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Abstract 

Anterior Monteggia fracture-dislocations are frequently complicated by persistent radial head 

instability leading to suboptimal outcomes. In this biomechanical investigation using a cadaveric 

elbow motion simulator, we examined the effects of ulnar extension angulation, soft tissue 

disruption, biceps loading and elbow motion on radial head translation. Our results showed 

significant anterior radial head translation with progressive ulnar extension angulation, with 

greater soft tissue injuries and increased biceps loading (P=.000). There was no significant 

difference in radial head translation between simulated active and passive elbow flexion (P=.251). 

These findings support the importance of an anatomic reduction of the ulnar fracture. However, in 

cases with significant soft tissue disruption, even an anatomic reduction of the ulna may not be 

sufficient to restore radial head alignment. Moreover, postoperative immobilization with the elbow 

in a flexed position to avoid elbow motion and to relax the biceps should be considered in patients 

with unstable Monteggia injuries. 
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Chapter 1  

1 Introduction 

The purpose of this thesis is to investigate the factors that affect the radial head stability in anterior 

Monteggia injuries using an in vitro biomechanical model.  

This chapter reviews the relevant anatomy and biomechanics of the elbow joint. An overview of 

Monteggia fracture-dislocations with a focus on their patterns, proposed mechanisms of injury, 

management and outcomes are also presented. Finally, the rationale, objectives, hypotheses of 

this thesis are summarized. 

1.1 Elbow and Forearm Anatomy 

1.1.1 Bony Anatomy 

The elbow joint is comprised of three articulations: the radiocapitellar, the ulnohumeral and the 

proximal radioulnar articulations (Figure 1.1). These articulations allow for flexion-extension of 

the elbow and supination-pronation of the forearm.  

 

Figure 1.1: Elbow Joint Articulations. 

The radiocapitellar, the ulnohumeral and the PRUJ are the three articulations that make up the 

elbow joint. 
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The three bones that contribute to these articulations are the distal humerus, the radial head and 

the proximal ulna (Figure 1.2). The articular surface of the distal humerus is formed by the 

capitellum laterally and the trochlea medially (Figure 1.3). The medial column contains the 

prominent medial epicondyle which serves as the origin of the medial collateral ligament (MCL) 

and the flexor-pronator muscle group. The lateral column contains the lateral epicondyle which 

serves as the origin of the lateral collateral ligament (LCL) and the supinator-extensor muscle 

group. Anteriorly, the radial fossa and the coronoid fossa accommodate the radial head and the 

coronoid process during maximal flexion of the elbow. Posteriorly, the olecranon fossa 

accommodates the olecranon process during maximal extension of the elbow. 

 

Figure 1.2: Bony Anatomy of the Elbow Joint. 

The distal humerus, the radial head, and the proximal ulna form the three articulations of the 

elbow joint. 



 

3 

 

 

Figure 1.3: Bony Anatomy of the Distal Humerus. 

The capitellum and trochlea form the articular surface of the distal humerus. The medial and 

lateral epicondyles serve as the origin of the flexor-pronator and the supinator-extensor muscle 

groups respectively. The anterior surface of the distal humerus contains the radial and coronoid 

fossae.  

The proximal radius consists of the radial head, the radial neck and the radial tuberosity (Figure 

1.4). The radial head has an elliptical articular surface with a central depression that allows 

articulation with the capitellum and forms the radiocapitellar articulation. The radial tuberosity 

(i.e. bicipital tuberosity) serves as the insertion of the biceps tendon. 
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Figure 1.4: Bony Anatomy of the Proximal Radius. 

The radial head articulates with the capitellum and the lesser sigmoid notch. The radial tuberosity 

is the site of insertion of the biceps brachii tendon. 

The proximal ulna consists of the greater sigmoid notch, the lesser sigmoid notch (i.e. radial fossa 

of the proximal ulna), the olecranon process and the coronoid process (Figure 1.5). The greater 

sigmoid notch is the concave surface between the olecranon and the coronoid processes that 

articulates with the trochlea of the distal humerus and forms the ulnohumeral articulation. On the 

lateral aspect of the coronoid process, the lesser sigmoid notch articulates with the peripheral 

articular portion of the radial head and forms the proximal radioulnar joint (PRUJ). The olecranon 

process serves as the insertion of the triceps tendon. The coronoid process resists against posterior 

elbow instability and serves as the attachment of the brachialis tendon.  

 

Figure 1.5: Bony Anatomy of the Proximal Ulna. 

The greater sigmoid notch articulates with the trochlea while the lesser sigmoid notch articulates 

with the radial head. The coronoid and olecranon processes are also shown.  
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The forearm consists of two long bones, the radius and the ulna (Figure 1.6). In addition to their 

proximal articulation at the PRUJ, the radius and ulna articulate distally through the distal 

radioulnar joint (DRUJ).  

 

Figure 1.6: Articulations Between the Radius and Ulna. 

The radius and the ulna articulate proximally at the PRUJ and distally at the DRUJ. 

The proximal ulnar diaphysis has complex anatomy. In the sagittal plane, there is a proximal ulna 

dorsal angulation (PUDA) averaging 5.7° with the apex of this angulation at an average of 47mm 

from the tip of the olecranon (Figure 1.7).1 In the coronal plane, there is a varus bow averaging 

17.7° with the apex at an average of 85mm from the tip of the olecranon (Figure 1.7).2 The middle 

and distal portions of the ulnar diaphysis are relatively straight in the sagittal and coronal planes.  

 

 



 

6 

 

 

Figure 1.7: Coronal and Sagittal Orientations of the Proximal Ulna. 

In the coronal plane, the proximal ulna has a varus bow. To quantify this varus angulation and 

determine its apex, two tangent lines are drawn, one collinear with the longitudinal axis of the 

olecranon and another collinear with the longitudinal axis of the ulnar shaft. In the sagittal plane, 

the proximal ulna has a dorsal angulation, PUDA. To quantify this dorsal angulation and 

determine its apex, two tangent lines are drawn, one along the dorsal aspect of the olecranon and 

another along the dorsal aspect of the ulna shaft.3  

The radial diaphysis also has a bow in the sagittal and coronal planes. In the sagittal plane, there 

is an apex dorsal bow averaging 4.7° which is located at an average distance of 11.7cm from the 

radial head (Figure 1.8).4 In the coronal plane, the radius has an average bow of 10.3° located 

approximately in the middle third of the radius (Figure 1.8).4 Moreover, the radial neck is not 

collinear with the rest of the radial shaft and is angulated approximately 15° away from the radial 

tuberosity (Figure 1.9).5 
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Figure 1.8: Coronal and Sagittal Orientations of the Radial Shaft. 

In the coronal plane, the radial shaft has an apex lateral bow. In the sagittal plane, the radial shaft 

has an apex dorsal bow. 

 

Figure 1.9: Coronal Orientation of the Proximal Radius. 

In the coronal plane, the radial neck angulates about 15° from the radial shaft.5 

1.1.2 Musculature 

Muscles of the anterior compartment of the arm and forearm are primarily involved in elbow 

flexion, forearm pronation, wrist flexion and finger flexion (Figure 1.10). The main flexors of the 

elbow in the anterior compartment are the biceps brachii and the brachialis. Biceps brachii inserts 

at the bicipital tuberosity of the proximal radius. Brachialis inserts on the coronoid process and the 
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tuberosity of the ulna. The flexor-pronator muscle group originates from the medial epicondyle. 

The pronator teres (PT) is the main pronator of the forearm with a weak contribution to elbow 

flexion. The flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), and the flexor digitorum 

superficialis (FDS) also originate from the medial epicondyle and primarily contribute to the wrist 

and finger flexion.   

 

Figure 1.10: Anterior Forearm Compartment Musculature. 

Muscles of the anterior compartment of the forearm are shown. BR: brachioradialis, PT: pronator 

teres, FCR: flexor carpi radialis, FCU: flexor carpi ulnaris 

Muscles of the posterior compartment of the arm and forearm are primarily involved in elbow 

extension, forearm supination, wrist extension and finger extension (Figure 1.11). The main 

extensor of the elbow is the triceps brachii. The anconeus muscle also contributes to elbow 

extension. The extensor-supinator muscle group originates from the lateral epicondyle. The 

extensor carpi ulnaris (ECU), and the extensor digitorum communis (EDC) primarily contribute 

to the wrist and finger extension. The supinator muscle also originates from the lateral epicondyle 

and along with the biceps is one the main supinators of the forearm (Figure 1.12).  
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Figure 1.11: Posterior Forearm Compartment Musculature. 

Muscles of the posterior compartment of the forearm are shown. EDC: extensor digitorum 

communis, ECU: extensor carpi ulnaris 

 

Figure 1.12: The Supinator Muscle. 

The supinator muscle is located deep within the posterior compartment of the forearm. 

The mobile wad is composed of the brachioradialis (BR), the extensor carpi radialis longus 

(ECRL), and the extensor carpi radialis brevis (ECRB) (Figure 1.13). The brachioradialis 

contributes to elbow flexion. The ECRL and ECRB contribute to wrist extension.   
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Figure 1.13: Mobile Wad Musculature. 

Muscles of the mobile wad compartment of the forearm are shown. BR: brachioradialis, ECRL: 

extensor carpi radialis longus, ECRB: extensor carpi radialis brevis 

1.1.3 Capsular and Ligamentous Anatomy 

The elbow joint capsule surrounds all three articulations and is one of the static stabilizers of the 

elbow joint. The anterior capsule is attached proximally to the anterior aspect of the distal humerus 

just proximal to the coronoid and radial fossa and is attached distally onto the coronoid process 

and the annular ligament (Figure 1.14). The posterior capsule is attached proximally to the 

posterior aspect of the distal humerus just proximal to the olecranon fossa and is attached distally 

along the medial and lateral articular margins of the sigmoid notch (Figure 1.14). The collateral 

ligaments of the elbow are formed by the thickening of the medial and lateral joint capsule. 
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Figure 1.14: Capsular Anatomy of the Elbow Joint. 

Figure 1.13a shows the anterior capsule covering the elbow joint articulations. Figure 1.13b 

shows the posterior capsule covering the elbow joint articulations. 

The main components of the lateral collateral ligament (LCL) include the radial collateral ligament 

(RCL), the annular ligament, and the lateral ulnar collateral ligament (LUCL) (Figure 1.15).6 The 

RCL originates from the lateral epicondyle and inserts into the annular ligament. The annular 

ligament originates and inserts on the anterior and posterior margins of the lesser sigmoid notch. 

The LUCL originates from the lateral epicondyle and inserts onto the crista supinatoris of the ulna. 

The quadrate ligament, which is a thickening of the fibrous capsule of the elbow joint, lies just 

distal to the annular ligament. It extends from the lateral side of the ulna just distal to the PRUJ to 

the neck of the radius just distal to the articular margin (Figure 1.16).7,8 Some authors have 

described other portions of the LCL complex, including the accessory lateral collateral ligament, 

and the oblique cord.7,9,10 These structures are variably present, and their role is less well-defined. 

The LCL is the main stabilizer against the varus and posterolateral rotatory instability (PLRI) of 

the elbow. 
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Figure 1.15: Lateral Collateral Ligament (LCL) of the Elbow. 

The main components of the LCL are shown. RCL: radial collateral ligament, LUCL: lateral ulnar 

collateral ligament 

 

Figure 1.16: Anatomy of the Quadrate Ligament. 

