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Abstract 

 

   Heating and cooling buildings consumes a tremendous amount of energy worldwide, often >50% 

for Northern climates such as Canada. A major part of this energy is lost through windows. The 

use of thermochromic windows provides a new intriguing option, in which the window 

automatically regulates the amount of solar transmission in response to environmental temperature 

changes. Of the potential thermochromic materials, vanadium dioxide (VO2) is known to display 

a fully reversible semiconductor-metal transition (SMT). VO2 responds thermochromically to 

environmental temperature changes by changing its crystal structure as a function of temperature. 

VO2 is transparent to infrared radiation (IR) when its temperature is below a so-called phase 

transition temperature (Tc), but is IR light reflective above Tc, while retaining visible light 

transmittance. Such an intrinsic property makes VO2 an attractive material for designing a new 

generation of "smart" thermochromic coatings to efficiently utilize solar energy. The main goal of 

this dissertation focuses on developing innovative VO2 based particles and their integration into 

polymeric smart coatings using an economical and green chemistry approach, while examining the 

assemblies optical and thermal properties for potential application in smart windows. 

   Water as a “green” solvent was examined in Ch. 2 using ammonium metavanadate as a low 

toxicity VO2 source, which was reduced by aspartic acid, for the novel synthesis of monoclinic 

vanadium dioxide [VO2(M)]. In this chapter, various experimental parameters including annealing 

temperature, annealing time, anti-oxidation time, reagent concentration and W(tungsten) doping 

concentration were examined. This study examined finding the optimum conditions for 

synthesising an oxidation stable, W-doped, monoclinic vanadium oxide exhibiting a low Tc with 

small hysteresis. Meanwhile, the luminous transmittance and solar modulation ability of VO2 
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based films was found to be enhanced simultaneously, an excellent result for potential commercial 

usage. The molar ratio of ammonium metavanadate and aspartic acid was varied 

systematically as well as the annealing temperature and reaction time. An aspartic 

acid/NH4VO3 molar ratio of “0.7/1” and “0.6/1”, calcined at 800 °C for 2 h was found to deliver 

the purest VO2(M) phase. Optimized VO2(M) was then doped with tungsten (W) with 

nominal concentrations up to 4 at. %, with the annealing conditions optimized. The lowest 

transition temperature of 53.6 °C was found for the 3% W-nominal doping concentration 

using an 800 °C annealing temperature for 2 h. This material was shown to be stable against 

oxidation and showed an integrated luminous transparency (Tlum) of 68% at 22 °C and a 

solar modulation efficiency (ΔTsol) of 20.7% between 22 °C and 80 °C in a 

polyvinylpyrrolidone (PVP) coating. Additionally, a pure VO2(M) phase was achieved at 

lower annealing temperatures (i.e. 450 °C) and shorter times with the addition of W or PVP, 

which was not possible with the undoped sample. In general, these coatings showed better 

optical properties compared to most films reported in the literature, although their VO2 

transition temperature was still relatively high, not near room temperature. Window 

coatings for thermochromic glass at higher switching temperatures are also of industrial 

interest for solar thermal applications, making these results useful for the scientific 

community. 

   To make small particles with low Tc, a hydrothermal method was applied.  Ch. 3 investigated 

reducing ammonium metavanadate (NH4VO3) with hydrazine in water using a hydrothermal 

method, followed by a relatively brief time heat treatment (calcination). A high yield of VO2(M) 

crystals was obtained using this synthesis methodology. The reaction parameters (concentration, 

temperature and time) were examined to optimize the synthesis conditions of VO2 (M) using a 
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parametric approach. Then, the influences of the calcination parameters including temperature and 

ramping rate were examined on the size, morphology, phase purity and phase transition 

temperature of Mo and W-doped VO2 (M).  Various nominal Mo and W contents from 0 to 4 at. 

% were investigated. The results showed that flower-like and stick-shaped morphologies of W-

doped VO2 and Mo-doped VO2 particles were obtained, respectively. It was found that tungsten 

doping was more effective for reducing the phase transition temperature of VO2 (68 °C) to an 

ambient temperature (23 °C) compared to molybdenum doping (54.4 °C). Furthermore, a high 

transition reduction efficiency of 23 K/at. % was obtained for the W-doped VO2 crystals. The 

thermochromic properties of VO2/PVP coatings on glass were investigated with the un-doped 

coatings exhibited high infrared modulation (up to 35% at 2000 nm), and simultaneously high 

visible light transmittance (> 62%). For the 1at. % W-doped coatings, high infrared modulation 

was obtained (up to 28% at 1500 nm) with high visible transmittance (> 75%). This could open an 

economical route to large-scale VO2 (M) particles synthesis to produce low cost smart windows.  

    To further improve the chemical stability and thermochromic performance of VO2, Ch. 4 

examines a novel approach for the rapid synthesis of VO2/SiO2 composite structure. In this study,   

ammonium metavanadate was reduced with maleic acid using water as the green solvent, with 

VO2/SiO2 obtained at various (Si/V) molar ratios. The effect of SiO2 addition on the size, 

dispersion, chemical stability and thermochromic performance of VO2 was investigated. This 

study reveals that the SiO2 significantly improved the anti-oxidation stability of VO2 in air at room 

temperature for testing times up to seven months. Further, the infrared (IR) contrast transmittance 

displayed a VO2/SiO2 composite film which demonstrated an excellent IR switching quality (20%) 

that was 4X greater than the plain VO2 film (5%), while maintaining high visible transmittance 

(70%) at the wavelength of 680 nm. Moreover, using a reflux approach at low temperature 
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reaction, the phase transition temperature (Tc) of 2 at. % W-doped VO2 was reduced considerably 

to 23 °C, when tungstic acid (as the W-doping source) was pre-dissolved in hydrogen peroxide 

(H2O2) prior to use.  

   To examine a low temperature approach to making VO2(M), Ch. 5 examines a novel synthetic 

approach at room temperature (RT) using hydrolysis for preparation of tungsten W-doped VO2 

particles. The hydrolysis of vanadyl acetylacetonate [VO(acac)2] was achieved at RT by adding 

HCl as a catalyst, converting the green aqueous solution into a blue one, indicating the formation 

of VO2(M). In addition to examining different drying methods, various experimental parameters 

including concentration, reaction time, annealing time and W doping concentration were 

investigated. The W-doping system is different from the high temperature hydrothermal process 

usually reported in the literature. The W-doped VO2 NPs were found to exhibit a low 

semiconductor-metal phase transition temperature (SMT). It was discovered that small NPs of 

vanadium (V) oxide, present in the formed product, could enhance the dispersion of VO2(M) (IV) 

particles in a polyvinylpyrrolidone (PVP) matrix. By implementing this dispersion strategy, a 

VO2(M)/PVP coated glass with an excellent infrared (IR) switching efficiency (40%) and good 

visible transmittance (35%) was accomplished. In addition to PVP, hydrophobic poly(methyl 

methacrylate) (PMMA) and hydrophilic poly(4-vinylpyridine) (P4VP) were inspected as matrix 

polymers to achieve weather resistant films and films with good dispersion of VO2 particles, 

respectively. Additionally, the effect of variable film thickness with controlled ratios of 

VO2/PMMA and VO2(M)/P4VP on the optical performance of the films was investigated. 

VO2(M)/P4VP based-film demonstrated an excellent IR switching ability (47%) with great visible 

transmittance (41%) compared to (30%) and (29%) of VO2/PMMA, respectively. The better 

performance is ascribed to the uniform dispersion of particles in P4VP. Importantly, the synthetic 
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method is a green chemistry approach and scalable, which can potentially enable a large scale 

production of VO2. 

 

KEYWORDS: Vanadium dioxide, VO2, phase transition temperature, Tc, thermochromic, green, 

anti-oxidation, Tlum, ΔTsol, W-doped VO2, Mo-doped VO2, VO2/PVP coatings, VO2/SiO2 

composite, energy consumption, SMT, IR, PVP, PMMA, P4VP 
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Chapter 1 

Introduction 

1.1 OVERVIEW 

   A substantial component of primary energy (~40%) is used globally in the form of heating, 

cooling, ventilation and lighting in buildings to obtain desired indoor conditions for human 

comfort [1, 2]. Of this energy, greater than 50% is wasted through window losses [3]. For example, 

in Canada, windows can account for up to 31% of a building’s total energy loss [4, 5]. This not 

only leads to high energy costs, but also leads to a high carbon footprint through increased CO2 

emissions [6]. To save energy, low emissivity windows (Low-E window) are used extensively in 

buildings to achieve a high infrared light reflection. However, it is not possible to change their 

optical performance in response to environmental changes [7-9]. Energy-saving smart materials 

(chromogenic materials) such as electrochromic, thermochromic, gasochromic and photochromic 

can sense and respond to an external stimulus involving an electric voltage, heat, gas or ultraviolet 

irradiation, respectively, and then intelligently block the passing solar energy [10-15]. Among 

chromogenic technologies, thermochromic vanadium dioxide (VO2) has many advantages which 

includes having a simple structure, self-activating solar/heat control, and the potential for scalable 

mass production [10]. Vanadium dioxide (VO2) can initiate a reversible semiconductor-metal 

phase transition (SMT) at ~68 °C, changing from a monoclinic structure (P21/c, M1 phase) below 

Tc to a tetragonal structure (P42/mnm, R phase) above Tc. This change in crystal structure causes 

an abrupt modification in the optical properties from infrared (IR) transmitting to a highly IR 
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reflecting material [16-19]. This distinctive property makes VO2(M) a promising material for 

application in smart windows [20].  

Vapor-based deposition methods are often used to achieve VO2 coatings on transparent substrates 

for smart windows, but these techniques are expensive and complex due to the high cost of 

equipment and the challenge to control the variable valences of the vanadium ions [7].  Currently, 

solution-based methods are of increase interest for preparing VO2(M) coating on substrates due to 

their economical, scalability and flexibility for substrate selection [7, 11]. However, to date, the 

major practical challenges that still restrict the use of VO2 (M/R) systems for smart windows, and 

addressed in this dissertation are how to fabricate high performance polymer based VO2 smart 

films with simultaneous high luminous transmittance (Tlum) and high solar modulation efficiency 

(ΔTsol), while reducing energy costs in the fabrication process. Several applications to be explored 

in this thesis include low temperature reflux doping for the synthesis of W-doped VO2 with high 

chemical stability, delivering PVP-coatings with high luminous transparency (Tlum) and solar 

modulation efficiency (ΔTsol), hydrothermal synthesis of W- and Mo-doped VO2(M) with low 

phase transition temperature (Tc) for the fabrication of VO2/PVP with excellent infrared (IR) 

transmission modulation, synthesis of chemically stable VO2/SiO2 composite with high IR 

switching capability coating and room temperature synthesis of VO2(M) and W-doped VO2(M) 

for high IR switching efficiency coatings with excellent NPs dispersion using P4VP and 

hydrophobic PMMA polymer. 
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1.2 LITERATURE REVIEW 

1.2.1 Magneli phases of the vanadium oxides 

   Vanadium is known to form switchable valence states from V2+ to V5+
 that form vanadium-

oxygen complexes with multivalent oxides including VO, V2O3, VO2 and V2O5 [21, 22]. Non-

stoichiometric vanadium oxides displaying a phase transition response are comprised of two types: 

one type exists between V2O5 and VO2, with a general formula of VnO2n+1 and the second one is a 

so-called Magnéli type with a general formula of VnO2n−1 [23, 24]. Compared to the Magnéli family, 

VnO2n+1 has less constituents which include V3O7 with phase transition temperatures (Tc) at 5.2 K and 

V6O13 with an antiferromagnetic Neel temperature (TN) at 155 K [25, 26]. Nonetheless, the Magnéli 

family contains structures VnO2n−1 (3 ≤ n ≤ 10, based on the rutile VO2(R) structure) with different Tc 

values as shown in Figure 1.1 [24, 27]. Examples include V8O15 (70 K), V5O9(135 K), V6O11 (170 K), 

V4O7 (250 K) and metallic V7O13 [27]. 

Figure 1.1 Néel temperatures or magnetic ordering temperatures (TN) and metal–insulator transition 

(TMIT) temperatures in the Magneli families [24]. 
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1.2.2 Vanadium dioxide VO2(M) 

   Vanadium dioxide (VO2) has a number of polymorphs with more than ten types of crystalline 

phases. These include monoclinic distorted rutile structure VO2 (M) (P21/c), tetragonal rutile-type 

VO2 (R) (P4/mmm), and at least five metastable phases such as low temperature-tetragonal phase 

VO2(A) (P4/ncc), high temperature tetragonal phase VO2 (A) (I4/m), monoclinic VO2 (B) (C2/m), 

layer-structured VO2 (C) and the recently reported VO2 (D) [28-30]. The crystallographic 

structures of these polymorphs are established on an oxygen bcc lattice, where the oxygen 

octahedra are more or less regular and the vanadium (V) ions lie in the octahedral sites [30]. 

Amongst these metal oxides, only VO2(M/R) exhibits a fully first-order reversible semiconductor-

metal phase transition (SMT) 68 °C due to the structural and electronic structure changes [31]. 

Each vanadium ion (V4+) is centered in an octahedron formed by six oxygen ions (O2−) at the 

vertices [32]. Nevertheless, this phase transition depends on the crystallinity, divergence and size 

of the VO2.  

   Monoclinic vanadium dioxide VO2(M) has been investigated since its reversible semiconductor-

metal transition (SMT) was first reported by Morin in 1959 [17]. VO2(M) has been studied as a 

model material for elucidating the electron–electron correlations and it belongs to VnO2n−1 family 

when n =∞ [33]. When the temperature of VO2(M/R) is increased beyond 68 °C, the 

semiconductor-monoclinic phase (VO2(M)) (P21/c, M1 phase, the most stable phase at RT) 

undergoes a structural transition to the metallic-tetragonal phase (VO2(R)) (P42/mnm, R phase).  

This phenomena is known as thermochromism [34, 35] which results in a striking change of optical 

properties of VO2(M/R) from infrared (IR) and ultraviolet transmittance below SMT to IR and 

ultraviolet reflectance above SMT.  These optical changes are coupled with a change in resistivity 
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of ∼4–5 orders of magnitude, while retaining the visible transparency [36, 37]. During the 

semiconductor-metal transition (SMT), the infinite linear chains of VO2(R) is twisted into zigzag 

chains of VO2(M) as shown in Figure 1.2 [38, 39]. The strengths of electron–electron correlation for the 

cation–cation (V3+–V3+ and V4+–V4+ ions) interactions determine whether the outer 3d electrons of 

vanadium oxide are restricted or not. As revealed by Goodenough, the judgmental separation value 

(Rc ≈ 2.93) for the 3d electron coupling interaction for vanadium ions can be concluded from semi 

empirical expressions [40]. Accordingly, when the separation value (R) is smaller than the critical 

separation value (Rc), the 3d electrons are migrant, otherwise the electrons are localized when R is larger 

than Rc. For instance, the zigzag chains in VO2(M), with V–V distance of 0.316 nm (>Rc) and 0.262 

nm (<Rc) along the cR-axis establish dimers of vanadium atoms which result in semiconductor/insulator 

performance and a resistance on the order of 0.1 Ω m (Figure 1.2) [41]. While the infinite chains of 

VO2(R), with a V–V distance of 0.288 nm (<Rc) along the cR-axis cause the d electrons to be shared by 

all vanadium ions in the same direction and obtain a low resistivity of about 10−6 Ω m [42, 43]. 
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Figure 1.2 Crystal models of (a) VO2(M) and (b) VO2(R). Views along the cR-axis of monoclinic 

(twisted V) (c) and tetragonal (d) structure, respectively [38]. 

 

   Furthermore, the phase transition (SMT) can also accomplished by other phenomena such as  

physical stress, an electric field or an electromagnetic wave [44]. Accordingly, VO2 (M) has 

attracted the attention of researchers for its prospective applications in energy-efficient 

thermochromic smart windows, sensors, thermal camouflage, switches, energy storage devices, 

four-dimensional imaging, field effect transitions, and so forth [19]. There are many factors that 

influence the metal-insulator transition of VO2 (M) including the size effect, interfacial strain, 

external strain, defects, stoichiometry and doping.  
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   It is usually very difficult to obtain a pure phase of VO2(M) in one step which is normally 

synthesized by converting VO2(B) and VO2(A) at high temperatures (550 °C or more) into 

VO2(M/R) [45-49]. Both VO2 (B) and VO2 (A) can be used as precursors to be reverted to a stable 

VO2 (R) phase using thermal treatment and this is an irreversible transformation, because VO2 (R) 

transforms into stable VO2 (M) phase upon cooling [32]. Using a hydrothermal process with 

changes in pressure, temperature and time, VO2 (B) can be transformed into VO2 (A), which is 

often reported as the intermediate phase during transition from the metastable VO2 (B) to the more 

stable VO2(R) phase [50, 51].  

   A pure phase of VO2 (M) in good quantities was synthesised by Cao et al. [52] and Liang et al. [31] 

using a one-step hydrothermal technique. However, agglomeration of particles with favorable 

orientation growth along the [110] direction was subject to grow in one-dimension nanostructures such 

as nanorods and nanowires, hence limiting the particles’ dispersion, transparency and application for 

smart windows [52-54]. The size, shape and crystallographic phases of VO2 particles are known to be 

difficult to be controlled simultaneously [55]. Quasi-spherical nanoparticles with high crystallinity and 

invariable sizes of VO2 are ideal for good-quality production, in order to prepare stable dispersions 

needed to obtain good infrared light regulation and high visible transparency [30]. It is still a major 

challenge to synthesize spherical VO2 nanoparticles which requires a depression of energetically 

inimical high-index faces or the promoted development of low-energy surfaces [30]. Chen et al. [56], 

Rajeswaran et al. [57], Zou et al. [58] and Ji at al. [59] successfully synthesized a pure phase of VO2(M) 

by a solvent-thermal reduction, novel reduction, simple carbothermal reduction and hydrothermal 

method, respectively, however, the particles were large, non-spherical with wide size distribution and a 

wide variety of nanostructures.  



8 

 

   The driving force for the SMT has been in debate for a long time. The Mott model explains that the 

powerful electron-electron interaction is behind the restriction of the electrons, hence forming a Mott–

Hubbard insulator. However, based on Peierls model, the formation of an insulating phase is due to 

lattice instability or structural distortions induced by electron–phonon interactions [60, 61].  

1.2.3 Phase transition mechanisms of VO2 

   There is currently a controversy about the mechanisms of metal-insulator transition (MIT) in 

VO2, and understanding the nature of this phenomenon is a current scientific challenge [60-62]. It 

is believed that the interaction between spin, charge, orbital dynamics and atomic structure is 

accountable for the MIT perceived in VO2. Generally, the transition is due to either a Mott 

transition (intense electron-electron interaction), Peierls transition (electron-phonon interaction) 

or a combination of both mechanisms [39, 63-65]. Warwick et al. [66] and Wentzcovitch et al. 

[60] have shown that the electron-electron(e-e) interactions play a significant part in the insulator 

phase due to a strong Coulombic repulsion between the electrons. As shown in Figure 1.3, the d-

levels of the vanadium ions in the metal phase are divided into higher energy eg states(empty) and 

lower energy t2g states [67]. Based on Goodenough [68], in the tetragonal structure, the t2g multiplet 

splits into an eπ
g (π*) doublet and an a1g(dII) state, and the (dII) orbitals form strong bonding of the 

V-V pair along the c direction (see Figure 1.4) [69]. In the insulating phase, the tilting and 

dimerization of the V-V pairs cause the dII band to split into an antibonding state (higher energy) 

and a bonding state (lower energy). This leaves the bonding dII with half-filled and the antibonding 

π* states are pushed into higher energy (above the Fermi level) to overlap more with O states 

resulting in a (Peierls- transition) band gap (see Figure 1.4) [69]. In order to study the aspect of the 

structural transformation during phase transition, Xie et al. [70] have tested X-ray absorption to 

direct electronic and atomic kinetics, and they have found that the modification in the electronic 
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structure is due to a change in the closest vanadium atoms. While Zhu et al. [71] have applied band 

theory to explain the electronic, structural and magnetic essence during phase transition. Bai et al. 

[72], Booth et al. [73] and Tselev et al. [74] have found that the MIT is driven by a structural 

transition. However, Lu et al. [75], Kim et al. [76] and Qazilbash et al. [62] presented strong 

evidence in favour of an electronic transition alone. Recently, Gao et al. [77] have applied density 

functional theory (DFT)-based first-principle calculations by relating band gap change with orbital 

occupancy and structure change, concluding that the structure-driven Peierls transition and staged 

electron-correlation-driven Mott transition are both involved in the MIT of VO2 (M). 
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Figure 1.3 Octahedral organization of the V cation in all VxOy phases, and the effect of coupling 

between the competing spin, charge, and orbital degrees of freedom on the optical and electronic 

properties in vanadium oxides [67]. 
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Figure 1.4 Schematic energy bands structure digram of VO2 [69]. 

1.2.4 Phase transition temperature and hystersis loop calculations 

 To determine the phase transition temperature of the film, the optical transmittance is recorded at 

2000 nm during a cooling and heating process. Then, a plot of d(Tr)/d(T) &T is aquired for each 

hysteresis loop, giving two peaks with a proper designated maximum [78]. T and Tr represent the 

temperature and transmittance, respectivily. The two maxima correspond to the phase transition 

temperature of heating(Th) and cooling (Tc). Accordingly, the final phase transition temperature 

(Tt) of the VO2 film can be attained by: Tt=(Th+Tc)/2 [79]. Meanwhile, the difference between Tc 

and Th , measued at full width at half maximum (FWHM), represent the hysteresis loop width (ΔTt) 

of the film. A smaller ΔTt value is requied for a sharper transition [20]. 
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1.2.5 Elemental doping effect on the Tc and optical properties of VO2 (M) 

   In order for VO2 to be used for various applications such as optical memory devices, sensors and 

intelligent window coatings; the optical properties, SMT and related electronic transitions of VO2 

need to be controlled through stress, defects, grain size or dopants [16, 80-83]. Amongst these 

strategies, the elemental doping strategy is considered to be an effective process to control optical 

properties and reduce Tc of VO2 [84]. For practical applications in smart windows, the phase 

transition (Tc=68°C) of VO2 should be decreased to ambient temperature(~25°C), and this can be 

achieved by elemental doping [85, 86]. Transition temperatures of VO2 can be reduced by doping 

with high-valent cations such as Nb5+, Mo6+
, Ta5+and W6+ or increased by doping with low-valent 

cations at high concentration such as Al3+, Cr3+, Ti+4, Ga3+ and Fe3+ [36, 87, 88]. However, doping 

with low-valent cations at low concentration levels helps shift Tc  lower [11]. Mai et al. [89] were 

able to lower the SMT of VO2 from 64 to 42 °C due to semiconductor phase destabilization and 

loss of V4+−V4+ pairs caused by Mo doping. Zhang et al. [90] used a silicon-doped VO2 film to 

achieve a Tc of 52.7°C. Zhang et al. [91] have demonstrated a Tc of 18 °C using N-doped samples 

such as VO1.87N0.13 and VO1.9N0.1. Gentle et al. [92] and Chen et al. [93] showed that the Tc of Al-

doped VO2 sample can be lowered to 323 K and 313 K, respectively. Wan et al. [94] effectively 

decreased the Tc from 80.0 to 62.9 °C using N-doped VO2(M). Gagaoudakis et al. [95] have used 

Mg (0.3 at. %)–doped VO2 to achieve a characteristic low SMT at 49.2 °C. Chen et al. [96] 

obtained a Tc of ~ 51 °C for Ti(4%)-doped VO2. Mlyuka et at. [97] and Zhou et al. [98] were able 

to reduce Tc from 64.5 °C to 45 °C and from 68 °C to 54 °C for the Mg(7%)-doped VO2, 

respectively. Wan et al. [99] used density functional theory calculations and found that the band 

gap of Eg2 for C-doped VO2 was the least (~0.434 eV) compared to B, N, Mg, Al-doped VO2 

samples, indicating that the Tc can be reduced more effectively by doping with carbon. However, 
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among all dopants, tungsten (W) has been found experimentally as the most practical element to 

decrease the SMT of VO2-based films to ambient temperature. Accordingly, Mo, F and W are used 

to lower Tc by 15 K, 20 K and 28 K at. %, respectively, and Tc can be lowered by 15 °C, 19 °C 

and 23 °C per 1 at. % for Mo, F and W doping, respectively [99-104].  

   In explanation for W decreasing the SMT of VO2, high-valent cation dopants such as W6+ 

perform as electron donors into the V 3d valent band, and the loss of a homopolar V4+–V4+ pair 

causes destabilization in the semiconducting structure of VO2. These electron donation effects 

result in the decreasing of Tc [105]. However, the mechanism for reducing SMT in VO2(M) due 

to W doping is still a subject of debate. To elucidate the connection between tungsten doping and 

SMT, Wu et al. [106] investigated the electronic and geometrical structures surrounding vanadium 

and tungsten atoms in W-doped VO2 samples using X-ray absorption fine structure (XAFS) 

spectroscopy. They found that the internal stresses caused by W doping promotes the detwisting 

of accessible VO2(M) lattice in view of the electronic band structures of W-doped VO2. 

Additionally, the detwisting of the monoclinic VO2 lattice induces a minor gap between the 

bonding and antibonding of d∥ orbitals besides to downward shift of the π* electron band, causing 

a decrease in the band gaps of W-doped VO2. As a result, the potential energy barrier is decreased 

for the SMT of VO2 leading to a Tc reduction. Additionally, He et al. [107] methodically examined 

the orbital structures of W-doped VO2(M/R) based-films using a double beam ultraviolet-infrared 

spectroscopy joined with first principle calculations. They found that the d∥ orbital was very 

significant in the phase transition process of VO2 and that the Tc change comes from the orbital 

structure discrepancy. When the concentration of W doping increases, the overlap of d∥ and π* 

increases for the rutile VO2 structure.  Meanwhile, the optical band gap decreases for the monoclinic 

VO2 as shown in Figure 1.5 (a-d). For the rutile structure, when doping content is increased, the strength 
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of covalent bonding V–V interactions reduces due to a decrease in the d∥ orbital occupancy which 

results in the observed Tc reduction (see Figure 1.5(e)). 

 

Figure 1.5 For rutile phase: (a) the relationship of tungsten doping concentration x% and β2–β1; 

(b) schematic of the orbital structure change due to increase in tungsten contents. For the 

monoclinic phase: (c) the relationship of tungsten doping concentration x% and α2–α1; (d) 

schematic of the orbital structure change due to increase in tungsten contents. Nearby vanadium 

atoms can form covalent bond due to the d∥ orbital occupation [107]. 

 

   Moreover, the optical and thermochromic properties of VO2 are also affected by doping. For 

example, VO2 based films show excellent switching when doped with Si using a magnetron 

sputtering technique [90]. Zhang et al. [108] also improved the thermochromic and optical 

characteristics of VO2 through doping with Sn additives. The temperature dependent properties 

such as grain size, hysteresis width (the difference in Tc of heating and cooling phase transition) 

and transmittance are also affected by the addition of dopants. For example, Li et al. [109], besides 
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a visible transmittance improvement, were able to reduce the hysteresis width of VO2 from 17.8 

to 10.7°C. Gao, Yanfeng, et al. [30] were able to control the morphology, size and polymorphology 

of vanadium dioxide nanoparticles by antimony doping. Liu at al. [110] also demonstrated that the 

morphology, size and phase of NaGdF4 nanocrystals can be tuned by lanthanide doping. However, 

doping VO2 films are still far from being studied comprehensively. 

