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Abstract 

Shade-grown coffee plantations provide Neotropical migratory birds an alternative to 

primary growth forest which is disappearing throughout their non-breeding range. 

However, it remains unclear whether plantations can provide enough structure to 

maintain viable non-breeding populations of many species. I studied Swainson’s Thrush 

(Catharus ustulatus) in the Colombian Andes in a mixture of montane forest and shade-

grown coffee plantation. In comparing the two habitats I looked at factors indicative of 

habitat quality, such as age/sex hierarchies, area of concentrated use, density, diet, and 

migration timing. My research aimed to determine whether Neotropical migrants benefit 

from this agroecosystem, and to find possible ways of improving shade-grown coffee 

practices in the future. My results indicated forest is more suitable non-breeding habitat 

for Swainson’s Thrushes, and although a forested habitat is more suitable, shade-grown 

coffee provides an acceptable supplemental habitat in a region where increased 

agricultural use continues to reduce forest availability. 
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Introduction 

 

Within recent decades, numerous migratory bird species breeding in North 

America have experienced significant population declines (Downes et al. 2011; Sauer et 

al. 2013; Sauer et al. 2017) with Neotropical migrants experiencing higher rates of 

decline compared with temperate migrants, or residents (Sauer et al 2013; Sauer et al. 

2017). Causes for these declines are poorly understood because factors operating on 

breeding, non-breeding, and migratory stopover sites can contribute (Rappole and 

Mcdonald 1994; Marra et al. 1998; Norris et al. 2004; Norris 2005). Neotropical migrants 

may spend up to 8 months on their non-breeding grounds, therefore events in Central and 

South America are of particular concern (Rappole and Mcdonald 1994).  Apart from 

direct habitat loss and fragmentation (Bender et al. 1998; Villard et al. 1999; La Sorte et 

al. 2017), factors such as habitat quality, climate, and intraspecific competition on the 

non-breeding grounds have been shown to have carry-over effects influencing the 

migration and/or breeding success of these migrants (Marra et al. 1998; Norris et al. 

2004; González-Prieto and Hobson 2013). It is well recognized then, that a more 

complete understanding of all aspects of a yearly migration cycle is key to understanding 

the overall cause of such declines (Greenberg and Marra 2005; Marra et al. 2015; 

Rushing et al. 2017). Unfortunately, following individual birds throughout their annual 

cycles is a daunting task (Webster et al. 2002). However, with the help of intrinsic 

markers such as naturally occurring stable isotopes and genetic markers, as well as a wide 

array of extrinsic markers such as light-sensitive geolocators and VHF radio transmitters 

small enough to be applied to songbirds, the toolbox for investigating population 
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structure and connectivity has increased substantially (Hobson and Wassenaar 2008; 

Hobson and Norris 2008; Bridge et al. 2013; Taylor et al. 2017).  

1.1 Non-breeding Habitat Quality 

Fretwell and Lucas (1969) defined habitat for birds as “any portion of the surface of the 

earth where a species is able to colonize and live” and stated that distribution of birds 

among different habitats is caused by habitat selection, wherein birds choose a habitat 

that will optimize their fitness. This selection of habitat is dependent on habitat quality, 

the measure of the ability of the environment to provide opportunities to increase fitness 

(Hall et al. 1997). For Neotropical migratory passerines, some of the best measures of 

habitat quality during the non-breeding season are food availability and vegetation 

structure (Sherry et al. 2005; Brown and Sherry 2006; Ruiz-Sánchez et al. 2017). Another 

commonly used measure of habitat quality during the non-breeding season is survival 

estimates of birds using them, as it is the most highly correlated with fitness. However, 

using survival to determine habitat quality may be impractical, since many of the effects 

caused by poor habitat quality do not manifest until birds have already departed non-

breeding sites (Johnson et al. 2006). Thus, non-breeding habitat quality can produce 

“carry-over” effects to other parts of the annual cycle, such as migration and breeding, 

which can affect year-round fitness (Marra et al. 1998; Sillet and Holmes 2002; Norris et 

al. 2004; Norris 2005).  

Other studies have focused on density of birds and territory sizes to quantify non-

breeding habitat quality in Neotropical migrants (Marra et. Al 1998; Ruiz-Sánchez et al. 

2017). Ruiz-Sánchez et al. (2017), studied Wilson’s Warbler (Cardellina pusilla) in cloud 
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forests in central Mexico during the non-breeding season. That study was conducted on 

three sites of various disturbance levels, one site with mature primary growth forest (low 

disturbance), a second site with mixed primary and secondary growth forest (medium 

disturbance), and a third site with highly fragmented cloud forest mixed with agricultural 

land (high disturbance). Birds occupying the low disturbance site were found to have 

better body condition, higher abundance, and occupied smaller territory size compared to 

the other two sites.  

It has been suggested that to better understand the effects of non-breeding habitat 

quality on fitness, it is important to focus specifically on individual- and population-level 

effects on one species. It is also important to develop a variety of measurements of 

habitat quality instead of focusing on one well-known metric such as density, or territory 

size (Van Horne 1983; Vickery et al. 1992). 

1.2 Impacts of Non-breeding Habitat Selection 

Perhaps the most influential studies on impacts of habitat quality on non-breeding 

Neotropical migrants were conducted on American Redstarts (Setophaga ruticilla) in 

Jamaica during the non-breeding season (Marra et al. 1998; Marra and Holberton 1998; 

Strong and Sherry 2000; Norris et al. 2004; Studds and Marra 2005). This has become a 

model study due to stark contrasts in habitat quality between moist black mangrove 

forests, and adjacent xeric scrub habitats. Differences demonstrated in birds inhabiting 

either scrub or mangrove habitats included differences in body condition, male/female 

hierarchies, spring departure date, and arrival to the breeding grounds. Adult males were 

shown to preferentially inhabit higher quality mangrove forests, whereas immature males 
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and females were more often found in scrub habitat (Marra et al. 1998). Food availability 

was found to be higher in mangrove forests, which in turn led to higher body condition 

and higher rates of survival (Marra and Holberton 1998; Strong and Sherry 2000). 

Migratory departure dates also differed between the two habitats, with birds occupying in 

black mangrove departing earlier than birds in scrub habitat (Marra et al. 1998). This 

difference in habitat quality was also shown to have carry-over effects into other stages of 

the migratory life cycle. Birds from higher quality mangrove habitat were found to arrive 

earlier on the breeding grounds, and to have higher reproductive success (Marra et al. 

1998; Studds and Marra 2005; Norris et al. 2004).  

Johnson et al. (2006) looked at shade-grown coffee in this same Jamaican-

Redstart system during the non-breeding season and found that change in body mass and 

annual survival in shade-grown coffee were comparable to the best natural habitats in the 

area, mangrove forest. The authors suggested that further research be conducted to better 

understand how shade-grown coffee plantations compare as habitat to the forests from 

which they were created. Stating “although some agroecosystems may provide habitat for 

some species, they are not adequate replacements for natural forest and do not possess 

their complete suite of species or ecosystem functions.”  

1.3 Shade-grown Coffee 

Habitat loss and degradation is the greatest threat to wild bird populations (Johnson 

2007). Among common causes for habitat loss, agriculture is the most significant cause 

of songbird habitat loss in the Americas (Wilcove et al. 1998; La Sorte et al. 2017). Of 

great interest then, are ways in which agriculture in Latin America can be made more 



5 
 

compatible with the needs of resident and migratory wildlife. The coffee industry 

primarily uses “sun-grown” coffee wherein forest canopy is destroyed, and coffee plants 

(Coffea arabica) are grown in the open. However, shade-grown coffee plantations 

(hereafter shade coffee), which involve a canopy of trees to shade the plants, can be 

beneficial to migratory birds, especially when compared to sun-coffee plantations 

(Wunderle and Latta 1996; Perfecto et al. 1996; Colorado and Rodewald 2017). Shade 

coffee varies in structure, from “rustic” with a high variability in tree species and levels 

of shade, to “shaded monoculture” having a monoculture of shade trees, often as a 

secondary forestry crop, just to provide classification of shade coffee (Toledo and 

Moguel 1996).  Shade coffee supports higher levels of biodiversity across many different 

taxa of flora and fauna when compared to sun grown (Perfecto et al. 1996). Shade coffee 

can provide habitat for pollinators (Klein et al. 2003) and other animals that control 

coffee pests (Karp et al. 2013), which in turn can reduce need for pesticides and 

fertilizers. However, other studies have shown the importance of maintaining adjacent 

intact native forests to maintain pollinator populations (Ricketts et al. 2004). With 

Andean forest estimated at less than 90% of their original extent (Henderson et al. 1991), 

shade-coffee plantations have become one of the few remaining suitable habitats for non-

breeding Neotropical migrants in areas at mid-to-high elevation in Latin America 

(Perfecto et al. 2005). However, it is still unclear how birds use shade coffee habitat, and 

how beneficial shade coffee habitat is compared to native forests.  

1.3.1 Coffee Production 

Shade coffee also has benefits that reach beyond animals. When compared to sun 

coffee, shade coffee is better at reducing erosion (Rice 1990). Shade coffee requires less 
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large equipment and pesticides, making it easier and more cost effective to grow for 

small farms with limited resources (Perfecto et al. 1996). Sun-grown coffee plantations 

became popularized in the 1970’s when coffee leaf rust (Hemileia vastatrix), a fungal 

infection found on coffee plants, made its way to Central and South America (Toledo and 

Moguel 2012). Shade coffee provided a moister environment for the fungus to survive 

and germinate (Lopez-Bravo and Virginio-Fillho 2012), leading farmers to change coffee 

practices to prevent the spread of the fungus. The fact remains that in large-scale coffee 

productions, such as large single owner plantations, sun coffee produces larger yields, 

which leads to higher profits (Perfecto et al. 2005). Therefore, it may be hard to convince 

large plantation owners to switch from current methods towards more sustainable and 

beneficial practices when profits may be reduced as a result, unless increased revenue 

from shade coffee as a preferred consumer product can compensate. 

In 2016/2017 Colombia was the third largest producer of coffee in the world with 

over 250 million kilograms of coffee produced (ICO 2017). Over one million hectares are 

devoted to coffee production, almost all of which falls between 1,200 and 1,800 meters 

above sea level  (Perfecto et al. 1996). The coffee industry in Colombia provides over 

800,000 jobs and generates over two billion USD every year (ICO 2017). Coffee 

production in Colombia, as in many other countries in the tropics, shows no signs of 

slowing down. Therefore, it is important to focus research towards better understanding 

how to make coffee production more sustainable and beneficial to nature (Perfecto et al. 

1996). 

Despite the benefits of shade coffee, these traditional plantations are rapidly being 

converted to sun coffee. This is in part due to decreased yields and decreased profits in 
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comparison to sun coffee. Several organizations have created certifications for shade 

coffee which in turn can make the beans more valuable (i.e. Smithsonian Migratory Bird 

Center “Bird-friendly” Coffee, Specialty Coffee Association of America and Rainforest 

Alliance Certification). These certifications incentivize coffee growers to maintain 

biodiversity in exchange for higher sale prices. However, it is unclear whether the 

increase in per unit value is enough for farmers to cover the money lost due to lower 

yields in shade coffee (Perfecto et al. 2005), especially given the large differences in 

requirements needed to meet these certifications (Mas and Dietsch 2004). Between 1970 

and 1990, following the emergence of the coffee leaf rust disease in South America, at 

least 60% of all coffee production in Colombia was converted from high diversity/high 

shade systems to low diversity/low shade systems (Perfecto et al. 1996), with a newer 

study finding an increase to 80% by 2013 (Escobar 2013). Overall abundance of high 

quality shade-coffee plantations continues to decline worldwide (Jha et al. 2014).   

1.3.2 Shade-grown Coffee as a Non-breeding Habitat 

Shade coffee has many advantages. Compared to sun-coffee plantations, shade coffee has 

been found to have higher species richness (Komar 2006). In fact, one study found avian 

species richness in shade coffee to be similar to that of native forests (Tejada-Cruz and 

Sutherland 2004). Other studies found birds in shade-coffee plantations to be as abundant 

as in natural forest, or more so. This difference may be due in part to the difference in 

detectability of birds between a dense forested habitat and a more open agricultural 

habitat (Komar 2006, Bakermans et al. 2009, Gomez et al. 2013). However, abundance 

does not always imply better habitat quality, and other more robust measurements should 

be taken (Van Horne 1983).  Additionally, this difference in abundance is extremely 
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variable across species, especially birds that require a dense understory. Bayly et al. 2016 

found Gray-cheeked Thrush (Catharus minimus) to almost exclusively use forest when 

compared to shade coffee. This study, however, was conducted during spring migration, 

and may hold different results than birds on the non-breeding grounds. 

To date, most studies have focused exclusively on shade coffee (Wunderle and 

Latta 2000; Johnson et al. 2006; Colorado and Rodewald 2017), yet to better understand 

the quality of shade coffee habitat it is important to include a comparison to a natural 

forest habitat (Van Horne 1983; Johnson et al. 2006). Wunderle and Latta (2000) 

evaluated the importance of shade coffee as non-breeding habitat for three different 

migratory warbler species in the Dominican Republic. By comparing age and sex ratios, 

differences in body condition, and levels of site fidelity the authors found shade coffee to 

be a suitable habitat for non-breeding Neotropical migrants, with site fidelity and return 

rates between years in shade coffee to be at similar levels to that of nearby native forests.  