The Quadrate ligament is shown distal to the annular ligament.  
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The medial collateral ligament (MCL) is composed of three components: the anterior bundle, the 

posterior bundle and the transverse segment (Figure 1.17).6 The anterior bundle of the MCL 

originates from the anteroinferior surface of the medial epicondyle and inserts on the sublime 

tubercle of the coronoid. The anterior bundle is the most discrete and strongest portion of the MCL. 

The posterior bundle is a thickening of the medial capsule and inserts along the midportion of the 

medial margin of the greater sigmoid notch. The transverse segment is oriented horizontally 

between the coronoid and the tip of the olecranon. The MCL is the main constraint against the 

valgus instability of the elbow. 

 

Figure 1.17: Medial Collateral Ligament (MCL) of the Elbow. 

The components of the MCL are shown. aMCL: anterior bundle of the MCL, pMCL: posterior 

bundle of the MCL 

The interosseous membrane (IOM) is a fibrous structure located deep in the forearm that connects 

the radius and ulna (Figure 1.18). It consists of three portions: the proximal membranous portion, 

the middle ligamentous complex and the distal portion. The proximal portion is comprised of the 

proximal oblique cord and the dorsal oblique cord.11-13 The proximal oblique cord originates from 

the anterolateral aspect of the coronoid process and inserts just distal to the radial tuberosity.11 The 

dorsal oblique cord originates from the junction of the proximal third and distal two-thirds of the 
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ulna and inserts into the interosseous crest of the radius.11 The middle portion is comprised of the 

central band (CB) and the accessory band (AB).11,14 The central band is one of the most important 

functional components of IOM and is oriented obliquely from proximal-radial to distal-ulnar. Its 

radial origin lies at approximately 60% of the length of the radius from the styloid.15 The ulnar 

insertion is at approximately the junction of the middle two-thirds and the distal one-third of the 

ulna.15 The distal portion is comprised of the distal oblique bundle (DOB).11 It originates from the 

ulna at approximately the level of the pronator quadratus and inserts along the inferior rim of the 

sigmoid notch and the DRUJ capsule.11,15 In addition to its role in the elbow and DRUJ stability, 

the IOM functions to transfer load from the radius to the ulna.16,17 At the wrist, most of the axial 

load is transmitted through the radius. In neutral rotation, 82% of the axial load is transmitted 

through the radiocarpal joint and 18% is transmitted through the ulnocarpal joint.18 The IOM shifts 

the load from the radius to the ulna such that at the elbow 70% of the axial load is borne by the 

radiocapitellar joint and 30% by the ulnohumeral joint with the forearm in neutral rotation.19 

 

Figure 1.18: Interosseous Membrane (IOM) Anatomy. 

Components of the proximal, middle and distal portions of the IOM are depicted. AB: accessory 

band, CB: central band, DOB: distal oblique bundle. “Reprinted from Noda K, Goto A, Murase 

T, Sugamoto K, Yoshikawa H, Moritomo H. Interosseous Membrane of the Forearm: An 

Anatomical Study of Ligament Attachment Locations, J Hand Surg Am. 2009; 34(3):415-422, with 

permission from Elsevier” 
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1.2 Biomechanics of the Elbow and Forearm 

1.2.1  Kinematics 

The elbow is a trochoginglymoid joint with two degrees of freedom: flexion-extension (Figure 

1.19) and pronation-supination (Figure 1.20). The flexion-extension axis of the elbow passes 

through the centre of the arcs of capitellum and trochlea. Studies have shown variability in the 

flexion axis with the active and passive range of motion as well as forearm rotation.20,21 The 

average flexion axis is 3° to 8° internally rotated relative to the transepicondylar axis and is in 4° 

to 8° of valgus in relation to the long axis of the humerus (Figure 1.21).22  

 

Figure 1.19: Flexion-Extension of the Elbow. 

Medial (left) and lateral (right) views of a right elbow showing the flexion-extension arc of the 

elbow.23 
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Figure 1.20: Pronation-Supination of the Forearm. 

Anterior view of a right elbow showing the supination-pronation arc of forearm rotation.23 

 

Figure 1.21: Flexion-Extension Axis of the Elbow Joint. 

A) showing the coronal view of the distal humerus with the flexion-extension axis in 4-8° of valgus. 

B) showing the axial view of the distal humerus with the flexion-extension axis in 3-8° of internal 

rotation. M: medial side, L: lateral side, A: anterior side and P: posterior side.  
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The radiocapitellar and proximal radioulnar joints allow for pronation-supination. The axis of 

rotation of the forearm is from the centre of the radial head to the centre of the distal ulna. This 

axis of rotation is independent of the elbow position.24,25  

1.2.2 Stability 

Both osseous and soft tissue structures contribute to elbow stability. The primary static stabilizers 

of the elbow are the ulnohumeral articulation and the medial and lateral collateral ligaments.17,26,27 

Secondary static stabilizers are the radial head, joint capsule, flexor-pronator origin and extensor-

supinator muscle origin.17,26,27 Dynamic stability is provided by the muscles that cross the elbow 

joint including the biceps brachii, brachialis, brachioradialis, triceps and the anconeus 

muscles.17,26-28  

Although numerous studies have investigated the role of structures that contribute to elbow 

stability, the structures that contribute to radial head stability within the radiocapitellar articulation 

and the PRUJ have not been fully explored. The annular ligament, interosseous membrane and the 

quadrate ligament have been proposed to play an important role in radial head stability.7,8,29-31 In 

a cadaveric anatomic study, Spinner and Kaplan showed that with an intact ulna, anterior 

dislocation of the radial head was only possible if the annular ligament, the posterior border of the 

quadrate ligament and the proximal third of the IOM were all sectioned.7 In a cadaveric 

biomechanical investigation examining radial head stability after sequential sectioning of the 

annular ligament, proximal IOM, central band and the distal IOM, Anderson and colleagues found 

significant radial head instability only after sectioning of the central band.30 Moreover, they 

concluded that the order in which the soft tissues were sectioned (proximal to distal versus distal 

to proximal) did not significantly affect the radial head stability. However, another biomechanical 

study found significant radial head instability after the anterior joint capsule, annular ligament, 

quadrate ligament and the proximal half of the IOM were all sectioned.31 A significant limitation 

of these studies is that the cadaveric specimens were dissected free of all muscles and tendons; 

thus, the effects of these structures on radial head stability were not accounted for. 
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1.3 Monteggia Injuries 

1.3.1 Description 

Giovanni Monteggia first described a fracture of the proximal third of the ulna and an anterior 

dislocation of the radial head in 1814 (Figure 1.22).32 Louis Bado later expanded the definition of 

Monteggia fractures by classifying these lesions into 4 categories based on the location of the ulnar 

fracture, the direction of radial head displacement and the presence or absence of a concomitant 

proximal radius fracture (Figure 1.23).33 Type I Monteggia injuries represent an apex anterior 

fracture of the proximal or middle third of the ulna and anterior dislocation of the radial head. Type 

II injuries represent an apex posterior fracture of the proximal or middle third of the ulna with 

posterior or posterolateral dislocation of the radial head. Type III injuries represent a fracture of 

the ulnar metaphysis with anterolateral dislocation of the radial head. Type IV injuries represent a 

fracture of the proximal radial shaft at the same level as the ulnar shaft fracture along with anterior 

dislocation of the radial head. Type I injuries are the most common type of Monteggia fracture in 

children; whereas type II injuries are the most common type in adults.34 With regards to fracture 

characteristics, Ramski and colleagues in a multicenter study demonstrated that the most common 

location of the ulnar fracture was in the proximal third followed by the middle third of the ulna.35 

Moreover, the mean ulnar angulation was 19.6°±14.4° based on the radiographs.35 

The focus of this thesis is on type I Monteggia injuries and the details provided are related only to 

this subtype of Monteggia injuries.  

 

Figure 1.22: Radiograph of Monteggia Fracture-Dislocation. 

Lateral radiograph showing proximal ulna fracture and anterior radial head dislocation. 
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Figure 1.23: Bado Classification of Monteggia Injuries. 

A) shows a type I Monteggia with an apex anterior ulna fracture and an anterior radial head 

dislocation. B) shows a type II Monteggia with an apex posterior ulna fracture and a posterior 

radial head dislocation. C) shows a type III Monteggia with metaphyseal ulna fracture and an 

anterolateral radial head dislocation. D) shows a type IV Monteggia with proximal radial shaft 

fracture at the same level as the ulnar shaft fracture and an anterior radial head dislocation. 

“Reprinted from Rehim S A, Maynard M A, Sebastin S J, Chung K C. Monteggia Fracture 

Dislocations: A Historical Review, J Hand Surg Am, 39(7): 1384-1394, with permission from 

Elsevier” 

1.3.2 Proposed Mechanisms of Type I Monteggia Injuries 

In 1940, Speed and Boyd proposed that Monteggia fractures are the result of a direct blow to the 

forearm which fractures the ulna at the point of impact and forces the radial head anteriorly.36 

Other authors have argued that this direct blow mechanism is unlikely for several reasons and may 

only occur in exceptional cases.37 If these injuries were due to a direct blow, one would expect 

severe bruising or open injuries at the site of impact which are rare. Moreover, more comminution 

would be expected if the ulna fracture was due to a direct impact. In addition to a strong anterior 

radiocapitellar capsule, this joint is also protected by the supinator and brachialis muscles; thus, it 

would be unlikely for a direct blow force to be sufficient to cause both an ulna fracture as well as 

a radial head dislocation. In 1949, Evans showed that type I Monteggia lesions are due to a 
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hyperpronation force.37 He proposed that when a patient falls onto the outstretched hand, the 

forearm is already pronated and at the moment of impact, the hand becomes relatively fixed to the 

ground. However, the rest of the body continues to rotate resulting in a relative hyperpronation of 

the forearm. The combination of the rotational force and axial load result in the ulnar fracture. As 

the ulna fractures and angulates, its apex forms a fulcrum that either levers the radial head out of 

the PRUJ or fractures the proximal third of the radius (Figure 1.24).  

 

Figure 1.24: Evan’s Proposed Theory of Monteggia Injuries. 

With a fall on an outstretched hand, the hand becomes relatively fixed to the ground, but the rest 

of the body continues to rotate resulting in a hyperpronation force. This results in an ulnar fracture 

which forms a fulcrum that can lever the radial head out of the joint or result in proximal radial 

shaft fracture. “Reproduced from Evans E M. Pronation Injuries of the Forearm, with Special 

Reference to the Anterior Monteggia Fracture, JBJS(Br), 31B(4): 578-588, with permission of  

The British Editorial Society of Bone and Joint Surgery through PLSclear” 

To investigate this theory, he conducted an experiment where 18 cadaveric specimens were 

stripped of all soft tissues from the elbow and forearm except the joint capsule, ligaments and the 

interosseous membrane. The humeral shaft was clamped, and the forearm was gripped above the 

wrist joint and slowly pronated. This resulted in the fracturing of the ulna in its middle third and 

an anterior dislocation of the radial head, reproducing type I Monteggia, in 12 cases. In the 
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remaining specimens, forearm pronation resulted in both-bone forearm fracture in 3 cases, isolated 

anterior radial head dislocation in 2 cases and an elbow dislocation in 1 case. In 1967, Bado 

presented clinical and radiographic support for the hyperpronation theory of type I Monteggia 

injuries.33 He argued that clinically children with type I Monteggia injuries present with the 

forearm pronated suggesting pronation force as the mechanism of these injuries. Moreover, he 

argued that supination and slight traction, that often easily reduces these injuries is therapeutic 

proof that a pronation force is responsible for type I Monteggia lesions. Radiographically, he 

reported that posterior location of the bicipital tuberosity on the lateral radiograph of a type I 

Monteggia lesion indicates that the forearm is fully pronated and thus the underlying mechanism 

is that of pronation. 

