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Abstract

Understanding a system as complex as the human brain is a very demanding task. Directly

working with structural and functional neuroimaging data has led to most of the understand-

ing we have gained about the human brain. However, performing only the direct statistical

comparisons on the empirical function and the structure does not fully explain the observed

long-range functional correlations. Therefore, implementations of mathematical models to

gain further understanding of the relationship between the structure and function of the brain

is critical. Additionally, spontaneous functions of the brain can only be predicted using com-

puter simulated models; which will be pivotal for studying the patients with accidental brain

injuries. Therefore, this research aims to present an optimized computer simulated model not

only to further understand the structure-function relationship of the brain, but also to predict

the functional changes when anatomy is altered.

Based on prior work, 2-dimensional classical Ising model stands out among the other

models in modeling the functions of the brain due to its simplicity. Hence, a 2-dimentional

Ising model was simulated on a structural connectome (generalized Ising model) that acts as

a proxy for the anatomical connectivity in the brain. Simulations allowed the prediction of

functional connectivity using the structure, at criticality. It also enabled the introduction of

a novel methodology to calculate the “dimensionality” of the brain. Our results showed the

dimensionality of a healthy brain is two when it is defined using the information flow in the

brain. Further research illustrated the dependency of dimensionality on the diffusion tractog-

raphy method used to obtain the structural connectome. It was also concluded that an opti-

mized generalized Ising model has to be simulated using a structural connectome generated

by deterministic tractography to acquire the best predictions of empirical function. Additional

investigations into a more generalized version of the Ising model—Potts model with different

number of spin states—illustrated that increasing the number of spin states does not increase

the predictability. It also supported the hypothesis that the model could be simulating the digi-
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tal nature of direct neural activity rather than the indirect activity measured by brain imaging.

Keywords: 2D classical Ising model, Generalized Ising model, Structural connectivity,

Functional connectivity, Human brain, Structure-function relationship of the brain, Computer

simulations, Dimensionality, Tractography, Potts model
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Chapter 1

Introduction

The human brain, one of the most fascinating objects in the universe is home of billions of

neurons. Carrying such a large number of neurons creates a platform to have very complex

interactions among the neurons. Thus, it’s an extremely complex system to study, and, owing

to this complexity, we do not yet fully understand most of the human brain’s functions. This

complexity must be understood before we may be able to answer more fundamental questions

of human behavior. As a step towards understanding this complexity, establishing the relation-

ship between the structure and function of the brain is important, and large amounts of research

resources have recently been directed to this goal [1, 2].

There are two different approaches to studying the relationship between the structure and

function of the human brain. The first uses statistical methods to directly compare the resting

state functional connectivity patterns with the structural architecture. Analysis by this method

has demonstrated a significant connection between the brain’s structure and function [2]. How-

ever, this analysis does not fully describe the reasons for the presence of functional correlations

between regions which are not structurally connected (large-scale long-range connectivity). In

an attempt to explain this behavior, mathematical models have been introduced. In addition

to explaining relationships that are identified by statistical methods but not understood, mathe-

matical models can also predict the behavior caused by changes in structure [3]. Computational

1
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modelling allows researchers to perform virtual experiments by controlling input parameter(s)

(structural connectivity) to understand the impact of their changes upon output (functional

connectivity), in experiments which would be infeasible in reality. For this reason, we are im-

plementing a generalization of the well-known 2-dimensional (2D) Classical Ising model of

the human brain, which will be explained in detail in Section 1.3.

The main goal of this thesis is to develop an optimized generalized Ising model which can

predict the spontaneous fluctuations of the brain from its underlying structural architecture.

Simultaneously, we hope to use the model to better understand the relationship between the

anatomical structure and functional connectivity. Furthermore, using the generalized Ising

model, we aspire to introduce a novel methodology to calculate the “dimensionality” of the

brain’s network.

1.1 Fundamentals

1.1.1 Neurons

Being the commanding center of the body, the brain consumes 30% - 50% of the body’s energy.

This energy is used by billions of neurons within the brain. The Neuron is the basic working

unit of the brain (Figure 1.1 (a)) and specializes in transmitting information to other types of

neurons or cells in the body. As shown in Figure 1.1 (a), a single neuron contains the cell body,

axon, axon terminals and dendrites. In human brain, billions of neurons are spatially distributed

such that the communication between different regions of the brain through neurons is most

efficient [4]. Hence, grey matter—which includes the cell bodies—is located in the outer-most

layer of the cortex, while white matter (collection of axons) is located in the inner layer and

surrounded by grey matter (Figure 1.1 (b)).

When neurons are excited from an external signal, they release a combination of chemical

compounds called neurotransmitters from the axon terminals. Neurons that are connected to

the axon terminals through the dendrites pick up the modulated signal and passes it on to other
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Figure 1.1: (a) Parts of a neuron [5], (b) Axial view of the brain as observed by structural brain
imaging

neurons. Characteristics of the signal/spike are embedded in the neurotransmitters and hence

different types of signals can be mediated through distinctive types of neurotransmitters to

communicate with spatially separated brain regions that are specialized in performing unique

tasks [6].

Magnetic resonance imaging does not record brain signals from single neurons, but rather

records brain signals per voxel (which is a volumetric pixel). There are hundred thousands

of voxels which together cover the whole brain, cortical, and sub-cortical areas. One voxel

contains hundreds of neurons, and the observed signal is the average signal over all the neurons

in that voxel. Since neurons do not function as individual elements but as collective units which

perform sensorimotor and cognitive tasks, voxel-wise imaging data is compatible to explain

brain activity. However, performing analysis at the voxel level is time consuming, and the type

of the analysis that is being carried out may not require such a large resolution. Hence, the idea

of defining non-overlapping regions of interests (ROIs) using prior functional or anatomical

information was introduced [7]. Consideration of ROIs instead of single voxels was motivated

by the technique itself, in order to reduce the complexity of measuring activity and performing

realistic computations. Different parcellation schemes are used at different scales [8]. Work

described in this thesis will be based on AAL2 (Automated Anatomical Labelling) parcellation
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atlas available in FMRI Software Library (FSL) with 84 ROIs [9] as illustrated in Figure 1.2.

A complete list of the 84 regions is presented in Chapter 2, Appendix A.3.

Figure 1.2: Four different views of the 84 parcellated regions in the brain created by the AAL2
atlas. Each color represents a different region

1.1.2 Connectivity

There are three main types of brain connectivity, anatomical/structural connectivity, functional

connectivity, and effective connectivity. Functional connectivity and structural connectivity

are the two most fundamental connectivity types, while effective connectivity refers to the con-

nectivity that depends on causal interactions between the functional and structural connectiv-

ity [10]. Of these three connectivity types, the only type that physically exists is structural

connectivity, which can be verified via anatomy. In contrast, functional and effective con-

nectivity are statistically defined concepts using observations from brain imaging, but are not

present as physical entities.
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Structural connectivity

Structural connectivity of the brain refers to brain anatomy or the white matter tracts. It can

be obtained using Diffusion Tensor Imaging (DTI), which will be discussed in detail in Sec-

tion 1.2.1. White matter is defined as bundles of axons [11], and it creates a pathway for

electrical signals to pass through from one region to another. These pathways inherit different

characteristics depending upon the region of the brain in which they are located, the function-

ality of their brain regions, or even due to individuality. In some situations, while two ROIs

are very close to each other spatially, there may be minimal or no anatomical connection at

all between them. In other situations, two ROIs can be structurally well connected with many

white matter tracts between them, even though the ROIs are spatially far apart.

Functional connectivity

Functional connectivity of the brain refers to the functionally integrated relationship between

spatially separated regions. It was introduced to describe the functional strengths between

the interactions of ROIs. Analyzing the functional connectivity in the brain helps identify

the patterns of correlations between brain signals that are generated due to neural activity.

However, the presence of functional connectivity between two ROIs does not necessarily imply

that those two regions are directly structurally connected. Functional correlations can arise not

only due to the direct structural connections between the origin and the destination regions, but

also due to the communication pathways that pass through a number of other regions before

travelling from the origin to the destination. Therefore, causal inferences cannot be made using

only the functional connectivity [12].

Functional connectivity is measured using either the covariance or the correlations of the

signals between brain regions, which can be obtained using functional Magnetic Resonance

Imaging (fMRI) (discussed in detail in Section 1.2.2). Correlation provides a quantitative rela-

tionship between the variables to indicate how strongly the variables are related. On the other

hand, covariance measures the extent to which the variables are varying together. Correlations
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among pairs of ROIs are considered in our study, which provides us with a quantitative measure

of the relationship between the regions.

1.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that con-

structs three-dimensional images of different physiological processes within the body. It was

first introduced in neuroscience research to map the brain under stimulations, and has benefited

physicians and researches in diagnosing diseases, monitoring the effects of treatments, iden-

tifying the causes for pathological situations, and in many other ways. MRI technology has

advanced over the years into different types of MRI imaging techniques, which cover a range

of imaging modalities serving different purposes and offering improved performance and cost

efficiencies.

MRI was further developed using different types of technologies to not only image the

structural component of the body, but to also image its spontaneous fluctuations in different

physiological processes. DTI and fMRI are two types of such unique techniques that have

been developed to image the anatomical structure and the spontaneous fluctuations of the brain,

respectively.

1.2.1 Diffusion Tensor Imaging (DTI)

DTI is an imaging technique developed to understand the anatomical structure of the human

brain. It is a non-invasive method which allows identification of the location and orientation of

white matter in the brain [13, 14, 15] by recording the diffusion of water molecules. It is known

that the water molecules in the brain are more prone to move along the axons than across them.

Hence, DTI images the diffusion of water molecules to map the connection pathways in the

brain.

Mapping the pathways of the brain’s communication using these diffusion images has be-



1.2. Magnetic Resonance Imaging (MRI) 7

come an important tool in understanding the brain function. It provides a measure of the

macroscopic structure of brain tissues, which has initiated the introduction and development of

algorithms to compare local diffusion properties in different brains. Different types of statisti-

cal algorithms have been used to estimate the pathways followed by white matter fiber tracts.

The process of estimating fiber tracts from the images is called “tractography”. Probabilistic

tractography and deterministic tractography are two basic tractography methods that have been

used to estimate the white matter tracts [16]. We investigated the effects of these methods on

the estimation of white matter tracts or the structural connectivity, and how these differences

affect the generalized Ising model simulations (results are presented in Chapter 3).

1.2.2 Resting State Functional Magnetic Resonance Imaging (rs-fMRI)

fMRI is a non-invasive technique introduced in early 1990s which links brain functions to

blood flow in the brain. fMRI has had a significant impact on research in neuroscience.

The most common type of fMRI imaging technique is the Blood Oxygen Level Dependent

(BOLD) signal. The BOLD signal does not measure the neuronal activity directly; rather,

it measures it indirectly through measurements of the ratio of oxygenated and deoxygenated

hemoglobin [17, 18, 19]. Basic principle of the BOLD signal is that when the neuronal activity

is increased in one region of the brain in response to a stimulus, the cerebral blood flow to-

wards that region is increased. When the cerebral blood flow increases, the level of oxygenated

hemoglobin increases relative to deoxygenated hemoglobin in that region. Since oxygenated

and deoxygenated hemoglobin have different magnetic properties, changes in the hemoglobin

levels of these two types allow the detection of the differences in blood flow using fMRI [20].

Increase in blood flow can also be quantified by the Hemodynamic Response Function

(HRF), which shows a spike of intense neural activity and then returns to the stable state once

the needs of neural activity are met. The HRF is characterized by a curve that peaks with a

time delay of 4-5s compared to the neuronal stimuli (Figure 1.3). It provides the relationship

between the BOLD signal and the neural activity. By convolving the HRF with a function
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that reflects the theoretically expected neuronal activity, the BOLD signal can be inferred.

Moreover, hemodynamic response lasts for a very short period of time, making a direct fMRI

measurement impractical [21].

Figure 1.3: Hemodynamic response function at the onset of an external stimulus [22]

rs-fMRI refers to the acquisition of spontaneous brain activity without the presence of any

task related stimuli (when the brain is at “rest”). This approach is useful to understand the

functional organization of the brain as well as to investigate the alterations in the brain caused

by a brain injury or a disorder. The first paper with rs-fMRI was published by Biswal and

colleagues [23], where they concluded that the acquired data represent actual brain signals

coming from functional networks and not entirely from noise as was believed. Since then,

rs-fMRI has become a rapidly growing avenue of studying the spontaneous fluctuations of

the brain. In comparison to task-based fMRI, rs-fMRI is convenient from the participant’s

perspective as well as the researcher’s perspective—in both preparing for the experiment and

in the analysis—if the objective of the study is not to study a particular functionality of the

brain (such as motor or visual activities).
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1.3 Mathematical modelling

Computational models of dynamical systems such as the brain allow to estimate quantitative

behavior without disturbing biological functions. It also allows us to predict functional changes

in any given hypothetical situation. These kinds of studies are very useful in clinical practices

as well as in research, in order to gain a better understanding of the functionality of self-

organized critical systems such as the brain. Thus, there are several models that are being used

to explain the relationship between the structure and function of the brain: these include the

Kuramoto model, the neural mass model, and the 2-dimensional classical Ising model.

The Kuramoto model studies the synchronization between neuronal populations that can

produce self-sustained oscillations. It has been used to study the dynamics of a cortical net-

work driven by a set of oscillators with their own natural frequencies. These frequencies were

assumed to be in gamma-frequency range [24]. Simulations of the model incorporated the

structural connectivity of the brain as well as the time delays. Dynamics of the Kuramoto

model can be changed by controlling a single parameter—the coupling strengths between the

oscillators—which is driven by the structural connectivity. As the coupling strength increases

starting from a low value or decreases from a high value, the system experiences a phase transi-

tion where it passes through the critical regime [25, 26, 27, 28]. At this criticality the Kuramoto

model exhibits behaviors that self-organized systems habitually exhibit without the effect of a

controlling parameter, such as the emergence of a power law behavior in the system. Cabral et

al. concluded that the resting state brain activity is driven by the slow oscillations of the degree

of synchronization in the structural connectivity [24].

Additionally, the neural mass model is also being used to explain the dynamics of the

brain. It simulates a system of interconnected excitatory and inhibitory neurons, which are

connected through a structural connectivity matrix depicting the firing rate of the neuronal

masses. It describes the average activity of subsystems using dynamical state variables such

as the mean membrane potential of neuron masses, the average number of inhibitory inter-

neurons, and the open potassium ion channels. In addition to these three main parameters, there



10 Chapter 1. Introduction

are multiple microscopic quantities that are used to model the dynamics of the neural masses.

By studying the evolution of these variables, researchers try to build a relationship between

the structure and the function of the brain [29, 30, 31]. Using the neural mass model, it was

shown that short range functional networks obtained from neural activity could be predicted

using the underlying structural connectivity [30]. Furthermore, it was also observed that there

were strong functional connections between regions that are not directly structurally connected.

Even though functional connectivity can be explained by part through the direct comparisons

[32], it was concluded that inferencing about the complete functional connectivity directly

using the structure is unreasonable [29].

In contrast to the neural mass model and the Kuramoto model, 2D classical Ising model

is a very simple model with only one controlling parameter: the temperature of the heat bath.

When the temperature increases, the system undergoes a phase transition from an ordered

phase to a disordered phase passing the critical regime. At the critical temperature it has also

been shown to exhibit properties of self-organized criticality including a power low behavior

of the functional connectivity as well as a balance between integration and segregation of the

system [33]. The 2D classical Ising model—which predicted the global dynamics of the brain

function despite having not integrated any information from the brain—was later generalized

using the structural connectome of the brain [34, 35, 36, 37].

In [34], Deco et al. generated artificial networks with different coupling strengths and

network properties upon which to simulate the Ising model. A comparison between an Ising

model implemented on a structural connectome of the brain and on these artificially gener-

ated networks via entropy of the system lead to the conclusion that the empirical functional

connectivity can be best predicted through the Ising model using a structural connectome that

preserves scale free network properties. Further research into generalization of the Ising model

explored its ability to predict the empirical functions by estimating information transfer [35].

Marinazzo et al. concluded that the criticality can be characterized by the maximum informa-

tion transfer in the simulations. Later, Stramaglia et al. [36] also simulated an Ising model on
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the structural connectome and compared the differences observed in wakefulness and anesthe-

sia. When the subject is anesthetized, structural connectivity is unchanged while the functional

connectivity changes compared to a healthy brain. By observing the simulations of an Ising

model to predict the brain activity in anaesthesia, Stramaglia et al. discovered that while the

wakefulness can be predicted at the criticality of the model, functions of an anesthetized brain

can be predicted at a temperature that is different from the critical temperature.

