics (viz. HASPI and ModA). The 

correlation coefficient between the subjective speech intelligibility scores (SI) and the objective speech 

intelligibility scores (OI) is computed by Equation 3.4, where MSI and MOI are the mean values of SI and 

OI respectively. An estimation of the standard deviation of the error (𝜎𝑒) is computed by Equation 3.5, 

where 𝜎𝑑 is the standard deviation of subjective scores. A good objective metric should yield a high 

correlation value and a small value of  𝜎𝑒. 

𝜌 =
∑(𝑆𝐼−𝑀𝑆𝐼)∙(𝑂𝐼−𝑀𝑂𝐼)

[∑(𝑆𝐼−𝑀𝑆𝐼)2]
1/2

.  [∑(𝑂𝐼−𝑀𝑂𝐼)2]
1/2 (3.4) 

𝜎𝑒 = 𝜎𝑑 . √1 − 𝜌2 (3.5) 

3.7.2 First stage 

As mentioned in the introduction chapter, benchmarking the dynamic EE across several noisy conditions 

can become an onerous task. Hence, in the first stage of the objective assessment of the dynamic EE, both 

HASPI and ModA objective indices were applied to predict the speech intelligibility for dynamic EE 

algorithm across the same processing conditions used during the subjective assessment (viz. the stationary 

background noise at different LSNR was added after the envelope was enhanced). The computation of 

HASPI and ModA were based on the MATLAB code provided by Kates [30] and Chen et al. [31]. A 

correlation analysis was conducted in such a way that, HASPI and ModA scores were computed 176 times 

(11 APD subjects x 16 processing conditions [4 processing ( = 0.00001,  = 0.0001,  = 0. 001, and UP) x 

4 SNRs (3, 0, -3, and -6 dB)] to match with the 176 subjective data points for correlation analysis.  A list 

of ten sentences was randomly selected from the SSN database for each processing conditions, and the 

objective speech intelligibility predictors (HSPI and ModA) were computed from all ten sentences in the 

list. Table 3.1 shows the correlation coefficients and the standard errors of estimation for HASPI and ModA 

metrics. It can be noted from Table 3.1 that HASPI exhibited higher correlation with the suspected with 
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APD subjective scores compared to ModA. Figure 3 – 11 depicts the scatter plot of the objective speech 

intelligibility scores versus the actual suspected with APD subjective scores.  

Table 3-1: Correlation coefficient and standard error of estimation for HASPI and ModA. 

Objective measure 

ρ σe 

HASPI 0.72 0.15 

ModA 0.38 0.19 

 

 

Figure 3-11: Scatter plot of the objective and subjective scores from children suspected with APD for 

HASPI and ModA. 

3.7.3 Second stage 

Since HASPI correlated higher with the subjective scores from children suspected with APD, it can be used 

to evaluate the performance of dynamic EE algorithm across several noisy conditions. However, to find a 

better mapping between HASPI and subjective data, a new objective predictor is derived in a similar manner 

to HASPI objective metric. As we discussed in Chapter 2, section 2.6.1, HASPI score is computed from the 

raw features of HASPI (e.g. cepstral correlation (c) and three-level temporal fine structure covariances 

(aLow, aMid, and aHigh)), as was shown in Equation 2.1. Hence, in the second stage of the objective assessment, 

a modified HASPI metric was derived by computing HASPI features (i.e. c, aLow, aMid, and aHigh) for each 

processing condition [viz. 176 scores (11 subjects with suspected APD x 16 processing conditions)]. Then, 
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the optimal combination of the HASPI features was derived through multivariate regression analysis, which 

estimates a regression model with more than one outcome variable. It should be noted that multivariate 

regression analysis was conducted, by utilizing the “Regression Learner” feature in MATLAB. It is also 

important to note that “Regression Learner” application in MATLAB predicts data using supervised 

machine learning algorithms. The “Regression Learner” application trains regression models to predict 

data. The HASPI features and the subjective scores from children suspected with APD are defined as 

predictors and response variables respectively to the regression model. It also should be noted that 

automated training was performed to search for the best regression model type, the one that achieves the 

lowest value of root mean square error (RMSE, which is the square root of the variance of the residuals). 

After training a model in “Regression Leaner” application in MATLAB, a regression tree model achieved 

the lowest RMSE value, which was 0.0718. It is worthwhile to mention here that the decision tree (DT) 

builds regression or classification hierarchical models in the form of a tree structure. It is defined as a 

classification or a regression when the target  variables are discrete or continues respectively [66]. The 

objective of DT building is to breaks down a dataset into smaller and smaller subsets in order to be used to 

predict outcome (target) from a set of input variables. The final result is a tree with decision nodes and leaf 

nodes. A decision node (e.g., HASPI features) has 4 branches in our experiment data, each representing 

values for the attribute (i.e. speech intelligibility) tested. Leaf node (e.g., suspected with APD intelligibility 

scores) represents a decision on the numerical target. The topmost decision node in a tree, which 

corresponds to the best predictor, called root node. It is important to note that a decision tree is built top-

down from a root node and involves partitioning the data into subset that contain instances with similar 

values (homogenous) [67]. 

In the present mapping, the regression tree model explained 88% of the variance in the subjective data, 

which is defined as R-squared. It should be noted that a well-fitting regression model results in predicted 

values close to the observed data values. This parameter can be interpreted as the standard deviation of the 

unexplained variance. Lower values of RMSE indicate better fit, and RMSE is a good measure of how 

accurately the model predicts the subjective scores. In addition, R-squared, which indicates the percentage 

of the response variable variation that is explained by a fitted model, is another statistical measure of how 

close the data are to the fitted regression line. The trained model (regression tree) based on the suspected 

with APD scores is termed as ‘dynamic EE data trained (DEEDT)’ model for the rest of this thesis. 
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3.7.4 Testing the DEEDT model 

In order to show how accurate our intelligibility predictor model is, the raw features of HASPI were 

computed for each corresponding subjective score from adults and children with normal hearing, who were 

participating in our subjective experiment. The computed raw features were then given to DEEDT model 

to predict the subjective scores for both adults and children with normal hearing participants. Scatter plots 

of predicted versus subjective scores for adult and children with normal hearing can be noted from Figure 

3-12. The robustness of the fitted (DEEDT) model can be seen from Table 3.2, which shows the correlation 

coefficient and the standard error of estimation for adults and children with normal hearing participants. In 

addition, the DEEDT model explains 0.82 and 0.83 of the variability of the subjective data for adult and 

children with normal hearing respectively.  

Table 3-2: Correlation coefficient and standard error of estimation for HASPI and ModA. 

DEEDT predicted scores 

ρ σe 

Children with normal hearing 0.91 0.08 

Adults with normal hearing 0.91 0.07 

 

 

Figure 3-12: Scatter plot of predicted and subjective scores for children and adults with normal 

hearing participants. 
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3.7.4.1 Bland- Altman plot 

 Although the predicted subjective scores showed an excellent correlation with actual subjective scores, 

higher degree of correlation does not imply the agreement between the predicted and actual subjective 

scores. The Bland-Altman plot, or difference plot, is a graphical method for analyzing agreement between 

two measurement methods. This technique was applied in a recent research study to indicate the agreement 

between predicted and measured speech intelligibility in non-stationary real-world noise environment by 

utilizing HINT sentence list database [68]. Hence, in this thesis, the agreement between the predicted 

subjective scores and the actual subjective scores was evaluated using Bland-Altman plot.  In this graphical 

analysis, the difference between the two techniques are plotted against the averages of the two techniques. 

Horizontal lines are drawn at the mean difference, and at the limits of agreement (95% confidence intervals), 

which are defined, as shown in Equation 3.6, where m and sd represent the mean and the standard deviation 

of the difference respectively.  

𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = [𝑚 +/−(1.96 ∗ 𝑠𝑑)]  (3.6) 

Figs 3-13 and 3-14 display the Bland-Altman plots for adults and children with normal hearing subjective 

scores, respectively. The x axis displays the percentage average of the predicted and subjective scores, and 

the y axis displays the percentage difference between these scores. For both figures, the centre line, which 

is highlighted as a red line, is plotted at the mean of the difference between the predicted and subjective 

intelligibility scores. In addition, the upper and lower lines, which are highlighted as green lines, are plotted 

at the bound of 95% confidence interval levels (CIL). A mean difference score that differs from zero is 

evidence of bias in the predictor [68]. It is important to note that for Figs 3-13 and 3-14 the mean difference 

scores were  7.05 % and  4.47 % respectively, which are within the measurement error of the HINT [68]. 

The 95 % CI width for Figs 3 – 13 and 3 – 14 are 15.51 % and 16.23 % respectively, which are again 

comparable to the HINT’s test-retest reliability [68] and [69].  
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Figure 3-13: Bland-Altman plot (adults with normal hearing subjective scores versus predicted 

scores). 

 

Figure 3-14: Bland-Altman plot (children with normal hearing subjective scores versus predicted 

scores). 
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3.8 Comprehensive objective assessment 

Previous studies performed limited evaluation of the effect of background noise on the performance of the 

dynamic EE algorithm by making an assumption that a remote microphone is close to the speech source. 

Hence, relatively clean speech picked up by the microphone is transmitted to a receiver of a hearing aid, 

and the background noise is only added after enhancing the envelope of the speech. However, as described 

in the previous chapter, section 2.1.3 (see Figure 2-2), the background noise can be present at the source 

(i.e. before EE) and/or at the listener (i.e. after EE). In addition, the background noise can be stationary or 

non-stationary. It is therefore imperative to benchmark the algorithm performance under different source 

and listener SNRs (SSNRs and LSNRs respectively) as well as different types of background noise. 

For a comprehensive benchmarking of the dynamic EE algorithm, a larger HINT database was created. 

First, the clean HINT speech sentences were mixed separately with two different background noise types 

(viz. HINT speech-shaped-noise (SSN) and multi-talker-babble-noise (MTBN)) at different SSNRs. The 

noisy speech stimuli were then processed by the dynamic EE algorithm. Different  values were chosen in 

a manner similar to the subjective study. The enhanced speech was further corrupted, again separately, by 

SSN and MTBN noise types at various LSNRs. Furthermore, in order to assess the benefits of incorporating 

NR algorithms, the logMMSE and MHA NR algorithms were applied to the noisy speech prior to the 

application of the dynamic EE. Hence, a total of 25 lists x 10 sentences/list x 4 EE settings (dynamic EE 

with  = 0.00001, 0.0001, 0.001, and unprocessed) x 4 SSNRs ( 15 dB, 10 dB, 5 dB, and 0 dB) x 4 LSNRs 

(3 dB, 0 dB, -3 dB, and -6 dB) x 2 background noise (SSN and MTBN) = 96000 stimuli in the second 

database.  

In this section, the objective assessment was carried out in a manner similar to the first stage, wherein a list 

of 10 sentences was randomly chosen from the new database (viz. the database was introduced in the 

previous paragraph) for each processing condition. Then, HASPI features (c, aLow, aMid, and aHigh) were 

computed from all 10 sentences in the list. After that, the computed features from all 10 sentences for each 

processing conditions were applied to the DEEDT model defined in section 3.4.3. Finally, the average score 

across these 10 sentences for each processing condition, which was predicted by the DEEDT model, was 

used for benchmarking the dynamic EE algorithm. 
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3.8.1 Comprehensive objective assessment results 

The comprehensive objective assessment allowed the benchmarking of the performance of the dynamic EE 

across a wide range of noise conditions. However, this section includes a limited set of representative 

results, and the remainder of the results is available in Appendix B of this thesis.  

 Figures 3-15 and 3-16 display the sample result for LSNR = -6 dB (i.e. the worst-case value of the LSNR), 

for a range of SSNR values between 0-15 dB, when the background noise is SSN and MTBN respectively, 

and no NR algorithms were applied as a front-end to the dynamic EE algorithm. The Tau () value 

represents the time constant for the dynamic EE algorithm, and “up” is an unprocessed condition. The 

dynamic EE can be seen to be more effective for high SSNR values (i.e. 15 dB and 10 dB) when compared 

to the unprocessed condition. However, the lower SSNR values leads to a degradation of the dynamic EE 

algorithm performance, especially at lower  values. This effect is pronounced with stationary speech-

shaped noise than the multi-talker babble. Since the noise is added prior to envelope enhancement, the SSN 

envelope normalizes the clean speech envelope more at the lowest SSNRs, and aggressive enhancement of 

this noise- corrupted envelope through a lower  value leads to a significant drop in predicted intelligibility 

scores. 

 

Figure 3-15: Objective assessment of the dynamic EE algorithm for LSNR = -6 dB and for various 

values of SSNR, Speech-shaped noise, no NR algorithm. 

 



 

 

49 

 

 

Figure 3-16: Objective assessment of the dynamic EE algorithm for LSNR = -6 dB and for various 

values of SSNR, Multi-talker babble noise, no NR algorithm. 

Figures 3-17 and 3-18 also display the sample result for LSNR = -6 dB (i.e. the worst-case value of the 

LSNR), for a range of SSNR values between 0-15 dB, when the background noise is SSN and MTBN 

respectively, and the logMMSE NR algorithm was applied as a front-end to the dynamic EE algorithm. 

Again, the Tau () value represents the time constant for the dynamic EE algorithm, and “up” is an 

unprocessed condition. It is evident that incorporating the logMMSE NR algorithm as a front-end to the 

dynamic EE algorithm results in improved predicted speech intelligibility scores, especially for lower 

values of SSNR. As the logMMSE NR works best with stationary noise sources [59], the improvement is 

more marked for the SSN condition. The interaction between the source noise and the dynamic EE’s  

parameter still remains after the logMMSE NR for lower SSNR values. In general, predicted intelligibility 

scores are better with  = 0.001 than the other two  values with the activation of the logMMSE NR 

algorithm. While this is in contrast with the subjective results, where the lower  values resulted in better 

performance, it must be noted that there was no noise added to the speech signal prior to the dynamic EE 

algorithm for the subjective data collection. 
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Figure 3-17: Objective assessment of the dynamic EE algorithm for LSNR = -6 dB and for various 

values of SSNR, Speech-shaped noise, logMMSE NR algorithm. 

 

 

Figure 3-18: Objective assessment of the dynamic EE algorithm for LSNR = -6 dB and for various 

values of SSNR, Multi-talker babble noise, logMMSE NR algorithm. 

In addition, Figures 3-19 and 3-20 display the sample result for LSNR = -6 dB (i.e. the worst-case value of 

the LSNR), for a range of SSNR values between 0-15 dB, when the background noise is SSN and MTBN 

respectively, and the MHA NR algorithm was applied as a front-end to the dynamic EE algorithm. Again, 

the Tau () value represents the time constant for the dynamic EE algorithm, and “up” is an unprocessed 
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condition. It is evident from the predicted results that the performance of the MHA NR algorithm is pretty 

similar to the logMMSE NR regardless of the SSNR values and noise types. 

 

 

Figure 3-19: Objective assessment of the dynamic EE algorithm for LSNR = -6 dB and for various 

values of SSNR, Speech-shaped noise, MHA NR algorithm. 

 

 

Figure 3-20: Objective assessment of the dynamic EE algorithm for LSNR = -6 dB and for various 

values of SSNR, Multi-talker babble noise, MHA NR algorithm. 
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3.9 Discussion 

This study contributed several new results on the benefits of temporal speech envelope enhancement for 

assistive hearing device applications. In general, this study has shown that dynamic EE algorithm can 

enhance speech perception in noise for children with suspected auditory processing disorder, provided that 

the enhancement was applied to the clean speech. The study also derived a data-driven intelligibility 

predictor model, which correlated well with subjective scores, and utilized it for a more comprehensive 

benchmarking of the dynamic EE algorithm. These salient results are discussed in the next paragraphs. 

3.9.1 Subjective and objective data 

Subjective speech perception experiments showed that children with suspected auditory processing deficits 

perform poorly in noisy environments, particularly at inferior SNRs, as reported in the literature (e.g. [8]). 

To the best of our knowledge, this study is the first one to show that these children do benefit from dynamic 

envelope enhancement. The amount of benefit accrued through the dynamic EE algorithm was greatest for 

the children with suspected APD. Overall, these results are consistent with the results reported by Narne et 

al. [25] for adults with late onset ANSD. 

This study also investigated objective, computational predictors of subjective speech recognition 

performance. In particular two metrics, viz. HASPI and ModA, were explored as they have been previously 

validated with speech recognition data from hearing impaired listeners and cochlear implant subjects. Our 

analyses showed that HASPI had a better correlation with subjective scores. It was surprising to see a lower 

degree of correlation between ModA and the subjective scores. As ModA quantifies the modulation 

spectrum area, it was hypothesized that enhancing the modulations would lead to a higher ModA score for 

enhanced stimuli, resulting in a better correlation with subjective data. Further research work is therefore 

conducted for improving the ModA measurement procedure for this particular application, as will be 

discussed in Chapter 5 of this thesis. 

Although the raw correlation between HASPI and subjective scores was good, a modified HASPI model 

(DEEDT) was derived to better describe the relationship between the objective and subjective data. The 

DEEDT model was employed to further benchmark the dynamic EE algorithm across a wide range of 

conditions which would have been taxing for the child participants if subjective data were instead collected. 

This approach is a novel contribution to the dynamic EE algorithm assessment, but objective metrics have 
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been employed before for evaluating hearing aid algorithms. For example, Kates [70] used speech quality 

and intelligibility metrics to assess single microphone noise reduction algorithms.  

3.9.2 Dynamic EE algorithm, their parameters, and interaction with noise type and 
SNR 

In general, it can be observed from the experimental results that the performance of the dynamic EE 

algorithm primarily depends upon the SSNR parameter and the type of the background noise. These critical 

parameters were not explored fully in previous research [10]. Furthermore, the results suggested that 

incorporating the dynamic EE strategy that enhances slow modulations in speech signal is beneficial for 

individuals with auditory processing deficits at the poorest LSNR condition (e.g. LSNR = -6 dB) and the 

highest SSNR values (e.g. SSNR = 15 dB) irrespective of the type of background noise.  However, the 

improvement observed was significantly less for the MTBN condition when compared to the SSN 

condition, owing to the disparate envelope characteristics for these two noise types.  

It is interesting to see that the predicted speech intelligently scores are higher for MTBN than for the SSN. 

This is in line with previous reports revealing the results from normal and hearing-impaired adults and 

children. Speech-shaped noise provides consistent spectral masking, while MTBN allows for both spectral 

and temporal release from masking [71]. 

One more observation from the results indicates that the effects of the time constant value (), which 

impacted the modulation depth, is dependent on the type of the background noise. For SSN,  = 0.001 

achieves higher predicted subjective mean scores in terms of speech intelligibility when compared to the 

two other  values irrespective of the SSNR condition. On the other hand, when the background noise is 

MTBN, there are no significant differences observed in terms of the predicted subjective scores between 

three different  values regardless of the SSNR condition. It should be mentioned that the amount of 

modulation boost that is applied by conducting dynamic EE is mostly depend upon the  value, and it seems 

that modulation depth is not the same for different types of background noise due to their different envelope 

structures. 

3.9.3 Effect of the NR algorithms 

As the performance of the dynamic EE is affected by the presence of noise before enhancement, it is logical 

to consider noise mitigation prior to dynamic EE. Indeed, Narne et al. [25] surmised that a noise reduction 

front-end would be beneficial for the dynamic EE algorithm, although no data were presented. Similarly, 
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Kuk [20] showed that children with APD performed better with directional microphone processing and NR. 

The present study employed well-known NR algorithms, the logMMSE as well as the MHA NR algorithm, 

to reduce the noise prior to the dynamic EE. Results showed that this strategy is beneficial, more so when 

the background noise is stationary and a proper  value was selected for the dynamic EE algorithm.  

Finally, the data presented in this chapter are helpful in developing initial general recommendations on 

when the dynamic EE can be expected to be beneficial in assistive hearing applications. It is evident from 

the subjective and objective data that most benefit from the dynamic EE algorithm is accrued when the 

SSNR is high and when the LSNR is poor. This suggests that the dynamic EE algorithm is most suited for 

implementation within a RM. Most modern RMs (such as Oticon Amigo and Phonak Roger) have the 

ability to estimate the SNR at the transmitter (i.e. SSNR) and thus can identify environmental conditions 

with high SSNR. Similarly, modern hearing aids incorporate automatic environment classification 

algorithms which estimate the type and level of the background noise at the listener to be subsequently used 

in decision making on the activation of the dynamic EE algorithm.   
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3.10  Summary 

The present chapter reported the performance of the dynamic EE algorithm for remote microphone 

applications. In particular, subjective and objective experiments were conducted to investigate the 

performance of the dynamic EE algorithm. The subjective assessment was conducted to explore the 

performance of the dynamic EE algorithm in terms of the mean speech intelligibility scores in the presence 

of background noise at the listener location. The balance of the experiments was conducted to evaluate the 

effectiveness of the dynamic EE algorithm in the presence of different types of background noise (stationary 

and non-stationary) at both the source and listener locations with different SNR conditions. Key new results 

from this study include: (1) objective speech intelligibility predictors are developed and utilized for the 

assessment of the dynamic EE algorithm, (2) the dynamic EE algorithm is effective only in certain 

combinations of source and listener SNR conditions, (3) the incorporation of noise reduction algorithms 

can expand the range of SNRs over which the dynamic EE is effective. In conclusion, the dynamic EE 

algorithm can be considered for improving the speech intelligibility for children suspected with APD and 

individuals with ANSD in poor SNR conditions at the listener location. Results portrayed in this chapter 

can potentially guide the choice and activation of the dynamic EE algorithms in assistive hearing devices 

(e.g. RM applications). In the next chapter, the subjective and objective performance of the static EE for 

hearing aid applications will be examined and discussed.  
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Chapter 4  

4  Static Envelope Enhancement Algorithm 

In the second chapter, the published data on the effectiveness of the static EE on phrase identification scores 

(consonants- vowels) in individuals with ANSD and SNHL was discussed. In this chapter, development 

and assessment of the static EE algorithm for typical hearing aid (HA) applications is investigated. 

Although the static EE was available as the “Deepen band modulation” feature in the Praat software (version 

6.0.25, Institute of Phonetic Science, University of Amsterdam, Netherlands), the static EE development, 

debugging and testing was completed using MATLAB 2017a on a personal computer platform. It is also 

pertinent to point out that the realtime implementation of the static EE algorithm is out of scope for the 

present study. Hence, only the offline processing of the static EE was evaluated in this chapter. 

As described in the second chapter in Section 2.2, the benefit of the static EE for speech perception in 

patients with ANSD and SNHL has been demonstrated only for phrase recognition tasks. In addition, in the 

previous research work (e.g. [26] and [27]), the performance of the static EE has been evaluated by using 

the ‘Deepen band modulation‘ feature in the Praat software. Furthermore, in the previous research work, 

the effectiveness of the static EE was only considered for the ideal condition of RM application, wherein 

the speech signal picked up by the microphone was assumed to be relatively clean, and the background 

noise was only added after enhancing the speech envelope.  Hence, in the present study, the static EE was 

developed on a personal computer platform using MATLAB 2017, and the static EE was evaluated for the 

sentence-level speech perception by children with APD across different processing conditions. The aim of 

this study, therefore, is to investigate the performance of the static EE algorithm in enhancing speech 

perception by children with APD, in different types and levels of background noise. The following specific 

objectives will be examined in detail in this chapter (a) the effectiveness of the static EE algorithm for 

children with APD in hearing aid applications, (b) the potential benefit of applying different noise reduction 

algorithms as a front-end to the static EE, and (c) developing an objective speech intelligibility estimator 

to predict the perceptual impact of the static EE.  

4.1 Implementation of static EE 

4.1.1 Praat software (Deepen band modulation) 

As mentioned earlier, the static EE was recently evaluated by Shetty and Kooknoor  [27] based on the 

‘Deepen band modulation‘ feature in the Praat software by processing the input speech signal in critical 
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bands. Figure 4-1 illustrates the graphical user interface (GUI) , where the enhancement, which indicates 

the maximum increase in the level is set to 20 dB; the lowest and highest frequencies that should be 

enhanced are set to  100 and 8000 Hz respectively; the slow and fast modulation rates, which  indicate the 

modulated frequency range, are set to 3 and 30 Hz respectively; and  the band smoothing,  which determines 

the degree of overlap of each band into its adjacent bands, is set to 100 Hz.  

 

Figure 4-1: GUI for Deepen band modulation feature in Praat software. 

4.1.2 MATLAB implementation 

The static EE algorithm was implemented in MATLAB 2017a based on the algorithm that is available in 

Praat software. Figure 4-2 depicts the block diagram of the static EE algorithm. 

As it can be seen from Figure 4-2, the processing of the static EE is conducted in both temporal and spectral 

domains, unlike the dynamic EE in which the whole processing is conducted in the temporal domain. The 

input speech signal, x(n) is first converted to the spectral domain by applying fast Fourier transform (FFT). 

Then, the signal spectrum between 100 – 8000 Hz is segmented into 22 critical bands, with each band 

spanning one Bark. The transformation between the frequency (f) in Hz and the Bark scale (b) is shown in 

Equation 4.1. 
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Figure 4-2: Block diagram of the static EE algorithm. 

𝑏 = 7 ∗ 𝑠𝑖𝑛ℎ−1 (
𝑓

650
) + 1 (4.1) 

The next stage is to convert the spectrum bands into temporal domain by taking the inverse fast Fourier 

transform (IFFT). Then, the intensity for each Bark band is computed as shown in Equation 4.2. 

𝑖(𝑛) = 10 ∗ 𝑙𝑜𝑔10(𝑥2(𝑛) + 10−6)  (4.2) 

Then, the computed intensity in each band is converted to the spectral domain by applying FFT to the 

intensity in the time domain. After that, the intensity for each Bark band is enhanced by multiplying with 

the transfer function of a band pass filter (H(f)), which is shown in Equation 4.3, where 𝛼 = √𝑙𝑛2 , fslow = 

3 Hz, and ffast = 30 Hz 

𝐻(𝑓) = 𝑒
(−(

𝛼𝑓

𝑓𝑓𝑎𝑠𝑡
)2)

− 𝑒
(−(

𝛼𝑓

𝑓𝑠𝑙𝑜𝑤
)2)

  (4.3) 

After that, the enhanced intensity (ienh) in each Bark band is converted to the temporal domain by applying 

IFFT.  

Then, the enhancement factor, which is computed from Equation 4.4, is multiplied with the original signal 

in each Bark band in the temporal domain. Finally, the enhanced signals in each Bark band are added 

together to generate the static EE output speech signal. It is pertinent to point out that Figure 4-2 only shows 

the processing stages for the first Bark band. However, the similar procedure is conducted for the remaining 

Bark bands.  

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 = 1 + (10
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡

20 − 1) ∙ (0.5 − 0.5 ∗ 𝑐𝑜𝑠(
𝜋𝑓𝑚𝑖𝑑𝑏𝑎𝑟𝑘

13
))    (4.4) 
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It should be noted that the enhancement is fixed at 20 dB, and fmidbark is defined as the middle frequency of 

the band.  

Figure 4-3 shows the static EE of a sample stimulus processed by Praat software and MATLAB. It can be 

noted from this figure that the MATLAB implementation of the static EE is identical to its Praat version. 

 

Figure 4-3: Comparison of the generated static EE stimulus from Praat and MATLAB. 

4.1.3 Modulation spectrogram analysis 

The distribution of modulation energy as a function of modulation frequency and acoustic frequency, which 

is averaged over all speech frames, was determined for both clean speech and static EE speech in MATLAB. 

Figure 4 – 4 allows for visualization of the impact of the static EE algorithm. It can be observed from Figure 

4 – 4 b that the static EE boosts the modulation energy significantly in 4 – 10 Hz only for acoustic channels 

around 1000 Hz. As mentioned earlier, it is well-known that slow temporal envelope modulations in the 4 

– 10 Hz provide useful cues for speech perception [4]. It is evident from Figure 4 – 4 b that the static EE 

algorithm exaggerates these useful cues. 
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Figure 4-4: Modulation spectrograms for the original and enhanced speech sample. (a) original 

speech, (b) static EE. 

4.2 Subjective assessment procedure 

4.2.1 Database 

A noisy speech database was created for the subjective and objective assessment of the speech intelligibility 

in a manner similar to Chapter 3, wherein the clean speech sentences were taken from the Hearing in Noise 

Test (HINT) database [28]. The clean speech sentences were corrupted by two different types of noise, 

stationary (HINT speech-shaped-noise (SSN)) and non-stationary (multi-talker-babble-noise (MTBN)) at 

four different SNRs. The noisy speech stimuli were then processed by static EE. In addition, in order to 

assess the benefits of incorporating a NR algorithm as a front-end to the static EE, logMMSE and MHA 

NR algorithms were applied to the noisy speech prior to the application of the static EE algorithm. Thus, 

the database contained 25 lists x 10 sentences/list x 2 types of background noise (SSN and MTBN) x 4 

SNRs (3 dB, 0 dB, -3 dB, and -6 dB) x 4 processing conditions (unprocessed, SEE, logMMSE&SEE, and 

MHA&SEE) = 8000 stimuli. 
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4.2.2 Audio presentation and speech intelligibility measurement 

Speech perception in noise was measured in a manner similar to the method discussed in Chapter 3 (viz. 

speech stimuli were played via the interface shown in Figure 3-7). As discussed in Chapter 3, the 

participants received the signal diotically through a pair of Sennheiser HDA 200 headphones at the most 

comfortable level. In addition, participants were told that they would hear sentences in background noise, 

and they heard each sentence just one time. The participants had to repeat the speech token heard by them, 

and the number of correctly repeated key words were logged before presenting the next sentence in the list. 

It is also important to note that the order of processing conditions was randomized and counterbalanced 

across the participants. 

4.2.3 Participants  

Subjective data collection was performed in two experiments: stationary background noise and non-

stationary background noise. In the stationary background noise experiment, the static EE algorithm was 

evaluated subjectively in the presence of SSN by two different groups of participants: ten children with 

APD, and ten children with normal hearing. The children with APD and NH ranged between 8.1-13.5 and 

8.4-17.4 years respectively. For the non-stationary background noise experiment, the MTBN background 

noise database was utilized for benchmarking the performance of the static EE at different SNRs. Then, the 

performance of the static EE was evaluated subjectively by a new APD group of ten participants, who were 

distinct from the APD group that participated in the stationary background noise experiment. It should be 

noted that the children with APD participating in the non-stationary background noise experiment ranged 

between 7.9 – 15 years in age.  It is pertinent to point out that children suspected of APD were referred to 

H.A. Leeper Speech and Hearing clinic at Western University because their parents or teachers expressed 

concerns about their listening abilities. Case history, behavioral surveys, questionnaires of auditory 

processing problems , educational risk and screening identification for targeting educational risk indicated 

that these children were at risk and should undergo auditory processing assessment [72]. The auditory 

processing assessment was carried out on children suspected of APD and children were identified as APD 

based on ASHA guidelines [64]. Children with NH had no developmental or academic or listening concern. 