In 1971, Tompkins criticized Evans’ proposed mechanism as his experiments were done by 

hyperpronation of specimens stripped of all muscles, eliminating their effects.38 He also criticized 

that Evan’s concept of body rotation around the fixed hand was not properly replicated in his 

experimental model as the specimens were clamped at the shaft of the humerus and the pronation 

force was applied to the forearm above the wrist joint. Moreover, Tompkins criticized the resultant 

spiral ulna fractures in Evans’ experiment, since the pattern of ulna fractures in most type I 

Monteggia lesions are either transverse, oblique or comminuted with a posterior butterfly 

fragment. Tompkins also disputed Bado’s argument that the position of bicipital tuberosity on 

radiographs is proof of the pronation theory.38 He argued that on a lateral radiograph, the bicipital 

tuberosity is posterior with the forearm in neutral rotation and lateral in full pronation. In his 

radiographic review of patients presenting with type I Monteggia injuries, he found the forearm to 

be in neutral rotation or somewhat supinated in the majority of cases. Tompkins theorized that if 

the radius is not subluxated from the joint by a direct force and is not screwed out by a 

hyperpronation force, it may have been pulled out of the joint. He argued that the only conceivable 

traction force in that direction is from the contraction of the biceps muscle.38 He reported that 

during a fall on an outstretched hand, the anterior dislocation of the radial head is due to a violent 

reflex contraction of the biceps and the forearm may be in any position of rotation. Once the radial 

head dislocates, the longitudinal compressive force on the ulna along with the pull of the intact 

interosseous membrane and simultaneous contraction of the brachialis result in fracture and 

anterior angulation of the ulna (Figure 1.25). Tompkins supported his theory based on the 
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observation that the radial head is easily reduced with the relaxation of the biceps once the elbow 

is flexed beyond 90 degrees.  

 

Figure 1.25: Tompkins’ Proposed Theory of Monteggia Injuries. 

During a fall, biceps contraction results in dislocation of the radial head. The longitudinal 

compressive force on the ulna then results in the ulnar fracture. “Reprinted from Rockwood and 

Wilkins’ Fractures in Children, 8th Ed., Monteggia Fracture-Dislocation in Children, 2014, with 

permission from Wolters Kluwer Health” 39 

1.3.3 Management and Outcome of Monteggia Injuries 

Although closed reduction and cast immobilization may be considered for acute Monteggia 

injuries with an incomplete fracture of the ulna (plastic deformation, buckle-type or greenstick 

fracture) in children, surgical management is recommended for acute Monteggia injuries with a 

complete fracture of the ulna in children and adults.40-43 In general, restoration of ulnar length, and 

alignment as well as counteracting the deforming forces (e.g. flexion of the elbow to relax the 

biceps) will allow for closed reduction of the radial head.42 Occasionally, open reduction of the 

radial head may be required but should be considered only after ensuring that the ulna fracture is 

appropriately reduced. In such circumstances, entrapment of soft tissue structures including the 

annular ligament, capsule, biceps tendon or the radial nerve has been shown to prevent reduction 

of the radial head despite an anatomic reduction of the ulna fracture.44-50 Although good results 

have been reported with appropriate management of acute Monteggia lesions in the pediatric 
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population, the outcomes in the adult population are more variable with high rates of 

complications.34,51-60 Complications include recurrent radial head subluxation/dislocation, 

stiffness, loss of strength, malunion, nonunion, nerve palsies, and post-traumatic arthrosis.34,53,58 

Despite increased awareness of Monteggia injuries, approximately 25-50% of these injuries are 

initially missed.42,61 This results in poor long-term outcomes with complaints of pain, instability, 

stiffness, and loss of strength.62 Although surgical management of missed Monteggia injuries has 

been shown to improve clinical outcomes, high rates of potential complications have been reported 

in medium to long-term studies.49,61,63 Moreover, management of chronic Monteggia injuries is 

much more challenging. Numerous surgical procedures have been described including ulnar 

corrective osteotomy, ulnar bending osteotomy, combined ulnar bending and lengthening 

osteotomy, gradual lengthening and angulation of the ulna, radial osteotomy and various annular 

ligament reconstruction techniques.64 However, there is no consensus on the best treatment 

protocol.  

Although most studies have used 6 weeks of cast immobilization in the pediatric population, active 

elbow range of motion is generally recommended after 2-3 weeks of immobilization in adults.43,65-

67 To our knowledge, no previous study has compared the effect of active or passive elbow motion 

in the postoperative rehabilitation of patients with anterior Monteggia injuries. 

1.3.4 Current Biomechanical Studies 

In a biomechanical study, Sandman and colleagues evaluated the effect of ulnar malalignment, 

elbow positions, forearm rotation and annular ligament integrity on radial head subluxation.68 They 

investigated ulnar angulation in 5° increments from 10° of extension angulation to 10° of flexion 

angulation. They included four elbow positions (maximal extension, 45°, 90°, maximal flexion) 

and three forearm positions (neutral, pronation, supination). They found increasing anterior radial 

head subluxation with each of the progressive extension malalignment of the ulna, progressive 

elbow flexion and a torn annular ligament. The greatest mean radial head displacement was 61% 

which occurred with the elbow in maximal flexion, 10° of ulnar extension malalignment, and a 

ruptured annular ligament. Although they did not directly investigate the role of biceps contraction 

on radial head stability, they suspected that the effect of elbow flexion on anterior radial head 

subluxation is related to the pull of the biceps. However, loading of the biceps and the brachialis 
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was not physiologic as they employed a 50:50 ratio whereas studies have suggested loads vary in 

these muscles throughout elbow range of motion with the brachialis being the prime mover during 

elbow flexion.69-71 Also, the contribution of other elbow flexors such as brachioradialis was not 

considered. To our knowledge, no other study has investigated the biomechanics of anterior 

Monteggia injuries. 
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1.4 Thesis Rationale 

The outcomes of Monteggia injuries are quite variable and often suboptimal, particularly in the 

adult population. Although numerous surgical procedures have been proposed for the 

reconstruction of chronic Monteggia injuries, poor long-term outcomes with high rates of 

complications have been reported and no optimal reconstruction technique has been accepted. A 

better understanding of the biomechanics of Monteggia injuries would allow determination of the 

factors that contribute to the radial head instability in these injuries. This information can then be 

used to optimize surgical techniques and rehabilitation protocols to enhance patients’ outcomes.  

The purpose of this biomechanical investigation was to study the contribution of the factors that 

have been proposed to play a role in the stability of Monteggia injuries including ulnar 

malalignment, and biceps loading. Moreover, we aimed to investigate the role of soft tissues 

around the elbow, including the anterior joint capsule, annular ligament, quadrate ligament and the 

IOM, in the stability of the Monteggia injuries. Although the effect of annular ligament 

dysfunction on radial head instability in Monteggia injuries has been studied in a previous 

biomechanical investigation; to our knowledge, the role of other soft tissues, particularly the IOM, 

in the stability of the Monteggia injuries have not been fully investigated. These structures have 

been shown to contribute to radial head instability in biomechanical investigations of pure radial 

head dislocation and a better understanding of their contributions to the stability of Monteggia 

injuries is imperative.  
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1.5 Objectives & Hypotheses 

The specific objectives of this thesis are as follows: 

1. To determine the contribution of ulnar angulation on radial head instability in anterior 

Monteggia injuries (Chapter 2) 

2. To determine the contribution of the anterior joint capsule, annular ligament, quadrate 

ligament, and the proximal and middle IOM on radial head instability in anterior 

Monteggia injuries (Chapter 2) 

3. To determine the contribution of biceps contraction on radial head instability in anterior 

Monteggia injuries (Chapter 3) 

4. To determine the contribution of muscle activation during simulated active compared to 

passive elbow flexion on radial head instability in anterior Monteggia injuries (Chapter 3) 

 

The specific hypotheses of this investigation are as follows: 

1. Increasing ulnar angulation increases anterior radial head translation in the setting of 

anterior Monteggia injuries 

2. Sequential sectioning of the anterior capsule, annular ligament, and proximal and middle 

IOM increases anterior radial head instability in the setting of anterior Monteggia injuries 

3. Biceps loading contributes to instability of the radiocapitellar joint in the setting of anterior 

Monteggia injuries 

4. Simulated active elbow flexion increases anterior radial head translation compared to 

passive elbow flexion in the setting of anterior Monteggia injuries 
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1.6 Thesis Overview 

This thesis examines the biomechanics of radial head stability in anterior Monteggia Injuries.  

Chapter 2 presents an in vitro cadaver-based study which investigates the effects of ulnar 

angulation and sequential soft tissue sectioning on radial head stability using kinematic evaluation.  

Chapter 3 presents an in vitro cadaver-based study which investigates the role of staircase loading 

of biceps tendon on radial head stability using kinematic evaluation. Moreover, the effect of 

simulated active and passive elbow flexion on radial head stability was examined.  

Chapter 4 provides a final overview and discussion of the findings and potential future directions 

of the work. 
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Chapter 2  

2 Effects of Ulnar Angulation and Soft Tissue Sectioning on 
Radial Head Stability in Anterior Monteggia Injuries 

Radial head instability continues to be a challenge in the management of anterior Monteggia 

injuries. The factors that contribute to this instability have not been fully investigated. This chapter 

examines the effect of ulnar extension angulation and sequential sectioning of the anterior 

radiocapitellar joint capsule, annular ligament, quadrate ligament, and the proximal and middle 

interosseous membrane on radial head stability in anterior Monteggia lesions. 

2.1 Introduction 

[NB: A portion of this material was presented in Chapter 1 and is also included here in order to 

ensure that this chapter is in “article” format] 

Giovanni Monteggia first described a fracture of the proximal third of the ulna and an anterior 

dislocation of the radial head in 1814 (Chapter 1, Figure 1.22).1 Louis Bado later expanded the 

definition of Monteggia fractures by classifying these lesions into 4 categories based on the 

location of the ulnar fracture, the direction of radial head displacement and the presence or absence 

of a concomitant proximal radius fracture (Chapter 1, Figure 1.23).2 The Type I Monteggia injury, 

which is the focus of this investigation, represents an apex anterior fracture of the proximal or 

middle third of the ulna and an anterior dislocation of the radial head.  

Although good results have been reported with appropriate management of acute Monteggia 

lesions in the pediatric population, their outcomes in the adult population are more variable with 

high rates of complications.3-13 Moreover, approximately 25-50% of these injuries are initially 

missed.14,15 Management of chronic Monteggia injuries are much more challenging and despite 

numerous surgical procedures, high rates of complications have been reported in medium to long-

term follow-up studies.14,16,17 Complications include recurrent radial head subluxation/dislocation, 

stiffness, loss of strength, malunion, nonunion, nerve palsies, and post-traumatic arthrosis.5,8,11  

A better understanding of the biomechanics of Monteggia injuries would allow determination of 

the factors that contribute to the radial head instability in these injuries. This should allow the 



 

34 

 

development of better surgical techniques and rehabilitation protocols to enhance patients’ 

outcomes. The aim of this biomechanical investigation was to study the effects of ulnar angulation 

and soft tissue insufficiency on radial head stability in anterior Monteggia injuries using an in vitro 

elbow motion simulator. We hypothesized that increasing extension angulation of the ulna results 

in a progressive anterior translation of the radial head. Moreover, we hypothesized that sequential 

sectioning of the anterior joint capsule, annular ligament, quadrate ligament, and the interosseous 

membrane (IOM) would cause progressive anterior translation of the radial head. 
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2.2 Materials and Methods 

2.2.1 Specimen Preparation 

Six fresh-frozen cadaveric left upper extremities (mean age at the time of death: 60 ± 8 years) 

amputated at the mid-humerus level were used. Computed tomography was performed to rule out 

pre-existing degenerative articular pathology or skeletal deformity. Specimens were stored at -

20°C and thawed at room temperature (22°C ±2°C) for 18 hours prior to testing.  