A study by Bayly et al. (2016) drew comparisons in shade-coffee plantations and 

forest in the Sierra Nevada of northern Colombia. The study focused on Tennessee 

Warbler (Oreothlypis peregrina), and Gray-cheeked Thrush occupying shade coffee and 

forest as migratory stopover sites during spring migration. The authors found forest to 

sustain higher number of individuals of both species. Foraging rate, or the rate of pecking 

behaviors observed on fruit or insects, was higher in forest than in shade coffee. Body 

mass, and rates of mass increase over time for birds in forest was higher when compared 

to birds in shade coffee. 
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1.4 Studying Diet with Stable Isotopes 

In addition to foraging rate, avian diet can be further studied with the use of stable 

isotopes 13C and 15N, when comparing individuals feeding on isotopically different food 

sources (Hobson and Clark 1992a, Hobson and Clark 1992b). Stable isotopes are useful 

when studying ecosystems due to their predictable changes during biological processes 

(Peterson and Fry 1987). Both 13C and 15N isotopes offer different insights into dietary 

composition. 15N proportion, for example, can increase between three to four parts per 

million when increasing a single trophic level (DeNiro and Epstein 1981; Peterson and 

Fry 1987). 13C proportion can change with different environmental conditions, including 

moisture and humidity, and microclimates caused by differential habitat structure 

(Broadmeadow et al. 1992; Broadmeadow and Griffiths 1993). Marra et al. (1998) used 

stable carbon isotopes to link habitat quality during the non-breeding season to migration 

timing in American Redstarts in Jamaica. Birds occupying lower quality xeric scrub 

habitats were found to have higher 13C enrichment than birds occupying moist mangrove 

habitats.  

Sampling different tissue types can impact the isotopic concentrations in the 

consumer when compared to the food source, in a process called isotopic fractionation. 

Both carbon and nitrogen discrimination factors are heavily influenced by tissue type 

sampled for isotope analysis (Hobson and Clark 1992a). Additionally, tissue type has 

been shown to vary greatly in turnover rate for isotopes (Hobson and Clark 1992b). Most 

tissue types such as muscle, liver, and blood have a turnover rate of weeks, whereas other 

tissues such as feathers or hair are inert and lock in an isotope concentration as they are 

produced (Hobson and Clark 1992b). These inert tissues can be useful to infer diet or 
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habitat quality for migratory animals during stages of the life cycle that cannot be 

observed directly (Marra et al. 1998), in addition to tracking large scale migrations of 

individuals (Hobson 1999). However, depending on the need of the study, there are 

different methods to obtain a sample that is more representative of the current state of an 

animal. For example, blood plasma has a turnover rate of only a few days (Hobson and 

Clark 1993), and breath sampling of CO2 can be used in stable carbon analysis for its 

high turnover rate, with turnover beginning after only a few hours of a dietary shift 

(Ayliffe 2004).  

1.5 Migration  

Migration is often regarded as the costliest part of the yearly cycle of a Neotropical 

migratory bird (Sillett and Holmes 2002; Klaassen et al. 2014). Due to this period of 

increased risk, birds are assumed to minimize the amount of time and energy spent on 

migration (Alerstam and Lindström 1990; Alerstam 2011). In small birds, this generally 

entails long nocturnal flights (Lank 1989; Alerstam 2009) and minimized stopover time 

with maximized fat accumulation (Hedenström and Alerstam 1997). Early migratory 

departure and high migration speeds are associated with benefits in fitness gained from 

arriving earlier on the breeding grounds (Alerstam 2011, Nilsson et al. 2013) With 

maximized fat accumulation being important for long-distance flights, birds undergo a 

dietary shift shortly before migrating, wherein they increase their overall rate of 

consumption, and shift to a carbohydrate heavy diet (Bairlein and Simons 1995), however 

resource availability directly influences the ability for birds to put on fat. Birds living in 

lower quality habitat have fewer available resources which can affect migratory departure 

date (Marra et al. 1998). When comparing shade-coffee plantations and native forest 
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Bayly et al. (2016) found lower foraging success in shade coffee, which could in turn 

lead to later migratory departure. However, early migratory departure does not always 

imply improved fitness. Birds that migrate too early are often met with harsh weather 

conditions upon arriving in North America. These harsh conditions can cause a decrease 

in body condition (Robson and Barriocanal 2008), or an increase in mortality (Whitmore 

et al. 1977, Møller 1994).  

For many migratory passerine species, different sex and age classes have different 

migratory strategies (Francis and Cooke 1986). One example of such a difference is 

protandry, wherein males arrive at breeding sites earlier than females. Protandry has been 

reported in many migratory bird species (Morbey and Ydenberg 2001; Morbey et al. 

2012). Morbey et al. (2012) found evidence of protandry in 71 species of migratory birds, 

with males arriving 5.2 days earlier on average than females across species. Possible 

mechanisms underlying protandry include different migratory departure dates, 

differences in migration speed, and differences in non-breeding range (Coppack and 

Pulido 2009).  

1.6 Study Species 

Swainson’s Thrush (Catharus ustulatus), a long-distance Neotropical migrant, breeds 

throughout Canada and parts of the United States (Figure 1). Their population can be 

broken down into two groups: the “Russet-backed” group and the “Olive-backed” group. 

These two groups differ genetically, and in breeding and non-breeding ranges (Mack and 

Yong, 2000). The group I will focus on is the “Olive-backed” group. Their breeding 

habitat includes mostly fir-spruce forests and other coniferous and deciduous forests with 
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a dense understory, ranging from northeastern United States and Canada, westward 

through the Rocky Mountains and into Alaska. During the non-breeding season, 

Swainson’s Thrush can be found in the Andes Mountains of South America, mostly in 

closed-canopy forest but also in shade-coffee plantations. During the non-breeding 

season, Swainson’s Thrushes have a diet abundant in fruit, however will also eat insects 

such as caterpillars, beetles, and ants (Mack and Yong, 2000; Jones et al. 2002). 

Swainson’s Thrushes, like many other Neotropical migrants, spend around half of the 

year on their non-breeding grounds, three or four months on their breeding grounds, and 

around two months on migration (Mack and Yong, 2000). Although there have been 

several studies of this species on the breeding grounds and on migration (Child 1969; 

Johnson and Geupel 1996; Ruegg and Smith 2002; Sandberg et al. 2002), there is a lack 

of knowledge of their basic ecology during non-breeding season (Mack and Yong, 2000). 

On my field sites, Swainson’s Thrush is the most common Neotropical migratory bird in 

both shade coffee and forest habitats. This, combined with their size, made them a 

suitable candidate for a radio telemetry study.  

1.7 Objectives and predictions 

On the non-breeding grounds, there is a lack of information on how migratory birds are 

using the habitats available to them (Rappole and Mcdonald 1994). There is a suggestion 

that non-breeding Neotropical migrants are habitat generalists and occupy a wider range 

of habitat types than on the breeding grounds (Wunderle and Waide 1993, Sherry and 

Holmes 1995). However, in certain systems, adult males control higher quality habitat 

over females and subadults  (Marra et al. 1993; Marra 2000), and territory size is affected 

by habitat quality (Ruiz-Sánchez et al. 2017). Since habitat quality during this period is 
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clearly linked with overall survival (Sherry and Holmes 1996; Norris et al. 2004), and 

because this is the most poorly understood component of the full life cycle of Neotropical 

migrants, my thesis is focused specifically on the non-breeding period. 

The objective of my research was to better understand the importance of shade-

grown coffee plantations as a non-breeding habitat for Neotropical migratory birds in 

comparison to native forest. Due to high rates of deforestation in the Andes, it is 

important to develop a better understanding of how migratory birds fare in agricultural 

environments such as shade coffee. I used a series of field techniques to assess the 

differences in habitat quality between Andean forest and shade-coffee plantations at the 

individual and population level in Swainson’s Thrushes.  

Habitat structure has an impact on habitat quality in non-breeding migratory birds 

(Ruiz- Sánchez et al. 2017). To compare structure between shade coffee and forest I used 

six metrics of habitat structure to quantify structural differences, including canopy height, 

% cover, understory density, average dbh, dbh of largest tree, and tree density.  

Birds are typically found at higher densities in higher quality habitat and occupy 

smaller spaces due to an increased abundance of food (Marra et al. 1998; Ruiz- Sánchez 

et al. 2017). I used line transects to determine density differences between shade coffee 

and forest. I predicted that density of Swainson’s Thrush would be higher in forest than in 

coffee. 

 Little is known on Swainson’s Thrush on their non-breeding grounds (Mack and 

Yong, 2000), and through personal observation it was not clear whether they demonstrate 

true aggressive territorial behavior. Therefore, to assess area used between two habitats, I 



14 
 

focused on their core area, or area of concentrated use (Clutton-Brock et al. 1982; Samuel 

et al. 1985). I used handheld radio telemetry to determine the effect of habitat quality on 

area of concentrated use in Swainson’s Thrush. I predicted that birds living in forest 

would occupy smaller areas due to higher food availability and increased foraging 

success. I used the Motus Wildlife Tracking System to determine migratory departure 

dates. The study by Marra et al. (1998), found redstarts in higher quality habitat departed 

earlier for migration. I predicted that thrushes occupying a forest habitat would depart 

earlier for migration, as higher food availability will allow for them to generate fat 

deposits more quickly than those living in shade coffee habitat.  

I used age and sex ratios to determine if there was a hierarchical habitat 

preference between shade coffee and forest. I predicted more adult males would occupy 

forest and more young males and females would occupy shade coffee. Such hierarchical 

habitat segregations are indicative of difference in habitat quality (Marra et al. 1998). I 

used transects to determine density differences between shade coffee and forest. I 

predicted density of Swainson’s Thrushes would be higher in forest than in shade coffee 

due to a more diverse habitat structure allowing for higher abundance of birds.  

I used focal bird sampling (Rodewald and Brittingham 2007; Bayly et al. 2016) to 

compare foraging rates and stable δ15N, and δ13C isotopes to compare diet composition 

between both habitats. I predicted higher foraging rates in forest than in shade coffee due 

to increased food availability. I predicted forest to have higher fruit abundance which 

would result in a lower trophic level relative to birds in coffee, and in turn lead to lower 

blood δ15N values. I also predicted that birds occupying forest will have a more diverse 

diet which will lead to a broader range of blood δ13C values. 
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Figure 1. Range map of Swainson’s Thrush (Catharus ustulatus) © 2015 Boreal Songbird 

Initiative 
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Methods 

2.1 Study Sites 

Research was conducted from the beginning of January to the end of March, 2017 and 

2018, in the Eastern Andean Cordillera of Colombia (Figure 2.A). Data was collected on 

a pair of study sites (La Fragua (Figure 2.B), and Los Vientos (Figure 2.C)), separated by 

approximately 5 km near the town of Nilo, Cundinamarca, Colombia (4.306N, 74.620W). 

Sites are a mix of primary/secondary growth Andean forest and shade-grown coffee 

plantation at an altitude ranging from 1300-1700 m above sea level for forest, and 1300-

1500 m for coffee. La Fragua is a large (~350 ha), single-owner plantation with a diverse 

canopy of shade trees, several small patches of forest, and a series of livestock pastures 

surrounding most of the forest and coffee. Los Vientos is a small town comprised of 

several small individually owned patches of shade-grown coffee. The diversity of shade 

trees present in shade coffee is lower at Los Vientos than that of La Fragua, however the 

forest is a much denser primary growth. Both sites are Rainforest Alliance Certified 

coffee producers (Sustainable Agriculture Network 2017), and both sites have an 

established banding, and avian blood isotope dataset developed over the past 4 years by 

colleagues. Swainson’s Thrush is the most abundant Neotropical migrant on both study 

sites, and in both habitats. 

2.2 Forest Structure 

Since the composition of both habitats varied between sites, I took measurements 

of vegetation structure at different points (2017; n=98, 2018; n=45 in Los Vientos, and 

2017; n=88, 2018; n=57 in La Fragua) for comparison. Points were chosen by creating a 
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50m by 50m grid plotted on a GPS, that covered our sites. At each point I visually 

estimated canopy height (m), and % canopy cover. Understory density was rated on a 

scale of 0-5. 0; bare ground (0% ground cover), 1; low density (20% ground cover), 2; 

medium density (40% ground cover), 3; dense (60% ground cover), 4; very dense (80% 

ground cover), 5; impassable, understory cannot be seen through (100% ground cover). 

To determine tree size, dbh of the largest tree was measured, as well as dbh of 5 

randomly selected trees. To determine density of trees (trees/m2), one tree was selected at 

random and then the distance to the five closest trees was recorded.   