1.3.1 Simulating the 2D classical Ising model

The 2D Classical Ising model was developed by Ernest Ising [38] to explain the phase transition

of ferromagnets at their critical temperatures. It is a very simple model with only one fitting

parameter, the temperature, yet by virtue of its simplicity it has been able to capture the battle

between integration and segregation in brain functionality [33].

The physical system is represented by a square lattice configuration in the Ising model.

Each lattice site has a spin ’s’ which could take only two possible values, either up (+1) or down

(−1) (Figure 1.4). This configuration is kept in a thermal bath of temperature T. Interactions

between the spins are always influenced by this temperature and allow the system to reach

an equilibrium energy state starting from a random spin configuration, while also yielding

different equilibrium spin configurations at different temperatures.

Energy of this spin system at any state x in the absence of an external magnetic field can be

calculated using Equation 1.1:

E(x) = −J
N∑

{i, j=1}

S iS j (1.1)

where J is the coupling constant, si and s j represent the spins of the ith and jth sites re-

spectively, and N is the number of lattice sites. Only the nearest neighbor interactions are

considered together with equal coupling (J = 1) for 2D Ising model simulations.

At equilibrium, thermodynamic properties such as magnetization (M), magnetic suscepti-



12 Chapter 1. Introduction

Figure 1.4: Representation of a 2D lattice arrangement. The nearest neighbors of the green
color lattice site are represented in red

bility (χ) and the specific heat (Cv) of the system can be calculated using Equations 1.2, 1.3

and 1.4 respectively. Magnetization is simply an order parameter which explains the state of

the spin system, which may be in either an ordered state or a disordered state. Magnetic sus-

ceptibility is the derivative of magnetization and captures the changes of magnetization. This

is used to identify the critical temperature of the spin system by noting the temperature which

maximizes the susceptibility. Specific heat tells us how much does the energy of the spin

system changes with changing temperature.

M =
1
N
|

N∑
i=1

S i| (1.2)

χ =
1
T

[
〈
M2
〉
− 〈M〉2] (1.3)

Cv =
1

T 2 [
〈
E2
〉
− 〈E〉2] (1.4)

In a 2D lattice configuration, there are two extreme equilibrium configurations of spins:

one for sub-critical temperatures and another for super-critical temperatures. When the tem-
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perature is very low (sub-critical), all the spins prefer to be aligned along the same direction

(minimizing the energy of the system), with very large clusters of the same spin (ordered)

(Figure 1.5 a), resulting in high magnetization. On the other end, when the temperature is very

high (super-critical), the spins are a mixture of up spins as well as down spins (disordered)

(Figure 1.5 c) which will result in zero magnetization. In between these two extremes, there

exists a critical temperature (Tc) where the system exhibits transition from ordered phase to the

disordered phase (Figure 1.5 b). Additionally, the system acquires its maximum susceptibility

at Tc and even a tiny perturbation introduced by a single spin flip can change the entire system

by spreading the effect over the entire configuration rapidly [39, 40]. As described, the system

could exhibit completely different properties which depend only upon the temperature of the

system.

Figure 1.5: Representation of the equilibrium spin configuration for T < Tc, T = Tc and T > Tc

for a two-dimensional lattice arrangement. Blue color is for the up spins (+1) and yellow color
is for the down spins (−1)

1.3.2 Simulating the generalized Ising model

The generalized Ising model was influenced by the 2D classical Ising model and was introduced

by Marinazzo et al. [35]. In our research we are further investigating the use of the generalized

Ising model to better predict the relationship between the structure and function of the brain.

Generalized Ising model was simulated on a random lattice and we assume that all the spin sites
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are interacting with all the other spin sites with different interaction strengths instead of taking

only the nearest neighbor coupling (as in the 2D classical Ising model). In the random spin

configuration each spin site represents one region of the brain. The interaction strength between

the spin sites (or brain regions) is introduced into the model using the structural connectivity

of the brain. Therefore, Equation 1.1 changes to Equation 2.1 for the generalized Ising model

simulations where Ji j represents the coupling strength between the ith and jth sites. Note that

the summation is over all regions.

E(x) = −

N∑
i, j=1

Ji jS iS j (1.5)

1.4 “Dimensionality” of the brain

In the mathematicians’ point of view, dimensionality refers to a property of space [41] and

provides substantial information about how many directions in space we can move. When de-

veloping the concept of dimensionality for the brain, one can simply use the general idea of

information flow. To balance the integration and segregation, different regions that are spe-

cialized in different functions need to keep a steady flow of information or an information

flux throughout the brain which can be hypothesized as equivalent to the electric flux due to

a point charge in space. In the case of charged particle, electric flux can be calculated using

Gauss’s law [42] (Equation 1.6) where E is the electric field, ρ is the charge density and ε0 is

the permittivity of space.

∫
s
E· dS =

1
ε0

∫
v
ρ dV (1.6)

If a charged particle is in a 2-dimensional space, Equation 1.6 can be simplified to Equa-

tion 1.7; while if it is in 3-dimensional space, it can be simplified to Equation 1.8 assuming

that the distance r is sufficiently large compared to the size of the point charge. Comparing

Equations 1.7 and 1.8, the method to generalize the calculation of electric field for any dimen-
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sional space is apparent as illustrated in Equation 1.9, which explains the dependency between

the electric field due to a point charge and the dimensions of space where, r is the distance to a

point in space from the point charge, Q is the enclosed charge and d is the dimensionality.

E· 2πr =
Q
ε0

E2D ∝
1
r

(1.7)

E· 4πr2 =
Q
ε0

E3D ∝
1
r2

(1.8)

E ∝
1

rd−1 (1.9)

When the dimensionality of the space is unknown, it can be easily estimated by measuring

and plotting the electric field at different distances and fitting Equation 1.9. In other words,

dimensionality of the space will tell us how the electric field due to a point charge will decay

in space with respect to the distance. For higher dimensionality, there are substantially more

directions in which the field can propagate, resulting in a faster decay. Similar to most of

the objects or systems that are in classical existence, the dimensionality of the human brain is

three, which is generally defined using its characteristics in physical space. However, when the

information transfer in the brain is considered, one can ask if its dimensionality remain three.

Can we define dimensionality using the information transfer, considering a phenomena similar

to the decay of the electric field of a point charge (rather than the physical characteristics), and

do so in a meaningful manner which infers more attributes of the system?

In neuroimaging, most common factor that is involved in any definition of dimensionality is

the rate of neural activity or the empirical functionality of the brain that depends upon the rate

of neural activity [43, 44, 45, 46]. Since empirical functional connectivity is a time-dependent

statistical definition that actually does not exist as a physical quantity, dimensionality of the

system will also be time-dependent whilst defined using the functional connectivity. It can
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change when the functional connectivity changes, despite the fact that the anatomy of the brain

is well defined and time-independent. Therefore, empirical functional connectivity dependency

of dimensions is not favorable in establishing a definition for dimensionality which could be

used to infer further properties of the brain. Hence, we propose a novel method to calculate

the “dimensionality” of the brain via the generalized Ising model that primarily depends only

upon the structural connectome.

To calculate the dimensionality, the minimum path length between different pairs of regions

in the brain was calculated by defining the distance between regions as in Equation 1.10, where

di j is the distance between the ith and jth region, while Ji j is the coupling strength (normalized

number of fibers) between the ith and jth region.

di j =
1
Ji j

(1.10)

By introducing this concept, distance is defined such that the higher the number of fibers

between a pair of regions, the shorter the distance between them even though the two regions

may be far apart in physical space. Conversely, however close two regions are in physical

space, they can be far apart if there are only a few numbers of fibers between them.

In addition to that, correlation function among brain regions provides a quantitative mea-

sure of the similarity of signal forms and can be thought of as equivalent to the electric field

as discussed in the example above. Correlation among regions depends upon dimensionality

of the space and hence knowing the dimensionality will allow the estimation of correlations.

While the empirical functional correlations are obtained using fMRI technique, simulated func-

tional correlations can be obtained from the generalized Ising model, which also depend only

on the structural connectome. Simulated functional correlations combined with the concept of

distance resulted in a plot which shows the variation of correlation as a function of distance as

illustrated in Figure 1.6.

As discussed in [47, 48], correlation can be explained using Equation 1.11 where r is the

distance, ξ is the correlation length [48], d is dimensionality, η is the critical exponent of
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Figure 1.6: Correlation as a function of distance at the critical temperature for the generalized
Ising model

correlation length and P0 = d − 2− η, a function of dimensionality and η which then simplifies

to Equation 1.12 at the critical temperature. Equation 1.12 can be seen as an equivalent to the

form of Equation 1.9 given that r > ξ.

G(r) '
exp(

−r
ξ

)

rd−2+η
=

exp(
−r
ξ

)

rP0
(1.11)

(@Tc) G(r) '
1

rP0
(1.12)

Following Equation 1.12 it can be noted that the higher the dimensionality, the faster the

decay of correlation with distance, corresponding to the behavior of the electric field as a

function of distance in Equation 1.9. Dimensionality captures the essence of information flow

in terms of correlations between pairs of regions such that when dimensionality increases,

the number of highly correlated nearest neighbors also increases, producing a rapid decay of

the correlation function with increasing distance. On the other hand, when dimensionality

decreases, the number of highly correlated nearest neighbors decreases while the significance
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of correlation between distant neighbors increases, resulting in a slow decay of the correlation.

Additionally, dimensionality of the brain also accounts for the inertia between brain regions to

exchange information with distant pairs in contrast to the nearest neighbors.

Dimensionality calculated using this method can only be changed due to the changes in

the structural connectome, which will change the sampling of distances. In such a situation

where the structural connectome changes, simulated functional correlations will also change

as the model is driven by the structural connectome. The correspondence between the structural

connectome and the simulated function as well as dimensionality provide opportunities to use

these relationships to build a tool to better identify and understand the functions not only in a

healthy brain, but also in pathological situations.

1.5 Chapter preview

In chapter two (published in Brain Connectivity [37]) we compare the 2D classical Ising model

and the generalized Ising model, and we present a novel approach to calculate the “dimension-

ality” of the brain. Our results for the 2D classical Ising model agree with previous work while

findings for the generalized Ising model conclude that the dimensionality of the brain is two.

In chapter three (manuscript in preparation for submission to Brain Structure and Function)

we discuss DTI tractography in order to optimize the generalized Ising model simulations. Six

different tractography methods have been studied compared via the generalized Ising model in

order to find the best tractography method to be used in the simulations. Our results demon-

strated that the deterministic tractography without FA produces the correlation matrix that gives

the best prediction of the empirical correlation matrix. It also provides quantitative evidence

to illustrate the advantages of using the generalized Ising model to predict the spontaneous

fluctuations of the brain using the structural connectome. Additionally, we show the effects of

different structural connectome on dimensionality of the brain, which depend on the differences

in tractography methods.
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In chapter four (manuscript in preparation) we examine a generalized Potts model with

seven different cases with different number of spin states as 2, 3, 4, 5, 6, 8 and 10. Since the

generalized Ising model has only two state spins and has been able to predict the functional

correlation matrix of the brain, it only made sense to see whether we can optimize the model by

simulating it with a higher number of spin states than two. The hypothesis tested was that when

the number of states increases, the prediction of the empirical functional connectivity matrix

will improve. However, we concluded that this is not the case with the generalized Potts model

simulations. Furthermore, we concluded that the best prediction of the empirical functional

correlation matrix is produced by a 2 state Potts model (or an Ising model) simulated on a

structural connectome, which could be due to the fact that the simulations may be predicting the

digital nature of direct neural activity rather than the BOLD signal itself as was hypothesized.

Chapter five contains an overall discussion of the thesis together with future research direc-

tions. First, we will discuss the applications of an optimized generalized Ising model to patients

with brain injuries and how this research will contribute to the improvement of these patients’

brain functions. Furthermore, we are generalizing the method of calculating the dimensionality

of the brain to calculate dimensionality of any given network given its connectivity structure.

We aim to illustrate how this novel approach of calculating dimensionality can be beneficial in

any network analysis.
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Chapter 2

Role of Dimensionality in Predicting the

Spontaneous Behavior of the Brain using

the Classical Ising Model and the Ising

Model Implemented on the Structural

Connectome

2.1 Introduction

The relationship between the spontaneous activity of the brain and its structural fiber distribu-

tion is a critical topic in neuroscience. This relationship will allow us to better understand the

emergence of complex but flexible dynamics (brain functions) in the brain from its underlying

structural network. The structure-function relationship is commonly investigated using two

main approaches. First, statistical methods directly compare resting state functional connec-

tivity patterns with the structure. Statistical comparisons lead to important results indicating

the presence of a significant correlation between the anatomical fiber distribution and the func-

26
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tional connectivity patterns [1, 2]. The other common approach to understand the structure-

function relationship of the brain is by using simple mathematical models that could capture

the complex dynamics of the brain.

There are several models which have been used to discuss the spontaneous behavior of

the brain, including the Neural mass model, the Kuramoto model, and the well-known 2-

dimensional (2D) classical Ising model. The Neural mass model and the Kuramoto model have

been successful in providing evidence for the existence of a connection between the anatomical

structure and the spontaneous fluctuations of the brain as captured by fMRI [3, 4, 5, 6, 7].

The classical Ising model was developed by Ernest Ising [8] to explain the phase transi-

tion to ferromagnetic behavior at a critical temperature. It has been used to investigate brain

dynamics by [9]. The classical Ising model is a relatively simple model with only one fitting

parameter, the temperature of the thermal bath, in which a lattice simulating the regions of a

ferromagnet is immersed. Yet, by virtue of its simplicity it has been able to capture the inte-

gration and segregation behavior of spontaneous brain function [9] (for more details of the 2D

classical Ising model see Appendix A.1). Blood Oxygen Level Dependent (BOLD) signal is

the signal fMRI methods are sensitive to and are a convolved property of neuronal fluctuations

in the brain. It is modelled with the Ising model using binary spin states. BOLD signals greater

than a threshold will be represented by up spins and less than the threshold will be represented

by down spins with the lattice sites counting the number of brain regions. With this analogy,

the 2D classical Ising model was first used by Fraiman to predict the distribution of functional

correlations in the brain. They found that the best prediction of the distribution of correla-

tions was obtained from the model at the critical temperature while important deviations were

observed for even small changes in temperature from criticality. Successful results of these

comparisons have led to further investigations of the model to explain the structure-function

relationship of the brain.

In a subsequent work, the 2D classical Ising model was generalized by Marinazzo et

al., [10] by implementing the model on the structural connectome, in order to match each
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region of the brain with a corresponding lattice site. Criticality was confirmed for the gener-

alized model and, information transfer was found to be maximum at the critical temperature

as well. The generalized Ising model was further studied by Stramaglia et al. by comparing

correlation values and transfer entropy between simulated and functional empirical data [11].

Furthermore, Deco et al. studied an Ising model implemented on the structural connectome

and compared with the implementations of the model on artificially created connectomes with

differnet coupling strengths [7]. They investigated the entropy of the systems as a function of

the coupling strength to conclude that the simulated system exhibits rich dynamics similar to

the empirical functional connectivity when the structure is integrated as a scale-free network.

In this paper we compared the classical Ising model and the Ising model implemented on

the structural connectome with respect to the empirical data demonstrating that both models

exhibit similar functional patterns and global properties despite the intrinsic differences. If both

models are in the same universality class (same critical exponents), then their similarity would

not be surprising. To investigate the cause of their similarities, the critical exponents (explained

below as well as in Appendix A.2) of both models were calculated and compared [12]. If we

know the critical exponents of one system in a particular universality class, we can explain

any other system in the same universality class, whose microscopic causes could be totally

different from the known system. The critical exponents are said to explain the behavior of the

system around the critical temperature. Greek letters β , γ , α , η and are used to represent the

critical exponents of magnetizations, susceptibility, specific heat, correlation function [13] and

correlation length [14] respectively. These critical exponents together with the dimensionality

’d’ follow the scaling relations explained in Appendix A.2.

Dimensionality, together with the other critical exponents, is fundamental to understand the

behavior of the system around criticality. Physiological changes of the brain, as for example

induced by sleep, could be in fact explained by the model deviating from criticality. Dimen-

sionality of a system has been found to be highly relevant for the system performance also

in neural networks [15]. In their paper, they have concluded that different dynamics can be
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observed in neural networks with different connectivity patterns coming from different dimen-

sionality.

For the classical Ising model the dimensionality of the system is given by the number of

dimensions of the lattice (d = 2 for a square lattice) and there is a well-defined relationship be-

tween the number of nearest neighbors in the lattice and the dimensionality (number of nearest

neighbors = 2 × dimensionality). However, for the generalized Ising model the dimensionality

of the system is not evident as for the classical case and in order to be extracted a new concept

of distance needed to be introduced.