1.2.6 Solution phase deposition of VO2(M) based films 

   Synthetic methods to prepare VO2 films consist of both gas and solution based processes. Gas 

based deposition processes include chemical vapor deposition (CVD) (such as electric-field 

assisted chemical vapor deposition (EACVD)) and physical vapor deposition (PVD) (such as 

radio-frequency inverted cylindrical magnetron (ICM) sputtering process and pulse laser 

deposition (PLD)) [111-113]. Usually these techniques are complicated and expensive, as the 

equipment is normally complex due to the difficulties in controlling the variable valences of 

vanadium ions, and expensive due to requiring high vacuum conditions and maintenance [114]. 

Solution-based processes for deposition of VO2 based coatings on substrates are of interest to this 

dissertation because of their potential for scalability, low cost, flexibility and high yield [7]. 

Examples include sol–gel technique, polymer assisted deposition and hydrothermal method. 

Typically, a vanadium source is reduced from a V (V) to V (IV) oxidation state and the resultant 

solution is filtered or centrifuged, washed with water or alcohol, then dried in an oven and annealed 

under inert/reducing gas at different temperatures and times. Accordingly, the final VO2(M) 

crystals, whether doped or not, core/shelled or composites, are then mixed with a transparent 

polymer or matrix. Further, the VO2/polymers are either used directly as smart films or coated on 

transparent substrates (such as polyethylene terephthalate (PET) or glass) by dip or spin coating. 

Other ways to fabricate VO2 based films using the solution method can be obtained by mixing 
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vanadium source and a reductant with a polymer in solution. Then, the polymer solution is dried 

and annealed after being coated on a substrate. In the following section, solution deposition 

approaches are reviewed in detail. 

1.2.6.1 Sol–gel process 

   The sol-gel process is used to fabricate monoclinic VO2 based films due to its simplicity for large 

area deposition, low cost and practicability for easily integrating metal doping [114]. Greenberg 

et al. [115] was first to demonstrate the sol–gel technique in 1983, depositing VO2(M) based films 

with VO(OC3H7)3, and since then it was found that VO2 can be produced using an equivalent n-

propoxide vanadium compound. The sol–gel process is solution based, and the basic concept is to 

form an oxide network (mainly metal oxide) via polymerization of chemical precursors dissolved 

in a liquid medium (sol) [6]. Later, the sol is transformed into an inorganic network consisting of 

a liquid phase (gel) through a polycondensation process. The growth of the oxide network is 

affected through the self-assembly among the precursor molecules, both by covalent bonding, 

hydrogen bonding and Van der Waals interconnections [116]. Commonly used chemical 

precursors that go through hydrolysis and polycondensation reactions to create a colloid are metal 

salts, metal chlorides and metal alkoxides. Examples of V alkoxides include tetravalent alkoxides 

such as vanadium tetrabutoxide (C16H36O4V), vanadyl acetylacetonate (VO(acac)2 or V(acac)4) [3, 

6, 117]. The fabrication of metal oxide is obtained by generating metal-hydroxo or metal-oxo 

polymers in solution by connecting the metal centers with hydroxo (M–OH–M) or with oxo (M–

O–M) bridges, respectively [118]. Subsequently, these generated polymers are cast or deposited 

on substrates or used to make powders [119]. For example, by using spin coating the precursor of 

VO2 can be coated on a substrate (glass) to form a VO2-based film. After drying and forming a 
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porous material, a calcination process is usually carried out to improve the mechanical property 

and crystallization of VO2. The sol–gel is a low-temperature process and widely used to synthesize 

niobium or tungsten-doped VO2 with low transition temperature. This method can also be applied 

to synthesize doped VO2 films on silicon, sapphire, aluminum, or glass substrates providing a high 

degree of homogeneity [120]. Factors that have an impact on the reaction of sol-gel process include 

temperature, additives, timing and composition of solution [119, 121]. Yin et al. [122] suppressed 

the molten V2O5 in distilled H2O after heat treatment in air at 800–900°C. Then, VO2 film was 

obtained, after the molten product was coated onto a substrate and heat treated at 500 °C in a low 

vacuum environment. However, the highly toxic vapor V2O5 was generated during this process 

which is a significant disadvantage. Partlow et al. [123] hydrolyzed  VO(OC3H7)3 in C2H5OH with 

little H2O to formulate VO2 sol. Thereafter, to prepare VO2 film, the sol was coated on a substrate 

and calcined at 500 °C in a suitable reducing gas environment. However, the film was not 

contained of pure monoclinic VO2, while the vanadium alkoxide was unstable and expensive. 

Similarly, Huang et at. [124] prepared VO2 at low annealing temperatures by an inorganic sol–gel 

process, mixing H2O with molten V2O5, and then coating onto a muscovite (011) substrate. 

However, the VO2 films were thermally unstable at 300 °C due to oxidation of VO2 to V2O5. 

Hence, preparing a stable VO2 sol through a simple process and under good safety conditions 

remains a challenge. Recently, Li et al. [125] successfully prepared a stable VO2 sol using 

inorganic VOSO4–NH3⋅H2O–H2O2 reactants. However, the optical properties were not analyzed. 

VO2 film coating on sapphire substrates was obtained using vanadyl triisopropoxide 

(VO(OC3H7)3) as a precursor [126, 127]. However, the annealing time was prolonged to seven 

hours causing the VO2 particles to aggregate to a larger size.  
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1.2.6.2 Hydrothermal process 

   The hydrothermal technique using water is commonly used to synthesize monoclinic VO2 

nanoparticles due to its low cost, simple processing, and being an environmentally friendly low 

temperature process [31]. This technique is often used to synthesize VO2 nano-structures with 

desired phases and morphologies due to its sensitivity to temperature, time, pressure, 

concentration, reducing agents and pH [117, 128]. Hydrothermal processing is based on the 

reduction of water-soluble vanadium (V) precursors under pressure and temperature in the 

presence of reductants [120]. Example of vanadium precursors (vanadium sources) include 

vanadium pentoxide (V2O5), ammonium metavanadate (NH4VO3) and vanadyl sulfate (VOSO4). 

Meanwhile, the reductants can be an organic acid such as oxalic acid (H2C2O4) or inorganic 

compounds such as hydrazine (N2H4). A usual process for the hydrothermal method consists of 

mixing the reactants by magnetic stirring to establish a homogenous solution or suspension. Then 

the resultant solution is added to an autoclave and heated hydrothermally for at least 12 hours at 

temperatures ranging from 120-260°C. The final product is then separated using centrifugation 

and dried in an oven after washing with water or an alcohol [120]. Normally, the hydrothermal 

process forms a product of metastable and non-thermochromic phases such as VO2(A), VO2(B), 

VO2(P) or VO2(D); or a mixture of VO2 (M) and a metastable phase, rather than a pure VO2(M) 

[129]. Therefore, the metastable phases are converted into a pure monoclinic VO2 phase by a post 

heating treatment at different temperatures, pressures and times. For instance, VO2(B) can be 

transformed into VO2(M) by annealing at 500 °C or greater temperatures, while VO2(M) is 

obtained by annealing VO2(D) at 300 °C [130, 131]. Further, the structure of VO2 was found to be 

changed from VO2 (B) nanobelts to VO2 (A) rod-like and VO2 (R) snowflake- like particles when 

the process time was increased from 3 to 24 h together with increasing the temperature up to 270 
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°C [132]. Powel et al. [133] prepared VO2(M) nanoparticles in a size range of 50 to 200 nm by a 

two-step synthesis route using Continuous Hydrothermal Flow Synthesis (CHFS) accompanied by 

a post heat treatment step. Additionally, Srirodpai et al. [134] hydrothermally synthesized 

monoclinic VO2 and followed by calcination at 700 °C for 3 h to develop a VO2/ethylene vinyl 

acetate (EVA) composite film. Similarly, Ma et al. [37] annealed the hydrothermal plate-like 

(NH4)0.6V2O5 product in vacuum and successfully synthesized flake-like VO2 (M). Further, 

Banerjee et al. [135] prepared VO2(R/M) nanowires using stepwise hydrothermal process. In this 

process, a mixture of VO2(B) and VO2(A) nanowires were synthesized hydrothermally and 

converted into VO2(R) upon calcination, after subsequent reduction of V3O7
.H2O. Moreover, 

Wang et al. [117] also synthesized VO2(M) nanostructures with various morphologies by 

hydrothermal and post annealing. First, ammonium metavanadate (NH4VO3) was hydrothermally 

reduced by oxalic acid C2H2O4 at 160–220°C, then the VO2(D) product was further annealed at 

250–600°C. However, the post heat treatment step is known to cause severe aggregation between 

the particles, hence deteriorating the thermochromic performance of VO2. Additionally, these two 

steps may consume a lot of energy and time due to high temperature and being an additional unit 

operation. Therefore, much attempt has been placed by researchers on a one step hydrothermal 

reaction. Liang et al. [31] used one-step tartaric acid (TA)-assisted hydrothermal synthesis process 

to transform tungsten doped-VO2 (A) nanobelts into VO2(M) nanorods. However, the VO2 

composite films exhibited low luminous transmittance (Tlum) of less than 40% and the phase 

transition temperature of 37.3 °C remains too high. The RE (rare earth: Eu, Tb)/W-codoped VO2 

nanoparticles, with grain sizes of less than 100 nm were synthesized by Wang et al. [136] under 

one-step hydrothermal conditions. But the coated glass exhibited low solar efficiently with high 

phase transition temperature, ΔTsol = 6.3% and Tc=40.8 °C, respectively. Additionally, Mutta et 
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al. [137], Alie et al. [138] and Chen et al. [28] prepared VO2(M/R) and W-doped VO2(M/R) in 

different shapes via a one-step hydrothermal process using different precursors and reaction 

conditions. Moreover, as shown in Figure 1.6, Chen et al. [139] synthesized relatively pure W-

doped VO2(M) nanorods with exclusive doping efficiency by using a one-step hydrothermal 

approach. Overall, it is evident that the high temperature and long reaction times are necessary for 

one-step hydrothermal reaction, which will result in increased energy consumption and induce the 

growth of larger undesirable particles. Hence, a general process for the one-step hydrothermal 

synthesis of VO nano-structures with high thermochromic potential is needed. 

 

Figure 1.6 Illustration mechanism for hydrothermal synthesis of W-doped VO2(M/R) nanorods 

[139]. 

1.2.6.3 Other solution-based processes 

   A polymer assisted deposition (PAD) as a solution process of VO2 film have been prepared in 

which a soluble polymer and doped V were added into a previously treated aqueous transparent 

vanadium oxide solution. The precursor VO2 film was then dried and annealed at 300–600 °C in 

nitrogen after being spun or dip coated to form crystalline film [80, 140]. Miao et al. [78] prepared 
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VO2/SiO2 composite films by mixing VOC2O4.xH2O with SiO2 sol to form a blue and 

homogeneous solution. Then, the composite film was coated onto various substrates after adding 

a pore forming agent (Pluronic F-127). However, expensive and toxic reagents were used such as 

VOCl2, in addition to using a high temperature, multistep process with films suffering from a wide 

hysteresis loop width. Breckenfeld et al. [141] synthesised a precursor of VO2 PAD solution using 

propylene glycol instead of water solvent. This approach enabled the growth of VO2 films with 

reproducible property and thickness, permitting a complicated shape printing through direct write 

techniques. Further, transport characteristic of the films were provided by establishing a multi-

coating deposition and UV laser sintering method which gave a better film density and greater 

particle size, respectively. However, though the hysteresis width was improved, it remained too 

high to be commercially useful. Cezar et al. [142] used an electrochemical technique to prepare 

VO2 films. This method contains several steps including deposition which were carried out by a 

cathodic potential from OSO4.xH2O solution, storage and vacuum calcinations. However, the 

deposited xerogel needed to be stored for one and half months before calcination in vacuum, in 

addition to achieving only a very thin VO2 layer. Gao et al. [143] prepared a flexible and stable 

VO2/SiO2/PU(polyurethane) based composite films using different solution based method. First, 

poly(vinylpyrrolidone) (PVP) was adsorbed into VO2 by pre-treatment in the solution, then shelled 

with SiO2 by modified Stober growth technique to form core(VO2)/shell(SiO2) particles. 

Accordingly, the composite was farther treated with an aqueous solution of silane coupler, for 

uniform dispersion in polyurethane (PU), before casting on a polyethylene terephthalate (PET) 

substrate. However, when solar modulation efficiency (ΔTsol) is over 10%, the luminous 
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transmittance (Tlum) is less than 40% and vice versa. The trade-off between improving ΔTsol and 

Tlum still exists today, hence limiting the commercialization of VO2(M)-based smart windows. 

1.2.7 Anti-oxidation properties 

   Oxidation of VO2 over time limits the application of VO2 in smart windows. Thermochromic 

properties of VO2 become deteriorated because of its progressive oxidation into toxic V2O5 when 

misused at high temperature (above 300 °C) or revealed to air for a long time [144-146]. Therefore, 

enhancing the chemical stability of VO2(M) by improving an oxidation resistance is crucially 

needed which can be achieved by surface modification of VO2 nanoparticles. For example, silica 

(SiO2), titania (TiO2) and zirconia (ZrO2) oxides have been deposited onto the surface of VO2 

nanoparticles to form core-shell or composites [147-149]. Among them, silica has various 

advantages including being chemically inert, optically transparent, polymer compatibility, in 

addition to improving the mechanical stability of various nanoparticles [149]. Zhao et al. [78] have 

demonstrated that the inclusion of inert silica dioxide (SiO2) into the composite structure can 

dramatically preserve VO2(M) from oxidation. As shown in Figure 1.7, all the XRD peaks are 

assigned to monoclinic VO2 when VO2/SiO2 composite films were exposed to air for six months.. 

Li et al. [11] prepared VO2/TiO2 core/shell materials and confirmed that the TiO2 shell provided 

an effective hindrance coating for the diffusion of oxygen into the VO2 structure when calcined at 

(290-320°C) in air for fifteen minutes. Hence, the chemical stability was improved against 

oxidation. Similarly, Wang et al. [150] and Gao et al. [143] improved the optical and chemical 

stability of VO2 by the formation of SiO2/VO2 core/shell structures. Additionally, the refractive 

index (RI) of VO2 nanofiller can be changed by adjusting the core/shell structure, which can reduce 

the scattering generated by the refractive index mismatch across the polymer and VO2 

nanoparticles [151].  
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Figure 1.7 XRD of (a) VO2 film and (b) VO2/SiO2 composite film [78]. 

1.2.8 Optical properties 

   A black body emits a maximum amount of energy and absorbs all incidental electromagnetic 

radiation (i.e., A (l) = 1) at each wavelength and in all directions [152]. The sun is a blackbody and 

its radiation reaches the earth with a bell-shaped spectrum due to partial absorption as shown in 

Figure 1.8a [153]. Since the solar energy is not overlapping with thermal radiation from materials 

at <100°C, many devices can be designed based on thermal or solar radiation. Solar energy is 

divided into 3 intervals: ultra-violet (UV) (wavelength (λ) <0.4 μm), luminous radiation (0.4 < λ 



24 

 

< 0.7 μm) and near infrared (NIR) (λ >0.7μm) which contribute to solar heat as shown in Figure 

1.8b. An object can respond in three ways, it can reflect, transmit or absorb the electromagnetic 

energy [154]. These operations need to fulfill the energy conservation law at each wavelength, and 

the law of total radiation (W) is obtained by the following: 

W = αW + τW + ρW (1.1) 

where:  

α + τ + ρ = 1 (1.2) 

Here, α, τ and ρ are coefficients denoting the absorption, transmission and reflection, respectively 

[155]. Each coefficient may have a value between 0 and 1. For example, if τ = 0, ρ = 0 and α = 1, 

this means that 100% of the radiation is absorbed (a perfect blackbody). Part of the α energy will 

heat up the object and give rise to an emittance [155]. Kirchhoff's law states that:  

α(λ)  =  ε therm(λ) (1.3) 

Where (ε) is emissivity of the body and (ε therm) is the thermal emittance.  

In the case of opaque bodies (τ = 0), equation 1.2 can be simplified by: 

ρ + ε = 1  (1.4) 

However, in the case of the black body ρ = 0: 

ε =  1  (1.5) 
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Figure 1.8 (a) Blackbody(Sun) radiation at various temperatures with surface temperature at 

5505°C, (b) luminous efficiency of the human eye, and solar irradiance spectrum [156]. 

 

   To evaluate the potential application of  VO2 based films, an integral luminous transmittance, 

Tlum (380–780 nm), infrared transmittance, TIR (780–2500 nm) and solar transmittance Tsol 

(250–2500 nm) are calculated based on the measured spectra utilizing the following formula:  

 

 

 

 

 

 

0.2     0.5     1      2      5      10      20     50      100 

0.2     0.5     1      2      5      10      20     50      100 

(a) 

(b) 

5505 °C  

(Sun) 

 

100°C  

 

 

50°C  

 

 

0°C  

 

 

-50°C  

 

 

1.5 

 

 
1 

 

 
0.5 

 

 0 

 

 

1 

 

 

0.5 

 

 

0 

 

 Wavelength (µm) 

 

Solar irradiance 

 

 Relative luminous 

Efficiency of the eye 

 

 

 



26 

 

 

Tlum/IR/sol =
∫ φlum/IR/sol (λ) T(λ)dλ

 ∫ φlum/IR/sol (λ)dλ
 

(1.6) 

T(λ) represents the transmittance at wavelength (λ), where φlum is the standard luminous 

efficiency function for the photopic vision of human eyes. φir and φsol denote the IR/solar 

irradiance spectrum for the air mass 1.5 (correlative to the sun standing 37° over the horizon) 

[157]. The solar energy modulation (ΔTsol) is defined as the difference of Tsol between 

semiconducting state (at low temperature) and metallic state (at high temperature), and is obtained 

by: 

ΔTlum/IR/sol = Tlum/IR/sol(s) −  Tlum/IR/sol(m) (1.7) 

  

   However, VO2(M) is not directly suitable for smart windows because the thermochromic 

reflectance modulation is weak in the solar radiation wavelength, while strong in the near -mid 

infrared [158, 159]. Accordingly, poor ΔTsol (less than 10%) and low Tlum (less than 40%) 

remain two major challenges for the practical application of VO2 based film for smart windows. 

These optical property challenges for VO2 films are related to the microstructure, optical 

constants and film thickness. To address these challenges, suitable strategies include forming 

multilayers, doping, controlled nanostructures, composite films or depositing on various 

substrates [97, 160, 161]. For example, F or Mg-doping triggers a blue shift in the absorption 

edge of VO2 based films which results in an increase of Tlum at the expense of ΔTsol [104]. 

Additionally, optical calculations propose that VO2(M) particles distributed in a dielectric matrix 

produce better ΔTsol and Tlum values than pure VO2(M) based films [159]. Previously reported 
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values of Tlum and ΔTsol include (41.0%, 6.7%) for a single layer VO2(M) film [162], 

(46.0%,7.0%) for a double layer VO2/TiO2 film [163], (35.9%, 8.4%) for VO2/SiO2 core/shell 

foils [11] and (44%, 12.1%) for a five layer TiO2/VO2/TiO2/VO2/TiO2 film [164]. However, 

integrating dielectric layers with a definite thickness and refractive index into a complicated 

stack structures is technologically a challenge. The scattering effect of VO2(M) particles diminish 

with a refractive index decrease or particle size reduction (below the wavelength of visible and 

infrared light).  This means that the visible transmittance and IR transmittance change with SMT 

would logically increase [165-168]. The early reflectance of VO2 particles can be reduced by 

adding SiO2, which limits the aggregation and growth of these particles, thus enhancing the 

resulting optical properties [160]. Recently, Zhao et al. [78] fabricated VO2/SiO2 composite films 

and was able to improve the luminous transmittance by 18.9% (from 29.6% to 48.5%) as well 

as the solar modulation efficiency by 6.0% (from 9.7% to 15.7%) at a molar ratio of Si/V of 

0.8.  

   Moreover, the optical properties can be optimized by controlling the thickness of the films 

through changing the rate of spin coating. As shown in Figure 1.9, when the thickness of the 

film is decreased, the IR switching is decreased as well, while the optical transmittance in both 

visible and NIR regions is increasing.  Opposite results were obtained when the coating 

thickness was increased [29, 168]. 
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Figure 1.9 Optical transmittance of VO2 based films coated on glass before (25 °C, T < Tc) 

and after (100 °C, T > Tc) phase transition with different thicknesses: (1) 250, (2) 325, (3) 480 

and (4) 510 nm [29]. 

 

1.2.9 Mechanism of VO2-PVP interaction 

   Agglomeration of VO2 occurs during post heating due to the sintering effect (i.e., 

hydrothermal method) or during the gel formation stage (i.e., sol-gel method) [160, 169]. 

Therefore, it is important to modify the surface of VO2 nanoparticles either with inert oxides 

such as TiO2 and SiO2 or with transparent polymers such as Pluronic F-127, poly vinyl alcohol 

(PVA), polyacrylamide (PAM) or Poly(vinylpyrrolidone) (PVP). To be more practical and 
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efficient, VO2 nanoparticles should be imbedded into polymeric host matrices, and then coated 

onto glass or flexible substrate [6]. The nano-thermochromism of this composite system has been 

shown to improve the infrared (IR) modulation efficiency and luminous transmittance of films 

using theoretical calculation [159]. Mixing VO2(M) nanoparticles with a transparent polymer in 

solution utilizes coordination between metal ions and polymers, enhancing the distribution of VO+2 

ions in the polymer, providing films with excellent thermochromic properties. PVP is soluble in 

water and commonly synthesized from the thermally initiated free radical polymerization of N-

vinylpyrrolidone [170]. There are many applications for PVP due to dispersion, solubility, 

hydrophilicity, biological and adhesion activity [171]. PVP is known to be an optimum matrix to 

prevent the deactivation and agglomeration of VO2 [80], therefore is investigated for all film-based 

techniques in this thesis. Other advantages [80, 172] include: 

• PVP facilitates the formation of M/R-phase. Coincidental degradation temperature of PVP 

with the crystallization temperature of VO2 could induce VO2(M) formation 

• The interaction between aqua vanadium ions (V4+) and PVP in solution can enhance the 

homogeneity of the precursor film by preventing the segregation of inorganic solute in 

the precursor solution, hence stabilizing it, leading to the formation of a relatively pure 

monoclinic phase of VO2 nanoparticles. 

• Good film-forming promoter and adhesive behavior on many solid substrates 

• Exhibit good optical quality (high transmission in the visible range) 

• Mechanical strength  

• Amorphous structure of PVP also provide a low scattering loss 

• Improve anti-oxidation of VO2 film 
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   PVP has two mesomeric forms (Figure 1.10a) and can be expected to form a strong interaction 

with VO2 similar as shown by metal oxide interaction mechanisms, mainly by hydrogen bonding 

(Figure 1.10b) based on literatures [173, 174]. 

 
 

Figure 1.10 (a) two mesomeric forms [173] and (b) a schematic of the chemical interaction 

between metal oxide and PVP [174]. 
 

1.2.10 PMMA and P4VP polymers 

   Polymethylmethacrylate (PMMA) is an optically transparent polymer with refractive index of 1.49 

[175]. Hydrophobic PMMA can outstand weather resistance and scratch resistance and it is generally 

used as a replacement for window glass due to its high impact strength, shatter-resistant properties, 

favorable processing and lightweight, low gas permeability, and good dimensional stability [176-178]. 
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Films with high water-repellent surfaces are of interest for application in smart windows and PMMA 

has been shown to provide other useful properties [179, 180]. Accordingly, PMMA was selected for the 

study of VO2/PMMA composite coatings in this thesis.  

   Poly(4-vinylpyridine) P4VP is produced by the thermally initiated free radical polymerization of 4-

vinylpyridine [170]. Applications of P4VP coatings include corrosion inhibition and humidity sensors 

[181, 182]. P4VP is used as an environmentally, novel responsive molecule because it is soluble in 

water and protonated at pH < 4.7, while being insoluble, deprotonated and hydrophobic in water at pH 

values  > 4.7 [183, 184]. Further, P4VP can coordinate with particles and stabilize them due to a good 

affinity for metals or metal oxide particles [185], hence being of interest for this thesis.  

1.2.11 Effective medium theory and dielectric matrix  

   Calculations based on effective medium theory have shown that thermochromic VO2 

nanoparticles dispersed in a dielectric host have advantages over a thin solid film. This composite 

can be viewed as an “effective medium” with properties being an intermediate between matrix and 

nanoparticles, giving superior solar energy transmittance modulation and luminous transmittance 

[158, 159, 186, 187]. The optical properties of the “effective medium” are dominated by an 

effective dielectric function εMG according to: 

ɛ𝑀𝐺 = ɛ𝑚

1 +  
2
3 𝑓𝛼

1 −  
1
3 𝑓𝛼

 (1.2) 

Here, (f) is the filling factor, for example, the volume fraction inhabited by particles and (εm) is 

the dielectric permeability of the matrix (f=0.01 is used in the calculations below). Equation (1.8) 

involves the Maxwell-Garnett theory, which is suitable for a topology with nanoparticles imbedded 

in a continuous matrix [188, 189]. There are other effective medium formulas that are significant 
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to different nano-topologies. However, they correspond in the dilute limit, therefore, equation (1.8) 

can be applied without any deficit of universality. 

(α) of equation (1.8) is obtained by: 

𝛼 =
𝜀𝑝 − 𝜀𝑚

𝜀𝑚 − 𝐿 (𝜀𝑝 − 𝜀𝑚)
 

 

(1.9) 

Where (L) is an appropriate depolarization factor and (εp) is the dielectric function of the particles. 

Spheres are characterized by L=1/3.  

1.3 OBJECTIVES 

   One of the major challenges which has limited the application of a VO2 (M/R) system for smart 

windows is to simultaneously and significantly improve both the solar modulation efficiency 

(ΔTsol) and luminous transmittance (Tlum) through an economical process [78, 136]. When ΔTsol is 

high, the Tlum is low or vice versa [190]. Though extensive efforts are presented, the problem is 

still unsolved, which is critical for the application of VO2. VO2-based films should meet the 

following criteria in order to be utilized in large scale on buildings : Tlum ≥ 40% and ΔTsol ≥ 10% 

[78, 158]. ΔTsol is the key factor to evaluate the effectiveness of energy efficiency windows, which 

is the difference in solar transmittance between the transparent state at low temperature and opaque 

state at high temperature [191]. Luminous transmittance (Tlum) is also another important evaluation 

for visual contact between people who reside inside a building and an outside environment [192]. 

The performance can be further enhanced by improving the chemical stability of VO2, and 

reducing the hysteresis width (i.e. the difference in phase transition (Tc) between the heating and 

cooling processes) for fast switching response to environmental temperature [193, 194].  
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   Additionally, VO2 is not immediately applicable to application in smart windows because it has 

a high Tc of 68 °C [195, 196].  This temperature is too high to sustain a comfortable temperature 

for people inside buildings. The ideal transition temperature(Tc) for comfort temperature zone 

should be near room temperature ~25 °C [78].  

   Moreover, high energy is consumed in the fabrication process for making the VO2 films which 

would make their cost high. Usual doping process for VO2 is done by a hydrothermal method 

which consumes significant energy for heating the water. For example, doped VO2 was 

synthesized by Srirodpai et al. [134], Wang et al. [136], Liang et al. [31], Zhang et al. [197], Chen 

et al. [77] and Zhang et al. [198] at 180-280 °C for 24-72 h, besides to an additional annealing was 

required for post heat treatment. The expensive fabrication method limits the application of 

VO2 smart windows and finding a method for doping with less usage of energy is a big challenge.  

   Further, non-green solvents are extensively identified to be of great environmental concern and 

replacing them with ‘green’ solvents in the synthesis of VO2 without effecting the reaction 

outcome is an advantageous to minimize the environmental impacts [199]. 