2.3 Banding and Transmitters 

Passive mist netting with a series of 20, 36 mm mesh mist nets with differing lengths 

(6m, 9m, 12m) per habitat was used to sample individuals daily. Netting occurred in the 

morning from 06:00 to 11:00 h and again in the afternoon from 15:00 to 17:30 h. All 

captured Swainson’s Thrushes received a US Fish and Wildlife Service aluminum band, 

and a subset received one of two models of radio transmitter, a Lotek NTQB-2 weighing 

0.35 grams or a Lotek NTQB-3-2 (Figure 3) weighing 0.67 grams (Lotek, Newmarket, 

Ontario). The two models of transmitter have pulse rates of 6.1 s and 10 s, respectively. 

Radio transmitters were attached using the two-loop leg harness method demonstrated in 

Rappole and Tipton (1991). Birds receiving a radio transmitter also received a colored leg 

band on their left leg for easier confirmation during telemetry tracking.  Birds were aged 

according to feather characteristics described in Pyle (1997), as either, after hatch year 

(unknown age), second year (immature), or after second year (adult).  Birds receiving a 

transmitter were also sampled for whole blood (brachial puncture, Owen 2011) to 

determine sex. All other neotropical migrants captured in mist-nets were banded with US 
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Fish and Wildlife Service aluminum bands. Other common species included Gray-

cheeked Thrush (Catharus minimus), Canada Warbler (Cardellina canadensis), and 

Mourning Warbler (Geothlypis philadelphia). For all birds, mass (g), and wing chord 

(mm) were measured, and visible subcutaneous fat was assessed following the 0-5 scale 

developed by Helms and Drury (1960).  

2.4 Radio Telemetry and Motus 

Following processing of an individual, a minimum of three hours was allowed before 

recording any telemetry locations. In my first season of field work (January-April 2017), 

I placed 65 radio transmitters on Swainson’s Thrushes (La Fragua: 13 in forest and 7 in 

shade coffee; Los Vientos: 29 in forest and 16 in shade coffee). In the second season 

(January-March 2018) 83 radio transmitters were placed on Swainson’s Thrushes (La 

Fragua: 20 in forest and 23 in shade coffee; Los Vientos: 26 in forest and 14 in shade 

coffee).  

I operated three Motus towers (Motus; http://motus.org), two at the Los Vientos 

locality and one at La Fragua. Each tower consisted of 2-3, 9-element Yagi antennas 

attached to a SensorGnome receiver (www.sensorgnome.org) and was placed 

strategically to give as complete a coverage as possible of our montane field sites. 

Towers collected data 24 h/d and each individual detection gave identity of the bird, 

signal strength, and time. The data provided from towers allowed us to pinpoint the exact 

time a bird had departed from our sites. 

For handheld radio telemetry, I used a Lotek SRX-600 telemetry receiver (Lotek, 

Newmarket, Ontario) attached to a five element Yagi antenna. Birds were followed daily, 

http://motus.org/
http://www.sensorgnome.org/
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with at least one detection taken per bird/d. Telemetry occurred from 06:00 -11:00 h and 

again from 15:00 – 18:00 h. Twice per week evening telemetry sessions were conducted 

which began 30 min after sunset.  For each detection, date, time, habitat, tag ID, GPS 

location, bearing, and estimated distance to bird was recorded. If a bird was seen actively 

foraging, data recording began for focal bird sampling (see below). 

Birds rarely strayed from the habitat in which they were initially banded. On only 

one occasion between the two years was a bird banded in forest and then found to occupy 

shade coffee habitat. This individual was removed as an outlier from our area of 

concentrated use analysis. 

2.4.1 Night Telemetry and Temperature Sensors 

Telemetry observations were collected at night to determine roosting locations. For 

nighttime observations, date, time, habitat, tag ID, GPS location, and bearing to 

triangulate the position of the bird were recorded with the assumption that the bird was 

not moving. To analyze triangulation of given points I used the R package “triangulation” 

(Milfeldt 2016). Due to time constraints these data were only collected for one site each 

year (Los Vientos: 2017, La Fragua: 2018). For each individual distance between mean 

daytime location and mean nighttime location was calculated to determine mean distance 

traveled between area of concentrated use and nighttime roost. 

 In 2018, I placed external temperature data loggers (HOBO© Pro v2 2x External 

Temperature Data Logger, Onset Computer Corporation, Bourne, Massachusetts) to 

record ambient temperature in forest and coffee at night. Over the course of the field 

season I distributed the five temperature loggers across forest and coffee at both sites. 
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GPS location, date, habitat, and site were recorded for each night the logger was placed.  

Each logger had two temperature probes; one was placed at a height of 2 m, and the other 

at ground level. I recorded nighttime temperature between 18:00 to 6:00h for each logger 

each night and used these data to compare differences between habitats.  

2.5 Focal Bird Sampling 

To quantify foraging behavior, I recorded attack rates (i.e. rate of pecking behaviors; 

Rodewald and Brittingham 2007, Bayly et al. 2016) for randomly encountered birds and 

tagged birds detected during radio telemetry during the 2018 season. For each foraging 

sequence, tag ID, date, time, habitat, duration of sequence until a bird was lost from view 

(s), the number of attacks on either insects or fruit, and substrate were recorded. An 

“attack” was considered a foraging event.  

2.6 Density  

Variable-width line transects (Bibby et al. 2000, Buckland et al. 2001, Diefenbach et al. 

2003) were used to determine Swainson’s Thrush density. Counts were conducted 

between 16:30-18:00h on 500 m transects for 20-30 min. Counts were alternated between 

habitats with at least two transects conducted in each habitat each week. Each individual 

Swainson’s Thrush seen or heard was recorded at an estimated distance perpendicular to 

the transect rounded to the nearest 5 m. For each transect, I recorded time of day, 

duration of transect, and transect observer. Transects were completed by three individuals 

across the two years.  
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2.7 Stable Isotope Analysis 

Due to delays in exportation of blood samples, samples for stable isotope analysis were 

collected during the 2014 and 2015 seasons by colleagues. Whole blood samples were 

collected (brachial puncture, Owen 2011) for use in isotope analyses randomly 

throughout the entire season. Blood samples (up to 70 µL) were collected using 

heparinized capillary tubes, then transferred and stored in microcentrifuge tubes with 

95% ethanol to preserve the blood while in the field.  Upon arriving in Canada, samples 

were processed for δ13C and δ15N at the Stable Isotope Laboratory of Environment and 

Climate Change Canada (Saskatoon, Saskatchewan, Canada) following methods outlined 

in Reed et al. (2018). Blood samples were removed from ethanol solution, freeze dried 

and powdered, then weighed (0.5 or 1.0 mg) into tin capsules. Samples were combusted 

and CO2 and N2 separated online using a Eurovector 3000 elemental analyzer 

(Eurovector, Milan, Italy) interfaced with a Nu Horizon (Nu Instruments, Wrexham, UK) 

triple collector isotope-ratio mass spectrometer via an open split and compared with a 

pure CO2 or N2 reference gas. Stable nitrogen (15N/14N) and carbon (13C/12C) isotope 

ratios were expressed in delta (δ) notation as parts per mil (‰) deviation from the 

primary standards of atmospheric nitrogen and Vienna Pee Dee Belemnite carbonate 

standards, respectively. Using previously calibrated internal laboratory C and N standards 

(powdered keratin and gelatin), within runs, precision for δ13C and δ15N was better than 

1‰. 
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2.8 DNA extraction/ Sex Determination 

Swainson’s Thrushes are not sexually dimorphic and using measurements such as wing 

chord and tarsus to determine sex can be inaccurate (Pyle 1997). To improve 

determination of sex, blood was collected on a subset of banded birds and placed directly 

on filter paper to later be processed for DNA sex determination. In birds, males are the 

homogametic sex with two Z chromosomes, whereas females have a Z and W 

chromosome. To determine sex, our samples were sent to the Berg lab at The University 

of Lethbridge. DNA was extracted from dried blood stored on filter paper, a 6mm circle 

of blood (~ 10 µL) was cut from the paper and extracted using a modified Chelex 

protocol (Walsh et al. 1991; Burg and Croxall 2001). Samples were placed in a 1.5 mL 

centrifuge tube with 300 µL of extraction buffer (0.1 M Tris pH 8; 0.05 M EDTA; 0.2 M 

NaCl; 1% SDS) with 5% Chelex w/v, 2.5 µL RNase (10 mg/ml) and 3.0 µL Proteinase K 

(20 mg/ml), and incubated for 12 hours at 50°C. From this, 200 µL of solution was 

transferred to a new 1.5 ml centrifuge tube with 300 µL 1x low TE (10 mM Tris pH 8; 

0.1 mM EDTA) with 5% Chelex w/v. Sex was then determined by using PCR and the 

P8/P2 primer set to amplify the chromo helicase DNA-binding genes of the Z and W sex 

chromosomes (Griffiths et al. 1998). For Swainson’s Thrush, this reaction produces a 355 

base-pair product from the Z chromosome and a 390 base-pair product from the W 

chromosome. DNA extractions were diluted 1:20 for PCR amplification. PCR conditions 

(per 10 µL reaction) were 2.0 uL ClearFlexi Buffer 5x (Promega), 2.0 mM MgCl₂, 200 

uM dNTP, 1.0 µM each primer, 0.5 units GoTaq (Promega) and 1 µL 1:20 dilution DNA 

template. The cycling conditions were as follows: 1 min 30 s at 94°C, 35 cycles of 30 s at 

94°C, 45 s at 26 48°C, 45 s at 72°C and a final extension of 5 min at 72°C followed by 5 
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s at 4°C. PCR products were then run on a 3% agarose gel with a negative control and 

sex was manually scored by an observer based on the presence or absence of the W 

chromosome. 

2.9 Statistical Analysis 

All statistical analyses were performed using RStudio Version 1.1.453 and R version 

3.5.0 statistical software (RStudio Team 2018; R Core Team 2018). For all models, I 

used Akaike’s information criterion corrected for small sample sizes (AICc) to determine 

the best fit model. (Burnham and Anderson 2002). The best model was determined as the 

model with the lowest AICc value, except when there was more than one competitive 

model (∆AICc < 2) in which the simpler model was selected.  

2.9.1 Departure Date 

I analyzed all Motus tower data using R 3.5.0 (R Core Team 2018) to determine the exact 

date of departure. Date of departure was defined as the last day the bird was detected by 

an on-site Motus tower. I looked at the hour of departure as well as departure signal to 

determine whether the bird had truly migrated or simply abandoned the site. Swainson’s 

Thrush are a nocturnal migrating species (Mack and Yong, 2000), therefore a final 

detection between 18:00 and 24:00 h was used as the definition of a migratory departure. 

Only birds that have shown a true night migration departure were included for further 

analysis of migration timing. Birds that were tagged later than 15 March were excluded 

from this analysis as this was the date of first migratory departure during both years. I 

then compared mean departure date using a linear model with age, sex, area of 
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concentrated use, habitat, site, year, and a habitat by site interaction as explanatory 

variables.  

2.9.2 Density 

Transect data was processed using the R package “mrds” (Laake et al. 2014). I removed 

the outer 5% of all detections, or the detections furthest from the transect line (Thomas et 

al. 2010).  I used AICc to evaluate the best fit detection function (where the detection 

function is the probability of detecting a bird at a given distance, Marques et al. 2007). I 

evaluated half normal and hazard rate key function models and adjusted these key 

functions by adding a cosine (half-normal) or polynomial (hazard rate) series adjustment. 

I then used this detection function to evaluate distance sampling models with year, 

observer, habitat, time of day, duration of transect, and site as covariates. I used AICc, 

visual inspection of quantile-quantile plots, and Kolmogorov-Smirnov and Cramer-von 

Mises goodness-of-fit tests, to select my final model (Buckland et al. 2001, 2004). 

2.9.3 Area of Concentrated Use 

To calculate area of concentrated use, I used the minimum convex polygon method of 

home range analysis using the R package “adehabitatHR” (Calenge 2006) in which a 

polygon is created using the outermost observations, and the area inside is considered the 

home range (Mohr, 1947).  However, this calculation is highly influenced by points taken 

on the periphery of the home range (Harris et al. 1990). To mitigate this problem other 

studies have reduced the number of observations to include between 60-95 percent of all 

observations (Mohr and Stumph, 1966; Clutton-Brock et al. 1982). Since I was interested 

in an area of concentrated use and not a large home range value, I used a polygon 
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containing 65 % of total observations after visually inspecting the data. I then used a 

general linear model to compare area of concentrated use with habitat, age, sex, year, site 

and a habitat by site interaction.  

2.9.4 Stable Isotopes 

For analysis of stable isotope diet data, I depicted blood sample isotope data in biplots 

and examined age/sex/habitat groups using the Bayesian ellipse approach using the R 

package SIBER (Jackson et al. 2011). Biplots consisted of δ13C on the x-axis, and δ15N 

on the y-axis and allow for the comparison of isotopic niche space between the two 

habitats. I also used linear models comparing δ13C and δ15N stable isotope values with 

date, habitat, site, sex, age, and a site by habitat interaction.  

2.9.5 Age/Sex Ratios 

To determine differences in age and sex ratios between habitats I used chi-square tests. 