All participants hearing thresholds were within 25 dB HL at octave frequencies from 250- 8000 Hz. One 

APD child’s hearing threshold at 8000 Hz was 30 dB HL in the left ear. 
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4.3 Subjective analysis 

4.3.1 Stationary background noise experiment 

4.3.1.1 Averaged ratings (plots) 

The averaged speech intelligibility scores along with their standard deviation for the APD and children with 

normal hearing participant groups are illustrated in Figure 4 - 5 and Figure 4 - 6 respectively, where the 

UP, SEE, logMMSESEE, and MHASEE conditions represent (1) the unprocessed, (2) static EE by itself, 

(3) combination of logMMSE NR and static EE, and (4) combination of MHA NR and static EE of noisy 

speech at different SNR values respectively. The subjective results in Figure 4 – 5 demonstrate that for the 

APD participant group, SEE was better in terms of the speech intelligibility mean scores only for SNR = -

3 dB compared to UP condition. On the other hand, as illustrated in Figure 4 – 6, for the children with 

normal hearing participant group, SEE was worse in terms of the speech intelligibility mean scores 

compared to UP regardless of the SNR parameter. The results also demonstrate that the incorporating of 

MHA NR algorithm as a front-end to the static EE results improved the effectiveness of the static EE only 

for poorest SNR (i.e. SNR = -6 dB) across participant groups. However, as can be noted from Figures 4 – 

5 and 4 – 6, the application of logMMSE NR algorithm can be seen to be inferior compared to MHA NR 

algorithm irrespective of the SNR values and participant groups. 

 

Figure 4-5: Averaged speech intelligibility scores for children with APD. 
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Figure 4-6: Averaged speech intelligibility scores for children with NH. 

4.3.1.2 Statistical analysis 

Repeated measures ANOVA was conducted with the results obtained from the children with normal hearing 

and children with APD participant groups to determine whether these differences were statistically 

significant. In a manner similar to Chapter 3, the raw scores were first transformed to RAUs by using 

Equation 3.3, and the repeated measures ANOVA was performed with different processing (i.e. UP, SEE, 

logMMSESEE, and MHASEE) and SNR as the within-subject factors. Mauchly’s test of sphericity was not 

violated for any of the variables. There were significant main effects of processing (F (3, 54) = 30.322, p < 

0.001) and SNR (F (3, 54) = 422.722, p < 0.001) parameters. There was no statistically significant 

interaction between the processing, SNR parameters and the subjective groups (normal vs. APD), indicating 

that altering the processing and SNR values had a similar effect across both participant groups. However, 

there was significant interaction between processing and SNR variables (F (9, 162) = 12.928, p < 0.001), 

suggesting that the relative performance of the static EE algorithm for a given condition depended on the 

SNR parameter. 

To further investigate this interaction, post-hoc comparisons between subjective data at different processing 

and SNR values were conducted with Bonferroni correction. The first salient outcome of this analysis 

showed that the scores associated with MHASEE processing were significantly better than UP, SEE, and 

logMMSESEE scores only at SNR = -6 dB. In addition, the performance of MHASEE condition was 

statistically better than logMMSESEE at SNRs 3 and -3 dB, while the performance of these two conditions 

was statistically similar only at SNR = 0 dB. The second salient outcome of this analysis indicated that the 

performance of SEE and logMMSE processing was statistically similar at SNRs -3 and -6 dB, while SEE 
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condition is statistically better than logMMSESEE at SNRs 3 and 0 dB. In addition, the performance of 

SEE and MHASEE processing was statistically similar for all SNRs values except for SNR = -6. The last 

salient outcome of this analysis illustrated that the scores associated with SEE condition were significantly 

poorer than unprocessed scores only at SNR = 3 dB, while the performance of SEE and UP processing was 

statistically similar at SNRs 0, -3, and -6 dB.  

4.4 Non-stationary background noise experiment 

4.4.1 Averaged ratings (plots) 

The averaged speech intelligibility scores for the new group of children with APD along with their standard 

deviations are illustrated in Figure 4 – 7. The subjective results shown in Figure 4 – 7 demonstrate that the 

application of the static EE by itself, and the incorporation of NR algorithms as a front-end to the static EE 

was inferior in improving speech intelligibility irrespective of the SNR values when the background noise 

was non-stationary (MTBN).  

 

Figure 4-7: Averaged speech intelligibility scores for children with APD. 

A separate statistical analysis was conducted with the results obtained from the children with APD in a 

manner similar to the stationary background noise experiment. The repeated measures ANOVA was 

performed with SNR and processing (UP, SEE, logMMSESEE, and MHASEE) as the within-subject 

factors. Mauchly’s test of sphericity was violated for the condition variable (χ2(5) = 11.774, p = 0.039), so 

the Greenhouse- Geisser correction was used for this condition (ε = 0.548). There were significant main 

effects of SNR (F (3, 27) = 77.717, p < 0.001) and condition (F (1.645, 14. 807) = 142.220, p < 0.001) 

parameters. In addition, there was a significant interaction between the SNR and condition variables (F 
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(3.492, 31.432) = 8.034, p < 0.001), indicating that the relative performance of the static EE algorithm for 

a given condition depended upon the SNR value. 

To further investigate this interaction, post-hoc comparisons between the subjective data at different SNR 

and processing values were conducted with Bonferroni correction. Major outcomes of this analysis include: 

(1) the UP scores were significantly better than the ones associated with SEE, logMMSESEE, and 

MHASEE processing for all SNR values, except for SNR = 0, where the scores from SEE processing was 

statistically similar to UP scores, (2) the performance of the SEE processing was statistically better than 

logMMSESEE and MHASEE conditions regardless of SNR values; and (3) the performance of 

logMMSESEE was statistically better than MHASEE only at SNR = 3 dB, while for the other SNR values, 

the scores associated with logMMSESEE was statistically similar to MHA processing. It should be noted 

that the SPSS outputs from both stationary and non-stationary background noise   experiments can be found 

in Appendix C of this thesis.  

4.5 Objective analysis 

4.5.1 Stationary background noise experiment 

4.5.1.1 First phase 

In the first phase of the objective assessment, both HASPI and ModA objective indices were applied to 

predict the speech intelligibility for static EE algorithm across the same processing conditions applied 

during the subjective assessment of the stationary background noise experiment. As it was mentioned in 

Chapter 3, the computation of HASPI and ModA were based on the MATLAB code provided by Kates 

[30] and Chen et al [31].  Correlation coefficients and standard errors of estimation were used for evaluating 

the performance of these two objective metrics (i.e. HASPI and ModA). A correlation analysis was 

employed in such a way that, objective scores were computed for each processing conditions across all 

individual APD subjective scores (i.e. total 160 scores, ten APD subjects x 16 processing conditions [4 

processing (SEE, logMMSESEE, MHASEE, and UP) x 4 SNRs (3, 0, -3, and -6 dB)]. Hence, 160 pairs of 

subjective and objective scores were available for correlation analysis.  It is pertinent to point out that a list 

of ten sentences was randomly selected from the SSN database for each processing condition, and the 

objective speech intelligibility predictors (HSPI and ModA) were computed from all ten sentences in the 

list. Therefore, the average HASPI and ModA objective scores across these ten sentences were correlated 

with their corresponding subjective scores. 
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Table 4-1: Correlation coefficient and standard error of estimation for HASPI and ModA. 

Objective measure ρ σe 

HASPI 0.75 0.19 

ModA 0.24 0.28 

Table 4.1 shows the correlation coefficients and the standard errors of estimation for HASPI and ModA 

metrics. It can be noted from Table 4.1 that HASPI exhibited significantly higher correlation with the 

subjective scores compared to ModA. In addition, HASPI shows less percentage standard error of 

estimation compared to ModA.  Figure 4 – 8 depicts the scatter plot of the predicted values of the speech 

intelligibility scores from HASPI and ModA versus the actual APD subjective scores. It can be noted from 

Figure 4 – 8 that the majority of HASPI scores are located close to the line of identity (equality) unlike the 

ModA scores, which are located far from the line of identity.  

 

Figure 4-8: Scatter plot of the predicted and APD subjective scores for HASPI and ModA. 

4.5.1.2 Second phase 

Since HASPI correlated highly with the APD subjective scores for the stationary background noise 

experiment, it can be used to evaluate the performance of static EE algorithm for non-stationary background 

noise experiment. However, to find a better mapping between HASPI and subjective data, a data-driven 
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approach was taken to derive an objective predictor in a similar manner of dynamic EE. As it was discussed 

in Chapter 2, section 2.6.1, HASPI scores are computed from the raw features of HASPI [i.e. cepstral 

correlation (c) and three-level temporal fine structure covariances (aLow, aMid, and aHigh) as shown in 

Equation 2.1]. Hence, in the second phase of the objective assessment, a modified HASPI metric was 

derived by computing the raw features of HASPI for each individual subjective score across each processing 

condition [viz. 160 scores (ten APD subjects x 16 processing conditions)]. Then, various multivariate 

regression analyses were performed between HASPI features and APD subjective data to derive an 

objective speech intelligibility predictor. 

4.5.1.3 Training the model 

Multivariate regression analysis was conducted by applying machine learning techniques via ‘Regression 

Learner ‘feature in MATLAB. It should be noted that automated training was performed to search for the 

best regression model type, the one that achieves the lowest value of root mean square error (RMSE). The 

HASPI features (viz. C, aLow, aMid, and aHigh) and the APD subjective scores from the stationary background 

noise experiment were defined as predictors and response variables respectively to the regression model.  

After training a model in ‘Regression Learner’ application in MATLAB, an objective predictor was derived 

as a combination of a set of HASPI features following the same procedure that was conducted by Kates [5]. 

The best predicted model that can explain the highest amount of variance (79%) and the lowest value of 

RMSE (0.1318) was found to be a regression tree model. It should be noted that the regression tree model 

is termed as ‘static EE data trained (SEEDT)’ model for the rest of this thesis. 

4.5.1.4 Testing SEEDT model 

In order to assess the accuracy of SEEDT model, the correlation analysis was performed to measure the 

strength of a relationship between the predicted subjective scores from the SEEDT model and subjective 

scores, followed by computing the standard error of estimation and Bland-Altman analysis to evaluate the 

reliability of the SEEDT model. The correlation analysis was performed across the subjective data and their 

corresponding predicted subjective scores form the model in a manner similar to section 4.4.1.1. In fact, 

predicted subjective scores are computed by applying SEEDT model to the raw-features of HASPI 

computed for stationary and non-stationary background noise database. Hence, 160 pairs of subjective and 

predicted subjective scores were available for each correlation analysis (e.g. NHC and children with APD 

participants).  
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It can be noted from Table 4.2 and Fig 4-9 that the SEEDT model exhibited the stronger relationship with 

NHC subjective scores, which were collected from the stationary background noise experiment, compared 

to APD subjective scores, which were collected from the non-stationary background noise experiment. In 

addition, the predicted subjective scores showed a lower standard error of estimation for NHC compared to 

APD participants. The Bland-Altman plots associated with NHC and APD subjective scores are displayed 

in Figs 4 –10 and 4 – 11 respectively.  It should be noted from Figs 4 – 10 and 4 – 11 that the mean 

difference scores were 0 % and - 27.68 % for NHC and APD subjective scores respectively. Hence, it can 

be noted that the model is significantly more reliable in predicting NHC subjective scores for the stationary 

background noise experiment compared to predicted APD subjective scores for the non-stationary 

background noise. As it was mentioned in Chapter 3, a mean difference score that differs from zero is 

evidence of bias in the model, while a zero-mean difference score indicates a perfect agreement between 

the actual and predicted subjective scores. Therefore, the amount of bias in the model, which is relative to 

the measurement error, is significantly higher for APD subjective scores compared to NHC subjective 

scores. 

Table 4.2 Correlation coefficient and standard error of estimation for NHC and children with APD 

Table 4-2: Correlation coefficient and standard error of estimation for NHC and children with 

APD. 

 

Predicted subjective scores ρ σe 

NHC 0.94 0.09 

Children with APD 0.77 0.18 
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Figure 4-9: Scatter plot of the predicted and actual subjective scores for children with APD and NHC. 
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Figure 4-10: Bland-Altman plot (NHC subjective scores versus predicted scores). 

 

 

 

Figure 4-11: Bland-Altman plot (APD subjective scores versus predicted scores). 
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4.6 Discussion 

This chapter contributed novel experimental results on the benefits of the static EE when the enhancement 

was applied to the noisy speech at different SNRs in the presence of stationary and non-stationary 

background noise for children with auditory processing disorder. Furthermore, an objective model was 

derived to predict the speech perception for further benchmarking of the static EE in different processing 

conditions (e.g. RM applications of the static EE). These salient experimental results are discussed in the 

following sections: 

4.6.1 Subjective and objective data 

To the best of our knowledge, this study is the first one to show that children with APD do benefit from 

static EE. In addition, this study is the first one to show the effectiveness of the static EE for hearing aid 

applications with this population. 

This chapter also explored two objective metrics, (viz. HASPI and ModA), as they have been previously 

validated with speech perception data from hearing impaired listeners and cochlear implant subjects. Our 

experimental results showed that HASPI had a significantly better correlation with subjective scores from 

children with APD compared to ModA. However, since in real-time signal processing applications 

achieving a reference speech (clean speech) is a challenging task, proposing a non-intrusive objective 

metrics (e.g. ModA) is preferred.  Therefore, in the next chapter of the thesis, a novel objective predictor 

will be proposed to predict the perceptual impact of new EE algorithms by training a model based on APD 

subjective scores, which were collected from both stationary and non-stationary background noise 

experiments, and ModA features. 

Although the raw correlation between HASPI and subjective scores in the stationary background noise 

study was high (0.82), a multivariate tree regression model (i.e. SEEDT) was derived to better describe the 

relationship between HASPI raw features [envelope cepstral correlation (C), Low-level(aLow), Mid-

level(aMid), and High-level (aHigh) fine structure)] and the subjective scores. This approach is novel to the 

static EE algorithm assessment, but as it was mentioned in Chapter 3, the same strategy has been employed 

before for evaluating hearing aid algorithms such as the research study conducted by Kates [70] to assess 

single microphone noise reduction algorithm objectively. 
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4.6.2 Static EE, and interaction with noise type and SNR 

This chapter benchmarked the performance of the static EE for hearing aid applications at different SNRs 

and noise types. The results suggested that incorporating the static EE by itself was inferior in improving 

the speech intelligibility scores regardless of the SNR values and background noise type across participant 

groups. In general, it can be observed from the experimental results that the performance of the static EE 

algorithm depends upon the SNR parameter and type of the background noise. These critical parameters 

were not explored comprehensively in previous research [26] and [27]. 

4.6.3 Effect of the NR algorithm 

As the performance of the static EE was not statistically better in terms of the speech intelligibility 

compared to unprocessed condition when the enhancement was applied to the noisy speech instead of clean 

speech, it is potentially beneficial to consider noise mitigation prior to SEE. Hence, a NR reduction 

algorithm as a front-end to envelope enhancement algorithm may improve the effectiveness of the SEE 

when the SNR is poor. Kuk [20] showed that children with APD performed better with directional 

microphone processing and NR.  This chapter employed a well-known NR algorithm, the logMMSE as 

well as the MHA NR algorithm to reduce the noise prior to SEE. Statistical results demonstrate that the 

performance of the MHA NR was superior compared to its counterpart, logMMSE NR algorithm when the 

background noise is stationary at poor SNRs (e.g. SNR = -3 and SNR = -6 dB). However, the performance 

of both the logMMSE and MHA NR algorithms is inferior when the background noise is non-stationary 

regardless of the SNR values due to the fact that NR algorithms work best with stationary noise sources 

[59]. Statistical results also demonstrate that the application of logMMSE NR prior to the application of the 

static EE was not beneficial to improve the effectiveness of the static EE performance regardless of the 

processing condition.  On the other hand, incorporating MHA NR algorithm as a front-end to the static EE 

improves the performance of the static EE when the background noise is stationary only for SNR = -6 dB. 

It is important to note that for the stationary background noise, the MHA NR performed better compared 

to its rival since MHA NR applies a much more efficient method to smooth the maximum likelihood 

estimate of the SNR compared to logMMSE NR.  

4.6.4 Robustness of SEEDT model 

In this study, we derived an objective predictor (SEEDT) by training the APD subjective data, which were 

collected from the stationary background noise experiment. Since, there is a noticeable difference in model 

features between stationary and non-stationary background noise experiments, the SEEDT model exhibited 

significantly more robustness when it was tested with NHC subjective data, which were collected from the 
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stationary background noise experiment compared to when it was tested with APD subjective data, which 

were collected form the non-stationary background noise experiment. Therefore, a generalized model that 

can predict the perceptual impact of the static EE algorithm with the highest degree of correlation and 

reliability for both stationary and non-stationary background noise environments is essential, which is 

discussed and evaluated in more details in the next chapter. 

Generally, the experimental results presented in this chapter are worthwhile in developing initial 

recommendations on when the static EE algorithm can be expected to be beneficial in hearing aid device 

applications. It is evident from the results that the only benefit from static EE is accrued when the SNR is 

poor (e.g. SNR = -6), the MHA NR is incorporated as a front-end to the static EE, and the background noise 

is stationary. Thus the decision to activate the static EE algorithm can be driven by the automatic 

environment classification algorithms in modern hearing aids, which estimate the type and level of the 

background noise. 

4.7 Summary 

This chapter portrayed the performance of static EE for hearing aid applications by conducting both 

subjective and objective experiments. The first study evaluated the impact of static envelope enhancement 

on speech intelligibility subjectively and objectively, in the presence of the stationary background noise 

and when the static enhancement was applied to the noisy speech at different SNRs. In the non-stationary 

background noise experiment, the subjective and objective experiments were conducted to evaluate the 

effectiveness of the static EE in the presence of a non-stationary background noise at the same processing 

conditions as well as evaluating the objective predictors with the subjective data collected from both 

stationary and non-stationary background noise experiments. Novel results from this study include the 

following : (a) the static EE by itself is not beneficial in improving the speech intelligibility regardless of 

the subjective group and processing conditions, (b) the incorporating  of the MHA NR algorithm is 

beneficial only for the poorest SNR condition when the background noise is stationary, while the 

application of the logMMSE NR algorithm prior to the static EE is not beneficial regardless of the noise 

type and processing condition, and (c) objective speech intelligibility predictor is developed from the 

assessment of static EE algorithm, which can potentially be used for benchmarking new EE algorithms. 

Demonstrated results in this chapter can potentially guide the choice and activation of the static EE in 

assistive hearing device applications (e.g. hearing aid applications). In the next chapter, first, the robustness 

of individually trained models (i.e. DEEDT and SEEDT) will be evaluated by exhibiting how well the 

DEEDT and SEEDT models predict subjective data from static and dynamic EE experiments respectively. 
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Second, a generalized form of trained models based on HASPI and ModA features will be trained and tested 

with companding algorithm. 
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Chapter 5  

5 Speech intelligibility prediction models for EE algorithms 

In the third and fourth chapters, individual models (DEEDT and SEEDT) were derived by training APD 

subjective scores and their corresponding HASPI features in the presence of stationary background noise. 

The robustness of the DEEDT model was evaluated by testing this model with the subjective data, which 

were collected from children and adults with normal hearing, who participated in dynamic EE evaluation. 

In addition, the robustness of SEEDT model was evaluated by testing the model with the subjective data, 

which were collected from children with normal hearing, who participated in non-stationary background 

noise experiment of the static EE evaluation. In this chapter, the robustness of DEEDT and SEEDT models 

will be evaluated by testing these models with APD subjective scores, which were collected from both static 

and dynamic EE evaluations respectively (i.e. testing DEEDT and SEEDT with APD subjective scores, 

which were collected from static and dynamic EE evaluations, respectively). In addition, generalized 

models will be derived by using all the APD subjective scores, which were collected from both dynamic 

EE and static EE, and their corresponding HASPI and ModA features. Furthermore, an optimal speech 

intelligibility prediction model is proposed for assessment and evaluation of new EE algorithms. Finally, 

the implementation of companding algorithm will be examined, and the effectiveness of the companding 

algorithm will be evaluated objectively by using the derived prediction model.  

The following specific objectives will be examined in detail in this chapter (a) testing the robustness of 

DEEDT and SEEDT models in predicting the speech intelligibility scores from children with APD, which 

were collected from static EE and dynamic EE experiments, (b) developing a non-intrusive objective model 

that can predict APD subjective scores extracted from novel EE algorithms, and (c) evaluating the 

companding algorithm in different noisy conditions by employing the proposed objective speech 

intelligibility estimator to predict the perceptual impact of the companding algorithm. 

5.1 Robustness of the individual EE models 

5.1.1 DEEDT model 

The robustness of the DEEDT model was evaluated in Chapter 3 by testing this model with subjective data, 

which were collected from both children and adult participants, who have normal hearing, in the presence 

of stationary background noise. In addition, in this section, the robustness of the model is tested with 
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subjective scores, which were collected from children with APD, who participated in stationary and non-

stationary evaluations of static EE.  Scatter plots of predicted versus subjective scores for stationary and 

non-stationary background noise experiments can be seen in Figure 5-1, which shows the stationary 

background noise experiment has values scattered around the diagonal compared to the non-stationary 

background noise dataset. It can be seen from Table 5.1 that the DEEDT model shows slightly higher degree 

of correlation and lower standard error of estimation with the stationary background noise experiment 

compared to the non-stationary background noise experiment. Furthermore, the Bland-Altman plots for 

APD scores from SSN and MTBN experiments are displayed in Figures 5-2 and 5-3 respectively. It can be 

noted from these figures that the mean difference scores, which indicate an evidence of bias in the predictor, 

is more than three times lower for stationary background noise compared to non-stationary background 

noise. Hence, the DEEDT model is more reliable and accurate when it is applied to predict the subjective 

scores corresponding to the stationary background noise environment compared to predicting the subjective 

scores corresponding to the non-stationary background noise environment.   

Table 5-1: Estimated correlation coefficient and standard error of estimation for DEEDT model. 

DEEDT predicted scores ρ σ 

APD scores from SSN experiment of static EE evaluation 0.82 0.16 

APD scores from MTBN experiment of static EE evaluation 0.72 0.19 
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Figure 5-1: Scatterplots showing the relationship between actual APD subjective scores and predicted 

scores for SSN and MTBN. 

 

Figure 5-2: Bland-Altman plot (APD subjective scores from SSN experiment versus predicted 

scores). 
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Figure 5-3: Bland-Altman plot (APD subjective scores from MTBN experiment versus predicted 

scores). 

5.1.2 SEEDT model 

The robustness of SEEDT model was evaluated in Chapter 4 by testing with both NHC and APD subjective 

scores, which were collected from the stationary and non-stationary background noise experiments , 

respectively. In addition, in this section, the robustness of the model is examined with APD subjective 

scores, which were collected from evaluating the dynamic EE in the presence of stationary background 

noise. The robustness of SEEDT model can be noted from Table 5.2, which shows the correlation 

coefficient and the standard error of estimation. In addition, the scatter plot of predicted scores versus 

subjective scores can be seen from Figure 5-4. Furthermore, the Bland-Altman plot that is shown in Figure 

5-5 indicates the agreement between predicted and actual APD subjective scores. 
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Table 5-2: Estimated correlation coefficient and standard error of estimation for SEEDT model. 

SEEDT predicted scores ρ σ 

Children suspected with APD scores from dynamic EE evaluation 0.89 0.09 

 

Figure 5-4: Scatterplot showing the relationship between actual APD subjective scores and predicted 

scores. 
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Figure 5-5: Bland-Altman plot (APD subjective scores from DEE experiment versus predicted 

scores). 

5.1.3 Comparison between DEEDT and SEEDT models  

It can be noted from the correlation analysis that both DEEDT and SEEDT models show approximately the 

same degree of correlation and standard error of estimation with APD subjective scores associated with the 

stationary background noise experiment. In addition, Bland-Altman plots demonstrated that both DEEDT 

and SEEDT models show approximately similar mean differences, which indicates the same bias in these 

predictors, for results associated with stationary background noise dataset.  Hence, both DEEDT and 

SEEDT models could be considered as accurate models in predicting APD subjective scores associated 

with stationary background noise environment. On the other hand, the DEEDT model demonstrated a lower 

degree of correlation and higher standard error of estimation as well as greater amount of bias in predicting 

the subjective scores collected from non-stationary background noise, when compared with its performance 

in predicting subjective scores associated with the stationary background noise. Therefore, it is essential to 

derive generalized models to predict the corresponding subjective speech intelligibility scores of EE 

algorithms irrespective of the type of the background noise. Hence, in the following section, generalized 

versions of the speech intelligibility predictors are proposed by training models with APD subjective scores 

corresponding to both stationary and non-stationary background noise evaluations of dynamic and static 

EE. 
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5.2 Generalized models for predicting speech intelligibility  

5.2.1 Weighted ModA (WModA) model 

As discussed in Chapter 3 and 4, normalized ModA values showed lower correlation with subjective scores, 

which were collected from dynamic and static EE experiments. Hence, in order to find a better mapping 

between un-normalized ModA values and the subjective data, a data-driven approach is undertaken to 

derive an objective predictor in a manner similar to HASPI objective metric as explained in the next 

paragraph. 

As discussed in Chapter 2, section 2.7.2, the area under the modulation spectrum in each frequency band is 

defined as Ai. It should be noted that in this thesis, we set the number acoustic frequency bands, N, to 8 

(Equation 2.2), and the modulation rate is set to 32 Hz. Hence, the modulation areas in each of the eight-

acoustic frequency channels are used as ModA features for training the model. Therefore, a weighted ModA 

metric was derived by computing eight modulation areas (A1, A2, A3, A4, A5,A6,A7, and A8) for each 

subjective score at each processing condition [viz. 496 scores (11 subjects with suspected APD x 16 

dynamic EE  processing conditions, (10 subjects with APD x 16 static EE processing conditions for SSN), 

and (10 subjects with APD x 16 static EE processing conditions for MTBN)]. Then, the optimal 

combination of the ModA features was decided through multivariate regression analysis, which was 

conducted by using the Regression Leaner feature in MATLAB. After training a model in Regression 

Learner application, a regression tree model achieved the lowest RMSE value, which was 0.1229. 

Furthermore, the regression tree model explained 88% of the variance in the subjective data.  

5.2.2 Modified HASPI (MHASPI) model 

A modified HASPI model is derived in a manner similar to DEEDT and SEEDT models. As we discussed 

in Chapter 3 and Chapter 4, the modified HASPI predictor is derived by computing HASPI features (i.e. c, 

aLow, aMid, and aHigh) for each subjective score at each processing condition [viz. 496 scores (11 subjects 

with suspected APD x 16 dynamic EE processing conditions, (10 subjects with APD x 16 static EE 

processing conditions for SSN), and (10 subjects with APD x 16 static EE processing conditions for 

MTBN)]. The optimal combination of HASPI features was then decided through multivariate regression 

analysis. The same regression model (i.e. the regression tree model, as Weighted Mod-A, achieves the 

RMSE value of 0.1232 and explains 88% of the variability of the subjective data.   



 

 

82 

 

5.2.3 Validating WModA and MHASPI models 

Both WModA and MHASPI were trained with all APD subjective scores. Hence, new subjective data are 

needed to test with these models to verify the model performance in terms of the accuracy. Due to the fact 

that there was no new data available for testing, the most common approach in machine learning techniques 

was applied to test these models. Therefore, to validate WModA and MHASPI models, 80 % of the dataset 

was chosen randomly to be the actual training dataset, and the remaining 20 % to be the test dataset. As a 

result, these models iteratively trained and validated on these different sets [73]. Since, the APD dataset 

consists of 496 scores, 396 and 100 scores were split randomly to train and test datasets respectively. 

Regression tree model was again the best feature mapping model, for both weighted ModA and HASPI 

features.  The RMSE value for WModA and MHASPI trained models were 0.1191 and 0.1313 respectively. 

In addition, the regression tree model based on weighted ModA and HASPI features explain 89 % and 86 

% of the variance in the trained dataset. After that, the test dataset was used to validate the models. Figure 

5 – 6 depicts the scatter plots of the predicted test scores versus the APD subjective test scores for MHASPI 

and WModA predictors. The scatter plots show that both predictors have values scattered around the 

diagonal. In addition, the validity of both MHASPI and WModA can be noted from Table 5.3, which shows 

the correlation coefficients and the standard errors of estimation. Furthermore, the Bland-Altman plots, 

which demonstrate the reliability of these models, based on MHASPI and WModA are displayed in Figures 

5 – 7 and 5 – 8 respectively. It should be noted from these figures that the mean difference scores were 1.16 

% and -2.45 % for MHASPI and WModA respectively, which approximately show a perfect agreement 

between the predicted and actual subjective data. Although WModA and MHASPI predictors showed 

approximately the same level of correlations as well as the same estimation error values and similar Bland-

Altman plots, the WModA predictor is a reference-free objective predictor, unlike MHASPI. A reference-

free objective predictor is highly attractive for online monitoring and optimization of speech intelligibility 

scores associated with the evaluation of future EE algorithms when compared to full-reference MHASPI 

objective predictor. As the subjective evaluation of novel EE algorithms is a time-consuming and expensive 

task, WModA could be a better objective predictor candidate compared to MHASPI to estimate the APD 

subjective scores associated with evaluating of novel EE algorithms. Therefore, in the next section (i.e. 

5.3), the performance of a companding algorithm in the presence of both stationary and non-stationary 

background noise is evaluated by applying the proposed reference-free objective predictor (i.e. WModA) 

to estimate the speech intelligibility associated with the companding algorithm. 
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Table 5-3: Correlation coefficient and standard error of estimation for WModA and MHASPI. 

Model_under_test ρ σ 

MHASPI 0.94 0.11 

WModA 0.95 0.12 

 

 

Figure 5-6: Scatter plot of predicted and subjective test scores for MHASPI and WModA predictors. 
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Figure 5-7: Bland-Altman plot (APD subjective test scores versus predicted scores from MHASPI 

predictor). 