   To tackle the above problems, in this thesis, solution-based methods which include 

hydrothermal, reflux and room temperature methods, all using water as a green chemistry solvent, 

to improve the thermochromic and optical properties of VO2 smart films. Low temperature reflux 

doping for the synthesis of large batch W-doped VO2 delivering PVP-coatings with high luminous 

transparency (Tlum) and excellent solar modulation efficiency (ΔTsol) sufficient for smart windows 

(Ch. 2). The hydrothermal synthesis of W- and Mo-doped VO2 (M) particles were examined to 

reduce the Tc and fabricate VO2/PVP coatings with excellent infrared transmission modulation 

(Ch. 3). The synthesis of chemically stable VO2/SiO2 composites with high IR modulation coating 
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were examined in Ch. 4. The room temperature synthesis of VO2(M) and W-doped VO2(M) were 

found to reduce energy consumption in the process for high IR switching efficiency coatings with 

excellent NPs dispersion using P4VP and hydrophobic PMMA polymers (Ch. 5). 
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Chapter 2 

Aqueous Based Reflux for the Synthesis of W-doped VO2 

Delivering PVP-Coatings with High Luminous Transparency and 

Solar Modulation Efficiency 

 

ABSTRACT 

The preparation of VO2-based polymer coatings with simultaneously high visible transmittance 

and high solar modulation ability has been elusive for smart window design. In this work, reflux 

synthesis uisng a green chemistry water-based approach is examined with ammonium 

metavanadate as a non-toxic precursor, being reduced by aspartic acid for the synthesis of 

monoclinic vanadium dioxide [VO2(M)]. The optimum synthesis conditions were determined for 

synthesising an oxidation stable, W-doped, monoclinic vanadium oxide showing a low transition 

temperature (Tc) between its monoclinic and tetragonal phases with small hysteresis.  

Systematically, the molar ratio of ammonium metavanadate and aspartic acid, the annealing 

temperature and annealing time on the resulting VO2(M) crystal structure were varied. The 

results showed that an aspartic acid/NH4VO3 molar ratio of 0.6/1, calcined at 800 °C for 2 h 

gave VO2(M) in high yields without containing V2O5, which is considered a toxic byproduct 

to be avoided. Optimized VO2(M) was then doped with tungsten with nominal 

concentrations up to 4 at. % with the annealing conditions optimized. The lowest Tc of 53.6 

°C was found at 3 at. % W-nominal doping concentration with an 800 °C annealing for 2 

h. This material was shown stable against oxidation and exhibited a visible transparency 
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(Tlum) of 68.3% at 22 °C and a solar modulation efficiency (ΔTsol) of 20.4% between 22 °C 

and 80 °C in a polyvinylpyrrolidone (PVP) coating. In addition, a pure VO2(M) phase was 

achieved at lower annealing temperatures and shorter times with the addition of W or PVP, 

which was not possible for un-doped or the pristine sample. 

 

KEYWORDS: vanadium dioxide (VO2), semiconductor-metal transition (SMT), phase 

transition (Tc), luminous transmittance, (Tlum), solar modulation efficiency (ΔTsol). 
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2.1 INTRODUCTION  

Vanadium dioxide (VO2) has many polymorphs including tetragonal rutile-type VO2(R), 

and at least three metastable phases [1]. Of particular scientific and technical interest is the 

thermodynamically stable monoclinic phase, VO2(M), because of its unique optical and 

electrical properties [2]. When VO2(M) is heated, it undergoes a reversible, first order 

semiconductor-metal transition (SMT) at 67°C, also called the critical temperature (Tc) [3]. 

In this transition, its crystal structure changes from monoclinic VO2(M) (at low 

temperature) to tetragonal VO2(R) (R = rutile) (at high temperature) [4]. The low 

temperature semiconductor phase VO2(M) is near-infrared (NIR) transparent, whereas the 

high temperature metallic VO2(R) phase is highly NIR reflective with nearly maintained 

visible transmittance [5]. Exhibiting this unique low temperature SMT feature, VO2 has 

many potential applications in optical and electrical switching devices, smart window 

coatings, as well as sensors and transducers [6, 7]. Smart coatings, which use the large 

optical property alterations of VO2 with temperature change is of interest here. For instance, 

VO2(M) coated “smart” windows can support the reduction of heating/cooling costs by 

transmitting available NIR sunlight to enter rooms through the windows on cold days while 

keeping rooms cool in the summer on sunny days by reflecting the undesired NIR [8].  

Several methods can be used to prepare VO2 coatings, e.g. vapor-based deposition techniques. 

But these methods are expensive and complex due to high cost equipment and in addition, 

difficulties in controlling the variable valance states of vanadium ions [9, 10]. Wet chemical 

approaches, on the other hand, show significant advantages in the fabrication of VO2 coatings in 

comparison to traditional techniques including simple preparation approaches, low cost, short 

production times, scalability, and high flexibility in the selection of substrates [10]. A variety of 
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metals can be doped into VO2 (M) using wet chemistry to tailor the Tc of VO2 (M/R) [11, 12]. Tc 

can be decreased by using high-valent cations (Nb5+, Mo6+ and W6+) or increased by doping VO2 

with low-valent cations (Al3+, Cr3+, Ti+4 and Fe3+) [7]. Among many dopants, W is found to be 

most effective to reduce Tc of VO2 [13]. However, to date, several barriers have not been 

overcome to permit the use of VO2(M/R) in industrial applications. How to synthesize scalable 

VO2 with high yield, achieve low-cost processing, and simultaneously enhance both the luminous 

light transmission (Tlum) and the solar modulation efficiency (ΔTsol) of VO2 containing the films 

has not been achieved. For example, Gao et al. prepared VO2 nanocomposite foils based on 

SiO2/VO2 core/shell structures to obtain a Tlum of 55.3% [14, 15]. However, ΔTsol exhibited only 

7.5%, in addition to the very small batch size (0.125 g of V2O5) with complex steps such as heating 

in an autoclave at 220 °C for 24 h. There are several attempts [13, 15-27], still none have reached 

sufficient luminous light transmission and/or solar modulation efficiency (a brief overview can be 

found in Appendix A).  

Various reactions of reductants and vanadium precursors have been investigated in literature. 

Nonetheless, in this work we examined the novel synthesis of VO2(M) by using a low toxicity 

vanadium precursor, i.e. ammonium metavanadate (NH4VO3), which was reduced with the 

electron donor, L-aspartic acid (C4H7NO4), using a water-based approach. Our objective was to 

produce VO2 (M) particles with the ability to simultaneously improve ΔTsol and Tlum of VO2 

containing polyvinylpyrrolidone (PVP) coatings. First, the optimal molar ratio of reagents for the 

synthesis of VO2 were investigated at various annealing temperatures and times. Then, the effect 

of tungsten (W) on Tc, the monoclinic phase and the chemical stability of VO2 was examined using 

the optimized conditions. The present work demonstrates a new, green synthetic route for 

achieving high yield (> 90%, yield is the ratio of actual yield (experimental) to theoretical yield 
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expressed in percentage) for W-doped monoclinic VO2. It is shown that for nominally 3 at. % W-

doped VO2/PVP coatings, satisfactory optical properties with simultaneous improvement of both 

Tlum (68.3% at 22 °C) and ΔTsol (20.4%) is achieved. The nominally 3 at. % W-doped VO2/PVP 

coating displayed an acceptable transition temperature of 53.6 °C, which moves the material closer 

to an application in smart windows where a Tc closer to 30 °C is required. 

2.2 EXPERIMENTAL SECTION  

2.2.1 Materials 

L-aspartic acid (C4H7NO4, ≥ 99%, HPLC), ammonium metavanadate (NH4VO3, ≥ 99%, 

A.C.S. reagent), polyvinylpyrrolidone (PVP, average molecular weight 40 kDa) and 

tungstic acid (H2WO4, 99%) were purchased from Sigma-Aldrich, Canada. Anhydrous 

ethyl alcohol was purchased from Commercial Alcohols, Inc., Canada. Microscope glass 

slides were purchased from VWR International. All the chemicals were used as received 

without any further purification. 

2.2.2 Synthesis of VO2 and W-doped VO2 particles 

The synthesis of VO2(M) and W-doped VO2(M) was carried out by a simple solution-

based approach which is easily scalable. In a typical synthesis, 3.0 g of ammonium 

metavanadate were reduced by 2.0 g of aspartic acid in 50 mL of distilled water under 

magnetic stirring. After refluxing at 100 °C for 2 h, a black solution was obtained which 

indicated a reduction of vanadium (V) into vanadium (IV). For the preparation of W-doped 

VO2(M), different concentrations of H2WO2 (1 - 4 at. %) in the ammonium metavanadate were 

used. Precipitates, doped or un-doped, were isolated by centrifugation and dried overnight 

in an oven at 50°C. Then calcination under argon gas (Praxair, Ultra High Purity) in a tube 
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furnace (F21100, Barnstead Thermolyne Corporation) at various temperatures (450 – 800 

°C) and times (0.5 - 2 h) followed.  

The following reaction mechanism (Scheme 2.1) is proposed based on Sherigawa et al. [28] 

and Booth et al. [29]. 

 

 

Scheme 2.1 Diagram of ammonium metavanadate reduction by aspartic acid. 

 

2.2.3 Fabrication of VO2-PVP Coatings on Glass 

In a small vial, 0.12 g of PVP and 0.12 g of calcined VO2 or W-doped VO2(M) powders 

(800 °C-2 h) was mixed with 3 mL of ethanol and ultrasonicated (B2500A-MTH, VWR)) 

at 50 °C for 60 min. To prepare the coatings, 0.3 - 0.5 mL of the VO2/PVP solution was 

spin-coated (WS-400B-6NPP-Lite, Laurell) on glass substrates at 1500 rpm for ca. 10 s. 
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Sucessively, the films were dryed in an oven (V0914C, Lindberg/Blue MTM) at 80 °C for 

30 min. The approximate thickness of the coatings were ~300 nm mesuared by AFM. 

Similarly, in a small vial, 0.12 g of PVP and 0.12 g of the as synthesized VO2 or W-doped 

VO2(M) powders was mixed with 3 mL of ethanol and ultrasonicated (B2500A-MTH, 

VWR)) at 50 °C for 60 min. To prepare the coatings, 0.3 - 0.5 mL of the VO2 (un-

calcined)/PVP solution was spin-coated on glass substrates at 1500 rpm for ca. 10 s. 

Sucessively, the films were dryed in the oven at 80 °C for 30 min. Then, the VO2/PVP 

coated glass was calcined under argon gas (Praxair, Ultra High Purity) in a tube furnace 

(F21100, Barnstead Thermolyne Corporation) at 500 °C for 30 min. 

2.2.4 Characterization 

   The synthesized VO2 was examined by X-ray diffraction (XRD; Bruker D2 phaser 

powder diffractometer, Billerica, MA, USA) using Cu Kα radiation (λKα = 1.54059 Å) with 

a scanning rate of 0.25°/second. The transition temperatures of VO2 were determined by 

differential scanning calorimetry (DSC; SDT Q600, TA Instruments, USA) using a 

cooling-second heating-cycle between 10 °C and 100 °C. The data were analyzed via the 

instrument’s software (Universal Analysis 2000, TA Instruments, USA). The optical 

transmittance was measured using a Shimadzu UV-3600 UV-vis-NIR spectrophotometer 

(Shimadzu, Kyoto, Japan) in the wavelength range of 250 – 2500 nm. The temperature was 

controlled using a Julabo F12-Refrigarated/Heating Circulator (Julabo GmbH, Seelbach, 

Germany). XPS analysis was carried out using a Kratos Axis Ultra spectrometer (Kratos, 

Manchester, UK) equipped with a monochromatic Al Kα source (15 mA, 14 kV). Prior to 

measurements, the instrument was calibrated using the Au4f7/2 line (83.96 eV) of metallic 

gold. For calibration of the spectrometer’s dispersion, the Cu2p3/2 line (932.62 eV) of 

https://www.google.ca/search?q=Billerica+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooTjarUOIAsUuqqjK0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUA-OdHIEQAAAA&sa=X&ved=0ahUKEwi14JWb9c7UAhWe14MKHbTQBKsQmxMIswEoATAY


54 

 

metallic copper was used. The Kratos charge neutralizer system was used for all specimens. 

Survey scan analyses and high resolution analyses were carried out evaluating analysis 

areas of 300 x 700 μm with a pass energy of 160 eV and 20 eV, respectively. Spectra were 

then charge corrected to the main line of the carbon 1s spectrum (adventitious carbon) set 

to 284.8 eV and analyzed via the XPS software (CASA, version 2.3.14). V2p and O1s were 

curve-fitted following the procedure described by Biesinger et al. [30]. To characterize the 

VO2 particles’ sizes and their aggregation in the polymer coating on glass, a conventional 

optical microscope (Nicon, Eclipse TE 300, Inverted Microscope; objective: Nipon Plan 

Fluor 4x, Tokyo, Japan) was used and micrographs were analyzed via the imaging software 

ImageMaster (version 5, PTI incorporated USA). A Veeco diMultiMode V atomic force 

microscope (AFM, Veeco, Plainview, NY, USA) was used to meaure the thickness of the 

coatings via the Nanoscope V7.30 program software. EVA Software (Bruker D8 Advance) 

was used for VO2 phase analysis by interpretation of XRD data. The particle sizes of VO2 and its 

aggregates were measured using the Malvern Zeta-sizer Nano-ZS (Dynamic Light Scattering 

instrument (Malvern, UK).  

 

 

 

 

 



55 

 

2.3 RESULTS AND DISCUSSIONS 

2.3.1 Optimization of Molar Ratios of Aspartic acid/ NH4VO3 and Calcination Parameters 

   Under refluxing water, various molar ratios of aspartic acid/NH4VO3 (1.3/1 - 0.2/1), calcination 

temperature (450 – 800 °C) and calcination times (1 - 4 h) were examined. The XRD spectra of 

VO2 prepared with systematically varying molar ratios (aspartic acid/ NH4VO3: from 1.3/1 to 

0.2/1), and calcined at 800 °C for 1 h, 2 h and 4 h are shown in Figure 2.1. The main products 

identified in the XRD spectra were VO2 (M), V2O3 and V2O5, respectively with minor products 

being V3O7 and V5O9. The Bragg peaks of VO2 (M) are indexed by stars (*), the ones from V2O3 

by triangles (Δ), the peaks of V2O5 by rings (O), ϴ indexes V3O7, and © indexes V5O9. The molar 

ratios and annealing times that exhibit diffraction peaks which can be assigned solemnly to the 

pure monoclinic VO2(M) phase (*) (JCPDS card no. 43-1051) [20] for 2 h calcination time at 

800 °C were at the molar ratios 0.7/1 and 0.6/1 (Figure 2.1b). When the concentration of aspartic 

acid was higher (i.e., aspartic acid/ NH4VO3: 0.8/1 to 1.3/1), V2O3
 (Δ) (JCPDS no. 34-0187) [31] 

was obtained at all annealing times. At lower aspartic acid/ NH4VO3 ratios, i.e. 0.4/1 to 0.2/1, V2O5 

(O) diffraction peaks appeared in the products for all annealing times. 
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Figure 2.1 The XRD spectra of VO2 prepared with various molar ratios (aspartic acid/ NH4VO3: 

1.3/1 to 0.2/1) and annealed at 800 °C for (a) 1 h, (b) 2 h, and (c) 4 h. * indicate the Bragg peaks 

of VO2(M), Δ of V2O3, O of V2O5, ϴ of V3O7 and © of V5O9. 

 

 Powder diffraction software (EVA) was used for phase identification and quantitative phase 

analysis of the “0.7/1” and “0.6/1” samples (yielding the highest monoclinic VO2(M) amounts) for 

all calcination times (Figure A1-A6). The results are summarized in Table 2.1a showing that the 

“0.7/1(2 h)” sample yielded the highest amount (91.6%) of the desired material, monoclinic 

VO2(M). All “0.7/1” and “0.6/1” samples showed VO2(M) and V2O5 phases, besides the “0.6/1(2 

h)” sample which contained 29% of triclincVO2(T). Since triclinic VO2(T) is an intermediate 
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between the two monoclinic phases, VO2(M1) and VO2(M2) [2], the 0.6/1 molar ratio was chosen 

to be continued for more in-depth examination.  

   Figure 2.2 presents the XRD spectra of “0.6/1” samples before and after annealing examining 

the effects of calcination temperature between 450 °C and 800 °C for 1 and 2 h (VO2(M) and V2O5 

indexed identical to Figure 2.1; V4O9 and VO2(B) indexed by (Δ) and (Θ), respectively). Pure 

VO2(M) was obtained only when annealed at 800 °C for 2 h (Figure 2.2). The Bragg peaks of VO2 

became more dominant and narrower as calcination temperature increased to 800 °C for 2 h, 

indicating that larger crystals are formed at higher calcination temperature, which was described 

earlier as a thermally promoted crystallite growth [32]. Because the size of particles 

increased attributed to agglomeration at higher calcination temperature, the temperature 

effects above 800 °C were not examined. 
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Figure 2.2 XRD spectra of the “0.6/1” samples before and after annealing for (a) 1 h and (b) 2 h 

at temperatures from 450 °C to 800 °C. * indicate the Bragg peaks of VO2(M), Θ of VO2(B), O 

of V2O5 and Δ of V4O9. 
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   The phase transition (Tc) of VO2 was characterized with DSC by monitoring the changes in latent 

heat [33]. DSC spectra of VO2 prepared with varying molar ratios of aspartic acid/ NH4VO3 from 

1.3/1 to 0.2/1, and calcined at 800 °C for 1 h, 2 h and 4 h were taken (Figure 2.3a-c). Figure 2.3d 

shows a DSC of 0.7/1 and 0.6/1 molar ratio samples, annealed for 2 h, and are compared to a 

commercially available sample of VO2 (latent heat 26J/g, Aldrich).  
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Figure 2.3 DSC spectra of VO2 prepared at aspartic acid/ NH4VO3 molar ratios from 1.3/1 to 

0.2/1, annealed at 800 °C for (a) 1 h, (b) 2 h, and (c) 4 h. d) DSC spectra of VO2 prepared at 

aspartic acid/ NH4VO3: 0.7/1 and 0.6/1 molar ratio, and annealed at 800 °C for 2 h compared to 

commercially available sample of VO2 (Aldrich, 99.9%). All DSC measurements are in the same 

y-scale. 
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   The “0.6/1 (2 h)” sample shows the most pronounced DSC peak (Figure 2.3b) at the critical 

temperature (Tc) of 68°C, as this sample does not contain V2O5 (Table 2.1a) (data from EVA 

analysis of XRD spectra (Figure 2.1)). Table 2.1b summarizes the results of all DSC measurements 

for samples prepared with aspartic acid/ NH4VO3 molar ratios from 0.7/1 to 0.2/1 and annealed at 

800 °C for 1 h, 2 h and 4 h. It also depicts the highest latent heat (49.5 J/g) for the “0.6/1 (2 h)” 

sample which is higher than the latent heat of commercial VO2(M) samples (i.e., 41.87 J/g, 

Alfa Aesar) [34]. This indicates that the “0.6/1 (2 h)”-VO2 material is highly crystalline [35]. For 

all samples, the latent heat decreased with increasing annealing time to 4 h (Table 2.1b). A similar 

decrease in latent heat (from 23.9 to 11.2 J/g) was previously reported by Dong et al. when the 

annealing time was increased from 6 to 48 h [36]. Reducing the hysteresis (ΔT) is necessary to 

increase the switching speed between the two phases (VO2(M) ↔ VO2(R)) in response to a 

temperature change, ΔT (the difference in the peak position in the heating and the cooling cycle) 

[37]. A hysteresis larger than ~6 °C is not suitable for smart window applications with rapid 

switching response as it was shown in powder-based films prepared in previous studies which 

exhibited large hysteresis’s [7]. The transition temperature and the hysteresis of the “0.6/1 (2 h)” 

VO2 sample are 68 °C and 5.9 °C, respectively. This small hysteresis of 5.9 °C is noticeably lower 

than values between 7.1-15.9 °C reported in literature [1, 7, 37-39]. 
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Table 2.1 (a) sample composition of the “0.7/1” and “0.6/1” for all calcination times (data from 

EVA analysis of XRD spectra (Figure 2.1)), and (b) DSC results for all samples prepared with 

aspartic acid/ NH4VO3 molar ratios from 0.7/1 to 0.2/1 and annealed at 800 °C for 1 h, 2 h and 4 

h. Samples without endothermic or exothermic peaks are omitted.  

 

   DSC spectra of the “0.6/1(2 h)” samples were measured both in the un-calcined state and 

calcined at temperatures between 450 °C and 800 °C as shown in Figure 2.4. The heights of the 

endothermic and exothermal peaks considerably increased with increasing calcination 

temperature. In parallel, the latent heat increased from 0.08 to 49.5J/g (Figure 2.4), and the 

hysteresis decrease from 8.7 to 5.9 °C (Table 2.2). The lower latent heat with wider hysteresis at 
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the low annealing temperature is due to smaller average particle sizes of the VO2 (Table 2.3) [12, 

32]. Appropriate, high annealing temperature and time are essential for obtaining highly 

crystalline VO2(M). Based on the above analysis and discussion, “optimized conditions” 

for pure monoclinic VO2 is an aspartic acid/ NH4VO3 ratio of 0.6/1, calcined at 800 °C for 2 

h.   
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Figure 2.4 DSC spectra of the “0.6/1 (2 h)” samples for calcination from 450 °C-800 °C. All DSC 

measurements are in the same y-scale. 
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Table 2.2 DSC results of VO2 prepared at an aspartic acid/ NH4VO3 of 0.6/1, annealed at 

different temperatures for 2 h. 

 

The average size of VO2 particles were measured with the nanosizer and the polydispersity index 

(PdI) calculated using nanosizer software (Table 2.3). For this purpose, the materials were 

dispersed in distilled water and ultrasonicated (B2500A-MTH, VWR) for 10-15 min to “dissolve” 

the agglomerates and yield individual particles. 

Table 2.3 Average size of VO2(M), annealed at 450-800 °C for 2 h. Polydispersity Index (PdI). 

 

2.3.2 The Effect of Tungsten Doping on the Monoclinic Phase and Transition 

Temperature of VO2 

   Tungsten (W)-doping has been well documented to lower VO2’s Tc [13]. However, it is 

not clear from the literature on how the VO2(M) phase is affected by W doping at different 

concentrations or on the role of synthesis for dopant integration. This section examines the 
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green reflux water-based method instead of doping by using the high-energy consumption, 

hydrothermal method. W-doped VO2 samples were prepared using W-concentrations of 0 

(un-doped), 1, 2, 3 and 4 at. % at the “optimized conditions”. The XRD spectra of W-doped 

samples (all nominal concentrations at annealing temperatures of 450 °C, 500 °C and 800 

°C) are depicted in Figure 2.5. The peaks of VO2(B) disappear when doped with W and a 

pure VO2(M) phase was achieved using lower annealing temperatures and shorter times 

(Figure 2.5a). For example, a pure VO2(M) phase (without any additional diffraction 

peaks), is obtained for 1 and 3 at. % W-doping with an annealing temperature of 450 °C 

for 2 h, and 3 at. % W-doping annealed at 500 °C for 30 min, which was not possible 

without doping. Pure VO2(M) was also obtained for 2 and 3 at. % W-doping annealed at 

800 °C for 2 h (Figure 2.5b). These results agree with Chen et al. [1] and other previous reports 

[40, 41], indicating that certain doping levels of W could avoid the VO2(B) phase. The 

angular position of the strongest XRD peak, the (011)-peak of VO2(M) located at 27.7°, was stable 

with doping, except for the 3 at. %W-doped sample annealed at 450 °C for 2 h, which is 

shifted by 0.3° to 28°. This small shift to a higher angle indicates a decrease in the crystal lattice 

spacing according to Bragg’s equation (𝑑 = 𝜆/2sin𝜃: d spacing, λ wavelength of x-ray, θ 

diffraction angle) [42]. The stability of the diffraction peak position implies a small real doping 

level of W, systematically below the nominal values, and, therefore, no or very minor lattice 

distortions. XPS studies were performed (Figure 2.6) to measure the real W-concentrations. The 

real W-concentration for the nominal 3 at. % sample is 0.26 at. % (annealed at 800 °C for 2 h), 

less than 10% of the nominal value, confirming the hypothesis on the stable Bragg peaks. 

The Bragg peaks of W-doped VO2 samples are not intense and rather wide, indicating 

smaller size particles according to Scherrer’s equation [43]. This behavior is associated and 
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in accordance with the ability of W in restricting the growth process and aggregation of VO2 

particles [13].  

 

Figure 2.5 XRD spectra of W-doped VO2 with W-concentrations of 0-4 at. %, synthesized at an 

aspartic acid/ NH4VO3 molar ratio of 0.6/1: (a) calcined at 450 °C for 2 h and 500 °C for 30 min, 

and (b) calcined at 800 °C for 2 h. 
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XPS analysis was used to investigate the V and W valence states on the surface of the nominal 

3 at. % W-doped VO2(M) (annealed at 800 °C for 2 h) (Figure 2.6). (The choice for this particular 

sample was its best performance in luminous transmittance and solar modulation efficiency: see 

below). The small peaks of carbon, nitrogen, sodium and silicon are attributed to surface 

contaminations. Three peaks appear in the O1s region with the major peak at 530.3 eV, assigned to 

O2− ions in the V-O bonding [44] (Figure 2.6b). The other two peaks are assigned to oxygen in 

H2O and to hydroxide. The V2p1/2 peak splits into three peaks at 525.3 eV, 524.0 eV (major peak) 

and 522.9 eV (weak peak) ascribed to V(V), V(IV) (majority with 59.5%) and V(III). The V2p3/2 

peak also splits into three peaks at 518.0 eV [V(V)], 516.6 eV [V(IV)] and 515.5 eV [(V(III)]. The 

peak energy of V2p3/2 at 516.6 eV for V(IV) agrees well with the literature (516.3 eV) [45]. Weak 

peaks of W4f7/2 in Figure 2.6a,c reveal a W(VI) oxidation state, indicating that W was successfully 

doped into the VO2 lattice structure. 
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Figure 2.6 XPS spectra for a 3 at. % W-doped VO2 (M) sample annealed at 800 °C for 2 h: (a) 

survey spectrum, (b) core-level spectrum for V2p and O1s, and (c) core-level spectrum for W4f. 
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The effect of W-doping on Tc of VO2 was investigated by DSC (Figure 2.7). The DSC 

data are summarized in Table 2.4. An influence of the presence of W on Tc can only be 

detected in samples with 2 and 3 at. % nominal W concentration that are annealed at 800 °C 

for 2 h. For example, a very weak endothermic peak of the 3 at. % W-doped VO2 (annealed at 800 

°C for 2 h) sample was detectable at 53.6 °C, which is lower than the “classical” 68 °C for pure 

VO2. Based on literatures, responsible for this decrease in Tc is the band gap reduction and phase 

destabilization of VO2 [46]. There is only a small reduction of Tc by doping with the reflux method 

in comparison to the hydrothermal method [47]. This is due to the low real W-concentration in the 

samples synthesized with the reflux method. The intensity and the latent heat of the endothermic 

DSC peak for W-dope d VO2 (annealed at 800 °C for 2 h) sample decrease with increasing nominal 

W-concentration, however, this is not the case for samples annealed at lower temperatures (Figure 

2.7 and Table 2.4). The DSC data for the low annealing temperature samples look like an increase 

in pure VO2(M) phase with W-doping at small annealing temperatures. 
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Figure 2.7 DSC spectra of W-doped VO2 samples synthesized with an aspartic acid/ NH4VO3 

molar ratio of 0.6/1 annealed with various combinations of temperature (450, 500, 800 °C) and 

times (30 min, 2 h). Samples without (or not clear) endothermic and exothermic peaks are omitted. 

All DSC measurements are in the same y-scale. 
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Table 2.4 DSC results for all W-doped samples prepared at different annealing temperatures and 

times. Samples without endothermic or exothermic peaks are omitted. The bold material shows 

the smallest transition temperature. 