Tests were completed for age and sex separately, with one test being completed for each 

year separately and both years combined. I kept age and sex tests separate since there was 

such a large disparity between number of birds of known age (n = 446) and birds of 

known sex (n=188). Expected values were calculated by multiplying the total number of 

captures in forest by the corresponding fraction for each age and sex in shade coffee and 

vice-versa. 

2.9.6 Focal Bird Sampling 

Foraging rate (number of attacks per minute) was not normally distributed due to many 

observations having zero attacks recorded. I assessed Poisson distribution, zero inflation, 
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and negative binomial linear models to determine best fit using AICc. I found the 

negative binomial model to be the best fit and I used this to compare foraging rate with 

age, sex, habitat, time of day, and date. 

2.9.7 Night Telemetry  

To view differences in distribution between daytime and nighttime habitat use, I used 

kernel density estimators (Silverman 1986; Sheather and Jones 1991), using the kernel 

density function in ArcMap 10.5 (ESRI 2017). Kernel estimators were created by 

combining all daytime observations of all birds into one model and all nighttime 

observations of all birds into another model.  Kernel models were used to visually 

demonstrate the difference in habitat occupancy between day and night. To supplement 

the information from this model, I used a linear model to compare mean distance 

travelled between daytime area of concentrated use and nighttime roost with habitat, site, 

age, sex, and a habitat by site interaction.  

2.9.8 Temperature 

Ambient temperature data using the Hobo recorders was determined on a per night basis, 

wherein I averaged temperature between both probes on a single logger for each night 

between 18:00-6:00 h. I compared mean nightly temperature with date, habitat, site, and a 

site by habitat interaction using a linear model.  

2.9.9 Forest Structure 

Metrics of forest structure included percent canopy cover (%), canopy height (m), 

understory density (0-5), dbh of largest tree (cm), mean dbh of 5 trees (cm), and density 
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of trees (trees/m2). These six metrics were first assessed for normality of data using 

Shapiro–Wilk test. I then compared differences between habitats and sites using one-way 

ANOVA, and Tukey post-hoc tests. All metrics were normally distributed (Shapiro-Wilk 

test of normality p<0.05).  
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Figure 2. Maps of study sites. 2.A approximate location of sites in Colombia. 2.B La 

Fragua, area outlined in blue is shade coffee, and area outlined in green is forest. 2.C  Los 

Vientos, area outlined in blue is shade coffee. Maps provided by ESRI (2017). 
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Figure 3. Lotek NTQB-3-2 radio transmitter tag affixed to the back of a Swainson’s 

Thrush (Catharus ustulatus) using a two leg-loop harness.  
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Results 

A total of 446 Swainson’s Thrushes were banded during the two years of field work, 188 

of which were processed for DNA sex determination. VHF transmitters were placed on 

185 Swainson’s Thrushes and, of those, 136 were determined to have a migratory 

departure, and 86 birds were tracked long enough to analyze area of concentrated use. 

315 individuals (from previous sampling by colleagues in 2014-2015) had blood samples 

processed for stable isotope analysis. 

3.1 Departure Date 

For both years combined, migratory departure was determined for 136 birds. The model 

containing habitat, age, sex, site, and habitat by site interaction was found to be 

significant (Table 1, F5,129 = 8.91, R2 = 0.3072, p < 0.001). For both years, birds from 

shade coffee departed earlier by an average of 5 days (Figure 4, p = 0.031). Males 

departed on average 12 days earlier than females (Figure 5, p < 0.001).  
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Table 1. Results of linear model for migratory departure date (n=136) of Swainson’s 

Thrush (Catharus ustulatus) departing from shade-grown coffee plantations and Andean 

forest on two sites (La Fragua and Los Vientos) in the Colombian Andes in 2017 and 

2018. Dropped terms are noted by dashes (-), and significance is noted by asterisks (* < 

0.05, ** < 0.01, *** < 0.001). 

 
Migration Departure Date 

  Coefficient SE t value p-value 

 Intercept 107.155 2.733 39.197 < 2e-16 *** 

Sex (Male) -12.467 2.263 -5.507 2.74e-07 *** 

Age (ASY) 3.682 2.264 1.626 0.107 

Year - - - - 

Habitat 

(Forest) 
5.013 2.106 3.255 0.031* 

Site 0.251 2.353 0.107 0.915 

Habitat * Site - - - - 

Age*Sex - - - - 

 

  



33 
 

Figure 4. Distribution of migratory departure date of Swainson’s Thrush (Catharus 

ustulatus) departing from two sites (La Fragua and Los Vientos) in the Colombian Andes 

in 2017 and 2018. Results are separated by habitat type of shade coffee (red) and forest 

(blue). Birds living in shade coffee departed on average 5 days earlier than birds in forest 

(p = 0.031). 
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Figure 5. Distribution of migratory departure date of Swainson’s Thrush (Catharus 

ustulatus) departing from two sites (La Fragua and Los Vientos) in the Colombian Andes 

in 2017 and 2018. Results are separated by sex, male (blue, n=65) and female (red, 

n=42). Males departed on average 12 days earlier than females (p < 0.001). 
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3.2 Foraging Rate 

Foraging observations were made on 89 occasions for a total of 41 minutes and 2 

seconds. I excluded randomly encountered untagged birds since the number of 

observations was low (n=9 out of 98 total observations). I focused then only on tagged 

birds to account for differences in foraging rate between individuals. The negative 

binomial regression with habitat, time of day, and food type (insect, or fruit) controlling 

for duration of observation received the most support (Table 2, AICc = 281.57, wi = 

0.68). Birds in forest had a higher foraging rate than birds in shade coffee, 6.42 strikes 

per minute for forest and 3.15 strikes per minute for shade coffee (Figure 6). Food type 

was also found to impact foraging rate which reflects the observation that when birds 

foraged on fruit several strikes were often made on a clump of fruit where food was more 

concentrated, whereas attacks on insects were less concentrated. However, a model 

including a food type by habitat interaction was not supported (AICc = 293.12, wi = 

0.06), suggesting that diet composition did not vary much between habitats. 
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Table 2. Results of negative binomial model for foraging rate (n=89) of Swainson’s 

Thrush (Catharus ustulatus) inhabiting shade-grown coffee plantations and Andean 

forest on two sites (La Fragua and Los Vientos) in the Colombian Andes in 2018. 

Dropped terms are noted by dashes (-), and significance is noted by asterisks (* < 0.05, 

** < 0.01, *** < 0.001). 

 
Foraging Rate 

  Coefficient SE z value p-value 

Intercept 5.787 0.739 7.830 1.25e-11 *** 

Habitat (Forest) 3.109 0.403 7.710 2.14e-11 *** 

Time of day -3.309 1.392 -2.377 0.019 * 

Tag ID - - - - 

Food Type (Insect) -2.548 0.408 -6.240 1.65e-8 *** 

Substrate - - - - 

Date - - - - 

Food Type * Habitat - - - - 

Habitat * Site - - - - 
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Figure 6. Comparison of foraging rates (attacks/minute) of Swainson’s Thrush (Catharus 

ustulatus) inhabiting two sites (La Fragua and Los Vientos) in the Colombian Andes in 

2018. Comparisons were drawn between two habitats, forest (blue) and shade coffee (red) 

differentiating between food items (fruit vs. insects). Rectangles represent the 

interquartile range, the dividing line is the median, while whiskers represent maximum or 

minimum values. 
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3.3 Age/Sex Ratios 

Combining data from both years, both sites and both habitats, the sex ratio differed from 

1:1. I found an approximately 2:1 ratio of males to females with 122 males and 66 

females recorded on our sites. Our age ratio was close to 1:1 with 233 adults to 213 

immatures. There was no difference in sex ratio between habitats either year (2017: x² = 

2.012, p = 0.16, 2018: x² = 0.562, p = 0.45). When combining years, I still found no 

difference in sex ratio (x² = 2.471, p = 0.11). Similarly, there was no difference in age 

ratio between habitats either year (2017: x² = 0.705, p = 0.55, 2018: x² = 0.013, p = 0.90). 

When combining years, I found no difference in age ratio (x² = 0.235, p = 0.63).  

3.4 Density 

Over both years, on 65 transects, a total of 1183 Swainson’s Thrushes were detected. To 

estimate density, I used half-normal detection function with cosine adjustment (AICc = 

561.24, wi = 0.96). Density estimates varied greatly with date, as migratory Swainson’s 

Thrushes from other locations began moving through our sites around 10 March both 

years. However, forest had a consistently higher density than shade coffee on average 

(Figure 7, Forest = 68.47 birds/km2, Coffee = 42.96 birds/km2). I found the model 

comparing density estimates with date, and habitat to be highly significant (Table 3, F2,62 

= 64.11, R2 = 0.6636, p < 0.001). 
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Table 3. Results of linear model for density (birds/m2) of Swainson’s Thrush (Catharus 

ustulatus) based on line transects (n=65) taken in shade-grown coffee plantations and 

Andean forest on two sites (La Fragua and Los Vientos) in the Colombian Andes in 2017 

and 2018. Dropped terms are noted by dashes (-), and significance is noted by asterisks (* 

< 0.05, ** < 0.01, *** < 0.001). 

 
Density 

  Coefficient SE t value p-value 

Intercept -23.014 7.510 -3.064 0.00323 ** 

Habitat (Forest) 25.903 4.316 9.660 5.59e-14 *** 

Date 1.110 0.115 6.002 1.11e-7 *** 

Year - - - - 

Site - - - - 

Habitat * Site - - - - 

 

  



40 
 

 

Figure 7. The density (individuals/km²) of Swainson’s Thrush of Swainson’s Thrush 

(Catharus ustulatus) encountered in shade-grown coffee plantations, and forest on two 

sites (La Fragua and Los Vientos) in the Colombian Andes in 2018. Density was higher 

in forest (blue) than in shade-coffee plantations (red). Gray shading represents 95% 

confidence interval. Density in both habitats increased over time. Estimates were 

corrected for detectability using r package “mrds”. Density was plotted over date of 

survey to demonstrate seasonal variability during migration. 
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3.5 Area of Concentrated Use 

Over both years, 86 birds were recorded with enough detections to calculate area of 

concentrated use. I found the model comparing area of concentrated use with age, sex, 

habitat, and site to be highly significant (Table 4, F4,81 = 54.57, R2 = 0.716, p < 0.001). 

Birds in coffee occupied larger areas than birds in forest on average (Figure 8, Coffee = 

1.268 ha, Forest = 0.328 ha). Females had slightly larger areas of concentrated use than 

males on average (Female = 0.798 ha, Male = 0.592 ha). No difference in area of 

concentrated use was found between our two sites. 
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Table 4. Results of linear model for area of concentrated use (n=86) of Swainson’s 

Thrush (Catharus ustulatus) inhabiting shade-grown coffee plantations and Andean 

forest on two sites (La Fragua and Los Vientos) in the Colombian Andes in 2017 and 

2018. Dropped terms are noted by dashes (-), and significance is noted by asterisks (* < 

0.05, ** < 0.01, *** < 0.001). 

 
Area of Concentrated Use 

  Coefficient SE t value p-value 

Intercept 1.353 0.084 16.046 < 2e-16 *** 

Sex (Male) -0.212 0.067 -3.190 0.0020 ** 

Age (ASY) 0.189 0.065 2.867 0.0053 ** 

Year - - - - 

Site  

Habitat (Forest) 

-0.100 

-0.943 

0.068 

0.067 

-14.012 

-1.48 

0.143 

< 2e-16 *** 

Habitat * Site - - - - 
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Figure 8. 65% Area of concentrated use (hectares) of Swainson’s Thrush (Catharus 

ustulatus) inhabiting shade-grown coffee plantations and forest at two different field sites 

(La Fragua and Los Vientos) in the Colombian Andes in 2017 and 2018. Area of 

concentrated use was lower in forest (blue) than in shade-coffee plantation (red). 

Boxplots are further separated by site. Rectangles represent the interquartile range, the 

dividing line is the median, while whiskers represent maximum or minimum values, and 

dots represent outliers beyond 1.5 times the interquartile range. 
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3.6 Stable Isotopes 

Stable isotope samples for 315 Swainson’s Thrushes were obtained in 2014 and 2015. 

Blood δ13C values ranged from -29.6 to -20.90 ‰, while blood δ15N values ranged from 

1.5 to 13.8 ‰. For δ13C values, the model containing site, habitat, and date was highly 

significant (Table 5, F3,311 = 37.18, R2 = 0.257, p < 0.001). For δ15N values, the model 

containing site, habitat, and habitat by site interaction was highly significant (Table 6, 

F3,311 = 22.94, R2 = 0.173, p < 0.001). Values of δ15N were higher in shade coffee than in 

forest, which is consistent with lower fruit abundance in shade coffee. When comparing 

values in isotopic space, large amounts of overlap between both habitats were found 

when controlling for site (Figures 9, 10). However, when comparing between the two 

sites, birds in La Fragua had a larger dietary breadth (Figure 11). 
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Table 5. Results of linear model for δ13C values (n=315) found in blood samples taken 

from Swainson’s Thrush (Catharus ustulatus) inhabiting shade-grown coffee plantations 

and Andean forest on two sites (La Fragua and Los Vientos) in the Colombian Andes in 

2014 and 2015. Dropped terms are noted by dashes (-), and significance is noted by 

asterisks (* < 0.05, ** < 0.01, *** < 0.001). 