Figure 2.1: Summarized representation of the analysis carried out. We obtained the structural
and functional data separately from brain imaging techniques. Then, the structural connectivity
was used as the input of the generalized Ising model. Using this input, the generalized Ising
model was simulated for different temperatures and each time the output was compared with
the empirical functional data obtained from fMRI

The key components of the steps carried out are summarized in Figure 2.1. The orga-
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nization of the paper is as follows. In the next section, we will introduce the methodology

of calculating and comparing properties of the empirical functional connectivity with the ones

generated from the numerical simulations of the classical Ising model and the generalized Ising

model. Then we will explain the procedure we followed to calculate the critical exponents and

the dimensionality of the models. Next, we will explain the main findings of the work that was

carried out, which will be followed by discussion and conclusions.

2.2 Materials and methods

2.2.1 Acquisition and preprocessing of data

Subjects

A set of sixty-six healthy subjects, between 22 - 35 years old, were studied during wakefulness.

Informed consent to participate in the study was obtained from every subject.

Ethic statement

The Ethics Committee of the Washington University and the University of Minnesota approved

the study.

Acquisition and preprocessing of data

Structural and functional data were acquired at the Washington University - University of Min-

nesota Consortium of the Human Connectome Project (WU-Minn HCP). Details about the data

acquisition and preprocessing can be found here [16, 17, 18, 19, 20, 21, 22, 23, 24]. Parcellation

of the data was performed, using FSL, Freesurfer and MRTrix software with 84 individually

labelled regions (a list of the labels is presented in Appendix A.3). Extraction of the structural

connectivity matrix (Ji j) was performed using the MRTrix software.
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2.2.2 2D Ising Model and the generalized Ising model

Computer simulations

An instance of the 2D Ising model is built starting with a random spin configuration on a square

lattice of size L× L (= 9 × 9) which is in contact with a thermal bath of temperature T. For

comparison purposes, a square lattice Ising model with a 9 × 9 lattice size was chosen, as it

gives 81 spin sites (that is the closest number of sites to 84 we can acquire using a square

lattice). For the generalized Ising model, a 1 × 84 array of random spins was used. Each spin

can be in only one of two spin states (either up (+1) or down (-1)). The energy of this spin

configuration at a state x, in the absence of an external magnetic field is given by;

E(x) = −

N∑
i, j=1

Ji jS iS j (2.1)

where Ji j is the coupling between ith and jth region, si and sj represent the spins of the

ith and jth region respectively and N = L × L. A matrix representing the coupling Ji j for the

2D Ising model has been created to encode nearest neighbor coupling with a coupling strength

of one [9]. In contrast, another matrix representation of coupling Ji j for the generalized Ising

model has been created using the connectivity matrix which was built from the Diffusion Tensor

Image (DTI) acquisition. This matrix contains the number of fiber tracts between each pair

of regions in the connectome which is being used to define the coupling strength. For the

simulations of the model we normalized the average structural connectivity matrix (average

over 69 subjects) such that the matrix elements will be between 0 and 1. A Metropolis Monte

Carlo algorithm [25, 26] was used to simulate the system at each temperature. Metropolis

Monte Carlo algorithm allows to generate an equilibrium spin configuration starting from a

random spin configuration for each temperature (more details can be found in Appendix A.1).

From the final output of the simulations, the correlation between the time evolutions of spins

for each temperature was calculated using Equation 2.2,
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corr =
< si(t) × s j(t) > − < si(t) >< s j(t) >

σsi(t) × σs j(t)
(2.2)

where si and s j stands for the spins of ith and jth regions, σ2
si(t)

= < s2
i (t) > − < si(i) >2 and

< . > is for the average over time.

Using this procedure, the correlations were generated by each model as a function of

temperature. Afterwards, this procedure was repeated for both models to generate ten sets

of data for each, always starting with a random spin configuration. Generating ten inde-

pendent simulations further ensures that the Metropolis algorithm explores a variety of ini-

tial conditions and therefore increases the (statistical) accuracy of the results. MATLAB

(https://www.mathworks.com/) was used for the computer simulations and analysis whereas

RStudio (https://www.rstudio.com/) was used to generate graphs.

2.2.3 Analysis

Preliminary analysis

Analysis was performed over the average of ten data sets for both models. The thermodynamic

properties were plotted as functions of temperature for the two models to obtain the critical

temperature (Figure 2.2). The critical temperature can be obtained by locating the tempera-

ture which maximizes the magnetic susceptibility of the system (Equation 2.3) where χ is the

magnetic susceptibility, T is the temperature and M is the magnetization [12]).

χ =
1
T

[< M2 > − < M >2] (2.3)

The empirical functional correlation matrix which is built by averaging the correlation ma-

trices across the 66 healthy subjects was compared with the simulated correlation matrices

(Figure 2.3) for further analysis. Additionally, the distribution of the correlation for the simu-

lated data as well as for the empirical data was plotted in Figure 2.4.

Next, the distance between the simulated correlation distributions and the empirical correla-
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tion distribution was calculated as a function of temperature and presented in Appendix A.4.1.

The distance between the empirical and simulated correlation distributions is quantified using

the Kolmogrove-Smirnov test (KS test) statistic [27]. To calculate the KS test statistic, empiri-

cal and the simulated correlations were plotted as cumulative plots in the same graph. Next, the

maximum distance between these two plots was calculated. Temperatures which minimize this

maximum distance (Tmin) has been obtained for individual simulations. Distribution of Tmin

and Tc for the generalized Ising model is presented in Figure 2.5.

In order to calculate the global degree as a function of threshold, correlations were sep-

arated into positive and negative correlations. Then the global degree was calculated for the

negative and positive thresholds separately for the 2D classical Ising model and the generalized

Ising model and plotted in Figure 2.6 together with the global degree of the empirical data [28].

Taking the individual node degree into consideration, connectivity graphs are plotted for the

generalized Ising model at four different temperatures and been compared with the graph of

the empirical data (Figure 2.7).

Analyzing the behavior at the criticality using the critical exponents

The critical exponents and the dimensionality were calculated for the two models by following

the procedure below. First, the critical exponents related to magnetization, susceptibility and

specific heat were calculated by fitting Equation A.7 - A.11 (in Appendix A.2) to the respective

plots in Figure 2.2. To find η and ν, following procedure was used:

Correlation function: First, a set of distances for both models were defined using the re-

spective connectivity matrices. For the classical Ising model, the distances were the integers

from 1 to 8, since the initial configuration was a 9 × 9 2D lattice. However, for the generalized

Ising model the distance between two regions is defined as the reciprocal of the normalized

number of fibers between the two regions (di j = 1
Ji j

). We binned the continuous distances to

create a set of discrete groups. Then the correlation values between pairs at the same distance

were averaged to get the average correlation as a function of distance. This calculation was
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performed for each temperature (Figure 2.8). By fitting Equation A.14 (Appendix A.2) to the

plot of correlation function versus the distance at the critical temperature, η was calculated. By

subsequently using Equation A.13 to fit the correlation function at the critical temperature, a

numerical value for the power of the denominator (= d - 2+ η) was then obtained. Using this

fitted value and the calculated η at Tc the dimensionality of the classical Ising model as well

as the generalized Ising model was finally extracted. Correlation length: Correlation length

at each temperature was calculated by fitting Equation A.12 (Appendix A.2) to the correla-

tion function versus the distance at each temperature. The correlation length was plotted as

a function of temperature and fitted with Equation A.15 and A.16 (Appendix A.2) to find ν

(Figure 2.8).

2.2.4 Results

Preliminary analysis

Figure 2.2: Thermodynamic properties of the 2D classical Ising model with 9 × 9 lattice size
and the generalized Ising model as a function of temperature. Red dashed line indicates the
critical temperature and the red solid lines represent the plots after fitting the given equations
to calculate the critical exponents
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The mean values of critical, sub-critical and super critical temperatures over the ten in-

dependent trials were obtained using the susceptibility plots in Figure 2.2 and are reported in

Table 2.1 together with their standard deviations. The critical temperature value of the 2D Ising

model agree with the critical temperature described in literature for the lattice size L = 9. In

the generalized Ising model, the phase transition occurs at a lower temperature than that of the

classical Ising model.

Table 2.1: Sub-critical, critical and super-critical temperatures of the generalized Ising model
and the 2D classical Ising model

Model T < Tc T = Tmin T = Tc T > Tc

Generalized Ising model 0.78 ± 0.02 1.21 ± 0.04 1.39 ± 0.02 1.98 ± 0.02
Classical Ising model 1.55 ± 0.10 2.53 ± 0.20 2.55 ± 0.10 3.55 ± 0.10

Correlations for four different temperatures are presented in Figure 2.3. At Tc the spatial

pattern of the correlations in the generalized Ising model hold a similar spatial pattern to that

of the empirical data. Distributions of the correlations for the selected four temperatures are

plotted in Figure 2.4 along with the empirical data. For the classical Ising model correlation

distributions showed difference between the empirical distribution and the simulated one at crit-

icality, even if the critical temperature Tc or the slightly different value Tmin gave a much better

prediction with respect to sub or supercritical behavior. For the generalized Ising model the

distribution of correlations at Tc and Tmin and the distribution of correlations for the empirical

data were not significantly different (p = 0.98) while the distributions at sub and supercritical

temperatures were quite distant from the empirical distribution.

According to Figure 2.5, the variation of Tc (and Tmin) is resulted due to the randomness

of the initial spin configuration in the simulations. To illustrate the inter-subject variance of Tc

(and Tmin), distributions of Tc (and Tmin) are presented in Appendix A.4.2. A two-sample t-test

was performed to compare the Tmin values with the Tc values in individual simulations. Results

of the t-test together with Figure 2.5 concluded that Tmin and Tc are significantly different for

the generalized Ising model (p ¡0.001) but not significantly different for the 2D Ising model
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Figure 2.3: Correlation at four different temperatures for the classical Ising model and the
generalized Ising model with the correlation of the empirical data

(with p = 0.4).

Graph theoretical analysis

In Figure 2.6, the global degree of the graphs was plotted as a function of negative and

positive thresholds for both models. As observed in Figure 2.4 there are no negative correla-

tions at Tc or at Tmin for the classical Ising model. Therefore, in Figure 2.6 the degree cannot

be plotted for the negative thresholds at Tc and Tmin for the classical Ising model. Figure 2.7

represents the functional connectivity graphs for the data obtained from the generalized Ising
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Figure 2.4: Distribution of the correlation at four different temperatures for the classical Ising
model and the generalized Ising model with the distribution of correlation of the empirical data

Figure 2.5: Histogram of Tc and Tmin together with the fitted distributions for the generalized
Ising model in 10 independent simulations

model simulations at sub-critical, critical, super-critical temperatures and Tmin along with the

connectivity graph of the empirical data. In these graphs, each point represents a brain region.

It is evident that the connectivity in the network grows as the temperature goes from T < Tc to

Tc and again reduced from Tc to T > Tc, and shows similar patterns for Tc and Tmin.

Analyzing the behavior at the criticality using the critical exponents
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Figure 2.6: Average degree as a function of positive and negative thresholds for the classical
Ising model and the generalized Ising model together with the average degree of the empirical
correlation network

Figure 2.8 represents the correlation function and the correlation length plotted for the two

models. These two plots were used to find the critical exponent and the dimensionality “d”

of the models. The calculation of dimensionality for the classical Ising model confirmed the

expected value of 2 (since we chose the square lattice Ising model in two dimensions) giving

the value of 1.93 ± 0.59. The dimensionality of the generalized Ising model was calculated for

the first time giving a value of 1.92 ±0.12 and proven equal to the classical Ising model value



2.2. Materials and methods 39

Figure 2.7: Connectivity graphs for the generalized Ising model for four temperatures, and the
connectivity graph of the empirical network. The size of the nodes represents the degree such
that larger the size, higher the degree

inside the fitting error. All the other critical exponents are reported in Table 2.2 together with

the dimensionality for both models.

Critical exponent 2D Classical
Ising model

Generalized
Ising model

α (Specific heat) 1.49 ± 0.02 0.81 ± 0.01
β (Magnetization) 0.14 ± 0.01 0.21± 0.01
γ (Susceptibility) 0.61 ± 0.01 0.53± 0.01
η (Correlation function) 0.34 ± 0.01 0.46± 0.01
ν (Correlation length) 0.30 ± 0.01 0.63± 0.02
d (Dimensionality) 1.93 ± 0.59 1.92± 0.12

Table 2.2: Critical exponents and the dimensionality of the 2D classical Ising model and the
generalized Ising model
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Figure 2.8: Correlation function versus distance and correlation length versus temperature for
the 2D classical Ising model and the generalized Ising model. Red solid line represents plots
after fitting the given equations (Appendix A.2). In the top panel, the dashed line represents
the correlation function at the critical temperature
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2.2.5 Discussion

The square lattice Ising model has been used in neuroscience to study brain functionality.

Fraiman et al. showed that the distribution of correlations at Tc in the 2D classical Ising model

has noticeable similarities to the distribution of correlations of the empirical data, even in

the absence of information from the structural architecture of the brain [9]. Their conclusion

together with several other studies supported the assumption of the presence of critical behavior

in the brain network [10, 7, 11]. In this paper, as the first step we compared simulations of a

2D Ising model with those of the generalized Ising model by looking at the distributions of

correlation values. The fact that for both models the mean of the correlation distribution values

at the critical temperature is larger than the mean of the correlation distribution at sub-critical

or super-critical temperatures is a well-known prediction of the Ising model in the classical

version and was confirmed by our results for the generalized model. Correlation between the

ith and the jth regions can be calculated using Equation 2.4 (where ri j is the distance between

region i and j, ζ is the correlation length, d is the dimensionality and η is the critical exponent

of the correlation function), and is clearly shown from Figure 2.8.

corri j =
exp(−ri j

ζ
)

r(d−2+η) (2.4)

At the critical temperature, because the correlation length (ζ) goes to infinity (in the infi-

nite lattice size limit), the correlation will have a power low decay with the distance. On the

contrary, at any other temperature, ζ will be finite and the correlation will have a combined

exponential and power low decay. Therefore, outside of criticality correlation will drop faster

with distance resulting in a lower average correlation value. For finite lattice size the difference

between the mean of the distribution at criticality and outside criticality will be reduced with

respect to the infinite lattice size limit.

In the generalized Ising model, the introduction of the coupling from the structural connec-

tivity of the brain provided a one to one relationship between the brain regions and the lattice
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sites. Each lattice site was connected with every other site with a given weight which was

obtained from DTI as opposed to the 2D classical Ising model. One objective was to inves-

tigate behavior at the critical temperature with respect to these changes in the model. When

the structure is introduced, we observed a shift in the critical temperature from 2.5 (2D Ising

model) to 1.4 (generalized Ising model). An illustration of this change as a function of sparsity

of the structural connectivity matrix is presented in Appendix A.4.3. We can conclude that the

critical temperature depends not only on the size of the matrix but also on the sparsity of the

connectivity matrix.

The temperature which minimizes the distance between the distributions of correlation

(Tmin) was significantly different from Tc for the generalized Ising model but not for the 2D

classical Ising model. Global degree plotted as a function of the temperature (Appendix A.4.4)

was maximized at a temperature which is not different from Tmin. This fact suggests the us-

age of graph properties to extract Tmin of the Ising model, either in the classical or generalized

version as done by looking for the maximum of susceptibility. Figure 2.9 represents the possi-

bility of finding a relationship between the graph properties and the thermodynamic properties

of the Ising model. As the theory implies, the specific heat and the susceptibility measure

the variation of energy and magnetization with temperature respectively. This was captured

by calculating the cumulative integral of the specific heat and susceptibility of the generalized

Ising model. Following the same procedure, the cumulative integral of the global degree was

calculated, which resulted in the plot on the right-hand corner in the top panel of Figure 2.9.

The new plotted quantity follows a similar behavior as the energy with temperature and could

be linked to a fundamental property of graph theory.

Similar properties around criticality for both models justified the use of the same fitting

functions, even if we needed to introduce a concept of distance for the generalized version

in order to extract the correlation length. In fact, as shown in Figure 2.8 the behavior of the

correlation versus distance for the generalized Ising model is well fitted by the same function

as the classical model.
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Having the same dimensionality can explain the observed similarities in global behavior of

the two Ising models around the critical temperature such as the correlation values and global

degree. Studying the behavior around criticality for complex systems like the Ising model

which shows a phase transition, could be extremely important and performed with a similar

strategy as the one followed in this paper by introducing an artificial concept of distance.