 

2.3.3 The Effect of Polyvinylpyrrolidone on the Monoclinic Phase of VO2  

Polyvinylpyrrolidone (PVP) acts as a film-forming promoter by improving physical gelation 

through interactions between opposite charges (carbonyl groups (-) and amine groups (+)) [48]. 

The interaction between aqua vanadium ions (VO2+) and negatively charged carbonyl groups of 

PVP in solution can improve the uniformity and dispersion of the precursor film, which should 

lead to the formation of a relatively pure monoclinic VO2 phase [48, 49]. As discussed above, pure 

VO2(M) cannot be obtained at low annealing temperatures without doping. However, when VO2 

is blended with PVP in ethanol, coated onto a glass substrate, dried in oven at 80 °C for 30min and 

calcined in coating format at 500 °C for 30 min, a pure monoclinic VO2 was found in the coating’s 

XRD spectra (Figure 2.8). This result suggests that the decomposition of PVP polymer effectively 

induced the formation of monoclinic VO2, probably due to interactions between VO2+ and PVP at 
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the atomic scale [48, 49]. When the film is annealed at 500°C, degradation of PVP releases 

reductive gases such as NH3 and prevent the oxidation of vanadium(IV). Conversely, when 

annealing at lower temperatures (400 and 300°C), the effect of the reductive gas NH3 essentially 

disappears. A similar impact of polymer degradation on crystallization in other systems was 

previously reported in literature [48, 50-53]. 

In Figure 2.8 all VO2(M) peaks are indexed [15]. The Bragg peaks are shifted considerably to 

higher diffraction angles, indicating a contraction of crystal lattice spacing. The underlying 

amorphous halos in the XRD spectra stem from the glass substrates. Mixing the PVP with the as 

synthesized VO2 and annealing them together seems to have an influence on the phase purity of 

the VO2(M) material [48]. This behavior was found for all samples imbedded in PVP, where 

annealing is ≥ 500°C.  
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Figure 2.8 XRD spectra of VO2 powder and VO2-PVP (un-doped) coatings on glass annealed 

together at 300, 400 and 500 °C for 30 min. 

 

2.3.4 Chemical Stability of W-doped VO2 

VO2(M) is thermodynamically unstable [15]. Therefore, switchable VO2 can gradually oxidize 

into un-switchable V2O5 when it is exposed to air or other oxygen containing environments at 

room temperature for long periods (i.e., 6 months). Oxygen treatment at elevated temperatures 

above 300 °C yields the same oxidation process [15]. Gao et al. were able to enhance the chemical 

stability of VO2(M) by synthesizing a core/shell VO2/SiO2 composite, encapsulating VO2 by SiO2 

[14]. However, they calcined their samples only 2 h in air. Here, 3 at. % W-doped material was 

subjected to a heat treatment in air for 0 to 8 h and then examined by XRD (Figure 2.9). The W-

doped samples depicted a monoclinic phase until 7 h of heat-treatment. The 8 h-sample started to 

show a V2O5 portion. The Bragg peaks of the heat-treated materials were stable in angular position. 

A significantly longer exposure time, longer than 30 min [54] or 5 h [55], reported in literature 

without oxidation, was achieved by W-doping.  
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Figure 2.9 XRD spectra of 3 at.% W-doped VO2 powders (annealed at 800 °C for 2 h) after heat 

treatment at 300 °C in air for 0 (blue) and 8 h (grey). * indicate the Bragg peaks of VO2(M) and 

O of V2O5. 

 

2.3.5 Optical Property of VO2-PVP Coatings 

Implementation of the VO2 in smart windows requires a high IR switching efficiency 

while keeping the visible transmission as high as possible. However, literature states for 

VO2 and W-doped VO2 that when visible transparency (Tlum) is high, the solar modulation 

efficiency (ΔTsol) is low and vice versa [56]. The optical modulation properties of VO2/PVP 

and W-doped VO2/PVP coatings on glass were investigated to evaluate their potential for usage in 

smart windows by measuring the optical transmittance at 22 °C and 80 °C (Figure 2.10). The 

integral solar transmittances, Tsol (250–2500 nm), and luminous transmittance, Tlum (380–780 nm) 

were calculated via equation (2.1): 
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𝑇𝑙𝑢𝑚/𝑠𝑜𝑙 =
∫ 𝜑𝑙𝑢𝑚/𝑠𝑜𝑙(𝜆)𝑇(𝜆)𝑑𝜆

∫ 𝜑𝑙𝑢𝑚/𝑠𝑜𝑙 (𝜆)𝑑𝜆
  (2.1) 

where T(λ) is the spectral transmittance at wavelength λ, φsol(λ) is the solar irradiance spectra for 

an air mass of 1.5. (An air mass of 1.5 corresponds to the sun positioned 37° above the horizon 

with a 1.5 atmosphere thickness. That corresponds to a solar zenith angle of 48.2°). φlum(λ) denotes 

the standard luminous efficiency function of photopic vision in the wavelength range of 380–780 

nm [57]. Solar modulation efficiency (ΔTsol) is obtained by the difference of Tsol (eq. 2.1) at 22 °C 

and 80°C. Table 2.5 summarizes the optical properties of coatings on glass fabricated with two un-

doped and two W-doped samples (The bold line depicts the data for the material with the most 

efficient optical characteristics for smart window application). The W3% 800 °C-2 h-PVP-coating 

showed improved optical properties with respect to the un-doped samples, and with substantially 

improved optical properties (Tlum,best = 47.6% and ΔTsol,best = 20.37%) compared to previously 

published W-doped VO2 synthesized with different strategies [13, 23, 57, 58]. (A brief overview 

can be found in Appendix A.)   

The addition of W under these synthetic conditions hinders the growth of VO2(M) particles, 

hence reducing the scattering of photons and leading to better optical properties and enhanced 

performance [13]. Despite, the un-doped VO2 having a higher crystallinity and higher latent heat 

than the doped one, the thermo-chromicity of the (W3% 800 °C-2 h) coating is higher. A higher 

phase purity of the VO2(M) in the doped coatings is claimed to be responsible. Figure 2.11 shows 

clear Bragg peaks arising from the W-doped VO2/PVP coating which are missing in the XRD 

spectrum of the un-doped VO2 /PVP coating. This suggests that both PVP and W-doping provoked 

an improvement of the VO2’s crystallinity. Photographs of un-doped and W-doped VO2/PVP 

coatings on glass at room temperature placed on white paper with black capital letters (UWO) are 
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shown in Figure 2.10c,d. The 800 °C coatings (calcined powder) show a light blue color wheras 

the calinced VO2/PVP coatings (500 °C ) are brown for both doped and undoped sampels. The 

brown color stems probably from an onset of PVP pyrolysis and an accumulation of carbon during 

the annealing process.  

 

Figure 2.10 Transmittance spectra of: (a) un-doped and (b) 3 at. % W-doped VO2/PVP coatings 

on glass. The coatings with only VO2 is being annealed at 800 °C for 2 h in powder form (red and 

blue data) and the calcined VO2/PVP coatings at 500 °C for 30 min (green and brown data). 

Photographs of VO2/PVP coatings on glass (800 °C: calcined in powder form, 500 °C: calcined in 

coating form) against white paper with black letters (UWO) with (c) un-doped and (d) 3 at. % W-

doped VO2. 
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Table 2.5 Optical properties of un-doped and W-doped VO2/PVP coatings on glass. The bold 

line depicts the data for the material with the efficient optical characteristics for smart window 

application. 

 

 

 

Figure 2. 11 XRD spectra of un-doped and W-doped VO2/PVP films. Powders annealed at 800 

°C for 2 h. 
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Figure 2.12 shows optical microscopy images of 3 at. % W-doped VO2/PVP coatings on glass, 

powders calcined at 800 °C for 2 h and coating calcined at 500 °C for 30 min. The calcined coating 

in (b) with the smaller calcination temperture show a higher dispersion of the particles and smaller 

particle aggregates than the coating in (a), powder calcined at 800 °C. Higher annealing 

temperatures obviously leads to larger particle aggregation in the PVP coating. 

 

Figure 2. 12 Optical micrographs of 3 at.% W-doped VO2/PVP coatings on glass (a) with powders 

calcined at 800 °C for 2 h and (b) with coating calcined at 500 °C for 30 min. 

 

2.4 CONCLUSION 

A synthesis strategy was examined for preparing VO2(M) by reacting ammonium metavanadate 

with aspartic acid in water under reflux. This simple, green chemistry-based approach was found 

scalable, giving a reproducible large batch of W-doped VO2 with a high yield (> 90%). The 

material exhibited a low transition temperature of 53 °C. The effect of W-doping and PVP on the 

phase purity of VO2(M) was investigated. The method required a high 800 °C calcination 

temperature to synthesize material with a pure monoclinic VO2 phase. The preparation of W-doped 

VO2(M)/PVP coatings on glass with a relative uniform distribution, however in aggregated form, 
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was achieved at much lower temperatures. It was found that W-doping improved the stability 

against oxidation in air of the VO2(M) to a non-switchable material. This is important for practical 

reasons like shelf-time before usage in a coating. An improvement in the optical properties, 

luminous transparency and solar modulation, in comparison to recent literature were achieved:  

Tlum,best = 68.30% at 22 °C and Tlum,best = 47.6% at 80 °C with an exceptionally high ΔTsol,best of 

20.37%. Consequently, the environmentally friendly synthesized W-doped VO2 material attained 

meets for the first time the target criteria for smart windows: a luminous transmittance (Tlum) and 

a solar transmittance modulation efficiency (ΔTsol) exceeding 40% and 10%, respectively [22]. 

Unfortunately, the critical temperature is not yet close to room temperature. 
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Chapter 3 

Hydrothermal synthesis of W- and Mo-doped VO2 (M) and their 

Optical Coatings 

ABSTRACT 

   The high yield synthesis of monoclinic vanadium dioxide (VO2(M)) in a short time with a room 

temperature transition temperature (Tc) is of interest to design and fabricate VO2-based smart 

windows with controlled/ automatically infrared transmission. We report in this work a novel 

VO2(M) polymorph synthesis with a batch size of 2g by reducing ammonium metavanadate 

(NH4VO3) with hydrazine using a hydrothermal method followed by a short time heat treatment. 

Flower-like and stick-shaped morphologies of W(tungsten)-doped VO2 and Mo(molybdenum)-

doped VO2 particles were obtained, respectively. Tungsten doping was more effective for lowering 

the phase transition temperature of VO2 (68 °C) to an ambient temperature (23 °C) compared to 

molybdenum doping (54.4 °C). Further, a high transition reduction efficiency of 23 K/at. % was 

attained for W-doped VO2 crystals. The thermochromic properties of VO2/PVP 

(polyvinylpyrrolidone) coatings on glass were investigated with un-doped coatings exhibiting high 

infrared modulation (up to 35% at 2000 nm), and simultaneously high visible light transmittance 

(> 62%). However, for the 1at. % W-doped coatings, high infrared modulation obtained (up to 

28% at 1500 nm) with visible transmittance (> 75%). This could open an economical way to large-

scale VO2 (M) particles synthesis to produce low cost smart windows. 
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KEYWORDS: monoclinic vanadium dioxide, VO2(M), ammonium metavanadate (NH4VO3), 

hydrothermal method, W-doped VO2, Mo-doped VO2, transition reduction efficiency, infrared 

modulation, visible light transmittance, PVP.  

3.1 INTRODUCTION  

   Commercial, residential and institutional buildings consume approximately 40% of total global 

primary energy mainly by space heating and cooling [1, 2], leading to a high carbon footprint. A 

substantial share of this energy is lost through windows by means of conduction and radiation. 

According to the Department of Energy of the United States, between 25-35% of energy in 

buildings is lost through windows [3]. Saving this energy requires new smart window designs, 

utilizing the available solar energy. Low emissivity energy efficient products, such as “Low-E” 

windows, have been developed, but they cannot alter their optical properties (wavelength 

depended transmission characteristics) in response to environmental temperature changes, thus 

limiting their energy efficiency [4, 5]. Electrochromic and gasochromic windows have been 

designed to save energy, but they are not able to intelligently change their optical properties in 

response to environmental conditions without an externally controlled stimulation [6, 7]. However, 

thermochromic vanadium dioxide (VO2) coated windows can automatically control their 

wavelength dependent transmission in direct response to environmental temperature changes [5]. 

VO2 undergoes a reversible first-order semiconductor-metal transition (SMT) at a phase transition 

temperature (Tc) of 68 °C [8]. When the temperature is below Tc, VO2(M) is a semiconductor with 

monoclinic crystalline structure which is transparent to infrared radiation (IR). However, when the 

temperature is above Tc, VO2(R) is a metal with rutile tetragonal crystalline structure which is 

reflective to IR [9]. Vapor-based deposition techniques are used to fabricate VO2 smart coatings 

or films, but these methods are expensive and complex due to high cost equipment and the 
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difficulty to control the various valances of vanadium ions [1]. Thus, solution-based techniques 

are preferable due to their low cost and scalability. Hydrothermal methods for example, have many 

advantages, such as low temperature processing, controllable crystalline size, ease of use at 

industrial scale, utilization of many substrates and being environmentally friendly [1, 4]. However, 

a Tc of 68 °C is not ideal for application at room temperature. Therefore, Tc of VO2 needs to be 

decreased to an ambient temperature for indoor comfort. This can be achieved by doping VO2 with 

high valance cations [10], such as W6+, Mo5+ and Nb5+. For example, Ji et al. [11] prepared VO2 

films with high optical thermo-chromic properties by implementing a hydrothermal method for 

coating VO2 nanoparticles on a high transparency Teflon tape. However, they used a small scale 

synthesis; only 0.3 g of V2O5 was used as precursor (that is highly toxic [4], therefore undesirable 

for scale-up). Their Tc reduction efficiency by tungsten doping was in the order of 21.96 K/at. %w 

in the doping range from 0 to 2.5 at. %w [11]. Lianget al. [12] used a one-step hydrothermal 

synthesis of W-doped VO2(M) nanorods at 240 °C for 48 h. A good transition reduction efficiency 

of 24.52 °C/at. %w was obtained, despite only 1.092 g of V2O5 being introduced to produce 0.996 

g of VO2 (M) using a 100 mL Teflon-lined stainless steel autoclave [12]. Gonçalves et al. [13] 

produced VO2 nanoparticles by hydrothermal synthesis assisted by microwave irradiation in 20 ml 

of distilled water. However, the final transition temperature obtained was only 49 °C for a 3% 

WO3 sample. Lei, et al. [14] used a hydrothermal synthesis at 180 °C for 48 h to fabricate VO2-

based films with a high transition temperature. Here only 0.5 g of NH4VO3 precursor was used 

which is less toxic than V2O5[14-16]. Dong et al. [17] also used a small scale hydrothermal reaction 

(0.25g of V2O5) with a W6+ dopant efficiency rate of 19.8 K/at%. Chen et al. [2, 18], Shen et al. 

[19], and Dai et al. [20] synthesized VO2 with a small batch size in the order of 0.114 g using a 50 

mL Teflon-lined stainless steel autoclave.  
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   In this study, the reaction parameters (i.e., concentration, temperature and time) were 

investigated for the synthesis of VO2 (M) using a hydrothermal synthetic system by reducing 

NH4VO3 with N2H4 in the green solvent, water. The influence of the parameters including 

calcination temperature and ramping rate were examined on the size, morphology, phase purity, 

phase transition temperature, latent heat and thermal hysteresis of Mo and W-doped VO2 (M) with 

Mo and W contents from 0 to 4 at. % . The optical and thermochromic properties of  (0-4 at. %)W-

doped VO2/PVP coated glasses were measured by analyzing the visible and near infra-red 

transmittance at low (below Tc) and high (above Tc) temperatures. Our objective in this study was 

to synthesize a large batch of W-doped VO2(M) under hydrothermal conditions, with high yield 

and low Tc, providing a high IR switching efficiency in the heat concentrated region of the 

electromagnetic spectrum (300-1500 nm range). In contrast to other research groups, our 

experiments utilized a large-batch hydrothermal synthesis of pure-phase VO2(M) by reacting 3g 

of non-toxic NH4VO3 precursor with hydrazine. Up to 2g of VO2(M) was produced using a 125 

mL Teflon-lined stainless-steel autoclave at 260 °C for 24 h. Hence, we can state that the batch 

size of VO2 produced is between 2-18 times more than that obtained by other groups. Additionally, 

the Tc was lowered to room temperature (17 °C, 21 °C and 23 °C), while the transition reduction 

efficiency of W-doped VO2 crystals was 23 K/at. %w, which is comparable with the literature 

efficiencies. We prepared VO2/PVP coatings on glass which exhibited excellent thermochromic 

properties, showing good visible transmittance and high infrared (IR) modulation efficiency. A 

high infrared modulation of 28% was obtained for W-doped VO2 at 1500 nm. The presented 

method is facile, scalable, low cost which can potentially help commercialize the application of 

VO2 in smart windows. 
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3.2 EXPERIMENTAL SECTION 

3.2.1 Materials 

   Ammonium metavanadate (NH4VO3, ≥99%, A.C.S. reagent), hydrogen peroxide solution (H2O2, 

30 wt. % in H2O, A.C.S. reagent), hydrazine solution (N2H4, 35 wt. % in H2O), tungstic acid 

(H2WO4, 99%) and molybdic acid (H2MoO4, ≥ 85.0% MoO3 basis, ACS reagent) and 

polyvinylpyrrolidone (PVP, average molecular weight 40 kDa) were purchased from Sigma-

Aldrich, Canada. Ultra-high purity Argon (99.9%) was purchased from Praxair, Canada. 

Anhydrous ethyl alcohol was purchased from Commercial Alcohols, Inc., Canada Microscope 

glass slides were purchased from VWR International (Radnor, PA, USA). All chemicals were used 

as received without further purification.  

3.2.2 Synthesis of VO2, W-doped VO2 and Mo-doped VO2 particles 

 

   Briefly, 2.5 mL (0.48 mol/L) of 30 wt. % H2O2 was added dropwise to an aqueous solution 

containing 3.0 g (0.50 mol/L) of NH4VO3 and 47.5 mL of deionized water. The orange solution 

turned viscous after stirring at room temperature for 24 h. After that, 1 mL (0.22 mol/L) of 35 wt. 

% N2H4 was added dropwise to the above viscous solution, and after 20 min, a rigorous bubbling 

occurred while the solution turned to black, indicating reduction of vanadium (V) to vanadium 

(IV). For the synthesis of W-doped VO2 or Mo-doped VO2 particles, various amounts of H2WO4 

or H2MoO4 were added into the black solution. The black solution, whether doped or not, was 

hydrothermally treated at 260 °C for 24 h in a 125-mL of Teflon-lined stainless-steel autoclave. 

Subsequently, the black product was isolated from the reaction mixture by centrifugation, washed 

with water and ethanol, then dried in a vacuum oven at 60 °C overnight. The dried powder was 

further calcined at 450 °C or 650 °C under argon gas for 1 h in a tube furnace prior to 
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characterization (yield > 89%). The expected chemical reduction of vanadium (V) to vanadium 

(IV) is shown in the reaction equation (3.1).  

 4 NH4VO3 + N2H4 → 4 VO2 + N2 ↑ + 4 NH3•H2O (3.3) 

3.2.3 Fabrication of VO2(M) and WxV(1-x)O2(M) based coatings  

   To prepare coatings on glass slides, 0.16 g of VO2(M) or of W(1-4 at. %)-doped VO2(M) 

particles (calcined at 450 °C) were dispersed in 2 mL of ethanol in a small vial, to which 0.08 g of 

PVP was added followed by sonication at 50 °C for 60 min. Subsequently, 0.3 - 0.5 mL of the 

above VO2/PVP solution was spin coated at 1500 rpm (revolutions per minute) for ca. 10 s onto a 

glass slide. The coating (thickness ~200 nm) samples were dried in a vacuum oven at 80 °C for 30 

min. 

3.2.4 Characterization 

   The crystallinity of the synthesized VO2 particles was examined by X-ray diffraction (XRD; 

Bruker D2 phaser powder diffractometer, Billerica, MA, USA) using Cu Kα radiation (λKα = 

1.54059 Å) with a scanning rate of 0.25°/second. The 2θ data was collected between 10° and 80° 

using a continuous scanning mode. The transition temperatures of VO2 were determined by 

differential scanning calorimetry (DSC; SDT Q600, TA Instruments, USA) using a cooling-second 

heating-cycle between 0-90 °C. The data were analyzed via the instrument’s software (Universal 

Analysis 2000, TA Instruments, USA). The optical transmittance was measured using a Shimadzu 

UV-3600 UV-Vis-NIR (Shimadzu, Kyoto, Japan) spectrophotometer in the wavelength range of 

250 – 2500 nm. The temperature was controlled using a Julabo F12-Refrigarated/Heating 

Circulator (Julabo GmbH, Seelbach, Germany). The infrared modulation at wavelengths 2000 nm 

and at 1500 nm can be obtained from equation ∆T(λ)=T(λ)s−T(λ)m [21], where s and m represent 

the semiconductor (at 22 °C) and metal (80 °C) phases, respectively. Scanning electron 

https://www.google.ca/search?q=Billerica+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooTjarUOIAsUuqqjK0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUA-OdHIEQAAAA&sa=X&ved=0ahUKEwi14JWb9c7UAhWe14MKHbTQBKsQmxMIswEoATAY
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microscopy (SEM, Quanta 200) was used to study the morphologies and dimensions of the 

particles. The particle aggregates in the polymer coating on glass substrates were investigated 

using a Hitachi S-4500 field emission SEM (Hitachi, Tokyo, Japan). Elemental analysis of the 

samples was studied using energy dispersive X-ray spectrometry (EDX) combined with scanning 

electron microscopy (SEM, Quanta 200). A Veeco MultiMode V (Veeco, Plainview, N, USA) 

atomic force microscope (AFM) was used to image the surface topography of VO2 coatings and 

to measure the thickness of the coatings via the Nanoscope V7.30 software. The particle sizes of 

VO2 particles were measured using the Malvern Zeta-sizer Nano-ZS (Dynamic Light Scattering 

instrument (Malvern, UK).  

 

 

 

 

 

 

 

 

 



92 

 

3.3 RESULTS AND DISCUSSION  

3.3.1 Characterization of VO2 particles 

   The reaction parameters (i.e., concentration, temperature and time) were investigated for the 

synthesis of VO2 (M) by reducing NH4VO3 with N2H4 in aqueous solution. Various concentrations 

of NH4VO3 (0.33, 0.50, 0.67 and 0.83 mol/L), N2H4 (0.22, 0.42 and 0.62 mol/L) and H2O2 (0, 0.48 

and 0.96 mol/L) as a function of N2H4 (0.22 mol/L), NH4VO3 (0.50 mol/L) and ((N2H4 (0.22 

mol/L), NH4VO3 (0.50 mol/L)), respectively were examined for the synthesis of VO2(M) as shown 

by XRD (Figure 3.1a-c). All samples in Figure 3.1 were calcined at 650 °C for 1 h. A rigorous 

bubbling during nitrogen release with a color change from white (without H2O2) to black solution 

was observed after adding N2H4, indicating reduction of vanadium (V) to vanadium (IV) [11]. As 

identified by XRD (Figure 3.1a), only the characteristic peaks of NH4VO3 (0.50 and 0.67 mol/L) 

samples agree with those of VO2(M) (JCPDS card no. 82-0661) [22], exhibiting a latent heat of 

35 J/g and 33 J/g, respectively. The Bragg peaks of VO2 (M) are indexed by stars (*). As for Figure 

3.1b, a good crystallinity phase of VO2(M) was only obtained for the N2H4 (0.22 mol/L) sample. 

To control the valance of vanadium and produce a vanadium precursor solution (NH4VO3.nH2O) 

with uniform reduction, various concentrations of H2O2 (0, 0.48 and 0.96 mol/L) were examined 

as presented by XRD (Figure 3.1c) [11]. Notably, only minor oxygen release was observed when 

H2O2 was first added to an aqueous solution of NH4VO3 due to the decomposition of H2O2 while 

forming the V(V) peroxo complexes [11]. As shown in Figure 3.1c, additional reflection peaks 

were presented in the XRD pattern of the H2O2 (0 mol/L) sample corresponding to VO2(B) phase 

(JCPDS data card 01-081-2392) [23]. However, when H2O2 (0.48 mol/L) was added, the VO2(B) 

phase disappeared and the latent heat increased from 35 J/g to 39 J/g, respectively. The Bragg 

peaks of VO2 (M) are indexed by stars (*) and the ones from VO2(B) by triangles (Δ). Meanwhile, 
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the intensity of the diffraction peaks at high concentration of H2O2 (0.96 mol/L) decreased 

tremendously due to low crystallinity. Various reaction temperatures (140 °C, 200 °C and 260 °C) 

were examined for 1 day, however, a good VO2(M) phase was only obtained at 260 °C (Figure 

3.1e). Since a high purity VO2(M) phase can only be synthesized at 260 °C with NH4VO3 (0.50 

mol/L), N2H4 (0.22 mol/L) and H2O2 (0.48 mol/L) concentrations, this reaction conditions were 

chosen to be continued for a more in-depth examination. Figure 3.1d provides the XRD patterns 

of VO2(M) for the reaction times 1, 3 and 6 days. The latent heat of SMT increased from 35 J/g to 

50 J/g and 52 J/g with increasing reaction time from 1day to 3 and 6 days, respectively. This change 

is attributed to a high crystallinity at longer reaction times [24]. Further, as the reaction time 

increases from 1day to 3 and 6 days, the width of the XRD diffraction peaks compressed, and the 

size of particles increased from 174 nm(±0.21) to 210 nm(±0.26) and 308 nm(±0.4), respectively.  
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Figure 3. 1 XRD spectra of VO2 (M) annealed at 650 °C for 1 h with variable reaction 

parameters. (a) Various concentrations of NH4VO3 as a function of N2H4 (0.22 mol/L), (b) 

various concentrations of N2H4 as a function of NH4VO3 (0.50 mol/L), and (c) various 

concentrations of H2O2 as a function of N2H4 (0.22 mol/L) and NH4VO3 (0.50 mol/L). Reaction 

of NH4VO3 (0.50 mol/L) with N2H4 (0.22 mol/L) at various (d) times and (e) temperatures. 
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   The influences of the calcination parameters including temperature and ramping rate on the size, 

morphology and phase purity of Mo and W-doped VO2 (M) with various nominal Mo and W 

contents from 0 to 4 at. % were investigated. W-doped VO2 and Mo-doped VO2 particles were 

synthesized by adding H2WO4 and H2MoO4, respectively. The XRD spectrum of VO2 after 

calcination at different temperatures and ramping rates containing various amounts of tungsten (0 

-4 at. %) are shown in Figure 3.2. Most diffraction peaks in Figure 3.2a are indexed to the crystal 

planes of VO2 (M) [22]. In the spectra of W-doped VO2 (1 at. %, 2 at. % and 4 at. %), some peaks 

of VO2 (B) are detected. The reason for the appearance of the VO2 (B) peaks is due to the low 

utilized annealing temperature of 450 °C with a low ramping rate of 10 °C/min. When the ramping 

rate was increased to 20 °C/min, the number of VO2 (B) peaks decreased. Only a few VO2 (B) 

peaks are seen for the 2 and 4 at. % W-doped samples (Figure 3.2b). Essentially, VO2 (B) is a 

precursor of VO2 (M). It can be transformed into VO2 (M) if calcined at higher temperatures under 

inert gas [25]. As seen in Figure 3.2c, when the annealing temperature was increased to 650 °C, 

the XRD peaks for samples at all tungsten concentrations could be indexed to a pure VO2 (M) 

phase. As seen in the enlargement of the (011) diffraction peak between 26° and 30° (Figure 3.2d-

f), there is no effect on the spectral position of the diffraction peaks at low tungsten concentration 

(1 at. %). However, with increasing tungsten concentration, the (011) diffraction peak shifted 

slightly toward lower angles. When the W concentration was increased, more substitution of W 

for V ions occurred in the VO2 (M) lattice. Since the radius of V cations (V4+
 for 6-coordinate) is 

58 pm, and that of W cations (W6+ for 6-coordinate) is 60 pm, the interplanar distance in the W-

doped VO2 must expand and the diffraction peaks shift to smaller angles [26, 27]. Hence the 

observed shifting of XRD spectra toward lower angles according to Bragg’s law [d = λ/(2sin θ)] 

suggests a successful W-doping into the VO2 (M) crystal lattice [26]. 
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Figure 3.2 XRD spectra of VO2 (M) with nominal contents of W (0 - 4 at. %). (a) Annealed at 

450 °C with ramping rate of 10 °C/min, (b) annealed at 450 °C with ramping rate of 20 °C/min, 

and (c) annealed at 650 °C with ramping rate of 20 °C/min. Enlarged (011) diffraction peak 



97 

 

between 26° and 30° for VO2 (M) with W concentrations 0 -4 at. %. (d) Annealed at 450 °C with 

ramping rate of 10 °C/min, (e) annealed at 450 °C with ramping rate of 20 °C/min, and (f) 

annealed at 650 °C with ramping rate of 20 °C/min. 