The distal tendons of the biceps, brachialis, brachioradialis, triceps, and pronator teres were sutured 

in a running locking fashion using an eight-strand braided fishing line (Hercules, CA, USA; 150lb). 

The supinator function was simulated using a suture anchor placed at the centre of the bicipital 

tuberosity and routing the attached suture through guide sleeves placed in the proximal ulna. The 

distal tendons of the wrist extensors (extensor carpi radialis longus and extensor carpi ulnaris) and 

then the wrist flexors (flexor carpi radialis and flexor carpi ulnaris) were sutured together. To 

maintain anatomic lines of action, all suture tendons were passed subcutaneously within their 

respective compartments. The sutures of the pronator teres and wrist flexors were passed through 

an alignment guide secured to the medial epicondyle using a unicortical 3.5mm cancellous screw. 

The sutures of the brachioradialis and the wrist extensors were passed through a second alignment 

guide secured to the supracondylar ridge of the lateral humerus in the same fashion. The cadaveric 

arm was rigidly mounted onto the elbow motion simulator by clamping the humerus (Figure 2.1). 

Stainless steel cables were used to connect the sutures of the biceps, brachialis and triceps to three 

computer-controlled servomotors. The remaining sutures were connected to five pneumatic 

actuators. The simulator base was positioned with the arm oriented in the vertical dependent 

position. 
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Figure 2.1: Elbow Motion Simulator. 

The active elbow motion simulator allows for simulated active elbow flexion-extension using a 

combination of computer-controlled servomotors and pneumatic actuators. The arm is rigidly 

connected to the simulator base by a humeral clamp. An electromagnetic tracker fixed to the ulna 

was used to control the simulated active motion of the cadaveric arm. Optical trackers were placed 

on the radius, ulna and the humerus to develop a coordinate system to track the motion of the 

radial head. 

2.2.2 Experimental Motion Simulation and Testing Protocol 

A custom-designed LabVIEW program (National Instruments, Austin, TX, USA) was used to 

control the loading of relevant muscles. Simulated active elbow flexion with the forearm supinated 

was prescribed at a rate of 10°/s based on previously established protocols that have been validated 

with this simulator.18-21 The brachialis was designated as the prime mover during each flexion trial. 

The load applied to the brachialis varied as a function of elbow flexion angle feedback. Loads 

applied to the biceps and the brachioradialis were a constant ratio of the load applied to the 

brachialis (biceps=52% of brachialis; brachioradialis=29% of brachialis). Loads applied to the 

supinator and biceps allowed for supination of the forearm during active elbow flexion. A 10N 
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load was applied to the wrist extensors and the wrist flexors to stabilize the wrist in a neutral 

position via pneumatic actuators. 

Before testing, 5 simulated active preconditioning cycles of elbow flexion and extension with the 

forearm maintained in supination were performed. During definitive testing, two trials were 

conducted for each active motion and the average values were used for analysis.  

Testing was first conducted for the intact state. A custom jig was designed to simulate apex anterior 

angulation deformities typically seen in anterior Monteggia injuries (Figure 2.2). The apex of this 

angulation was placed at the dorsal surface of the ulna. The exact location of the osteotomy was 

determined based on the measurements of the ulnar length from the preoperative CT images. This 

length was divided by 3 and the osteotomy was planned at the junction of the proximal and middle 

third of the ulna. The jig was placed such that its hinge was in line with the planned osteotomy site 

and fixed to the ulna using three 3.5mm cortical screws on each side of the osteotomy. A digital 

caliper (Empire, WI, USA) and a custom trigonometric program were used to achieve accurate 

angulation of the osteotomy site. A measurement point was etched in the centre of each of the pins 

housing the lead screw and the distance between these two points was measured using a digital 

caliper. A trigonometric formula was used to determine the distance between these two points for 

each desired angle of the osteotomy site. Once the appropriate distance was achieved by turning 

the lead screw, the nuts on each side of the pins were tightened to ensure that the desired osteotomy 

angulation was maintained. Once the jig was fixed to the ulna and the baseline distance between 

the two points on the pins were measured, the osteotomy was made using a surgical saw (ConMed, 

FL, USA; width: 9.5mm; thickness: 0.60mm). Testing was repeated with the osteotomy 

maintained at the initial alignment (labeled 0° angulation). Testing was then conducted with the 

jig adjusted to maintain the osteotomy at 10°, 20°, and 30° of extension angulation from the 

baseline (Figure 2.2B). 

For soft tissue sectioning stages, dissection was carried out through an anterior Henry approach to 

gain access to the anterior radiocapitellar joint capsule, annular ligament, quadrate ligament and 

the IOM. In stage 1, the anterior joint capsule was sectioned horizontally from the lateral to medial 

width of the radial head. In stage 2, the annular ligament and the quadrate ligament, if present, 

were sectioned. In stage 3, the proximal portion of the IOM was sectioned. The proximal IOM is 
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comprised of the proximal and dorsal oblique cords.22-24 The proximal oblique cord originates from 

the anterolateral aspect of the coronoid process and inserts just distal to the radial tuberosity.22 The 

dorsal oblique cord originates from the junction of the proximal third and distal two-thirds of the 

ulna and inserts into the interosseous crest of the radius.22 In this stage, while protecting the biceps 

tendon insertion, the proximal portion of the IOM with its fibers oriented from proximal-ulnar to 

distal-radial was sectioned. In stage 4, the central band of the IOM was sectioned from its radial 

origin. The central band originates at approximately 60% of the length of the radius from the 

styloid and inserts at approximately the junction of the middle two-thirds and the distal one-third 

of the ulna.25 It is oriented obliquely from proximal-radial to distal-ulnar which differentiates this 

portion of the IOM from the proximal IOM. Testing was repeated for each soft tissue sectioning 

stages with the ulnar osteotomy maintained at 0°, 10°, 20°, 30° of extension angulation. 
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Figure 2.2: Custom Designed Jig. 

A) A custom jig was designed to maintain ulnar osteotomy at desired angulations. The distance 

between the two measurement points was recorded using a digital caliper and a trigonometric 

formula was used to obtain the desired osteotomy angulation by turning the lead screw. B) 

Represents various degrees of ulnar extension angulation using the custom designed jig. 

2.2.3 Kinematic Data Acquisition 

An optical tracking system (Optotrak Certus; Northern Digital, Waterloo, ON, Canada) was used 

to track the motion of the radial head.26-29 Optical position sensors were mounted on the radius, 

ulna and the humerus. The Optotrak motion capture camera system was used to track the sensors’ 

A 

B 
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position throughout the elbow range of motion (ROM) (Figure 2.3). To maintain an in-plane 

accuracy of 0.1mm and 0.15mm perpendicular to the camera, a direct line of sight between the 

camera and the position sensors was maintained within 2.5m.  

 

Figure 2.3: Optotrak Motion Capture Camera System. 

The motion capture camera system tracks optical position sensors’ position throughout the elbow 

ROM. 

Upon completion of the testing protocol, each specimen was denuded of all soft tissues with the 

optical position sensors left attached for digitization. A clinically relevant coordinate system was 

created by digitizing anatomic landmarks with a calibrated tracked stylus.18 

To quantify radial head translation, a coordinate system was placed on the radial head with the 

origin at the deepest point of the radial dish. The y-axis of this coordinate system represents 

translation along the anterior-posterior plane (Figure 2.4). The radial head translation for the intact 

and injured states was quantified as the distance between the deepest portion of the radial dish to 

the centre of the capitellum along the y-axis of the radial coordinate system. The centre of the 

capitellum was found by sphere-fitting a digitization of the capitellum and extracting the centre of 

the sphere. 
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Figure 2.4: Radial Head Translation. 

Reference coordinate system was placed on the radial head. X-axis represents proximal-distal 

translation (+ distal), y-axis represents anterior-posterior translation (+ anterior); and z-axis (not 

shown in this image) represents medial-lateral translation (+ medial). The radial head position at 

30° and 130° of elbow flexion are shown to demonstrate the movement of the reference coordinate 

system during elbow flexion. Radial head translation (t) was quantified as the distance between 

the deepest point of the radial dish to the centre of the capitellum along the y-axis of the radial 

head.   

2.2.4 Statistical Methods 

Kinematic data were analyzed at 5° increments from 25-130° arc of active flexion with the forearm 

in supination using SPSS 23 statistical software (SPSS Inc, Chicago, IL, USA). A two-way 

repeated-measures analysis of variance (ANOVA) was performed to compare the effect of ulnar 

extension angulation without soft tissue injury and elbow flexion angles on radial head translation. 

If significance was found, post hoc analysis with a Bonferroni correction was conducted to 

compare the effects of various degrees of ulnar extension angulation to each other. 

A three-way repeated-measures ANOVA with Bonferroni correction was performed to examine 

the effect of sequential soft tissue sectioning, ulnar extension angulation and elbow flexion angles 

on radial head translation. If significance was found, post hoc tests were conducted to compare the 
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effect of various degrees of ulnar extension angulation in the soft tissue sectioned elbow and the 

effect of sequential soft tissue sectioning stages to each other.  

Data for the entire flexion-extension arc of motion was not always available due to line of sight 

issues with the optical tracking system most commonly at the extremes of the flexion-extension 

arc. Linear interpolation was used to estimate missing kinematic values when needed 

(approximately 2% of the data were interpolated). Statistical significance was set at α = .05. 
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2.3 Results 

With the soft tissues intact, there was a significant effect of ulnar extension angulation on radial 

head translation during active elbow flexion with the forearm supinated (P=.000). Post hoc analysis 

demonstrated that there was no significant difference between the intact state and ulnar osteotomy 

with 0° of angulation (P=1.000). However, each subsequent stage of ulnar extension angulation 

resulted in a significant incremental increase in anterior radial head translation (osteotomy 

angulation 10° vs. 0°: P=.011; osteotomy angulation 20° vs. 10°: P=.012; osteotomy angulation 

30° vs. 20°: P=.000) (Figure 2.5 and 2.6). There was no significant effect of flexion angle on radial 

head translation (P=.967). 