As the critical exponents (in Table 2.2) are different for the two models, it cannot be con-

cluded that these models belong to the same universality class. The fact that the global proper-

ties of the models still followed a similar pattern is due to the fact that our calculated properties

all depend on the correlation values which are controlled by the dimensionality d (equal in

the two models) and the critical exponent η (0.34 for classical and 0.46 for generalized) (Ap-

pendix A.2, Equation A.12).

Our findings for the generalized Ising model could be of relevance to study for example

the brain function of patients who suffer severe brain injury with disorders of consciousness

in which usually both structural and functional connectivity are highly affected. Furthermore,

for future studies, it will be highly relevant to see how the properties of the generalized Ising

model change with respect to the size of the lattice. This would mean using different par-

cellation schemes, different size of the system, which is contrary to the classical Ising model

will also result in the change of the structural connectivity matrix (Ji j) that will depend on the

parcellation scheme used.
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Figure 2.9: Energy, specific heat, magnetization, susceptibility, degree, and the cumulative
degree of (a) the generalized Ising model and (b) the 2D classical Ising model as a function of
temperature
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2.2.6 Conclusion

Extending the 2D classical Ising model towards the generalized Ising model further permits

to fit the empirical functional connectivity patterns. The introduction of structural data from

the brain as an input into the Ising model gives the best fit to functional data at Tmin which

is significantly different from Tc in the direction of the sub-critical regime but not far from

criticality. Since the critical exponents of the models are different it cannot be concluded that

these two models belong to the same universality class. However, similarities observed in the

global properties between the two models can be explained by the fact that they have the same

dimensionality. Studying the behavior of the system around criticality could be used to bet-

ter understand changes in spontaneous brain activity from the awake condition as observed in

physiological states like sleep or as in pharmacologically induced conditions like under anaes-

thetics.
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Chapter 3

Deterministic or Probabilistic

Tractography?

A comparison of Diffusion Tractography Methods in Simulat-
ing the Generalized Ising Model to Predict the Spontaneous
Fluctuations of the Brain

3.1 Introduction

3.1.1 Diffusion tractography

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging (MRI) technique that was

developed in the early 1990s to characterize white matter tracts of the brain [1, 2]. White

matter is composed of the axons of neurons, which are responsible for passing electrical sig-

nals between neurons [3]. Identifying the characteristics of white matter plays a pivotal role

in research as well as is clinical diagnosis [4, 5]. DTI focuses on the random movements

(diffusion) of water molecules in the brain. As water molecules are more free to move along

fibers than across them, monitoring the movement of water molecules allows us to image their

fiber paths. DTI has improved over the years, to the point where it is now the most com-

50
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monly used imaging technique to estimate the orientation and location of white matter in the

brain [6, 1, 7, 8]. While calculating the diffusion of water molecules using the diffusion ten-

sor, another measure—namely, ”Fractional Anisotropy (FA)” [9]—can be derived from DTI to

calculate the directionality of the diffusion process. The FA is a scalar value between zero and

one which provides a quantitative measure of anisotropy. FA has been used in various neu-

roscience research areas, such as the diagnosis of tumors, and the diagnosis of stroke patients

states from FA’s time-dependence [10, 11, 12, 13] to better diagnose the state of the patients.

In [14] FA was used as a threshold to obtain the most likely fiber tracts from tractography. In

this manuscript, we explore the use of FA not only as a weighting parameter of the connectome,

but also, as a direct representation of the connectome in predicting the spontaneous fluctuations

of the brain.

The process of estimating the orientation and location of white matter using brain images ob-

tained by DTI is called ’tractography’. Tractography techniques play a pivotal role in generat-

ing a structural connectome. Probabilistic and deterministic tractography are two basic white

matter tractography methods which allow non-invasive extraction of anatomical connectivity

patterns [15, 16]. In deterministic tractography, one direction per voxel is assigned depending

on the diffusivity constant; whereas in probabilistic tractography, a probability distribution of

the directions is assigned. Once all the voxels have been assigned a direction from the diffu-

sion of water molecules using the tractography method of choice, directions of all the voxels

integrated together recovers the fiber tracts. This process results in a map of connectivity (con-

nectome [17, 18]) which provides the number of fibers between each pair of voxels. There are

a number of studies that compare the probabilistic tractography and the deterministic tractog-

raphy such as [19, 15, 20], discussing both advantages and disadvantages of the two methods.

However, there is an active debate over whether the deterministic tractography generates the

streamlines of the human brain accurately enough, due to its higher number of false nega-

tives [21, 22]. On the other hand, probabilistic tractography reduces some of the uncertainties

associated with deterministic tractography by not directly finding the direction of a fiber, but by



52 Chapter 3. Deterministic or Probabilistic Tractography?

giving the probability of its orientation for each voxel. In [20] it is shown that the probabilis-

tic tractography is more useful in identifying cross-fiber connections, while the deterministic

tractography can better identify long-range anatomical connections. Probabilistic tractography

is prone to have a higher number of false positives, as it assigns a probability distribution of

the direction rather than a single direction for the fiber. However, the selection of tractography

method is highly subjective to the study in hand and remains a debated topic [22]. Choosing a

particular tractography method indicates nothing but changing the structural connectome that

will be used in the simulations. Therefore, our objective is to study the stability and the pre-

dictability of the generalized Ising model by selecting different types of structural connectivity

matrices similar to what is presented in [23] for other models. We considered these differ-

ences that are under discussion and applied six different tractography techniques to generate

structural connectomes. These structural connectomes were then used as input to simulate the

generalized Ising model and predict the spontaneous activity of the brain.

3.1.2 Computational modelling

Emergence of the brain function from anatomical connections is still a very open area of re-

search in neuroscience. Investigating the structure-function relationship is highly important to

understanding large-scale neural mechanisms and how brain dynamics can be possibly affected

by brain disorders [24]. In literature, different studies focus on the direct structure-function re-

lationship of the brain [25, 26, 27]. Most of these studies have demonstrated a significant

relation between the anatomical and the functional connectivity patterns by performing statis-

tical analysis. These studies consider the full brain as well as its network representation. Of

course, different statistical findings depend upon the method by which the functional connec-

tivity patters are extracted. Pearson product-moment coefficient and partial correlation—or any

other statistical approach like Recursive Feature Elimination (RFE) [28]—will extract different

correlation patterns and will consequently capture different features of the anatomical distribu-

tion. Introducing computational models (in parallel to direct comparisons) can provide added
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value to better understand how functional patterns are supported by anatomy.

Among the recent computer modelling approaches proposed in the literature [29, 30, 31],

one of the well-known models that has been shown to predict functional connectivity using

the anatomical structure is the generalized Ising model [29, 32, 33, 34]. The generalized Ising

model is an Ising model simulated on a structural connectome. Prior to the generalization

of the model, a 2-dimensional classical Ising model was first introduced by Ernest Ising to

illustrate the behavior of ferromagnets [24], and was later used to predict the global behavor

of the brain’s functional connectome [35]. The Ising model was then generalized to predict

the spontaneous activity of the human brain [29, 32, 33, 34]. The classical Ising model was

generalized using the structural connectome of the brain in light of discovering a relationship

between the anatomical structure and its functional counterpart.

Deco et al. [29] were the first to implement an Ising model on a structural connectome

obtained using deterministic tractography. By studying the entropy of a spin system using

an empirical structural connectome as well as artificially created structural connectomes, they

concluded that the simulated system can predict the empirical functional connectivity in the

form of pairwise correlations when the structural connectome is scale-free. Studies of the gen-

eralized Ising model were further extended by Marinazzo et al. [32], where they simulated the

Ising model using a structural connectome generated by deterministic tractography following

the exact procedure as discussed in [36]. Nevertheless, by calculating the information transfer

of the model and investigating the emergence of correlation-based network structures through

the model, they showed that the critical state of the generalized Ising model is characterized

by possessing maximum information flow. Later in [33], the Ising model was implemented

again on a structural connectome that was generated using deterministic tractography, in or-

der to compare the spin correlations between the simulated and the empirical functional data

through transfer entropy of healthy subjects as well as at anaesthetic conditions. Their findings

confirmed that the brain dynamics under anaesthesia cannot be explained by the criticality of

the model, but by a deviation from criticality. Even if the structural connectivity is unchanged,
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the correlation between population of neurons is profoundly altered under anesthesia. The

loss of these correlations escapes the intrinsic hypothesis of the Ising model. In fact, criti-

cality is an intrinsic property of the Ising model and to the structural connectivity and in this

case departs from the functional connectivity at the critical temperature. Most recently, in

our previous work [34] we compared a 2D classical Ising model with the generalized Ising

model. The generalized Ising model was simulated on a structural connectome generated by

probabilistic tractography and was studied further using graph-theoretical properties to find

structure-function relationship. In conclusion, we demonstrated that studying the behavior of

the generalized Ising model around criticality can help understand more characteristics of the

system, and in doing so we introduced a novel methodology to calculate the ”dimensionality”

of the brain (as presented in Appendix C.1.

While all these studies successfully explained the predictability of the empirical functional

correlations using the generalized Ising model with different matrices in different perspectives,

there is a lack of knowledge of the effects of tractography on the predictions. Because the

structural connectome in the only input of the generalized Ising model, the source of coupling

strengths, and the topological reference, it is essential to investigate its properties. Therefore, in

this manuscript we investigate the effects of probabilistic and deterministic tractography meth-

ods with/without FA on generating the structural connectomes. The comparisons are performed

via the simulations of the generalized Ising model.

The main focus of our work is to identify the tractography method which provides the best

structural connectome for use in the generalized Ising model simulations, which can, in turn,

obtain the strongest prediction of the spontaneous fluctuations of the brain. We also seek to

demonstrate the improvements realized by the generalized Ising model in predicting functional

connectivity, as measured by Pearson product-moment coefficient.
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3.2 Methodology

Methodology is summarized in Figure 3.1 and explained further below.

Figure 3.1: Summarized methodology

3.2.1 Data acquisition, preprocessing and tractography

Subjects

A set of sixty-nine healthy subjects, aged between 22 and 35 (with 41 women), were studied

during wakefulness. Informed consent to participate in the study was obtained from every

subject.
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Ethic statement

The Ethics Committee of the Washington University and the University of Minnesota approved

the study.

Functional MRI (fMRI)

Resting state fMRI images were acquired using high resolution 3T MR scans at the Wash-

ington University - University of Minnesota Consortium of the Human Connectome Project

(WU-Minn HCP) [37, 38, 39, 40, 41, 42, 43]. Preprocessing of the data was performed us-

ing HCP pipelines, which implements Minimal Preprocessing Pipelines (MPP) [37] and single

and multi-runICAF IX cleaning of MRI data. Minimal high pass filtering was applied with a

cut-off of 2000s to perform temporal filtering [44]. Preprocessed data were parcellated into

84 regions using the AAL2 atlas FreeSurfer (a list of the labels is presented in Chapter 2,

Appendix A.3). Next, a Blood Oxygen Level Dependent (BOLD) time series was extracted

for each region. Pearson product-moment coefficient between each pair of time series was

calculated, which provided the empirical correlation matrix (referred to later in the paper as

the empirical functional correlation matrix). The parcellation procedure was performed using

FSL, Freesurfer and MR-Trix toolbox; while the correlation calculation was performed using

MATLAB (https://www.mathworks.com/).

Diffusion MRI

Diffusion weighted images were acquired using high resolution 3T MR scans at the Wash-

ington University - University of Minnesota Consortium of the Human Connectome Project

(WU-Minn HCP). All processing steps for tractography reconstruction and generation of struc-

tural connectivity matrices were performed with MRTrix toolbox, version 3.0, considering

anatomical information carried out from freesurfer parcellation for cortical regions, and es-

timates from FSLs FIRST tool for subcortical areas. To increase the biological accuracy

of the reconstructions, processing steps taking advantage of the Anatomically-Constrained
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Tractography (ACT) framework [45] were performed. Two different streamlines reconstruc-

tion approaches—probabilistic and deterministic [46]—have been performed on a Multi-Shell,

Multi-Tissue Constrained Spherical Deconvolution fiber orientation distribution model [47,

48]. Reconstruction constraints were: maximum streamline length equal to 25 centimeters,

streamlines seeds belonging to segmented white matter, and one million reconstructed stream-

lines per subject. All streamlines were mapped to the parcellated image to produce a struc-

tural connectome (which will hereafter be referred to as structural connectivity matrices), con-

sidering the number of streamlines as structural connectivity weight. In addition, fractional

anisotropy (FA) derived from conventional diffusion tensor tractography at b-value 3000, has

been mapped across probabilistic and deterministic streamlines, providing FA matrices that can

be used as a proxy for structural connections integrity.

3.2.2 Data preparation and simulations

Data preparation

The generalized Ising model was implemented on six different input matrices (per subject)

which were generated as follows. The first two matrices were generated by counting the fiber

tracts between each pair of regions at b-value 3000 for probabilistic tractography and deter-

ministic tractography. Secondly, FA matrix was used as a weighting parameter of the diffusion

tractography for both tractography methods where the fiber counts were multiplied by the FA to

generate the next set of matrices. Additionally, the generalized Ising model was implemented

using just the FA matrices as inputs only for the comparison.

Model simulations

The generalized Ising model was simulated starting with a random spin configuration of size

1×L (L = 84). The spin configuration was placed in contact with a thermal bath of temperature

T. Each spin could be in only one of the two spin states (either up (+1) or down (-1)). Not only
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the equilibrium spin configuration but also thermodynamic properties of the system changes

with respect to the temperature. The energy of this spin configuration can be calculated in the

absence of an external magnetic field by Equation 3.1,

E = −

N∑
i, j=1

Ji jS iS j (3.1)

where Ji j is the coupling between the ith and jth regions, S i and S j represent the spins of

the ith and jth region respectively, and N = 84. Normalized structural connectivity matrices

which were obtained from different tractography methods were used as the coupling Ji j. Gen-

eralized Ising model simulations were performed for each subject over a range of temperatures

using Metropolis Monte Carlo algorithm (see further details of the simulations in [34]). Each

simulation resulted in a time series for each of the spin site, permitting the calculation of a

simulated correlation matrix using Pearson product-moment coefficient. Simulations were per-

formed using six different Ji js per subject by varying the temperature of the heat bath, which

resulted in six categories of simulated data for 69 subjects. MATLAB code developed in-house

(in MATLAB 2018b) (https://www.mathworks.com/) was used for all computer simulations.

3.2.3 Analysis

Analysis was performed at the subject level and average results (over the 69 subjects) were

plotted. For the preliminary analysis, thermodynamic properties such as the magnetization,

magnetic susceptibility, energy and the specific heat were calculated for the different general-

ized Ising model simulations. The magnetic susceptibility peak was used to identify the critical

temperature (Tc) of the system.

For each category of simulations, the distance and the correlation coefficient between the

simulated correlation distributions and the empirical correlation distribution were calculated as

functions of temperature per subject. Tmin, the temperature that minimizes the distance, and

Tmax, the temperature that maximizes the correlation coefficient, were obtained. A pairwise
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t-test was performed in order to examine the significance of Tc, Tmin and Tmax. Next, the sim-

ulated correlation matrices at Tc, Tmin and Tmax were compared with the empirical correlation

matrix. Additionally, emergence of the Resting State Networks (RSNs) [49, 50] were studied

by comparing the RSNs with simulated data and empirical data. Furthermore, the correlation

coefficients between the simulated data and the empirical data at Tc, Tmin and Tmax as well as

the correlation coefficients between the empirical Ji j’s (structural connectivity matrices) and

the empirical functional connectivity was plotted. The correlation coefficient was studied as

a function of the threshold in all cases. Moreover, dimensionality of the six generalized Ising

models (as explained in Appendix C.1) and the sparsity (ratio between the number of zero

elements to all possible zeros in the matrix) of the corresponding Ji js were calculated and com-

pared across each set of data. Subsequently, simulated correlation was plotted as a function of

the distance per tractography method.

3.3 Results

Figure 3.2 represents the input structural connectivity matrices for different tractography meth-

ods, mainly divided in to two categories as deterministic and probabilistic tractography. Struc-

tural connectomes generated by probabilistic tractography are distinguishable due to the lower

sparsity of their matrices compared to those of the deterministic tractography.

Figure 3.3 shows a summary of the analysis for the generalized Ising model simulations

using the structural connectivity obtained by deterministic tractography without FA. Equiva-

lent figures summarizing the results for the other five categories of tractography are plotted and

presented in Appendix B.2. Figure 3.3 (a) is a representation of the magnetic susceptibility as

a function of temperature together with a vertical line illustrating the critical temperature. It is

followed by the distance versus temperature plot in Figure 3.3 (b) that represents the position

of Tmin. Next, Figure 3.3 (c) shows the correlation coefficient between the empirical correlation

matrix and the simulated correlation matrices at each temperature with a vertical line represent-
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Figure 3.2: Structural connectivity matrices

ing Tmax. Figures 3.3 (d), (e) and (f) present the simulated correlation matrices at Tc, Tmin and

Tmax respectively while Figure 3.3 (h) presents the empirical correlation matrix. Figure 3.3 (g)

illustrates the distributions of these three temperature categories for the 69 subjects.