 
δ13C Values 

  Coefficient SE t value p-value 

Intercept -26.356 0.142 -185.235 < 2e-16 *** 

Date 1.190 0.154 7.716 0.0011 ** 

Site 

Habitat (Forest) 

0.008 

-0.623 

0.002 

0.151 

3.287 

-4.134 

1.64e-13 *** 

4.58e-05 *** 

Habitat * Site - - - - 
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Table 6. Results of linear model for δ15N values found in blood samples taken from 

Swainson’s Thrush (Catharus ustulatus) inhabiting shade-grown coffee plantations and 

Andean forest on two sites (La Fragua and Los Vientos) in the Colombian Andes in 2014 

and 2015. Dropped terms are noted by dashes (-), and significance is noted by asterisks (* 

< 0.05, ** < 0.01, *** < 0.001). 

 
δ15N Values 

  Coefficient SE t value p-value 

Intercept 5.785 0.1942 29.788 < 2e-16 *** 

Date - - - - 

Site 

Habitat (Forest) 

0.182 

-1.404 

0.2758 

0.2484 

-0.658 

-5.656 

0.143 

3.51e-08 *** 

Habitat * Site 1.399 0.3514 3.982 8.53e-05 *** 
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Figure 9. Siber ellipses of carbon (δ13C) and nitrogen (δ15N) stable-isotope values from 

blood samples taken from Swainson’s Thrush (Catharus ustulatus) inhabiting shade-

grown coffee plantations and Andean forest on one site (La Fragua) in the Colombian 

Andes in 2014 and 2015. Points are separated by habitat type, forest (shown as black 

points) and coffee (shown as red points). Ellipses show normal distributions. 
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Figure 10. Siber ellipses of carbon (δ13C) and nitrogen (δ15N) stable-isotope values from 

blood samples taken from Swainson’s Thrush (Catharus ustulatus) inhabiting shade-

grown coffee plantations and Andean forest on one site (Los Vientos) in the Colombian 

Andes in 2014 and 2015. Points are separated by habitat type, forest (shown as black 

points) and coffee (shown as red points). Ellipses show normal distributions.  
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Figure 11. Siber ellipses of carbon (δ13C) and nitrogen (δ15N) stable-isotope values values 

from blood samples taken from Swainson’s Thrush (Catharus ustulatus) inhabiting 

shade-grown coffee plantations and Andean forest on two sites in the Colombian Andes 

in 2014 and 2015. Points are separated by site, La Fragua (shown as black points) and 

Los Vientos (shown as red points). Ellipses show normal distributions. 
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3.7 Night Roosting 

Roosting sites for 73 individuals were determined over both years, and distance from 

roosting site to center of core area calculated. The model comparing distance between 

daytime and nighttime habitat occupancy with age, sex, and habitat was highly significant 

(Table 7, F3,69 = 51.13, R2 = 0.6389, p < 0.001). Birds living in shade coffee traveled 

further at night to roost than birds in forest, and typically moved from coffee to forest to 

roost: birds from shade coffee traveled 335.6 m on average and birds in forest traveled 

99.1 m on average (Figure 12). Adults traveled on average 73.3 m further to roost than 

immature birds. No difference was detected between sexes. To illustrate differences in 

habitat occupancy between day and night I created kernel density estimators which plot 

the abundance of Swainson’s Thrush detections (Figure 13,14).  
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Table 7. Results of linear model for distance between night roost and daytime core area 

(m) of Swainson’s Thrush (Catharus ustulatus) inhabiting shade-grown coffee 

plantations and Andean forest at two different field sites (La Fragua and Los Vientos) in 

the Colombian Andes in 2017 and 2018. Dropped terms are noted by dashes (-), and 

significance is noted by asterisks (* < 0.05, ** < 0.01, *** < 0.001). 

 

Distance between daytime and nighttime habitat occupancy 

(m) 

  Coefficient SE t value p-value 

Intercept 382.54 21.55 17.751 < 2e-16 *** 

Sex (Male) -29.28 19.09 -1.534 0.1288 

Age (ASY) -73.30 18.88 -3.883 0.0002 *** 

Year - - - - 

Site 

Habitat (Forest) 

- 

-227.13 

- 

19.48 

- 

-11.659 

- 

< 2e-16 *** 

Habitat * Site - - - - 
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Figure 12. Distance between night roost and daytime core area (m) of Swainson’s Thrush 

(Catharus ustulatus) inhabiting shade-grown coffee plantations and Andean forest at two 

different field sites (La Fragua and Los Vientos) in the Colombian Andes in 2017 and 

2018. Distance was lower in forest (blue) than in shade-coffee plantations (red). Boxplots 

are separated by site. Rectangles represent the interquartile range, the dividing line is the 

median, while whiskers represent maximum or minimum values. 
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Figure 13. Kernel density estimator for daytime and nighttime habitat occupancy in 

Swainson’s Thrush (Catharus ustulatus) inhabiting shade-grown coffee plantations and 

Andean forest at a field site (La Fragua) in 2018. Daytime habitat occupancy on the left 

and nighttime roosting areas on the right. Red indicates high abundance of detections and 

green indicates low abundance of detections. The blue line outlines the shade-grown 

coffee plantation, and green outlines forest. Maps provided by ESRI (2017). 
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Figure 14. Kernel density estimator for daytime and nighttime habitat occupancy in 

Swainson’s Thrush (Catharus ustulatus) inhabiting shade-grown coffee plantations and 

Andean forest at a field site (Los Vientos) in 2017. Daytime habitat occupancy on the left 

and nighttime roosting areas on the right. Red indicates high abundance of detections and 

green indicates low abundance of detections. The blue line outlines the shade grown 

coffee, everything outside the blue line is forest. Maps provided by ESRI (2017). 

 

  

Day Night 
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3.8 Temperature 

Five temperature loggers were distributed on 66 different nights for a total of 330 

overnight temperature recordings across shade coffee and forest. The model comparing 

temperature to habitat and date to be highly significant (Table 8, F2,327 = 94.35, R2 = 

0.363, p < 0.001). Forest was warmer than coffee at night by 0.8 ± 0.07 °C (p < 0.001).  

 

 

Table 8. Results of linear model for mean overnight temperature (°C, n=330), recorded in 

shade-grown coffee plantations and Andean forest on two sites (La Fragua and Los 

Vientos) in the Colombian Andes in 2018. Dropped terms are noted by dashes (-), and 

significance is noted by asterisks (* < 0.05, ** < 0.01, *** < 0.001). 

 
Temperature 

  Coefficient SE t value p-value 

Intercept 18.99 0.102 185.328 < 2e-16 *** 

Date -0.016 0.002 -7.574 3.78e-13 *** 

Habitat (Forest) 0.821 0.072 11.301 < 2e-16 *** 

Site - - - - 

Habitat * Site - - - - 
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3.9 Habitat Structure 

288 points were surveyed for habitat structure over both years. All metrics were 

compared between sites and habitats using a one-way ANOVA. Differences were 

compared using Tukey’s post-hoc test (Table 9). Percent canopy cover was higher in 

forest than coffee across both sites (F3,383 = 139.30, p < 0.001). Canopy height (m) was 

highest in shade coffee at La Fragua (F3,383 = 8.49, p < 0.001). Understory density was 

higher in forest than coffee across both sites, with Los Vientos forest having the highest 

understory density (F3,383 = 149.38, p < 0.001). Dbh of the largest tree (cm) was higher at 

La Fragua across both habitats (F3,383 = 18.23, p < 0.001). Average dbh (cm) was higher 

in forest than in coffee across both sites (F3,383 = 72.30, p < 0.001). Lastly, tree density 

(trees/m2) was higher in forest than in shade coffee with Los Vientos forest having the 

highest tree density (F3,383 = 59.08, p < 0.001). 
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Table 9. Results of ANOVA and Tukey’s post-hoc tests of mean percent canopy cover 

(±SE), canopy height (±SE), understory density score (0-5; ±SE), dbh of largest tree 

(±SE), mean dbh of 5 trees (±SE), and density of trees (±SE) recorded in shade-grown 

coffee plantations and Andean forest on two sites (La Fragua (n=145) and Los Vientos 

(n=142) in the Colombian Andes in 2017 and 2018.  

 
Habitat Structure  

  

Canopy 

Cover (%) 

Canopy 

Height (m) 

Understory 

Density 

Dbh of largest 

tree (cm) 

Average Dbh 

(cm) 

Tree Density 

(trees/m2) 

La Fragua 

Forest 
81.72±9.86a 17.04±4.20b 2.64±0.95b 205.44±130.61a 38.54±31.95c 0.40±0.27a 

Los Vientos 

Forest 
80.70±15.90a 18.10±3.97b 3.59±0.89a 127.73±55.37b 23.68±7.97d 0.42±0.27a 

La Fragua 

Coffee 
44.59±21.86b 20.38±5.31a 1.40±.50c 245.08±130.14a 84.97±31.79a 0.03±0.05b 

Los Vientos 

Coffee 
36.72±19.58c 16.73±4.79b 1.20±.51c 164.12±65.39b 61.85±26.29b 0.05±0.09b 

Note: Means in each column followed by the same letter are not significantly different 

(p<0.05) according to Tukey’s HSD test. 
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Discussion 

 

Shade coffee is commonly viewed as a suitable habitat for non-breeding Neotropical 

migrant birds (Wunderle and Latta 1996; Perfecto et al. 1996; Tejeda-Cruz and 

Sutherland 2004; Bakermans et al. 2012; Colorado and Rodewald 2017). However, there 

is still a lack of evidence that shade coffee is of equal quality to the forested habitat it has 

replaced (Komar 2006). In this thesis, I used a series of field techniques to assess the 

differences in habitat quality between Andean forest and shade-coffee plantations at the 

individual and population level in Swainson’s Thrushes. Because bird density is typically 

higher in higher-quality habitats (Marra et al. 1998; Johnson et al. 2006; Ruiz- Sánchez et 

al. 2017), density of Swainson’s Thrush was compared between the two habitats using 

line transects. Birds were found at higher densities in forest than in shade coffee. Age and 

sex classes in other non-breeding Neotropical migrants have been demonstrated to 

segregate between high- and low-quality habitat with adult males preferentially 

occupying high quality habitat (Marra et al. 1998). Age/sex classes are also known to 

depart for spring migration at different times (Francis and Cooke 1986). I compared 

age/sex ratios and spring departure dates between shade coffee and forest, finding no 

difference between habitats. Non-breeding Neotropical migrants use more space in lower 

quality habitats (Ruiz- Sánchez et al. 2017). I used minimum convex polygons to 

determine areas of concentrated use to compare habitat use between shade coffee and 

forest. Across both sites, Swainson’s Thrush occupied larger areas in shade coffee than in 

forest, consistent with my predictions, suggesting forest provides better habitat than 

shade coffee for non-breeding Neotropical migratory birds.  
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4.1 Shade-grown Coffee as a Non-breeding Habitat 

Although forest appears to provide superior habitat to non-breeding Swainson’s Thrush 

in the Andes of Colombia, this does not imply that shade coffee does not successfully 

support populations of non-breeding Neotropical migrants. It is important, therefore, to 

compare differences in habitat quality with native forests before making any final 

conclusions on shade coffee as a method of conservation.  

4.1.1 Density 

Density of Swainson’s Thrush was found to be almost twice as high in forest as in coffee. 

As the season progressed the density of Swainson’s Thrush increased substantially, 

almost tripling across both habitats. Given that this increase began around 10 March in 

both years, the increase was likely caused by a migratory influx of Swainson’s Thrush 

from more southern non-breeding sites. Interestingly, the ratio of thrush density between 

shade coffee and forest stayed close to the same during this migratory influx. This 

suggests that birds in both habitats are possibly interacting to reach an equilibrium.   

The average density of birds in forest when exluding transects conducted after 10 

March (n=22) was 51.45 birds per square kilometer. This value is similar to the findings 

of Sherry and Holmes (1988), where Swainson’s Thrushes on the breeding ground in 

New Hampshire were found at a density of 56.1 birds per square kilometer in 

unfragmented forest. Suggesting that the density of Swainson’s Thrush found in forest on 

our sites is comparable to denisities elsewhere in forested habitats, including on the 

breeding grounds. 
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4.1.2 Age/Sex Ratios 

No differences were found in occupancy between age or sex classes. This is contrary to 

the findings of Marra et al. (1998), where more male American Redstarts were found in 

higher quality habitat. Although one possible explanation for this could be that shade 

coffee is of equal quality to forest, causing no need for habitat segregation, I suggest an 

alternative explanation. American Redstarts are sexually dimorphic with males being the 

larger sex, and males have been shown to be more territorial and aggressive than females 

(Marra 1998; Marra 2000). Swainson’s Thrush on the other hand are not sexually 

dimorphic in size; only the extremes in size can be differentiated as males or females 

(Pyle 1997; Mack and Yong 2000), but there is a large amount of overlap. Additionally, 

Swainson’s Thrush do not appear to demonstrate aggressive or territorial behavior on the 

non-breeding grounds (personal observation), which may account for a more equal 

distribution of males and females across habitats of varying quality. 