 

Figure 5-8: Bland-Altman plot (APD subjective test scores versus predicted scores from WModA 

predictor). 
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5.3 Companding Architecture 

The companding strategy described in [32] and [33] was used to evaluate the effectiveness of spectral 

enhancement for improving speech recognition in people with ANSD and children with APD. Although 

the companding architecture was developed on an iPad platform, the companding algorithm development, 

debugging, and testing was completed using MATLAB 2016a on a personal computer platform. It is 

pertinent to point out that, in this chapter, offline evaluation of the companding is considered, and realtime 

implementation of the companding algorithm is out of scope for the present study. As it is described in 

Chapter 2, the benefit of the companding architecture in CI users and individuals with ANSD has been 

achieved for both phoneme and sentence recognition test in quiet and steady-state speech-shaped noise. 

However, the previous research considered the subjective evaluation of companding algorithm in the 

presence of only stationary background noise. Although the present work builds on the earlier published 

results, the objective evaluation of companding algorithm in the presence of both stationary and non-

stationary background noise is a novel contribution. Therefore, one of the main goals of this study is to 

evaluate the performance of the commanding architecture in the presence of different types and levels of 

background noise objectively using the non-intrusive metric (i.e. WModA). Furthermore, since the previous 

research indicated that the performance of the companding algorithm reduces in the presence of background 

noise [34], the effectiveness of incorporating the MHA NR algorithm as a front-end to the companding 

algorithm is also investigated.  

5.3.1 MATLAB implementation 

Figure 5 – 9 illustrates the block diagram for a single channel companding architecture. As it can be seen 

from Figure 5 – 9, the algorithm consists of two individual blocks: compression and expansion. The input 

speech signal was first divided into 50 frequency channels using a bank of relatively broad band bandpass 

filters (BBBPFs). Next, the signal in each channel was subjected to amplitude compression. The 

compression index (n1), which was set to 0.3, and the output of the envelope detector (ED) determined the 

amount of compression. The compressed speech signal was then passed through a relatively narrow 

bandpass filters (NBBPFs) before being expanded in the expansion block. The amount of expansion was 

determined by the corresponding ED output and the ratio (n2-n1)/n1, where n2 is the expansion index, which 

was set to 1. Subsequently, the outputs from all the channels were combined to obtain the processed signal. 

It is pertinent to point out that the RMS value of the companded signal was equated to that of the original 

input signal. It also should be noted that both of these filters (e.g. BBBPFS and NBBPFS) had the same 

resonant frequency in the same channel and are described by the following transfer functions: 
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where the subscript (i) refers to the channel index, BBBPFSi(s) = Fi
′2(s) and NBBPFSi(s) = Gi

′2(s), and 

q1 and q2 are filter parameters set to 2 and 12, respectively [33]. To create BBBPFSi(s) and NBBPFSi(s), 

𝐹𝑖
′(𝑠) and 𝐺𝑖

′(𝑠) were each cascaded with themselves. The bilinear transform was used to derive the digital 

versions of the aforementioned filters. Furthermore, in order to reduce the interference across channels, 

zero-phase filtering was used. The resonant frequencies for each channel were logarithmically spaced 

between 100 and 8000 Hz. The resonant frequency, fr,i, is related to τi by the following function: 

𝑓𝑟,𝑖 =
1

2𝜋𝜏𝑖
 (5.3) 

Envelope detection was performed using full-wave rectification followed by a first order lowpass 

Butterworth filter. The resonant frequency of the lowpass filter was calculated with the following function: 

𝑓𝐸𝐷,𝑖 =
𝑓𝑟,𝑖

𝜔
 (5.4) 

where 𝜔 was chosen to be 40 [33]. 

 

 

Figure 5-9: A single channel within the companding architecture [33]. 
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5.4 Two-tone suppression fundamentals 

The NBBPF differentiates the companding architecture from traditional compression strategies and allows 

for two-tone suppression. A high-level description, using Figure 5-10, of how this strategy results in two-

tone suppression is provided in the next paragraph [32]. 

Assume BBBPF is broad and almost perfectly flat, while NBBPF is sharply tuned. A sinusoid, A1, is at the 

resonant frequency of the channel and a sinusoid of larger amplitude, A2, is at a different frequency.  After 

filtering by FBBPF, A1 and A2 are plotted in Figure 5-10.  The gain of the compression block is determined 

by the envelope detector, which is most heavily influenced by the stronger sinusoid, A2. A2 is transformed 

to B2 and A1 is transformed to C1. NBBPF heavily suppresses A2 since it is off the resonant frequency, 

meaning C1 will be the only sinusoid passing through NBBPF. C1 is then expanded to get D1. Therefore, A1 

has been suppressed to D1 by an off-frequency strong tone, A2. B1 illustrates how the amplitude of A1 would 

be unaffected by companding if A2 had not been present. The stronger tone has the effect of suppressing 

the weaker tone, showing the spectral enhancement produced by companding. It should be noted here that 

an analytical proof of the spectral enhancement achieved by the companding architecture is given in [32]. 

 

Figure 5-10: Graphical illustration of companding algorithm [32]. 
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5.5 iPad development 

The companding architecture was developed on an iPad platform as an iOS application for offline 

processing as mentioned in Chapter 2. The application was developed by converting the MATLAB script 

of companding algorithm line-by-line into Swift programming by using Xcode as the IDE and the VDSP 

portion of the Accelerate Framework. It is also pertinent to point out that the iPad platform development of 

companding architecture was motivated since our centre at Western University (National Centre for 

Audiology) has developed a software program to conduct frequency resolution test on the iPad platform. 

Therefore, integrating the companding architecture within the frequency resolution test software on the 

iPad platform allows a clinician to vary the companding algorithm parameters (e.g. number of frequency 

channels, n1, and n2) to compensate the patient’s frequency contrast deficit. Figure 5 – 11 is an example 

stimulus that shows the companding output based on iOS development is identical to the companding 

output, which is generated from MATLAB. In order to verify that the developed companding algorithm 

based on iOS generates the same output as the MATLAB development, the output speech file from iOS is 

first converted to binary file. Then, the binary file from iOS is loaded in MATLAB. 

 

Figure 5-11: Comparison of the companded speech stimulus between MATLAB and iPad platforms. 



 

 

89 

 

5.6 Experimental methodology and results 

5.6.1 Clean speech database and method 

The HINT clean speech sentences were used in evaluating the companding algorithm. The clean speech 

sentences were corrupted by two different types of noise, SSN and MTBN. The noisy speech stimuli were 

then processed by the companding algorithm. In addition, in order to assess the benefits of incorporating a 

NR algorithm as a front-end to the companding algorithm, the MHA NR algorithm was applied to the noisy 

speech prior to the application of the companding architecture. Hence, the database contained 25 lists x 10 

sentences/list x 2 types of background noise (SSN and MTBN)x 3 companding settings (companded, MHA 

NR & companded, and unprocessed) x 4 SNRs (3dB, 0 dB, -3 dB, and -6 dB) = 6000 stimuli.  

5.6.2 Long-term average power spectrum 

Figure 5 – 12 displays a sample experimental result wherein the long-term averaged spectra of a stationary 

noisy speech (SNR = 0 dB) are compared across three processing conditions: unprocessed, companding 

alone, and a combination of MHA NR and companding. It can be seen that companding alone does sharpen 

the speech spectral peaks. However, applying both MHA NR and companding to noisy speech at the same 

SNR (SNR = 0 dB) results in a significantly better sharpening of the spectral peaks. 

 

Figure 5-12: Comparison of long-term average power spectra. 
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5.7 Objective assessment 

Objective assessment of companding algorithm was carried out in a manner similar to the following: a list 

of 10 sentences were randomly chosen from both SSN and MTBN database for each processing condition, 

and WModA objective speech intelligibility predictor was applied to all 10 sentences in the list. The average 

scores across these 10 sentences were used for benchmarking the companding algorithm in the presence of 

both stationary and non-stationary background noise. Figures 5 – 13 and 5 – 14 display the results for 

stationary and non-stationary background noise for a range of SSN values between -6 to 3 dB respectively, 

where the ‘Companding’, ‘MHACompanding’, and ‘UP’ conditions represent (1) the companding, (2) the 

combination of MHA NR and companding, and (3) the unprocessed. Results from these figures reveal that 

the application of MHA NR algorithm can improve the performance of companding architecture 

significantly compared to unprocessed condition, irrespective of the type of the background noise and SNR 

value. However, the amount of improvement is much higher for stationary background noise. 

 

Figure 5-13: Objective assessment of companding algorithm in the presence of stationary 

background noise. 
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Figure 5-14: Objective assessment of companding algorithm in the presence of non-stationary 

background noise. 

Objective analysis in the present study demonstrates that the sole application of companding architecture 

is not beneficial in improving the speech intelligibility when the SNR is poor regardless of the background 

noise type. It is pertinent to point out that overall, the predicted results associated with this study are in a 

very good agreement with previous research by  Narne et al. [34] , which was indicated that companding 

processing by itself was inferior in consonant recognition experiment for  ANSD subjects at lower SNRs ( 

e.g. SNR = 0) compared to  higher SNRs (e.g. SNR  = 15 dB). Although, subjective measurements are 

costly and time-consuming processes, subjective evaluation of companding algorithm across different types 

and levels of background noise is recommended as future work for validating the objective scores computed 

from a proposed non-intrusive objective predictor (i.e. WModA). 
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5.8 Summary 

In this chapter, the robustness of individual DEEDT and SEEDT models were evaluated by testing with 

APD subjective scores, which were collected from static EE and dynamic EE experiments respectively. 

Due to the fact that both of these models are more accurate and reliable in predicting subject scores 

associated with stationary background noise environment compared with predicting the non-stationary 

dataset, a generalized version of intrusive and non-intrusive objective models (e.g. MHASPI and WModA) 

were derived to predict the perceptual impact of novel EE algorithms regardless of the background noise 

environment. Since, the WModA model is a reference-free objective predictor, unlike the MHASPI model, 

it was applied to predict the speech intelligibility scores extracted from the evaluation of the companding 

algorithm across different types and levels of background noise. 

Experiments were conducted to explore the performance of the companding algorithm in the presence of 

different types and levels of background noise as well as evaluating the effectiveness of companding 

architecture by incorporating the MHA NR algorithm. Predicted results showed that the incorporation of 

MHA NR algorithm does expand the effectiveness of the companding algorithm over a wider SNR range. 

These results can potentially guide the choice and activation of companding architecture as one of the signal 

processing strategies for hearing aid applications to improve speech perception in individuals with ANSD 

and children with APD. In the next chapter, the effectiveness of binaural dichotic processing technique is 

evaluated subjectively with adults with HI and normal hearing, at different types and levels of background 

noise. 
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Chapter 6                             

6 Binaural dichotic signal processing  

As discussed in Chapter 2, individuals with SNHL experience a significant challenge in speech perception 

in the presence of background noise since SNHL patients possess poor frequency resolution. In addition, 

the effectiveness of the dichotic processing technique for speech perception for individuals with SNHL was 

discussed in Chapter 2.  In this chapter, the development and assessment of the dichotic processing 

algorithm for a typical binaural hearing aid application is investigated across different processing 

conditions. It is pertinent to point out that the dichotic processing scheme development, debugging, and 

testing was completed using MTLAB 2017 on a personal computer platform. It is also pertinent to point 

out that, in this chapter, offline evaluation of the dichotic processing is considered, and realtime 

implementation of the dichotic processing is out of scope for the present study.  

As described in Chapter 2 in section 2.4, previous studies only explored the assessment of dichotic 

processing after application to short segments of speech (consonants, vowels, and words) [42] , [45], [43], 

[44], and [38]. Furthermore, a comprehensive assessment of the impact of background noise on the 

performance of dichotic processing is lacking as explained in the following: either the studies evaluated the 

effectiveness of dichotic processing with HI subjects only in quiet environments, or they simulated different 

degrees of hearing loss in NH participants by adding Gaussian white noise or pink noise after dichotic 

processing. In addition, the impact of different noise types (stationary vs. non-stationary) has not been 

previously investigated. Therefore, the objective of the present study is to evaluate the effectiveness of the 

dichotic processing scheme on sentence-level speech perception by adults who have NH and HI (i.e. SNHL) 

across different types and levels of background noise. In general, this chapter contributes novel results on 

the performance of the dichotic processing by investigating the following research questions: (1) does the 

dichotic processing algorithm enhance speech intelligibility for adults with SNHL? (2) how does the 

dichotic processing scheme perform in a variety of noisy conditions? (3)  how does the MHA NR algorithm, 

which is incorporated as a front-end to the application of dichotic processing scheme, affect the performance 

of dichotic processing algorithm across different types and levels of background noise? 

6.1 Experiment I 

The effectiveness of dichotic processing scheme is examined with NH and HI participants in the presence 

of stationary background noise (i.e. SSN). 
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6.1.1 Method 

6.1.1.1 Participants 

A total of 20 individuals including 10 individuals with SNHL and 10 individuals with NH participated in 

this study. All the participants were native speakers of English. Group I included 10 individuals with NH, 

five males and five females ranging in age from 18 – 30 years. The individuals with NH had normal pure-

tone threshold at octave frequencies from 250 Hz to 8000 Hz and had no history of any listening difficulties. 

These individuals were audiology students, who were volunteers from Western University. 

Table 6-1: Audiological profile of individuals with SNHL. 

Subject 

no 

Age 

(yr)/Sex 

Pure-tone average of left 

ear (dB HL) 

Pure-tone average of right 

ear (dB HL) 

Degree of hearing 

loss 

1 37/F 34.38 25.63 Mild 

2 79/M 45.71 47.14 Moderate 

3 76/M 66.25 51.25 Moderate-severe 

4 79/M 37.5 35.63 Mild 

5 81/F 40 37.5 Mild 

6 78/M 46.25 40.63 Moderate 

7 60/F 38.13 37.5 Mild 

8 81/M 65.63 55.63 Moderate-severe 

9 72/F 43.75 46.88 Moderate 

10 82/M 56.88 51.25 Moderate-severe 

Group II included 10 individuals, four women and six men, who had been previously diagnosed with SNHL. 

Table 6 -1 shows the audiologic profile of the participants. The age of the participants ranged from 37 – 82 

years. The mean pure-tone average (average thresholds for frequencies from 250 Hz to 8000 Hz) was 42.90 

dB HL for the right ear and 47.45 dB HL for the left ear. Four participants had a mild hearing loss, 3 

participants had a moderate hearing loss, and 3 participants had a moderate-to-severe hearing loss. The 
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participants with SNHL were recruited from clients registered at the Audiology Clinic at the University of 

Western Ontario, Ontario, Canada. It should be noted that all the participants were native speakers of 

English. It is also pertinent to point out that the hearing-impaired participants had symmetric and bilateral 

SNHL without having any other disorders (e.g. cognitive). 

6.1.1.2 Stimuli 

The noisy speech database was created for collecting the speech intelligibility data from the participants in 

a manner described in Chapter 3 and 4 (i.e. the clean speech sentences were taken from the HINT database). 

The clean speech sentences were mixed with stationary background noise (viz. HINT SSN) at different 

SNRs. The noisy speech stimuli were then processed by the dichotic processing algorithm, described in 

more detail in the next section. Furthermore, in order to assess the benefits of the sole application of a NR 

algorithm and its combination as a front-end to dichotic processing scheme, the MHA NR algorithm was 

applied to the noisy speech prior to the application of dichotic processing .This led to a total of 25 lists x 

10 sentences/list x 4 processing condition settings (sole application of dichotic, sole application of MHA 

NR, combination of MHA NR and dichotic, and unprocessed) x 4 SNRs (3 dB, 0 dB, -3 dB, and -6 dB) = 

4000 stimuli in the Experiment 1 database. 

6.1.1.3 Dichotic processing scheme 

Figure 6 – 1 illustrates the building blocks for implementing dichotic processing scheme in this research 

study. It can be seen from this figure that the input speech was first split into 30 frequency bands by 4th 

order Gammatone filters. Then, the 15 odd filters (1st, 3rd, 5th, …, 29th) and 15 even filters (2nd, 4th, 6th, …, 

30th) bands were processed by a separate synthesis filterbanks to generate Output_Left and Output_Right 

signals, respectively. The analysis and synthesis building blocks are briefly described in the following 

paragraphs.  

Previous research study by Kulkarni et al. [38] concluded that the dichotic processing scheme, whose 

implementation was based on auditory critical bandwidth comb filters, achieved a greater improvement in 

speech perception compared to the fixed band width filterbank design. Hence, in this research study, the 

auditory filterbank was constructed from a more efficient implementation technique which is explained in 

the next paragraph.  
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Figure 6-1: Block diagram of the dichotic processing scheme. 

6.1.2 Gammatone filter design 

The digital version of a gammatone filter was achieved by applying the impulse invariance technique. In 

other words, the digital filter was derived from the sampled version of the analog Gammatone impulse 

response, which is shown in Equation 6.1 [74], by iteratively applying the Z transform. 

𝑔𝛾(𝑛) = 𝑛𝛾−1. 𝑎̃𝑛, 𝑛 ≥ 0 (6.1) 

𝑤𝑖𝑡ℎ  𝑎̃ = 𝜆. 𝑒𝑥𝑝 (𝑖𝛽) 

where 𝜆 is the bandwidth parameter, 𝛽 is the oscillation frequency, 𝛾 is the filter order, and n is the sample 

index.  

6.1.2.1 Filterbank design 

An auditory filterbank was constructed from combining the 4th order Gammatone filters based on an 

impulse-invariant, all-pole design. The bandwidth of the auditory filterbank was computed as a function of 

its center frequency by considering the equivalent rectangular bandwidth (ERB) of the auditory filters in 

the cochlea [74]. The corresponding ERB value as a function of frequency in Hz is computed by Equation 

6.2. 

𝐸𝑅𝐵(𝑓) = 𝑞. 𝑙𝑜𝑔 (1 +
𝑓

𝐿.𝑞
) (6.2)  

𝑓 = (𝑒𝑥𝑝 (
𝐸𝑅𝐵

𝑞
) − 1) . 𝐿. 𝑞,  where 𝐿 = 24.7, 𝑞 = 9.265 

In order to design a bank of Gammatone filters that are equally spaced on the ERB scale, the following 

steps were followed; starting with a base frequency of 1000, which indicates that one of the filters in the 

filterbank has a center frequency of 1000 Hz, calculating the corresponding value on the ERB scale using 

Equation 6.2 and derives the center frequencies of the other filters by taking fixed steps on the ERB scale 
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towards higher and lower frequencies [74]. It is pertinent to point out that the step size on the ERB scale 

determines the density of the filters.  It is also pertinent to point out that in this research study, the 

Gammatone filter bank design consists of 30 auditory filters between lower and higher center frequencies 

of 70 and 6700 Hz respectively that operates at a sample frequency (fs) of 16000 Hz. In addition, it should 

be noted that, the centre frequency of 1000 Hz was used as the base frequency and the density of the filters 

in the filterbank was chosen to be one ERB. Figure 6 – 2 shows the magnitude frequency response of the 

filterbank design that was utilized for binaural dichotic processing in this research study. The selected 

scheme generated the 30 Gammatone filters that covered the 1 - 8000 Hz region (the centre frequencies of 

each frequency band (fc) and their corresponding ERBs are shown in Table 6 – 2. 

 

Figure 6-2: Frequency response of the individual filters in the Gammatone filterbank. 
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Table 6-2: Bands in the Gammatone filterbank; Fc: center frequency, ERB, Equivalent Rectangular 

Bandwidth. 

Band # Fc (Hz) ERB Band # Fc (Hz) ERB 

1 73.24 32.60 16 1296.07 164.59 

2 107.67 36.33 17 1469.87 183.35 

3 146.02 40.46 18 1663.48 204.25 

4 188.74 45.07 19 1879.16 227.52 

5 236.34 50.21 20 2119.41 253.46 

6 289.36 55.93 21 2387.05 282.34 

7 348.42 62.31 22 2685.19 314.52 

8 414.21 69.41 23 3017.31 350.37 

9 487.50 77.32 24 3387.29 390.30 

10 569.15 86.13 25 3799.43 434.78 

11 660.10 95.95 26 4258.55 484.34 

12 761.41 106.88 27 4769.99 539.54 

13 874.27 119.06 28 5339.72 601.03 

14 1000 132.63 29 5974.39 669.53 

15 1140.06 147.75 30 6681.39 745.84 
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6.1.2.2 Frequency synthesis block design 

It is pertinent to point out that a reconstruction of the input signal can not be conducted by directly summing 

up the filterbank output channels since the impulse responses of the different frequency channels have 

different fine structure and group delay. Hence, a low-delay (e.g. 4 ms) resynthesis of the filterbank output 

is proposed based on a sampled all pass filter design combined with a delay line [74]. The fine structure 

and the envelope of the impulse response for each frequency channel is delayed by 4 ms. Therefore, all 

frequency bands have their envelope maxima and their fine structure maxima at the same instant of time. 

The synthesis algorithm is introduced in a manner described in the following: the complex output signals 

from the filterbank,  𝑦𝑘̃  (n) are multiplied with the frequency band-dependent complex phase factors, bk  ̃, 

where k and n are the band and sample indices respectively, which is shown in Equation 6.3.  

𝑦′𝑘̃(𝑛) = 𝑏𝑘̃. 𝑦𝑘̃(𝑛), 0 ≤ 𝑘 < 𝐾 (6.3) 

where bk̃ is a phase factor with magnitude 1, which is calculated from Equation 6.4 for a maximum of the 

fine structure at the band-dependent time (tk), where fk is the centre frequency of the band k in Hz. It should 

be noted that tk denotes the time that the envelope of the respective impulse response is maximum or the 

desired group delay for such cases that the maximum envelope is leader in time compared to the desired 

group delay or the maximum envelope is lagger in time than the desired group delay respectively.  

𝑏𝑘̃ = 𝑒𝑥𝑝(𝑖. ∅𝑘) , ∅𝑘 = −2𝜋. 𝑓𝑘. 𝑡𝑘 (6.4) 

Due to the fact that only the real part is used for the synthesis, Equation 6.3 is evaluated for the real part, 

which is shown in Equation 6.5. 

𝑦𝑘
′ (𝑛) = 𝑐𝑜𝑠(𝜙𝑘) . 𝑅𝑒(𝑦𝑘̃(𝑛)) − 𝑠𝑖𝑛(∅𝑘) . 𝐼𝑚(𝑦𝑘̃(𝑛)) (6.5) 

After that, the real part 𝑦𝑘
′ (𝑛) are delayed by a band-dependent amount of Δnk samples as shown in Equation 

6.6, where int() refers to the nearest integer operation. In addition, ∆𝑡𝑘 denoted the difference in time 

between the desired group delay (e.g. 4ms) and the point in time that the envelope of the respective impulse 

response is maximum. It is pertinent to point out that  ∆𝑡𝑘 should be set to zero in such the case that the 

desired group delay is former in time compared to the maximum envelope of the respective impulse 

response. 

∆𝑛𝑘 = 𝑖𝑛𝑡(∆𝑡𝑘. 𝑓𝑠) (6.6) 
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Therefore, the delayed version of the real parts, 𝑦𝑘
′ (𝑛), are shown in Equation 6.7. 

𝑦𝑘
′′(𝑛) = 𝑦𝑘

′ (𝑛 − ∆𝑛𝑘) (6.7) 

The synthesized output signal is finally computed by a weighted sum across all frequency bands (K = 30) 

as shown in Equation 6.8, where 𝑔𝑘 denotes the band-dependent gains.  

𝑦′′′(𝑛) = ∑ 𝑔𝑘 . 𝑦𝑘
′′(𝑛)𝐾−1

𝑘=0  (6.8) 

 Hohmann [74] concluded that the reconstructed speech signal with the analysis-synthesis filterbank with a 

total delay of 4 ms achieved a nearly perfect reconstruction input speech  (i.e. the perceptual difference 

between the input and reconstructed output speech signal is barely audible). Hence, in this research study, 

the same delay time value (i.e. 4 ms) was used for the analysis-synthesis system.  

6.1.3 Audio presentation and speech intelligibility measurement 

Speech perception in noise was measured in a manner similar to Chapter 3 and 4 (viz. using the custom 

software developed in our laboratory, as shown in Figure 3 – 7). The stimuli were presented binaurally 

through the Sennheiser HDA 200 headphones. The presentation level was set to 65 dB Sound Pressure 

Level (SPL) for NH subjects.  For HI listeners, a separate procedure was followed as detailed below. 

For each HI participant, the input diotic and dichotic stimuli at 65 dB SPL were filtered such that necessary 

frequency-specific amplification is provided based on their hearing loss profile.  The target frequency-gain 

response for the left and right ears was derived using the real ear insertion gains (REIGs) prescribed by the 

Desired Sensation Level (DSL) 5.0 algorithm [75]. A 100-tap Finite Impulse Response (FIR) filter was 

designed to match the respective target frequency responses and applied to the test stimuli.  The filtered 

digital stimuli were converted to their analog versions through the sound card and subsequently passed 

through a programmable attenuator and a headphone amplifier.   The combination of the programmable 

attenuator and amplifier ensured that the presentation levels did not exceed the loudness comfort levels.  

Thus, the presentation level of the stimuli was individualized based on the hearing loss of the participant.  

Throughout and end at the end of the experiment, the HI participants provided the feedback on the perceived 

loudness of test stimuli, and with all HI participants, the stimuli were perceived at a comfortable level and 

of equal loudness. The subjective testing with HI listeners was conducted in a double-walled sound booth 

room.  
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6.2 Results 

The averaged speech intelligibility scores along with their standard deviation for the two different 

participant groups (i.e. NH and HI)  are illustrated in Figures 6 – 3 and 6 – 4, where the “up”, “Dichotic”, 

“MHA”, and “MHADichotic” conditions represent the unprocessed, dichotic processing, MHA NR, and a 

combination of MHA NR and dichotic processing of noisy stimuli respectively at different SNR values. It 

can be noted from Figure 6 – 3 that the speech intelligibility scores for dichotic processing stimuli were 

better for unprocessed speech regardless of the SNR condition. However, the improvement observed was 

significantly less for SNR = 3, 0, and -3 dB compared to SNR = -6 dB.  

 

 

Figure 6-3: Averaged speech intelligibility scores for adults with NH. 
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Figure 6-4: Averaged speech intelligibility scores for adults with HI. 

It can be seen from Figure 6 – 4 that the speech intelligibility scores for dichotic processing condition were 

higher than those for unprocessed condition for SNR = 0, -3, and -6 dB. However, the improvement 

observed was significantly higher for SNR = -6 dB condition when compared with SNR = 0 and -3 dB 

conditions. In addition, the unprocessed scores associated with HI were less than the ones observed for NH 

participants irrespective of the SNR value. Furthermore, the incorporation of MHA NR as a front-end to 

dichotic processing is not beneficial in improving the speech intelligibility regardless of the SNR condition 

and participant group.  

6.2.1 Statistical analysis 

To evaluate the effect of processing (unprocessed, dichotic, MHA NR, and a combination of MHA NR and 

dichotic) in different SNR conditions, repeated measures ANOVA was conducted with  processing and 

SNR as the within-subject factors for the results obtained from the NH and HI participants in a manner 

similar to Chapter 3 and 4. It should be noted  that Mauchly’s test of sphericity was violated for the SNR 

variable (χ2(5) = 20.035, p = 0.001), so the Greenhouse-Geisser correction was used for this condition (ε = 

0.643). There was a significant main effect of processing (F (3, 54) = 9.12, p < 0.001) and SNR (F (1.93, 

34.70) = 348.18, p < 0.001) parameters. In addition, there was a significant interaction between the 

processing and SNR variables (F (9, 162) = 6.64, p < 0.001), suggesting that the relative performance of 

different combinations of dichotic processing scheme depended on the SNR value. Furthermore, there was 
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a statistically significant interaction between the processing and the subjective group (NH vs. HI), which is 

indicating that changing the processing condition did not have a similar effect across both groups. 

To further analyze this interaction, Bonferroni pairwise comparison was conducted for the NH and HI 

subjective data at different processing and SNR values. Salient outcomes of this analysis for HI participant 

group include: (1) The scores associated with dichotic processing were significantly better than unprocessed 

scores only at SNR = -6 dB, while unprocessed condition was significant compared to dichotic condition 

only for SNR = 3 dB. Furthermore, the performance of dichotic and unprocessed conditions was statistically 

similar at SNR = 0 and SNR = -3 dB. (2) The scores associated with MHA NR were significantly worse 

compared to scores achieved by dichotic processing at SNR = 3 and 0 dB, while the performance of MHA 

NR and dichotic processing was statistically similar at SNR = -3 and -6 dB. (3) The scores associated with 

a sole application of MHA NR or its application as a front-end to dichotic processing were significantly 

lower compared to scores resulted from unprocessed at SNR = 3 dB, while at the other SNR values, their 

performance was statistically similar. It should be noted that SPSS outputs from subjective experiment of 

the dichotic processing scheme can be found in Appendix D of this thesis.  

Major outcomes of the NH analysis include : (1) the performance of dichotic processing is statistically 

better compared to unprocessed condition only at SNR = -6 dB, (2) the scores associated with MHA NR 

were statistically similar to dichotic processing  regardless of the SNR values, and (3) the incorporating of 

the MHA NR as  a front-end to dichotic does perform statistically similar compared to the  dichotic 

processing performance irrespective to the SNR values. 

6.3 Experiment II 

Usefulness of the dichotic processing technique in enhancing speech intelligibility in individuals with NH 

and SNHL in the presence of non-stationary (MTBN) background noise was evaluated in this experiment. 

6.3.1 Participants 

A total of 20 subjects including 10 NH and 10 HI individuals, who were distinct from Experiment I 

participants, participated in the non-stationary background noise evaluation of dichotic processing. Group 

I consisted of 10 NH subjects, five males and five females ranging in age from 18 – 30 years. Similar to 

Experiment I, the NH participants had normal pure-tone thresholds at octave frequencies from 250 Hz to 

8000 Hz and had no history of any listening difficulties. These individuals were again Audiology students, 

who were volunteers from Western University.  
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Group II included 10 individuals, four women and six men, who had been previously diagnosed with SNHL. 

Table 6.3 shows the audiologic profile of the participants. The age of the participants ranged between 27 – 

81 years. The mean pure-tone average (average thresholds for frequencies from 250 Hz to 8000 Hz) was 

46.87 dB HL for the right ear and 48.08 dB HL for the left ear. Four participants had a mild hearing loss, 

two participants had a moderate hearing loss, and four participants had a moderate-to-sever hearing loss. In 

a similar manner to Experiment I, the participants with SNHL were recruited from clients registered at the 

Audiology Clinic at the University of Western Ontario, Ontario, Canada. The hearing-impaired participants 

had symmetric and bilateral SNHL without having any other disorders (e.g. cognitive). 