Since there was no significant difference between the intact state and 0° of ulnar angulation (mean 

difference = 0.1mm ± 0.6mm), ulnar osteotomy 0° state was only used in the three-way repeated 

measure ANOVA to analyze the effect of sequential soft tissue sectioning, ulnar extension 

angulation and elbow flexion angle on radial head translation. This analysis showed that both 

sequential soft tissue sectioning and ulnar extension angulation had a significant effect on radial 

head translation (ulnar angulation: P=.000; soft tissue sectioning: P=.000). Post hoc analysis 

demonstrated a significant incremental increase in anterior radial head translation with each 

subsequent stage of ulnar extension angulation (osteotomy angulation 10° vs. 0°: P=.044; 

osteotomy angulation 20° vs. 10°: P=.006; osteotomy angulation 30° vs. 20°: P=.001) (Figure 2.5, 

2.7 and 2.8). Post hoc analysis, examining the effect of soft tissue sectioning, demonstrated no 

significant increase in radial head translation with sectioning of the anterior joint capsule 

(P=1.000) (Figure 2.8 and 2.9). However, additional sectioning of the annular ligament and the 

quadrate ligament, which was present in 4 of our specimens, approached but did not reach 

statistical significance (P=.082). Further sectioning of the proximal and middle IOM resulted in 

significant increases in anterior radial head translation compared to the intact soft tissue state 

(proximal IOM: P=.025; middle IOM: P=.041). Finally, this analysis showed a significant effect 

of elbow flexion angle on radial head translation with a greater amount of anterior translation 

observed in higher degrees of elbow flexion (P=.000) (Figure 2.10). However, there was a 

significant interaction between soft tissue sectioning and flexion angle; the increased anterior 

radial head translation observed in higher degrees of elbow flexion was mainly evident during later 

stages of soft tissue sectioning (P=.000). Moreover, there was a significant interaction between 
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ulnar angulation and flexion angle (P=.000). The increased anterior radial head translation 

observed in higher degrees of elbow flexion occurred primarily at larger magnitudes of ulnar 

extension angulation. 

 

 

Figure 2.5: Radial head translation with progressive ulnar angulation of elbows with intact 

soft tissues during active elbow flexion. 

There was no significant difference in radial head translation between osteotomy 0° and the intact 

state (P=1.000). Each subsequent ulnar extension angulation resulted in a significant incremental 

increase in anterior radial head translation (osteotomy angulation 10° vs. 0°: P=.011; osteotomy 

angulation 20° vs. 10°: P=.012; osteotomy angulation 30° vs. 20°: P=.000). 

Increasing values of translation indicate anterior translation and decreasing values indicate 

posterior translation. The standard deviations (omitted from the graph for clarity) ranged from 

3.9mm to 5.0mm.  
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Figure 2.6: Effect of ulnar angulation on radial head translation with intact soft tissues. 

The means and standard deviations of the radial head translation for each osteotomy stage are 

plotted. Increasing values of translation indicate anterior translation and decreasing values 

indicate posterior translation. 

* indicates statistical significance (P<.05) 
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Figure 2.7: Radial head translation with progressive ulnar angulation in stage 1-4 soft 

tissue sectioning during active elbow flexion. 

There was a significant increase in anterior radial head translation with progressive ulnar 

extension angulation (osteotomy angulation 10° vs. 0°: P=.044; osteotomy angulation 20° vs. 10°: 

P=.006; osteotomy angulation 30° vs. 20°: P=.001). 

Increasing values of translation indicate anterior translation and decreasing values indicate 

posterior translation. The standard deviations (omitted from the graph for clarity) ranged from 

3.4mm to 4.9mm. ST1: Soft tissue sectioning stage 1; ST2: Soft tissue sectioning stage 2; ST3: Soft 

tissue sectioning stage 3; ST4: Soft tissue sectioning stage 4. 
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Figure 2.8: Effect of ulnar angulation and soft tissue sectioning on radial head translation. 

The means and standard deviations of the radial head translation for all osteotomy angulations 

during the intact and soft tissue sectioning stages are plotted. There was a significant increase in 

radial head translation with increasing ulnar angulation (P=.000). There was also a significant 

increase in radial head translation with sequential soft tissue sectioning (P=.000). Increasing 

values of translation indicate anterior translation and decreasing values indicate posterior 

translation. ST1: Soft tissue sectioning stage 1; ST2: Soft tissue sectioning stage 2; ST3: Soft tissue 

sectioning stage 3; ST4: Soft tissue sectioning stage 4. 

 

 

 

 

 

 



 

48 

 

 

 

Figure 2.9: Radial head translation with progressive soft tissue sectioning in 0°-30° of ulnar 

angulation during active elbow flexion. 

There was a significant increase in anterior radial head translation with ST3 and ST4 (ST1: 

P=1.000; ST2: P=.082; ST3: P=.025; ST4: P=.041). 

Increasing values of translation indicate anterior translation and decreasing values indicate 

posterior translation. The standard deviations (omitted from the graph for clarity) ranged from 

3.3mm to 4.5mm. ST1: Soft tissue sectioning stage 1; ST2: Soft tissue sectioning stage 2; ST3: Soft 

tissue sectioning stage 3; ST4: Soft tissue sectioning stage 4. 
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Figure 2.10: A three-dimensional representation of anterior radial head translation during 

elbow flexion with ulnar osteotomy at 20° of extension angulation and stage 3 soft tissue 

sectioning.  

The three-dimensional images of the proximal radius represent the position of the radial head at 

30°, 40°, 70°, 100°, and 130° of elbow flexion respectively. Note the increasing anterior 

translation of the radial head with increasing elbow flexion. 
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2.4 Discussion 

Recurrent or persistent radial head subluxation/dislocation has been reported despite numerous 

surgical procedures that have been proposed for the management of anterior Monteggia injuries. 

8,12,14,30 A better understanding of the factors that contribute to this instability is essential to 

optimize the outcomes of these injuries.  

This biomechanical investigation demonstrates that increasing extension angulation of the ulna 

with or without soft tissue injury results in progressive anterior radial head translation. A previous 

biomechanical study showed the same trend but only with up to 10° of ulnar extension 

malalignment.31 Moreover, they only considered the effect of annular ligament insufficiency 

during ulnar angulation and did not evaluate the impact of the anterior joint capsule and the IOM. 

Furthermore, the elbow motion was simulated with the application of a 50:50 load to only the 

biceps and brachialis. Other studies have suggested loads in these muscles vary throughout the 

elbow motion and the importance of brachioradialis in elbow flexion motion.18,21,32 Our results 

show that as little as 10° of ulnar extension angulation is sufficient to produce a significant anterior 

radial head translation. Interestingly, this effect was seen even in the absence of soft tissue injury. 

Clinically, anterior radial head dislocation has been observed in conjunction with subtle 

misalignment of the ulna and even with only a plastic deformation.33-35 Our results show a non-

linear relationship in the magnitude of radial head translation between each subsequent stage of 

ulnar extension malalignment with a greater relative magnitude of radial head translation in higher 

degrees of ulnar extension angulation. In this model, higher degrees of ulnar angulation resulted 

in a relative lengthening of the ulna as the apex of the angulation was at the dorsal surface of the 

ulna. This lengthening allows for an axial traction force to be applied on the radius through the 

intact portion of the IOM resulting in the loss of concavity compression at the radiocapitellar joint. 

Without this concavity compression, greater magnitudes of radial head translation could occur.36-

38   

Evaluating the effects of progressive soft tissue insufficiency in Monteggia injuries, our study 

demonstrates no significant radial head translation with sectioning of the anterior joint capsule. 

Although clinically, an anterior capsular injury might be a part of the spectrum of soft tissue 

injuries in Monteggia lesions, an isolated capsular injury without injury to the annular ligament 
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would likely be rare due to the primary stabilizing effect of the annular ligament. In our 

experiment, additional sectioning of the annular ligament and the quadrate ligament resulted in an 

increase in anterior radial head translation which approached but did not reach statistical 

significance. This finding is consistent with previous anatomic and biomechanical studies which 

have shown worsening radial head subluxation with a torn annular ligament in Monteggia 

injuries.31,39 The lack of statistical significance in our study is likely related to our limited sample 

size. A larger sample size should be considered in future studies evaluating the role of these 

structures in the stability of anterior Monteggia injuries. Additional sectioning of the proximal and 

then the middle IOM resulted in a statistically significant anterior radial head translation. To our 

knowledge, no previous biomechanical study has investigated the contribution of the IOM to radial 

head stability in Monteggia injuries. However, other studies have shown significant contributions 

of the proximal and middle IOM to the instability pattern of pure radial head dislocations.40,41 

Hayami et al. showed no significant radial head translation with sectioning of the anterior joint 

capsule, annular ligament and the quadrate ligament.41 However, significant anterior radial head 

translation occurred after sectioning of the proximal half of the IOM. Anderson et al. found 

significant anterior radial head translation only after sectioning of the central band of the IOM.40 

The major limitation of these studies is that the cadaveric specimens were dissected free of all 

muscles, tendons and skin; thus, the dynamic effect of these structures on radial head stability was 

not accounted for. Moreover, these experiments did not examine radial head stability during more 

physiologic loading conditions of simulated elbow flexion. 

With the soft tissues intact, our results show no significant effect of elbow flexion angle on radial 

head translation even with up to 30° of ulnar extension angulation. This effect is likely due to the 

intact anterior soft tissue structures (i.e. anterior joint capsule and annular ligament). Although 

increasing extension angulation of the ulna resulted in an anterior translation of the radial head, 

these intact soft tissue structures prevented further translation of the radial head throughout elbow 

flexion. Interestingly, after soft tissue sectioning, our results show a worsening of the anterior 

radial head translation in higher degrees of elbow flexion particularly during later stages of soft 

tissue sectioning and at larger degrees of ulnar extension angulation. Deficient soft tissue 

stabilizers, particularly the IOM, permit greater displacement of the radius. In the setting of this 

increased instability, worsening radial head translation may be related to greater activation of the 

biceps muscle in higher degrees of elbow flexion.42 
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Our study has several strengths. The previous biomechanical study investigating the effect of ulnar 

angulation on radial head stability only evaluated 0°, 5° and 10° of ulnar extension malalignment.31 

However, a multicenter study evaluating fracture characteristics in 112 cases of acute Monteggia 

fractures reported the average ulnar angulation at presentation was 19.6°±14.4°.43 Thus, we 

evaluated up to 30° of ulnar angulation in this study. Despite an anatomic reduction of the ulnar 

fracture in Monteggia injuries, persistent or recurrent subluxation/dislocation of the radial head 

has been reported.8,14,30,44 In such cases, disruption of other soft tissue structures in addition to the 

anterior joint capsule should be expected based on the results of the current investigation. Several 

studies have shown torn or incarcerated annular ligament in Monteggia injuries with the incidence 

ranging from 17-100%.7,17,44-48 However, the involvement of other soft tissue structures, such as 

the IOM, has not been fully investigated. Our results demonstrate that after sectioning of the 

anterior joint capsule, even with 30° of ulnar extension angulation, the average anterior radial head 

translation was only 9.5 mm relative to the intact state. Thus, in cases with a greater magnitude of 

anterior radial head translation, disruption of other soft tissue structures, such as the annular 

ligament, quadrate ligament and the IOM, should be considered. Future clinical studies should 

evaluate the integrity of the IOM in acute and chronic Monteggia injuries. A better characterization 

of the pattern of soft tissue injuries in anterior Monteggia lesions may provide further clues on the 

etiology of persistent radial head instability despite an anatomic reduction of the ulnar fracture. 

This study is not without its limitations. In this cadaveric biomechanical model of anterior 

Monteggia injuries, a transverse osteotomy was performed and maintained in various degrees of 

extension angulation using a rigid custom-designed jig which would not allow for fracture collapse 

and shortening of the forearm length. However, other fracture patterns, such as oblique and 

comminuted fractures, are encountered clinically. Moreover, with fracture comminution and 

shortening, there is a change in forearm length relationship which may influence the magnitude of 

soft tissue injury and stability of Monteggia lesions. Furthermore, these injuries generally occur in 

younger individuals than the cadaveric specimens used in our study. Less soft tissue compliance 

in older specimens may underestimate the amount of radial head translation encountered clinically. 