 

   Despite the success with the higher calcination temperature to synthesize W-doped VO2 (M), the 

same calcination condition (650 °C) did not lead to a conversion of VO2 (B) into VO2 (M) for the 

Mo-doped VO2; a significant quantity of VO2 (B) phase remained (Figure 3.3).  
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Figure 3.3 XRD pattern of VO2(M) with nominal contents of Mo (0-4 at. %) after calcination at 

650 °C with a ramping rate of 20 °C/min. 
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   The XRD spectra of VO2 with Mo-doping concentrations of 0-4 at. % after annealing at 450 °C 

with a ramping rate of 10 °C/min are shown in Figure 3.4a. The diffraction peaks can be indexed 

to the known crystal planes of VO2 (M) [22]. However, there were some diffraction peaks of VO2 

(B) detected for all Mo concentrations (except for Mo: 2 at. %). Surprisingly, the VO2 (B) phase 

decreased with increasing Mo concentration (the number of VO2 (B) phase peaks decreased with 

increasing concentration). Overall, the remains of VO2 (B) phase is much less than that of 650 °C. 

The enlarged (011) diffraction peaks for the different Mo concentrations are shown in Figure 3.4b. 

The Mo-doping shows only a small effect on the spectral position of the peak. Only the highest 

concentration of 4 at. % led to a slight shift to smaller angles: an increased interplanar distance. 

According to Shannon. [27] the radius of molybdenum cations (Mo6+ for 6-cooordinate) is 59 pm. 

This Mo-cation radius is less than that of the W-cation but still larger than that of V cation, leading 

to an increased interplanar distance.  
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Figure 3.4 XRD patterns of VO2(M) with nominal contents of Mo (0-4 at. %) after annealing at 

450 °C and ramping rate of 10 °C/min. (a) Full XRD pattern, and (b) enlargement of the (011) 

diffraction peak between 26° and 30°. 

 

   SEM images (Figure 3.5) show the morphology of un-doped (Figure 3.5a-c) and W-doped 

(Figure 3.5d-f) VO2 particles calcined at different temperatures. The SEM images show materials 

with nanoscopic structures. These images show that both calcination and W-doping change the 
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overall appearance. The 450 °C calcination of the un-doped VO2 leads to the disappearance of the 

flaky agglomerate structures and to the appearance of a nano-stick agglomerate structure. The most 

obvious morphology change appeared with the annealing of the un-doped material at 650 °C. A 

substantial increase in the size of the “individual” nanoobjects and a clear appearance of 

crystallinity is observed (Figure 3.5c). This nanoobject size growth due to a high annealing 

temperature mainly by Ostwald-ripening (dissolution of small grains and re-precipitation onto 

large grains) agrees well with the results obtained by Yueyan et al. [28]. Completely different 

morphologies were obtained for the W-doped VO2. Flaky structures are seen for the un-calcined 

W-doped VO2 (Figure 3.5d). This flaky morphology did not change when annealed at 450 °C 

(Figure 3.5e). However, at a 650 °C calcination, a flower like structure with lots of individual 

crystalline needles was obtained (Figure 3.5f). We assume that the differences in morphology 

stems from the W-doping. The size of the W-doped VO2 nanoobject is decreased due to reduction 

in crystallization ability for these particles with W-doping (i.e., intensified heterogeneous 

nucleation process) [10, 29]. Semi-crystalline structure with un-identified peaks were obtained for 

the un-calcined non-doped VO2 and 3% W-doped VO2 as shown by XRD spectra in Figure B1. 
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Figure 3.5 SEM images of un-doped and W-doped VO2 particles at different calcination 

temperatures. (a)VO2 before calcination, (b) VO2 (M) after calcination at 450 °C and (c) at 650 

°C. (d) 3 at. % W-doped VO2 before calcination, (e) 3 at. % W-doped VO2 after calcination at 

450 °C, and (f) at 650 °C. 
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   The presence and amount of V, W, and O in the synthesized materials was confirmed by 

quantitative EDX analysis (Figure 3.6). V and O peaks appeared in all samples, both doped and 

un-doped VO2. The existence of stoichiometric VO2 was confirmed by the intensities of the major 

peaks of V and O for un-doped VO2 (Figure 3.6a). Tungsten was found present for all W-doped 

VO2 samples. As an example, Figure 3.6b shows an EDX spectrum of a 3 at. % W-doped VO2 

sample. The real doping concentrations, c(W), of all W-doped samples are summarized in Table 

3.1. 

 

Figure 3.6 EDX spectra for (a) un-doped VO2 and (b) 3 at. % W-doped VO2. 

 

Table 3.1 Real W and Mo concentrations, c, for doped VO2 at different nominal contents 

(quantitative EDX data). 

 

   For the Mo doped samples, SEM images of 3 at. % Mo-doped VO2 are shown in Figure 3.7. The 

morphology is different from the W-doped VO2. The SEM image shows an agglomerate of needle 
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like-structures. This needle-like morphology may limit the dispersity of particles, leading to light 

scattering, hence, negatively impacting the optical performance of the film. Surprisingly, there is no 

difference in the morphologies for the Mo-doped VO2, calcined or not, besides that the average 

length of the needles is smaller for the calcined material (Figure 3.7b).  Mo doping was confirmed 

by quantitative EDX via the representative peaks of Mo as shown in Figure 3.8. The real 

concentrations of Mo, c(Mo), for all Mo-doped samples are summarized in Table 3.1. It was found 

that a much lower Mo was present at a given nominal content in comparison to the W-doped 

samples (Table 3.1). Mo-doping was less effective than W-doping using this synthetic strategy. 

 

Figure 3.7 SEM images of 3 at. % Mo-doped VO2: (a) before calcination, and (b) after 

calcination at 450 °C. 
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Figure 3.8 EDX spectrum for 3 at. % Mo-doped VO2. 

   The average size of W-doped VO2 particles was obtained using light scattering (Table 3.2). For 

this purpose, the materials were dispersed in distilled water and ultrasonicated for 10-15 min to 

“dissolve” the agglomerates and yield individual objects. The average particle size decreased with 

increasing W concentration from 0 to 3 at. %, but increased substantially for the 4 at. % sample, 

likely due to an enhanced heterogeneous nucleation process by doping with W [10, 30, 31]. 

Table 3.2 Average size of W-doped VO2 particles with nominal W content (annealed at 450 °C 

with ramping rate of 10 °C/min). Polydispersity Index (PdI). 
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3.3.2 Thermochromic Properties of VO2 particles 

   The effects of the calcination parameters including temperature and ramping rate on the phase 

transition temperature, latent heat and thermal hysteresis of Mo and W-doped VO2 (M) were 

investigated using Mo and W contents from 0 to 4 at. %. The desirable temperature for human 

comfort is in the range of 20–25 °C while the transition temperature (Tc) of VO2 can be lowered 

to this range when doped with metal ions, such as W6+, Mo6+ and Nb5+ [32]. On a per-atomic-

percent-basis, W ions are well known to be the most effective dopant to decrease Tc of VO2 to 

ambient temperature. DSC data of W-doped VO2 (M) with various nominal W contents from 0 to 

4 at. % are shown in Figure 3.9 with respect to calcination temperature and ramping rates. W-

doped VO2 (M) materials which are annealed at 450 °C with ramping rate of 10 °C/min, showed a 

continuous endothermic Tc decline from 68 °C to 20 °C with increasing nominal W content (0 to 

3at. %, Figure 3.9a). When a nominal W content of 4 at. % was reached, the endothermic Tc 

increased slightly back to 23 °C. This behavior is attributed to the average particle size  (Table 

3.2) which depicts the same trend as Tc. In the pure VO2 sample annealed at 450 °C (Figure 3.9a), 

two endothermic phase transition peaks appear. This effect is ascribed to size effects, shape-

dependences and interfacial defects [33]. Coexistence of two different size populations of VO2 

particles is shown by SEM image in Figure 3.10 after calcination at 450 °C. VO2 (M) is considered 

as an excellent candidate for application in smart window design and production as long as the Tc 

is < 40 °C [26]. Upon increasing the ramping rate to 20 °C/min while maintaining the calcination 

temperature at 450 °C, a sharp endothermic peak at 69 °C for Tc is observed for un-doped VO2 

(Figure 3.9b) which decreased to 15.6 °C with increasing W concentration (0-3 at. % samples). A 

slight increase to 21 °C is observed for the 4 at. % sample. The 650 °C calcination data shows a 

continuous decrease of Tc from 68 °C to 17 °C along the entire W concentration range (Figure 
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3.9c). At 650 °C calcination, Tc continuously decreased upon increasing W content due to size 

reduction of particles with W doping up to 4 at. %. Tc is also depended on the ramping rate: Tc 

decreased with increasing ramping rate (Figure 3.9b). Increasing the calcination temperature also 

decreased Tc (Figure 3.9c) with the exception of the 3 at. % sample. The causes for lowering Tc of 

W-doped VO2 with increasing calcination temperature is attributed to the higher crystallinity 

(Figure 3.2), a lower energy band gap [34] and higher real W concentration (i.e., 3.30 at. % at 450 

°C and 3.70 at. % at 650 °C for W 4.0 at. % sample).  

 

Figure 3.9 DSC data of VO2(M) with nominal contents of W (0-4 at. %). (a) Annealed at 450 °C 

with ramping rate of 10 °C/min, (b) annealed at 450 °C with ramping rate of 20 °C/min and (c) 

annealed at 650 °C with ramping rate of 20 °C/min. All DSC measurements are in the same y-

scale. 
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Figure 3.10 SEM image for un-doped VO2. Existence of VO2 particles with larger size are 

emphasized by blue arrow and smaller size by orange arrow. 

 

   Despite the significant improvement in reducing Tc by W-doping, increasing the W 

concentration (1-4 at. %) decreased the latent heat from 10, 29 and 41 J/g to 7.4, 8 and 3 J/g, 

respectively (Table 3.3), agreeing with Shenet al. [35]. This effect is probably due to less 

crystallinity [24] with doping enhancement upon inspection of the XRD spectra (Figure 3.2). An 

annealing temperature increase from 450 °C to 650 °C led to a latent heat increase for the W-doped 

VO2 samples, with the exception of the 4 at. % sample. The reason for the high latent heat suggests 
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that the VO2 particles with 0-3 at. % W-doping are highly crystalline in their crystalline structure 

when annealed at 650 °C [24].  

Table 3.3 Latent heat (J/g) of VO2 at different nominal W content, ramping rates and calcination 

temperatures. 

 

   For VO2 thermochromic window coating applications, a narrow thermal hysteresis, ΔTc, is 

required. Thermal hysteresis here is meant as the difference between endothermic and exothermic 

DSC peak position.  In other words, it is the difference between the transition temperatures during 

the heating and cooling cycles, respectively. This is important to allow a fast response to 

temperature change. The thermal hysteresis rises from 7.2 °C to 23.6 °C and from 7.1 °C to 18.9 

°C when the W concentrations increase to 3 at. % (Table 3.4). The increase in thermal hysteresis 

with increasing W concentration can be explained by an enhancement in the number of defects in 

the crystals when calcined at a low temperature. At the highest W concentration (4 at. %), the 

hysteresis declines substantially for the 450 °C samples. We assume this is caused by the relative 

larger size of the particles (Table 3.2); hence, a smaller number of defects should exist, what is in 

agreement with Lopez’s work [36, 37]. A similar rise behavior for the thermal hysteresis with 

increasing W concentration is observed for the 650 °C samples (Table 3.4, except 1 at. %). In 

general, a smaller thermal hysteresis is obtained at 650 °C annealing in comparison to the 450 °C 

annealing (except for 4at. %), again, due to reduced number of defects at high annealing 
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temperature for bigger particles. The reason for lower Tc at 650 °C than 450 °C annealing is due 

to better W integration at 650 °C. 

Table 3.4 Thermal hysteresis, ΔTc(
oC) of VO2 at different W concentrations, ramping rates and 

calcination temperatures. 

 

   It has been previously reported that Mo doping can be effective for depressing the Tc of VO2 

[38]. DSC data for VO2(M) with nominal Mo contents 0-4 at. % are shown in Figure 3.11a upon 

calcination at 450 °C with a ramping rate 10 °C/min. Also in the case of Mo, Tc decreased, but 

only from 68 °C to 64.5 °C and 55.4 °C when the Mo content increased to 1 at. % and 2 at. %, 

respectively.  This is accompanied by a particle size reduction (Table 3.5). However, Tc increased 

to 60.5 °C and 59 °C when Mo-doping reached concentrations of 3 and 4 at. %, due to a particle 

size increase (Table 3.5). DSC data of VO2(M) with increasing Mo concentration upon calcination 

at 650 °C with ramping rate 20 °C/min (Figure 3.11b) show a decrease in Tc to 62.5 °C at 4 at. %. 

The reasons for the higher Tc values of the Mo-doped VO2(M) samples in comparison to the W-

doped VO2(M) material lies in the overall smaller real Mo concentration (Table 3.1). Table 3.6 

summarizes the latent heat increase with increasing Mo-doping concentration. This behavior is 

opposite to the latent heat development in W-doped VO2 (Table 3.3). The inversed latent heat 

change is probably due to lower Mo concentration (Table 3.1). Besides some deviation, the thermal 

hysteresis of Mo-doped VO2 also increased with Mo concentration up to 2 at. %; with the two 

highest doping concentrations the hysteresis decreased (Table 3.7). A smaller thermal hysteresis 
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was achieved at 650 °C compared to 450 °C calcination temperature. Again, defects through 

doping are attributed for this behaviour. Overall, lower thermal hysteresis values were obtained 

for Mo-doped VO2 (except for Mo 2 at. %) than for W-doped VO2, leading to the conclusion that 

less defects exist in the Mo-doped VO2 particles. This is not surprising, given the lower real 

concentration and the smaller ion-radius.   

 

Figure 3.11 DSC data for VO2 (M) with nominal contents of Mo (0-4 at. %) after annealing (a) 

at 450 °C and (b) at 650 °C. All DSC measurements are in the same y-scale. 
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Table 3.5 Average size of Mo-doping VO2 particles corresponding to different nominal Mo 

content (annealed at 450 °C with ramping rate of 10 °C/min). Polydispersity Index (PdI). 

 

Table 3.6 Latent heat (J/g) of VO2 at different nominal Mo content, ramping rates and 

calcination temperatures. 

 

Table 3.7 Hysteresis width (oC) of VO2 at different Mo concentrations, ramping rates and 

calcination temperatures. 

 

    To determine the Tc reduction coefficient, Tc was plotted versus the real doping concentration 

for W (Figure 3.12a) and Mo (Figure 3.12b). For both cases, a linear relationship is observed. The 

slopes provide the Tc reduction efficiency. For W, an efficiency of 23 K/at. % was found and for 

Mo, 8.74 K/at. % is obtained. The W-doped material is comparable to literature data where Tc 

reduction coefficients in order of 21-24 K/at. % were achieved [11, 39]( Figure B2). For the Mo-

doped material’s reduction coefficient (8.74 K/at. %), a slight diminution was obtained. Literature 
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reports values of 11 K/at. % [40, 41]. Overall, W-doped material showed a better Tc reduction than 

the Mo-doped material, which is in agreement with Cui et al. [41]. 

 

Figure 3.12 Relationship between Tc and real dopant concentration: (a) W and (b) Mo (both 

calcined at 450 °C with a ramping rate of 10 °C/min). 

 

3.3.3 VO2-PVP films 

      The optical and thermochromic properties of the (0-4 at. %) W-doped VO2/PVP coated glasses 

were measured by analyzing the visible and near infrared transmittance at low (below Tc) and high 

(above Tc) temperatures, as shown in Figure 3.13 and 3.14. The optical and thermochromic 

properties of the VO2/PVP coated glasses were analyzed to assess their applicability for smart 

windows. The challenge is to achieve a high IR modulation, meaning a high change in IR 

transmission upon temperature variation (∆T@IR, Figure 3.13), while maintaining transmittance in 
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the visible (Tvis) above 60% [42]. Ji et al. [11] reported VO2 films with values of Tvis and ∆Tmax@2000 

nm of 50% and 50% for un-doped VO2, and 59% and 28% for 0.924 at. % W-doped VO2 material, 

respectively. Unfortunately, their visible transmittance was < 60% and the ∆Tmax of the doped VO2 

decreased by reducing the wavelength to 1000 nm. This behavior results in a small solar 

modulation efficiency since most of the heat in the solar irradiance is concentrated in the 300-1500 

nm range. The spectral transmittance of the un-doped and W-doped VO2/PVP coatings on glass 

were characterized at 22 °C and 80 °C in the spectral region 250-2500 nm (Figure 3.13). The un-

doped VO2 film show a visible transmittance of 62% above Tc with a ∆Tmax@2000nm of 35%. The 

reason for reversing the transmittance at high temperature in the visible region (solid dark red line), 

is mainly due to the lower refractive index (2.0–2.5) for rutile VO2 phase than monoclinic VO2 

phase (2.7–2.8) [43]. The 1 at. % W-doped VO2/PVP coating exhibited Tvis and ∆Tmax@2000nm 

values of 75% and 25%, respectively (Figure 3.13). The maximum infrared modulation occurred 

at 1500 nm with a value of 28%. Smaller infrared modulations were observed at 1000 nm (17%), 

1250 nm and 1750 nm (26%) and 2000 nm (25%). Increasing the nominal W content from 1 to 4 

at. %, the visible transparency was improved substantially (up to 95%) but the IR modulation 

decreased from a maximum of 28% for the 1 at. % with increasing W-doping concentration to less 

than 10% for 4 at. % as shown in Figure 3.14, which is due to Tc being near or less than measured 

comfort temperature (22 °C). The dopant has triggered a blue-shift of the absorption edge by 

widening the band gap of VO2 [7, 32, 44]. Photographs of un-doped and W-doped VO2/PVP coated 

glass lying on a piece of white paper are shown in Figure 3.13, inset (bottom) and inset (top), 

respectively. 
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Figure 3. 13 Optical transmittance spectra of un-doped and 1 at. % W-dopedVO2/PVP coatings 

on glass at 22 °C and 80 °C. Photographs of VO2/PVP coated glass lying on a piece of white 

paper with non-doped (inset, bottom) and 1 at. % W doping (inset, top) in the VO2. 
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Figure 3. 14 Optical transmittance spectra for the un-doped and W (1-4 at. %)-doped VO2 films 

measured at 22 °C (semiconductor phase) and 80 °C (metallic phase). 

 

   SEM images of VO2 and W-doped VO2 in PVP coated on glass are shown in Figure 3.15 (coating 

thickness ~200 nm). Agglomeration of particles occurred in both coatings, however, the un-doped 

VO2(M) dispersed better in the PVP than the W-doped VO2. The reason might be the higher 

hydrophilicity of the material at low W concentration [45]. AFM investigations confirmed these 

results and show that the films are rough (Figure B3). 
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Figure 3. 15 SEM images of (a) VO2 and (b) 1 at. % W-doped VO2 in PVP coated on glass. 

 

3.4 CONCLUSIONS 

   Using a hydrothermal method with a short time annealing, VO2(M) crystals were synthesized 

with a high yield in a relative large batch size (2g) by reducing ammonium metavanadate 

(NH4VO3) with hydrazine. Both W- and Mo-doped VO2 were synthesized. It was found that W 

was more effective than Mo to reduce Tc of VO2 down to room temperature, being useful for smart 

windows. A high transition reduction efficiency of 23 K/at. % was achieved for W-doped VO2 

crystals. The thermochromic properties of VO2/PVP coated glass exhibited an excellent visible 

light transmittance above 62% and high infrared modulation up to 35% at 2000 nm. The highest 

infrared modulation of 28% at 1500 nm was obtained for 1 at. % W-doped VO2/PVP coating with 

a visible transmittance above 75%. These values are promising for an application of W-doped VO2 

crystals in smart window designs. This simple and green synthetic method can open avenues for 

an economic and commercial large-scale VO2 (M) production for affordable smart windows. 
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Chapter 4 

Synthesis of Chemically Stable VO
2
/SiO

2
 Composite with High IR 

Modulation Coating 

ABSTRACT 

This work provides a new approach for the rapid and green synthesis of VO2/SiO2 composite 

structures by reducing ammonium metavanadate with maleic acid using water as solvent. The 

synthesis examined various (maleic acid/NH4VO3) and (Si/V) molar ratios, various tungsten 

concentrations and various annealing temperatures. The results showed that the VO2/SiO2 

composite was found to prevent the agglomeration and improve the anti-oxidation of the VO2 

sample left in air at room temperature for up to seven months. In addition, the infrared (IR) 

switching transmittance was examined using a VO2/SiO2 composite film at a wavelength of 2500 

nm, and compared to plain VO2 film coated under similar conditions. The composite film 

demonstrated an excellent IR switching quality (20%), 4X greater than plain VO2 film (5%), while 

retaining high visible transmittance (70%) at a wavelength of 680 nm. Furthermore, using this 

reflux synthetic process at low temperatures, the phase transition temperature (Tc) of 2 at.% W-

doped VO2 was reduced considerably to 23 °C, when tungstic acid (as the W-doping source) was 

pre-dissolved in hydrogen peroxide (H2O2) before addition.  

 

KEYWORDS: chemical stability, thermochromic, VO2/SiO2 composite, maleic acid, anti-

oxidation, IR switching, reflux process, phase transition temperature, H2O2. 
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4.1 INTRODUCTION 

   Buildings are responsible for nearly 40% of the worldwide use of primary energy [1]. A large 

component of this energy is consumed by space heating and space cooling to balance the energy 

lost through the windows to maintain thermal comfort in buildings [2]. Electrochromic and 

gasochromic energy-saving windows have been traditionally used in buildings. These methods 

normally require an external electric field and gas, while their optical performance cannot be 

changed in response to environmental modulation [3, 4]. Another popular and versatile building 

technology used today is low-E windows, where energy is saved by reflecting the infrared light.   

Similar to electrochromic windows, they cannot adjust their response to environment temperature 

changes [5, 6].  

Thermochromic smart windows provide a new approach that can help reduce energy consumption 

of buildings by regulating their solar irradiation through a building glass [7]. Monoclinic VO2 (M) 

is a promising thermochromic material for smart windows due to its ability to modulate the NIR 

transparency [8, 9]. VO2 undergoes a fully reversible first-order semiconductor-metal transition 

(SMT) at a critical temperature (Tc) of 68 °C.  This SMT is accompanied by a change in the 

electrical and optical properties in the infrared (IR) region [10, 11]. VO2 is monoclinic 

semiconductor phase (M-phase, space group P21/c) at temperatures below Tc, but at temperatures 

above Tc, VO2 is tetragonal rutile metallic phase (R-phase, space group P42/mnm) [12]. In the 

semiconductor state, the vanadium atoms pair and open an energy gap of 0.6 eV, allowing high 

infrared transmission. In the metallic state, the band gap is eliminated due to an overlapping 

between the V3d band and Fermi level, hence blocking or reflecting any near-infrared (NIR) light  

[8, 13-15]. The crystal structure of VO2 (M) is characterized by alternating V−V distances of 2.65 

and 3.12 Å to form a zigzag chain and distorted VO6 octahedral. In contrast, VO2 (R) contains a 
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single V−V distance of 2.85 Å forming linear chains of edge-shared Jahn−Teller and less distorted 

VO6 octahedral [16]. The Tc can be regulated by doping with ions and this depends on the relative 

valence and relative size of the dopant ions compared to that of the V4+ ions. For example, Tc can 

be lowered to room temperature by doping with high valence-large ions such as W6+, Mo5+ and 

Nb5+, or increased by doping with low valence-small ions (Al3+, Cr3+, and Ga3+) [17, 18].  

Various techniques have been used to prepare VO2 (M) coatings on transparent substrates to 

advance the application of VO2 based smart windows. Based on some studies  [19, 20], powder-

based solution coating techniques have many advantages over vapor deposition methods, including 

simple coating systems, large-scale production, low-cost and flexibility for substrate selection. 

These make them an excellent alternative for the latter methods [21]. However, VO2 (M) is not 

thermodynamically stable in dry air, and it oxidizes into V2O5 if annealed at 300 °C in air or stored 

in air for a long time [22, 23]. The chemical and mechanical stability of VO2 particles can be 

enhanced by coating with an inert barrier shell such as silica [24]. The silica layer is optically 

transparent and can decrease the scattering caused by the refractive index (RI) mismatch between 

the VO2 (M) particles and their polymer matrix [25]. According to some optical calculations [17, 

26], VO2 particles dispersed in a dielectric matrix (i.e., SiO2, ZrO2, TiO2) can provide better visible 

light transmission (Tvis) and solar modulation ability (ΔTsol) than pure VO2 films. Previous studies 

on VO2-SiO2 core-shell composites mainly focused on a prior synthesis of VO2 followed by the 

fabrication of a core-shell composite [20, 27, 28]. Hence, many steps are required which inevitably 

increases the time and complexity of the process and raises the fabrication cost. Recently, VO2-

SiO2 composites are fabricated, but these methods are complex too, thus increasing the time and 

cost of the preparation process [17, 29]. 
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In this work, we examined reducing ammonium metavanadate with maleic acid using a reflux 

method in water for the rapid synthesis of chemically stable VO2-SiO2 composite structure.  

Various molar ratios of (Si/V) were examined while the reaction mechanism of the optimized 

molar ratio of maleic acid/NH4VO3 is explored. In addition, the effect of SiO2 on the size, 

morphology, dispersion, latent heat, hysteresis, anti-oxidation and thermochromic property of VO2 

(M) are investigated. The effect of W on Tc using tungstic acid for W-doping was also investigated. 

This methodology was found to provide composite films with simultaneously high visible 

transmittance of 70% at the wavelength of 680 nm and good infrared (IR) modulations of 20% at 

2500 nm (transmittance difference across SMT). The addition of SiO2 was found to significantly 

enhance the anti-oxidation property of the composite and inhibited VO2 from being oxidized to 

V2O5. Furthermore, using reflux at low temperature was found to provide VO2 materials with a 

phase transition temperature (Tc) of 2 at. % W-doped VO2 depressed significantly to 23 °C, when 

tungstic acid as the W-doping source is dissolved in H2O2 prior to use.  
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4.2 EXPERIMENTAL SECTION  

4.2.1 Materials 

   Maleic acid (C4H4O4, ≥ 99.0%, Reagent Plus®), fumed silica (SiO2, 99.9%), ammonium 

metavanadate (NH4VO3, ≥ 99%, A.C.S. reagent), tungstic acid (H2WO4, 99%), hydrogen peroxide 

solution (H2O2, 30 wt.% in H2O, A.C.S. reagent) and polyvinylpyrrolidone (PVP, K 29-32, average 

molecular weight 40 kDa) were purchased from Sigma-Aldrich, Canada. Anhydrous ethyl alcohol 

was purchased from Commercial Alcohols, Inc., Canada. Microscope glass slides were purchased 

from VWR International (Radnor, PA , USA). Ultra-high purity Argon (99.9%) was purchased 

from Praxair, Canada. All chemicals were used as received without further purification.  