Average temperatures, Tc, Tmin and Tmax for different simulations are presented in Table 3.1

while Table 3.2 represents the results from pairwise t-tests between different pairs of tempera-

tures within the same category. Results of the t-test show that the three temperature values are

not significantly different in all the categories except in probabilistic counts and FA.

Furthermore, a comparison between the correlation matrices at Tc, Tmin and Tmax with the

empirical correlation matrix (Figure 3.3 (d), (e), (f) and Figure 3.3 (h)) was carried out by cal-



3.3. Results 61

Figure 3.3: Summary of the analysis. (a) Average susceptibility as a function of temperature,
(b) Distance between the simulated correlations and the empirical correlation as a function of
temperature, (c) Correlation coefficient between the simulated correlations and the empirical
correlations as a function of temperature, (d) (e) (f) (h) matrix representations of the correlation
at Tc, Tmin and Tmax and empirical correlation respectively, (g) distribution of Tc, Tmin and Tmax

within the group of 69 subjects

culating the correlation coefficient between each matrix and the empirical correlation matrix

(Figure 3.4). There were no significant differences between the correlation coefficients at Tc,
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Table 3.1: Average Tc, Tmin and Tmax for different methods

Temp. Deterministic Probabilistic
Countb3000 FAb3000 Count ×FA Countb3000 FAb3000 Count ×FA

Tc 0.34 ± 0.02 5.89 ± 0.62 0.19 ± 0.02 0.81 ± 0.06 25.58 ± 2.29 0.91 ± 0.11
Tmin 0.33 ± 0.05 5.55 ± 0.94 0.19 ± 0.04 0.73 ± 0.13 23.65 ± 4.16 0.86 ± 0.16
Tmax 0.33 ± 0.05 6.20 ± 1.50 0.19 ± 0.03 0.76 ± 0.16 24.45 ± 3.42 0.87 ± 0.19

Table 3.2: p - values from the pairwise t-test to compare Tc, Tmin and Tmax

(a) Countb3000

HHH
HHHDet.

Prob.
Tc Tmin Tmax

Tc - < 0.05 0.0239
Tmin 0.4523 - 0.3336
Tmax 0.3350 0.8494 -

(b) FAb3000

HHH
HHHDet.

Prob.
Tc Tmin Tmax

Tc - < 0.05 0.0233
Tmin 0.0133 - 0.2235
Tmax 0.1169 0.0028 -

(c) Count × FAb3000

H
HHH

HHDet.
Prob.

Tc Tmin Tmax

Tc - 0.0151 0.1264
Tmin 0.3864 - 0.6272
Tmax 0.5672 0.2126 -

Tmin and Tmax within one method. Figure 3.4 also includes the correlations between the empir-

ical structural connectivity matrices and the empirical functional connectivity matrices. From

this figure, it is evident that by introducing the generalized Ising model, predictability of the

empirical correlation matrix increases on average from 0.2 to 0.6 compared to the predictabil-

ity using the empirical connectivity matrix directly. Furthermore, the structural connectivity

matrix that was generated using deterministic tractography without FA resulted in the highest

correlation coefficient value of 0.65 between the simulated and empirical correlation matri-

ces. A pairwise t-test indicated that there is no significant difference between the correlation

coefficients obtained from probabilistic tractography counts and the weighted counts matrices

by comparing the empirical and simulated functional connectomes as well as the empirical

structural and functional connectomes with p > 0.05. All the other comparisons indicated a

significant difference between the pairs with a p < 0.05 as presented in Figure 3.4.

To further illustrate the ability of the generalized Ising model to capture dynamics of the
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Figure 3.4: Average correlation coefficients (without using any threshold) between the simu-
lated data (at Tc, Tmin and Tmax) and the empirical functional connectivity along with the
correlation coefficient between the empirical structural connectivity and the empirical func-
tional connectivity. * = 0.01< p < 0.05, ** = 0.001 < p < 0.01 and *** = p < 0.001

resting brain, eight resting state networks (RSNs) are plotted in Figure 3.5 and Figure 3.6

side by side with the RSNs obtained from the empirical correlation matrix. The RSNs pre-

sented were obtained from the data that resulted through generalized Ising model simulations

performed using connectomes generated by deterministic tractography. RSNs for other trac-

tography methods are presented in Appendix B.3. From visual inspections, it can be seen that

simulated correlations pick up most of the regions belonging to all the networks.

Matrix elements in the correlation matrices range from -1 to +1. Correlation coefficients

between these correlation matrices (Figure 3.4) were calculated using the unthresholded corre-
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Figure 3.5: Auditory network (AUD), Sensorimotor network (Sen), Visual lateral and medial
networks (VL, VM) obtained from (a) the simulated correlations (at Tc) and (b) the empirical
correlations

Figure 3.6: Default mode network (DMN), Salience network (Sal), External control network
left and right (ECNL, ECNR) obtained from (a) the simulated correlations (at Tc) and (b) the
empirical correlations

lation matrices. In order to illustrate the effect of thresholding correlation matrices, the correla-

tion coefficient has been plotted in Figure 3.7 as a function of threshold for all the cases. When

the threshold increases and reaches one, correlation coefficients of all the methods also reach

approximately one due to the gradual increase of number of zeros in the correlation matrices.

When threshold is equal to one, only the diagonal terms in the correlation matrices survive,
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Figure 3.7: Mean correlation coefficients between the simulated data (at Tc) and the empir-
ical functional connectivity as a function of threshold. Shaded area represents the standard
deviation

while the rest of the elements are zero, resulting in a correlation coefficient of one. From this

figure, it is evident that by using a threshold greater than 0.7, all the simulated correlation ma-

trices will be able to predict the empirical correlation matrix equally well with an approximate

correlation coefficient of 0.65 or greater.

Dimensionality together with sparsity can be used to investigate the nature of the structural

connectivity matrix. To illustrate the effect of tractography in calculating the ”brain’s dimen-

sionality”, dimensionality was calculated and compared among six different simulations (refer

to Appendix C.1 for the calculation of dimensionality). Figure 3.8 provides a comparison of

dimensionality and sparsity of the respective structural connectome with respect to the tractog-

raphy method. It is evident that the dimensionality depends upon the method of tractography

that has been used to extract the structural connectome. While the three structural connectomes

generated using deterministic tractography had the same sparsity, the deterministic tractogra-

phy method that gave the best prediction of the empirical functional correlation matrix resulted

in a dimensionality ≈ 1 which was the lowest dimensionality obtained.
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Figure 3.8: Dimensionality and sparsity for different tractography methods

From Figure 3.9 it can be observed that the correlation obtained by simulating the general-

ized Ising model on FA-based connectomes drops faster with the distance than do the correla-

tions obtained by simulating the generalized Ising model on connectomes generated by either

the counts or the weighted counts.

3.4 Discussion

Different types of tractography methods applied on DTI data acquired from the same subject

enable to generate structural connectomes with different properties [15, 20]. These structural

connectomes were then used in generalized Ising model simulations to predict the spontaneous

fluctuations of the brain, resulted in varied predictabilities. Regardless of the variability in

predictions among different tractography methods, a significant distinction in predictabilities

that used the simulated functional connectome and the empirical structural connectome was

observed. Our results of the correlation coefficient (Figure 3.4)—a quantitative measure of
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Figure 3.9: Correlation function at Tc as a function of distance for different tractography meth-
ods together with their respective dimensionality

predictability—signify a general improvement of predictions using the modelling approach

rather than the direct comparisons of the empirical structural connectome with the empirical

functional connectome. In addition of being able to predict the already existing functional

connectivity using the structural architecture, application of modelling enables us to predict

changes in the functional connectivity in place of a change in the structural connectivity. It

is evident from the analysis that by changing the structural connectivity, resultant simulated

functional connectivity at the critical temperature changes, and it still predicted the empirical

functional correlations to a certain degree. Therefore, establishing a model to explain the

observed functional correlations opens up different prospects to study the structure-function

relationship of the brain such as predicting the changes of the functional correlations depending

upon the alterations in the input structural connectivity.

Optimizing the generalized Ising model requires paying close attention to the only input of

the model: the structural connectome of the brain. There exist different tractography methods
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to obtain the structural connectome, but there is no evidence from research on the effects of in-

creased or decreased connectivity implied by different tractography methods on the prediction.

In the present work the generalized Ising model was implemented on six different connectomes,

providing a study of criticality across different methods of structural connectome generation.

From the initial results of the simulations, criticality (critical temperatures Table 3.1) was

identified using the magnetic susceptibility (Figure 3.3 (a)). Weights of the elements in input

structural connectivity influenced the magnitude of critical temperature and hence the tem-

perature ranges selected for simulations were different in each method. However, despite the

changes in the input structural connectome, criticality exhibited the same characteristics in

agreement with previous studies [35, 34]. Criticality of the Ising model has been discussed

using theoretical as well as experimental evidence to illustrate that the interactions within the

system tend to have a balance between integration and segregation at the critical tempera-

ture. According to previous studies, criticality can also be characterized by the maximum

information transfer [51] and can be directly related to the idea of the brain functioning at crit-

icality [52, 53], while maintaining a balance between inter- and intra-connections within and

among the groups of neurons. This equivalence makes the comparison between the model at

criticality and the dynamics of the brain feasible.

Robustness of the critical behavior was tested by calculating both the distance and the correla-

tion coefficient between the simulated and the empirical functional connectivity matrices. Our

results (in Table 3.1) showed that not only Tc but also Tmin and Tmax vary with the changes in the

input structural connectome. Therefore, it will be important to consider the same tractography

method when comparing healthy subjects with any other pathological condition. Paired t-test

(Table 3.2) also demonstrated that Tc, Tmin and Tmax are not significantly different in the sim-

ulations where the structural connectomes generated by deterministic tractography was used.

On the other hand, in the simulations where the probabilistic tractography was used, Tmin and

Tmax were significantly different from Tc. Even though the three temperature parameters were

significantly different in some cases, there was an overlap between the distributions of these
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three different temperatures in each model (Figure 3.3 (g) and Figure B.1(g) - Figure B.5(g)

in Appendix B.2). Hence, it can be inferred that the observed differences between Tc, Tmin

and Tmax within each method were strictly due to the fluctuations of the structural connectivity

within subjects. Even though the numerical values of these three temperatures differ between

the methods, correlation matrices were not significantly different (Figure 3.3 (d)- (f)). In ad-

dition to that, our results showed that the simulated functional connectivity matrix and the

empirical correlation matrix was alike (Figure 3.3 (h) and Figure 3.4), not only at Tc (ratifying

prior work [34]) but also at Tmin and Tmax. Hence, Tmin and Tmax were also established as equiv-

alent parameters to Tc which can be used to characterize the criticality of the generalized Ising

model. This strongly indicates that the Ising model produces its best prediction of empirical

data without the use of a fitting parameter—the critical temperature—a property embedded in

the Ising model itself.

Deterministic tractography, when applied to obtain the structural connectome (without us-

ing FA as a weighing parameter), provided the least dense structural connectome compared to

probabilistic tractography [15]. Despite being the matrix with lowest density, it provided the

best prediction of the empirical functional connectivity matrix once used in generalized Ising

model simulations, capturing about 65% of the empirical functional correlation matrix. On the

other hand, regardless of the capability to account for the cross-fiber effects [20], probabilis-

tic tractography provided a structural connectome which was not able to predict the empirical

functional connectome to the extent a structural connectome generated using deterministic trac-

tography could, through the generalized Ising model simulations. This could be due to the fact

that bilateral connections are preserved more in deterministic tractography than in probabilistic

tractography which could be the driving force of the critical behavior of the model.

This finding provides another perspective to look at the question of whether to use the de-

terministic tractography or the probabilistic tractography to generate the structural connectome

from DTI data. Its important to stress here that our finding highly depends on the nature of

adopted model as well as on the way in which the empirical correlation matrix is extracted. Of
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course we should also mention that the way fMRI data were preprocessed to extract the neu-

ronal component of the BOLD signal could also be relevant in determining the best matching.

Although the deterministic tractography is said to have an increased number of false nega-

tives [20], it is known to capture only the most relevant structural skeleton of the anatomical

connections. Being able to obtain the best prediction of the empirical functional connectivity

matrix by simulating the generalized Ising model using the connectome generated by deter-

ministic tractography concludes that, for the simulations, it is sufficient to have information

about only the most relevant connections or the true positives that are better identified in deter-

ministic tractography than in probabilistic tractography. Furthermore, having a dense structural

connectivity matrix (generated by probabilistic tractography), which may include a lot of false

positive connections, could result in a comparatively low correlation coefficient between the

simulated correlation matrices and the empirical functional correlation matrix.

Additionally, having the lowest predictability of the empirical functional correlation matrix

despite the method of prediction (direct or through the generalized Ising model) and the method

of tractography, it was validated that the FA matrix is not an adequate direct approximation of

the structural connectome of the brain. Nevertheless, as proposed in [10], FA matrix could still

be used as a weighting parameter of the structural connectivity matrix, even for the generalized

Ising model simulations. Furthermore, our results showed that by applying a relevant threshold

for the structural connectivity matrices generated using any of the six methods discussed in the

manuscript, the predictability of the empirical functional correlation matrix can be improved.

Calculated dimensionality values for different methods enabled us to further investigate the

relationship between the structural connectome and the predictability. Within one tractogra-

phy method (either the deterministic or the probabilistic), differences between the structural

connectome and the best fit cannot be explained by sparsity of the matrix, but rather can be ex-

plained by the variations observed in dimensionality. Together with the correlation length, the

dimensionality of an Ising model can describe how correlation between two spins decays with

their distance. Dimensionality of the system seems to capture properties that cannot be cap-
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tured by the sparsity itself. Understanding the role of dimensionality will necessarily require

further investigation, but we believe it could bring important insights, especially in understand-

ing deviation from a healthy connectome.

3.5 Conclusion

We can conclude that the generalized Ising model simulated using a structural connectome

generated by either the deterministic tractography or the probabilistic tractography improves

the prediction of the empirical correlation matrix with or without weighing the matrices using

FA. Additionally, we could test that out of the six input matrices that have been analyzed using

the generalized Ising model, deterministic tractography (without weighing by FA) provides the

best prediction for the empirical functional correlation matrix. Calculation of dimensional-

ity appears to be very informative to understanding the different performance of Ising models

generated by different structural connectomes with the same sparsity. Finally, the possibilities

offered by the model to predict the changes in functional connectivity matrix due to the changes

in structural connectivity makes it pivotal to studying the spontaneous fluctuations of the brain

in patients who suffered from severe brain injuries, or any other pathological conditions which

produce fiber damage.
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Chapter 4

Will a Potts Model with q > 2 States

Simulated on a Structural Connectome be

Able to Better Predict the Spontaneous

Fluctuations of the Brain?

4.1 Introduction

Over the past few decades, neuroscientists have been seeking an ideal methodology, informed

by anatomy, for explaining the dynamical functions of the brain. According to prior research,

the functions of the brain should highly depend upon its anatomical structure [1, 2]. How-

ever it is a fact that the structure and function of the brain do not share a complete one-to-one

correlation throughout. The applications of mathematical modelling were proposed to explain

the dynamics of the brain that could not be explained directly using the characteristics of un-

derlying anatomy [3]. Modelling is useful not only in explaining the relationship between

the structure and function of the brain, but also, more significantly, it is critical in predicting

changes in the functional connectome due to changes in the brain structure [2].
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In prior studies, the possibility of simulating functional connectivity of the brain using its

structural connectivity was explored in different approaches. Among the models that have

been driven by the structural connectome of the brain, a 2-dimensional Ising model simulated

on a structural connectome is a well discussed approach [4, 5, 6, 7]. Initially introduced to

explain the characteristics of ferromagnets [8], 2-dimensional Ising model was later used to

infer global properties of the functional connectome of the brain [9], and then generalized

and simulated on a structural connectome to predict the functional connectome. It is a very

simple model, consisting of a collection of spins representing brain regions whose interaction

strengths are defined by the characteristics of the structural connectivity. While the system

is kept in a thermal bath, generalized Ising model simulations are able to well predict the

functional correlation matrix of the brain when the temperature of the heat bath reaches a

critical value [7].