The effect of a different sequence of soft tissue sectioning was not evaluated in this study. 

However, a previous biomechanical study examining the effect of these soft tissue structures on 

pure radial head dislocations concluded that the order in which these soft tissues were sectioned 

did not have a significant effect on radial head instability.40 In our study, the lack of statistical 
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significance in radial head translation after annular ligament sectioning may be related to our 

sample size. A larger sample size should be considered in future studies. We had initially planned 

to examine these effects on eight cadaveric specimens; however, a complete set of data was not 

available for two specimens because of a failure to maintain 30° of ulnar extension angulation in 

the intact soft tissue state. Although ulnar extension angulation resulted in progressive anterior 

translation of the radial head with or without concomitant soft tissue disruptions, increasing force 

was required to achieve higher degrees of ulnar angulation with the soft tissues intact which 

resulted in the shaft of our jig to break upon angulating the ulnar osteotomy to 30° in the intact 

soft tissue state in the two experiments. However, we were able to easily angulate the ulnar 

osteotomy site even up to 30° with progressive stages of soft tissue disruption. Based on this 

observation, clinically it is unlikely for the ulnar fracture to maintain this degree of deformity when 

the soft tissues are intact. Finally, the effect of forearm rotation and muscle activation which could 

also play a role in radial head stability in Monteggia lesions were not investigated. 

The results of this biomechanical investigation have several clinical implications. Our results 

demonstrate that residual angulation of the ulnar fracture contributes to radial head instability in 

anterior Monteggia injuries. Thus, an anatomic reduction and restoration of the ulnar alignment 

are crucial. Moreover, in cases with significant radial head displacement or persistent instability 

despite an anatomic reduction of the ulna, disruption of more than just the anterior joint capsule, 

particularly the annular ligament, quadrate ligament, and the IOM should be considered. Our 

results may also have implications for the surgical approaches and management of anterior 

Monteggia injuries. In such cases, the annular ligament, if possible, and the IOM should be 

protected; further studies evaluating the effectiveness of annular ligament and IOM repair or 

reconstruction are required.   
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2.5 Conclusions 

This biomechanical investigation demonstrates that progressive ulnar extension angulation in 

anterior Monteggia injuries results in an incremental increase in anterior radial head translation. 

Moreover, increasing the magnitude of soft tissue disruption results in progressive anterior radial 

head instability. Injury to the annular ligament and the IOM should be suspected in anterior 

Monteggia lesions with a large amount of anterior radial head displacement or in patients with 

persistent anterior radial head translation despite an anatomic reduction of the ulna.  
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Chapter 3  

3 The Role of Biceps Loading and Muscle Activation on Radial 
Head Stability in Anterior Monteggia Injuries 

Little evidenced-based information is available to direct the optimal rehabilitation of patients with 

anterior Monteggia injuries. This chapter examines the effect of biceps loading on radial head 

stability in these injuries. Moreover, we studied the effect of simulated active and passive elbow 

motion on radial head translation in these injuries.   

3.1 Introduction 

[NB: A portion of this material was presented in Chapter 1 and Chapter 2 and is also included 

here in order to ensure that this chapter is in “article” format] 

Bado type I Monteggia injuries represent an apex anterior fracture of the proximal or middle third 

of the ulna and an anterior dislocation of the radial head.1 Various factors, such as ulnar extension 

angulation, hyperpronation of the forearm and biceps loading, have been proposed in the 

development and stability of these injuries.1-4  In 1971, Tompkins proposed that during a fall on 

an outstretched hand, the radial head dislocates anteriorly due to a violent reflex contraction of the 

biceps (Chapter 1, Figure 1.25).3  

Anatomic reduction of the ulnar deformity is critical to the successful management of these 

injuries.5-10 However, the optimal postoperative rehabilitation remains unknown. Muscle 

activation and early active motion has been shown to improve elbow instability following fractures 

and dislocations.11-16 To our knowledge, no previous study has investigated whether active or 

passive elbow range of motion (ROM) can be safely employed in the postoperative rehabilitation 

of patients with anterior Monteggia injuries. It has been suggested that biceps tension may play a 

role in recurrent subluxation or dislocation of the radial head in Monteggia injuries, hence some 

authors recommend immobilization of the elbow in flexion following reduction of the ulna.17,18 

The contribution of biceps contraction to radial head stability in anterior Monteggia injuries has 

not been investigated. A better understanding of the effect of biceps loading would allow 

optimization of the rehabilitation protocols for patients with these injuries. The aims of this 

biomechanical investigation were: 1) to quantify the effect of biceps loading on radial head 
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translation in anterior Monteggia injuries; and 2) to compare the effect of simulated active and 

passive elbow flexion on radial head stability in these injuries. We hypothesized that: 1) biceps 

loading increases anterior radial head instability in these injuries; and 2) simulated active elbow 

flexion results in a greater anterior radial head translation than passive motion.  



 

61 

 

3.2 Materials and Methods 

3.2.1 Specimen Preparation 

Six upper limb fresh-frozen cadaveric specimens (mean age at the time of death: 60 ± 8 years) 

were amputated at the mid-humerus level. Computed tomography was performed to rule out pre-

existing elbow or wrist articular pathology and forearm skeletal deformity. Specimens were stored 

at -20°C and thawed at room temperature (22°C ±2°C) for 18 hours before testing.  

An eight-strand braided fishing line (Hercules, CA, USA; 150lb) was used to suture the distal 

tendons of the biceps, brachialis, brachioradialis, triceps, and pronator teres in a running locking 

fashion. The supinator function was simulated using a suture anchor placed at the centre of the 

bicipital tuberosity. The suture attached to this anchor entered an interosseous tunnel near the 

supinator crest of the ulna through a guide sleeve and then exited the proximal aspect of the 

olecranon through another guide sleeve. The distal tendons of the extensor carpi radialis longus 

and extensor carpi ulnaris were sutured together. The distal tendons of the flexor carpi radialis and 

flexor carpi ulnaris were also sutured together. After passing the tendon sutures subcutaneously 

through their respective physiologic compartments, the sutures of the brachioradialis and the wrist 

extensors were passed through an alignment guide at the supracondylar ridge of the humerus. The 

sutures of the pronator teres and the wrist flexors were passed through a second alignment guide 

at the medial epicondyle. The humerus was rigidly mounted into a custom clamp on the base of 

the elbow motion simulator (Chapter 2, Figure 2.1). All sutures were connected by stainless steel 

cables to 3 computer-controlled servomotors (for each of biceps, brachialis, and triceps) and 5 

pneumatic actuators (for the remaining tendons).  

3.2.2 Experimental Simulation 

Part I: Isometric Biceps Loading 

The effect of biceps loading was examined with the elbow held at 90° of flexion on a platform 

with the forearm supinated. A custom-designed LabVIEW program (National Instruments, Austin, 

TX, USA) was used to apply 0N, 20N, 40N, 60N, 80N, and 100N of load to the biceps tendon in 

a staircase fashion using a servomotor. A compensatory load was applied to the triceps to maintain 

the elbow at 90° of flexion. 
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Part II: Simulated Active versus Passive Motion 

Simulated active and passive elbow flexion motions were performed with the arm oriented in the 

vertical dependent position. Simulated active elbow flexion with the forearm supinated was 

prescribed at a rate of 10°/s based on previously established protocols that have been validated 

with this simulator.11,19-21 In brief, brachialis was designated as the prime mover during each 

flexion trial with its load varying as a function of elbow flexion angle feedback.  The load through 

the other elbow flexors was a constant ratio of the load through the prime mover, with the biceps 

load being 52% of the brachialis and the brachioradialis being 29% of the brachialis. Active 

supination was achieved by applying a 40N load to the supinator via a pneumatic actuator as well 

as the load through the biceps tendon. To stabilize the wrist in a neutral position, a 10N load was 

applied to the wrist extensors and the wrist flexors via pneumatic actuators. Simulated passive 

elbow motion was performed by one investigator (A.B.) by manually grasping the wrist to 

passively rotate the forearm into full supination until a definite endpoint of ROM was reached and 

then gently moving the elbow though flexion arc at approximately 10°/s. 

3.2.3 Testing Protocol 

Before testing, 5 simulated active and 5 passive preconditioning cycles of elbow flexion and 

extension with the forearm maintained in supination were performed. Two trials were conducted 

for each active and passive motion, and the average values were used for analysis. Data were 

collected for 5 seconds for each isometric biceps loading trial and the average values during that 

period were used for analysis. 

Testing was first conducted for the intact state. A custom jig was used to maintain the osteotomized 

ulna in the same alignment as the intact ulna to simulate an anatomic reduction (labeled 0°) 

(Chapter 2, Figure 2.2). The osteotomy was planned at the junction of the proximal and middle 

third of the ulna. This location was determined based on the measurements of the ulnar length from 

the preoperative CT images. The jig was fixed to the ulna using three 3.5mm cortical screws on 

each side of the osteotomy. A measurement point was etched in the centre of each of the pins 

housing the lead screw and the distance between these two points was measured using a digital 

caliper (Empire, WI, USA). This distance was recorded and checked at each stage to ensure 

maintenance of the osteotomy site at its baseline alignment. Moreover, nuts were placed on each 
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side of the pins to maintain this alignment. The osteotomy was made using a surgical saw 

(ConMed, FL, USA; width 9.5mm; thickness 0.60mm).  

For soft tissue sectioning stages, dissection was carried out through an anterior Henry approach to 

gain access to the anterior radiocapitellar joint capsule, annular ligament, quadrate ligament and 

the IOM. In stage 1, the anterior joint capsule was sectioned horizontally from the lateral to medial 

width of the radial head. In stage 2, the annular ligament and the quadrate ligament, which was 

present in 4 of our specimens, were sectioned. In stage 3, the proximal portion of the IOM was 

sectioned. The proximal IOM, which is comprised of the proximal and dorsal oblique cords, is 

orientated from proximal-ulnar to distal-radial.22-24 While protecting the biceps tendon insertion, 

the radial attachment of the proximal IOM was sectioned from the bicipital tuberosity to the 

interosseous crest of the radius. In stage 4, the central band of the IOM was sectioned. The central 

band has the opposite orientation compared to the proximal IOM and is oriented obliquely from 

proximal-radial to distal-ulnar. In this stage, the entire length of the radial origin of the central 

band at the interosseous crest was sectioned.22,25 

3.2.4 Kinematic Data Acquisition 

An optical tracking system (Optotrak Certus; Northern Digital, Waterloo, ON, Canada) was used 

to track the motion of the radial head.26-29 The Optotrak motion capture camera system tracked 

infrared light that was emitted from optical position sensors mounted on the radius, ulna and the 

humerus (Chapter 2, Figure 2.3). To maintain an in-plane accuracy of 0.1mm and 0.15mm 

perpendicular to the camera, a direct line of sight between the camera and the position sensors was 

maintained within 2.5m.  