Table 6-3: Audiological profile of individuals with SNHL. 

Subject 

no 

Age 

(yr)/Sex 

Pure-tone average of left 

ear (dB HL) 

Pure-tone average of right 

ear (dB HL) 

Degree of hearing 

loss 

1 27/F 38.13 36.25 Mild 

2 77/M 56.25 55.63 Moderate-severe 

3 74/M 56.25 58.75 Moderate-severe 

4 80/F 27.5 58.75 Mild 

5 70/M 48.33 49.38 Moderate 

6 68/M 71.66 69.44 Moderate-severe 

7 77/M 39.38 40 Mild 

8 77/F 44.38 51.25 Moderate 

9 75/F 26.88 26.25 Mild 

10 81/M 60 65.71 Moderate-severe 
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6.3.2 Stimuli 

The noisy speech database was created for collecting the speech intelligibility data from the participants in 

a manner similar to Experiment I. (i.e. the clean speech sentences were taken from the HINT database). 

The clean speech sentences were mixed with non-stationary background noise (viz. MTBN) at different 

SNRs. The noisy speech stimuli were then processed by dichotic processing algorithm. Furthermore, in 

order to assess the benefits of the sole application of  a NR algorithm and its combination as a front-end to 

dichotic processing scheme, the MHA NR algorithm was applied to the noisy speech prior to the application 

of dichotic processing .This led to a total of 25 lists x 10 sentences/list x 4 processing condition settings 

(sole application of dichotic, sole application of MHA NR, combination of MHA NR and dichotic, and 

unprocessed) x 4 SNRs (3 dB, 0 dB, -3 dB, and -6 dB) = 4000 stimuli in the Experiment 2 database. 

6.3.3 Results 

The average scores for the NH and HI participants are shown in Figure 6 – 5 and Figure 6 – 6 , respectively. 

Error bars show one standard deviation of the mean. It can be noted from Figure 6 – 5 that the speech 

intelligibility scores for dichotic processing stimuli were better for unprocessed speech regardless of the 

SNR condition. However, the improvement observed was significantly less for SNR = 3, -3, and -6 dB 

compared to SNR = 0 dB. 

 

Figure 6-5: Averaged speech intelligibility score for adults with NH. 
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Figure 6-6: Averaged speech intelligibility score for adults with HI. 

It can also be seen from Figure 6 – 6 that the speech intelligibility scores for dichotic processing condition 

were slightly higher than those for unprocessed condition for SNR = 0, 3 dB. However, the scores associated 

with dichotic processing were slightly lower compared to the ones associated with unprocessed conditions 

for SNR = -3 and -6 dB. In addition, the processing improvement observed for HI was less than the 

improvement observed for NH participants regardless of the SNR value. Furthermore, the sole application 

or incorporation of MHA NR as a front-end to dichotic processing are inferior in improving the speech 

intelligibility regardless of the SNR condition and participant groups. The only minor speech intelligibility 

improvement was observed only for a sole application of MHA NR in -6 dB SNR condition for both NH 

and HI participants.  

6.3.3.1 Statistical analysis 

As the mean speech intelligibility scores differed across different SNRs and processing conditions, repeated 

measures ANOVA was performed on the arcsine-transformed proportion intelligibility data, with within-

subjects factors, processing method (four values) and SNR (four values), and between-subject factor group 

status (NH or HI). Mauchly’s test showed that the condition of sphericity was satisfied for processing 

method. However, it was violated for the SNR variable (χ2(5) = 11.94, p = 0.036), so the Greenhouse-

Geisser correction was used for this condition (ε = 0.768). The results showed a significant main effects of 

processing method (F (3, 54) = 17.75, p < 0.001) and SNR (F (2.3, 54) = 698.10, p < 0.001) parameters. 

There was a significant interaction between processing method and SNR, (F (9, 162) = 6.81, p < 0.001), 
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reflecting that the relative performance of the processing method depended on the SNR value. In addition, 

there was a significant interaction between the processing method, SNR values and the subject group (NH 

vs. HI) reflecting the fact that changing the processing method had a different effect across both groups. 

There were no other significant interactions.  

Post-hoc pairwise analysis with Bonferroni correction was conducted between the NH and HI subjective 

data at different processing conditions and SNR values. Major outcomes of this analysis for HI participants 

include that (1) the scores associated with dichotic processing method were statistically similar with the 

ones associated with unprocessed method regardless of the SNR values. (2) the performance of dichotic 

processing method was significantly better than the MHA NR and the application of the MHA NR 

processing as a front-end to the dichotic processing method only for SNR = 3 dB respectively. (3) the scores 

associated with MHA NR processing method were significantly worse than unprocessed scores at SNR = 

3 dB, SNR = 0 dB, and SNR = -3 dB. (4) the performance of all the processing methods was statistically 

similar at SNR = -6 dB.  

Salient results of the post-hoc analysis for NH subjects include that (1) the scores associated with dichotic 

method were significantly higher than unprocessed scores only at SNR = 0 dB, (2) the performance of the 

MHA NR processing method was significantly worse than dichotic processing method for SNR = 3 dB and 

SNR = -3 dB. (3) the scores associated with unprocessed condition was significantly better that the MHA 

NR processing method only for SNR = -3 dB, and (4) the performance of dichotic, MHA NR and 

unprocessed methods were statistically similar only at SNR = -6 dB. 

6.4 Discussion 

This study contributed several novel results on the benefits of dichotic processing scheme in the presence 

of different types and levels of background noise for binaural hearing aid applications. In particular, this 

study was performed to show for what type and level of background noise, dichotic hearing can improve 

speech intelligibility for the HI listener. Salient experimental results are discussed in the following sections: 

6.4.1 Subjective data  

Speech intelligibility scores of individuals with SNHL were poorer when compared with those associated 

with NH subjects regardless of the type and level of the background noise. However, the difference between 

speech intelligibility scores from SNHL and NH individuals are higher for non-stationary background noise 

compared to scores associated with stationary background noise. Furthermore, the reduction in speech 
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intelligibility scores with reduced SNR was higher for those who have moderate and moderate-severe 

degrees of HL when compared with participants, who have mild degree of HL. This may be due to difficulty 

in extracting the envelope and fine structure cues in adverse SNR, which is the major challenge with people 

with SNHL [76]. To the best of our knowledge, this study is the first one to investigate the performance of 

dichotic hearing for binaural hearing aid application in the presence of different types and levels of 

background noise at the sentence level speech perception. Overall, the results associated with this study are 

consistent with the results reported by Kulkarni et al. [38] , which were demonstrated that the most  

significant benefit of dichotic processing achieved at poorest SNR condition. In addition, the results 

associated with this study are in a very good agreement with previous results by Kolte and Chaudhari [44], 

which demonstrated that the speech perception improvement achieved by dichotic processing technique 

varies  between subject to subject with respect to their degree of  hearing loss. Furthermore, the statistical 

analysis results associated with this study demonstrated that the dichotic processing technique is much more 

effective for NH compared to HI participants, which is consistent with the more recent research study 

presented by Ozmeral et al. [46]. 

 

Figure 6-7: Speech intelligibility comparison between NH and HI in the presence of SSN. 

To further shed light on the discussion in the preceding paragraph, the HI data was split based on their 

degree of hearing loss and shown in Figures 6-7 and 6-8.  In these figures, the HI speech intelligibility data 

in RAUs were binned into “mild” (< 40 dB HL PTA), “moderate” (40-60 dB HL PTA), and “moderate-

severe” (> 60 dB HL PTA).  Consistent with the literature, these results demonstrate that the dichotic 

processing technique is more effective with HI individuals who have mild and moderate hearing loss when 

compared to HI individuals with moderate-to-severe hearing loss in the presence of stationary background 
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noise. However, when the background noise is non-stationary, the dichotic processing technique is not 

effective regardless of the degree of hearing loss between HI individuals. Furthermore, the application of 

MHA NR by itself or the application of the MHA NR prior to the dichotic processing is inferior in 

improving the speech intelligibility irrespective with the degree of the hearing loss and the background 

noise. 

 

Figure 6-8: Speech intelligibility comparison between NH and HI in the presence of MTBN. 

6.4.2 Dichotic processing, and interaction with noise type and SNR 

This study benchmarked the performance of the dichotic hearing scheme at different noise levels and noise 

types. The results suggested that the performance of dichotic hearing primarily depends upon the SNR 

parameter and the type of the background noise. These critical parameters were not explored 

comprehensively in previous research [38], [42], [45]. Although dichotic processing demonstrated 

improvement in speech intelligibility at SNR = -3 dB for some HI participants, who have mild hearing loss, 

regardless of the background noise type, the results suggested that incorporating the dichotic scheme is 

much more beneficial for individuals with mild-moderate SNHL in the presence of stationary background 

noise at the poorest SNR (SNR = -6 dB). Furthermore, on average, dichotic scheme performance was not 

statistically better in terms of speech intelligibility when compared to the unprocessed condition when the 

background noise was non-stationary. However, the speech intelligibility scores associated with some HI 

participants, who have mild hearing loss, achieved benefits from dichotic processing in the presence of non-

stationary background noise environment at SNR = 0 dB.  
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6.4.3 Effect of the MHA NR algorithm 

Statistical results demonstrated that the performance of the MHA NR was statistically worse compared to 

unprocessed condition in terms of speech intelligibility for stationary background noise at SNR = 3 dB for 

HI participants. In addition, the performance of the MHA NR was not statistically better in terms of 

intelligibility compared to unprocessed condition in the presence of stationary background noise at SNR = 

0, -3, and -6 dB for HI subjects. Furthermore, when the background noise is non-stationary, the performance 

of the MHA NR was significantly poorer at SNR = 3, 0, -3 dB and statistically similar at SNR = -6 dB 

compared to unprocessed condition for HI participants. These results are in a good agreement with the 

results obtained in [77], [78], and [76], which demonstrated that NR algorithm alone does not improve 

intelligibility for HI individuals in various noisy conditions. 

6.4.4 Dichotic processing, and interaction with MHA NR algorithm 

Statistical results indicate that the incorporation of the MHA NR as a front-end to the application of dichotic 

hearing was not beneficial to improve the effectiveness of the dichotic processing performance regardless 

of the type and level of the background noise. This may be defended by the fact that musical noise generated 

with MHA NR can reduce the modulation depth and create spurious modulations to the speech signal.  

Hence, since individuals with SNHL suffer from deficits such as frequency selectivity or impaired 

modulation detection, incorporating the MHA NR as a front-end to dichotic processing may increase their 

spectral masking thresholds. However, it will be of future research interest to investigate a combined 

directional microphone processing NR system as a front-end to the application of dichotic scheme in order 

to further investigate the impact of noise on dichotic processing. Although, previous research work by 

Kulkarni [38]  reported no significant effect on the identification of the direction of broadband sound 

sources achieved by incorporating binaural dichotic processing, it should be beneficial  to investigate the 

impact  of dichotic processing technique on the identification of sound sources at different types of 

broadband noisy stimuli as a possible future research interest.  

Generally, the subjective experimental results demonstrated in this research study are worthwhile in 

developing the realtime application of the dichotic processing for binaural hearing aid applications. It is 

evident from the subjective results that the dichotic processing should be applied in binaural hearing aids 

by deactivating the digital NR algorithm of the hearing aid regardless of the noise level and type. It is also 

evident from the subjective results that the main benefit from dichotic processing technique is accrued when 

the SNR is poor (e.g. SNR = -6 dB) and when the background noise is stationary.  This outcome 
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recommends that depending on the type of processing condition, dichotic scheme should be activated as 

modern hearing aids incorporate automatic environment classification algorithms, which estimate the type 

and level of background noise to be used in decision making on the activation of the algorithms. 

6.5 Summary 

This chapter portrayed the performance of the dichotic hearing processing for binaural hearing aid 

applications. In particular, subjective experiments were conducted to investigate the performance of the 

dichotic hearing scheme in terms of speech intelligibility at different types and levels of background noise.  

Key new results from this study include: (1) the dichotic hearing scheme is effective only in certain 

background noise as well as SNR conditions, and (2) the incorporation of the MHA NR algorithm as a 

front-end to the application of dichotic hearing processing is not beneficial in improving the speech 

intelligibility regardless of the subjective groups and processing conditions. In conclusion, dichotic hearing 

processing can be considered for improving the speech intelligibility for individuals with SNHL in some 

environmental conditions by reducing the spectral masking thresholds due to the fact that sensory cells 

corresponding to alternate bands are always relaxed in spectral splitting scheme. The next Chapter 

concludes the research studies presented in this thesis followed by proposing some possible future works. 
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Chapter 7  

7 Summary 

This chapter will present an overview of the presented work with a particular focus on the key contributions 

and proposed future work. 

7.1 Thesis summary 

Previous studies have shown that exaggerating the slow temporal modulations, which is achieved by 

applying different schemes of EE algorithms, demonstrated benefits on phrase and consonant identification 

for individuals with ANSD. In addition, published studies demonstrated that enhancing both the spectral 

and temporal contrast, which is achieved by incorporating the companding algorithm, improved speech 

perception in individuals with ANSD.  Furthermore, past studies also demonstrated that dichotic hearing 

processing technique improved speech intelligibility for individuals with SNHL by reducing the spectral 

masking threshold and improving the frequency selectivity for patients who are suffering from SNHL. 

Although results associated with previous research studies are promising, comprehensive assessments of 

the above signal processing techniques in more realistic noisy environments are lacking. Therefore, this 

thesis contributed novel results on the performance of the alternative class of signal processing techniques, 

which are effective in improving speech intelligibility with individuals who have poor temporal and/ or 

spectral processing as indicated in the following paragraph. 

The main objectives of this thesis concentrate on the comprehensive assessment of two different schemes 

of EE algorithms (e.g. dynamic EE and static EE) by children with APD in a variety of noisy conditions. 

In addition, reference-free and full-reference objective speech intelligibility predictors were developed 

based on HASPI and ModA metrics, respectively and utilized for the assessment of EE algorithms. 

Furthermore, in this thesis the comprehensive evaluation of dichotic processing in the presence of different 

types and levels of background noise was examined with individuals with SNHL.  

Chapter 2 presented published results on the effectiveness of various signal processing algorithms (e.g. EE, 

companding, and dichotic) followed by an individual description of each algorithm. In addition, a literature 

review of the existing portable platforms for implementing signal processing algorithms was examined as 

well as the description of iPad and open MHA platforms. Furthermore, an intrusive (i.e. HASPI) and non-
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intrusive (i.e. ModA) objective metrics were described followed by introducing the well-known NR 

algorithms (e.g. logMMSE and MHA NR). 

In Chapter 3, the performance of the dynamic EE algorithm was conducted for remote microphone 

applications across different types and levels of background noise. The assessment of the algorithm was 

performed in children suspected with APD in terms of speech intelligibility in the presence of stationary 

background noise at the listener location. An intrusive objective speech intelligibility predictor based on 

HASPI was developed (DEEDT) and utilized for the comprehensive assessment of the dynamic EE 

algorithms across a variety noisy conditions. The subjective and objective assessments of dynamic EE 

suggested that the dynamic EE algorithm is more suited for RM applications, wherein the SSNR is high 

(e.g.  3 dB) and LSNR is poor (e.g.= -6 dB).  

The focus of Chapter 4 was on the evaluation of the static EE for hearing aid applications by performing 

both subjective and objective experiments. The subjective assessment of the static EE algorithm was 

conducted in the presence of stationary and non-stationary background noise in children with APD. For 

objective evaluation of the static EE, an intrusive objective intelligibility model based on HASPI was 

developed (i.e. SEEDT) and utilized for further benchmarking of the EE algorithms. Experimental results 

demonstrated that the application of static EE for hearing aid applications is more beneficial only when the 

SNR is poor, and the background noise is stationary. 

In Chapter 5, the robustness of individual DEEDT and SEEDT objective predictors was evaluated by testing 

with APD subjective scores, which were collected from static EE and dynamic EE , respectively. In 

addition, generalized versions of intrusive and non-intrusive objective models (e.g. MHASPI and WModA) 

were derived to predict the speech intelligibility of novel EE algorithms regardless of the type of 

background noise. Furthermore, companding architecture was studied and examined, and it was assessed 

objectively using non-intrusive generalized model (i.e. WModA) across different types and levels of 

background noise.  

In Chapter 6, the effectiveness of the dichotic hearing scheme was investigated with individuals with HI in 

terms of speech intelligibility. Subjective experiments were conducted in the presence of different types 

and levels of background noise.  Subjective results revealed that the application of dichotic processing is 

mainly beneficial for poorest SNR (e.g. SNR = -6 dB) when the background noise is stationary. 
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7.2 Key contributions 

7.2.1 Chapter 3 

1) This study demonstrated the benefits of the dynamic EE on sentence-level speech perception in 

children with suspected APD.  

2) It was shown that the dynamic EE algorithm is effective in terms of speech intelligibility only in 

certain combinations of source and listener SNR conditions for RM applications. 

3) It was demonstrated that the incorporation of NR algorithms can expand the range of SNRs over 

which the dynamic EE are effective. 

4)  The development of an intrusive objective predictor (DEEDT) based on HASPI metric was 

presented for predicting APD subjective scores associated with dynamic EE. 

7.2.2 Chapter 4 

1) This study demonstrated the effectiveness of the static EE on sentence-level speech perception in 

children with APD across different types and levels of background noise for hearing aid 

applications. 

2) It was demonstrated that the static EE is less effective for children with APD in improving their 

speech perception in non-stationary noisy environments when compared to stationary noisy 

environments.  

3) It was shown that incorporation of the MHA NR algorithm as a front-end to the application of the 

static EE algorithm is beneficial only for the poorest SNR condition when the background noise 

is stationary. 

4) It was shown that the application of the logMMSE NR algorithm prior to the static EE is not 

beneficial regardless of the noise type and processing condition. 

5) The development of an intrusive objective predictor (SEEDT) based on HASPI was presented, 

which will be used for predicting APD subjective scores associated with novel EE algorithms. 
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7.2.3 Chapter 5 

1) The development of generalized intrusive (MHASPI) and non-intrusive (WModA) objective 

models based on HASPI and ModA respectively was presented. 

2) The robustness of both MHASPI and WModA models was evaluated by testing with APD 

subjective scores. 

3) The assessment of the companding algorithm was presented using the generalized non-intrusive 

objective model (WModA). 

7.2.4 Chapter 6 

1) A new filterbank architecture was used for the implementation of the binaural dichotic processing 

and evaluated with HI listeners in a number of noisy environments. 

2) This study demonstrated the effectiveness of the dichotic processing scheme with individuals 

with SNHL in the presence of different types and levels of background noise for binaural hearing 

aid applications. 

3) It was demonstrated that the dichotic hearing scheme was more effective for individuals with 

SNHL in improving their speech intelligibility in stationary background noise when compared to 

non-stationary background noise.  

4) It was shown that the application of the MHA NR algorithm as a front-end to the application of 

dichotic processing is not beneficial in improving the speech intelligibility regardless of the noise 

type and processing condition. 

7.3 Study limitations 

1) The performance of the signal processing algorithms was evaluated using one speech 

database, viz. the Hearing in Noise Test (HINT) database.  The HINT database contains 

sentences spoken by a single male talker, and the number of correctly repeated words in 

each sentence was scored in the subjective evaluation.  For greater generalizability of the 

algorithm performance in real world applications, additional subjective experiments with 

databases incorporating speech samples from a diverse set of male and female talkers are 

warranted. 
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2) The performance of the signal processing algorithms was assessed in the presence of two 

types of background noise: stationary speech-shaped noise and non-stationary multi-talker 

babble. Once again, for generalization to real word environments, the performance of 

algorithms must be evaluated in environments with additional types of background noise 

and different degrees of reverberation.  In this context, evaluation of the algorithms in the 

field by potential users would greatly increase the ecological validity of the algorithm 

performance. 

3) The behavioural assessment of the signal processing algorithms was carried out for certain 

processing algorithms. In addition, the chosen algorithms were evaluated with a few 

choices of their tunable parameters.  In part, this was due to the limited number of sentence 

lists in the HINT database, which restricted the number of processing algorithm and 

parameter combinations that could be assessed. Access to larger databases with a diverse 

set of male and female speech samples will allow for more comprehensive benchmarking 

of a broader range of processing settings. 

4) A primary concern for the proposed data-driven model is its generalizability and 

applicability to unseen data. In this thesis, these important features were only tested on a 

certain algorithm (i.e. companding). However, for real world application, the 

generalizability and applicability of the proposed intrusive and non-intrusive objective 

models must be validated with additional behavioural data collected with different 

implementations of the envelope enhancement algorithms. 

7.4 Future work 

7.4.1 Realtime implementation 

The successful subjective and/or objective offline evaluations of the discussed signal processing algorithms 

in this thesis provide the motivation for realtime implementation of these algorithms for future work. 

However, the realtime implementation may not be feasible (e.g. the offline implementation is not causal). 

Hence, implementation of discussed algorithms would require modifications to the processing schemes as 

discussed in the following sections. It is pertinent to point out that OpenMHA platform is proposed for 

realtime implementation of these signal processing algorithms.  
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7.4.1.1 Dynamic EE and companding  

In this research study, zero-phase filtering approach was used to implement the filterbanks for offline 

processing of both dynamic EE and companding algorithms. However, zero-phase filtering technique, 

which relies on non-causal processing, is not practical for realtime implementations of these algorithms. 

Hence, alternative approaches recommended by Clarkson and Bhagat [62] and Koutsogiannaki et al [63] 

should be considered for realtime implementation of these algorithms. In addition, another important issue 

to be considered for realtime implementation of dynamic EE algorithm is choosing the proper value for 

minimum envelope value, Emin. This value has to be updated for each frequency band or it has to be assumed 

as zero. Furthermore, the value of exponential time constant, 𝜏 must be chosen carefully as this value 

determines how much k will fluctuate as the signal amplitude varies from its maximum to minimum values. 

The last important issue for realtime implementation of dynamic EE algorithm is that the users can access 

to control and adjust minimum and maximum power of expansion, k, as well as the exponential time 

constant, 𝜏 to adjust the algorithm based on their individual needs and hearing impairments. For the 

companding algorithm, it may be beneficial once again for the users to adjust and tune the filter parameters, 

q1 and q2, and the expansion/compression coefficients, n1 and n2 for their individual needs and speech 

environments.  

7.4.1.2 Static EE  

The offline implementation of the static EE was designed based on non-zero phase filtering approach. 

Hence, there are fewer issues to contend for realtime implementation of this algorithm. However, once 

again, it may be worthwhile for the users to adjust and tune the algorithm parameters, enhancement value, 

slow and fast modulation rates, with respect to their individual deficits and background noise environment. 

Furthermore, it may be beneficial to implement the static EE algorithm based on the analysis-synthesis 

system using a Gammatone filterbank in a manner similar to the dichotic processing implementation. 

Subjective and objective evaluations of the modified version of the static EE algorithm are motivated to 

demonstrate the performance comparison between Bark-scale and Gammatone filterbank implementations. 

7.4.1.3 Dichotic processing 

Previous research [36] and [35] implemented the dichotic processing scheme in realtime on TMS 320c25 

signal processor. Therefore, realtime implementation of this algorithm should be feasible on OpenMHA 

platform. However, it should be beneficial to demonstrate the impacts of modification of filter parameters 

on speech quality, intelligibility, and source localization. In addition, it should be worthwhile to investigate 
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the effectiveness of this technique in improving the speech intelligibility of children with APD in the 

presence of different noisy environments.  

7.4.2 Algorithm Parameter Customization 

All the above algorithms have tunable parameters and currently there is no guidance on how to set these 

parameters. For example, for EE and companding algorithms, the parameters should be customized in 

relation to their deficits level in temporal and/ or spectral processing. For the dichotic processing scheme, 

the algorithm parameters should be customized based on degree of hearing loss in individuals with SNHL. 

Hence, another possible future work could be customizing the parameters of these algorithms either through 

the simplex procedure or using the genetic algorithm. 
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Appendix A: Dynamic EE Speech Intelligibility Statistical Report 

General Linear Model 

Notes 

Output Created 07-JUL-2018 14:09:59 

Comments 
 

Input Data \\myfiles.uwo.pri\vparsa\Documents\sAPDnN

HChildrenRAUs.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 23 

Missing Value Handling Definition of Missing User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid 

data for all variables in the model. 
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Syntax GLM tau1SNR3 tau1SNR0 tau1SNRm3 

tau1SNRm6 tau2SNR3 tau2SNR0 

tau2SNRm3 tau2SNRm6 tau3SNR3 

tau3SNR0 

    tau3SNRm3 tau3SNRm6 notauSNR3 

notauSNR0 notauSNRm3 notauSNRm6 BY 

Group 

  /WSFACTOR=tau 4 Polynomial SNR 4 

Polynomial 

  /METHOD=SSTYPE(3) 

  /PRINT=ETASQ 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=tau SNR tau*SNR 

  /DESIGN=Group. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.02 

 

 

[DataSet1] \\myfiles.uwo.pri\vparsa\Documents\sAPDnNHChildrenRAUs.sav 
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Within-Subjects Factors 

Measure:   MEASURE_1   

tau SNR Dependent Variable 

1 1 tau1SNR3 

2 tau1SNR0 

3 tau1SNRm3 

4 tau1SNRm6 

2 1 tau2SNR3 

2 tau2SNR0 

3 tau2SNRm3 

4 tau2SNRm6 

3 1 tau3SNR3 

2 tau3SNR0 

3 tau3SNRm3 

4 tau3SNRm6 

4 1 notauSNR3 

2 notauSNR0 

3 notauSNRm3 

4 notauSNRm6 
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Between-Subjects Factors 

 
N 

1 = sAPD; 2 = Normal 1.00 11 

2.00 12 

 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. Partial Eta Squared 

tau Pillai's Trace .965 172.675b 3.000 19.000 .000 .965 

Wilks' Lambda .035 172.675b 3.000 19.000 .000 .965 

Hotelling's Trace 27.265 172.675b 3.000 19.000 .000 .965 

Roy's Largest Root 27.265 172.675b 3.000 19.000 .000 .965 

tau * Group Pillai's Trace .207 1.651b 3.000 19.000 .211 .207 

Wilks' Lambda .793 1.651b 3.000 19.000 .211 .207 

Hotelling's Trace .261 1.651b 3.000 19.000 .211 .207 

Roy's Largest Root .261 1.651b 3.000 19.000 .211 .207 

SNR Pillai's Trace .974 237.355b 3.000 19.000 .000 .974 

Wilks' Lambda .026 237.355b 3.000 19.000 .000 .974 

Hotelling's Trace 37.477 237.355b 3.000 19.000 .000 .974 



 

 

130 

 

Roy's Largest Root 37.477 237.355b 3.000 19.000 .000 .974 

SNR * Group Pillai's Trace .313 2.880b 3.000 19.000 .063 .313 

Wilks' Lambda .687 2.880b 3.000 19.000 .063 .313 

Hotelling's Trace .455 2.880b 3.000 19.000 .063 .313 

Roy's Largest Root .455 2.880b 3.000 19.000 .063 .313 

tau * SNR Pillai's Trace .961 35.288b 9.000 13.000 .000 .961 

Wilks' Lambda .039 35.288b 9.000 13.000 .000 .961 

Hotelling's Trace 24.430 35.288b 9.000 13.000 .000 .961 

Roy's Largest Root 24.430 35.288b 9.000 13.000 .000 .961 

tau * SNR * Group Pillai's Trace .471 1.285b 9.000 13.000 .330 .471 

Wilks' Lambda .529 1.285b 9.000 13.000 .330 .471 

Hotelling's Trace .890 1.285b 9.000 13.000 .330 .471 

Roy's Largest Root .890 1.285b 9.000 13.000 .330 .471 

a. Design: Intercept + Group  

 Within Subjects Design: tau + SNR + tau * SNR 

b. Exact statistic 

 

 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   
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Within Subjects Effect Mauchly's W Approx. Chi-Square df Sig. 

Epsilonb 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 

tau .667 7.984 5 .158 .823 .986 .333 

SNR .532 12.432 5 .030 .708 .827 .333 

tau * SNR .064 49.029 44 .304 .669 1.000 .111 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: tau + SNR + tau * SNR 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects 

Effects table. 