4.1.3 Area of Concentrated Use 

Area of concentrated use was lower in forest than in coffee. This result is consistent with 

the findings of Marra et al. (1998) and Ruiz- Sánchez et al. (2017), where Neotropical 

migrants occupied smaller areas in higher quality habitats. Females occupied larger areas 

than males on average across both habitats. Suggesting females are possibly settling for 

lower quality habitat than males within shade coffee and forest. 

4.1.4 Diet 

In comparing diet between both habitats, I used foraging rate and stable carbon and 

nitrogen istope measurments in blood to determine dietary differences. Foraging rate was 
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higher in forest than in shade coffee, which is consistent with previous research in shade 

coffee systems (Bayly et al. 2016). Different isotopic values were detected between 

habitats and between sites. Across both sites, birds in coffee showed higher blood δ15N 

values, which is indicative of higher trophic level, or in the case of Swainson’s Thrush, 

higher rates of insect consumption compared to fruit (DeNiro and Epstein 1981; Peterson 

and Fry 1987). This is likely a result of a reduced abundance of fruiting trees in shade 

coffee. Across both sites, birds in coffee also showed higher blood δ13C values, which is 

consistent with previous results finding birds from drier, and lower quality non-breeding 

habitat to have higher tissue δ13C values (Marra et al. 1998; González-Prieto and Hobson 

2013).  This difference in 13C proportion is brought on by different environmental 

conditions, including moisture and humidity, and microclimates caused by differential 

habitat structure (Broadmeadow et al. 1992; Broadmeadow and Griffiths 1993). The 

denser canopy and overall habitat structure found in forest is likely the cause of this 

difference. 

4.1.5 Departure Date 

Swainson’s Thrushes occupying shade coffee departed earlier for migration by an 

average of 5 days. This is contrary to my prediction that birds living in forest would 

migrate earlier because higher food availability would allow for faster rates of fat 

accumulation. Previous studies that have looked at the effect of habitat quality on 

migration timing have found birds from lower quality habitat arrive later to breeding 

grounds than birds from high quality habitat (Marra et al. 1998; González-Prieto and 

Hobson 2013). However, these studies have not focused on departure date from non-

breeding sites, but instead at arrival on breeding sites. Other studies have focused on 
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departure date from non-breeding sites as a key driver of overall migration speed and 

arrival on breeding grounds, finding that birds departing earlier from non-breeding 

grounds arrive earlier on breeding grounds (McKinnon et al. 2014, McKinnon et al. 

2016). However, with my results these two ideas appear to be contradictary. A possible 

explanation for this difference is that birds from shade coffee are departing earlier in 

search of sites with better opportunities for fat accumulation, and therefore take more 

time during stopover bouts which would lead to a longer migration.  

Additionally, I found male Swainson’s Thrushes departed our sites 12 days earlier 

on average than females. This is an example of protandrous behavior, which has been 

demonstrated in many migratory bird species (Morbey and Ydenberg 2001; Morbey et al. 

2012). However, this is the first study to show differences in departure dates from non-

breeding sites in Swainson’s Thrushes. 

4.1.6 Roosting Sites 

Swainson’s Thrushes spending the day in shade coffee traveled greater distances at night 

in search of roosting sites, travelling on average approximately three times the distance of 

birds in forest. Additionally, birds occupying shade coffee almost exclusively roosted in 

forest at night. Only 4 individuals, of a total 32 birds in shade coffee, did not move to 

forested habitat to roost. Of the remaining 28 birds that did roost in forest, roosting sites 

were typically on the periphery of the forest, or in small forest patches located within the 

confines of the shade coffee habitat.  No birds using forest for diurnal habitat were found 

roosting in shade coffee at night. This result is consistent with the findings of Jirinec et al. 

(2011), where Black-throated Blue Warblers (Dendroica caerulescens) occupying coffee 
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farms in Jamaica were found to move out of coffee at night to roost in adjacent forest. 

Smith et al. (2008) found a similar result with Northern Waterthrush (Parkesia 

noveboracensis) in Puerto Rico, where birds traveled up to two km each day to roost in 

high quality mangrove habitat. 

This daily migration of birds between daytime and nighttime habitats is poorly 

understood and may be caused by multiple factors. One explanation is that birds are 

seeking an area with more forest structure to roost making them less susceptible to 

predators. Forest had higher understory density and higher tree density than shade coffee 

making the habitat more structurally diverse. Additionally, due to these structural 

differences, differences in average nighttime temperatures were detected on my sites with 

forest being around 0.8°C warmer than shade coffee. These warmer temperatures found 

in forest may make for more ideal roosting conditions. My results suggest that 

maintaining adjacent forests may help maintain viable non-breeding populations of 

Neotropical migrants by creating roosting sites that are beneficial to birds living in both 

shade coffee and forest. However, it is unclear whether birds would adjust to roosting 

within shade-coffee plantations in the absence of adjacent forests. 

4.1.7 Habitat Structure 

Habitat structure is an important indicator of habitat quality for non-breeding Neotropical 

migrants, with dense unfragmented forests being superior to habitats with low structural 

variation and high fragmentation (Ruiz- Sánchez et al. 2017). In surveying six metrics of 

habitat structure, I found forest to have higher density of trees, higher understory density, 

and more canopy cover. These metrics are more indicative of habitat structure, providing 
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different layers to the forest and higher biodiversity of plant species. Overall, forest is 

more structurally diverse than shade coffee.  

Coffee and forest had similar canopy height and dbh of largest tree. This is due to 

the selection process of shade trees in shade-coffee plantations. When shade trees are 

selected as remnants of a native forest, they are often chosen based on their size and 

shade coverage (Perfecto et al. 2005), meaning the remaining trees are among the largest 

trees on the site and therefore are comparable to the largest trees in the forest. This is 

further exemplified when looking at average dbh of trees, the mean dbh of trees in coffee 

was more than double that of forest, due to the remnant tree population being chosen 

based on their size and shade capacity.  

However, these results may not be generalizable to all shade-coffee plantations 

due to differences in shade quality across shade coffee systems and within a single 

plantation. Based on the criteria presented in Miguel and Toledo (1999) and Perfecto et 

al. (2003), shade coffee can be defined as one of four different classifications, which are 

defined by percent canopy cover and species richness of canopy trees. The classifications 

being: Rustic (71-100% canopy cover), Traditional Polyculture (41-70% canopy cover), 

Commercial Polyculture (31-40% canopy cover), and Shaded Monoculture (10-30% 

canopy cover). Given these criteria, my sites La Fragua and Los Vientos are classified as 

Traditional Polyculture and Commercial Polyculture, respectively. Shaded Monoculture 

differs drastically from the other classifications as it refers to a monoculture of trees, 

often non-native, chosen for their rate of growth and shade capabilities. (Toledo and 

Moguel 1996; Perfecto et al. 2005). These trees may be planted just to attain 

certifications associated with shade coffee production, or to create a secondary crop of 
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forestry trees to be used for lumber (Mas and Dietsch 2004). With such large variation in 

shade type, understanding the impacts of these differences on non-breeding Neotropical 

migratory songbirds is key. 

4.2 Study Limitations and Assumptions 

Within the time constraints of two years, I assessed the differences in habitat quality 

between two habitats across two sites. With that time constraint came a few assumptions 

and study limitations. Firstly, in my research I assumed that the population of Swainson’s 

Thrush sampled was a representative sample of Swainson’s Thrushes living in shade 

coffee and forest throughout the Andes. Due to mountainous terrain, mist netting was 

constrained to small portions of my sites, and therefore I did not have a homogenous 

sample of birds in each habitat. Due to the remoteness of our field sites, I carried a 

limited number of VHF transmitters to our banding stations every day. These transmitters 

were placed on the first available Swainson’s Thrushes, sometimes leaving out birds 

caught later in the day. I do not believe this created any sampling bias within my data. 

Although birds may have been biased to sampling earlier in the day, birds were still 

sampled at random. 

 Both of our sites Los Vientos, and La Fragua, were sprayed with fungicides, and 

La Fragua was also sprayed with insecticides, a few times over the course of the field 

season. I did not collect any data on the type of insecticide or fungicide used or the 

frequency of which they were applied. I did not consider what effect these sprayings had 

on the birds. I believe that these sprayings are typical of any shade-grown coffee 
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plantation within the Colombian Andes and therefore would not have influenced the 

outcome of my study. 

 One important limitation to note is that a malfunction in the Motus tower placed 

near the forest of Los Vientos in May of 2017 might have caused the loss of some 

departure dates (n=6 out of 45 total birds tagged in forest), but I do not believe this would 

have changed my results. The information that was lost from this tower, if any, was late 

season departure dates from forest. My data already showed birds from forest to depart 

for migration later than from coffee so having these data could only strengthen this result. 

Additionally, for my departure dates, I assumed that the tower was able to pick up all 

departures, and that all true migratory departures took place between 18:00-24:00h. To 

determine nighttime roost data, I assumed that birds were not moving past sunset to be 

able to triangulate their position without visual confirmation. I waited thirty minutes after 

sunset to make sure birds had stopped moving and were settled into roosting sites. I do 

not think this assumption impacted my results. 

By completing two years of data analysis I was able to make my results more 

generalizable. The two years had variation in weather patterns (personal observation): 

2017 was drier in general, and 2018 was wetter, and I assumed that these two years were 

representative of a typical climate for this season in Colombia. Although shade-coffee 

plantations can be highly variable (Toledo and Moguel 1996; Perfecto et al. 2005), I 

assumed that my two field sites (La Fragua and Los Vientos) were representative of 

shade-coffee plantations and Andean forests in general.  
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 4.3 Conservation Implications 

In a region where deforestation rates are high (Wilcove et al. 1998; La Sorte et al. 2017), 

the purpose or goal of maintaining shade-coffee plantations should be to maintain a 

balance between agricultural practices and availability of suitable habitat for migrant and 

resident bird species. With Andean forests estimated at less than 90% of their original 

extent (Henderson et al. 1991), shade-coffee plantations play an important role as a 

supplementary habitat for non-breeding Neotropical migrants in areas at mid-to-high 

elevation in Latin America (Perfecto et al. 2005). Shade coffee provides higher quality 

non-breeding habitat for Neotropical migratory birds when compared to sun coffee, or 

other forms of agriculture which result in low habitat diversity (Wunderle and Latta 

1996; Perfecto et al. 1996; Tejeda-Cruz and Sutherland 2004; Bakermans et al. 2012; 

Colorado and Rodewald 2017). Therefore, the relative importance of shade coffee as 

songbird habitat should not be undermined by the superior quality of a natural forested 

habitat. Instead, a more suitable conservation plan may be to combine the two habitats to 

create a mosaic of shade coffee mixed with remnant forest patches (Wegner and Merriam 

1979). My results suggest that maintaining adjacent forests may help maintain viable 

non-breeding populations of Neotropical migrants with birds preferentially roosting in 

forest regardless of diurnal habitat.  

Maintaining shade-coffee plantations and converting sun coffee to shade coffee 

could have major benefits to humans, to the environment, and to Neotropical migratory 

birds. I suggest greater efforts be focused on educating the public, by informing coffee 

farmers of the benefits of shade coffee, including increased per unit value, and possible 

increase in profit for small plantation owners (Perfecto et al. 2005). Then, possibly more 
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importantly, increasing demand of shade coffee through increased awareness of the 

availability of certified sustainably grown coffee, and informing the general public of the 

importance of sustainability in coffee consumption. Lobbying for big name brands such 

as Starbucks to carry and promote shade-grown coffee in their stores could completely 

change the coffee industry. 

4.4 Future Work 

The results of this research suggest that native Andean forests provide superior non-

breeding habitat for Swainson’s Thrushes. However, there are many avenues for further 

exploration. Not all shade coffee is comparable (Toledo and Moguel 1996), so further 

research could be done to compare different levels or qualities of shade. Comparing 

forest to “rustic” shade-coffee plantations with minimal disturbance would likely provide 

different results than comparing forest to a shaded monoculture. 

Although Swainson’s Thrush can successfully utilize shade coffee as an non-

breeding habitat, this does not imply all species of Neotropical migrants can survive in 

this agroecosystem. Similar to the results of Bayly et al. (2106), I found that Gray-

cheeked Thrush, a close relative of the Swainson’s Thrush, are rarely found in shade 

coffee. Of 72 Gray-cheeked Thrushes banded between both years, only 7 were banded in 

shade coffee. Further research is needed to understand which species can benefit from 

shade coffee, and which species still rely on native forests to thrive. 

Shade coffee has the potential to be part of a sustainable conservation plan for 

many Neotropical migratory birds. However, more research is needed to better 

understand how to maximize the quality of this agro-habitat. My research showed a 
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possible need for Swainson’s Thrushes to have forest corridors connecting shade coffee 

patches for use as overnight roosting sites. Maintaining intact forests adjacent to shade-

coffee plantations has been shown to be beneficial to other organisms and beneficial to 

overall quality of coffee production (Ricketts et al. 2004; Jirinec et al. 2011). 