Upon completion of the testing protocol, each specimen was denuded of all soft tissues with the 

optical position sensors left attached for digitization. A clinically relevant coordinate system was 

created by digitizing anatomic landmarks with a calibrated tracked stylus.19 

To quantify radial head translation, a coordinate system was placed on the radial head with the 

origin at the deepest point of the radial dish. The y-axis of this coordinate system represents 

translation along the anterior-posterior plane (Chapter 2, Figure 2.4). The radial head translation 

was quantified as the distance between the deepest portion of the radial dish to the centre of the 
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capitellum along the y-axis of the radial coordinate system. The centre of the capitellum was found 

by sphere-fitting a digitization of the capitellum and extracting the centre of the sphere. In the 

biceps loading experiment, radial head translation for any given state was compared to the intact 

state. To utilize a comparable metric to the stationary bicep data at 90 degrees, the average radial 

head translation for the entire elbow flexion arc was determined for each injured state and 

compared to the intact state for the active and passive motion experiments. 

3.2.5 Statistical Methods 

Kinematic data were analyzed using SPSS 23 statistical software (SPSS Inc, Chicago, IL, USA). 

A two-way repeated-measures analysis of variance (ANOVA) with Bonferroni correction was 

performed to compare biceps loading and elbow states (intact, osteotomy 0°, soft tissue sectioning 

stage 1 with osteotomy 0° (ST1-Osteotomy 0°), soft tissue sectioning stage 2 with osteotomy 0° 

(ST2-Osteotomy 0°), soft tissue sectioning stage 3 with osteotomy 0° (ST3-Osteotomy 0°), soft 

tissue sectioning stage 4 with osteotomy 0° (ST4-Osteotomy 0°)). A one-way ANOVA was 

performed to compared 0N biceps loading between different elbow states.  

A two-way repeated-measures ANOVA was then performed to compare muscle activation (active 

versus passive motion) and above-mentioned elbow states.  

Data for the entire flexion-extension arc of motion was not always available due to line of sight 

issues with the optical tracking system most commonly at the extremes of the flexion-extension 

arc. Linear interpolation was used to estimate missing values when needed (approximately 1% of 

active/passive data were interpolated). Statistical significance was set at α = .05. 
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3.3 Results 

Part I: Isometric Biceps Loading 

Greater magnitudes of biceps loading significantly increased anterior radial head translation 

(P=.000). Post hoc analysis demonstrated that all the loads resulted in a significant increase in 

anterior radial head translation compared to no biceps loading (20N: P=.043; 40N: P=.008; 60N: 

P=.005; 80N: P=.007; 100N: P=.004) (Figure 3.1; Table 3.1). The progressive injury states had a 

significant effect on radial head translation (P=.000). Post hoc analysis demonstrated no significant 

difference in radial head translation between osteotomy 0° and the intact state (P=1.000). 

Moreover, there was no significant increase in radial head translation with sectioning of the 

anterior joint capsule, the annular ligament, the quadrate ligament and the proximal IOM (ST1-

Osteotomy 0°: P=1.000; ST2-Osteotomy 0°: P=1.000; ST3-Osteotomy 0°: P=.136). However, 

additional sectioning of the middle IOM resulted in a significant increase in anterior radial head 

translation compared to the intact state (P=.012). There was no significant difference in radial head 

translation after progressive soft tissue sectioning with no biceps loading (P=.463). 

Part II: Simulated Active versus Passive Motion  

There was no significant difference in the average radial head translation throughout flexion 

between simulated active and passive motion with the forearm supinated (P=.251). However, there 

was a significant interaction between muscle activation and elbow states (P=.016). Thus, a paired 

t-test was performed between active and passive motion trials for each elbow state. This analysis 

demonstrated a significant increase in anterior radial head translation during passive elbow motion 

compared to simulated active motion in stage 4 soft tissue sectioning (P=.039). There were no 

significant differences between simulated active and passive elbow motion in other elbow states 

(Osteotomy 0°: P=.691; ST1-Osteotomy 0°: P=.849; ST2-Osteotomy 0°: P=.791; ST3-Osteotomy 

0°: P=.615) (Figure 3.2; Table 3.2). There was a significant increase in anterior radial head 

translation with progressive injury states (P=.003). 
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Figure 3.1: Radial head translation with staircase biceps loading.  

Biceps loading resulted in a significant increase in anterior radial head translation compared to 

no biceps loading (20N: P=.043; 40N: P=.008; 60N: P=.005; 80N: P=.007; 100N: P=.004). 

There was no significant increase in radial head translation between the intact state and any of 

the progressive injury states other than in ST4-osteotomy 0° where additional sectioning of the 

middle IOM resulted in a significant increase in anterior radial head translation (Osteotomy 0°: 

P=1.000; ST1-Osteotomy 0°: P=1.000; ST2-Osteotomy 0°: P=1.000; ST3-Osteotomy 0°: P=.136; 

ST4-Osteotomy 0°: P=.012).  

Positive values indicate anterior translation and negative values indicate posterior translation. 

ST1: Soft tissue sectioning stage 1; ST2: Soft tissue sectioning stage 2; ST3: Soft tissue sectioning 

stage 3; ST4: Soft tissue sectioning stage 4 
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Table 3.1:  Effect of Biceps Loading on Radial Head Translation 

 Mean±SD Radial Head Translation† (mm)  

Biceps 

Load 

Intact Osteotomy 0° ST1-

Osteotomy 0° 

ST2-

Osteotomy 0° 

ST3-

Osteotomy 0° 

ST4-

Osteotomy 0° 

P 

0 N 0 -0.2±1.3 0.6±1.5 0.8±1.4 1.4±1.3 0.6±2.1  

20 N 3.3±1.3 3.6±1.9 4.0±2.0 4.2±2.4 8.0±5.2 15.3±7.8 .043* 

40 N 3.7±1.5 4.2±2.0 4.7±2.1 5.3±2.9 9.6±5.5 19.9±6.1 .008* 

60 N 4.1±1.6 4.4±1.8 5.1±2.1 6.1±3.2 10.9±5.5 21.9±5.5 .005* 

80 N 4.6±1.6 4.9±2.0 5.5±2.1 6.5±3.2 12.4±4.9 26.1±9.3 .007* 

100 N 5.1±1.7 5.3±2.0 5.9±2.1 7.0±3.3 13.7±4.8 28.7±9.4 .004* 

SD, standard deviation; ANOVA, analysis of variance 
†For radial head translation, positive values indicate anterior translation and negative values indicate posterior 

translation 

P-values describe the significance of radial head translation (between biceps loading and no load) as the result of a 

two-way ANOVA with biceps loading and elbow states.  

* indicates significance (P < .05) 
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Figure 3.2: Average radial head translation throughout the simulated active and passive 

elbow flexion. 

There was no significant difference in radial head translation between simulated active and 

passive flexion in all states except in ST4-osteotomy 0° where passive motion resulted in a 

significant increase in average anterior radial head translation (Osteotomy 0°: P=.691; ST1-

Osteotomy 0°: P=.849; ST2-Osteotomy 0°: P=.791; ST3-Osteotomy 0°: P=.615; ST4-Osteotomy 

0°: P=.039). There was a significant increase in anterior radial head translation with progressive 

soft tissue sectioning (P=.003). 

Positive values indicate anterior translation and negative values indicate posterior translation. 

ST1: Soft tissue sectioning stage 1; ST2: Soft tissue sectioning stage 2; ST3: Soft tissue sectioning 

stage 3; ST4: Soft tissue sectioning stage 4.  

* indicates statistical significance (P<.05) 
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Table 3.2:  Effect of Muscle Activation on Radial Head Translation 

 Mean±SD Radial Head Translation† (mm)      

Muscle 

Activation 

Osteotomy 

0° 

ST1-

Osteotomy 

0° 

ST2-

Osteotomy 

0° 

ST3-

Osteotomy 

0° 

ST4-

Osteotomy 

0° 

P P’ P” P’” P”” 

Active 0.1±0.6 0.6±1.5 0.8±2.0 2.8±2.1 2.7±2.5 
.691 .849 .791 .615 .039* 

Passive 0.2±0.8 0.5±1.2 1.0±1.6 2.5±2.3 6.6±3.7 

SD, standard deviation; ANOVA, analysis of variance 
†For radial head translation, positive values indicate anterior translation and negative values indicate posterior 

translation 

P-value describes the significance of radial head translation (between active and passive elbow motion) in  Osteotomy 

0° state as the result of a paired t-test. 

P’-value describes the significance of radial head translation (between active and passive elbow motion) in  ST1-

Osteotomy 0° state as the result of a paired t-test. 

P”-value describes the significance of radial head translation (between active and passive elbow motion) in  ST2-

Osteotomy 0° state as the result of a paired t-test. 

P’”-value describes the significance of radial head translation (between active and passive elbow motion) in  ST3-

Osteotomy 0° state as the result of a paired t-test. 

P””-value describes the significance of radial head translation (between active and passive elbow motion) in  ST4-

Osteotomy 0° state as the result of a paired t-test. 

* indicates significance (P < .05)
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3.4 Discussion 

Monteggia fracture-dislocations are complex injury patterns with suboptimal outcomes in 

medium- to long-term follow-up studies, particularly in adults.5-8,30-36 Missed injuries, which occur 

in approximately 25-50% of cases, have poorer outcomes.37-39 Although numerous surgical 

procedures have been proposed, recurrent subluxation/dislocation of the radial head continues to 

complicate these injuries even when an anatomic reduction of the fracture has been 

achieved.6,35,37,40  

This biomechanical investigation demonstrates that biceps loading has a significant effect on 

anterior radial head translation. Although no previous biomechanical study has directly 

investigated the impact of biceps loading on radial head translation, this effect was suggested by 

Tompkins in his observational hypothesis of anterior Monteggia injuries.3 Moreover, Sandman 

and colleagues found increasing anterior radial head subluxation with increasing elbow flexion 

and speculated that this effect might be related to the pull of the biceps during elbow flexion.4 

Interestingly, loads as low as 20N had a significant effect on radial head translation in our study. 

Previous studies have shown varying loads in the biceps during active elbow flexion.11,19,41-44 In 

our simulator, the average load in the biceps was 70N with a maximum load of 130N during active 

elbow flexion. Thus, our static loading protocol applied clinically relevant loads which would 

likely be seen clinically with early active motion. In the absence of biceps loading, there was no 

significant radial head translation even in the higher injury states. This supports the clinical 

observation that relaxation of biceps by placing the elbow in a flexed and supinated position likely 

aids in maintaining the reduction of the radial head in anterior Monteggia injuries.3,45,46 

With the forearm supinated, our results show that there was no significant difference in radial head 

translation between simulated active and passive elbow motion except in soft tissue sectioning 

stage 4 where the anterior joint capsule, annular ligament, quadrate ligament, proximal IOM and 

the middle IOM have all been disrupted. To our knowledge, no previous study has examined the 

implications of active and passive elbow motion in anterior Monteggia injuries. Contrary to our 

hypothesis, we did not find greater radial head instability with simulated active elbow flexion, 

even though our static analysis showed a significant effect with the elbow at 90° of flexion. This 

discrepancy may be due to the concomitant activation of the supinator muscle in our simulated 
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active flexion trials. The supinator function was simulated by routing a suture attached to an anchor 

in the centre of the bicipital tuberosity over the anterior aspect of the radial neck and then through 

a guide sleeve near the supinator crest. This closely simulates the normal line of action of the 

supinator between the ulna and proximal radius. The supinator was loaded at 40N to maintain the 

forearm in supination during simulated active flexion. This likely counteracted the average biceps 

load of 70 N during active flexion trials to resist anterior translation of the radial head. This effect 

may also be responsible for the difference in radial head translation between active and passive 

motion in stage 4 soft tissue sectioning. In this stage, the significant soft tissue injury allowed for 

a greater amount of anterior radial head translation during passive elbow motion; while activation 

of the supinator likely prevented the radial head translation during simulated active elbow flexion. 