On the other hand, Potts model is a generalization of the Ising model that was introduced in

1951 by Renfrey Potts to gain insight into the behavior of ferromagnets [10, 11] with the possi-

bility of exploring different number of spin sites (q). The extra degrees of freedom added by the

possible number of spin states increases the possibility of using the Potts model to explain dif-

ferent physical systems. Spin states are defined such that they are uniformly distributed about

a circle. The Potts model has been studied extensively, using different numbers of possible

spin states on different lattice configurations, and demonstrating the differences in character-

istics [12, 13]. Mostly, Potts models with q = 3 and 4 have been studied to demonstrate how

criticality changes from one model to another using different lattice configurations [14, 15].

While all these studies contribute to the understanding of properties of materials using the spin

systems, we propose to further generalize the Potts model using structural connectome of the

brain as an advancement to the generalized Ising model, and to thereby find the relationship

between brain structure and function.

Dynamics are being introduced for the spin sites using Metropolis Monte Carlo algorithm

to be able to predict the functional connectome using the generalized Ising model simulations.
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Further a time series is generated for each spin site [7]. From the basic definition of the Ising

model (which is a special case of the Potts model with q = 2), each spin is given the choice to

be in one of the two available spin states, up or down [8]. Hence, when the dynamics are being

introduced to the model, spin states can fluctuate with respect to time between only these two

discrete states. This generates a time series as shown in Figure 4.1 (a) with only two possible

states to fluctuate between. In contrast, empirical time series have no such restrictions on the

number of states; rather, the fluctuations of the time series depend only upon the percentage ac-

tivity of brain regions (Figure 4.1 (h)) which is believed to be a combination of neural activity,

activity of astrocytes and the metabolic activity.

Figure 4.1: Simulated time series for different number of spin states together with the empirical
time series. Plots represent the time series of a randomly selected region (40th region for
all cases). Number of time points shown (600) are half of the actual number of time points
available
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Therefore, one could hypothesize the generalization of the Potts model using more than 2

state spins to generate a time series more likely to have an analogue behavior similar to the

empirical time series (Figure 4.1 (b - g)) that represents the activity of neurons, astrocytes and

metabolism. Thus, our objective in this manuscript is to simulate the Potts model on a structural

connectome with different number of spin states. En-route to generating an optimized model

that is driven by the structural connectome of the brain to understand spontaneous fluctuations,

it is important to examine all possible variations that could be incorporated in the model to

improve the predictability. While we examine the impact of characteristics of the structural

connectome in a parallel paper, in this manuscript we aim to address the question of what

will be the impact of having a higher number of spin states on predicting the spontaneous

fluctuations of the human brain through the correlations between time series.

4.2 Methodology

4.2.1 Data acquisition and preprocessing

Subjects

A set of sixty-nine healthy subjects, aged between 22 - 35 (with 41 women), were studied

during wakefulness. Informed consent was obtained from all participants in the study.

Ethics statement

The Ethics Committee of Washington University and the University of Minnesota approved the

study.

Acquisition and preprocessing

Resting state fMRI images and diffusion weighted images were acquired using high resolu-

tion 3T MR scans at the Washington University - University of Minnesota Consortium of the
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Human Connectome Project (WU-Minn HCP) [16, 17, 18, 19, 20, 21]. Further details about

preprocessing the structural and functional data can be found in [7]. Preprocessed data were

parcellated into 84 individually labelled regions using AAL2 atlas in FSL [22].

Blood Oxygen Level Dependent (BOLD) time series were extracted for each region (using

the preprocessed fMRI data). Pearson product-moment coefficient between each pair of time

series was calculated to obtain the empirical correlation matrices. The average correlation

matrix (averaged over 69 subjects) was used for the analysis (later in the paper we will refer to

this as the empirical functional correlation matrix). The parcellation procedure was performed

using FSL and Freesurfer, while the correlation calculation was performed using MATLAB

(https://www.mathworks.com/).

Probabilistic streamlines reconstruction approach [23] have been performed on a Multi-

Shell, Multi-Tissue Constrained Spherical Deconvolution fiber orientation distribution model [24,

25] to obtain the structural connectome from the preprocessed DTI data. All streamlines have

been mapped to the parcellated image to produce a structural connectome, considering the

number of streamlines as structural connectivity weight. The average structural connectome

(averaged over 69 subjects) was used for simulations and the analysis.

4.2.2 Model simulations

We consider the simulations of the Potts model with q = 2, 3, 4, 5, 6, 8 and 10 on a structural

connectome. Initially a vector of the size 1× 84 was generated, and each spin site was assigned

a random spin S i. The value of S i depended upon the number of states, q such that when q =

2, S i = 1, 2 and when q = 3, S i = 1, 2, 3 (and so on). The spin configuration was kept in a heat

bath with a temperature T which controlled the properties of the system. The energy of such a

configuration at state x in the absence of an external magnetic field can be calculated using the

Equation 4.1.
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E(x) = −

N∑
i, j=1

Ji jδS iS j (4.1)

where

δS iS j =


1, if S i = S j

0, otherwise
(4.2)

and Ji j is coupling between the ith and jth region and si and s j represent the spins of the ith

and jth regions respectively.

Starting from a random spin configuration, the system was brought to a state with an

equilibrium energy using the Metropolis Monte Carlo algorithm (MMC) [26, 27]. We ran

84×84×10 number of MMC steps at each temperature to ensure the spin configuration reached

an equilibrium state. From the simulations, thermodynamic quantities such as energy (Equa-

tion 4.1), magnetization (Equation 4.3), specific heat (4.4) and susceptibility (Equation 4.5)

were calculated using the respective equations. In equation 4.4, e is the energy per spin (E/N).

m(T ) =< |

N∑
i=1

S i| > (4.3)

C(T ) =
N
T 2 (< e2 > − < e >2) (4.4)

χ(T ) =
N
T

(< m2 > − < m >2) (4.5)

Subsequently, 84×1200 MMC steps were applied on the equilibrium spin configuration

to introduce dynamics to the spins, assuming that the time it takes to run 84 MMC steps is

equivalent to one TR. Hence, 1200 time points—which is equivalent to the number of time

points obtained in the empirical time series—were generated for each spin site following the

above step. Correlations between these time series calculated using Pearson product-moment
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coefficient were used for further analysis. This procedure was repeated for 250 temperatures

starting from 0.005 with an increment of 0.006. Moreover, the complete procedure described

above was repeated ten times, each time starting with a different random spin configuration to

explore the effects of different initial spin configurations. A total of 70 simulations (7 × 10

trials) of the generalized Potts model were carried out for seven different models with different

number of spin states (q = 2, 3, 4, 5, 6, 8 and 10). All the simulations were carried out using

Fortran code written by Dr. F. W. S. Lima, while the analysis was carried out using MATLAB

2018b.

4.2.3 Analysis

Analysis of the data were performed per model for each simulation separately and the results

have been plotted for the average over the ten simulations per model. Initially the thermody-

namic properties have been plotted and the critical temperatures (Tc) were located using the

susceptibility versus temperature plots. For each model, the distance and the correlation co-

efficient between the simulated correlation matrices and the empirical correlation matrix was

calculated as a function of temperature to locate the temperature that minimizes the distance

(Tmin) and the temperature that maximizes the correlation coefficient (Tmax). Pairwise t-tests

were performed to compare the significance of Tc,Tmin and Tmax. Next, the simulated correla-

tion matrices and the correlation distribution at Tc were compared with the empirical correla-

tion matrix and the correlation distribution. Moreover, spatial maps of RSNs are plotted and

being compared with the empirical RSN maps for each model. Finally, a quantitative compar-

ison was performed via the correlation coefficients between the simulated and the empirical

results.



86 Chapter 4. PottsModel with q > 2 States Simulated on a Structural Connectome

4.3 Results

All the results are presented as the average over the 10 independent simulations per model.

First, by applying the MMC algorithm, the temperature dependence of energy, the magne-

tization, the specific heat and the susceptibility were calculated for each simulation and are

presented in Figure 4.2. As observed from the susceptibility plots, the temperature at which

the maximum change in magnetizations (or the maximum susceptibility) occur decreases as

the number of spin states increases.

Figure 4.2: Thermodynamic properties for Potts models with different spin states. Red lined
in the susceptibility plot indicates the temperature that gives the maximum susceptibility for
different simulations
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Next, Figure 4.3 illustrates how distance and the correlation coefficient between the empir-

ical and simulated data varies with respect to the temperature of the heat bath. Distance and

the correlation values represented in the figure are the average values (averaged over the ten

independent simulations) and Tmin and Tmax (plotted in a vertical line) were obtained using the

minimum and maximum values of the averaged plots, respectively. By calculating the distance

and the correlation coefficient per temperature for each trial, Tmin and Tmax, the respective tem-

peratures which minimized the distance and maximized the correlation were obtained. The

average of the three temperature parameters Tc, Tmin Tmax that were obtained for ten indepen-

dent simulations per model are recorded in Table 4.1.

Figure 4.3: (a) Distance between the simulated and the empirical correlation matrices as a
function of temperature (b) correlation between the simulated and the empirical correlation
matrices at a function of temperature. Vertical dashed lines represent Tmin and Tmax respectively

Paired t-tests were performed to compare the significance between Tc, Tmin and Tmax in each

situation, which resulted in mix outcomes. Tc, Tmin and Tmax were all significantly different in

q = 2, 3, 4, 8 with p < 0.05. However, Tmin and Tmax were not significantly different in q = 5, 6,

10 with p =0.11, 0.20, 1 respectively. Furthermore, Tmax and Tc were not significantly different

in q =5 and 10 with p = 0.24 and 0.33, respectively.

Figure 4.4 illustrates the correlation matrices at the critical temperature Tc for each system
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Table 4.1: Average Tc, Tmin and Tmax for different simulations

Number of states Tc Tmin Tmax

2 0.708 ± 0.002 0.702 ± 0.004 0.739 ± 0.013
3 0.599 ± 0.001 0.503 ± 0.000 0.561 ± 0.007
4 0.540 ± 0.002 0.478 ± 0.049 0.584 ± 0.019
5 0.497 ± 0.001 0.408 ± 0.033 0.460 ± 0.094
6 0.461 ± 0.001 0.410 ± 0.034 0.390 ± 0.035
8 0.425 ± 0.001 0.413 ± 0.000 0.419 ± 0.001

10 0.395 ± 0.001 0.386 ± 0.009 0.386 ± 0.028

Figure 4.4: Correlation matrices at Tc for q = 2, 3, 4, 5, 6, 8 and 10 together with the empirical
correlation matrix and the distribution of the correlations of each system with different number
of spin states
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with different numbers of spin states, along with the empirical correlation matrix. Additionally,

it shows the distribution of correlations at Tc for each model together with the distribution of

empirical correlation. It is evident from the distribution of correlations that systems with higher

number of spin states tend to deviate further from the empirical correlation distribution, which

supports the observed differences in correlation matrices.

Figure 4.5: Simulated time series for left precuneus (yellow) and the left inferior parietal region
(blue) (spatial positions are indicated on the brain in left) for seven different simulations along
with that of the empirical data. Presented correlations are the correlations between the two
time series

To study the correlations between the time series in more detail, time series belonging to

two regions of the brain, the left precuneus and the left inferior parietal region—which are

known to be highly correlated [28]—are presented in Figure 4.5 together with their respective

correlations for each model and with that of the empirical data. We have plotted the time series

up to 300 time points out of the 1200 time points only for better illustration purposes. Even

though increasing the number of spin states creates a time series more relatable to the BOLD

time series, it can be observed that the correlation between these two timeseries decreases as

the number of spin states increases.
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Figure 4.6: Brain maps of the default mode network for the simulated data at Tc for seven
different systems together with the brain map of the empirical data

To further observe the degree to which the Potts models with different spin states can cap-

ture the dynamics of the brain, correlations obtained for one of the Resting State Networks

(RSNs)—the default mode network (DMN)—were mapped on a brain for different model sim-
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Figure 4.7: Average time series for the DMN is presented in green while the time series of the
region that has the highest correlation with the average time series is presented in orange for
all the models and the empirical data

ulations together with that of the empirical data in Figure 4.6. DMN comprises with the regions

of the brain that activates when the brain is at “rest”. It is a popular network to study as it had

been observed in various studies across different platforms and, hence captured the attention

of neuroscientists. In order to generate these brain maps, an average time course per network

was initially created by averaging the time series of all the regions belonging to each RSN.

Afterwards, correlation between each time series in the system and the averaged time series

were calculated and plotted on a brain map. Brain maps for other RSNs are presented in Ap-

pendix C. Not surprisingly, the ability to capture RSNs decreases as the number of spin states

increases, supporting the correlation matrices presented in Figure 4.4. Figure 4.7 demonstrates

the calculation of the highest correlation plotted on brain maps for each model by presenting

the average time series for the DMN, the time series of the best correlated region, and the

correlation between the two. Time series plots for the rest of the networks are presented in
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Appendix C. In these plots, more states than the actual number of states are visible since the

time series plotted is the averaged time series over the ten trials.

Finally, the correlation coefficients between the empirical correlation and the simulated

correlation were calculated (at Tc, Tmin and Tmax) and plotted in Figure 4.8. It is observed that

the correlation coefficient between the simulated data at Ts and the empirical data decreases as

the number of possible spin sites increases.

Figure 4.8: Correlation coefficient between the empirical correlation and the simulated corre-
lations (at Tc, Tmin and Tmax) for the Potts models with different number of spin states

4.4 Discussion

Potts model simulations performed on a structural connectome with q = 2, 3, 4, 5, 6, 8 and

10 enabled us to compare the simulated data (at Tc) with the empirical data through Pear-

son product-moment coefficient calculated among the time series in each case. Our results

clearly illustrated that increasing the number of spin states in the model does not increase the

predictability of the spontaneous fluctuations in the brain using the simulations; rather, it de-

creases the predictability as the number of spin states increases. All the results supported the

fact that the best model to predict the spontaneous fluctuations of the brain is a 2-state Potts
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model (Ising model) simulated on a structural connectome, which further establishes the recent

findings in [7].

All the results presented for the 2 state Potts model were consistent with the results pre-

sented in [7] for an Ising model simulated on a structural connectome. Furthermore, the trend

observed in Tc obtained from the susceptibility curves presented in Figure 4.2 were consistent

with the trend in [15] for q = 3 and 4, which shows a decrease in Tc when going from q = 3 to

4.

Figure 4.4 shows that the Potts model simulated on a structural connectome captures the

pattern of the empirical correlation. However, the correlation decreases as the number of states

increases. The distribution of correlation at Tc also shows a shift towards the left when the

number of spin states increases. Correlations that are plotted in this figure in forms of matrices

represent the correlation among time series of different brain regions. The effect of coupling

on these different systems remains the same, as they were simulated on the same structural

connectivity that has the characteristics of the structural architecture in the brain. However, for

a particular temperature, when there are only two possible spin states in the system, the number

of all possible equilibrium spin configurations is less than the number of all possible equilib-

rium spin configurations when the system has 10 spin states. This reduces the probability of

having time series that are correlated with each other, which could be the reason for the de-

creasing correlations when the number of spin states increases. Figure 4.5 further supports this

finding by illustrating a diminishing correlation between the time series of the left precuneus

and the left inferior parietal region, which are known to be highly correlated [28].

Furthermore, Figure 4.8 clearly shows the decay in correlation coefficient between the em-

pirical functional connectivity and the simulated functional connectivity at Tc. The highest

correlation coefficient observed for data from 2-state Potts model simulations can be discussed

further in terms of the connection between the BOLD time series and the actual neural activity.

BOLD time series does not directly measure the neural activity in the brain [29]. As ex-

plained in [30] it is believed that the neural activity convoluted with a hemodynamic response
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function (HRF) results in the BOLD time series. On the other hand, at a fundamental level,

the function of a neuron can also be characterized by action potentials, which have a digital

nature and give rise to the local field potentials (LFP) that can be measured using neuroimaging

techniques [31]. Hence, the functionality of a neuron can be thought to have a binary nature:

as if it either passes a signal or stays inactive. Therefore, if the activity of a neuron can be

directly monitored with respect to time, it would look like a binary time series with only two

states—either active or inactive—and can be directly related to a time series generated by a

2-states Potts model or an Ising model.

The hypothesis that was tested in this manuscript was led by our understanding that the

generalized Potts model generates a time series that predicts the BOLD time series. However,

our results suggest that the 2-states Potts model (or an Ising model) controlled by the structural

architecture could be predicting the neural activity directly, rather than indirectly, as is achieved

by the BOLD time series. To investigate it further, it would be beneficial as a next step to

convolve the simulated time series with an HRF and compare the resultant with the empirical

BOLD time series.

4.5 Conclusion

Model that generates the highest correlation coefficient for the comparison between the simu-

lated data and the empirical data is the generalized Ising model which has only to state spins.