4.2.2 Synthesis of VO2 and W-doped VO2 particles 

   For the preparation of VO2, the maleic acid (C4H4O4) and ammonium metavanadate (NH4VO3) 

powders were directly added using a 1.5:1 molar ratio to 50 mL of deionized water containing 

0.0085 mol vanadium, and maintained under reflux and stirred for 2 h at 100 °C. For the 

preparation of W-doped VO2, different concentrations of H2WO2 (1-4 at. %) containing 

ammonium metavanadate were used. Additionally, 2 at. % W-doped VO2 was also prepared 

by dissolving the tungstic acid first in 0.5 mL of H2O2 and sonicated for 10 minutes prior 

to use. Further, the solution was cooled to RT, and the resulting black precipitate, doped or un-

doped, was collected by centrifugation and washed several times with deionized water, before 

drying in an oven at 60 °C overnight. Subsequently, the dried powder was calcined (500-800 °C) 

under argon gas for 1 h in a tube furnace prior to characterization. Calcination for a short time (1 

h) was used to avoid agglomeration due to the sintering effect. 
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4.2.3 Synthesis of VO2-SiO2 composite particles 

   Maleic acid (0.0129 mol) was first refluxed with fumed silica (molar ratio of Si/V=0.05, 0.1 or 

0.2) in 50 ml of deionized water at 100 °C for 20 min. Then ammonium metavanadate (0.0085 

mol) was added and the mixture was further refluxed for 4.75 h. The VO2-SiO2 composite was 

collected by centrifugation and washed several times with deionized water, before drying in an 

oven at 60 °C overnight. Further, the composite annealed under argon in a tube furnace at 500 °C 

or 600 °C for 1 h. Calcination with low temperature and short time was used to avoid 

agglomeration due to sintering. 

4.2.4 Fabrication of VO2(M) and VO2-SiO2 based coatings  

   In a small vial, 0.08 g of VO2 or VO2-SiO2 calcined material and 0.08 g of 

polyvinylpyrrolidone (PVP-40) were mixed in 2 mL of ethanol and ultrasonicated at 50 °C 

for 60 min.  

To prepare the coatings,  0.3-0.5 mL of the VO2/PVP or VO2-SiO2/PVP solution was spin-

coated on glass substrates at 1500 rpm for ca. 10 s. Sucessively, the films were dryed in the 

oven at 80 °C for 30 min. The approximate thickness of the coatings were ~250-350 nm. 

4.2.5 Characterization 

   The crystallinity of the synthesized VO2 and VO2-SiO2 particles was examined by X-ray 

diffraction (XRD; Bruker D2 phaser powder diffractometer, Billerica, MA, USA) using Cu Kα 

radiation (λKα = 1.54059 Å) with a scanning rate of 0.25°/second. The 2θ data was collected 

between 10° and 80° using continuous scan mode. The transition temperature (Tc) of VO2, W-

doped VO2 and VO2-SiO2 were determined by differential scanning calorimetry (DSC; SDT Q600, 

TA Instruments, USA) using a cooling-second heating-cycle between 10-80 °C. The data was 

analyzed via the instrument’s software (Universal Analysis 2000, TA Instruments, USA). The 

https://www.google.ca/search?q=Billerica+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooTjarUOIAsUuqqjK0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUA-OdHIEQAAAA&sa=X&ved=0ahUKEwi14JWb9c7UAhWe14MKHbTQBKsQmxMIswEoATAY
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optical transmittance of the coated films was measured using a Shimadzu UV-3600 UV-Vis-NIR 

(Shimadzu, Kyoto, Japan) spectrophotometer in the wavelength range of 250 – 2500 nm. The 

temperature was controlled using a Julabo F12-Refrigarated/Heating Circulator (Julabo GmbH, 

Seelbach, Germany). The infrared (IR) modulation at wavelengths 2500 nm was obtained using 

the equation ∆T(λ)=T(λ)s−T(λ)m [30], where s and m represent the semiconductor (at 

22 °C) and metal (80°C) phases, respectively. The morphologies and dimensions of the VO2 and 

VO2-SiO2 particles were examined with a Hitachi S-4500 field emission SEM (Hitachi, Tokyo, 

Japan). The thickness of the coatings was measured via the Nanoscope V7.30 software using 

Veeco MultiMode V (Veeco, Plainview, N, USA) atomic force microscope (AFM). A Malvern 

Zetasizer Nano-ZS (Dynamic Light Scattering instrument (Malvern, UK) was used to measure the 

size of the VO2 particles. X-ray photoelectron spectroscopy (XPS) analysis was carried out using 

a Kratos Axis Ultra spectrometer (Kratos, Manchester, UK) equipped with a monochromatic 

Al Kα source (15 mA, 14 kV). Prior to measurements, the instrument was calibrated using 

the Au4f7/2 line (83.96 eV) of metallic gold. For calibration of the spectrometer’s dispersion, 

the Cu2p3/2 line (932.62 eV) of metallic copper was used. The Kratos charge neutralizer 

system was used for all specimens. Survey scan analyses and high resolution analyses were 

carried out evaluating analysis areas of 300 x 700 μm with a pass energy of 160 eV and 20 

eV, respectively. Spectra have been charge corrected to the main line of the carbon 1s 

spectrum (adventitious carbon) set to 284.8 eV and analyzed via the XPS software (CASA, 

version 2.3.14). V2p and O1s were curve-fitted following the procedures described by 

Biesinger et al. [31].  



128 

 

4.3 RESULTS AND DISCUSSION  

4.3.1 Molar ratio optimization of maleic acid/ NH4VO3 

   For the synthesis of VO2(M), various molar ratios of maleic acid/ NH4VO3 (1/1.5-1.5/1) were 

investigated. The solution-based synthesis of VO2 from maleic acid and ammonium metavanadate 

was found to be sensitive to the molar ratio (which is defined as the mole percent of acid to 

vanadium precursor); and by adjusting this reaction parameter a monoclincVO2 can be obtained. 

Figure 4.1 exhibits the X-ray diffraction (XRD) patterns of VO2(M), prepared with different molar 

ratios of maleic acid/ NH4VO3, which are annealed at 500 °C for 1 h. For a molar ratio of 1:1.5 

(maleic acid/ NH4VO3), the product is mixture of V5O9, V6O13 and VO2(M) [17]. As the molar 

ratio of maleic acid/ NH4VO3 increased to 1:1, all the diffraction peaks match well with that of the 

standard XRD pattern of VO2 (M) (JCPDS card No. 82-0661, space group P21c) [32]. Upon further 

increasing the molar ratio of maleic acid/ NH4VO3 to 1.5:1, the intensity of the diffraction peaks 

significantly increased, with an absence of impurity or other phases, indicating an improved 

crystallinity, which illustrates that the ratio 1.5:1 is an optimal for the synthesis of pure monoclinic 

VO2. Therefore, this ratio was selected for further investigation. 
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Figure 4.1 The XRD spectra of VO2 prepared with different molar ratios of maleic acid/ NH4VO3: 

(a) 1.5:1, (b) 1:1 and (C) 1:1.5. * indicate the Bragg peaks of VO2(M). Δ, Θ and O indicate the 

Bragg peaks of V5O9, V6O13 and V2O5, respectively. 

 

4.3.2 Study of reaction mechanisms 

 

   The reaction mechanism of the optimized molar ratio (1.5:1) of maleic acid/ NH4VO3 for the 

synthesis of VO2(M) was further investigated. Based on the literature and our XPS, FTIR and XRD 

results, the as synthesized product obtained by reduction of NH4VO3 with maleic acid is a mixture 

of (NH4)0.5V2O5 and (NH4)2V4O9 (molar ratio: 6.8:1). However, it transforms to a mixture of VO2 

and V2O5 (molar ratio: 3:1) after calcination. To investigate the elemental composition and valence 

state of the as-prepared and as-calcined (at 500 °C for 1 h) product, the samples were examined 

using X-ray photoelectron spectroscopy (XPS) as shown in Figure 4.2. The peaks in the XPS 

survey spectrum for the as-synthesized (Figure 4.2a) and as-calcined (Figure 4.2b) samples, 

correspond to elements (N, C, Na, Si, V and O), where Na and Si peaks are attributed to surface 
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contamination. The XPS peaks at 516.65 and 524.00 eV for the as-synthesized (Figure 4.2c, Table 

4.1), and at 516.44 and 523.79 eV for the as-calcined (Figure 4.2d, Table 4.1) samples, are 

associated with the spin-orbit splitting of V2p3/2 and V2p1/2, respectively, which agree with V4+ in 

the literature [8, 33, 34]. Meanwhile, the peaks at 517.79 and 525.14 eV for the as-synthesized 

(Figure 4.2c, Table 4.1), and at 517.82 and 525.17 eV for as-calcined (Figure 4.2d, Table 4.1) for 

V2p3/2 and V2p1/2, respectively, are attributed to the V5+ valence state. From the as-synthesized 

(Figure 4.2c) and as-calcined (Figure 4.2d) samples, the peaks of O1s respectively appeared at 

530.36 and 530.26 eV, which can be assigned to O2− in the V-O [35]. After calcination, the percent 

of V5+
 decreased from 58.0% to 40.6%, while V4+ increased from 42.0% to 59.4% (Table 4.1). The 

growing of VO2% after annealing is a result of V4O9 and V2O5 having the organics removed from 

the [(NH4)0.5V2O5; (NH4)2V4O9] mixture, which is accompanied by a release of CO2 and NH4+, 

respectively. Supporting the argument of CO2 and NH4+
 release, the atomic ratio (C/V) for all 

organics are decreased after calcination (Table 4.2, Figure 4.2e, f), and the overall removal ratio 

of (C/V) and (N/V) is 32 and 100%, respectively (Table 4.3, Figure 4.2a, b).  

   After collecting the deposited VO2 at the bottom by centrifugation, the residual solute in the top 

clear solution was freeze-dried and then further characterized by 1H NMR and 13C NMR (Figure 

C1, C2). The NMR spectra of the solute matches well with maleic acid signals, suggesting no other 

organics. Thus, the NMR spectrum further confirms the release of CO2, which is consistent with 

XPS analysis. Furthermore, the X-ray diffraction (XRD) pattern of the as-synthesized product is 

shown in Figure C3 and all diffraction peaks can be clearly indexed to (NH4)0.5V2O5 and 

(NH4)2V4O9  [36]. 
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Figure 4.2 XPS spectra of sample before and after annealing at 500 °C: (a, b) survey spectrum; 

(c, d) V 2p and O 1s core-level spectra; (e, f) C 1s core-level spectra, respectively. 

 

Table 4.1 XPS analysis of as-synthesized and as-calcined product. 
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Table 4.2 XPS analysis of atomic ratio(C/V) for as-synthesized and as-calcined product. 

 

Table 4.3 XPS of total atomic ratio of (C/V) and (N/V) for as-synthesized and as-calcined 

product. 

 

   For further investigation on the phase composition, the Fourier transform infrared (FTIR) spectra 

was measured between 400 and 4000 cm−1 for the as-synthesized and as-calcined samples. The 

samples were prepared by grinding the dried sample with potassium bromide (KBr) powder, in the ratio 

of ~1:200 (sample: KBr) and then compressed into discs. The FTIR spectrum of the as-synthesized 

and as-calcined (at 500 °C for 1 h) samples are shown in Figure 4.3a and Figure 4.3b, respectively. 

Figure 4.3a shows that the absorption bands for non-calcined product at (987, 758) cm−1 and 542 

cm−1
 are respectively assigned to V=O and V–O–V. Meanwhile the peaks at 3132 and 1400 cm-1 

are attributed to NH4+ stretching and umbrella modes, respectively, which disappear after 

annealing. This implies that the as-synthesized product is a mixture of (NH4)0.5V2O5 and 

(NH4)2V4O9 [36-38]. Figure 4.3b shows that the absorption bands for as-calcined product at (1022, 

739) cm−1 and at (534 and 469) cm−1 are intrinsic to VO2 and are respectively assigned to V=O 

stretching and V–O–V deformation modes [39, 40]. Meanwhile, the bands in the (3435, 1631) cm−1 

region are attributed to ν(O–H) of  H2O [41]. The above results of the FTIR analysis confirm that 

the as-calcined sample corresponds to the VO2 phase, which is consistent with the XPS and XRD 
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results. Moreover, the residual solute in the clear solution after freeze-drying was also 

characterized using FTIR analysis (Figure 4.4). The bands of solute (Figure 4.4a) matches well 

with signals of maleic acid (Figure 4.4b) and this results further confirms CO2 release, which is in 

agreement with the results from NMR and XPS analysis.    
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Figure 4.3 FTIR spectra of (a) as-synthesized and (b) as-calcined sample obtained from reaction 

of maleic acid with NH4VO3. 
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Figure 4.4 FTIR spectra of (a) the residual solute in the clear solution after freeze-drying and (b) 

maleic acid. 

 

4.3.3 The effect of annealing temperature  

 

   To investigate the influence of annealing temperature from 500 °C to 800 °C on the phase 

transition temperature (Tc), hysteresis width and latent heat (J/g) of VO2(M), measurements were 

conducted using differential scanning calorimetry (DSC). The DSC results of the VO2 obtained at 

various annealing temperatures (500-800 °C) for 1 h are summarized in Table 4.4. We can see that 

when the annealing temperature was increased from 500 °C to 700 °C, the Tc(°C) exhibited a decrease 

from 67.3 °C to 66.7 °C during the heating cycle and an increase from 62.0 °C to 63.4 °C during the 

cooling cycle. Meanwhile, the hysteresis width (∆T°C) (difference between heating and cooling DSC 

peaks) showed a decrease from 5.3 °C to 3.3 °C. The hysteresis width is narrow when Tc is low, 

http://pubs.rsc.org/en/content/articlehtml/2016/QI/C6QI00102E#tab1
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which agrees with M. Li (2014) and X. Li’s (2017) work [42-44]. A small ∆T(°C) signifies a fast 

response and high sensitivity of the VO2 to the temperature changes and this may be associated to the 

high crystallinity at high annealing temperatures [44]. Thermal analysis reveals that the latent heat 

(which is calculated as the area under heating) escalates from 27.0J/g to 47.8J/g during phase transition 

when annealing temperature increases from 500 °C to 800 °C, respectively (Table 4.4). This effect is 

mainly due to high crystallinity of large grain size of VO2 particles at high annealing temperatures [45] 

as shown in Figure 4.5 and Table 4.5. The average size of particles was examined by light scattering 

(Nanosizer).  

Table 4.4 DSC results for the heating and cooling cycles of monoclinic VO2 obtained at different 

calcination temperatures (500-800 °C) for 1 h. 

 

Table 4.5 Average size of VO2(M), annealed (500-800 °C) for 1 h. Polydispersity Index (PdI). 
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   The morphologies of the as-synthesized VO2 (Figure 4.5a) and as-calcined (Figure 4.5b-f) at various 

temperatures (500-800 °C) were examined by SEM as displayed in Figure 4.5. It can be seen that the 

morphology gradually changes from amorphous as prepared (Figure 4.5a) to globular, rod-like and large 

globular particles as annealing temperature increased (Figure 4.5b-f) mainly due to a sintering effect. 
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Figure 4.5 SEM images of VO2 prepared at different annealing temperatures (heating rate = 10 

°C min−1). (a) as synthesized; (b) 500 °C; (c) 600 °C; (d) 650 °C; (e) 700 °C; (f) 800 °C. 
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4.3.4 The effect of W when tungstic acid is dissolved in H2O2  

 

   The effect of W-doping on the phase transition temperature (Tc) of VO2 was analyzed as shown 

in Table 4.6 and Figure 4.6. For potential use of monoclinic VO2 in smart windows, the phase 

transition temperature (Tc) in most occurrences should be reduced from 68 °C to near room 

temperature (21-25 °C). Among many elements, tungsten is reported to be the most effective 

dopant to produce a large shift in Tc with small content [46]. The phase transition temperatures of 

W (0-4 at. %)-doped samples (without H2O2) were characterized via differential scanning 

calorimetry (DSC) and the results are shown in Table 4.6. Upon increasing the W doping content 

from 0 to 3 at. %, the Tc was decreased from 67.3 to 48.8 °C, respectively, and the 4 at. %W sample 

was without peaks, therefore is omitted (Table 4.6). The unsuccessful doping is due to the actual 

amount of W in the substitution positions being less than the nominal doping content, with this 

mainly ascribed to undissolved tungstic acid in the water solution. However, when tungstic acid 

(as the source of W-doping) was dissolved in hydrogen peroxide (H2O2) prior to use, the phase 

transition temperature of 2 at. % W-doped VO2 sample was lowered significantly to Tc=23 °C 

compare to Tc=49.5 °C of VO2 sample without H2O2 having same content of W (Table 4.6). In 

comparison to the un-doped sample, the phase transition temperatures of W doped sample (H2O2) 

exhibited very low Tc as shown Figure 4.6. Moreover, the latent heat is inevitably depressed by W 

dopant, which dropped from 27.0 to 14.0 J/g at W doping level of 3 at. % (Table 4.6). This tendency 

in latent heat values is due to doping-induced retardation of phase transition [46]. Additionally, the 

hysteresis width (∆T (°C)) decreased to 4.5 when W doping level increased to 3 at. %, mainly owing 

to low Tc and size effect of small doped particles [47]. 
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Table 4.6 DSC results of (0-4 at. %) W-doped VO2 and 2 at. %W-doped VO2(using H2O2) 

samples annealed at 500 °C for 1 h. (4 at.%W sample was without endothermic peak, therefore is 

omitted). 

 

 

 

 

Figure 4.6 The phase transition properties of (a) VO2 and (b) 2 at. %W-doped VO2 using 

hydrogen peroxide(H2O2). 
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4.3.5 The effect of SiO2 addition on the size and dispersion of VO2  

 

     To study the effect of SiO2 addition on the size, morphology, dispersion, hysteresis width and 

latent heat of VO2, various molar ratios of Si/V (0-0.2) were examined. Table 4.7 shows a DSC 

analysis of samples annealed at 500 °C and 600 °C for 1 h. The hysteresis width decreased and the 

latent heat increased for all samples at 600 °C compared to samples at 500 °C.  This suggests high 

crystallinity and large particle sizes at high annealing temperature, which agrees with Cao et al. 

work [45]. Further, the light scattering results confirm that the mean particle size of VO2/SiO2 

composite (Si/V=0.05) are approximately 155.5 nm (Table 4.8) compared to 650 nm of VO2 

particles (Table 4.5) annealed under the same conditions (500 °C for 1 h). With verification by 

SEM, good dispersion of small particles was obtained for the composite compared to an 

agglomerated VO2, while both samples annealed at same conditions (Figure 4.7). This tendency 

suggests that the addition of SiO2 inhibits the agglomeration of VO2 particles. However, the results 

show that the particle sizes of VO2 increase as the molar ratio of the SiO2 increases (Table 4.8).  

Table 4.7 DSC results of VO2/SiO2 composite with different Si/V molar ratio annealed at 500 °C 

and 600 °C for 1 h. (Sample with molar ratio Si/V=0.2 at 600 °C was without endothermic peak, 

therefore is omitted). 
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Table 4.8 Average size of VO2-SiO2, annealed at 500 °C for 1 h. Polydispersity Index (PdI). 

 

 

 

Figure 4.7 SEM photographs of (a) VO2 and (b) VO2/SiO2 (Si/V= 0.05), while both samples 

annealed at 500 °C for 1 h. 

 

4.3.6 The effect of SiO2 addition on the chemical stability of VO2  

 

   The impact of SiO2 on the anti-oxidation property of VO2(M) was inspected closely as shown in 

Figure 4.8. The structure of the VO2/SiO2 composite effectively enhanced the anti-oxidation 

property of VO2. This hypothesis was confirmed by XRD comparative study of VO2 (Figure 4.8a) 

and VO2/SiO2(Si/V molar ratio = 0.05) (Figure 4.8b) after exposing them to air for 7 months at 

room temperature, while having same annealing conditions (at 500 °C for 1 h). Evidently, VO2 

cannot maintain the original pure monoclinic phase in the air for long period of time. The (011) 
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peak disappeared while additional peaks assigned to V2O5 or other high valence vanadium oxides 

emerged (Figure 4.8a) [20]. In comparison, the Bragg diffraction of the composite maintained 

same position and all peaks are assigned to pure monoclinic VO2 (Figure 4.8b).  

 

Figure 4.8 XRD spectra of (a) VO2 and (b) VO2/SiO2 composite (Si/V molar ratio = 0.05) before 

and after depositing in air for 7 months at room temperature. 

 

4.3.7 The effect of SiO2 addition on the thermochromic property of VO2 films 

  

   To investigate the influence of SiO2 addition on the thermochromic behavior of VO2, the UV-

Vis–NIR transmittance of VO2 and VO2/SiO2 composite (molar ratio of Si/V = 0.05) films were 

characterized. The films were coated on the glass using the same conditions and analyzed in the 

wavelength range between 250 nm and 2500 nm, while both samples were annealed at 500 °C for 

1 h (Figure 4.9). The blue transmittance curves measured at 20 °C and the red transmittance curves 

at 80 °C correspond to the semiconductor phase (transparent for NIR light) and the metal phase 
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(blocks the IR light), respectively. The visible transmittance of the film is reduced from 82% for 

the VO2 film to 70% for the composite film at a wavelength of 680 nm.  This increased scattering 

of the composite after blending with polymer is attributed to agglomeration of particles. However, 

the thermochromic property of the film considerably improved due to the addition of SiO2 which 

agrees with Zhao et al’s. work [48]. For the composite film prepared at a Si/V (molar ratio=0.05), 

a significant transmittance change in the NIR spectrum across the phase transition was exhibited 

at the wavelength of 2500 nm (20%) compare to (5%) of the plain VO2 film, which indicates good 

thermochromic performance for the composite. 

 

Figure 4.9 UV-Vis-NIR transmittance spectra of (a) VO2 and (b) VO2/SiO2composite (Si/V 

molar ratio = 0.05) in the wavelength ranges from 250 nm to 2500 nm. Blue lines: 

semiconducting state at 20 °C; Red lines: metallic state at 80 °C. 
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4.4 CONCLUSIONS 

 

      A novel VO2-SiO2 composite was synthesized through a green process by reducing ammonium 

metavanadate with maleic acid in water. The SiO2 remarkably improved the chemical stability of 

VO2 sample deposited in air at room temperature for seven months. In addition, the VO2/SiO2 

composite film demonstrated an excellent performance with IR switching ability (20%), four times 

greater than of the plain VO2 film, while maintaining high visible transmittance (70%) at 680 nm. 

Further, using a condenser at low reaction temperature, the phase transition temperature of 2 at. % 

W-doped VO2 was dramatically reduced to 23 °C, when tungstic acid was pre-dissolved in the 

hydrogen peroxide (H2O2) prior to use. Therefore, the composite could have a great potential for 

an application in smart window due to the promising properties of the IR switching and chemical 

stability. 
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Chapter 5 

Water Based Synthesis at RT for VO2 Polymer Coatings with 

Enhanced IR Modulation 

 

ABSTRACT 

  The preparation of monoclinic vanadium dioxide (VO2(M)) using an economical and green 

methodology is of high interest for applications in smart windows and coatings. This work reports 

a novel synthetic strategy for preparing un-doped and W-doped VO2 particles based on the 

hydrolysis of vanadyl acetylacetonate (VO(acac)2) with HCl in water at RT. It was found that 

vanadium(V)oxide NPs can promote dispersion of VO2(M) (IV) particles in hydrophilic polymers 

including poly(4-vinylpyridine) (P4VP) and polyvinylpyrrolidone (PVP), helping to switch 

their IR transmission on demand. The effect of coating thickness and concentration ratios of 

VO2/polymer on the optical characteristics of the coatings was systematically evaluated. The 

resulting VO2(M)/P4VP films exhibited an excellent infrared (IR) transmission switch, ΔTIR@2500nm, 

of 47% (transmission change due to the temperature-triggered phase transition) with a high visible 

transmittance, Tvis@680nm, of 41%. Hydrophobic VO2/poly methyl methacrylate (PMMA) films gave a 

ΔTIR@2500nm of 30% and a Tvis@680nm of 29%. The superb performance of the VO2(M)/P4VP coating 

is ascribed to the uniform dispersion of VO2(M) particles within the matrix. The proposed 

synthetic strategy was found scalable, allowing the potential large-scale production of VO2(M). 
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 KEYWORDS: monoclinic vanadium dioxide, economical, energy consumption, doping process, 

vanadium(V)oxide, dispersion, green chemistry, hydrophobic, PMMA, hydrophilic, P4VP, 

thicknesses, concentrations.  

 

5.1 INTRODUCTION  

   Heating and cooling buildings to comfortable temperatures consumes up to 40% of our total 

energy usage in developed countries [1]. A major part of this energy is lost through windows by 

heat conduction, radiation and convection effects. Low emissivity (E) glass can be used to 

minimize energy losses through windows. However, the optical transmission properties of low E 

glass cannot be modified or switched in response to changing  temperature or lighting conditions, 

thereby limiting its effectiveness [2]. The use of thermochromic windows provides another 

intriguing option, which automatically regulates solar/heat transmission in response to 

environmental temperature changes [3]. Of the potential thermochromic materials, vanadium 

dioxide, VO2, is known to display a fully reversible semiconductor-metal transition (SMT) at a 

phase transition temperature (Tc) of 68 °C [4]. At temperatures below Tc, VO2 is a semiconductor 

with a monoclinic crystalline structure (M phase, space group P21/c; transparent to infrared 

radiation (IR)). When the temperature is above Tc, VO2 is metallic with a tetragonal crystalline 

structure (R phase, space group P42/mnm) a state in which the material is reflective to IR 

radiation [5-7]. Visible transparency is maintained through the SMT-phase transition, making 

VO2 a potential candidate for energy efficient windows [8]. However, VO2 has a rather high Tc 

of 68 °C, limiting its effectiveness.  The Tc value can be lowered by doping with cations such 

as tungsten (W) or molybdenum (Mo). A green scalable approach to synthesize VO2(M) 
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particles with or without dopants has been elusive [9, 10]. Various methods have been 

previously utilized to fabricate transparent VO2-containing coatings for windows [7]. Vapor 

based deposition techniques are generally used to produce VO2 films, but require high vacuum 

conditions [11]. These deposition methods are rather complex and not amendable to preparing 

nanoparticles in high volumes for polymer film integration [11]. Wet chemistry methods can be 

used to fabricate VO2 thin films at lower costs [9]. For example, Liang et al. [12] utilized a one-

step hydrothermal synthesis method to fabricate W-doped VO2 (M) nanorods. These nanorods 

when mixed into composite films showed mid-infrared transmission switching of up to 31% and 

a phase-transition temperature of 37.3 °C. However, the utilized hydrothermal process used rather 

long reaction times (48 hours) at 240 °C. Chen et al. [13] prepared a coating of 0.5 at. % W-doped 

VO2 nanorods and obtained a visible transmittance of Tvis = 57.1% and a solar modulation 

efficiency of ΔTsol = 8.1% with a Tc at 47 °C. But again, the W-doped VO2 nanorod synthesis 

method required a relatively long time (72 h) at 280 °C. Li et al. [14] have synthesized Mo-doped 

VO2/TiO2 composite nanocrystals and prepared a film with a Tc of 38.7 °C and a ΔTsol of 35%, 

but similarly, a long hydrothermal heating process of 48 h at 220 °C was required. To the best of 

our knowledge, there are no systematic studies regarding preparing W doped VO2 using a scalable 

room temperature (RT) method followed by a short time annealing process.  