Interestingly, our results show that progressive soft tissue injury caused a significant increase in 

anterior radial head translation despite maintenance of an anatomic reduction of the ulna. Thus, in 

the setting of a significant soft tissue injury, particularly with the involvement of the central band 

of the IOM, restoring the ulnar alignment might not be sufficient to maintain radial head stability. 

A previous biomechanical study showed that in the setting of annular ligament disruption, the 

restoration of the initial ulnar alignment was not sufficient to restore radial head alignment.4 

Clinically, persistent or recurrent subluxation/dislocation of the radial head has been reported in 

Monteggia injuries despite an anatomic reduction of the ulna.6,37,40,47 Some authors have even 

described overcorrection of the ulna during surgical management of anterior Monteggia 

injuries.40,48,49 In such cases, disruption of the annular ligament, quadrate ligament, or the IOM 

should be suspected. Future clinical studies should consider evaluating the degree of soft tissue 

injury in unstable anterior Monteggia fracture-dislocations using magnetic resonance imaging. 

To our knowledge, this is the first biomechanical study examining the effect of biceps loading and 

muscle activation on radial head stability in anterior Monteggia fracture-dislocations. However, 

this study is not without its limitations. The effects of varying degrees of ulnar extension angulation 

and forearm rotation were not examined in this study. Moreover, we did not examine the effect of 

varying loads through the supinator on radial head translation since its significant contribution to 

radial head stability was not an expected finding. Finally, these injuries generally occur in younger 

individuals than the cadaveric specimens used in our study. Less soft tissue compliance in older 

specimens may underestimate the amount of radial head translation encountered clinically. 
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The results of this biomechanical investigation have several implications in the surgical 

management and rehabilitation of patients with anterior Monteggia lesions. Our results 

demonstrate a significant increase in anterior radial head translation with biceps loading and with 

both simulated active and passive elbow flexion in higher stages of soft tissue injury. Thus, in 

patients with residual radial head instability after an anatomic reduction of the ulna, the elbow 

should likely be immobilized at 90° or greater of flexion with the forearm maintained in supination. 

This allows relaxation of the biceps and avoids movement of the elbow during the early 

postoperative rehabilitation. Our results also show that activation of the supinator muscle may 

stabilize the radial head in these injuries. Isometric forearm supination exercises may play a role 

in the rehabilitation of patients with unstable Monteggia injuries. That said, the ability to target 

supinator activation clinically and the potential effectiveness of such a rehabilitation protocol has 

not been established and is theoretical at best. Furthermore, our results demonstrate that anatomic 

reduction and restoration of the ulnar alignment may not be sufficient to restore radial head 

alignment particularly with higher degrees of soft tissue injury. Future clinical studies should 

clarify the pattern of soft tissue injuries in anterior Monteggia fracture-dislocations. A better 

understanding of this injury pattern may allow the development of better surgical techniques and 

rehabilitation protocols to enhance patients’ outcomes.  
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3.5 Conclusions 

This biomechanical investigation demonstrates that biceps muscle tension has a significant effect 

on radial head instability in anterior Monteggia injuries. Moreover, there was no significant 

difference in radial head stability between simulated active and passive elbow flexion except in 

the setting of significant soft tissue disruption which included sectioning of the central band of the 

IOM. In such cases, passive motion is preferred. Importantly, this study demonstrated that there 

was a significant worsening of the anterior radial head instability with progressive soft tissue 

disruption despite anatomic restoration of the ulnar alignment.  
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Chapter 4  

4 Thesis Conclusions 

Suboptimal outcomes have been reported in medium to long-term follow-up studies of anterior 

Monteggia injuries. High rates of complications including recurrent radial head 

subluxation/dislocation have been reported, particularly in chronic Monteggia lesions. There is a 

paucity of literature on factors that contribute to radial head instability in these injuries. The 

purpose of this in-vitro biomechanical research was to investigate some of the factors that may 

contribute to radial head instability in the setting of anterior Monteggia injuries. 

This thesis fulfills the objectives presented in Chapter 1 which included: 

1. To determine the contribution of ulnar angulation on radial head instability in anterior 

Monteggia injuries (Chapter 2) 

2. To determine the contribution of the anterior joint capsule, annular ligament, quadrate 

ligament, and the proximal and middle IOM on radial head instability in anterior 

Monteggia injuries (Chapter 2) 

3. To determine the contribution of biceps contraction on radial head instability in anterior 

Monteggia injuries (Chapter 3) 

4. To determine the contribution of muscle activation during simulated active compared to 

passive elbow flexion on radial head instability in anterior Monteggia injuries (Chapter 3) 

The hypotheses and findings described in Chapter 2 and 3 are summarized in the following 

sections. 
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4.1 Summary of Chapter 2: Effects of Ulnar Angulation and Soft 
Tissue Sectioning on Radial Head Stability in Anterior 
Monteggia Injuries 

Our first objective was to study the effect of ulnar extension angulation on radial head stability in 

anterior Monteggia lesions. We hypothesized that increasing extension angulation of the ulna 

results in a significant increase in anterior radial head translation. We examined this effect in 

elbows with or without concomitant soft tissue injuries. Our results showed that increasing ulnar 

extension angulation with or without concomitant soft tissue disruptions results in a significant 

incremental increase in anterior radial head translation. Importantly, as little as 10° of ulnar 

malalignment was enough to cause significant radial head translation. This finding reinforces the 

importance of an anatomic reduction and restoration of the ulnar alignment in the surgical 

management of anterior Monteggia injuries. 

The second objective of this research was to study the effect of sequential sectioning of the anterior 

radiocapitellar joint capsule, annular ligament, quadrate ligament, and the proximal and middle 

IOM on radial head stability in anterior Monteggia injuries. We hypothesized that this sequential 

soft tissue sectioning results in a significant increase in anterior radial head translation. Our results 

agreed with this hypothesis and showed that overall, this sequential soft tissue disruption results 

in a significant increase in anterior radial head translation. In the post hoc analysis, there was no 

significant difference in radial head translation after sectioning of the anterior joint capsule. This 

is likely due to the primary stabilizing effect of the remaining annular ligament. Although 

additional sectioning of the annular ligament and the quadrate ligament increased anterior radial 

head translation; this difference approached but did not reach statistical significance. This lack of 

statistical significance is likely related to our sample size. Future studies should further evaluate 

the effect of the annular ligament and the quadrate ligament disruptions on radial head stability 

using at least 8 cadaveric specimens based on our sample size calculation to detect statistical 

significance (1-β=0.8; α=0.05). Additional sectioning of the proximal and then the middle IOM 

resulted in a significant increase in anterior radial head translation. It is important to note that after 

sectioning of the anterior joint capsule, even with 30° of ulnar extension angulation, the average 

anterior radial head translation was only 9.5mm compared to the intact state. Thus, in patients with 
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greater magnitudes of anterior radial head translation, disruption of the annular ligament, quadrate 

ligament or the IOM should be suspected. 
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4.2 Summary of Chapter 3: The Role of Biceps Loading and 
Muscle Activation on Radial Head Stability in Anterior 
Monteggia Injuries 

Our third objective was to study the effect of biceps loading on radial head stability in anterior 

Monteggia injuries. We hypothesized that biceps loading results in a significant increase in anterior 

radial head translation. Our results agreed with this hypothesis and showed a significant increase 

in anterior radial head translation even with 20N of biceps loading. This is an important finding 

since higher biceps loads have been reported during active elbow flexion.1-6 Interestingly, there 

was no significant difference in radial head translation in the absence of biceps loading even with 

greater degrees of soft tissue disruption. This finding supports a previously reported clinical 

observation that placement of the elbow in a flexed and supinated position to relax the biceps aids 

in maintaining the reduction of the radial head in anterior Monteggia injuries.7-9  

The fourth objective of this research was to compare the effect of simulated active and passive 

elbow flexion on radial head stability in anterior Monteggia injuries. We hypothesized that there 

would be a significant increase in anterior radial head translation during simulated active elbow 

flexion compared to passive elbow flexion due to the effect of biceps activation. Our results did 

not agree with this hypothesis. There was no significant difference in radial head translation 

between simulated active and passive elbow flexion except in stage 4 soft tissue sectioning. In this 

stage, which involves sectioning of the middle IOM in addition to the anterior joint capsule, 

annular ligament, quadrate ligament and the proximal IOM, passive elbow flexion resulted in a 

greater anterior radial head translation than simulated active motion. This discrepancy between 

our results and our hypothesis is likely related to simulated activation of the supinator muscle to 

maintain the forearm in supination during active elbow flexion with the forearm supinated. 

Simulated activation of the supinator muscle may have counteracted the effect of the biceps pull 

preventing anterior translation of the radial head.  
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4.3 Future Directions 

The findings of this research have implications for future clinical and biomechanical studies. The 

results of current investigation suggest that in patients with a large magnitude of radial head 

translation or those with persistent radial head instability despite an anatomic reduction of the ulna, 

disruption of other soft tissue structures in addition to the anterior radiocapitellar joint capsule 

should be expected. Injury of the annular ligament and the IOM are likely. Future clinical studies 

should clarify the soft tissue disruption in acute and chronic anterior Monteggia injuries with 

magnetic resonance imaging. A better understanding of the pattern of their soft tissue injury should 

allow the development of better surgical techniques and rehabilitation protocols to enhance 

patients’ outcomes. Future biomechanical and clinical studies should evaluate the effectiveness of 

annular ligament and IOM repair or reconstruction in stabilizing the radial head in cases with 

persistent or recurrent instability despite an anatomic reduction of the ulnar fracture. Future studies 

evaluating the safety and clinical outcomes of postoperative immobilization versus early motion 

protocols in the management of patients with anterior Monteggia injuries are required. Finally, the 

effect of forearm rotation on radial head stability in anterior Monteggia injuries should be 

evaluated.  
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Appendix 1: Glossary of Terms 

Active range of motion: The range of motion in which the patient moves his/her joints  

Anterior: Located towards the front of the body in the sagittal plane 

Biomechanics: The study of the mechanical laws relating to the movement or structures of living 

organisms 

Coronal Plane: A vertical plane that divides the body into ventral and dorsal sections 

Cadaveric: A part of a dead body used for scientific or medical research 

Dislocation: When bones forming an articulation are completely separated  

Distal: Located away from the centre of the body in the axial plane 

Extensions: As it pertains to the arm, movement in a posterior direction in the sagittal plane 

Flexion: As it pertains to the arm, movement in an anterior direction in the sagittal plane 

In-vitro: Outside a living organism 

Kinematics: The mechanical study of the motion of objects without considering the contributing 

forces 

Lateral: Located away from the midline of the body in the coronal plane 

Ligament: A fibrous tissue connecting two bones 

Medial: Located towards the midline of the body in the coronal plane 

Passive range of motion: The range of motion in which the joint is moved by someone other than 

the patient without any voluntary muscular efforts from the patient  

Posterior: Located towards the back of the body in the sagittal plane 
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Pronation: As it pertains to the arm, movement of the forearm so that the palm is down 

Proximal: Located closer to the centre of the body in the axial plane 

Sagittal Plane: A longitudinal plane that divides the body into right and left sides. 

Subluxation: A partial dislocation where the bones forming an articulation are still partially in 

contact 

Supination: As it pertains to the arm, movement of the forearm so that the palm is up 

Tendon: A fibrous tissue attaching a muscle to a bone 
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