4.5 Conclusions 

Habitat quality during the non-breeding season has lasting impacts throughout the full 

migratory life cycle of Neotropical migratory birds (Marra et al. 1998; Norris et al. 2004; 

González-Prieto and Hobson 2013). With many Neotropical migrants experiencing steep 

population declines (Sauer et al. 2017), continued research is needed to develop 

understanding on ways to improve habitat quality across all stages of the annual cycle. 

My research found that shade-grown coffee plantations do not provide the same quality 

of habitat as native forests. However, this does not mean that shade coffee is not a 

beneficial ecosystem. Shade coffee offers a supplemental habitat to native Andean forest 

that is rapidly disappearing. Shade coffee has been shown to support higher species 

richness than the more widely used sun-coffee method (Wunderle and Latta 1996; 

Perfecto et al. 1996; Colorado and Rodewald 2017). Shade coffee can also provide 

habitat for pollinators (Klein et al. 2003) and other animals that control coffee pests 

(Karp et al. 2013), which in turn can reduce need for pesticides and fertilizers. However, 

other studies have shown the importance of maintaining adjacent intact native forests 

(Ricketts et al. 2004; Jirinec et al. 2011). 

Ultimately the aim of my research was to better understand a complex ecosystem 

that has many positive conservation implications. Continued deforestation in the Andes 
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has led to population declines in many bird species, migratory and resident. Shade coffee 

will never replace the forested habitat from which it was created, but coming up with a 

plan to mitigate the effects of deforestation can only have a positive impact.   
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Appendices 

Appendix A. Banding data for Swainson’s Thrush 

Site
 

Statio
n

 

Y
ear 

B
an

d
 

C
o

d
e

 

Sp
ecies 

A
ge

 

Sex 

Fat 

M
u

scle
 

W
in

g 
C

h
o

rd
 

W
eigh

t 

Los 
Vientos 

Coffee 2017 1461-
65744 

SWTH ASY F 0 3 92 27.3 

Los 
Vientos 

Coffee 2017 1461-
65736 

SWTH SY M 0 2 97 28 

Los 
Vientos 

Coffee 2017 1461-
65739 

SWTH SY M 1 2 96 30.4 

Los 
Vientos 

Coffee 2017 1461-
65740 

SWTH SY M 1 2 96 31.1 

Los 
Vientos 

Coffee 2017 1461-
65741 

SWTH SY M 1 2 100 29.8 

Los 
Vientos 

Coffee 2017 1461-
65742 

SWTH SY M 3 2 94 30.7 

Los 
Vientos 

Coffee 2017 1461-
65743 

SWTH SY M 0 3 101 30.2 

Los 
Vientos 

Coffee 2017 1461-
65745 

SWTH ASY M 0 2 98 29.8 

Los 
Vientos 

Coffee 2017 1461-
65746 

SWTH ASY M 1 3 98 30.8 

Los 
Vientos 

Coffee 2017 1461-
65747 

SWTH ASY M 1 2 95 29.3 

Los 
Vientos 

Coffee 2017 1461-
65748 

SWTH ASY M 1 2 101 29.4 

Los 
Vientos 

Coffee 2017 1461-
65749 

SWTH SY M 0 2 97 28.2 

Los 
Vientos 

Coffee 2017 1461-
65750 

SWTH SY M 1 2 99 31.4 

La 
Fragua 

Coffee 2017 1461-
65792 

SWTH SY M 1 3 95 
 

Los 
Vientos 

Coffee 2017 1451-
53685 

SWTH ASY M 1 2 97 29.7 

La 
Fragua 

Coffee 2017 1461-
65590 

SWTH ASY M 3 3 99 34.1 

Los 
Vientos 

Coffee 2017 2741-
83178 

SWTH SY U 0 2 99 27.6 

Los 
Vientos 

Coffee 2017 2741-
83180 

SWTH SY U 1 1 97 30 

Los 
Vientos 

Coffee 2017 2741-
83182 

SWTH ASY U 0 2 95 28.5 
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Los 
Vientos 

Coffee 2017 2741-
83183 

SWTH SY U 0 1 95 26.7 

Los 
Vientos 

Coffee 2017 2741-
83184 

SWTH ASY U 0 1 93 24.7 

Los 
Vientos 

Coffee 2017 2741-
83185 

SWTH SY U 0 1 94 26.3 

La 
Vuelta 

Coffee 2017 2741-
83010 

SWTH SY U 1 2 100 31.6 

La 
Vuelta 

Coffee 2017 2741-
83011 

SWTH SY U 1 1 95 27.8 

Los 
Vientos 

Coffee 2017 1461-
65751 

SWTH ASY U 1 3 96 29.4 

La 
Fragua 

Coffee 2017 1461-
65793 

SWTH SY U 1 3 92 27.3 

Los 
Vientos 

Coffee 2016 1451-
53665 

SWTH ASY U 1 1 99 27.3 

Los 
Vientos 

Coffee 2016 1451-
53895 

SWTH ASY U 1 1 99.5 28.4 

La 
Fragua 

Coffee 2017 2741-
83012 

SWTH SY F 1 1 94 30.1 

La 
Fragua  

Coffee 2017 1461-
65721 

SWTH  ASY F 0 2 96 28.6 

La 
Fragua  

Coffee 2017 1461-
65723 

SWTH  ASY F 0 2 95 26.5 

La 
Fragua 

Coffee 2017 2741-
83018 

SWTH SY F 1 3 89 28.5 

La 
Fragua 

Coffee 2017 2741-
83023 

SWTH ASY F 1 3 96 27.7 

La 
Fragua 

Coffee 2017 2741-
83025 

SWTH SY F 1 3 95 29.6 

La 
Fragua 

Coffee 2017 2741-
83040 

SWTH SY F 1 3 94 29.7 

La 
Fragua 

Coffee 2017 2741-
83041 

SWTH ASY F 1 3 90 28.1 

La 
Fragua 

Coffee 2017 2741-
83056 

SWTH SY F 1 3 95 27.8 

La 
Fragua 

Coffee 2017 2741-
83059 

SWTH ASY F 1 3 89 29.8 

La 
Fragua 

Coffee 2017 2741-
83062 

SWTH ASY F 2 3 99 29.2 

La 
Fragua 

Coffee 2017 2741-
83063 

SWTH ASY F 1 3 89 28.9 

La 
Fragua 

Coffee 2017 2741-
83064 

SWTH SY F 4 3 94 35 

La 
Fragua 

Coffee 2017 2741-
83065 

SWTH ASY F 1 3 100 30.1 



82 
 

La 
Fragua 

Coffee 2017 2741-
83066 

SWTH SY F 1 3 96 30.2 

La 
Fragua 

Coffee 2017 2741-
83069 

SWTH SY F 1 3 93 31 

La 
Fragua 

Coffee 2017 2741-
83071 

SWTH SY F 1 3 93 26.3 

La 
Fragua 

Coffee 2017 2741-
83080 

SWTH SY F 1 2 93 29.5 

La 
Fragua  

Coffee 2017 1451-
53161 

SWTH  ASY F 1 1 97 30.3 

La 
Fragua 

Coffee 2017 2741-
83013 

SWTH SY M 0 1 99 28.3 

La 
Fragua 

Coffee 2017 2741-
83014 

SWTH SY M 1 2 99 31 

La 
Fragua 

Coffee 2017 2741-
83015 

SWTH SY M 1 1 102 28.8 

La 
Fragua 

Coffee 2017 2741-
83016 

SWTH ASY M 1 1 95 25.5 

La 
Fragua 

Coffee 2017 2741-
83017 

SWTH ASY M 1 1 99 30.6 

La 
Fragua 

Coffee 2017 2741-
83019 

SWTH ASY M 2 2 100 31 

La 
Fragua 

Coffee 2017 2741-
83020 

SWTH SY M 1 3 96 27.2 

La 
Fragua 

Coffee 2017 2741-
83021 

SWTH SY M 1 2 97 32.7 

La 
Fragua 

Coffee 2017 2741-
83022 

SWTH ASY M 1 2 98 30.8 

La 
Fragua 

Coffee 2017 2741-
83024 

SWTH ASY M 2 2 103 30.4 

La 
Fragua 

Coffee 2017 2741-
83026 

SWTH ASY M 1 3 102 30.3 

La 
Fragua 

Coffee 2017 2741-
83027 

SWTH SY M 1 2 95 30 

La 
Fragua 

Coffee 2017 2741-
83028 

SWTH SY M 4 3 100 37.7 

La 
Fragua 

Coffee 2017 2741-
83029 

SWTH SY M 1 2 97 32.2 

La 
Fragua 

Coffee 2017 2741-
83030 

SWTH ASY M 1 3 96 30.7 

La 
Fragua 

Coffee 2017 2741-
83031 

SWTH SY M 1 3 96 30.5 

La 
Fragua 

Coffee 2017 2741-
83032 

SWTH SY M 1 3 96 30.9 

La 
Fragua 

Coffee 2017 2741-
83035 

SWTH ASY M 0 3 98 30.5 
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La 
Fragua 

Coffee 2017 2741-
83036 

SWTH SY M 0 3 100 28.5 

La 
Fragua 

Coffee 2017 2741-
83037 

SWTH ASY M 1 2 99 26.1 

La 
Fragua 

Coffee 2017 2741-
83038 

SWTH ASY M 0 3 96 30 

La 
Fragua 

Coffee 2017 2741-
83039 

SWTH ASY M 1 3 99 29.7 

La 
Fragua 

Coffee 2017 2741-
83042 

SWTH SY M 1 2 96 26.5 

La 
Fragua 

Coffee 2017 2741-
83043 

SWTH ASY M 5 3 97 37.8 

La 
Fragua 

Coffee 2017 2741-
83045 

SWTH SY M 1 3 97 30.6 

La 
Fragua 

Coffee 2017 2741-
83047 

SWTH SY M 1 3 97 32.2 

La 
Fragua 

Coffee 2017 2741-
83048 

SWTH ASY M 1 3 100 30.4 

La 
Fragua 

Coffee 2017 2741-
83050 

SWTH ASY M 3 3 93 34.2 

La 
Fragua 

Coffee 2017 2741-
83051 

SWTH SY M 1 3 97 31.2 

La 
Fragua 

Coffee 2017 2741-
83053 

SWTH SY M 1 3 95 30.4 

La 
Fragua 

Coffee 2017 2741-
83054 

SWTH SY M 1 3 96 29.6 

La 
Fragua 

Coffee 2017 2741-
83057 

SWTH SY M 1 3 97 30.5 

La 
Fragua 

Coffee 2017 2741-
83060 

SWTH SY M 5 3 95 36.5 

La 
Fragua 

Coffee 2017 2741-
83061 

SWTH SY M 1 2 91 28.5 

La 
Fragua 

Coffee 2017 2741-
83067 

SWTH SY M 2 3 92 31.3 

La 
Fragua 

Coffee 2017 2741-
83068 

SWTH ASY M 0 2 97 32.3 

La 
Fragua 

Coffee 2017 2741-
83072 

SWTH ASY M 1 3 99 
 

La 
Fragua 

Coffee 2017 2741-
83073 

SWTH SY M 5 2 94 37.6 

La 
Fragua 

Coffee 2017 2741-
83074 

SWTH ASY M 3 3 97 35.1 

La 
Fragua 

Coffee 2017 2741-
83075 

SWTH SY M 1 3 98 31.6 

La 
Fragua 

Coffee 2017 2741-
83076 

SWTH ASY M 2 3 97 32.8 
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La 
Fragua 

Coffee 2017 2741-
83077 

SWTH SY M 0 2 98 30.1 

La 
Fragua 

Coffee 2017 2741-
83078 

SWTH SY M 4 2 97 37 

La 
Fragua 

Coffee 2017 2741-
83079 

SWTH ASY M 3 2 98 33.6 

La 
Fragua  

Coffee 2017 1461-
64780 

SWTH  ASY M 1 2 102 30.7 

La 
Fragua  

Coffee 2017 1461-
65722 

SWTH  SY U 1 2 91 27.3 

La 
Fragua 

Coffee 2017 2741-
83033 

SWTH SY U 2 2 101 31.5 

La 
Fragua 

Coffee 2017 2741-
83034 

SWTH SY U 1 3 95 28.3 

La 
Fragua 

Coffee 2017 2741-
83044 

SWTH ASY U 3 2 95 30 

La 
Fragua 

Coffee 2017 2741-
83046 

SWTH ASY U 1 2 101 28.4 

La 
Fragua 

Coffee 2017 2741-
83049 

SWTH SY U 1 3 97 26.4 

La 
Fragua 

Coffee 2017 2741-
83055 

SWTH ASY U 1 3 99 30.8 

La 
Fragua 

Coffee 2017 1451-
76104 

SWTH ASY U 1 3 95 30.8 

La 
Fragua 

Coffee 2017 1461-
65948 

SWTH ASY U 0 3 95 29.6 

Los 
Vientos 

Coffee 2017 1461-
65706 

SWTH ASY U 1 2 95 26.2 

Los 
Vientos 

Coffee 2017 1451-
53871 

SWTH ASY U 0 1 92 25.4 

Los 
Vientos 

Forest 2017 1461-
65724 

SWTH SY F 1 2 93 25.6 

Los 
Vientos 

Forest 2017 1461-
65726 

SWTH ASY F 1 3 90 28.9 

Los 
Vientos 

Forest 2017 1461-
65727 

SWTH ASY F 1 2 98 30.7 

Los 
Vientos 

Forest 2017 1461-
65731 

SWTH SY F 1 2 90 26.2 

Los 
Vientos 

Forest 2017 1461-
65752 

SWTH SY F 1 2 99 29.3 

Los 
Vientos 

Forest 2017 1461-
65756 

SWTH SY F 0 3 94 28 

Los 
Vientos 

Forest 2017 1461-
65795 

SWTH SY F 4 2 95 37.3 

Los 
Vientos 

Forest 2017 1461-
65796 

SWTH ASY F 5 3 95 38.4 
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Los 
Vientos 