   The present study aimed to examine a simple scalable RT method in water to prepare VO2 (M) 

materials suitable to improve the infrared switching efficiency and visible transparency of 

polymeric coatings. This study began with the optimization of vanadyl acetylacetonate 

(VO(acac)2) concentration in aqueous solution and annealing time conditions for the synthesis of 

VO2 monoclinic phase (i.e. VO2(M)) via the hydrolysis of (VO(acac)2) with HCl in water at RT. 

Then, the effect of dispersion quality of VO2(M) and its concentration in hydrophilic (P4VP, PVP) 
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and hydrophobic (PMMA) polymers was examined on the optical performace of the 

coatings. VO2(M)/P4VP and VO2(M)/PVP films demonstrated excellent IR modulation 

(ΔTIR@2500nm=47% and 40%) with high visible transmittance (Tvis@680nm=41% and 35%), respectively, 

better than the VO2(M)/PMMA films with (ΔTIR@2500nm=30%, Tvis@680nm=29%), formulated under 

the same conditions. The excellent performance of hydrophilic coatings is attributed to the well 

dispersed VO2(M) particles in P4VP and PVP, driven by repulsion between the VO2(M) (IV) 

target particles and vanadium(V) oxide small nanoparticles which are always co-synthesized in 

the un-doped case. 

5.2 EXPERIMENTAL SECTION 

5.2.1 Materials  

   Vanadyl acetylacetonate (VO(acac)2, 98%), hydrochloric acid (HCl, 37% in H2O), ammonium 

tungstate (99.99% trace metals basis), polyvinylpyrrolidone (PVP, average molecular weight 40 

kDa), poly(methyl methacrylate) (PMMA, average molecular weight ~120 kDa) and poly(4-

vinylpyridine) (P4VP, average molecular weight ~60 kDa) were purchased from Sigma-Aldrich, 

Canada. Ultra-high purity argon (99.9%) was purchased from Praxair. Anhydrous ethyl alcohol 

(95%) was purchased from Commercial Alcohols, Inc., Canada. Glass substrates (VWR 

Microscope Slides) were purchased from VWR International. All chemicals were used as received 

without any further purification. 

5.2.2 Synthesis of VO2(M) and W-doped VO2 particles  

   VO2 and W-doped VO2 particles were synthesized via a hydrolysis step followed by a calcination 

process. Briefly, 1.0 g VO(acac)2 was dissolved in 28 mL of deionized (DI) water in a round-

bottom flask, to which 6 mL of HCl was added dropwise resulting in a blue solution. For the 
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synthesis of W-doped VO2, various amounts of ammonium tungstate were subsequently added to 

the solution. Afterwards, whether doped or un-doped, the solution was stirred continuously at room 

temperature for 24 h. After evaporation of the solvent using a rotary evaporator, the crude products 

were harvested and dried in a vacuum oven at 65 °C for 12 h. Crude products were also obtained 

using a freeze-drying process. The product first frozen for 12 h, then the solvent (water) is removed 

by sublimation, diffusion and desorption drying process using a freeze-dryer for 24 h. Thereafter, 

the respective crude was calcined at 450 °C for different times under inert gas (argon) in a tube 

furnace (yield > 80%). The proposed hydrolysis reaction is depicted in Figure 5.1.  

 

Figure 5. 1 Hydrolysis of VO(acac)2 into VO2 via HCl catalysis. 

 

5.2.3 Fabrication of VO2/PVP and W-doped VO2/PVP coated glass 

   To prepare VO2(M)/polyvinylpyrrolidone(PVP) coatings on glass, 0.16 g of W-doped or un-

doped VO2 (M) was dispersed in 2mL of ethanol to which 0.08 g of polyvinylpyrrolidone (PVP) 

was added, then followed by sonication at 50 °C for 60 min. 0.3-0.5 mL of the above solution was 

coated on a glass slide using a spin-coater at 3000 rpm for ca. 10 s. The coatings were dried in a 

vacuum oven at 80 °C for 30 min. The thicknesses of the coatings were approximately 250 - 350 

nm according to SEM analysis (Hitachi, Tokyo, Japan). 
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5.2.4 Fabrication of VO2/PMMA coated glass 

   To prepare VO2(M)/poly methyl methacrylate (PMMA) coatings on glass, VO2 was dispersed in 

a small vial containing 2 mL toluene to which PMMA was added (ratios see below), followed by 

sonication at 50 °C for 60 min. The weight % ratios of VO2:PMMA (wt. %:wt. %; in toluene solvent) 

were 2.3:4.6, 4.5:4.5, 2.2:8.9 and 4.3:8.7, respectively. Subsequently, 0.3-0.5 mL of these 

VO2/PMMA solutions was spin coated each at 1000, 2000 and 3000 rpm for ca. 10s onto a glass 

slide. The coated glass samples were dried in a vacuum oven at 80 °C for 30 min. The coating 

thicknesses are in the range of 0.6 to 2.1 µm, measured by SEM (Hitachi, Tokyo, Japan). 

5.2.5 Fabrication of VO2/P4VP coated glass 

   VO2(M)/poly 4-vinylpyridine (P4VP) coatings on glass slides were prepared by dispersing 

VO2 in 2 mL acetic acid in a small vial, adding P4VP and sonicate the solution at 50 °C for 60 min. 

The ratios of VO2:P4VP (wt. %:wt. %; in acidic acid solvent) were 2.3:4.6, 4.5:4.5, 2.2:8.9 and 

4.3:8.7, respectively. Subsequently, 0.3-0.5mL of the above VO2/P4VP solution were spin coated 

at 1000, 2000 and 3000 rpm, respectively, for ca. 10s onto glass slides. The coated glass samples 

were dried in a vacuum oven at 80 °C for 30 min, with coating thicknesses in the range of 1 to 2.5 

µm (measured by SEM (Hitachi, Tokyo, Japan)).  

5.2.6 Characterization 

   The crystallinity of the synthesized VO2 particles was examined by X-ray diffraction (XRD; 

Bruker D2 phaser powder diffractometer, Billerica, MA, USA) using Cu Kα radiation (λKα = 

1.54059 Å) with a scanning rate of 0.25°/second. The transition temperatures of VO2 were 

determined by differential scanning calorimetry (DSC; SDT Q600, TA Instruments, Dallas, TX, 

USA) using a cooling-heating-cycle between 0-90 °C, with both rates set at 10 °C/min. The data 

was analyzed via the instrument’s software (Universal Analysis 2000, TA Instruments, Dallas, 
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TX, USA). The optical transmittances were measured with a UV-3600 UV-VIS-NIR 

spectrophotometer (Shimadzu, Kyoto, Japan) at a wavelength range of 250 – 2500 nm. The 

temperature was controlled using a Julabo F12-refrigarated/heating circulator (Julabo, Seelbach, 

Germany). The infrared modulation at 2500 nm was obtained from the equation ∆T(λ) = T(λ)s − 

T(λ)m, where s and m represent semiconductor (sample at 22 °C) and metal (sample at 80 °C), 

respectively [15]. Scanning electron microscopy (SEM, Quanta 200) was used to study the 

morphologies and dimensions of particles and their aggregates in the PVP polymer coating (on 

glass substrates). The particle aggregates in the PMMA and P4VP polymer coatings and their 

coating thicknesses on the glass substrates were investigated with a Hitachi S-4500 field emission 

SEM (Hitachi, Tokyo, Japan). The elemental analysis of the samples was carried out by energy 

dispersive X-ray spectrometry (EDX) combined with scanning electron microscopy (SEM, Quanta 

200). The average particle sizes of VO2 particles were measured using Malvern Zeta-sizer Nano-

ZS DLS (dynamic light scattering, Malvern, UK) instrument. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Characterization of VO2(M) reacted for 24 h at RT 

   To obtain a pure monoclinic phase of VO2 (synthesized at RT, 24 h), the aqueous solution of 

VO(acac)2 at variable concentrations between 0.00005 mol/L(pH=3) and 0.19 mol/L(pH=-0.6) 

were examined (Figure 5.2). As shown in Figure 5.2a,b, the concentrations between (0.19-

0.05mol/L) produced blue solutions of VO2+ ions (V(IV)) [16]. However, when the concentration 

decreased to 0.03 mol/L, a solution of mint green color was obtained, which is an indication of 

V(V) ion formation [16](Figure 5.2c). The green color was distinct at 0.01 mol/L (Figure 5.2d) 

and lower concentrations (i.e. Figure 5.2e).  

 

Figure 5. 2 Solution of VO(acac)2 at different concentrations. 

 

   The produced VO2 samples were examined using various annealing times (1-5 h) by XRD 

analysis for phase identification (Figure 5.3). Un-calcined samples do not show any diffraction 

peaks, indicating the amorphous nature of the material. The Bragg peaks for samples calcined for 

1-3 h suggest a metastable VO2(B) phase of vanadium dioxide [17]. A pure monoclinic VO2 phase 
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is only obtained after 4 h of calcination with diffraction peaks at 28°, 37.2°, 40.4°, 42.4°, 55.6°, 

57.6°, 65.7° and 70.9°, which represent the planes (011), (-211), (002), (210), (220), (022), (013) 

and (-231) of monoclinic VO2, respectively [11]. The small unidentified peaks in the XRD spectra 

may represent some unknown phases of nonstoichiometric vanadium oxides [18]. VO2(M) at 4 h 

calcination was chosen to be continued for more in-depth study. The as-synthesized sample was 

further investigated at various calcination temperatures (450-800 °C) for 1 h, but without any 

success. 

 

Figure 5. 3 XRD spectra of un-doped VO2 reacted for 24 h at RT before and after calcination at 

450 °C for 1-5 h. The stars depict diffraction peaks of the monoclinic VO2(M) phase. 

 

   FTIR investigation (Figure 5.4) was conducted to verify the synthesis of VO2(M) via the 

hypothesized room temperature (RT) strategy followed by a calcination at 450 °C for 4 h. The 
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samples were prepared by grinding the dried sample with potassium bromide (KBr) powder in the ratio 

of ~1:200 (sample: KBr) and then compressed to form discs. The FTIR result before calcination 

(Figure 5.4b), shows a broad absorption band at 3386 cm–1 and a medium band at 1628 cm–1 which 

are assigned to the stretching and bending vibrations of hydroxyl groups, ν(O-H), respectively. 

These vibrations occur due to absorbed water molecules on the sample surfaces [12]. They are 

reduced substantially in the FTIR spectrum of the calcined sample, indicating that a dehydration 

process occurred during calcination (Figure 5.4c). Before calcination, the VO2 shows stretching 

vibrations at 499 cm-1 for ν(V-O-V) and 997 cm-1 for ν(V=O) [19], typical for the amorphous 

material (Fig 1b). After annealing, the peak at 997 cm−1 shifts to 1003 cm−1, while the peak at 499 

cm−1 splits into three peaks (744, 544, and 449 cm−1). The latter indicates the characteristic 

stretching vibrations of VO2(M), which agrees well with the findings by Xia et al. [20] and 

confirms the effect of O–H stretching produced by lattice water [21]. The precursor, VO(acac)2, 

shows vibrations (Figure 5.4a) similar to those reported by Ndwandwe et al. [19].  
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Figure 5. 4 FTIR spectra of (a) VO(acac)2 (blue), (b) VO2 before calcination (green) and (c) 

VO2(M) after calcination (red). 

   To examine if the water based synthesis at RT would work with Tungsten (W) doping, the 

samples were reacted for 24 h at RT and then calcined at 450 °C for 4 h before XRD analysis. 

Diffraction patterns of W-doped VO2 (W content: 0 at. %, 2.5 at. %, 5 at. % and 10 at. %) are 

shown in Figure 5.5. In Figure 5.5a, the diffraction peaks can be assigned to the crystal planes of 

VO2(M) (JCPDS card no. 82-0661) [15] which are marked with a star (*). Figure 5.5b shows a 

section (26°-30°) of the XRD spectra of samples containing different amounts of W. These spectra 

indicate the (011) peak of the monoclinic phase (0 and 2.5 at. % W) and the (110) peak of the rutile 

phase (5 and 10 at. % W). In the enlarged spectra, there is no spectral shift in the position of (011) 

peak between the un-doped and 2.5 at. % W-doped VO2 . The incorporation of W into the VO2(M) 
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crystal lattice led to a narrower and less intense (011) M peak, an indication that large particle 

sizes with deteriorated crystallinity were formed during calcination of 2.5 at. % W-doped VO2 

samples (see Table 5.1 for particle sizes). With increasing W concentration (5 at. % and 10 at. %), 

the diffraction peaks are shifted toward a lower angle (from 28° to 27.4°). This significant peak 

shift depicts a different crystal phase, i.e. rutile phase (JCPDS card No. 79-1655). It was previously 

reported that rutile VO2(R) phase can be formed at room temperature [13, 22], a result also 

indicating that W may dramatically stabilize the rutile phase VO2(R) at room temperature. The 

ionic radius of the tungsten cation (W6+ for 6-coordinate: 60 pm) is slightly larger than the ionic 

radius of vanadium cation (V4+ for 6-coordinate: 58 pm). Consequently, exchanging V by W leads 

to an expansion of the interplanar distance, d, and thus, according to Bragg’s law [d = λ/(2sin θ)], 

to a shift towards lower diffraction angles [23]. 
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Figure 5. 5 XRD spectra of VO2 (M) with various nominal contents of tungsten: (a) the entire 

XRD spectrum and (b) an enlargement of the spectra between 26° and 30°. 
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   Tungsten is well known to be an effective dopant to decrease the phase transition temperature of 

VO2 close to RT. W-doped VO2(M) samples shown in Figure 5.5 were examined by differential 

scanning calorimetry (DSC) (Figure 5.6). The endothermic phase transition temperature (Tc) of 

VO2(M) decreased from 68 °C to 45 °C with increasing W-content. Based on Wu, Y. et al., this is 

due to the de-twisting of the monoclinic VO2 lattice by W-doping stress, which reduces the band 

gap and hence lowers the potential energy barrier for phase transition [24]. Although the transition 

temperature of 5 at. % and 10 at. % was found at 52 °C and 45 °C, respectively, the transition 

shows an onset at much lower temperature (~at RT).  This  confirms the existence of some of the 

VO2(R) phase at RT. A Tc of 45 °C for the 10 at. % W-doped VO2 was achieved via the RT 

reaction, which is close to 40 °C, the “standard Tc” for an application in smart window design [23]. 

However, increasing the W content to 5 and 10 at. %, the system decreases the optical switching 

performance. As shown in Figure 5.6, the latent heat (calculated from the heating cycles of the 

DSC data) decreased from 30 J/g to 19.5 J/g, 10.8J/g and 8.5J/g with increasing W-content. This 

is due to the competition between doping-induced deferment of phase transition (Tc) and doping-

induced crystallinity enhancement [22]. The appearance of two endothermic transition peaks for 

un-doped VO2 in the DSC data (Figure 5.6), is due to a double population of particle sizes (see 

Figure 5.8a) [25, 26]. 10-cycles DSC heating/cooling scans for 2.5 at. % W-doped VO2 sample is 

shown in Figure D1. To confirm that the hydrolysis of VO(acac)2 occurs at RT, and not during 

rotary evaporation or during the drying process in an oven, the un-doped/doped samples were 

freeze-dried after reflux while maintaining identical synthesis conditions. The DSC peaks 

intensified, and the latent heat increased for all freeze-dried samples as shown in Figure 5.7, 

possibly due to moisture reduction (except for the 10 at. % W sample which shows no peak at all; 

not shown). 



162 

 

 

Figure 5. 6 DSC spectra of VO2(M) at various nominal contents of tungsten after 24 h of 

reaction and calcination at 450 °C for 4 h. 
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Figure 5. 7 DSC spectra of VO2(M) at various nominal contents of tungsten after 24 h of 

reaction using freeze-drying process. 

 

   The morphologies of both the un-doped and W-doped VO2 particles were characterized by SEM 

(Figure 5.8). The un-doped VO2 (Figure 5.8a) depicts two particle populations with different sizes. 

Small NPs with diameters of ~50 nm are blended with particles of ~300 nm diameter (Figure 5.8a, 

red circles). To separate the small NPs from the large particles, ethanol was added to the un-doped 

VO2 powder, then centrifuged (Thermo Scientific Sorvall Legend RT+ centrifuge) at 4500 rpm for 

10 mins. The large VO2(M) particles yielded a black color (vanadium(IV) oxide) that precipitated 

at the bottom (Figure 5.9a) while the yellow supernatant with the small NPs (vanadium(V) oxide) 

[27] were layered above (Figure 5.9b). Thermochromic behavior was not found for the coating 
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made with the small NPs from the yellow supernatant, confirming vanadium (V) oxide. The 

dynamic light scattering (DLS) data on average size for the VO2 hence needs to be interpreted 

carefully. According to DLS data (Figure D2, in Appendix D), the size distribution histogram of 

VO2 by intensity and volume shows bimodal-like distribution. One peak with an average size 

between 47-50 nm (2-13%) and the second with 309-392 nm (87-98%). This is further confirms 

the dual populations of the particle sizes. Doped VO2, on the other hand, showed single particle 

population only (Figure 5.8b). Size uniformity of VO2 particles with W-addition agrees well with 

Shen et al. [22]. The morphology of the 5 at. % sample shows agglomerated leaf-like structures 

(Figure 5.8c). Reaching a W-content of 10 at. %, a flower like morphology is seen, with needle 

like particles (Figure 5.8d). Obviously, the W-concentration controls the particle growth and 

morphology. 
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Figure 5. 8 SEM images of VO2 (M) reacted for 24 h at RT for the nominal W-contents after 

calcination at 450 °C for 4 h. (a) 0 at. %, (b) 2.5 at. %, (c) 5 at. %, and (d) 10 at. %. The red 

circles indicate examples of each particle population. 
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Figure 5. 9 Centrifuged un-doped VO2 NPs in ethanol. (a) Large particle population precipitate 

yielding black color vanadium(IV) oxide, and (b) small NPs in the collected supernatant. 

 

   The average particle (aggregates) sizes were investigated with dynamic light scattering (DLS, 

Zeta-sizer, Table 5.1). Without calcination, the amorphous material shows an average object size 

of ~4 µm, obviously an agglomerate. Upon calcination at 450 °C for 4 h, the average particle size 

decreased to ~233 nm. With increasing W-content and identical calcination conditions, the average 

particle size increased to 440 nm. The average particle sizes agree with SEM (Figure 5.8). A 

similar trend of particle size increase was obtained with increasing W concentration using 

Scherrer’s equation (Table 5.1), although the size of particles were much smaller. The reason for 

the size variance between the methods, is that the Zeta-sizer provides information on aggregate 

size and hydrodynamic volume [28]. The Scherrer technique is an approximation based on a 

crystallite (coherently scattering region) size present in the grain and measures domain rather than 

particle [29]. The particle size increase with W-content increase is due to the high valence of W-

ions compared to V-ions. When (W6+) replace (V4+) sites in the monoclinic VO2 crystal lattice, the 

negative charge defects on the surface of grains may increase driven by charge balance [30]. 

Increasing the concentration of these defects can create an electric dipole that speeds up the 

diffusion of the VO2+ ions in solution, thus leading to an enhanced growth of VO2 grains [30].  

 

 

 

 



167 

 

Table 5. 1 Average diameter of W-doped VO2 particles investigated with DLS (Zeta-sizer) and 

Scherrer equation. 

     

The hysteresis, ΔT (°C), in the DSC spectra is the difference between the temperature of the 

endothermic and the exothermic peak during heating and cooling cycles, respectively. Table 5.2 

summarizes the hysteresis data for the W-doped samples reacted for 24 h at RT. ΔT (°C) decreases 

with increasing the W-content (except for the highest concentration). This is due to the decreasing 

of Tc, agreeing well with Li et al. [14].   

Table 5. 2 Tc and hysteresis of the W-doped VO2 samples reacted for 24 h at RT. 

 

   The presence of W, V, and O are confirmed by EDX analysis (Figure 5.10). The V and O 

representative peaks are present in all samples. The representative peaks for W are present in all 

W-doped VO2 samples. The intensity of the W-peaks is increasing with W-concentrations, 

confirming a successful W-doping into the VO2 lattice. Table 5.3 shows the real W-concentrations 

obtained by EDX analysis. The real concentration is less than the nominal content which agrees 
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with findings of Chen et al. [13] and Huang et al. [23] but is in discrepancy with Shidong et al. 

[31]. 

 

Figure 5. 10 EDX spectra of VO2 (M) with various W-contents reacted for 24 h at RT after 

annealing at 450 °C for 4 h: (a) 0 at. %, (b) 2.5 at. %, (c) 5 at. % and (d) 10 at. %. 

 

Table 5. 3 Real W-concentrations for doped VO2 reacted for 24 h at RT at different nominal W-

contents from EDX data evaluation. 

  

      A Tc reduction efficiency of 5.42 K/at. % for W-doped VO2 particles was found by plotting Tc 

versus the real W-concentration (Figure 5.11). The Tc reduction coefficient obtained here is low 
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compared to literature values. Dong et al. [32] achieved 19.8 K/at. %, and Wang et al. [33] 

achieved 17.2 °C/at. %, however, both used a high-energy consumption hydrothermal method. 

 

Figure 5. 11 Tc versus real W-concentration. The line is a least square linear fit. 

 

5.3.2 Characterization of VO2(M) reacted for 72 h at RT 

   The effect of reaction time (72 h) on the crystallinity and Tc of VO2(M) was examined by XRD 

and DSC, respectively. The XRD spectra for un-doped and W-doped VO2 reacted for 72 h at RT 

are shown in Figure 5.12a. A pure VO2(M/R) spectra is obtained for all W-doped samples. The 

XRD peaks’ full width at half maximum (FWHM) for W-doped VO2 (72 h reaction) are much 

wider than the peaks’ FWHM of W-doped VO2 (24 h reaction). According to Scherrer’s equation, 

this implies a small size particle synthesis. The strongest diffraction peak, (110)R, was present at 

27.6° for all samples, suggesting that some VO2(R) phase (JCPDS card No. 79-1655) was already 

formed at room temperature [13, 22].  
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   The DSC spectra for doped and un-doped VO2 reacted for 72 h at RT are shown in Figure 5.12b. 

Increased W-contents led to a decrease in latent heat (25 J/g, 4.8 J/g, 0 J/g and 0 J/g), probably due 

to poor crystallinity and a lower purity of monoclinic VO2 phase with high W-doping 

concentration [34]. The endothermic Tc and ΔT (°C) decreased from 73 °C to 64 °C and from 16 

°C to 9 °C, respectively with W-doping at 2.5 at. %. The thermo-chromic properties are 

deteriorated for 5 and 10 at. % W-doped VO2. 
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Figure 5. 12 (a) XRD spectra and (b) DSC spectra of VO2(M) at various nominal contents of 

tungsten after 72 h of reaction. The stars (*) depict the VO2 diffraction peaks of the monoclinic 

phase ((JCPDS card no. 82-0661). 

 

5.3.3 Dispersion of VO2 Particles in PVP coatings 

   Polyvinylpyrrolidone (PVP) was chosen to improve the physical gelation of the coating through 

the interactions between carbonyl groups (-) and amine groups (+) of PVP [35]. Additionally, the 

interaction between VO2+ ions and carbonyl groups (-) of PVP can potentially improve the 

dispersion of VO2 particles and uniformity of the film [36]. VO2/PVP coatings on glass were 

prepared by dispersing the VO2 particles in ethanol to which PVP was added. Then the solution 

was sonicated, coated on a glass slide and dried in a vacuum oven. Dispersion of pristine and doped 

materials in PVP were examined by SEM. The SEM images of Figure 5.13a and b, images of un-

doped VO2 in PVP coatings on glass in two magnifications, show well dispersed particles, whereas 

the 2.5 at. % W-doped VO2 particles in PVP (Figure D3) show agglomerated particle structures. 

The un-doped VO2 sample consists of a double population of particles with respect to size and 

material (Figure 5.8a and Figure 5.9). A Coulomb repulsion between the large positively charged 

vanadium(IV) oxide particles and the small, also positively charged vanadium(V) oxide NPs might 

be responsible for the stable distances between the un-doped particles (Figure 5.13a and b). In the 

enlarged SEM image of Figure 5.13b, a ring of small NPs around large particles are depicted by a 

red circle. The particle number density per unit area in Figure 5.13a, was found to be 667 (±4) 

n/mm2 (where “n” is the number of large particles). The uniformity of particle distributions in the 

film (Figure 5.13a) was estimated based on the number of large particles (n) per unit area (mm^2) 

at three different locations as shown by histogram in Figure D4. For the first time, VO2 particles 

have shown a proper dispersion in a polymer coating which is necessary for smart window 
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application. Clusters and agglomerates of particles in a transparent coating lead to light scattering 

which will make the coating opaque with a milky appearance, unacceptable for window 

applications. As shown in Figure D5, bimodal distribution was also obtained using ImageJ 

software analysis for the SEM image of Figure 5.13. Unfortunately, agglomeration is observed for 

2.5 at. % (Figure D3), probably due to a high hydrophilicity at low W content [37]. 

 

Figure 5. 13 SEM images of VO2(M) dispersed in PVP coatings on glass. (a) and (b) un-doped 

with different magnification (see scale bar). 

 

5.3.4 Thermo-chromic properties of VO2 dispersed in PVP coatings on glass 

   Thermochromic properties of un-doped VO2 (M) and W-doped VO2 NP in PVP coatings on glass 

were investigated by UV-VIS-IR spectrophotometry. The transmittance spectra between 250 - 

2500 nm at 22 °C and 80 °C are depicted in Figure 5.14a for the un-doped and in Figure 5.14b for 

the W-doped VO2. The SMT was clearly observed in both coatings. The infrared (IR) 

transmittance modulation achieved, ΔTIR@2500nm, for the un-doped VO2 coating was 40% with a 

visible transmittance, Tvis@680nm, of 35%. However, for 2.5 at. % W-doped VO2 coating, 

ΔTIR@2500nm was only 13% with a Tvis@680nm of 42%. The visible transmittance was enhanced by 
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W-doping but a deteriorated switching behavior was observed. The reason might be a W-triggered 

a blue-shift of the absorption edge by widening the band gap of VO2 [11, 38, 39]. We conclude, 

that the un-doped VO2 coatings have suitable optical, thermo-chromic and dispersion properties 

for smart window applications. The main reason for the lower transmittance in the visible region 

at low temperature is due to higher refractive index (2.7–2.8) for monoclinic VO2 phase in 

comparison to the rutile VO2 phase (2.0–2.5) due to enhanced light scattering effects of the 

relatively large NPs [40]. Increasing the W-doping content in the coatings to 5 and 10 at. % showed 

little infrared (IR) modulation ability between 22 °C and 80 °C (Figure D6). UV-VIS-IR spectra 

were taken from PVP-coatings containing the individual small NP population (yellow 

supernatant). No thermochromic behavior was found for the coating made with the small NPs from 

the yellow supernatant, confirming vanadium (V) oxide.  

 

Figure 5. 14 Optical transmittance spectra of (a) un-doped VO2/PVP coating and (b) 2.5 at.% W-

doped VO2/PVP coating. 

 

   For a fast phase transition response, a small hysteresis (ΔTc) is a key requirement for VO2 

thermochromic coatings. The hysteresis of the VO2/PVP and 2.5 at. % W-doped VO2/PVP 
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coatings are 12.5 °C and 10 °C (Figure 5.15a and b) compare to 13.6 °C and 12.5 °C of VO2 and 

2.5 at. % W-doped VO2 powders (Table 5.2), respectively. This indicates a reduction in hysteresis 

width when VO2 powder is mixed with PVP. This hysteresis width (10 °C) is comparable to 15.8 

°C and 10.7 °C for the films reported by Liang, Shan, et al. [12] and Li, Wenjing, et al. [40] 

respectively. However, it is higher than 8.6 °C reported by Chen, Ru, et al. [41]. 