 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

tau Sphericity Assumed 70824.945 3 23608.315 218.469 .000 .912 

Greenhouse-Geisser 70824.945 2.470 28675.354 218.469 .000 .912 

Huynh-Feldt 70824.945 2.958 23945.541 218.469 .000 .912 

Lower-bound 70824.945 1.000 70824.945 218.469 .000 .912 

tau * Group Sphericity Assumed 285.977 3 95.326 .882 .455 .040 

Greenhouse-Geisser 285.977 2.470 115.785 .882 .439 .040 
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Huynh-Feldt 285.977 2.958 96.687 .882 .454 .040 

Lower-bound 285.977 1.000 285.977 .882 .358 .040 

Error(tau) Sphericity Assumed 6807.927 63 108.062 
   

Greenhouse-Geisser 6807.927 51.868 131.256 
   

Huynh-Feldt 6807.927 62.113 109.606 
   

Lower-bound 6807.927 21.000 324.187 
   

SNR Sphericity Assumed 97578.944 3 32526.315 284.272 .000 .931 

Greenhouse-Geisser 97578.944 2.123 45967.778 284.272 .000 .931 

Huynh-Feldt 97578.944 2.480 39339.510 284.272 .000 .931 

Lower-bound 97578.944 1.000 97578.944 284.272 .000 .931 

SNR * Group Sphericity Assumed 906.000 3 302.000 2.639 .057 .112 

Greenhouse-Geisser 906.000 2.123 426.801 2.639 .079 .112 

Huynh-Feldt 906.000 2.480 365.259 2.639 .069 .112 

Lower-bound 906.000 1.000 906.000 2.639 .119 .112 

Error(SNR) Sphericity Assumed 7208.449 63 114.420 
   

Greenhouse-Geisser 7208.449 44.578 161.704 
   

Huynh-Feldt 7208.449 52.089 138.387 
   

Lower-bound 7208.449 21.000 343.259 
   

tau * SNR Sphericity Assumed 45630.560 9 5070.062 47.452 .000 .693 

Greenhouse-Geisser 45630.560 6.018 7582.016 47.452 .000 .693 
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Huynh-Feldt 45630.560 9.000 5070.062 47.452 .000 .693 

Lower-bound 45630.560 1.000 45630.560 47.452 .000 .693 

tau * SNR * Group Sphericity Assumed 1638.724 9 182.080 1.704 .090 .075 

Greenhouse-Geisser 1638.724 6.018 272.292 1.704 .125 .075 

Huynh-Feldt 1638.724 9.000 182.080 1.704 .090 .075 

Lower-bound 1638.724 1.000 1638.724 1.704 .206 .075 

Error(tau*SNR) Sphericity Assumed 20193.910 189 106.846 
   

Greenhouse-Geisser 20193.910 126.384 159.783 
   

Huynh-Feldt 20193.910 189.000 106.846 
   

Lower-bound 20193.910 21.000 961.615 
   

 

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source tau SNR 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

tau Linear 
 

50586.364 1 50586.364 302.452 .000 .935 

Quadratic 
 

19870.668 1 19870.668 256.128 .000 .924 

Cubic 
 

367.913 1 367.913 4.637 .043 .181 

tau * Group Linear 
 

6.771 1 6.771 .040 .842 .002 

Quadratic 
 

256.425 1 256.425 3.305 .083 .136 
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Cubic 
 

22.781 1 22.781 .287 .598 .013 

Error(tau) Linear 
 

3512.343 21 167.254 
   

Quadratic 
 

1629.203 21 77.581 
   

Cubic 
 

1666.381 21 79.351 
   

SNR 
 

Linear 86628.521 1 86628.521 622.110 .000 .967 

Quadratic 9252.189 1 9252.189 74.446 .000 .780 

Cubic 1698.234 1 1698.234 21.300 .000 .504 

SNR * Group 
 

Linear 797.365 1 797.365 5.726 .026 .214 

Quadratic 1.363 1 1.363 .011 .918 .001 

Cubic 107.272 1 107.272 1.345 .259 .060 

Error(SNR) 
 

Linear 2924.238 21 139.249 
   

Quadratic 2609.876 21 124.280 
   

Cubic 1674.334 21 79.730 
   

tau * SNR Linear Linear 40279.163 1 40279.163 390.409 .000 .949 

Quadratic 2846.971 1 2846.971 19.892 .000 .486 

Cubic 57.565 1 57.565 .417 .526 .019 

Quadratic Linear 1437.109 1 1437.109 17.022 .000 .448 

Quadratic 17.367 1 17.367 .201 .659 .009 

Cubic 145.543 1 145.543 1.716 .204 .076 

Cubic Linear 375.860 1 375.860 6.764 .017 .244 

Quadratic 44.237 1 44.237 .411 .528 .019 
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Cubic 426.745 1 426.745 2.696 .116 .114 

tau * SNR * Group Linear Linear 79.670 1 79.670 .772 .389 .035 

Quadratic 70.050 1 70.050 .489 .492 .023 

Cubic 204.746 1 204.746 1.482 .237 .066 

Quadratic Linear .105 1 .105 .001 .972 .000 

Quadratic 3.330 1 3.330 .038 .846 .002 

Cubic 947.076 1 947.076 11.169 .003 .347 

Cubic Linear 32.593 1 32.593 .587 .452 .027 

Quadratic 129.260 1 129.260 1.201 .286 .054 

Cubic 171.895 1 171.895 1.086 .309 .049 

Error(tau*SNR) Linear Linear 2166.607 21 103.172 
   

Quadratic 3005.587 21 143.123 
   

Cubic 2900.377 21 138.113 
   

Quadratic Linear 1772.996 21 84.428 
   

Quadratic 1816.237 21 86.487 
   

Cubic 1780.766 21 84.798 
   

Cubic Linear 1166.959 21 55.569 
   

Quadratic 2259.931 21 107.616 
   

Cubic 3324.450 21 158.307 
   

Tests of Between-Subjects Effects 
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Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Intercept 3423030.116 1 3423030.116 7702.185 .000 .997 

Group 6256.626 1 6256.626 14.078 .001 .401 

Error 9332.888 21 444.423 
   

 

GLM tau1SNR3 tau1SNR0 tau1SNRm3 tau1SNRm6 tau2SNR3 tau2SNR0 tau2SNRm3 tau2SNRm6 

tau3SNR3 tau3SNR0 

    tau3SNRm3 tau3SNRm6 notauSNR3 notauSNR0 notauSNRm3 notauSNRm6 

  /WSFACTOR=tau 4 Simple SNR 4 Polynomial 

  /METHOD=SSTYPE(3) 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=tau SNR tau*SNR 

  /EMMEANS=TABLES(tau*SNR) COMPARE(tau) ADJ(BONFERRONI). 
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General Linear Model 

Notes 

Output Created 07-JUL-2018 14:12:03 

Comments 
 

Input Data \\myfiles.uwo.pri\vparsa\Documents\sAPDnN

HChildrenRAUs.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 23 

Missing Value Handling Definition of Missing User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid 

data for all variables in the model. 
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Syntax GLM tau1SNR3 tau1SNR0 tau1SNRm3 

tau1SNRm6 tau2SNR3 tau2SNR0 

tau2SNRm3 tau2SNRm6 tau3SNR3 

tau3SNR0 

    tau3SNRm3 tau3SNRm6 notauSNR3 

notauSNR0 notauSNRm3 notauSNRm6 

  /WSFACTOR=tau 4 Simple SNR 4 

Polynomial 

  /METHOD=SSTYPE(3) 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=tau SNR tau*SNR 

  /EMMEANS=TABLES(tau*SNR) 

COMPARE(tau) ADJ(BONFERRONI). 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.02 

 

 

 

 

 

 

 

 



 

 

139 

 

 

Within-Subjects Factors 

Measure:   MEASURE_1   

tau SNR Dependent Variable 

1 1 tau1SNR3 

2 tau1SNR0 

3 tau1SNRm3 

4 tau1SNRm6 

2 1 tau2SNR3 

2 tau2SNR0 

3 tau2SNRm3 

4 tau2SNRm6 

3 1 tau3SNR3 

2 tau3SNR0 

3 tau3SNRm3 

4 tau3SNRm6 

4 1 notauSNR3 

2 notauSNR0 

3 notauSNRm3 

4 notauSNRm6 
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Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

tau Pillai's Trace .962 169.328b 3.000 20.000 .000 

Wilks' Lambda .038 169.328b 3.000 20.000 .000 

Hotelling's Trace 25.399 169.328b 3.000 20.000 .000 

Roy's Largest Root 25.399 169.328b 3.000 20.000 .000 

SNR Pillai's Trace .967 196.333b 3.000 20.000 .000 

Wilks' Lambda .033 196.333b 3.000 20.000 .000 

Hotelling's Trace 29.450 196.333b 3.000 20.000 .000 

Roy's Largest Root 29.450 196.333b 3.000 20.000 .000 

tau * SNR Pillai's Trace .961 37.934b 9.000 14.000 .000 

Wilks' Lambda .039 37.934b 9.000 14.000 .000 

Hotelling's Trace 24.386 37.934b 9.000 14.000 .000 

Roy's Largest Root 24.386 37.934b 9.000 14.000 .000 

a. Design: Intercept  

 Within Subjects Design: tau + SNR + tau * SNR 

b. Exact statistic 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W Approx. Chi-Square df Sig. 

Epsilonb 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 

tau .743 6.145 5 .293 .857 .980 .333 

SNR .543 12.656 5 .027 .711 .790 .333 

tau * SNR .060 53.018 44 .183 .669 .949 .111 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: tau + SNR + tau * SNR 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects 

Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

tau Sphericity Assumed 70821.931 3 23607.310 219.637 .000 

Greenhouse-Geisser 70821.931 2.570 27560.801 219.637 .000 

Huynh-Feldt 70821.931 2.939 24098.786 219.637 .000 

Lower-bound 70821.931 1.000 70821.931 219.637 .000 

Error(tau) Sphericity Assumed 7093.904 66 107.483 
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Greenhouse-Geisser 7093.904 56.533 125.484 
  

Huynh-Feldt 7093.904 64.654 109.721 
  

Lower-bound 7093.904 22.000 322.450 
  

SNR Sphericity Assumed 97068.795 3 32356.265 263.174 .000 

Greenhouse-Geisser 97068.795 2.134 45483.960 263.174 .000 

Huynh-Feldt 97068.795 2.370 40954.740 263.174 .000 

Lower-bound 97068.795 1.000 97068.795 263.174 .000 

Error(SNR) Sphericity Assumed 8114.449 66 122.946 
  

Greenhouse-Geisser 8114.449 46.951 172.828 
  

Huynh-Feldt 8114.449 52.143 155.618 
  

Lower-bound 8114.449 22.000 368.839 
  

tau * SNR Sphericity Assumed 45965.962 9 5107.329 46.318 .000 

Greenhouse-Geisser 45965.962 6.019 7636.413 46.318 .000 

Huynh-Feldt 45965.962 8.538 5383.649 46.318 .000 

Lower-bound 45965.962 1.000 45965.962 46.318 .000 

Error(tau*SNR) Sphericity Assumed 21832.634 198 110.266 
  

Greenhouse-Geisser 21832.634 132.425 164.868 
  

Huynh-Feldt 21832.634 187.838 116.231 
  

Lower-bound 21832.634 22.000 992.392 
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Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source tau SNR 

Type III Sum of 

Squares df Mean Square F Sig. 

tau Level 1 vs. Level 4 
 

86149.566 1 86149.566 280.334 .000 

Level 2 vs. Level 4 
 

122878.255 1 122878.255 491.133 .000 

Level 3 vs. Level 4 
 

50074.042 1 50074.042 384.304 .000 

Error(tau) Level 1 vs. Level 4 
 

6760.842 22 307.311 
  

Level 2 vs. Level 4 
 

5504.254 22 250.193 
  

Level 3 vs. Level 4 
 

2866.553 22 130.298 
  

SNR 
 

Linear 21517.507 1 21517.507 508.797 .000 

Quadratic 2314.982 1 2314.982 78.016 .000 

Cubic 434.710 1 434.710 21.472 .000 

Error(SNR) 
 

Linear 930.401 22 42.291 
  

Quadratic 652.810 22 29.673 
  

Cubic 445.402 22 20.246 
  

tau * SNR Level 1 vs. Level 4 Linear 77621.394 1 77621.394 363.698 .000 

Quadratic 5609.769 1 5609.769 17.999 .000 

Cubic 421.347 1 421.347 1.385 .252 

Level 2 vs. Level 4 Linear 43855.846 1 43855.846 245.944 .000 
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Quadratic 2459.128 1 2459.128 14.228 .001 

Cubic 126.834 1 126.834 .474 .498 

Level 3 vs. Level 4 Linear 21055.964 1 21055.964 191.335 .000 

Quadratic 1143.128 1 1143.128 4.720 .041 

Cubic 1302.804 1 1302.804 3.563 .072 

Error(tau*SNR) Level 1 vs. Level 4 Linear 4695.299 22 213.423 
  

Quadratic 6856.677 22 311.667 
  

Cubic 6690.925 22 304.133 
  

Level 2 vs. Level 4 Linear 3922.954 22 178.316 
  

Quadratic 3802.332 22 172.833 
  

Cubic 5881.326 22 267.333 
  

Level 3 vs. Level 4 Linear 2421.045 22 110.048 
  

Quadratic 5328.578 22 242.208 
  

Cubic 8043.579 22 365.617 
  

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source Type III Sum of Squares df Mean Square F Sig. 

Intercept 860568.665 1 860568.665 4857.755 .000 
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Error 3897.379 22 177.154 
  

 

Estimated Marginal Means 

tau * SNR 

Estimates 

Measure:   MEASURE_1   

tau SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 1 107.858 1.773 104.181 111.535 

2 104.841 3.041 98.534 111.149 

3 107.221 2.839 101.333 113.109 

4 98.870 2.833 92.994 104.746 

2 1 121.275 1.194 118.799 123.751 

2 115.356 1.901 111.413 119.299 

3 113.875 2.056 109.610 118.140 

4 92.067 3.197 85.438 98.697 

3 1 114.251 1.542 111.052 117.450 

2 110.256 2.590 104.885 115.627 

3 95.832 2.443 90.765 100.899 

4 69.368 2.370 64.453 74.283 

4 1 109.376 2.476 104.241 114.512 
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2 92.168 2.729 86.508 97.829 

3 74.310 2.913 68.269 80.351 

4 20.533 3.648 12.969 28.098 

Pairwise Comparisons 

Measure:   MEASURE_1   

SNR (I) tau (J) tau Mean Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for Differenceb 

Lower Bound Upper Bound 

1 1 2 -13.417* 1.908 .000 -18.946 -7.888 

3 -6.393* 2.147 .042 -12.615 -.170 

4 -1.518 2.514 1.000 -8.806 5.770 

2 1 13.417* 1.908 .000 7.888 18.946 

3 7.024* 1.763 .004 1.914 12.134 

4 11.899* 2.600 .001 4.362 19.435 

3 1 6.393* 2.147 .042 .170 12.615 

2 -7.024* 1.763 .004 -12.134 -1.914 

4 4.875 2.603 .447 -2.671 12.421 

4 1 1.518 2.514 1.000 -5.770 8.806 

2 -11.899* 2.600 .001 -19.435 -4.362 

3 -4.875 2.603 .447 -12.421 2.671 

2 1 2 -10.514* 3.469 .037 -20.568 -.460 

3 -5.415 2.992 .504 -14.086 3.257 
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4 12.673* 3.294 .005 3.125 22.221 

2 1 10.514* 3.469 .037 .460 20.568 

3 5.099 3.381 .874 -4.700 14.898 

4 23.187* 2.565 .000 15.752 30.623 

3 1 5.415 2.992 .504 -3.257 14.086 

2 -5.099 3.381 .874 -14.898 4.700 

4 18.088* 2.986 .000 9.434 26.742 

4 1 -12.673* 3.294 .005 -22.221 -3.125 

2 -23.187* 2.565 .000 -30.623 -15.752 

3 -18.088* 2.986 .000 -26.742 -9.434 

3 1 2 -6.654 2.580 .103 -14.131 .823 

3 11.389* 3.631 .029 .864 21.915 

4 32.911* 2.949 .000 24.364 41.458 

2 1 6.654 2.580 .103 -.823 14.131 

3 18.043* 2.919 .000 9.583 26.503 

4 39.565* 3.198 .000 30.297 48.834 

3 1 -11.389* 3.631 .029 -21.915 -.864 

2 -18.043* 2.919 .000 -26.503 -9.583 

4 21.522* 3.309 .000 11.931 31.113 

4 1 -32.911* 2.949 .000 -41.458 -24.364 

2 -39.565* 3.198 .000 -48.834 -30.297 
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3 -21.522* 3.309 .000 -31.113 -11.931 

4 1 2 6.803 3.876 .559 -4.431 18.037 

3 29.502* 2.834 .000 21.288 37.717 

4 78.337* 4.852 .000 64.272 92.402 

2 1 -6.803 3.876 .559 -18.037 4.431 

3 22.699* 3.071 .000 13.799 31.600 

4 71.534* 3.769 .000 60.611 82.457 

3 1 -29.502* 2.834 .000 -37.717 -21.288 

2 -22.699* 3.071 .000 -31.600 -13.799 

4 48.835* 3.199 .000 39.561 58.108 

4 1 -78.337* 4.852 .000 -92.402 -64.272 

2 -71.534* 3.769 .000 -82.457 -60.611 

3 -48.835* 3.199 .000 -58.108 -39.561 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

SNR Value F Hypothesis df Error df Sig. 

1 Pillai's trace .714 16.659a 3.000 20.000 .000 
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Wilks' lambda .286 16.659a 3.000 20.000 .000 

Hotelling's trace 2.499 16.659a 3.000 20.000 .000 

Roy's largest root 2.499 16.659a 3.000 20.000 .000 

2 Pillai's trace .816 29.467a 3.000 20.000 .000 

Wilks' lambda .184 29.467a 3.000 20.000 .000 

Hotelling's trace 4.420 29.467a 3.000 20.000 .000 

Roy's largest root 4.420 29.467a 3.000 20.000 .000 

3 Pillai's trace .886 51.643a 3.000 20.000 .000 

Wilks' lambda .114 51.643a 3.000 20.000 .000 

Hotelling's trace 7.747 51.643a 3.000 20.000 .000 

Roy's largest root 7.747 51.643a 3.000 20.000 .000 

4 Pillai's trace .947 118.621a 3.000 20.000 .000 

Wilks' lambda .053 118.621a 3.000 20.000 .000 

Hotelling's trace 17.793 118.621a 3.000 20.000 .000 

Roy's largest root 17.793 118.621a 3.000 20.000 .000 

Each F tests the multivariate simple effects of tau within each level combination of the other effects shown. These tests are based 

on the linearly independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
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Appendix B: Comprehensive Objective Assessment of Dynamic EE 
Results 
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Appendix C: Static EE Speech Intelligibility Statistical Report 

Stationary Background Noise Experiment   

General Linear Model 

Notes 

Output Created 13-DEC-2018 08:32:53 

Comments 
 

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 20 

Missing Value Handling Definition of Missing User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid 

data for all variables in the model. 
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Syntax GLM UP_4 UP_0 UP_3 UP_6 SEE_4 SEE_0 

SEE_3 SEE_6 MMSESEE_4 MMSESEE_0 

MMSESEE_3 MMSESEE_6 MHASEE_4 

    MHASEE_0 MHASEE_3 MHASEE_6 BY 

Group 

  /WSFACTOR=processing 4 Polynomial 

SNR 4 Polynomial 

  /METHOD=SSTYPE(3) 

  /EMMEANS=TABLES(Group) COMPARE 

ADJ(BONFERRONI) 

  /EMMEANS=TABLES(processing) 

COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Group*processing) 

  /EMMEANS=TABLES(Group*SNR) 

  /EMMEANS=TABLES(processing*SNR) 

  

/EMMEANS=TABLES(Group*processing*S

NR) 

/EMMEANS=TABLES(processing*SNR) 

COMPARE(processing)ADJ(BONFERRONI) 

 

/EMMEANS=TABLES(Group*processing*S

NR) 

COMPARE(processing)ADJ(BONFERRONI) 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=processing SNR 

processing*SNR 

  /DESIGN=Group. 
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Resources Processor Time 00:00:00.08 

Elapsed Time 00:00:00.12 

[DataSet1]  

Within-Subjects Factors 

Measure:   MEASURE_1   

processing SNR 

Dependent 

Variable 

1 1 UP_4 

2 UP_0 

3 UP_3 

4 UP_6 

2 1 SEE_4 

2 SEE_0 

3 SEE_3 

4 SEE_6 

3 1 MMSESEE_4 

2 MMSESEE_0 

3 MMSESEE_3 

4 MMSESEE_6 

4 1 MHASEE_4 

2 MHASEE_0 
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3 MHASEE_3 

4 MHASEE_6 

 

 

Between-Subjects Factors 

 
N 

Group APD 10 

NC 10 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

processing Pillai's Trace .816 23.705b 3.000 16.000 .000 

Wilks' Lambda .184 23.705b 3.000 16.000 .000 

Hotelling's Trace 4.445 23.705b 3.000 16.000 .000 

Roy's Largest Root 4.445 23.705b 3.000 16.000 .000 

processing * Group Pillai's Trace .409 3.698b 3.000 16.000 .034 

Wilks' Lambda .591 3.698b 3.000 16.000 .034 

Hotelling's Trace .693 3.698b 3.000 16.000 .034 

Roy's Largest Root .693 3.698b 3.000 16.000 .034 

SNR Pillai's Trace .980 255.612b 3.000 16.000 .000 

Wilks' Lambda .020 255.612b 3.000 16.000 .000 
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Hotelling's Trace 47.927 255.612b 3.000 16.000 .000 

Roy's Largest Root 47.927 255.612b 3.000 16.000 .000 

SNR * Group Pillai's Trace .060 .339b 3.000 16.000 .797 

Wilks' Lambda .940 .339b 3.000 16.000 .797 

Hotelling's Trace .064 .339b 3.000 16.000 .797 

Roy's Largest Root .064 .339b 3.000 16.000 .797 

processing * SNR Pillai's Trace .917 12.280b 9.000 10.000 .000 

Wilks' Lambda .083 12.280b 9.000 10.000 .000 

Hotelling's Trace 11.052 12.280b 9.000 10.000 .000 

Roy's Largest Root 11.052 12.280b 9.000 10.000 .000 

processing * SNR * Group Pillai's Trace .409 .768b 9.000 10.000 .649 

Wilks' Lambda .591 .768b 9.000 10.000 .649 

Hotelling's Trace .691 .768b 9.000 10.000 .649 

Roy's Largest Root .691 .768b 9.000 10.000 .649 

a. Design: Intercept + Group  

 Within Subjects Design: processing + SNR + processing * SNR 

b. Exact statistic 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 

Approx. Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 

processing .727 5.340 5 .376 .813 1.000 .333 

SNR .570 9.413 5 .094 .785 .960 .333 

processing * SNR .031 51.607 44 .233 .663 1.000 .111 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to 

an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: processing + SNR + processing * SNR 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests 

of Within-Subjects Effects table. 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Sphericity Assumed 14965.884 3 4988.628 30.322 .000 

Greenhouse-Geisser 14965.884 2.440 6134.132 30.322 .000 

Huynh-Feldt 14965.884 3.000 4988.628 30.322 .000 

Lower-bound 14965.884 1.000 14965.884 30.322 .000 

processing * Group Sphericity Assumed 2601.386 3 867.129 5.271 .003 
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Greenhouse-Geisser 2601.386 2.440 1066.242 5.271 .006 

Huynh-Feldt 2601.386 3.000 867.129 5.271 .003 

Lower-bound 2601.386 1.000 2601.386 5.271 .034 

Error(processing) Sphericity Assumed 8884.202 54 164.522 
  

Greenhouse-Geisser 8884.202 43.916 202.300 
  

Huynh-Feldt 8884.202 54.000 164.522 
  

Lower-bound 8884.202 18.000 493.567 
  

SNR Sphericity Assumed 244564.546 3 81521.515 422.722 .000 

Greenhouse-Geisser 244564.546 2.354 103895.699 422.722 .000 

Huynh-Feldt 244564.546 2.881 84883.933 422.722 .000 

Lower-bound 244564.546 1.000 244564.546 422.722 .000 

SNR * Group Sphericity Assumed 140.986 3 46.995 .244 .865 

Greenhouse-Geisser 140.986 2.354 59.894 .244 .819 

Huynh-Feldt 140.986 2.881 48.934 .244 .858 

Lower-bound 140.986 1.000 140.986 .244 .628 

Error(SNR) Sphericity Assumed 10413.838 54 192.849 
  

Greenhouse-Geisser 10413.838 42.371 245.778 
  

Huynh-Feldt 10413.838 51.861 200.803 
  

Lower-bound 10413.838 18.000 578.547 
  

processing * SNR Sphericity Assumed 13605.777 9 1511.753 12.928 .000 

Greenhouse-Geisser 13605.777 5.963 2281.844 12.928 .000 
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Huynh-Feldt 13605.777 9.000 1511.753 12.928 .000 

Lower-bound 13605.777 1.000 13605.777 12.928 .002 

processing * SNR * Group Sphericity Assumed 564.764 9 62.752 .537 .846 

Greenhouse-Geisser 564.764 5.963 94.717 .537 .778 

Huynh-Feldt 564.764 9.000 62.752 .537 .846 

Lower-bound 564.764 1.000 564.764 .537 .473 

Error(processing*SNR) Sphericity Assumed 18943.673 162 116.936 
  

Greenhouse-Geisser 18943.673 107.327 176.504 
  

Huynh-Feldt 18943.673 162.000 116.936 
  

Lower-bound 18943.673 18.000 1052.426 
  

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source processing SNR 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Linear 
 

1128.632 1 1128.632 6.514 .020 

Quadratic 
 

10837.334 1 10837.334 48.622 .000 

Cubic 
 

2999.917 1 2999.917 30.794 .000 

processing * Group Linear 
 

2012.661 1 2012.661 11.617 .003 

Quadratic 
 

468.704 1 468.704 2.103 .164 
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Cubic 
 

120.022 1 120.022 1.232 .282 

Error(processing) Linear 
 

3118.641 18 173.258 
  

Quadratic 
 

4012.020 18 222.890 
  

Cubic 
 

1753.541 18 97.419 
  

SNR 
 

Linear 238386.173 1 238386.173 844.891 .000 

Quadratic 5486.380 1 5486.380 55.696 .000 

Cubic 691.993 1 691.993 3.497 .078 

SNR * Group 
 

Linear .889 1 .889 .003 .956 

Quadratic 89.790 1 89.790 .912 .352 

Cubic 50.307 1 50.307 .254 .620 

Error(SNR) 
 

Linear 5078.702 18 282.150 
  

Quadratic 1773.115 18 98.506 
  

Cubic 3562.022 18 197.890 
  

processing * SNR Linear Linear 7773.407 1 7773.407 64.654 .000 

Quadratic 25.352 1 25.352 .393 .539 

Cubic 5.461 1 5.461 .032 .861 

Quadratic Linear 1347.607 1 1347.607 14.019 .001 

Quadratic 2952.716 1 2952.716 38.443 .000 

Cubic 59.574 1 59.574 .321 .578 

Cubic Linear 1055.809 1 1055.809 11.125 .004 

Quadratic 128.362 1 128.362 1.125 .303 
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Cubic 257.487 1 257.487 2.025 .172 

processing * SNR * Group Linear Linear 21.437 1 21.437 .178 .678 

Quadratic 286.141 1 286.141 4.438 .049 

Cubic .086 1 .086 .000 .983 

Quadratic Linear 7.610 1 7.610 .079 .782 

Quadratic 66.516 1 66.516 .866 .364 

Cubic 35.361 1 35.361 .191 .668 

Cubic Linear 10.253 1 10.253 .108 .746 

Quadratic .817 1 .817 .007 .933 

Cubic 136.542 1 136.542 1.074 .314 

Error(processing*SNR) Linear Linear 2164.139 18 120.230 
  

Quadratic 1160.674 18 64.482 
  

Cubic 3117.086 18 173.171 
  

Quadratic Linear 1730.273 18 96.126 
  

Quadratic 1382.547 18 76.808 
  

Cubic 3339.080 18 185.504 
  

Cubic Linear 1708.295 18 94.905 
  

Quadratic 2053.304 18 114.072 
  

Cubic 2288.275 18 127.126 
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Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 844177.285 1 844177.285 599.115 .000 

Group 5912.832 1 5912.832 4.196 .055 

Error 25362.717 18 1409.040 
  

Estimated Marginal Means 

1. Group 

Estimates 

Measure:   MEASURE_1   

Group Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

APD 47.063 2.968 40.829 53.298 

NC 55.661 2.968 49.426 61.895 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 
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APD NC -8.597 4.197 .055 -17.414 .220 

NC APD 8.597 4.197 .055 -.220 17.414 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   

 
Sum of Squares df Mean Square F Sig. 