Increasing the number of spin states decreases the predictability of the empirical functional

correlation matrix. Generalized Ising model could be capturing the digital nature of the neu-

ronal activity rather than the analogue behavior of the BOLD signal which not only reflects the

neural activity but a combination of the neural activity, activity of astrocytes and the metabolic

functions.
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Chapter 5

Discussion and Future Work

5.1 Discussion

Analogous to prior studies, critical behavior of the model was verified through the observation

of basic properties in the system such as magnetic susceptibility [1], specific heat [2], and

transfer entropy [3, 4], which provided the critical temperature Tc. In addition to these basic

properties of a static Ising model, the critical behavior was shown to be conserved even after

introducing the dynamics to the model: after generating time series per spin site, assessed Tmin

and Tmax values were not significantly different from Tc [5]. Tmin was the temperature that

minimized the distance between the simulated correlation matrix and the empirical correlation

matrix, while Tmax was the temperature that maximized the correlation coefficient between

the simulated correlation matrix and the empirical correlation matrix. Hence, an optimized

generalized Ising model allowed us to predict the functional correlation matrix of the brain—

which represents the brain’s spontaneous fluctuations—using a structural connectivity matrix

not only at Tmin and Tmax which are fitting parameters, but also at the critical temperature (Tc)

which is a property embedded in the Ising model.

In agreement with previous research [3, 4, 2], our results indicated a phase transition (from

an ordered phase to a disordered phase) in the simulated data at Tc using the order parameter

100
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(the magnetization), where other thermodynamic quantities such as specific heat and suscep-

tibility were peaked. At sub-critical temperatures, since the system was in a very low energy

state, the spins do not interact with each other even if they were highly structurally connected.

At super-critical temperatures, the system was at a very high energy state and hence influenced

only minimally by the underlying structural connectivity. Between these two extremes, at the

critical temperature, underlying structural connectivity influenced the interactions among spins

such that there was a balance between integration and segregation among the spin populations

evolving to optimize the functions of the system. On the other hand, the brain is believed to

function at the criticality with maximum information transfer and a balance between integra-

tion and segregation among the neuronal populations [6, 7, 8, 9]. This understanding made it

possible to predict the functional correlation matrix of the brain using the simulated functional

correlation at Tc (or Tmin and Tmax).

In addition to using susceptibility of the generalized Ising model to obtain Tc or the state

of the model that best predicts the functional connectivity of brain, the method of using the

global degree to find the criticality was introduced. Susceptibility and specific heat measures

the changes in the fundamental quantities of the model, magnetization and energy respec-

tively [1, 10]. In studies that involved the static Ising model simulations, the critical tem-

perature was obtained most commonly using the susceptibility or specific heat [10, 2, 5] as

discussed previously. After introducing the dynamics to the model, our results concluded that

the global degree shows a similar variation as the specific heat, not only by maximizing the

degree at the critical temperature, but also by producing a cumulative integral that follows a

similar pattern as the energy. This presented the possibility of finding a relationship between

the thermodynamic quantities and a fundamental graph theoretical property through the Ising

model.

Dimensionality of a healthy brain was calculated to be two using a novel method that de-

pends upon a new definition of distance between each pair of regions of the brain, and is

defined from their structural connectivity. The method of calculation was developed by ob-
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serving the critical behavior of the generalized Ising model and studying the variations of the

system around criticality [5]. The dimensionality of a system plays a key role in controlling

the functions of any system [11], while the definition of dimensionality can depend upon the

system itself. One method of defining the dimensionality of neural data is by observing the

reactivity of neurons to stimuli [12]. For example, neurons that are highly specialized and

only react to specific stimuli are known to have low dimensions, while neurons that respond to

stimuli with mixed selectivity are said to be high-dimensional [13]. Another common method

for studying dimensionality is to use Principle Component Analysis (PCA) [14]. In PCA, di-

mensionality is introduced as the number of random variables that explain the neural activity.

PCA is used to reduce this number of random variable (dimensionality reduction) by isolating

only a set of principle variables [15, 16]. In any of these definitions, dimensionality does not

directly depend upon the anatomy of the brain, but rather depends upon the number of random

variables or the features that can be inferred from the functional brain imaging data.

In contrast, our dimensionality calculation algorithm directly depends upon the structural

connectivity of the brain because, at criticality, the behavior of the system is controlled by the

structural connectivity. In evidence of this claim, the effects of different structural connectiv-

ity matrices on the calculation of dimensionality was studied by comparing the generalized

Ising model simulations using six different structural connectivity matrices (Chapter 3). Our

results demonstrated that different types of tractography methods implemented on the same

DTI data can yield different dimensionality—which could vary from 1 to 2.5—while conclud-

ing also that there is no direct relationship between the predictability of the model and the

dimensionality. Therefore, for future studies that implement the calculation of dimensionality,

it could be informative to explore and compare the generalized Ising model simulations using

structural connectivity obtained by different tractography methods. Dimensionality could be

advantageous when simulating the Ising model on an altered structural connectivity caused by

a pathological situation or an accidental brain injury: dimensionality could identify the level of

impact to the spontaneous brain fluctuations from the alteration in the structural connectome.
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Characterizing the functional connectivity matrix using the structural connectivity of the

brain through the Ising model simulations enabled us to increase the predictability of the func-

tional connectivity matrix in contrast to direct comparisons of the empirical structural and

functional connectivity matrices. Even though the generalized Ising model was proven to pre-

dict the empirical functional connectivity matrix at the critical temperature in previous stud-

ies [1, 3, 4, 2], the improvement in predictability was not quantitatively assessed in parallel to

the direct comparisons. In addition to corroborating the previous findings, our analysis pro-

vided a quantitative measure to illustrate how modelling can improve the predictability of the

empirical functional connectivity using the structural connectivity of the brain.

Furthermore, it was concluded that a generalized Ising model simulated with a structural

connectome generated using deterministic tractography provides a superior prediction of the

empirical functional connectivity matrix versus other tractography methods. Being the only

input of the generalized Ising model, characteristics of the structural connectivity controls the

state of the model. Therefore, finding the foremost method of tractography is important in

modeling the dynamics using the structural connectivity. While previous researchers [3, 4,

2, 17, 18], established the capabilities of these different models in predicting the functional

connectome of the brain (some of whom studied its dependence on the size of the structural

connectome), they did not investigate how different methods of acquisition of the structural

connectomes would affect their predictions. In contrast, our results decreased the ambiguity in

using different tractography methods and proved that the deterministic tractography stands out

by providing the best fit of the empirical correlation matrix over other methods in generalized

Ising model simulations.

There are debates over choosing deterministic tractography versus probabilistic tractogra-

phy to obtain the structural connectome of the brain [19, 20, 21] for different purposes. Re-

cently, in [22], Kahlsa et al. demonstrated that probabilistic tractography is better able of

identify cross-fiber connections than is deterministic tractography; while deterministic trac-

tography is better able to identify long range anatomical connectivity. Despite the advantages
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of probabilistic tractography in explaining cross-fiber connectivity, generalized Ising model

performs best with the structural connectome containing only the most necessary information

about the anatomical connectivity.

Generalized Potts model simulations further justified our choice of the generalized Ising

model to predict the empirical functional connectome over a Potts model with a higher number

of spin states. Even though an increase in the number of spin states produced a time series

more similar to the BOLD time series, instead of a time series generated in a system with

just two spin states, it did not significantly modify the correlations among the time series.

Despite the generalization of the model using the structural connectome of the brain, similar

to [23, 24], it was observed that when the number of spin states increased, the value of the

critical temperature decreased. As discussed in Chapter 4, a significant correlation between

direct neural activity of the brain regions and the time series generated for each region using

the 2 state Potts model (Ising model) was hypothesized from the results. To test this further, it

will be useful to convolute the simulated time series with a hemodynamic response function,

and generate a signal, which can be compared with the empirical BOLD signals.

5.2 Future work

Two novel methodologies applied to significant areas of research in neuroscience were pre-

sented in this thesis that deserve further investigations as described below. The importance of

these research areas, of the approach we have taken, and of this work’s impact to the field of

neuroscience are discussed. In addition to that, key limitations of proposed work is discussed.

In future work, we focus to address some of the shortcomings that are common to presented

work, one being modifying the computer simulations such that the model can be simulated

on structural connectomes generated using different parcellation schemes (with more than 84

ROIs) without being time consuming. Currently, we are simulating the generalized Ising model

using different sizes of structural connectomes for the same set of subjects to study the effect of
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the size on the prediction. Another point that we would like to focus on is to find an appropri-

ate scheme to modify the generalized Ising model implementation to account for the activity of

astrocytes and neuronal populations separately via the structural connectivity, rather than using

a common structural connectivity matrix which provides only the anatomical connections be-

tween neuronal populations. Additionally, mental test and comparisons between the frequency

content of the simulated and empirical time series will be performed to compare the simulated

correlation matrices with the empirical correlation matrix instead of the correlation coefficient

which only consider the linear relationships between the matrices that are being compared.

5.2.1 Application of the generalized Ising model to patients with brain

injuries

Following the three papers presented in this thesis, we have established the potential of a two-

spin generalized Ising model, simulated on a structural connectome generated using determin-

istic tractography, to predict the empirical functional correlation matrix at the critical temper-

ature. Subsequently, it is our intention to simulate the optimized generalized Ising model on

a structural connectome belonging to patients with Disorders Of Consciousness (DOC). This

will allow us to thoroughly investigate how the altered structural connectomes affect the func-

tional connectomes of these patients. Further investigations will hopefully lead our research

to predict changes in functional correlations upon hypothesizing further changes (such as in-

troducing or removing more connections in the structural connectivity matrix) in the structural

connectome, and assisting us in finding those necessary connections whose re-introduction

could restore the functions of the patient’s brain.

The challenges we face in conducting this work lie in the extraction of the structural con-

nectome from DOC patients. Complex brain anatomy is further complicated by brain injury

and, unlike the case of healthy patients, both the implementation of brain imaging for DOC

patients and the tractography procedure necessary to obtain underlying structural architecture

demand careful attention to detail. Furthermore, it would be more meaningful to apply a par-
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cellation scheme different from AAL2, with a higher number of ROIs. As discussed in [25],

the optimal number of ROIs a parcellation scheme may have—such that the separation of func-

tionally specialized regions in the brain are as meaningful as possible—is 208.

5.2.2 Dimensionality calculation of any complex network

Another line of research which follows from Chapter 2 is the calculation of dimensionality

of a system, given the characteristics of its underlying structural connectivity. Calculating the

dimensionality of a system is important, as it is a key factor that drives the behavior of smaller

units in a system leading to its overall performance [26, 11]. Understanding the dimensionality

of a given system can provide new pathways to study complex networks.

Interestingly, there is an ample amount of not only man-made networks (such as the world

wide web, social networks, or airline connection maps), but also natural networks, such as the

neuronal networks. Even though the dimensionality of a network is most commonly defined by

its physical dimensions, some networks do not admit a definition of dimensionality a priori, as

they exist in a virtual space (rather than a physical one). Even if the system occupies a physical

space, dimensionality of the system in physical space may not be the relevant quantity which

controls the network behavior. Hence, our goal is to introduce the application of an approach of

defining dimensionality accompanying the structural connectivity architecture, as well as the

functions of sub units in the network, using the generalized Ising model such that the dimen-

sionality can always be calculated: regardless of whether a system occupies a physical space

or a virtual space. In networks where no viable concept of dimensionality previously exists,

defining the dimensionality via the generalized Ising model will improve the understanding of

the functionality of a particular network while also providing the ability to predict the functions

resulting from changes in the structural architecture.
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Appendix A

Appendices: Chapter 2

A.1 2D Classical Ising model

The classical Ising model was introduced by Wilhelm Lenz in 1920. The 2D Ising model (in

the absence of an external magnetic field) was solved by Onsager in 1944 [1]. It was introduced

to explain the interactions of magnetic spins mathematically. The physical system (a magnet)

is represented by a lattice configuration in the Ising model. Each lattice site has a spin s which

could take only two possible values, either up (+1) or down (−1) (Figure A.1). Thus, it is a

collection of +1 and −1s representing the spins. This configuration is kept in a thermal bath

of temperature T. Interactions between the spins are always influenced by this temperature and

allow the system to reach an equilibrium energy state while resulting in different equilibrium

spin configurations with different properties at different temperatures.

The energy of this spin system at any state x in the absence of an external magnetic field

can be calculated using Equation A.1:

E(x) = −J
N∑

i, j=nn(i)

sis j (A.1)

where J is the coupling constant, si and s j represent the spins of the ith and jth site respectively,

and N is the size of the lattice. For the calculation of energy in the 2D Ising model, only

111



112 Chapter A. Appendices: Chapter 2

Figure A.1: Representation of a 2D lattice arrangement. Each lattice site has a spin, either up
or down. The nearest neighbours of the green lattice site are represented in red

the nearest neighbour interactions are considered together with equal coupling (J = 1). The

probability of finding the system in the state x with energy E(x) is given by Equation A.2:

P(x) =
1
Z

e
−

E(x)
kBT (A.2)

where kB is the Boltzmann constant, T is the temperature of the heat bath and Z is the partition

function. Equation A.3 illustrates the partition function of the system which describes the

statistical properties of the spin system in thermodynamic equilibrium. The summation is over

all possible 2N spin configurations.

Z =
∑
{x}

e
−

E(x)
kBT (A.3)

At equilibrium, thermodynamic properties such as magnetization, magnetic susceptibility

and the specific heat of the system can be calculated using Equations A.4, A.5 and A.6 respec-

tively where si is the spin of the ith spin site. Magnetization simply is an order parameter which

explains the state of the spin system, either an ordered state or a disordered state. Magnetic

susceptibility is the derivative of magnetization which captures the changes of magnetization.
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This is used to identify the critical temperature of the spin system by noting the temperature

which maximizes the susceptibility (or the temperature which gives the highest variation of

magnetization). Specific heat tells us how much does the energy of the spin system changes

with changing temperature.

M =
1
N
|

N∑
i=1

si | (A.4)

χ =
1
T

[〈M2〉 − 〈M〉2] (A.5)

Cv =
1

T 2 [〈E2〉 − 〈E〉2] (A.6)

When a 2D lattice configuration is considered, there are two extreme equilibrium config-

urations of spins it can hold, one for lower temperatures (sub-critical) and the other one for

higher temperatures (super-critical). When the temperature is very low, all the spins prefer to

be aligned along the same direction, with very large clusters of the same spin, either up or

down (ordered) resulting in high magnetization even in the absence of an external magnetic

field (Figure A.2 (a)). In the other end, when the temperature is very high, the spins are a mix-

ture of up spins as well as down spins (disordered) without any order which will result in zero

magnetization (Figure A.2 (c)). In between these two extremes, there exists a critical temper-

ature (Tc) [3] where the system exhibits transition from ordered phase to the disordered phase

(Figure A.2 (b)). As the figure illustrates, at this temperature there is a mixture of ordered

spins as well as disordered spins. Additionally, the system acquires its maximum susceptibility

or the maximum change in magnetization at Tc. Even a single spin flip can change the entire

system [2], and the perturbation introduced by a single spin flip can spread over the entire sys-

tem rapidly. Therefore, with different temperatures of the heat bath, the system could exhibit

completely different properties [1] which depend only on the temperature of the system.

To impose the dynamics to the classical Ising model, the Metropolis Monte Carlo algorithm
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Figure A.2: Representation of the equilibrium spin configuration for (a) T < Tc, (b) T = Tc

and (c) T > Tc for a two-dimensional lattice arrangement. Red color is for the up spins (+1)
and blue color is for the down spins (−1) [3]

is used. The Metropolis algorithm involves the construction of a new state based on the current

state of the system with a transition probability. It is used in the Ising model to find the equilib-

rium energy state starting from a random spin configuration for a constant temperature [4]. This

algorithm is used in the classical Ising model with the periodic boundary conditions. Periodic

boundary conditions were introduced to the system to restrain the finite size effects.

In the simplest way, spins of the Ising model can be considered as equivalent to the BOLD

activity in the brain with +1 for the activity higher than the baseline activity and −1 for the

activity lower than the baseline activity. The classical Ising model exhibits long range corre-

lations at the critical temperature, which explains the observed interactions of the spins that

are spatially distant from each other. This fact can be compared with the functional integration

observed in the brain. The brain maintains a balance between the functional integration and

segregation in order to perform efficiently [5]. As observed in the behaviour of the brain, there

are separate regions which are specialized to perform certain functions. While functioning sep-

arately, these regions need to exchange information with each other in order to function as a

complete system. This process is explained as the functional integration and can be compared

with the long range correlations observed in the Ising model. Thus the classical Ising model

was chosen to model the oscillations observed in BOLD signal for comparison.
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A.2 Critical exponents and scaling relations

Critical exponents

Critical exponents of Magnetization, Susceptibility and Specific Heat was calculated by

fitting Equation A.7 to A.11 for the respective plots. For Susceptibility and the Specific Heat,

since there are two separate equations for fitting the right hand side and the left hand side of

the plot, we obtained two critical exponents using both equations. Then the exponent that has

the minimum error was chosen.