 

Figure 5. 15 DSC spectra of (a) VO2/PVP coating and (b) 2.5 at. % W-doped VO2/PVP coating. 

 

5.3.5 FTIR studies on VO2/PMMA films 

   The surface interaction between VO2 particles and PMMA in the coating was examined using FTIR 

(Figure 5.16). To obtain a water repellent coating, hydrophobic PMMA was chosen for the fabrication 

and characterization of VO2/PMMA films. PMMA is an highly optical transparent polymer with high 

impact strength, is lightweight and shatter-resistant, and possesses favorable processing properties [42, 

43]. Figure 5.16a, b and c represent the FTIR spectra of VO2, PMMA, and VO2/PMMA films, 

respectively. The samples were prepared by coating a thin transparent layer of the sample on the 

compressed KBr disc, then dried in the oven to remove the solvent. All the characteristic absorption 

peaks assigned to PMMA are observed in PMMA and VO2/PMMA [44, 45]. The peaks observed at 
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(2995 cm−1, 2843cm−1), (1485, 1448, 1387 cm−1), (1149 cm−1) and (1192 cm−1) are attributed to 

stretching, deformation, twisting and wagging mode of the methyl (CH3) group [45]. The intense peak 

at 1732 cm−1 is assigned to the characteristic stretch vibration of the ester carbonyl C=O of PMMA [45]. 

The position of this peak is maintained for VO2/PMMA coating, suggesting no loosening of C=O due 

to an interaction with oppositely charged vanadium aqua ions [36]. The peaks at 750 cm−1
 and (1242, 

1271 cm−1) are attributed to bending of C=O and stretching modes of C–O, respectively [45]. The FTIR 

bands of the VO2/PMMA film exhibits indistinguishable features to that of pure PMMA, with no change 

in the band position. Nevertheless, if you look carefully, the magnitude of the absorption peaks are 

minimized little bit in the VO2/PMMA, and this could be due to cooperation between VO2 and PMMA 

by adsorption through methoxycarbonyl group (–C(O)OCH3) of polymer. A peak intensity increase of 

733 and 750 cm−1 with an new peak appeared at 536 cm−1 in the VO2/PMMA films are attributed to 

stretching vibration of V=O and V-O, respectively. Thus, the coordination between VO2 and PMMA is 

confirmed by FTIR spectra and is probably due to an interaction between (–C(O)OCH3) of PMMA and 

surface hydroxyl (OH) of VO2. 
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Figure 5. 16 FTIR spectra of (a) VO2 (blue), (b) PMMA (green), and (c) VO2/PMMA (red). 

 

5.3.6 Thermochromic studies on VO2/PMMA films with different thicknesses on glass  

   The effect of film thicknesses and concentration ratios of VO2:PMMA on the optical and 

thermochromic performance of VO2/PMMA films were investigated during phase transition by 

measuring the UV–VIS–NIR transmittance spectra from 250 to 2500 nm at 22 °C and 80 °C 

(Figure 5.17). Figure 5.17a shows VO2:PMMA samples at weight percent ratios of 2.3:4.6, 4.5:4.5, 

2.2:8.9 and 4.3:8.7 (wt. %:wt. %), in toluene solvent. The various mixtures were spin coated at 

1000, 2000 and 3000 rpm onto glass slides to obtain coatings of different thicknesses hence, 

different visible transmittances and different IR transmittance switches. For all films, with 

increasing spin rate and thus decreasing film thicknesses (Figure 5.17b), an increase in visible 
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transmittance and a decrease in IR transmittance switching is observed (Figure 5.17a). When the 

concentration of VO2 is low in VO2:PMMA coating (i.e., 2.3:4.6 and 2.2:8.9), films show high 

visible transmittance and low IR transmittance switching, however, when concentration of VO2 is 

high (i.e., 4.5:4.5 and 4.3:8.7), films show low visible transmittance and high IR transmittance 

switching (Figure 5.17a).  

The dispersion of VO2 (M) particles in PMMA for the (4.3:8.7) sample, spin coated at 1000 rpm, 

was characterized by SEM (Figure 5.18a). Agglomerated particles were observed (Figure 5.18a) 

in the 2 µm thick film (measured with SEM, Figure 5.22a) while visible transmittance, Tvis@680nm, 

and IR transmittance switching, ΔTIR@2500nm, were 29% and 30%, respectively (Figure 5.18b). 
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Figure 5. 17 UV–VIS–NIR analysis of the VO2/PMMA films, spin coated at 1000, 2000 and 

3000 rpm onto a glass and prepared at weight percent ratios of 2.3:4.6, 4.5:4.5, 2.2:8.9 and 

4.3:8.7 (wt. %: wt. %), respectively. (a) Visible transmittance (orange bar) and IR switching 

(blue bar) with (b) various thickness (grey bar). The transmittances were obtained at 22 °C and 

80 °C in the spectral range of 250 – 2500 nm. 
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Figure 5. 18 VO2/PMMA (4.3/8.7) (wt. %:wt. %) coating sample, spin coated at 1000 rpm. (a) 

SEM image depicting morphology and (b) UV–VIS–NIR transmittance spectra (250 – 2500 nm) 

at 22 °C (blue) and 80 °C (red). 

 

5.3.7 FTIR studies on VO2/P4VP films 

   The surface interaction between VO2 and poly(4-vinylpyridine) (P4VP) in the coating was 

scrutinized using FTIR (Figure 5.19). P4VP is often used in the fabrication of coatings or as a matrix 

material for semiconductor particles. This polymer was chosen for coating studies with a 

hydrophilic property [46, 47]. Figure 5.19 depicts the FTIR spectra of VO2, P4VP and VO2/P4VP. 

The samples were prepared by coating a thin transparent layer of the sample onto compressed KBr 

discs, then dried in the oven to remove the solvent. P4VP IR-band positions are in agreement with 

the spectra reported by Esma et al. [48]. No shift in the band positions between P4VP and 

VO2/P4VP was found. The characteristic vibrations of the pyridine rings are seen at 1601 cm−1, 

assigned to C=N stretching, and at 1417 cm−1, assigned to C=C stretching, indicating incoordination 

between the pyridine ring (pyridinic nitrogen atoms) and the VO2 in the VO2/P4VP [49-51] (Figure 

5.19c). The FTIR vibration peaks at 2856, 2931, and 3028 cm−1 are attributed to the C–H vibrations 

of the aliphatic CH2 in the vinyl chain [52]. The stretching vibration at 3406 cm–1 is due to the 

NH+ of the pyridinium ion [48, 53]. The intensity of the bands at 3406 and 1637 cm–1 are increased 

in the VO2/P4VP, while a slight reduction in the 3028 cm–1 peak was observed. This may be 

attributed to the loss of methyne protons and transfer to a side chain pyridine nitrogen with the 

formation of a pyridinium ion, suggesting that the mobile acidic acid solvent acted as a proton 

transfer vehicle [48, 53, 54]. High intensity with broad bands appeared in the FTIR spectra of the 

VO2/P4VP sample at 744 cm−1 and (559 cm−1, 447 cm−1), which are ascribed to the stretching 
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vibrations of ν(V=O) and ν(V-O), respectively, indicating adsorption and an incorporation of VO2 

into the matrix.  
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Figure 5. 19 FTIR spectra of (a) VO2 (blue), (b) P4VP (green), and (c) VO2/P4VP (red) 

 

5.3.8 Thermo-chromic studies on VO2/P4VP films with different thickness on glass  

   The effect of film thickness and concentrations ratios of VO2:P4VP on the optical and 

thermochromic characteristics of VO2/P4VP coatings on glass were investigated during phase 

transition by measuring UV–VIS–NIR transmittance from 250 to 2500 nm at 22 °C and 80 °C 

(Figure 5.20). Figure 5.20a shows VO2:P4VP samples at weight percent ratios of 2.3:4.6, 4.5:4.5, 

2.2:8.9 and 4.3:8.7 (wt. %:wt. %), in an acidic acid solvent. Spin speeds of 1000, 2000 and 3000 

rpm were used. Decreasing film thicknesses was obtained by increasing the spinning speed (Figure 
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5.20b), hence influencing both the visible transmittance and the IR transmittance switching (Figure 

5.20a). A decrease in coating thickness corresponds to an increase in the visible transmittance (at 

wavelength 680 nm) and a decrease in the IR transmittance switching (Figure 5.20a). When the 

concentration of VO2 is low in VO2:P4VP samples (i.e., 2.3:4.6 and 2.2:8.9), films show high 

visible transmittance, when the concentration of VO2 is high (i.e., 4.5:4.5 and 4.3:8.7), films show 

low visible transmittance (Figure 5.20a). On the other hand, when the concentration of P4VP is 

low in VO2:P4VP samples (i.e., 2.3:4.6 and 4.5:4.5), films show low IR switching, when 

concentration of P4VP is high (i.e., 2.2:8.9 and 4.3:8.7), films show high IR switching (Figure 

5.20a). 

   The dispersion of VO2 (M) particles in P4VP for the (4.3:8.7) sample, spin coated at 1000 rpm, 

was characterized by SEM (Figure 5.21a). The particles, relatively large aggregates, are distributed 

uniformly (Figure 5.21a) in the 2.1 µm thick film (Figure 5.22b). The visible transmittance of this 

sample, Tvis@680nm, and the IR transmittance switching, ΔTIR@2500nm, were 41% and 47%, 

respectively (Figure 5.21b). An estimation of a direct band gap of 1.75 eV was obtained for this 

film using Tauc plot (Figure D7). Uniform dispersion of VO2 particles into P4VP matrix has been 

shown to have an important effect on enhancing the desired optical and thermochromic 

characteristics of the coatings which is in excellent agreement with Zhu et al.’s work [55].  
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Figure 5. 20 UV–VIS–NIR analysis of the VO2/P4VP films, spin coated at 1000, 2000 and 3000 

rpm onto a glass and prepared at weight percent ratios of 2.3:4.6, 4.5:4.5, 2.2:8.9 and 4.3:8.7 

(wt. %:wt. %). (a) Visible transmittance (orange) and IR switching (brown ) with (b) thickness 

(blue). The transmittance was obtained at 22 °C and 80 °C in the spectral range of 250–2500 nm. 



184 

 

 



185 

 

Figure 5. 21 VO2/P4VP (4.3:8.7) (wt. %:wt. %) film sample, spin coated at 1000 rpm. (a) SEM 

morphology, (b) UV–VIS–NIR transmittance spectra (250–2500 nm) at 22 °C (blue) and 80 °C 

(red). 

 

Figure 5. 22 SEM thicknesses of (a) VO2/PMMA (4.3:8.7) (wt. %:wt. %) and (b) VO2/P4VP 

(4.3:8.7) (wt. %:wt. %) film samples, spin coated at 1000 rpm. 

 

5.4 CONCLUSIONS 

   Un-doped and W-doped VO2 particles were synthesized in a green, low energy consumption RT 

approach which is easily up-scalable. An excellent dispersion of un-doped VO2(M) (IV) particles 

in hydrophilic polymers, PVP and P4VP coatings was discovered driven by cationic Coulomb 

repulsion between the VO2(M) target particles and vanadium(V) oxide NPs which are always co-

synthesized in the un-doped case. An un-doped VO2/PVP coated glass was fabricated with a high 

IR modulation ability of 40% at 2500 nm and a good visible transmittance of 35% at 680 nm. 

Hydrophobic VO2/PMMA and hydrophilic VO2/P4VP coatings with different thicknesses and 

VO2-concentrations were investigated to simulate weather resistant and good dispersion of VO2, 

respectively. The VO2/P4VP film exhibited an excellent IR modulation ability (47% at 2500 nm) with 

good visible transmittance (41% at 680 nm) which is associated to the film’ uniform dispersion of 

particles. 
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Chapter 6 

Conclusions and Recommendations 

6.1 CONCLUSIONS 

In this thesis, a green and novel energy maintaining process for the synthesis of VO2(M) was 

found by reacting ammonium metavanadate with aspartic acid in water. Using a straightforward 

reflux wet chemical process, a consistent large batch of W-doped VO2 with a high yield (˃90%) 

and a low phase transition temperature of 53 °C was effectively synthesized. According to XRD 

and EVA, the “0.7/1” and “0.6/1” samples, have yielded the highest monoclinic VO2(M) amounts 

for all calcination times, however, only “0.6/1(2 h)” sample contained no V2O5. Phase transition 

temperature, monoclinic phase purity and chemical stability of VO2(M) were investigated as 

a function of the W-doping, besides, the phase purity was examined as a function of PVP as well. 

Based on DSC and XRD results, it was found that both W and PVP had a signification effect on 

the experimental parameters. As matter of fact, without W-doping or without blending with PVP 

is not possible to synthesize a material with a pure monoclinic VO2 phase primary below 800 °C 

calcination temperature. Moreover, it was proved that W-doping have enhanced the anti-oxidation 

of the VO2(M) in air, which is important for useful purposes like shelf-life before utilization in a 

smart coating. Further, tungsten was found to be more effective on Tc primarily for samples 

annealed at 800 °C for 2 h. The fabrication of W-doped VO2(M)/PVP coatings on glass with a 

relative uniform dispersion, nonetheless in aggregated form, was obtained. Based on UV-Vis-NIR 

spectra, a simultaneous improvement in both luminous transparency and solar modulation in 

comparison to recent literatures was accomplished: Tlum,best 68.30% at 22 °C and Tlum,best = 47.6 % 

at 80 °C with an extraordinarily high ΔTsol, best of 20.37%. Accordingly, the environmentally 
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friendly synthesized W-doped VO2 material obtained for the first time satisfies the target criteria 

for smart windows. 

   VO2(M) crystals were synthesized in a high yield with a relatively large batch (2g) by reducing 

ammonium metavanadate (NH4VO3) with hydrazine using a novel green hydrothermal method. 

Both Mo- and W-doped VO2 were synthesized, and the morphology and phase transition were 

strongly affected by different doping as confirmed by SEM and DSC. It was found that W was 

more effective than Mo to reduce phase transition temperature of VO2 down to an ambient 

temperature. According to XRD, for all W-doped samples, VO2(B) phase was completely 

transformed into VO2 (M), primarily after being annealed at 650 °C with heating rate of 20 °C/min. 

A high transition reduction efficiency of 23 K/at. % was obtained for W-doped VO2 crystals. 

Additionally, the thermochromic properties of VO2/PVP coated glass exhibited an excellent visible 

light transmittance above 62% and high infrared modulation up to 35% at 2000 nm. Meanwhile, 

the highest infrared (IR) switching of 28% at 1500 nm was obtained for 1 at. % W-doped VO2/PVP 

coating with a visible transmittance above 75%. These results are promising for an application of 

W-doped VO2 nanocrystals in smart window technology. This simple and green synthetic method 

can open avenues for an economic and commercial large-scale VO2 (M) production for low-cost 

smart windows.  

   A VO2-SiO2 composite was synthesized through a novel reflux-process by reducing ammonium 

metavanadate with the maleic acid, already blended with fumed silica, using water solvent. 

According to XRD, the ratio of maleic Acid/ NH4VO3 at 1.5:1 was the optimum for the synthesis 

of a monoclinic VO2. XPS, FTIR, 1H NMR and 13C NMR were used to study the reaction 

mechanisms, and the as synthesized product found to be a mixture of (NH4)0.5V2O5 and 

(NH4)2V4O9 (molar ratio: 6.8:1), however, it transformed into a mixture of VO2 and V2O5 (molar 
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ratio: 3:1) after annealing. Hysteresis width, latent heat and Tc of the pristine VO2 were investigated 

as a function of various annealing temperatures using DSC. Typically, when annealing temperature 

is increased from 500 °C to 700 °C, the Tc exhibited a decrease from 67.3 °C to 66.7 °C during the 

heating cycle and an increase from 62.0 °C to 63.4 °C during the cooling cycle, causing the hysteresis 

width to decrease from 5.3 °C to 3.3 °C. Meanwhile, the latent heat increased from 27.0J/g to 47.8J/g 

during phase transition when annealing temperature increases from 500 °C to 800 °C. Further, using 

condenser at low reaction temperature, the phase transition temperature of 2 at. % W-doped VO2 

was dramatically reduced to 23 °C, when tungstic acid was pre-dissolved in hydrogen peroxide 

(H2O2) prior to use. To study the effect of SiO2 addition on the size, morphology, dispersion and 

chemical stability of VO2, different Si/V molar ratios were examined. The zeta-sizer results 

revealed that the mean particles size of VO2/SiO2 composite (Si/V=0.05) is approximately 155.5 

nm compare to 650 nm of pristine VO2 particle size annealed at the same conditions, suggesting 

that the addition of SiO2 inhibits the agglomeration of VO2 particles. Accordingly, as displayed by 

SEM, well dispersion of small particles is formed for the composite compare to an agglomerated 

VO2. In addition, the SiO2 significantly enhanced the anti-oxidation stability of VO2, which was 

maintained in air, at room temperature for seven months. Further, the VO2/SiO2 composite film 

exhibited an excellent efficiency with IR modulation up to 20%, four times greater than 5% of 

plain VO2 film, while retaining high visible transparency of 70% at the wavelength of 680 nm. 

Therefore, the composite could have a great potential for an application in smart window due to 

promising properties of IR switching and chemical stability. 

   A novel, green and low energy consumption RT process for the synthesis of un-doped and W-

doped VO2 NPs was achieved by hydrolysis of vanadyl acetylacetonate with HCl in aqueous 

solution after a short time calcination. Hydrolysis reaction was proposed and FTIR, XRD and DSC 
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investigations were conducted to verify the success of the RT synthetic strategy of VO2. Various 

experimental parameters including reaction time, annealing time and W doping concentration were 

investigated. To confirm that the reaction didn’t occur during rotary evaporation or during an oven 

drying, the samples were freeze-dried after reflux while maintaining same synthesis conditions. 

Accordingly, the DSC revealed that the peaks are intensified, and the latent heat increased for all 

W samples due to moisture reduction. Further, it was found that the particle size and latent heat 

decreased when increasing W for 72 h reaction. However, the particle size increased with less 

thermochromic deterioration when increasing W for 24 h reaction, hence this reaction was chosen 

for more in-depth study. A pure monoclinic VO2 phase is primarily obtained after 4 h of calcination 

at 450 °C. The lowest Tc of 45 °C was achieved for the 10 at. % W-doped VO2 sample. An excellent 

distribution of un-doped VO2(M) (IV) NPs in PVP coatings was revealed and it is driven by 

positive-positive Coulomb repulsion between the VO2(M) target NPs and vanadium(V) oxide NPs 

which are always co-synthesized in the un-doped case. An un-doped VO2/PVP coated glass was 

fabricated with a high IR modulation ability of 40% at 2500 nm and a good luminous transmittance 

of 35%. Moreover, hydrophobic VO2/PMMA and hydrophilic VO2(M)/P4VP films with variable 

thicknesses and concentrations were investigated to obtain weather resistant films and films with good 

dispersion of VO2, respectively. When concentration of VO2 is low in VO2/PMMA or VO2/P4VP, 

films exhibit high visible transmittance and low IR switching, however, vise-versa results were 

obtained when concentration is high and this correspond to thickness factor as well. According to 

FTIR study, the coordination between VO2 and PMMA is probably due to an interaction between (–

C(O)OCH3) of PMMA and surface hydroxyl(OH) of VO2. However, new broad bands appeared in 

the FTIR spectra of the VO2/P4VP at 744 and 447 cm−1, which are ascribed respectively to 

stretching vibration of ν(V=O) and ν(V-O), indicating the adsorption and incorporation of VO2 in 
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the P4VP matrix. Finally, VO2(M)/P4VP film exhibited better IR switching (47%) with good visible 

transmittance (41%) compared to VO2/PMMA film, which is associated to the film’ uniform 

dispersion of particles. Overview of the methodologies used in this study and their results are 

shown in the Table 6.1 

Table 6. 1 Overview of the methods and their results 

 

6.2 RECOMMENDATIONS 

In this thesis, new synthetic approaches were designed for the successful fabrication of VO2-based 

films with excellent optical properties. However, further studies would be useful to help understand 

the underlying science while facilitating industrial implementation. 

1. Enhancing the dispersion of NPs could lead to improving the optical properties of prepared 

films. 

• Agglomeration of nanoparticles in a transparent host reduces the light transmittance due 

to  light scattering, and a uniform dispersion for these NPs remains a big challenge, which 

limit their intended applications. The excellent dispersion in this study, which is driven 

by positive-positive Coulomb repulsion between VO2(M) and vanadium(V) oxide NPs, 
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can be further investigated to improve the distribution of other NPs. 

• Rational design and synthesis of new polymer matrices to effectively stabilize the 

particles and enhance the optical property of the VO2 based film. 

2. Visible transmittance could be further improved by adding in an antireflection coating, i.e., 

ZnO, TiO2 and Al2O3. 

3. Average particles size of VO2 can be reduced to NPs size in this study through reducing the 

reaction times (6-12 hours) primarily for hydrothermal process. 

4. Optimized thermochromic polymers may be used in combination with VO2, to improve color, 

transparency and IR switching of the films. 

5. Examining new dopants, metal cations with large ionic radii or large valence state, that have 

less negative impact on thermochromicity of VO2, while reducing Tc to room temperature. 

6. Along with tremendous applications, VO2 could be employed in medical area, by developing 

switchable biosensors established on the combining between VO2 and Au NPs. 

7. Information about the coordination structure of vanadium atoms in films can be revealed from 

synchrotron interpretation using X-ray absorption spectroscopy (XAS).  X-ray absorption near-edge 

structure (XANES)  can be used to obtain the chemical state and local symmetry of  vanadium, 

tungsten or molybdenum. 

8. More detailed application studies on forming films and coatings. 

9. Designing multifunctional smart coating (i.e., VO2/TiO2 film) for energy saving and self-cleaning 

window. 

10. For energy generation application, VO2 material can be integrated with solar cell layer. This is achieved 

by increasing the phase transition temperature of VO2 by doping with low-valent cations at high 

concentration such as Al3+, Cr3+, Ti+4, Ga3+ and Fe3+. 
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APPENDIX A 
 

 

Figure A1 EVA spectrum and analysis of VO2 for 0.7/1 molar ratio annealed at 800 °C for 2 h 

(red: 91.6%VO2(M) and blue: 8.4%V2O5) 

 
Figure A2 EVA spectrum and analysis of VO2 for 0.6/1 molar ratio annealed at 800 °C for 2 h 

(red: 71%VO2(M), blue: 29% triclincVO2(T)) 
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Figure A3 EVA spectrum and analysis of VO2 for 0.7/1 molar ratio annealed at 800 °C for 1 h 

(red: 72.3%VO2(M) and blue: 27.7%V2O5) 

 
Figure A4 EVA spectrum and analysis of VO2 for 0.6/1 molar ratio annealed at 800 °C for 1 h 

(red: 84.5%VO2(M) and blue: 15.5%V2O5) 
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Figure A5 EVA spectrum and analysis of VO2 for 0.7/1 molar ratio annealed at 800 °C for 4 h 

(red: 50.6% VO2(M), blue: 33%V2O5 and green: 16.4% (V5O9) 

 
Figure A6 EVA spectrum and analysis of VO2 for 0.6/1 molar ratio annealed at 800 °C for 4 h 

(red: 44.9%VO2(M) and blue: 55.1%V2O5) 

 

 



199 

 

Short Overview on Previous Strategies Aiming for High Luminous Light Transmission and 

the Solar Modulation Efficiency  

 Li et al. casted hydrothermally synthesized VO2 composite on transparent Teflon to obtain Core-

shell VO2(M)@SiO2 films [1], but achieved only poor optical properties: Tlum of 35.96% and ΔTsol 

of 8.4%. The values of Tlum and ΔTsol reported for a typical single-layered VO2 coating are 

41.0% and 6.7% [2], respectively, and for a double-layered TiO2/VO2 film 46.0% and 7.0% [3]. 

For a five-layered TiO2/VO2/TiO2/VO2/TiO2 film 44% and 12.1% [4], respectively were 

reported and for a composite VO2-Sb: SnO2 film is 49.8% and 11.7% [5]. Zhao et al. were able 

to improve the optical properties to Tlum = 48.5% and ΔTsol = 15.7% for un-doped films, and Tlum 

= 43.3% and ΔTsol =11.3% for W-doped films [1]. However, they implemented multi-step, time 

consuming procedures (refluxing at 120 °C for 10 hours, ageing for one day and calcination). More 

recently the following values for (Tlum, ΔTsol) were reported: (70.3%, 9.3%) [6], (62.2%, 12.5%) 

[7], (73.6%, 2.9%) [8], (25.6%, 12.2%) [9], (45.7%, 6.9%) [10], (48.3%, 17.3%) [11], (80%, 

10.2%) [12], (80.6%, 9.10%) [13] and (75.5%, 7.7%) [14]. Declining ΔTsol can be observed when 

VO2 is doped with other elements due to lattice distortion [13, 15].  

Brief Overview of Visible Transparency (Tlum) and Solar Modulation Efficiency (ΔTsol) 

from Literature 

Liang et al. [16] obtained visible transparencies in the order of 70-79% however, their ΔTsol 

values were low from 6 - 8.6% for un-doped, and between 0.5 - 1.5% for W-doped VO2 samples.  

The optical transmittance of a 25 μm thick film of W-doped VO2 HPCA composite microgel was 

investigated by Yang et al. [17]. They achieved a high ΔTsol of 36%, but the film turned translucent 

at 60 °C, only showed a Tlum of 33%. Other examples of Tlum and ΔTsol values for W-doped VO2 films 

include (45.7%, 6.9%) [11], (56.0%, 8.7%) [12] and (31.2%, 6.4%) [18], respectively. 
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APPENDIX B 
 

   Semi-crystalline structure with un-identified peaks were obtained for the un-calcined non-doped 

VO2 and 3% W-doped VO2 as shown by XRD spectra in Figure B1. 

 

Figure B1 XRD spectra of un-doped and 3at.% W-doped VO2 without calcinations. 
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Tc reduction coefficient of W-doped VO2 for literature is shown in Figure B2. 

 

 

 

Figure B2 Tc reduction efficiency of W-doped VO2 from Reference [11]. 

 



204 

 

 

Figure B3 AFM images of the (a) VO2 and (b) 1at. % W-doped VO2 films. 
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Figure C1 1H NMR spectra of the residual solute in the clear solution after freeze-drying.  
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Figure C2 13C NMR spectra of the residual solute in the clear solution after freeze-drying. 
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Figure C3 XRD spectra of as synthesized product without calcinations. 
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APPENDIX D 
 

 

 

Figure D1 10-cycles DSC heating/cooling scans for 2.5 at. % W-doped VO2 sample.  
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Figure D2 Size distribution histogram by (a) intensity and (b) volume for un-doped VO2 

determined by DLS. 
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Figure D3 SEM image of 2.5 at. % W-doped VO2 dispersed in PVP coatings on glass. 

 

 

Figure D4 Histogram of spread of particles in the film estimated by the number of particles (n) 

per unit area (mm^2) at three different locations. 
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Figure D5 Size distribution histogram of VO2 dispersed in PVP coatings on glass obtained using 

ImageJ software analysis for the SEM image of Figure 5.13 in the manuscript. 
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Figure D6 Optical transmittance spectra of glass microscope slide at RT (green), PVP coating on 

glass at RT, with no VO2 (yellow), and 5at. % (blue/red) and 10 at. % (blue/red) W-doped-VO2 

coatings on glass. 22 °C: blue, 80 °C: red (Reference with respect to glass microscope slide at 

appropriate temperature). 
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Figure D7 Tauc plot: optical absorption coefficient (αhv)^2 (eV/cm)^2  vs. phonon energy hv 

(eV) of the undoped semiconductor VO2 (M) based film coated on the glass substrate. 
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