Contrast 369.552 1 369.552 4.196 .055 

Error 1585.170 18 88.065 
  

The F tests the effect of Group. This test is based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

2. processing 

Estimates 

Measure:   MEASURE_1   

processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 58.332 2.417 53.254 63.410 

2 50.490 2.412 45.422 55.558 

3 40.595 2.625 35.081 46.109 

4 56.031 2.288 51.225 60.837 
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Pairwise Comparisons 

Measure:   MEASURE_1   

(I) processing (J) processing 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 7.842* 2.259 .016 1.148 14.536 

3 17.737* 2.509 .000 10.304 25.171 

4 2.301 2.064 1.000 -3.815 8.417 

2 1 -7.842* 2.259 .016 -14.536 -1.148 

3 9.895* 1.583 .000 5.206 14.585 

4 -5.541* 1.752 .032 -10.732 -.350 

3 1 -17.737* 2.509 .000 -25.171 -10.304 

2 -9.895* 1.583 .000 -14.585 -5.206 

4 -15.436* 1.855 .000 -20.933 -9.940 

4 1 -2.301 2.064 1.000 -8.417 3.815 

2 5.541* 1.752 .032 .350 10.732 

3 15.436* 1.855 .000 9.940 20.933 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .816 23.705a 3.000 16.000 .000 

Wilks' lambda .184 23.705a 3.000 16.000 .000 

Hotelling's trace 4.445 23.705a 3.000 16.000 .000 

Roy's largest root 4.445 23.705a 3.000 16.000 .000 

Each F tests the multivariate effect of processing. These tests are based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

a. Exact statistic 

 

3. Group * processing 

Measure:   MEASURE_1   

Group processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

APD 1 49.184 3.418 42.003 56.366 

2 47.102 3.412 39.935 54.269 

3 37.806 3.712 30.008 45.604 

4 54.161 3.235 47.364 60.958 

NC 1 67.479 3.418 60.298 74.660 

2 53.878 3.412 46.711 61.046 

3 43.383 3.712 35.585 51.181 
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4 57.901 3.235 51.105 64.698 

 

4. Group * SNR 

Measure:   MEASURE_1   

Group SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

APD 1 79.662 3.032 73.292 86.031 

2 64.345 3.946 56.055 72.635 

3 37.004 3.255 30.165 43.842 

4 7.243 3.786 -.710 15.197 

NC 1 86.703 3.032 80.334 93.073 

2 75.018 3.946 66.728 83.309 

3 45.643 3.255 38.805 52.482 

4 15.277 3.786 7.324 23.231 

 

5. processing * SNR 

Measure:   MEASURE_1   

processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 1 104.321 2.905 98.218 110.424 

2 76.659 3.166 70.008 83.310 
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3 40.889 3.927 32.639 49.138 

4 11.459 3.049 5.054 17.863 

2 1 82.342 3.292 75.426 89.258 

2 72.772 3.424 65.578 79.966 

3 44.013 2.885 37.952 50.074 

4 2.834 3.335 -4.171 9.840 

3 1 60.416 2.905 54.314 66.519 

2 60.350 3.837 52.290 68.410 

3 33.748 3.279 26.860 40.637 

4 7.864 3.817 -.155 15.884 

4 1 85.650 2.894 79.571 91.730 

2 68.946 3.943 60.661 77.230 

3 46.644 2.638 41.103 52.186 

4 22.884 3.485 15.562 30.206 
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6. Group * processing * SNR 

Measure:   MEASURE_1   

Group processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

APD 1 1 96.663 4.108 88.032 105.294 

2 65.504 4.477 56.098 74.910 

3 31.019 5.553 19.352 42.685 

4 3.552 4.311 -5.506 12.610 

2 1 80.104 4.655 70.324 89.885 

2 66.567 4.842 56.393 76.741 

3 40.760 4.080 32.189 49.331 

4 .977 4.716 -8.931 10.884 

3 1 58.233 4.108 49.603 66.863 

2 58.145 5.426 46.746 69.544 

3 29.116 4.637 19.374 38.858 

4 5.732 5.398 -5.609 17.073 

4 1 83.646 4.092 75.048 92.244 

2 67.165 5.576 55.449 78.880 

3 47.120 3.730 39.283 54.957 

4 18.713 4.929 8.359 29.068 

NC 1 1 111.979 4.108 103.348 120.610 
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2 87.814 4.477 78.408 97.220 

3 50.759 5.553 39.092 62.426 

4 19.365 4.311 10.307 28.423 

2 1 84.579 4.655 74.799 94.359 

2 78.977 4.842 68.803 89.151 

3 47.266 4.080 38.694 55.837 

4 4.692 4.716 -5.215 14.599 

3 1 62.599 4.108 53.969 71.230 

2 62.556 5.426 51.157 73.955 

3 38.381 4.637 28.639 48.123 

4 9.997 5.398 -1.344 21.338 

4 1 87.655 4.092 79.057 96.253 

2 70.727 5.576 59.011 82.443 

3 46.169 3.730 38.331 54.006 

4 27.055 4.929 16.700 37.410 
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7. processing * SNR 

Estimates 

Measure:   MEASURE_1   

processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 1 104.321 2.905 98.218 110.424 

2 76.659 3.166 70.008 83.310 

3 40.889 3.927 32.639 49.138 

4 11.459 3.049 5.054 17.863 

2 1 82.342 3.292 75.426 89.258 

2 72.772 3.424 65.578 79.966 

3 44.013 2.885 37.952 50.074 

4 2.834 3.335 -4.171 9.840 

3 1 60.416 2.905 54.314 66.519 

2 60.350 3.837 52.290 68.410 

3 33.748 3.279 26.860 40.637 

4 7.864 3.817 -.155 15.884 

4 1 85.650 2.894 79.571 91.730 

2 68.946 3.943 60.661 77.230 

3 46.644 2.638 41.103 52.186 

4 22.884 3.485 15.562 30.206 
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Pairwise Comparisons 

Measure:   MEASURE_1   

SNR (I) processing (J) processing 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 1 2 21.979* 4.639 .001 8.234 35.724 

3 43.905* 3.908 .000 32.327 55.483 

4 18.670* 2.819 .000 10.319 27.022 

2 1 -21.979* 4.639 .001 -35.724 -8.234 

3 21.926* 2.999 .000 13.041 30.810 

4 -3.309 3.116 1.000 -12.540 5.923 

3 1 -43.905* 3.908 .000 -55.483 -32.327 

2 -21.926* 2.999 .000 -30.810 -13.041 

4 -25.234* 2.714 .000 -33.276 -17.193 

4 1 -18.670* 2.819 .000 -27.022 -10.319 

2 3.309 3.116 1.000 -5.923 12.540 

3 25.234* 2.714 .000 17.193 33.276 

2 1 2 3.887 3.563 1.000 -6.669 14.443 

3 16.309* 3.874 .003 4.832 27.786 

4 7.714 4.481 .614 -5.561 20.988 

2 1 -3.887 3.563 1.000 -14.443 6.669 



 

 

177 

 

3 12.422* 3.255 .008 2.778 22.066 

4 3.826 3.557 1.000 -6.711 14.364 

3 1 -16.309* 3.874 .003 -27.786 -4.832 

2 -12.422* 3.255 .008 -22.066 -2.778 

4 -8.596 3.531 .153 -19.057 1.866 

4 1 -7.714 4.481 .614 -20.988 5.561 

2 -3.826 3.557 1.000 -14.364 6.711 

3 8.596 3.531 .153 -1.866 19.057 

3 1 2 -3.124 3.652 1.000 -13.944 7.696 

3 7.140 4.251 .662 -5.455 19.736 

4 -5.756 3.383 .636 -15.777 4.266 

2 1 3.124 3.652 1.000 -7.696 13.944 

3 10.265 3.874 .098 -1.215 21.744 

4 -2.632 3.434 1.000 -12.806 7.543 

3 1 -7.140 4.251 .662 -19.736 5.455 

2 -10.265 3.874 .098 -21.744 1.215 

4 -12.896* 3.374 .007 -22.892 -2.900 

4 1 5.756 3.383 .636 -4.266 15.777 

2 2.632 3.434 1.000 -7.543 12.806 

3 12.896* 3.374 .007 2.900 22.892 

4 1 2 8.624 3.419 .128 -1.505 18.753 
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3 3.594 3.593 1.000 -7.051 14.240 

4 -11.426* 3.797 .045 -22.674 -.177 

2 1 -8.624 3.419 .128 -18.753 1.505 

3 -5.030 2.826 .552 -13.403 3.343 

4 -20.050* 3.400 .000 -30.123 -9.976 

3 1 -3.594 3.593 1.000 -14.240 7.051 

2 5.030 2.826 .552 -3.343 13.403 

4 -15.020* 3.911 .007 -26.607 -3.433 

4 1 11.426* 3.797 .045 .177 22.674 

2 20.050* 3.400 .000 9.976 30.123 

3 15.020* 3.911 .007 3.433 26.607 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Multivariate Tests 

SNR Value F Hypothesis df Error df Sig. 

1 Pillai's trace .901 48.365a 3.000 16.000 .000 

Wilks' lambda .099 48.365a 3.000 16.000 .000 

Hotelling's trace 9.068 48.365a 3.000 16.000 .000 

Roy's largest root 9.068 48.365a 3.000 16.000 .000 

2 Pillai's trace .549 6.489a 3.000 16.000 .004 

Wilks' lambda .451 6.489a 3.000 16.000 .004 

Hotelling's trace 1.217 6.489a 3.000 16.000 .004 

Roy's largest root 1.217 6.489a 3.000 16.000 .004 

3 Pillai's trace .480 4.915a 3.000 16.000 .013 

Wilks' lambda .520 4.915a 3.000 16.000 .013 

Hotelling's trace .922 4.915a 3.000 16.000 .013 

Roy's largest root .922 4.915a 3.000 16.000 .013 

4 Pillai's trace .661 10.382a 3.000 16.000 .000 

Wilks' lambda .339 10.382a 3.000 16.000 .000 

Hotelling's trace 1.947 10.382a 3.000 16.000 .000 

Roy's largest root 1.947 10.382a 3.000 16.000 .000 

Each F tests the multivariate simple effects of processing within each level combination of the other effects 

shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

a. Exact statistic 
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8. Group * processing * SNR 

Estimates 

Measure:   MEASURE_1   

Group processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

APD 1 1 96.663 4.108 88.032 105.294 

2 65.504 4.477 56.098 74.910 

3 31.019 5.553 19.352 42.685 

4 3.552 4.311 -5.506 12.610 

2 1 80.104 4.655 70.324 89.885 

2 66.567 4.842 56.393 76.741 

3 40.760 4.080 32.189 49.331 

4 .977 4.716 -8.931 10.884 

3 1 58.233 4.108 49.603 66.863 

2 58.145 5.426 46.746 69.544 

3 29.116 4.637 19.374 38.858 

4 5.732 5.398 -5.609 17.073 

4 1 83.646 4.092 75.048 92.244 

2 67.165 5.576 55.449 78.880 

3 47.120 3.730 39.283 54.957 

4 18.713 4.929 8.359 29.068 
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NC 1 1 111.979 4.108 103.348 120.610 

2 87.814 4.477 78.408 97.220 

3 50.759 5.553 39.092 62.426 

4 19.365 4.311 10.307 28.423 

2 1 84.579 4.655 74.799 94.359 

2 78.977 4.842 68.803 89.151 

3 47.266 4.080 38.694 55.837 

4 4.692 4.716 -5.215 14.599 

3 1 62.599 4.108 53.969 71.230 

2 62.556 5.426 51.157 73.955 

3 38.381 4.637 28.639 48.123 

4 9.997 5.398 -1.344 21.338 

4 1 87.655 4.092 79.057 96.253 

2 70.727 5.576 59.011 82.443 

3 46.169 3.730 38.331 54.006 

4 27.055 4.929 16.700 37.410 
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Pairwise Comparisons 

Measure:   MEASURE_1   

Group SNR (I) processing (J) processing 

Mean 

Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

APD 1 1 2 16.558 6.561 .127 -2.880 35.997 

3 38.430* 5.527 .000 22.056 54.804 

4 13.017* 3.987 .026 1.206 24.828 

2 1 -16.558 6.561 .127 -35.997 2.880 

3 21.871* 4.241 .000 9.306 34.436 

4 -3.541 4.407 1.000 -16.597 9.514 

3 1 -38.430* 5.527 .000 -54.804 -22.056 

2 -21.871* 4.241 .000 -34.436 -9.306 

4 -25.413* 3.838 .000 -36.785 -14.040 

4 1 -13.017* 3.987 .026 -24.828 -1.206 

2 3.541 4.407 1.000 -9.514 16.597 

3 25.413* 3.838 .000 14.040 36.785 

2 1 2 -1.062 5.039 1.000 -15.991 13.866 

3 7.360 5.478 1.000 -8.871 23.591 

4 -1.660 6.337 1.000 -20.434 17.113 
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2 1 1.062 5.039 1.000 -13.866 15.991 

3 8.422 4.603 .504 -5.217 22.061 

4 -.598 5.030 1.000 -15.500 14.304 

3 1 -7.360 5.478 1.000 -23.591 8.871 

2 -8.422 4.603 .504 -22.061 5.217 

4 -9.020 4.994 .526 -23.815 5.775 

4 1 1.660 6.337 1.000 -17.113 20.434 

2 .598 5.030 1.000 -14.304 15.500 

3 9.020 4.994 .526 -5.775 23.815 

3 1 2 -9.741 5.165 .453 -25.043 5.561 

3 1.903 6.012 1.000 -15.910 19.715 

4 -16.101* 4.784 .021 -30.274 -1.928 

2 1 9.741 5.165 .453 -5.561 25.043 

3 11.644 5.479 .286 -4.590 27.878 

4 -6.360 4.857 1.000 -20.749 8.029 

3 1 -1.903 6.012 1.000 -19.715 15.910 

2 -11.644 5.479 .286 -27.878 4.590 

4 -18.004* 4.772 .008 -32.141 -3.867 

4 1 16.101* 4.784 .021 1.928 30.274 

2 6.360 4.857 1.000 -8.029 20.749 

3 18.004* 4.772 .008 3.867 32.141 
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4 1 2 2.575 4.835 1.000 -11.750 16.900 

3 -2.180 5.081 1.000 -17.235 12.875 

4 -15.162 5.369 .067 -31.069 .746 

2 1 -2.575 4.835 1.000 -16.900 11.750 

3 -4.755 3.997 1.000 -16.597 7.087 

4 -17.737* 4.808 .010 -31.983 -3.491 

3 1 2.180 5.081 1.000 -12.875 17.235 

2 4.755 3.997 1.000 -7.087 16.597 

4 -12.982 5.531 .183 -29.368 3.405 

4 1 15.162 5.369 .067 -.746 31.069 

2 17.737* 4.808 .010 3.491 31.983 

3 12.982 5.531 .183 -3.405 29.368 

NC 1 1 2 27.400* 6.561 .003 7.962 46.838 

3 49.380* 5.527 .000 33.006 65.753 

4 24.324* 3.987 .000 12.512 36.135 

2 1 -27.400* 6.561 .003 -46.838 -7.962 

3 21.980* 4.241 .000 9.415 34.545 

4 -3.076 4.407 1.000 -16.132 9.979 

3 1 -49.380* 5.527 .000 -65.753 -33.006 

2 -21.980* 4.241 .000 -34.545 -9.415 

4 -25.056* 3.838 .000 -36.428 -13.684 
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4 1 -24.324* 3.987 .000 -36.135 -12.512 

2 3.076 4.407 1.000 -9.979 16.132 

3 25.056* 3.838 .000 13.684 36.428 

2 1 2 8.837 5.039 .579 -6.091 23.766 

3 25.259* 5.478 .001 9.027 41.490 

4 17.087 6.337 .089 -1.686 35.861 

2 1 -8.837 5.039 .579 -23.766 6.091 

3 16.421* 4.603 .013 2.783 30.060 

4 8.250 5.030 .710 -6.652 23.152 

3 1 -25.259* 5.478 .001 -41.490 -9.027 

2 -16.421* 4.603 .013 -30.060 -2.783 

4 -8.171 4.994 .715 -22.966 6.623 

4 1 -17.087 6.337 .089 -35.861 1.686 

2 -8.250 5.030 .710 -23.152 6.652 

3 8.171 4.994 .715 -6.623 22.966 

3 1 2 3.493 5.165 1.000 -11.809 18.795 

3 12.378 6.012 .326 -5.435 30.191 

4 4.590 4.784 1.000 -9.583 18.763 

2 1 -3.493 5.165 1.000 -18.795 11.809 

3 8.885 5.479 .734 -7.349 25.119 

4 1.097 4.857 1.000 -13.292 15.485 
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3 1 -12.378 6.012 .326 -30.191 5.435 

2 -8.885 5.479 .734 -25.119 7.349 

4 -7.788 4.772 .720 -21.925 6.349 

4 1 -4.590 4.784 1.000 -18.763 9.583 

2 -1.097 4.857 1.000 -15.485 13.292 

3 7.788 4.772 .720 -6.349 21.925 

4 1 2 14.673* 4.835 .043 .348 28.998 

3 9.368 5.081 .491 -5.687 24.423 

4 -7.690 5.369 1.000 -23.597 8.218 

2 1 -14.673* 4.835 .043 -28.998 -.348 

3 -5.305 3.997 1.000 -17.147 6.537 

4 -22.363* 4.808 .001 -36.609 -8.117 

3 1 -9.368 5.081 .491 -24.423 5.687 

2 5.305 3.997 1.000 -6.537 17.147 

4 -17.058* 5.531 .038 -33.444 -.671 

4 1 7.690 5.369 1.000 -8.218 23.597 

2 22.363* 4.808 .001 8.117 36.609 

3 17.058* 5.531 .038 .671 33.444 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Multivariate Tests 

Group SNR Value F Hypothesis df Error df Sig. 

APD 1 Pillai's trace .790 20.089a 3.000 16.000 .000 

Wilks' lambda .210 20.089a 3.000 16.000 .000 

Hotelling's trace 3.767 20.089a 3.000 16.000 .000 

Roy's largest root 3.767 20.089a 3.000 16.000 .000 

2 Pillai's trace .208 1.400a 3.000 16.000 .279 

Wilks' lambda .792 1.400a 3.000 16.000 .279 

Hotelling's trace .263 1.400a 3.000 16.000 .279 

Roy's largest root .263 1.400a 3.000 16.000 .279 

3 Pillai's trace .555 6.655a 3.000 16.000 .004 

Wilks' lambda .445 6.655a 3.000 16.000 .004 

Hotelling's trace 1.248 6.655a 3.000 16.000 .004 

Roy's largest root 1.248 6.655a 3.000 16.000 .004 

4 Pillai's trace .454 4.435a 3.000 16.000 .019 

Wilks' lambda .546 4.435a 3.000 16.000 .019 

Hotelling's trace .831 4.435a 3.000 16.000 .019 

Roy's largest root .831 4.435a 3.000 16.000 .019 

NC 1 Pillai's trace .847 29.566a 3.000 16.000 .000 

Wilks' lambda .153 29.566a 3.000 16.000 .000 
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Hotelling's trace 5.544 29.566a 3.000 16.000 .000 

Roy's largest root 5.544 29.566a 3.000 16.000 .000 

2 Pillai's trace .564 6.890a 3.000 16.000 .003 

Wilks' lambda .436 6.890a 3.000 16.000 .003 

Hotelling's trace 1.292 6.890a 3.000 16.000 .003 

Roy's largest root 1.292 6.890a 3.000 16.000 .003 

3 Pillai's trace .202 1.353a 3.000 16.000 .293 

Wilks' lambda .798 1.353a 3.000 16.000 .293 

Hotelling's trace .254 1.353a 3.000 16.000 .293 

Roy's largest root .254 1.353a 3.000 16.000 .293 

4 Pillai's trace .566 6.968a 3.000 16.000 .003 

Wilks' lambda .434 6.968a 3.000 16.000 .003 

Hotelling's trace 1.306 6.968a 3.000 16.000 .003 

Roy's largest root 1.306 6.968a 3.000 16.000 .003 

Each F tests the multivariate simple effects of processing within each level combination of the other effects shown. These 

tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
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Non- Stationary Background Noise Experiment 

  General Linear Model 

Notes 

Output Created 13-DEC-2018 08:59:46 

Comments 
 

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 10 

Missing Value Handling Definition of Missing User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid 

data for all variables in the model. 
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Syntax GLM UP_4 UP_0 UP_3 UP_6 SEE_4 SEE_0 

SEE_3 SEE_6 MMSESEE_4 MMSESEE_0 

MMSESEE_3 MMSESEE_6 MHASEE_4 

    MHASEE_0 MHASEE_3 MHASEE_6 

  /WSFACTOR=processing 4 Polynomial 

SNR 4 Polynomial 

  /METHOD=SSTYPE(3) 

  /EMMEANS=TABLES(OVERALL) 

  /EMMEANS=TABLES(processing) 

COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(SNR) COMPARE 

ADJ(BONFERRONI) 

  /EMMEANS=TABLES(processing*SNR) 

COMPARE(processing)ADJ(BONFERRONI) 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=processing SNR 

processing*SNR. 

Resources Processor Time 00:00:00.08 

Elapsed Time 00:00:00.06 

 

[DataSet1]  
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Within-Subjects Factors 

Measure:   MEASURE_1   

processing SNR 

Dependent 

Variable 

1 1 UP_4 

2 UP_0 

3 UP_3 

4 UP_6 

2 1 SEE_4 

2 SEE_0 

3 SEE_3 

4 SEE_6 

3 1 MMSESEE_4 

2 MMSESEE_0 

3 MMSESEE_3 

4 MMSESEE_6 

4 1 MHASEE_4 

2 MHASEE_0 

3 MHASEE_3 

4 MHASEE_6 
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Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

processing Pillai's Trace .973 82.616b 3.000 7.000 .000 

Wilks' Lambda .027 82.616b 3.000 7.000 .000 

Hotelling's Trace 35.407 82.616b 3.000 7.000 .000 

Roy's Largest Root 35.407 82.616b 3.000 7.000 .000 

SNR Pillai's Trace .987 180.865b 3.000 7.000 .000 

Wilks' Lambda .013 180.865b 3.000 7.000 .000 

Hotelling's Trace 77.513 180.865b 3.000 7.000 .000 

Roy's Largest Root 77.513 180.865b 3.000 7.000 .000 

processing * SNR Pillai's Trace .999 111.720b 9.000 1.000 .073 

Wilks' Lambda .001 111.720b 9.000 1.000 .073 

Hotelling's Trace 1005.478 111.720b 9.000 1.000 .073 

Roy's Largest Root 1005.478 111.720b 9.000 1.000 .073 

a. Design: Intercept  

 Within Subjects Design: processing + SNR + processing * SNR 

b. Exact statistic 
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Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 

Approx. Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 

processing .566 4.402 5 .496 .746 1.000 .333 

SNR .369 7.694 5 .177 .596 .734 .333 

processing * SNR .000 54.582 44 .298 .472 .945 .111 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to 

an identity matrix. 

a. Design: Intercept  

 Within Subjects Design: processing + SNR + processing * SNR 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests 

of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Sphericity Assumed 29565.589 3 9855.196 81.037 .000 

Greenhouse-Geisser 29565.589 2.238 13208.493 81.037 .000 

Huynh-Feldt 29565.589 3.000 9855.196 81.037 .000 
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Lower-bound 29565.589 1.000 29565.589 81.037 .000 

Error(processing) Sphericity Assumed 3283.565 27 121.614 
  

Greenhouse-Geisser 3283.565 20.145 162.993 
  

Huynh-Feldt 3283.565 27.000 121.614 
  

Lower-bound 3283.565 9.000 364.841 
  

SNR Sphericity Assumed 109311.493 3 36437.164 243.319 .000 

Greenhouse-Geisser 109311.493 1.788 61146.703 243.319 .000 

Huynh-Feldt 109311.493 2.201 49656.227 243.319 .000 

Lower-bound 109311.493 1.000 109311.493 243.319 .000 

Error(SNR) Sphericity Assumed 4043.264 27 149.751 
  

Greenhouse-Geisser 4043.264 16.089 251.303 
  

Huynh-Feldt 4043.264 19.812 204.079 
  

Lower-bound 4043.264 9.000 449.252 
  

processing * SNR Sphericity Assumed 10697.521 9 1188.613 9.544 .000 

Greenhouse-Geisser 10697.521 4.244 2520.690 9.544 .000 

Huynh-Feldt 10697.521 8.503 1258.161 9.544 .000 

Lower-bound 10697.521 1.000 10697.521 9.544 .013 

Error(processing*SNR) Sphericity Assumed 10087.368 81 124.535 
  

Greenhouse-Geisser 10087.368 38.195 264.102 
  

Huynh-Feldt 10087.368 76.523 131.822 
  

Lower-bound 10087.368 9.000 1120.819 
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Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source processing SNR 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Linear 
 

26448.640 1 26448.640 172.349 .000 

Quadratic 
 

2654.156 1 2654.156 21.361 .001 

Cubic 
 

462.794 1 462.794 5.312 .047 

Error(processing) Linear 
 

1381.140 9 153.460 
  

Quadratic 
 

1118.262 9 124.251 
  

Cubic 
 

784.163 9 87.129 
  

SNR 
 

Linear 107783.413 1 107783.413 445.910 .000 

Quadratic 981.985 1 981.985 7.713 .021 

Cubic 546.095 1 546.095 6.807 .028 

Error(SNR) 
 

Linear 2175.443 9 241.716 
  

Quadratic 1145.808 9 127.312 
  

Cubic 722.014 9 80.224 
  

processing * SNR Linear Linear 5198.708 1 5198.708 97.040 .000 

Quadratic 1752.146 1 1752.146 12.640 .006 

Cubic 277.241 1 277.241 2.197 .172 

Quadratic Linear 79.602 1 79.602 1.147 .312 
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Quadratic 143.971 1 143.971 .552 .477 

Cubic 2407.413 1 2407.413 19.284 .002 

Cubic Linear 642.230 1 642.230 5.151 .049 

Quadratic 165.071 1 165.071 2.088 .182 

Cubic 31.140 1 31.140 .217 .652 

Error(processing*SNR) Linear Linear 482.158 9 53.573 
  

Quadratic 1247.553 9 138.617 
  

Cubic 1135.483 9 126.165 
  

Quadratic Linear 624.491 9 69.388 
  

Quadratic 2348.841 9 260.982 
  

Cubic 1123.576 9 124.842 
  

Cubic Linear 1122.098 9 124.678 
  

Quadratic 711.425 9 79.047 
  

Cubic 1291.744 9 143.527 
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Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 79439.373 1 79439.373 30.776 .000 

Error 23230.942 9 2581.216 
  

 

Estimated Marginal Means 

 

1. Grand Mean 

Measure:   MEASURE_1   

Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

22.282 4.017 13.196 31.368 
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2. processing 

Estimates 

Measure:   MEASURE_1   

processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 44.365 4.791 33.527 55.204 

2 21.677 4.909 10.573 32.781 

3 14.741 3.749 6.260 23.223 

4 8.345 3.542 .333 16.357 

 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) processing (J) processing 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 22.688* 2.069 .000 15.726 29.650 

3 29.624* 3.193 .000 18.884 40.364 

4 36.020* 2.313 .000 28.240 43.800 

2 1 -22.688* 2.069 .000 -29.650 -15.726 

3 6.936 2.585 .150 -1.760 15.632 

4 13.332* 2.385 .002 5.309 21.355 
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3 1 -29.624* 3.193 .000 -40.364 -18.884 

2 -6.936 2.585 .150 -15.632 1.760 

4 6.396 2.072 .078 -.574 13.366 

4 1 -36.020* 2.313 .000 -43.800 -28.240 

2 -13.332* 2.385 .002 -21.355 -5.309 

3 -6.396 2.072 .078 -13.366 .574 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .973 82.616a 3.000 7.000 .000 

Wilks' lambda .027 82.616a 3.000 7.000 .000 

Hotelling's trace 35.407 82.616a 3.000 7.000 .000 

Roy's largest root 35.407 82.616a 3.000 7.000 .000 

Each F tests the multivariate effect of processing. These tests are based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
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3. SNR 

 

Estimates 

Measure:   MEASURE_1   

SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 60.408 5.604 47.729 73.086 

2 28.933 3.357 21.340 36.527 

3 10.676 4.312 .923 20.430 

4 -10.889 3.807 -19.500 -2.277 

 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) SNR (J) SNR 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 31.474* 3.211 .000 20.672 42.277 

3 49.732* 3.532 .000 37.850 61.613 

4 71.296* 3.530 .000 59.421 83.172 

2 1 -31.474* 3.211 .000 -42.277 -20.672 

3 18.257* 1.907 .000 11.842 24.673 
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4 39.822* 1.669 .000 34.207 45.437 

3 1 -49.732* 3.532 .000 -61.613 -37.850 

2 -18.257* 1.907 .000 -24.673 -11.842 

4 21.565* 1.805 .000 15.493 27.637 

4 1 -71.296* 3.530 .000 -83.172 -59.421 

2 -39.822* 1.669 .000 -45.437 -34.207 

3 -21.565* 1.805 .000 -27.637 -15.493 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .987 180.865a 3.000 7.000 .000 

Wilks' lambda .013 180.865a 3.000 7.000 .000 

Hotelling's trace 77.513 180.865a 3.000 7.000 .000 

Roy's largest root 77.513 180.865a 3.000 7.000 .000 

Each F tests the multivariate effect of SNR. These tests are based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

a. Exact statistic 

 



 

 

202 

 

4. processing * SNR 

Estimates 

Measure:   MEASURE_1   

processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 1 90.090 5.335 78.021 102.159 

2 57.896 5.017 46.547 69.244 

3 37.565 5.739 24.583 50.548 

4 -8.090 5.435 -20.385 4.205 

2 1 57.239 7.317 40.686 73.792 

2 33.908 7.871 16.103 51.713 

3 2.829 5.314 -9.191 14.849 

4 -7.267 4.333 -17.069 2.536 

3 1 51.966 5.737 38.988 64.943 

2 23.694 2.565 17.891 29.496 

3 -1.298 5.003 -12.614 10.019 

4 -15.397 3.349 -22.972 -7.822 

4 1 42.336 6.395 27.869 56.803 

2 .237 .042 .142 .331 

3 3.608 6.138 -10.278 17.494 

4 -12.801 4.323 -22.580 -3.021 
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Pairwise Comparisons 

Measure:   MEASURE_1   

SNR (I) processing (J) processing 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 1 2 32.851* 3.629 .000 20.641 45.061 

3 38.124* 4.693 .000 22.336 53.913 

4 47.754* 3.549 .000 35.816 59.692 

2 1 -32.851* 3.629 .000 -45.061 -20.641 

3 5.274 5.896 1.000 -14.560 25.107 

4 14.903 4.971 .090 -1.820 31.626 

3 1 -38.124* 4.693 .000 -53.913 -22.336 

2 -5.274 5.896 1.000 -25.107 14.560 

4 9.629 3.670 .166 -2.718 21.977 

4 1 -47.754* 3.549 .000 -59.692 -35.816 

2 -14.903 4.971 .090 -31.626 1.820 

3 -9.629 3.670 .166 -21.977 2.718 

2 1 2 23.988* 7.103 .049 .092 47.884 

3 34.202* 4.475 .000 19.148 49.256 

4 57.659* 4.993 .000 40.863 74.456 

2 1 -23.988* 7.103 .049 -47.884 -.092 
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3 10.214 5.573 .600 -8.535 28.963 

4 33.671* 7.847 .012 7.271 60.071 

3 1 -34.202* 4.475 .000 -49.256 -19.148 

2 -10.214 5.573 .600 -28.963 8.535 

4 23.457* 2.536 .000 14.925 31.989 

4 1 -57.659* 4.993 .000 -74.456 -40.863 

2 -33.671* 7.847 .012 -60.071 -7.271 

3 -23.457* 2.536 .000 -31.989 -14.925 

3 1 2 34.736* 5.386 .001 16.615 52.856 

3 38.863* 5.996 .001 18.690 59.035 

4 33.957* 5.895 .002 14.124 53.790 

2 1 -34.736* 5.386 .001 -52.856 -16.615 

3 4.127 5.100 1.000 -13.031 21.285 

4 -.778 5.736 1.000 -20.076 18.519 

3 1 -38.863* 5.996 .001 -59.035 -18.690 

2 -4.127 5.100 1.000 -21.285 13.031 

4 -4.905 6.278 1.000 -26.027 16.216 

4 1 -33.957* 5.895 .002 -53.790 -14.124 

2 .778 5.736 1.000 -18.519 20.076 

3 4.905 6.278 1.000 -16.216 26.027 

4 1 2 -.823 4.161 1.000 -14.822 13.175 
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3 7.307 5.144 1.000 -9.997 24.611 

4 4.711 2.608 .626 -4.064 13.485 

2 1 .823 4.161 1.000 -13.175 14.822 

3 8.130 3.215 .194 -2.684 18.944 

4 5.534 2.118 .169 -1.593 12.660 

3 1 -7.307 5.144 1.000 -24.611 9.997 

2 -8.130 3.215 .194 -18.944 2.684 

4 -2.596 3.951 1.000 -15.889 10.697 

4 1 -4.711 2.608 .626 -13.485 4.064 

2 -5.534 2.118 .169 -12.660 1.593 

3 2.596 3.951 1.000 -10.697 15.889 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

SNR Value F Hypothesis df Error df Sig. 