Magnetization

M(T ) = P1[
Tc − T

Tc
]β (A.7)

Susceptibility

χle f t(T ) = P1[
Tc − T

Tc
]−γ (A.8)

χright(T ) = P1[
T − Tc

Tc
]−γ (A.9)

Specific Heat

cv−le f t(T ) = P1[− ln(
Tc − T

Tc
)]
α

(A.10)

cv−right(T ) = P1[− ln(
T − Tc

Tc
)]
α

(A.11)

Correlation function

In order to calculate the correlation length (η) for different temperatures, Equation A.12 was

fitted for the correlation function versus distance plot at each temperature. At the critical tem-

perature, the correlation length goes to infinity and Equation A.12 simplifies to Equation A.13.

Furthermore, the correlation function at the critical temperature is said to behave according

to Equation A.14 at the critical temperature [6]. Therefore the critical exponent for the cor-

relation function (ν) was obtained by fitting Equation A.14 for the correlation function versus

temperature plot at the critical temperature. By plugging in this value in the denominator of

Equation A.13, we were able to calculate the dimensionality.
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G(r) =
exp(−r

ξ
)

rd−2+η
(A.12)

G(r)[atTc] =
1

rd−2+η
(A.13)

G(r)[atTc] = P1(r)−η (A.14)

Correlation length

Correlation lengths which have been calculated by fitting Equation A.12 was plotted as a

function of temperature. Equation A.15 and A.16 was used to fit the above mentioned plot

from left hand side and the right hand side and ν, the critical exponent of the correlation length

was obtained.

ξle f t(T ) = P1[
Tc − T

Tc
]
−ν

(A.15)

ξright(T ) = P1[
T − Tc

Tc
]
−ν

(A.16)

Scaling relations

Critical exponents calculated from the above mentioned methods obey the scaling relations

presented in Equations A.17, A.18 and A.19.

(2 − η)ν = γ (A.17)

ν

2
(η + d − 2) = β (A.18)

2 − νd = α (A.19)
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Variables and constants in the equations:

P1 - Constant

T - Temperature

Tc - Critical Temperature

η - Correlation Length

r - Distance

d - Dimensionality

Critical exponents

β - Magnetization

γ - Susceptibility

α - Specific Heat

η - Correlation Function

ν - Correlation Length
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A.3 Labels of 84 parcellations of the brain

Right hemishpere

1. Thalamus-Proper

2. Caudate

3. Putamen

4. Pallidum

5. Hippocampus

6. Amygdala

7. Accumbens-area

8. bankssts

9. caudalanteriorcingulate

10. caudalmiddlefrontal

11. cuneus

12. entorhinal

13. fusiform

14. inferiorparietal

15. inferiortemporal

16. isthmuscingulate

17. lateraloccipital

18. lateralorbitofrontal

19. lingual

20. medialorbitofrontal

21. middletemporal

22. parahippocampal

23. paracentral

24. parsopercularis

25. parsorbitalis

26. parstriangularis

27. pericalcarine

28. postcentral

29. posteriorcingulate

30. precentral

31. precuneus

32. rostralanteriorcingulate

33. rostralmiddlefrontal

34. superiorfrontal

35. superiorparietal

36. superiortemporal

37. supramarginal

38. frontalpole

39. temporalpole

40. transversetemporal

41. insula

42. Cerebellum-Cortex
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Left hemishpere

43. bankssts

44. caudalanteriorcingulate

45. caudalmiddlefrontal

46. cuneus

47. entorhinal

48. fusiform

49. inferiorparietal

50. inferiortemporal

51. isthmuscingulate

52. lateraloccipital

53. lateralorbitofrontal

54. lingual

55. medialorbitofrontal

56. middletemporal

57. parahippocampal

58. paracentral

59. parsopercularis

60. parsorbitalis

61. parstriangularis

62. pericalcarine

63. postcentral

64. posteriorcingulate

65. precentral

66. precuneus

67. rostralanteriorcingulate

68. rostralmiddlefrontal

69. superiorfrontal

70. superiorparietal

71. superiortemporal

72. supramarginal

73. frontalpole

74. temporalpole

75. transversetemporal

76. insula

77. Cerebellum-Cortex

78. Thalamus-Proper

79. Caudate

80. Putamen

81. Pallidum

82. Hippocampus

83. Amygdala

84. Accumbens-area
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A.4 Supplementary figures

A.4.1 Distance between the correlation dictributions

To compare the correlation distributions, the distance between the correlation distributions

were calculated using the Kolmogrov Smirnov test [7]. The temperature (Tmin) which min-

imizes this distance was obtained for the ten realizations separately and compared with Tc

using a two sample t-test.

Figure A.3: Distance between the correlation distributions as a function of temperature for the
2D classical Ising model and the generalized Ising mode. Red vertical line corresponds to the
critical temperature Tc

A.4.2 Inter-subject variance of Tc and Tmin

The work presented in the paper was performed using the average connectivity over 69 sub-

jects. Variation of the critical temperature and Tmin was due to simulating the 2D classical

Iasing model and the generalized Ising model ten times using the same average connectivity.

However, we simulated the generalized Ising model using 69 different structural connectivity

matrices and the figure below illustraites how Tc and Tmin are distributed among the subjects.
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Figure A.4: Distribution of Tc and Tmin for 69 subjects

A.4.3 Further study of the difference in Tc

In order to investigate the observed difference of Tc for the generalized Ising model and the

2D classical Ising model we generated different connectivity matrices by gradually changing

the sparsity of the matrices. Figure A.5 represents the initial structrual connectivity which is

been used for the generalized Ising model simulations and then how an intermediate structural

connectivity as well as the structural connectivity of the 2D classical Ising model.

Starting with the structural connectivity used in the generalized Ising model simulations

and by changing/removing connections randomly preserving the randomness, the structural

connectivity was gradually transformed to that of the 2D Ising model.The connectivity matri-

ces build during this transformation were used in the generalized Ising model simulations and

the critical temperature was obtained from each simulation. In Figure A.6, critical temperature

is plotted as a function of the sparsity of the connectivity matrix. Transition is from the gen-

eralized Ising model with a sparsity of 0.06 to the 2D classical Ising model with a sparsity of

0.95. From this figure it can be seen that the sparsity of the connectivity matrix could explain
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Figure A.5: Structural connectivity matrix of the generalized Ising model, an intermediate
structural connectivity and the structural connectivity used for the 2D classical Ising model

the difference observed in the critical temperatures from the generalized Ising model and the

2D classical Ising model. However, the variations observed in the critical temperature in this

figure could be due to the random procedure followed in order to get different connectivity

matrices during the transition.

Figure A.6: Critical temperature versus sparsity of the connectivity matrices. Point A repre-
sents the sparsity of the generalized Ising model and point B the 2D classical Ising model
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A.4.4 Global degree as a function of temperature

In graph theory, degree of a node is said to be the number of connection that node has. For a

graph, the global degree gives the average degree of the whole network by taking the average

over the number of nodes the network has. We have calculated the global degree for using

the results of the simulations of 2D classical Ising model and the generalized Ising model as

a function of temperature. From this plot, it is evident that the degree of the generalized Ising

model maximizes at a temperature different from the critical temperature but not significantly

different from Tmin.

Figure A.7: Global degree as a function of temperature for the 2D classical Ising model and the
Generalized Ising model. Black horizontal line represents the global degree for the empirical
functional connectivity. Red vertical line represents the critical temperature for each case
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Appendix B

Appendices: Chapter 3

B.1 Calculating the Dimensionality of a System Using the

Results of Generalized Ising Model Simulations

Normalized structural connectivity (Ji j) of the system is used in the generalized Ising model

simulations which results in the time series for each node of the network for a given number

of time points. Pearsons’ correlation between these time series was calculated which results in

a N× N symmetric correlation matrix (where N is the number of nodes in the network or the

number of sites). This process was carried out for a range of temperatures.

Calculting the correlation function G(r)

Correlation function per temperature illustrates the changes of correlation with respect to

the distance between the nodes. In order to calculate the correlation function, firstly, the dis-

tance between nodes were defined using the structural connectivity matrix as
1
Ji j

. Secondly,

the correlation was grouped such that the correlation at a particular distance is the average

of all correlations at that distance. It resulted a correlation as a function of distance for each

temperature.
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Correlation function can be explained using Equation B.1 for any temperature [2, 1] except

the critical temperature. Equation B.1 simplifies to Equation B.2 at the critical temperature

since the correlation length (ξ) becomes infinite at Tc.

G(r) '
exp(

−r
ξ

)

rd−2+η
=

exp(
−r
ξ

)

rP0
(B.1)

G(r) '
1

rP0
(B.2)

Calculating the dimensionality

From Ornstein-Zernike theory, another equation was developed to explain the correlation

function at temperatures greater than the critical temperature, It is presented in Equation B.3 [1,

2].

G(r) '
exp(

−r
ξ

)

r
d − 1

2

(B.3)

By equating the power of r in the denominator of Equation refgrall and ??,

P0(T > Tc) =
d − 1

2
(B.4)

∴ d = 2P0 + 1 (B.5)

Procedure: After calculating G(r) for all the temperatures, Equation B.1 was fitted and P0

and ξ per temperature were obtained from the fitting. Then P0 values for T > Tc were separated

and averaged to obtain one P0 value. Finally, using the calculated P0 value and Equation B.5,

dimensionality of the system was calculated.
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B.2 Additional Results of the Initial Analysis of Tractogra-

phy

In all the figures below, panel (a) represents the networks obtained using simulated functional

data while panel (b) represents the networks obtained from empirical functional data.

1. Deterministic tractography - FA

Figure B.1: (a) Average susceptibility as a function of temperature, (b) Distance between the
simulated correlations and the empirical correlation as a function of temperature, (c) Correla-
tion coefficient between the simulated correlations and the empirical correlations as a function
of temperature, (d) (e) (f) (h) matrix representations of the correlation at Tc, Tmin and Tmax and
empirical correlation respectively, (g) distribution of Tc, Tmin and Tmax within the group of 69
subjects
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2. Deterministic tractography - counts weighted by FA

Figure B.2: (a) Average susceptibility as a function of temperature, (b) Distance between the
simulated correlations and the empirical correlation as a function of temperature, (c) Correla-
tion coefficient between the simulated correlations and the empirical correlations as a function
of temperature, (d) (e) (f) (h) matrix representations of the correlation at Tc, Tmin and Tmax and
empirical correlation respectively, (g) distribution of Tc, Tmin and Tmax within the group of 69
subjects
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3. Probabilistic tractography - counts

Figure B.3: (a) Average susceptibility as a function of temperature, (b) Distance between the
simulated correlations and the empirical correlation as a function of temperature, (c) Correla-
tion coefficient between the simulated correlations and the empirical correlations as a function
of temperature, (d) (e) (f) (h) matrix representations of the correlation at Tc, Tmin and Tmax and
empirical correlation respectively, (g) distribution of Tc, Tmin and Tmax within the group of 69
subjects
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4. Probabilistic tractography - FA

Figure B.4: (a) Average susceptibility as a function of temperature, (b) Distance between the
simulated correlations and the empirical correlation as a function of temperature, (c) Correla-
tion coefficient between the simulated correlations and the empirical correlations as a function
of temperature, (d) (e) (f) (h) matrix representations of the correlation at Tc, Tmin and Tmax and
empirical correlation respectively, (g) distribution of Tc, Tmin and Tmax within the group of 69
subjects



B.2. Additional Results of the Initial Analysis of Tractography 131

5. Probabilistic tractography - counts weighted by FA

Figure B.5: (a) Average susceptibility as a function of temperature, (b) Distance between the
simulated correlations and the empirical correlation as a function of temperature, (c) Correla-
tion coefficient between the simulated correlations and the empirical correlations as a function
of temperature, (d) (e) (f) (h) matrix representations of the correlation at Tc, Tmin and Tmax and
empirical correlation respectively, (g) distribution of Tc, Tmin and Tmax within the group of 69
subjects
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B.3 Additional Results of the RSN analysis

In all the figures below, panel (a) represents the networks obtained using simulated functional

data while panel (b) represents the networks obtained from empirical functional data.

1. Deterministic tractography - FA

Figure B.6: Auditory network (Aud), Sensorimotor network (Sen), Visual lateral, medial net-
works (VL, VM) obtained from the simulated (at Tc) and the empirical correlations. RSNs for
other tractography methods are presented in Appendix C

Figure B.7: Default mode network (DMN), Salience network (Sal), External control network
left and right (ECNL, ECNR)
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2. Deterministic tractography - counts weighted by FA

Figure B.8: Auditory network (Aud), Sensorimotor network (Sen), Visual lateral, medial net-
works (VL, VM) obtained from the simulated (at Tc) and the empirical correlations. RSNs for
other tractography methods are presented in Appendix C

Figure B.9: Default mode network (DMN), Salience network (Sal), External control network
left and right (ECNL, ECNR)
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3. Probabilistic tractography - counts

Figure B.10: Auditory network (Aud), Sensorimotor network (Sen), Visual lateral, medial
networks (VL, VM) obtained from the simulated (at Tc) and the empirical correlations. RSNs
for other tractography methods are presented in Appendix C

Figure B.11: Default mode network (DMN), Salience network (Sal), External control network
left and right (ECNL, ECNR)
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4. Probabilistic tractography - FA

Figure B.12: Auditory network (Aud), Sensorimotor network (Sen), Visual lateral, medial
networks (VL, VM) obtained from the simulated (at Tc) and the empirical correlations. RSNs
for other tractography methods are presented in Appendix C

Figure B.13: Default mode network (DMN), Salience network (Sal), External control network
left and right (ECNL, ECNR)
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5. Probabilistic tractography - counts weighted by FA

Figure B.14: Auditory network (Aud), Sensorimotor network (Sen), Visual lateral, medial
networks (VL, VM) obtained from the simulated (at Tc) and the empirical correlations. RSNs
for other tractography methods are presented in Appendix C

Figure B.15: Default mode network (DMN), Salience network (Sal), External control network
left and right (ECNL, ECNR)
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C.1 Supplementary figures
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1.Auditory network

Figure C.1: Brain maps for the auditory network from simulated data at Tc for seven models
together with the brain map for the empirical data
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Figure C.2: Average time series for the DMN is presented in green while the time series of the
region that has the highest correlation with the average time series is presented in orange for
all the models and the empirical data
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2. Executive control network left

Figure C.3: Brain maps for the executive control network left from simulated data at Tc for
seven models together with the brain map for the empirical data
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Figure C.4: Average time series for the DMN is presented in green while the time series of the
region that has the highest correlation with the average time series is presented in orange for
all the models and the empirical data



C.1. Supplementary figures 143

3. Executive control network right

Figure C.5: Brain maps for the executive control network right from simulated data at Tc for
seven models together with the brain map for the empirical data
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Figure C.6: Average time series for the DMN is presented in green while the time series of the
region that has the highest correlation with the average time series is presented in orange for
all the models and the empirical data
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4. Salience network

Figure C.7: Brain maps for the salience network from simulated data at Tc for seven models
together with the brain map for the empirical data
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Figure C.8: Average time series for the DMN is presented in green while the time series of the
region that has the highest correlation with the average time series is presented in orange for
all the models and the empirical data
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5. Sensorimotor network

Figure C.9: Brain maps for the sensorimotor network from simulated data at Tc for seven
models together with the brain map for the empirical data
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Figure C.10: Average time series for the DMN is presented in green while the time series of
the region that has the highest correlation with the average time series is presented in orange
for all the models and the empirical data
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6. Visual lateral network

Figure C.11: Brain maps for the visual lateral network from simulated data at Tc for seven
models together with the brain map for the empirical data
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Figure C.12: Average time series for the DMN is presented in green while the time series of
the region that has the highest correlation with the average time series is presented in orange
for all the models and the empirical data
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7. Visual medial network

Figure C.13: Brain maps for the visual medial network from simulated data at Tc for seven
models together with the brain map for the empirical data
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Figure C.14: Average time series for the DMN is presented in green while the time series of
the region that has the highest correlation with the average time series is presented in orange
for all the models and the empirical data
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8. Visual occipital network

Figure C.15: Brain maps for the visual occipital network from simulated data at Tc for seven
models together with the brain map for the empirical data
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Figure C.16: Average time series for the DMN is presented in green while the time series of
the region that has the highest correlation with the average time series is presented in orange
for all the models and the empirical data
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