1 Pillai's trace .966 65.758a 3.000 7.000 .000 

Wilks' lambda .034 65.758a 3.000 7.000 .000 

Hotelling's trace 28.182 65.758a 3.000 7.000 .000 
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Roy's largest root 28.182 65.758a 3.000 7.000 .000 

2 Pillai's trace .972 82.380a 3.000 7.000 .000 

Wilks' lambda .028 82.380a 3.000 7.000 .000 

Hotelling's trace 35.306 82.380a 3.000 7.000 .000 

Roy's largest root 35.306 82.380a 3.000 7.000 .000 

3 Pillai's trace .865 14.967a 3.000 7.000 .002 

Wilks' lambda .135 14.967a 3.000 7.000 .002 

Hotelling's trace 6.414 14.967a 3.000 7.000 .002 

Roy's largest root 6.414 14.967a 3.000 7.000 .002 

4 Pillai's trace .788 8.672a 3.000 7.000 .009 

Wilks' lambda .212 8.672a 3.000 7.000 .009 

Hotelling's trace 3.717 8.672a 3.000 7.000 .009 

Roy's largest root 3.717 8.672a 3.000 7.000 .009 

Each F tests the multivariate simple effects of processing within each level combination of the other effects 

shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

a. Exact statistic 
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Appendix D: Dichotic Processing Speech Intelligibility Statistical Report 

Stationary Background Noise Experiment 

General Linear Model 

Notes 

Output Created 13-DEC-2018 09:15:54 

Comments 
 

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 20 

Missing Value Handling Definition of Missing User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid 

data for all variables in the model. 
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Syntax GLM up_4 up_0 up_3 up_6 dichotic_4 

dichotic_0 dichotic_3 dichotic_6 MHA_4 

MHA_0 MHA_3 MHA_6 

    MHAdichotic_4 MHAdichotic_0 

MHAdichotic_3 MHAdichotic_6 BY Group 

  /WSFACTOR=processing 4 Polynomial 

SNR 4 Polynomial 

  /METHOD=SSTYPE(3) 

  /EMMEANS=TABLES(OVERALL) 

  /EMMEANS=TABLES(Group) COMPARE 

ADJ(BONFERRONI) 

  /EMMEANS=TABLES(processing) 

COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(SNR) COMPARE 

ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Group*processing) 

COMPARE(processing)ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Group*SNR) 

   

/EMMEANS=TABLES(Group*processing*S

NR) 

COMPARE(processing)ADJ(BONFERRONI) 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=processing SNR 

processing*SNR 

  /DESIGN=Group. 

Resources Processor Time 00:00:00.09 

Elapsed Time 00:00:00.10 



 

209 

 

[DataSet1]  

 

Within-Subjects Factors 

Measure:   MEASURE_1   

processing SNR 

Dependent 

Variable 

1 1 up_4 

2 up_0 

3 up_3 

4 up_6 

2 1 dichotic_4 

2 dichotic_0 

3 dichotic_3 

4 dichotic_6 

3 1 MHA_4 

2 MHA_0 

3 MHA_3 

4 MHA_6 

4 1 MHAdichotic_4 

2 MHAdichotic_0 

3 MHAdichotic_3 

4 MHAdichotic_6 
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Between-Subjects Factors 

 
N 

Group HI 10 

NH 10 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

processing Pillai's Trace .600 7.992b 3.000 16.000 .002 

Wilks' Lambda .400 7.992b 3.000 16.000 .002 

Hotelling's Trace 1.498 7.992b 3.000 16.000 .002 

Roy's Largest Root 1.498 7.992b 3.000 16.000 .002 

processing * Group Pillai's Trace .595 7.822b 3.000 16.000 .002 

Wilks' Lambda .405 7.822b 3.000 16.000 .002 

Hotelling's Trace 1.467 7.822b 3.000 16.000 .002 

Roy's Largest Root 1.467 7.822b 3.000 16.000 .002 

SNR Pillai's Trace .977 222.484b 3.000 16.000 .000 

Wilks' Lambda .023 222.484b 3.000 16.000 .000 

Hotelling's Trace 41.716 222.484b 3.000 16.000 .000 

Roy's Largest Root 41.716 222.484b 3.000 16.000 .000 

SNR * Group Pillai's Trace .186 1.216b 3.000 16.000 .336 

Wilks' Lambda .814 1.216b 3.000 16.000 .336 
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Hotelling's Trace .228 1.216b 3.000 16.000 .336 

Roy's Largest Root .228 1.216b 3.000 16.000 .336 

processing * SNR Pillai's Trace .868 7.283b 9.000 10.000 .002 

Wilks' Lambda .132 7.283b 9.000 10.000 .002 

Hotelling's Trace 6.555 7.283b 9.000 10.000 .002 

Roy's Largest Root 6.555 7.283b 9.000 10.000 .002 

processing * SNR * Group Pillai's Trace .567 1.456b 9.000 10.000 .283 

Wilks' Lambda .433 1.456b 9.000 10.000 .283 

Hotelling's Trace 1.310 1.456b 9.000 10.000 .283 

Roy's Largest Root 1.310 1.456b 9.000 10.000 .283 

a. Design: Intercept + Group  

 Within Subjects Design: processing + SNR + processing * SNR 

b. Exact statistic 

 

 

 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 

Approx. Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 
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processing .882 2.098 5 .836 .928 1.000 .333 

SNR .302 20.035 5 .001 .643 .758 .333 

processing * SNR .072 38.920 44 .720 .667 1.000 .111 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to 

an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: processing + SNR + processing * SNR 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests 

of Within-Subjects Effects table. 

 

 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Sphericity Assumed 2459.065 3 819.688 9.121 .000 

Greenhouse-Geisser 2459.065 2.784 883.160 9.121 .000 

Huynh-Feldt 2459.065 3.000 819.688 9.121 .000 

Lower-bound 2459.065 1.000 2459.065 9.121 .007 

processing * Group Sphericity Assumed 2259.666 3 753.222 8.381 .000 

Greenhouse-Geisser 2259.666 2.784 811.547 8.381 .000 

Huynh-Feldt 2259.666 3.000 753.222 8.381 .000 
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Lower-bound 2259.666 1.000 2259.666 8.381 .010 

Error(processing) Sphericity Assumed 4852.974 54 89.870 
  

Greenhouse-Geisser 4852.974 50.119 96.829 
  

Huynh-Feldt 4852.974 54.000 89.870 
  

Lower-bound 4852.974 18.000 269.610 
  

SNR Sphericity Assumed 269928.715 3 89976.238 348.182 .000 

Greenhouse-Geisser 269928.715 1.928 140005.524 348.182 .000 

Huynh-Feldt 269928.715 2.275 118663.316 348.182 .000 

Lower-bound 269928.715 1.000 269928.715 348.182 .000 

SNR * Group Sphericity Assumed 664.002 3 221.334 .856 .469 

Greenhouse-Geisser 664.002 1.928 344.402 .856 .430 

Huynh-Feldt 664.002 2.275 291.902 .856 .445 

Lower-bound 664.002 1.000 664.002 .856 .367 

Error(SNR) Sphericity Assumed 13954.530 54 258.417 
  

Greenhouse-Geisser 13954.530 34.704 402.104 
  

Huynh-Feldt 13954.530 40.945 340.808 
  

Lower-bound 13954.530 18.000 775.252 
  

processing * SNR Sphericity Assumed 6422.901 9 713.656 6.640 .000 

Greenhouse-Geisser 6422.901 6.005 1069.567 6.640 .000 

Huynh-Feldt 6422.901 9.000 713.656 6.640 .000 

Lower-bound 6422.901 1.000 6422.901 6.640 .019 
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processing * SNR * Group Sphericity Assumed 1333.089 9 148.121 1.378 .202 

Greenhouse-Geisser 1333.089 6.005 221.991 1.378 .230 

Huynh-Feldt 1333.089 9.000 148.121 1.378 .202 

Lower-bound 1333.089 1.000 1333.089 1.378 .256 

Error(processing*SNR) Sphericity Assumed 17411.113 162 107.476 
  

Greenhouse-Geisser 17411.113 108.093 161.076 
  

Huynh-Feldt 17411.113 162.000 107.476 
  

Lower-bound 17411.113 18.000 967.284 
  

 

 

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source processing SNR 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Linear 
 

146.002 1 146.002 1.250 .278 

Quadratic 
 

1609.376 1 1609.376 18.596 .000 

Cubic 
 

703.686 1 703.686 10.626 .004 

processing * Group Linear 
 

1696.007 1 1696.007 14.515 .001 

Quadratic 
 

405.936 1 405.936 4.691 .044 

Cubic 
 

157.723 1 157.723 2.382 .140 

Error(processing) Linear 
 

2103.178 18 116.843 
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Quadratic 
 

1557.767 18 86.543 
  

Cubic 
 

1192.028 18 66.224 
  

SNR 
 

Linear 255359.686 1 255359.686 558.142 .000 

Quadratic 13501.785 1 13501.785 62.181 .000 

Cubic 1067.245 1 1067.245 10.609 .004 

SNR * Group 
 

Linear 350.621 1 350.621 .766 .393 

Quadratic 202.957 1 202.957 .935 .346 

Cubic 110.425 1 110.425 1.098 .309 

Error(SNR) 
 

Linear 8235.309 18 457.517 
  

Quadratic 3908.448 18 217.136 
  

Cubic 1810.772 18 100.598 
  

processing * SNR Linear Linear 2230.780 1 2230.780 17.122 .001 

Quadratic 142.839 1 142.839 1.721 .206 

Cubic 310.707 1 310.707 4.626 .045 

Quadratic Linear 2185.130 1 2185.130 16.939 .001 

Quadratic 6.271 1 6.271 .047 .831 

Cubic 99.469 1 99.469 .732 .403 

Cubic Linear 30.602 1 30.602 .362 .555 

Quadratic 4.437 1 4.437 .039 .846 

Cubic 1412.667 1 1412.667 15.828 .001 

processing * SNR * Group Linear Linear 285.036 1 285.036 2.188 .156 
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Quadratic 457.345 1 457.345 5.510 .031 

Cubic 41.663 1 41.663 .620 .441 

Quadratic Linear 4.292 1 4.292 .033 .857 

Quadratic 21.856 1 21.856 .163 .691 

Cubic 3.447 1 3.447 .025 .875 

Cubic Linear 12.718 1 12.718 .151 .703 

Quadratic 499.607 1 499.607 4.368 .051 

Cubic 7.126 1 7.126 .080 .781 

Error(processing*SNR) Linear Linear 2345.204 18 130.289 
  

Quadratic 1493.991 18 83.000 
  

Cubic 1208.969 18 67.165 
  

Quadratic Linear 2322.033 18 129.002 
  

Quadratic 2409.113 18 133.840 
  

Cubic 2445.694 18 135.872 
  

Cubic Linear 1520.839 18 84.491 
  

Quadratic 2058.742 18 114.375 
  

Cubic 1606.527 18 89.251 
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Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 1694019.809 1 1694019.809 750.389 .000 

Group 27926.466 1 27926.466 12.370 .002 

Error 40635.385 18 2257.521 
  

Estimated Marginal Means 

1. Grand Mean 

Measure:   MEASURE_1   

Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

72.759 2.656 67.178 78.339 

2. Group 

Estimates 

Measure:   MEASURE_1   

Group Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HI 63.417 3.756 55.525 71.308 

NH 82.100 3.756 74.209 89.992 
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Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

HI NH -18.684* 5.312 .002 -29.844 -7.523 

NH HI 18.684* 5.312 .002 7.523 29.844 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   

 
Sum of Squares df Mean Square F Sig. 

Contrast 1745.404 1 1745.404 12.370 .002 

Error 2539.712 18 141.095 
  

The F tests the effect of Group. This test is based on the linearly independent pairwise 

comparisons among the estimated marginal means. 
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3. processing 

Estimates 

Measure:   MEASURE_1   

processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 68.947 2.870 62.916 74.977 

2 76.689 2.942 70.508 82.869 

3 73.314 2.762 67.512 79.116 

4 72.085 2.659 66.499 77.671 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) processing (J) processing 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -7.742* 1.510 .000 -12.216 -3.269 

3 -4.367* 1.414 .038 -8.555 -.179 

4 -3.139 1.707 .495 -8.195 1.918 

2 1 7.742* 1.510 .000 3.269 12.216 

3 3.375 1.290 .105 -.447 7.196 

4 4.603 1.636 .069 -.243 9.449 

3 1 4.367* 1.414 .038 .179 8.555 
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2 -3.375 1.290 .105 -7.196 .447 

4 1.228 1.396 1.000 -2.909 5.366 

4 1 3.139 1.707 .495 -1.918 8.195 

2 -4.603 1.636 .069 -9.449 .243 

3 -1.228 1.396 1.000 -5.366 2.909 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .600 7.992a 3.000 16.000 .002 

Wilks' lambda .400 7.992a 3.000 16.000 .002 

Hotelling's trace 1.498 7.992a 3.000 16.000 .002 

Roy's largest root 1.498 7.992a 3.000 16.000 .002 

Each F tests the multivariate effect of processing. These tests are based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
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4. SNR 

Estimates 

Measure:   MEASURE_1   

SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 103.346 2.543 98.004 108.688 

2 94.338 2.366 89.368 99.308 

3 64.171 3.662 56.477 71.864 

4 29.180 3.527 21.770 36.589 

 

 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) SNR (J) SNR 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 9.008* 1.645 .000 4.134 13.883 

3 39.175* 3.299 .000 29.401 48.950 

4 74.166* 2.969 .000 65.369 82.964 

2 1 -9.008* 1.645 .000 -13.883 -4.134 

3 30.167* 2.266 .000 23.453 36.881 
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4 65.158* 2.550 .000 57.603 72.713 

3 1 -39.175* 3.299 .000 -48.950 -29.401 

2 -30.167* 2.266 .000 -36.881 -23.453 

4 34.991* 2.172 .000 28.557 41.425 

4 1 -74.166* 2.969 .000 -82.964 -65.369 

2 -65.158* 2.550 .000 -72.713 -57.603 

3 -34.991* 2.172 .000 -41.425 -28.557 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .977 222.484a 3.000 16.000 .000 

Wilks' lambda .023 222.484a 3.000 16.000 .000 

Hotelling's trace 41.716 222.484a 3.000 16.000 .000 

Roy's largest root 41.716 222.484a 3.000 16.000 .000 

Each F tests the multivariate effect of SNR. These tests are based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

a. Exact statistic 
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5. Group * processing 

Estimates 

Measure:   MEASURE_1   

Group processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HI 1 63.506 4.059 54.977 72.034 

2 68.192 4.160 59.452 76.932 

3 60.874 3.906 52.669 69.080 

4 61.095 3.760 53.195 68.995 

NH 1 74.387 4.059 65.859 82.916 

2 85.185 4.160 76.445 93.925 

3 85.753 3.906 77.548 93.959 

4 83.076 3.760 75.176 90.976 

Pairwise Comparisons 

Measure:   MEASURE_1   

Group (I) processing (J) processing 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

HI 1 2 -4.686 2.135 .249 -11.013 1.640 

3 2.632 1.999 1.000 -3.291 8.555 

4 2.411 2.414 1.000 -4.740 9.562 

2 1 4.686 2.135 .249 -1.640 11.013 



 

224 

 

3 7.318* 1.824 .005 1.913 12.722 

4 7.097* 2.313 .040 .243 13.950 

3 1 -2.632 1.999 1.000 -8.555 3.291 

2 -7.318* 1.824 .005 -12.722 -1.913 

4 -.221 1.975 1.000 -6.072 5.630 

4 1 -2.411 2.414 1.000 -9.562 4.740 

2 -7.097* 2.313 .040 -13.950 -.243 

3 .221 1.975 1.000 -5.630 6.072 

NH 1 2 -10.798* 2.135 .000 -17.124 -4.471 

3 -11.366* 1.999 .000 -17.289 -5.443 

4 -8.688* 2.414 .012 -15.839 -1.537 

2 1 10.798* 2.135 .000 4.471 17.124 

3 -.568 1.824 1.000 -5.973 4.836 

4 2.110 2.313 1.000 -4.744 8.963 

3 1 11.366* 1.999 .000 5.443 17.289 

2 .568 1.824 1.000 -4.836 5.973 

4 2.678 1.975 1.000 -3.173 8.529 

4 1 8.688* 2.414 .012 1.537 15.839 

2 -2.110 2.313 1.000 -8.963 4.744 

3 -2.678 1.975 1.000 -8.529 3.173 

Based on estimated marginal means 
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*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

Group Value F Hypothesis df Error df Sig. 

HI Pillai's trace .486 5.046a 3.000 16.000 .012 

Wilks' lambda .514 5.046a 3.000 16.000 .012 

Hotelling's trace .946 5.046a 3.000 16.000 .012 

Roy's largest root .946 5.046a 3.000 16.000 .012 

NH Pillai's trace .669 10.768a 3.000 16.000 .000 

Wilks' lambda .331 10.768a 3.000 16.000 .000 

Hotelling's trace 2.019 10.768a 3.000 16.000 .000 

Roy's largest root 2.019 10.768a 3.000 16.000 .000 

Each F tests the multivariate simple effects of processing within each level combination of the other effects 

shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

a. Exact statistic 
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6. Group * SNR 

Measure:   MEASURE_1   

Group SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HI 1 93.134 3.596 85.578 100.689 

2 84.519 3.346 77.491 91.548 

3 53.713 5.179 42.832 64.593 

4 22.301 4.988 11.823 32.780 

NH 1 113.559 3.596 106.004 121.114 

2 104.156 3.346 97.127 111.185 

3 74.629 5.179 63.749 85.509 

4 36.058 4.988 25.580 46.537 

7. Group * processing * SNR 

 

Estimates 

Measure:   MEASURE_1   

Group processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HI 1 1 106.104 4.467 96.720 115.489 

2 83.864 4.584 74.235 93.494 

3 49.335 5.815 37.118 61.552 
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4 14.719 5.857 2.413 27.024 

2 1 96.279 3.783 88.331 104.227 

2 91.631 4.107 83.002 100.260 

3 56.718 6.689 42.666 70.771 

4 28.139 6.286 14.932 41.346 

3 1 86.292 4.710 76.397 96.187 

2 74.622 4.849 64.434 84.810 

3 56.352 4.762 46.347 66.357 

4 26.230 5.741 14.169 38.292 

4 1 83.858 3.888 75.690 92.027 

2 87.960 3.749 80.083 95.837 

3 52.444 6.110 39.608 65.280 

4 20.118 5.883 7.758 32.477 

NH 1 1 112.041 4.467 102.657 121.425 

2 96.589 4.584 86.959 106.218 

3 69.165 5.815 56.949 81.382 

4 19.754 5.857 7.449 32.060 

2 1 115.108 3.783 107.160 123.056 

2 107.686 4.107 99.057 116.315 

3 74.314 6.689 60.262 88.367 

4 43.633 6.286 30.426 56.840 
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3 1 112.209 4.710 102.314 122.105 

2 104.155 4.849 93.967 114.343 

3 85.376 4.762 75.370 95.381 

4 41.274 5.741 29.212 53.335 

4 1 114.876 3.888 106.708 123.045 

2 108.194 3.749 100.317 116.071 

3 69.661 6.110 56.825 82.497 

4 39.572 5.883 27.212 51.931 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

Group SNR (I) processing (J) processing 

Mean 

Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

HI 1 1 2 9.825* 2.456 .005 2.550 17.100 

3 19.812* 4.021 .001 7.899 31.726 

4 22.246* 4.242 .000 9.678 34.814 

2 1 -9.825* 2.456 .005 -17.100 -2.550 

3 9.987* 3.319 .045 .153 19.821 

4 12.421* 3.740 .023 1.339 23.502 

3 1 -19.812* 4.021 .001 -31.726 -7.899 

2 -9.987* 3.319 .045 -19.821 -.153 
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4 2.434 3.761 1.000 -8.709 13.576 

4 1 -22.246* 4.242 .000 -34.814 -9.678 

2 -12.421* 3.740 .023 -23.502 -1.339 

3 -2.434 3.761 1.000 -13.576 8.709 

2 1 2 -7.767 5.149 .893 -23.023 7.490 

3 9.242 4.866 .442 -5.175 23.660 

4 -4.095 4.033 1.000 -16.044 7.853 

2 1 7.767 5.149 .893 -7.490 23.023 

3 17.009* 3.668 .001 6.141 27.877 

4 3.671 3.967 1.000 -8.081 15.423 

3 1 -9.242 4.866 .442 -23.660 5.175 

2 -17.009* 3.668 .001 -27.877 -6.141 

4 -13.338 5.203 .117 -28.751 2.076 

4 1 4.095 4.033 1.000 -7.853 16.044 

2 -3.671 3.967 1.000 -15.423 8.081 

3 13.338 5.203 .117 -2.076 28.751 

3 1 2 -7.383 4.804 .850 -21.617 6.851 

3 -7.017 3.651 .423 -17.832 3.799 

4 -3.109 4.309 1.000 -15.875 9.657 

2 1 7.383 4.804 .850 -6.851 21.617 

3 .367 4.898 1.000 -14.146 14.879 
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4 4.274 5.201 1.000 -11.136 19.684 

3 1 7.017 3.651 .423 -3.799 17.832 

2 -.367 4.898 1.000 -14.879 14.146 

4 3.907 4.372 1.000 -9.045 16.860 

4 1 3.109 4.309 1.000 -9.657 15.875 

2 -4.274 5.201 1.000 -19.684 11.136 

3 -3.907 4.372 1.000 -16.860 9.045 

4 1 2 -13.420* 3.576 .009 -24.015 -2.825 

3 -11.512 5.684 .347 -28.350 5.327 

4 -5.399 4.880 1.000 -19.858 9.059 

2 1 13.420* 3.576 .009 2.825 24.015 

3 1.908 5.022 1.000 -12.970 16.787 

4 8.021 5.929 1.000 -9.544 25.586 

3 1 11.512 5.684 .347 -5.327 28.350 

2 -1.908 5.022 1.000 -16.787 12.970 

4 6.113 6.188 1.000 -12.220 24.445 

4 1 5.399 4.880 1.000 -9.059 19.858 

2 -8.021 5.929 1.000 -25.586 9.544 

3 -6.113 6.188 1.000 -24.445 12.220 

NH 1 1 2 -3.067 2.456 1.000 -10.342 4.208 

3 -.168 4.021 1.000 -12.082 11.745 
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4 -2.835 4.242 1.000 -15.404 9.733 

2 1 3.067 2.456 1.000 -4.208 10.342 

3 2.898 3.319 1.000 -6.936 12.733 

4 .232 3.740 1.000 -10.850 11.313 

3 1 .168 4.021 1.000 -11.745 12.082 

2 -2.898 3.319 1.000 -12.733 6.936 

4 -2.667 3.761 1.000 -13.809 8.475 

4 1 2.835 4.242 1.000 -9.733 15.404 

2 -.232 3.740 1.000 -11.313 10.850 

3 2.667 3.761 1.000 -8.475 13.809 

2 1 2 -11.097 5.149 .270 -26.354 4.159 

3 -7.566 4.866 .824 -21.984 6.851 

4 -11.605 4.033 .060 -23.553 .343 

2 1 11.097 5.149 .270 -4.159 26.354 

3 3.531 3.668 1.000 -7.336 14.399 

4 -.508 3.967 1.000 -12.260 11.244 

3 1 7.566 4.866 .824 -6.851 21.984 

2 -3.531 3.668 1.000 -14.399 7.336 

4 -4.039 5.203 1.000 -19.452 11.375 

4 1 11.605 4.033 .060 -.343 23.553 

2 .508 3.967 1.000 -11.244 12.260 
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3 4.039 5.203 1.000 -11.375 19.452 

3 1 2 -5.149 4.804 1.000 -19.383 9.085 

3 -16.210* 3.651 .002 -27.026 -5.394 

4 -.495 4.309 1.000 -13.262 12.271 

2 1 5.149 4.804 1.000 -9.085 19.383 

3 -11.061 4.898 .220 -25.574 3.451 

4 4.653 5.201 1.000 -10.756 20.063 

3 1 16.210* 3.651 .002 5.394 27.026 

2 11.061 4.898 .220 -3.451 25.574 

4 15.715* 4.372 .012 2.762 28.667 

4 1 .495 4.309 1.000 -12.271 13.262 

2 -4.653 5.201 1.000 -20.063 10.756 

3 -15.715* 4.372 .012 -28.667 -2.762 

4 1 2 -23.879* 3.576 .000 -34.473 -13.284 

3 -21.519* 5.684 .008 -38.358 -4.681 

4 -19.817* 4.880 .004 -34.276 -5.359 

2 1 23.879* 3.576 .000 13.284 34.473 

3 2.360 5.022 1.000 -12.519 17.238 

4 4.061 5.929 1.000 -13.504 21.626 

3 1 21.519* 5.684 .008 4.681 38.358 

2 -2.360 5.022 1.000 -17.238 12.519 
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4 1.702 6.188 1.000 -16.631 20.034 

4 1 19.817* 4.880 .004 5.359 34.276 

2 -4.061 5.929 1.000 -21.626 13.504 

3 -1.702 6.188 1.000 -20.034 16.631 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Multivariate Tests 

Group SNR Value F Hypothesis df Error df Sig. 

HI 1 Pillai's trace .650 9.903a 3.000 16.000 .001 

Wilks' lambda .350 9.903a 3.000 16.000 .001 

Hotelling's trace 1.857 9.903a 3.000 16.000 .001 

Roy's largest root 1.857 9.903a 3.000 16.000 .001 

2 Pillai's trace .566 6.951a 3.000 16.000 .003 

Wilks' lambda .434 6.951a 3.000 16.000 .003 

Hotelling's trace 1.303 6.951a 3.000 16.000 .003 

Roy's largest root 1.303 6.951a 3.000 16.000 .003 

3 Pillai's trace .204 1.369a 3.000 16.000 .288 

Wilks' lambda .796 1.369a 3.000 16.000 .288 
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Hotelling's trace .257 1.369a 3.000 16.000 .288 

Roy's largest root .257 1.369a 3.000 16.000 .288 

4 Pillai's trace .455 4.445a 3.000 16.000 .019 

Wilks' lambda .545 4.445a 3.000 16.000 .019 

Hotelling's trace .833 4.445a 3.000 16.000 .019 

Roy's largest root .833 4.445a 3.000 16.000 .019 

NH 1 Pillai's trace .119 .722a 3.000 16.000 .553 

Wilks' lambda .881 .722a 3.000 16.000 .553 

Hotelling's trace .135 .722a 3.000 16.000 .553 

Roy's largest root .135 .722a 3.000 16.000 .553 

2 Pillai's trace .326 2.583a 3.000 16.000 .089 

Wilks' lambda .674 2.583a 3.000 16.000 .089 

Hotelling's trace .484 2.583a 3.000 16.000 .089 

Roy's largest root .484 2.583a 3.000 16.000 .089 

3 Pillai's trace .562 6.856a 3.000 16.000 .004 

Wilks' lambda .438 6.856a 3.000 16.000 .004 

Hotelling's trace 1.286 6.856a 3.000 16.000 .004 

Roy's largest root 1.286 6.856a 3.000 16.000 .004 

4 Pillai's trace .768 17.628a 3.000 16.000 .000 

Wilks' lambda .232 17.628a 3.000 16.000 .000 

Hotelling's trace 3.305 17.628a 3.000 16.000 .000 
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Roy's largest root 3.305 17.628a 3.000 16.000 .000 

Each F tests the multivariate simple effects of processing within each level combination of the other effects shown. These 

tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 

Non-stationary Background Noise Experiment 

General Linear Model 

Notes 

Output Created 13-DEC-2018 09:27:37 

Comments 
 

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 20 

Missing Value Handling Definition of Missing User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid 

data for all variables in the model. 
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Syntax GLM up_4 up_0 up_3 up_6 dichotic_4 

dichotic_0 dichotic_3 dichotic_6 MHA_4 

MHA_0 MHA_3 MHA_6 

    MHAdichotic_4 MHAdichotic_0 

MHAdichotic_3 MHAdichotic_6 BY Group 

  /WSFACTOR=processing 4 Polynomial 

SNR 4 Polynomial 

  /METHOD=SSTYPE(3) 

  /EMMEANS=TABLES(OVERALL) 

  /EMMEANS=TABLES(Group) COMPARE 

ADJ(BONFERRONI) 

  /EMMEANS=TABLES(processing) 

COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(SNR) COMPARE 

ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Group*processing) 

COMPARE(processing)ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Group*SNR) 

  /EMMEANS=TABLES(processing*SNR) 

  

/EMMEANS=TABLES(Group*processing*S

NR) 

COMPARE(processing)ADJ(BONFERRONI) 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=processing SNR 

processing*SNR 

  /DESIGN=Group. 

Resources Processor Time 00:00:00.05 
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Elapsed Time 00:00:00.09 

 

[DataSet1]  

 

Within-Subjects Factors 

Measure:   MEASURE_1   

processing SNR 

Dependent 

Variable 

1 1 up_4 

2 up_0 

3 up_3 

4 up_6 

2 1 dichotic_4 

2 dichotic_0 

3 dichotic_3 

4 dichotic_6 

3 1 MHA_4 

2 MHA_0 

3 MHA_3 

4 MHA_6 

4 1 MHAdichotic_4 

2 MHAdichotic_0 
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3 MHAdichotic_3 

4 MHAdichotic_6 

 

Between-Subjects Factors 

 
N 

Group HIA 10 

NHA 10 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

processing Pillai's Trace .857 31.890b 3.000 16.000 .000 

Wilks' Lambda .143 31.890b 3.000 16.000 .000 

Hotelling's Trace 5.979 31.890b 3.000 16.000 .000 

Roy's Largest Root 5.979 31.890b 3.000 16.000 .000 

processing * Group Pillai's Trace .378 3.234b 3.000 16.000 .050 

Wilks' Lambda .622 3.234b 3.000 16.000 .050 

Hotelling's Trace .606 3.234b 3.000 16.000 .050 

Roy's Largest Root .606 3.234b 3.000 16.000 .050 

SNR Pillai's Trace .991 559.677b 3.000 16.000 .000 

Wilks' Lambda .009 559.677b 3.000 16.000 .000 

Hotelling's Trace 104.939 559.677b 3.000 16.000 .000 
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Roy's Largest Root 104.939 559.677b 3.000 16.000 .000 

SNR * Group Pillai's Trace .243 1.712b 3.000 16.000 .205 

Wilks' Lambda .757 1.712b 3.000 16.000 .205 

Hotelling's Trace .321 1.712b 3.000 16.000 .205 

Roy's Largest Root .321 1.712b 3.000 16.000 .205 

processing * SNR Pillai's Trace .853 6.452b 9.000 10.000 .004 

Wilks' Lambda .147 6.452b 9.000 10.000 .004 

Hotelling's Trace 5.807 6.452b 9.000 10.000 .004 

Roy's Largest Root 5.807 6.452b 9.000 10.000 .004 

processing * SNR * Group Pillai's Trace .702 2.615b 9.000 10.000 .075 

Wilks' Lambda .298 2.615b 9.000 10.000 .075 

Hotelling's Trace 2.354 2.615b 9.000 10.000 .075 

Roy's Largest Root 2.354 2.615b 9.000 10.000 .075 

a. Design: Intercept + Group  

 Within Subjects Design: processing + SNR + processing * SNR 

b. Exact statistic 

 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 

Approx. Chi-

Square df Sig. 

Epsilonb 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 
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processing .692 6.167 5 .291 .842 1.000 .333 

SNR .490 11.944 5 .036 .768 .935 .333 

processing * SNR .043 46.459 44 .411 .655 1.000 .111 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to 

an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: processing + SNR + processing * SNR 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests 

of Within-Subjects Effects table. 

 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Sphericity Assumed 6892.697 3 2297.566 17.754 .000 

Greenhouse-Geisser 6892.697 2.525 2729.821 17.754 .000 

Huynh-Feldt 6892.697 3.000 2297.566 17.754 .000 

Lower-bound 6892.697 1.000 6892.697 17.754 .001 

processing * Group Sphericity Assumed 1661.247 3 553.749 4.279 .009 

Greenhouse-Geisser 1661.247 2.525 657.929 4.279 .013 

Huynh-Feldt 1661.247 3.000 553.749 4.279 .009 

Lower-bound 1661.247 1.000 1661.247 4.279 .053 
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Error(processing) Sphericity Assumed 6988.029 54 129.408 
  

Greenhouse-Geisser 6988.029 45.449 153.754 
  

Huynh-Feldt 6988.029 54.000 129.408 
  

Lower-bound 6988.029 18.000 388.224 
  

SNR Sphericity Assumed 263094.063 3 87698.021 698.107 .000 

Greenhouse-Geisser 263094.063 2.303 114261.065 698.107 .000 

Huynh-Feldt 263094.063 2.806 93751.874 698.107 .000 

Lower-bound 263094.063 1.000 263094.063 698.107 .000 

SNR * Group Sphericity Assumed 689.455 3 229.818 1.829 .153 

Greenhouse-Geisser 689.455 2.303 299.428 1.829 .168 

Huynh-Feldt 689.455 2.806 245.683 1.829 .157 

Lower-bound 689.455 1.000 689.455 1.829 .193 

Error(SNR) Sphericity Assumed 6783.623 54 125.623 
  

Greenhouse-Geisser 6783.623 41.446 163.673 
  

Huynh-Feldt 6783.623 50.513 134.294 
  

Lower-bound 6783.623 18.000 376.868 
  

processing * SNR Sphericity Assumed 8123.978 9 902.664 6.811 .000 

Greenhouse-Geisser 8123.978 5.891 1378.976 6.811 .000 

Huynh-Feldt 8123.978 9.000 902.664 6.811 .000 

Lower-bound 8123.978 1.000 8123.978 6.811 .018 

processing * SNR * Group Sphericity Assumed 2436.069 9 270.674 2.042 .038 



 

242 

 

Greenhouse-Geisser 2436.069 5.891 413.502 2.042 .067 

Huynh-Feldt 2436.069 9.000 270.674 2.042 .038 

Lower-bound 2436.069 1.000 2436.069 2.042 .170 

Error(processing*SNR) Sphericity Assumed 21468.625 162 132.522 
  

Greenhouse-Geisser 21468.625 106.044 202.451 
  

Huynh-Feldt 21468.625 162.000 132.522 
  

Lower-bound 21468.625 18.000 1192.701 
  

Tests of Within-Subjects Contrasts 

Measure:   MEASURE_1   

Source processing SNR 

Type III Sum of 

Squares df Mean Square F Sig. 

processing Linear 
 

3840.295 1 3840.295 59.269 .000 

Quadratic 
 

22.969 1 22.969 .160 .694 

Cubic 
 

3029.433 1 3029.433 16.839 .001 

processing * Group Linear 
 

108.019 1 108.019 1.667 .213 

Quadratic 
 

881.676 1 881.676 6.143 .023 

Cubic 
 

671.552 1 671.552 3.733 .069 

Error(processing) Linear 
 

1166.303 18 64.795 
  

Quadratic 
 

2583.464 18 143.526 
  

Cubic 
 

3238.262 18 179.903 
  

SNR Linear 263092.957 1 263092.957 1774.863 .000 
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Quadratic .787 1 .787 .004 .949 

Cubic .319 1 .319 .007 .932 

SNR * Group 
 

Linear 412.042 1 412.042 2.780 .113 

Quadratic 203.581 1 203.581 1.096 .309 

Cubic 73.833 1 73.833 1.724 .206 

Error(SNR) 
 

Linear 2668.191 18 148.233 
  

Quadratic 3344.730 18 185.818 
  

Cubic 770.702 18 42.817 
  

processing * SNR Linear Linear 211.686 1 211.686 1.622 .219 

Quadratic 57.987 1 57.987 .728 .405 

Cubic 1458.297 1 1458.297 11.829 .003 

Quadratic Linear 463.040 1 463.040 3.784 .068 

Quadratic 117.421 1 117.421 .617 .442 

Cubic 191.544 1 191.544 1.355 .260 

Cubic Linear 3708.596 1 3708.596 26.668 .000 

Quadratic 1904.731 1 1904.731 9.041 .008 

Cubic 10.676 1 10.676 .192 .666 

processing * SNR * Group Linear Linear 969.021 1 969.021 7.426 .014 

Quadratic 5.365 1 5.365 .067 .798 

Cubic 9.241 1 9.241 .075 .787 

Quadratic Linear 358.524 1 358.524 2.930 .104 

Quadratic 41.559 1 41.559 .218 .646 
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Cubic 591.762 1 591.762 4.187 .056 

Cubic Linear 48.063 1 48.063 .346 .564 

Quadratic 365.845 1 365.845 1.737 .204 

Cubic 46.689 1 46.689 .842 .371 

Error(processing*SNR) Linear Linear 2348.892 18 130.494 
  

Quadratic 1433.140 18 79.619 
  

Cubic 2219.094 18 123.283 
  

Quadratic Linear 2202.804 18 122.378 
  

Quadratic 3427.317 18 190.407 
  

Cubic 2543.849 18 141.325 
  

Cubic Linear 2503.140 18 139.063 
  

Quadratic 3792.069 18 210.671 
  

Cubic 998.320 18 55.462 
  

 

Tests of Between-Subjects Effects 

Measure:   MEASURE_1   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 817943.853 1 817943.853 280.433 .000 

Group 60933.751 1 60933.751 20.891 .000 
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Error 52500.971 18 2916.721 
  

 

 

Estimated Marginal Means 

1. Grand Mean 

Measure:   MEASURE_1   

Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

50.558 3.019 44.215 56.900 

 

2. Group 

Estimates 

Measure:   MEASURE_1   

Group Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HIA 36.758 4.270 27.788 45.729 

NHA 64.357 4.270 55.387 73.327 

 

Pairwise Comparisons 

Measure:   MEASURE_1   
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(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

HIA NHA -27.598* 6.038 .000 -40.284 -14.913 

NHA HIA 27.598* 6.038 .000 14.913 40.284 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Measure:   MEASURE_1   

 
Sum of Squares df Mean Square F Sig. 

Contrast 3808.359 1 3808.359 20.891 .000 

Error 3281.311 18 182.295 
  

The F tests the effect of Group. This test is based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

 

3. processing 

Estimates 

Measure:   MEASURE_1   

processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 
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1 53.561 3.220 46.796 60.327 

2 56.503 3.635 48.866 64.140 

3 45.148 3.065 38.710 51.587 

4 47.018 2.887 40.952 53.084 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) processing (J) processing 

Mean 

Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -2.941 1.971 .918 -8.782 2.899 

3 8.413* 1.632 .000 3.579 13.247 

4 6.544* 1.556 .003 1.933 11.154 

2 1 2.941 1.971 .918 -2.899 8.782 

3 11.355* 1.923 .000 5.658 17.051 

4 9.485* 1.561 .000 4.860 14.110 

3 1 -8.413* 1.632 .000 -13.247 -3.579 

2 -11.355* 1.923 .000 -17.051 -5.658 

4 -1.870 2.076 1.000 -8.020 4.281 

4 1 -6.544* 1.556 .003 -11.154 -1.933 

2 -9.485* 1.561 .000 -14.110 -4.860 

3 1.870 2.076 1.000 -4.281 8.020 
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Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .857 31.890a 3.000 16.000 .000 

Wilks' lambda .143 31.890a 3.000 16.000 .000 

Hotelling's trace 5.979 31.890a 3.000 16.000 .000 

Roy's largest root 5.979 31.890a 3.000 16.000 .000 

Each F tests the multivariate effect of processing. These tests are based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

a. Exact statistic 

4. SNR 

Estimates 

Measure:   MEASURE_1   

SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 89.063 3.281 82.169 95.956 

2 63.374 3.776 55.441 71.307 

3 37.643 3.257 30.800 44.486 

4 12.152 2.353 7.208 17.096 
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Pairwise Comparisons 

Measure:   MEASURE_1   

(I) SNR (J) SNR 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 25.689* 1.915 .000 20.014 31.364 

3 51.420* 1.709 .000 46.355 56.485 

4 76.911* 1.898 .000 71.289 82.533 

2 1 -25.689* 1.915 .000 -31.364 -20.014 

3 25.731* 1.084 .000 22.519 28.943 

4 51.222* 2.166 .000 44.805 57.638 

3 1 -51.420* 1.709 .000 -56.485 -46.355 

2 -25.731* 1.084 .000 -28.943 -22.519 

4 25.491* 1.669 .000 20.546 30.436 

4 1 -76.911* 1.898 .000 -82.533 -71.289 

2 -51.222* 2.166 .000 -57.638 -44.805 

3 -25.491* 1.669 .000 -30.436 -20.546 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Multivariate Tests 

 
Value F Hypothesis df Error df Sig. 

Pillai's trace .991 559.677a 3.000 16.000 .000 

Wilks' lambda .009 559.677a 3.000 16.000 .000 

Hotelling's trace 104.939 559.677a 3.000 16.000 .000 

Roy's largest root 104.939 559.677a 3.000 16.000 .000 

Each F tests the multivariate effect of SNR. These tests are based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

a. Exact statistic 

5. Group * processing 

Estimates 

Measure:   MEASURE_1   

Group processing Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HIA 1 42.850 4.554 33.281 52.418 

2 39.360 5.141 28.560 50.160 

3 31.373 4.334 22.268 40.478 

4 33.451 4.083 24.873 42.029 

NHA 1 64.273 4.554 54.705 73.842 

2 73.646 5.141 62.845 84.446 

3 58.924 4.334 49.818 68.029 

4 60.585 4.083 52.007 69.163 
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Pairwise Comparisons 

Measure:   MEASURE_1   

Group (I) processing (J) processing 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

HIA 1 2 3.490 2.788 1.000 -4.770 11.749 

3 11.477* 2.307 .001 4.640 18.313 

4 9.398* 2.201 .003 2.879 15.918 

2 1 -3.490 2.788 1.000 -11.749 4.770 

3 7.987 2.719 .053 -.068 16.043 

4 5.909 2.208 .092 -.632 12.449 

3 1 -11.477* 2.307 .001 -18.313 -4.640 

2 -7.987 2.719 .053 -16.043 .068 

4 -2.078 2.936 1.000 -10.776 6.619 

4 1 -9.398* 2.201 .003 -15.918 -2.879 

2 -5.909 2.208 .092 -12.449 .632 

3 2.078 2.936 1.000 -6.619 10.776 

NHA 1 2 -9.372* 2.788 .021 -17.631 -1.113 

3 5.350 2.307 .194 -1.486 12.186 

4 3.689 2.201 .666 -2.831 10.208 

2 1 9.372* 2.788 .021 1.113 17.631 
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3 14.722* 2.719 .000 6.667 22.778 

4 13.061* 2.208 .000 6.520 19.602 

3 1 -5.350 2.307 .194 -12.186 1.486 

2 -14.722* 2.719 .000 -22.778 -6.667 

4 -1.661 2.936 1.000 -10.359 7.037 

4 1 -3.689 2.201 .666 -10.208 2.831 

2 -13.061* 2.208 .000 -19.602 -6.520 

3 1.661 2.936 1.000 -7.037 10.359 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

Group Value F Hypothesis df Error df Sig. 

HIA Pillai's trace .756 16.566a 3.000 16.000 .000 

Wilks' lambda .244 16.566a 3.000 16.000 .000 

Hotelling's trace 3.106 16.566a 3.000 16.000 .000 

Roy's largest root 3.106 16.566a 3.000 16.000 .000 

NHA Pillai's trace .777 18.558a 3.000 16.000 .000 

Wilks' lambda .223 18.558a 3.000 16.000 .000 

Hotelling's trace 3.480 18.558a 3.000 16.000 .000 
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Roy's largest root 3.480 18.558a 3.000 16.000 .000 

Each F tests the multivariate simple effects of processing within each level combination of the other effects 

shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

a. Exact statistic 

 

6. Group * SNR 

Measure:   MEASURE_1   

Group SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HIA 1 74.324 4.640 64.575 84.073 

2 48.914 5.340 37.695 60.133 

3 22.909 4.606 13.231 32.586 

4 .888 3.328 -6.104 7.879 

NHA 1 103.801 4.640 94.053 113.550 

2 77.833 5.340 66.614 89.052 

3 52.376 4.606 42.699 62.054 

4 23.416 3.328 16.425 30.408 

 

7. processing * SNR 

Measure:   MEASURE_1   

processing SNR Mean Std. Error 95% Confidence Interval 
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Lower Bound Upper Bound 

1 1 94.679 3.875 86.538 102.820 

2 61.818 4.057 53.295 70.342 

3 45.377 3.756 37.486 53.269 

4 12.371 2.998 6.074 18.669 

2 1 97.123 2.927 90.974 103.272 

2 73.930 5.749 61.851 86.009 

3 44.692 5.111 33.955 55.430 

4 10.266 3.672 2.552 17.980 

3 1 78.830 4.308 69.780 87.879 

2 53.142 3.630 45.515 60.769 

3 28.917 3.519 21.523 36.311 

4 19.705 3.333 12.703 26.707 

4 1 85.618 4.029 77.153 94.083 

2 64.605 4.130 55.927 73.282 

3 31.584 3.296 24.659 38.508 

4 6.265 2.924 .123 12.408 

 

8. Group * processing * SNR 

Estimates 

Measure:   MEASURE_1   
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Group processing SNR Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

HIA 1 1 83.413 5.480 71.899 94.926 

2 52.893 5.737 40.839 64.947 

3 32.613 5.312 21.453 43.773 

4 2.479 4.239 -6.427 11.386 

2 1 84.468 4.139 75.772 93.164 

2 54.089 8.131 37.007 71.171 

3 24.947 7.228 9.762 40.133 

4 -6.064 5.193 -16.974 4.846 

3 1 63.464 6.092 50.666 76.263 

2 37.321 5.134 26.534 48.107 

3 17.856 4.977 7.400 28.313 

4 6.851 4.713 -3.052 16.753 

4 1 65.950 5.698 53.979 77.921 

2 51.353 5.841 39.081 63.625 

3 16.219 4.661 6.426 26.012 

4 .284 4.135 -8.402 8.971 

NHA 1 1 105.946 5.480 94.433 117.459 

2 70.743 5.737 58.689 82.797 

3 58.142 5.312 46.981 69.302 
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4 22.263 4.239 13.357 31.169 

2 1 109.778 4.139 101.082 118.474 

2 93.771 8.131 76.689 110.853 

3 64.438 7.228 49.252 79.623 

4 26.596 5.193 15.686 37.506 

3 1 94.195 6.092 81.397 106.993 

2 68.963 5.134 58.177 79.749 

3 39.978 4.977 29.521 50.434 

4 32.559 4.713 22.657 42.461 

4 1 105.287 5.698 93.316 117.258 

2 77.856 5.841 65.585 90.128 

3 46.949 4.661 37.155 56.742 

4 12.247 4.135 3.560 20.933 

 

Pairwise Comparisons 

Measure:   MEASURE_1   

Group SNR (I) processing (J) processing 

Mean 

Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

HIA 1 1 2 -1.056 3.401 1.000 -11.132 9.021 

3 19.948* 4.867 .004 5.529 34.368 

4 17.463* 4.231 .004 4.926 30.000 
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2 1 1.056 3.401 1.000 -9.021 11.132 

3 21.004* 4.477 .001 7.740 34.268 

4 18.519* 4.700 .006 4.594 32.443 

3 1 -19.948* 4.867 .004 -34.368 -5.529 

2 -21.004* 4.477 .001 -34.268 -7.740 

4 -2.485 5.212 1.000 -17.926 12.955 

4 1 -17.463* 4.231 .004 -30.000 -4.926 

2 -18.519* 4.700 .006 -32.443 -4.594 

3 2.485 5.212 1.000 -12.955 17.926 

2 1 2 -1.196 6.664 1.000 -20.940 18.549 

3 15.572* 4.656 .022 1.778 29.367 

4 1.540 4.830 1.000 -12.771 15.851 

2 1 1.196 6.664 1.000 -18.549 20.940 

3 16.768 6.206 .088 -1.620 35.156 

4 2.736 5.137 1.000 -12.484 17.955 

3 1 -15.572* 4.656 .022 -29.367 -1.778 

2 -16.768 6.206 .088 -35.156 1.620 

4 -14.032 5.237 .092 -29.549 1.485 

4 1 -1.540 4.830 1.000 -15.851 12.771 

2 -2.736 5.137 1.000 -17.955 12.484 

3 14.032 5.237 .092 -1.485 29.549 
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3 1 2 7.666 5.213 .952 -7.779 23.111 

3 14.757* 4.452 .023 1.567 27.946 

4 16.394* 5.200 .033 .987 31.802 

2 1 -7.666 5.213 .952 -23.111 7.779 

3 7.091 4.730 .907 -6.922 21.104 

4 8.728 6.473 1.000 -10.449 27.906 

3 1 -14.757* 4.452 .023 -27.946 -1.567 

2 -7.091 4.730 .907 -21.104 6.922 

4 1.638 5.482 1.000 -14.604 17.879 

4 1 -16.394* 5.200 .033 -31.802 -.987 

2 -8.728 6.473 1.000 -27.906 10.449 

3 -1.638 5.482 1.000 -17.879 14.604 

4 1 2 8.543 5.116 .673 -6.613 23.700 

3 -4.371 4.878 1.000 -18.823 10.080 

4 2.195 3.332 1.000 -7.676 12.067 

2 1 -8.543 5.116 .673 -23.700 6.613 

3 -12.915 6.028 .277 -30.775 4.946 

4 -6.348 5.711 1.000 -23.267 10.571 

3 1 4.371 4.878 1.000 -10.080 18.823 

2 12.915 6.028 .277 -4.946 30.775 

4 6.566 5.457 1.000 -9.601 22.734 
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4 1 -2.195 3.332 1.000 -12.067 7.676 

2 6.348 5.711 1.000 -10.571 23.267 

3 -6.566 5.457 1.000 -22.734 9.601 

NHA 1 1 2 -3.832 3.401 1.000 -13.908 6.244 

3 11.751 4.867 .160 -2.668 26.170 

4 .659 4.231 1.000 -11.878 13.196 

2 1 3.832 3.401 1.000 -6.244 13.908 

3 15.583* 4.477 .016 2.319 28.847 

4 4.491 4.700 1.000 -9.434 18.416 

3 1 -11.751 4.867 .160 -26.170 2.668 

2 -15.583* 4.477 .016 -28.847 -2.319 

4 -11.092 5.212 .284 -26.533 4.349 

4 1 -.659 4.231 1.000 -13.196 11.878 

2 -4.491 4.700 1.000 -18.416 9.434 

3 11.092 5.212 .284 -4.349 26.533 

2 1 2 -23.028* 6.664 .017 -42.772 -3.283 

3 1.780 4.656 1.000 -12.014 15.575 

4 -7.113 4.830 .949 -21.424 7.198 

2 1 23.028* 6.664 .017 3.283 42.772 

3 24.808* 6.206 .005 6.420 43.196 

4 15.915* 5.137 .037 .695 31.134 
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3 1 -1.780 4.656 1.000 -15.575 12.014 

2 -24.808* 6.206 .005 -43.196 -6.420 

4 -8.894 5.237 .640 -24.411 6.624 

4 1 7.113 4.830 .949 -7.198 21.424 

2 -15.915* 5.137 .037 -31.134 -.695 

3 8.894 5.237 .640 -6.624 24.411 

3 1 2 -6.296 5.213 1.000 -21.741 9.149 

3 18.164* 4.452 .004 4.974 31.354 

4 11.193 5.200 .271 -4.215 26.601 

2 1 6.296 5.213 1.000 -9.149 21.741 

3 24.460* 4.730 .000 10.447 38.473 

4 17.489 6.473 .088 -1.688 36.666 

3 1 -18.164* 4.452 .004 -31.354 -4.974 

2 -24.460* 4.730 .000 -38.473 -10.447 

4 -6.971 5.482 1.000 -23.212 9.271 

4 1 -11.193 5.200 .271 -26.601 4.215 

2 -17.489 6.473 .088 -36.666 1.688 

3 6.971 5.482 1.000 -9.271 23.212 

4 1 2 -4.333 5.116 1.000 -19.489 10.824 

3 -10.296 4.878 .294 -24.748 4.155 

4 10.016* 3.332 .045 .145 19.888 
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2 1 4.333 5.116 1.000 -10.824 19.489 

3 -5.963 6.028 1.000 -23.824 11.897 

4 14.349 5.711 .130 -2.570 31.269 

3 1 10.296 4.878 .294 -4.155 24.748 

2 5.963 6.028 1.000 -11.897 23.824 

4 20.312* 5.457 .009 4.145 36.480 

4 1 -10.016* 3.332 .045 -19.888 -.145 

2 -14.349 5.711 .130 -31.269 2.570 

3 -20.312* 5.457 .009 -36.480 -4.145 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Multivariate Tests 

Group SNR Value F Hypothesis df Error df Sig. 

HIA 1 Pillai's trace .647 9.777a 3.000 16.000 .001 

Wilks' lambda .353 9.777a 3.000 16.000 .001 

Hotelling's trace 1.833 9.777a 3.000 16.000 .001 

Roy's largest root 1.833 9.777a 3.000 16.000 .001 

2 Pillai's trace .449 4.338a 3.000 16.000 .020 

Wilks' lambda .551 4.338a 3.000 16.000 .020 



 

262 

 

Hotelling's trace .813 4.338a 3.000 16.000 .020 

Roy's largest root .813 4.338a 3.000 16.000 .020 

3 Pillai's trace .463 4.607a 3.000 16.000 .017 

Wilks' lambda .537 4.607a 3.000 16.000 .017 

Hotelling's trace .864 4.607a 3.000 16.000 .017 

Roy's largest root .864 4.607a 3.000 16.000 .017 

4 Pillai's trace .222 1.524a 3.000 16.000 .247 

Wilks' lambda .778 1.524a 3.000 16.000 .247 

Hotelling's trace .286 1.524a 3.000 16.000 .247 

Roy's largest root .286 1.524a 3.000 16.000 .247 

NHA 1 Pillai's trace .407 3.666a 3.000 16.000 .035 

Wilks' lambda .593 3.666a 3.000 16.000 .035 

Hotelling's trace .687 3.666a 3.000 16.000 .035 

Roy's largest root .687 3.666a 3.000 16.000 .035 

2 Pillai's trace .485 5.022a 3.000 16.000 .012 

Wilks' lambda .515 5.022a 3.000 16.000 .012 

Hotelling's trace .942 5.022a 3.000 16.000 .012 

Roy's largest root .942 5.022a 3.000 16.000 .012 

3 Pillai's trace .649 9.860a 3.000 16.000 .001 

Wilks' lambda .351 9.860a 3.000 16.000 .001 

Hotelling's trace 1.849 9.860a 3.000 16.000 .001 
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Roy's largest root 1.849 9.860a 3.000 16.000 .001 

4 Pillai's trace .475 4.820a 3.000 16.000 .014 

Wilks' lambda .525 4.820a 3.000 16.000 .014 

Hotelling's trace .904 4.820a 3.000 16.000 .014 

Roy's largest root .904 4.820a 3.000 16.000 .014 

Each F tests the multivariate simple effects of processing within each level combination of the other effects shown. These 

tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 

a. Exact statistic 
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Appendix E: Research Ethics 
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Appendix F: Subjective and Objective Assessment Results 

 

Table E-1: Averaged speech intelligibility scores for children with suspected APD (Figure 3-8). 

     LSNR (dB) 

 

Processing 

3 0 -3 -6 

Tau = 0.00001 0.95 0.91 0.92 0.87 

Tau = 0.0001 0.99 0.97 0.97 0.82 

Tau = 0.001 0.98 0.94 0.89 0.65 

UP 0.95 0.87 0.63 0.18 

 

Table E-2: Averaged speech intelligibility scores for children with NH (Figure 3-9). 

     LSNR (dB) 

 

Processing 

3 0 -3 -6 

Tau = 0.00001 0.97 0.96 0.98 0.95 

Tau = 0.0001 1 0.99 0.98 0.91 

Tau = 0.001 0.98 0.98 0.91 0.73 

UP 0.97 0.87 0.82 0.26 
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Table E-3: Averaged speech intelligibility scores for adults with NH (Figure 3-10). 

     LSNR (dB) 

 

Processing 

3 0 -3 -6 

Tau = 0.00001 0.99 0.99 0.99 0.96 

Tau = 0.0001 0.99 0.99 0.99 0.96 

Tau = 0.001 1 0.98 0.98 0.78 

UP 1 0.92 0.81 0.33 

 

Table E-4: Objective assessment of the dynamic EE for LSNR = -6 dB in the presence of SSN with no NR 

(Figure 3-15).  

SSNR (dB) 

 

processing 

15 10 5 0 

Tau = 0.00001 0.69 0.47 0.27 0.21 

Tau = 0.0001 0.64 0.50 0.22 0.20 

Tau = 0.001 0.74 0.63 0.31 0.20 

UP 0.18 0.18 0.18 0.19 
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Table E-5: Objective assessment of the dynamic EE for LSNR = -6 dB in the presence of MTBN with no NR 

(Figure 3-16).  

     SSNR (dB) 

 

Processing 

15 10 5 0 

Tau = 0.00001 0.76 0.56 0.42 0.20 

Tau = 0.0001 0.79 0.60 0.30 0.19 

Tau = 0.001 0.56 0.55 0.26 0.18 

UP 0.23 0.22 0.23 0.23 

 

Table E-6: Objective assessment of the dynamic EE for LSNR = -6 dB in the presence of SSN with logMMSE 

NR (Figure 3-17).  

     SSNR (dB) 

 

Processing 

15 10 5 0 

Tau = 0.00001 0.32 0.21 0.21 0.22 

Tau = 0.0001 0.29 0.20 0.21 0.23 

Tau = 0.001 0.22 0.21 0.21 0.23 

UP 0.21 0.21 0.22 0.23 
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Table E-7: Objective assessment of the dynamic EE for LSNR = -6 dB in the presence of MTBN with logMMSE 

NR (Figure 3-18).  

     SSNR (dB) 

 

Processing 

15 10 5 0 

Tau = 0.00001 0.78 0.50 0.24 0.20 

Tau = 0.0001 0.72 0.64 0.19 0.20 

Tau = 0.001 0.44 0.41 0.26 0.23 

UP 0.21 0.27 0.23 0.23 

 

Table E-8: Objective assessment of the dynamic EE for LSNR = -6 dB in the presence of SSN with MHA NR 

(Figure 3-19).  

     SSNR (dB) 

 

Processing 

15 10 5 0 

Tau = 0.00001 0.33 0.23 0.21 0.22 

Tau = 0.0001 0.27 0.21 0.21 0.22 

Tau = 0.001 0.26 0.21 0.22 0.23 

UP 0.21 0.21 0.22 0.23 
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Table E-9: Objective assessment of the dynamic EE for LSNR = -6 dB in the presence of MTBN with MHA NR 

(Figure 3-20).  

     SSNR (dB) 

 

Processing 

15 10 5 0 

Tau = 0.00001 0.81 0.64 0.36 0.19 

Tau = 0.0001 0.66 0.62 0.43 0.23 

Tau = 0.001 0.48 0.36 0.29 0.21 

UP 0.22 0.28 0.20 0.22 

 

Table E-10: Averaged speech intelligibility scores for children with APD in the presence of SSN (Figure 4-5). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

SEE 0.79 0.66 0.40 0.08 

logMMSESEE 0.58 0.58 0.29 0.11 

MHASEE 0.82 0.67 0.47 0.21 

UP 0.91 0.66 0.31 0.10 
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Table E-11: Averaged speech intelligibility scores for children with NH in the presence of SSN (Figure 4-6). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

SEE 0.82 0.77 0.47 0.10 

logMMSESEE 0.62 0.62 0.38 0.14 

MHASEE 0.84 0.7 0.45 0.26 

UP 0.96 0.83 0.50 0.20 

 

Table E-12: Averaged speech intelligibility scores for children with APD in the presence of MTBN (Figure 4-

7). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

SEE 0.57 0.34 0.1 0.04 

logMMSESEE 0.51 0.23 0.07 0.01 

MHASEE 0.42 0.23 0.11 0.03 

UP 0.85 0.58 0.37 0.05 

7.5  

7.6 D 
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Table E-13: Objective assessment of companding algorithm in the presence of SSN (Figure 5-13). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

Companding 0.78 0.29 0.24 0.16 

MHACompanding 0.88 0.85 0.67 0.54 

UP 0.71 0.59 0.37 0.15 

 

Table E-14: Objective assessment of companding algorithm in the presence of MTBN (Figure 5-14). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

Companding 0.81 0.43 0.31 0.3 

MHACompanding 0.93 0.79 0.73 0.53 

UP 0.82 0.76 0.58 0.3 
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Table E-15: Averaged speech intelligibility scores for adults with NH in the presence of SSN (Figure 6-3). 

SNR (dB) 

 

Processing  

3 0 -3 -6 

Dichotic 0.98 0.96 0.72 0.44 

MHA 0.97 0.94 0.81 0.41 

MHADichotic 0.98 0.95 0.67 0.39 

UP 0.97 0.89 0.68 0.22 

 

Table E-16: Averaged speech intelligibility scores for adults with HI in the presence of SSN (Figure 6-4). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

Dichotic 0.80 0.73 0.33 0.16 

MHA 0.69 0.53 0.50 0.1 

MHADichotic 0.66 0.83 0.37 0.10 

UP 0.86 0.76 0.35 0.08 
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Table E-17: Averaged speech intelligibility scores for adults with NH in the presence of MTBN (Figure 6-5). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

Dichotic 0.96 0.89 0.64 0.26 

MHA 0.90 0.69 0.39 0.32 

MHADichotic 0.93 0.77 0.46 0.14 

UP 0.96 0.70 0.58 0.22 

 

Table E-18: Averaged speech intelligibility scores for adults with HI in the presence of MTBN (Figure 6-6). 

SNR (dB) 

 

Processing 

3 0 -3 -6 

Dichotic 0.82 0.56 0.28 0.06 

MHA 0.62 0.37 0.19 0.12 

MHADichotic 0.65 0.51 0.19 0.07 

UP 0.79 0.52 0.33 0.09 
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