Forest 2017 1461-
65798 

SWTH SY F 1 3 95 30.2 

Los 
Vientos 

Forest 2017 1461-
65800 

SWTH SY F 1 3 91 31.1 

Los 
Vientos 

Forest 2017 2741-
83201 

SWTH ASY F 1 2 95 25.7 

Los 
Vientos 

Forest 2017 2741-
83202 

SWTH SY F 3 3 93 32 

Los 
Vientos 

Forest 2017 2741-
83203 

SWTH ASY F 2 2 95 29.7 

Los 
Vientos 

Forest 2017 2741-
83207 

SWTH SY F 0 2 92 26.1 

Los 
Vientos 

Forest 2017 2741-
83209 

SWTH SY F 3 2 97 30.5 

Los 
Vientos 

Forest 2017 2741-
83213 

SWTH SY F 1 3 94 27.2 

Los 
Vientos 

Forest 2017 2741-
83215 

SWTH ASY F 1 2 92 28.6 

Los 
Vientos 

Forest 2017 2741-
83216 

SWTH SY F 4 3 89 31.8 

Los 
Vientos 

Forest 2017 1461-
53770 

SWTH ASY F 1 3 94 29.3 

Los 
Vientos 

Forest 2017 1461-
65733 

SWTH ASY M 1 3 98 28.2 

Los 
Vientos 

Forest 2017 1461-
65734 

SWTH SY M 0 1 96 27.2 

Los 
Vientos 

Forest 2017 1461-
65735 

SWTH AHY M 1 2 100 32.6 

Los 
Vientos 

Forest 2017 1461-
65754 

SWTH ASY M 2 3 98 31.1 

Los 
Vientos 

Forest 2017 1461-
65755 

SWTH SY M 1 3 101 30.9 

Los 
Vientos 

Forest 2017 1461-
65757 

SWTH SY M 1 2 96 27.1 

Los 
Vientos 

Forest 2017 1461-
65758 

SWTH SY M 1 3 91 28.6 

Los 
Vientos 

Forest 2017 1461-
65759 

SWTH SY M 1 2 92 32.2 

Los 
Vientos 

Forest 2017 1461-
65763 

SWTH SY M 0 2 96 26.7 

Los 
Vientos 

Forest 2017 1461-
65764 

SWTH SY M 0 2 100 28.3 

Los 
Vientos 

Forest 2017 1461-
65765 

SWTH SY M 0 2 99 31 

Los 
Vientos 

Forest 2017 1461-
65766 

SWTH SY M 0 2 95 27.9 
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Los 
Vientos 

Forest 2017 1461-
65768 

SWTH SY M 0 2 96 29.5 

Los 
Vientos 

Forest 2017 1461-
65769 

SWTH SY M 0 2 94 28.6 

Los 
Vientos 

Forest 2017 1461-
65771 

SWTH SY M 0 3 103 31.4 

Los 
Vientos 

Forest 2017 1461-
65797 

SWTH ASY M 5 3 105 38.8 

Los 
Vientos 

Forest 2017 2741-
83208 

SWTH ASY M 4 2 99 39.2 

Los 
Vientos 

Forest 2017 2741-
83210 

SWTH SY M 1 1 96 28.5 

Los 
Vientos 

Forest 2017 2741-
83214 

SWTH ASY M 2 3 104 32.9 

Los 
Vientos 

Forest 2017 1451-
53416 

SWTH  ASY M 1 3 102 31.9 

Los 
Vientos 

Forest 2017 1451-
53637 

SWTH  ASY M 1 2 100 29.7 

Los 
Vientos 

Forest 2017 2741-
83161 

SWTH ASY U 1 1 96 29.1 

Los 
Vientos 

Forest 2017 2741-
83162 

SWTH SY U 1 1 95 27 

Los 
Vientos 

Forest 2017 2741-
83163 

SWTH ASY U 0 1 93 25.5 

Los 
Vientos 

Forest 2017 2741-
83165 

SWTH SY U 1 1 98 
 

Los 
Vientos 

Forest 2017 2741-
83167 

SWTH SY U 0 2 99 26.7 

Los 
Vientos 

Forest 2017 2741-
83168 

SWTH ASY U 1 1 101 29 

Los 
Vientos 

Forest 2017 2741-
83177 

SWTH ASY U 1 2 95 28.6 

Los 
Vientos 

Forest 2017 1461-
65701 

SWTH SY U 1 1 94 27.6 

Los 
Vientos 

Forest 2017 1461-
65702 

SWTH ASY U 1 1 96 24.8 

Los 
Vientos 

Forest 2017 1461-
65703 

SWTH ASY U 1 2 100 29.8 

Los 
Vientos 

Forest 2017 1461-
65704 

SWTH ASY U 1 2 98 29.8 

La 
Vuelta 

Forest 2017 2741-
83001 

SWTH ASY U 1 2 96 29.7 

La 
Vuelta 

Forest 2017 2741-
83002 

SWTH ASY U 1 2 94 31.3 

La 
Vuelta 

Forest 2017 2741-
83003 

SWTH SY U 2 2 99 31.3 
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La 
Vuelta 

Forest 2017 2741-
83004 

SWTH ASY U 1 2 93 28.7 

La 
Vuelta 

Forest 2017 2741-
83005 

SWTH SY U 1 2 96 28.7 

La 
Vuelta 

Forest 2017 2741-
83006 

SWTH ASY U 1 2 94 28.5 

La 
Vuelta 

Forest 2017 2741-
83007 

SWTH ASY U 0 2 97 29.5 

La 
Vuelta 

Forest 2017 2741-
83008 

SWTH SY U 1 1 101 32.9 

La 
Vuelta 

Forest 2017 2741-
83009 

SWTH SY U 1 2 94 29.2 

Los 
Vientos 

Forest 2017 1461-
65730 

SWTH SY U 0 2 97 30.9 

Los 
Vientos 

Forest 2017 1461-
65760 

SWTH SY U 1 2 94 28.7 

Los 
Vientos 

Forest 2017 1461-
65761 

SWTH ASY U 1 2 102 27 

Los 
Vientos 

Forest 2017 1461-
65772 

SWTH SY U 0 3 93 25 

Los 
Vientos 

Forest 2017 1461-
65773 

SWTH AHY U 1 2 102 33 

Los 
Vientos 

Forest 2017 1461-
65774 

SWTH SY U 3 2 101 33.1 

Los 
Vientos 

Forest 2017 1461-
65776 

SWTH ASY U 4 3 101 33.5 

Los 
Vientos 

Forest 2017 1461-
65777 

SWTH ASY U 4 3 99 39.2 

Los 
Vientos 

Forest 2017 1461-
65778 

SWTH SY U 1 3 97 30.6 

Los 
Vientos 

Forest 2017 1461-
65779 

SWTH SY U 1 2 94 26.3 

Los 
Vientos 

Forest 2017 1461-
65780 

SWTH SY U 1 3 95 30 

Los 
Vientos 

Forest 2017 1461-
65781 

SWTH ASY U 2 3 100 
 

Los 
Vientos 

Forest 2017 1461-
65782 

SWTH SY U 1 2 98 27.9 

Los 
Vientos 

Forest 2017 1461-
65783 

SWTH SY U 1 2 100 30.5 

Los 
Vientos 

Forest 2017 1461-
65784 

SWTH SY U 0 2 94 30.7 

Los 
Vientos 

Forest 2017 1461-
65785 

SWTH AHY U 1 3 96 29.8 

Los 
Vientos 

Forest 2017 1461-
65786 

SWTH SY U 0 3 99 30.4 
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Los 
Vientos 

Forest 2017 1461-
65787 

SWTH AHY U 1 3 99 27.5 

La 
Fragua 

Forest 2017 1461-
65788 

SWTH  
 

U 
    

La 
Fragua 

Forest 2017 1461-
65789 

SWTH  SY U 1 2 99 28.1 

La 
Fragua 

Forest 2017 1461-
65790 

SWTH  AHY U 1 3 102 30.9 

La 
Fragua 

Forest 2017 1461-
65791 

SWTH  AHY U 1 2 98 32.2 

Los 
Vientos 

Forest 2017 2741-
83204 

SWTH SY U 4 2 93 35.3 

Los 
Vientos 

Forest 2017 2741-
83205 

SWTH SY U 3 3 89 33 

La 
Vuelta 

Forest 2016 1451-
53265 

SWTH ASY U 1 1 103.5 29.1 

La 
Vuelta 

Forest 2016 1451-
76856 

SWTH ASY U 3 2 95.5 31.3 

La 
Vuelta 

Forest 2016 1451-
53907 

SWTH ASY U 2 1 96.5 30.7 

La 
Vuelta 

Forest 2016 1451-
76862 

SWTH ASY U 1 2 100 32.1 

La 
Vuelta 

Forest 2016 1461-
65606 

SWTH ASY U 2 3 95 28.9 

Los 
Vientos 

Forest 2017 1451-
53814 

SWTH ASY U 0 1 97 28.3 

Los 
Vientos 

Forest 2017 1451-
53606 

SWTH ASY U 0 1 94 28.1 

Los 
Vientos 

Forest 2017 1451-
52637 

SWTH ASY U 1 1 100 28.9 

La 
Fragua  

Forest 2017 1461-
65712 

SWTH  ASY F 1 2 95 28.7 

La 
Fragua  

Forest 2017 1461-
65713 

SWTH  ASY F 1 2 98 29 

La 
Fragua  

Forest 2017 1461-
65717 

SWTH  SY F 0 2 94 27.8 

La 
Fragua  

Forest 2017 1461-
65718 

SWTH  AHY F 1 2 94 28.2 

La 
Fragua  

Forest 2017 1451-
53104 

SWTH  ASY F 1 2 99 30.6 

La 
Fragua  

Forest 2017 1461-
65707 

SWTH ASY M 1 2 99 29.1 

La 
Fragua  

Forest 2017 1461-
65708 

SWTH  SY M 1 2 97 30 

La 
Fragua  

Forest 2017 1461-
65719 

SWTH  SY M 1 2 99 29.8 
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La 
Fragua  

Forest 2017 1451-
76157 

SWTH  ASY M 1 2 99 30.9 

La 
Fragua  

Forest 2017 1451-
90369 

SWTH  ASY M 1 2 101 28.8 

La 
Fragua  

Forest 2017 1451-
76124 

SWTH  ASY M 1 2 101 31.1 

La 
Fragua 

Forest 2018 2741-
83415 

SWTH SY M 1 2 96 28.5 

La 
Fragua 

Forest 2018 2741-
83416 

SWTH SY U 0 2 92 26 

La 
Fragua 

Forest 2018 2741-
83417 

SWTH SY M 0 1 95 28.3 

La 
Fragua 

Forest 2018 2741-
83418 

SWTH SY M 1 2 97 29.8 

La 
Fragua 

Forest 2018 2741-
83419 

SWTH SY M 1 2 95 31.6 

La 
Fragua 

Forest 2018 2741-
83095 

SWTH SY U 1 2 95 28.8 

La 
Fragua 

Forest 2018 2741-
83096 

SWTH ASY U 1 2 99 29.1 

La 
Fragua 

Forest 2018 2741-
83099 

SWTH SY F 1 2 93 27.6 

La 
Fragua 

Forest 2018 2741-
83098 

SWTH ASY M 1 2 102 30.4 

La 
Fragua 

Forest 2018 2741-
83308 

SWTH SY U 1 2 99 30.6 

La 
Fragua 

Forest 2018 2741-
83309 

SWTH SY U 0 1 102 31.7 

La 
Fragua 

Forest 2018 2741-
83310 

SWTH AHY U 1 2 94 28.4 

La 
Fragua 

Forest 2018 2741-
83311 

SWTH SY U 1 2 98 31.2 

La 
Fragua 

Forest 2018 2741-
83312 

SWTH SY U 1 2 90 26 

La 
Fragua 

Forest 2018 2741-
83313 

SWTH ASY U 0 2 100 30.5 

La 
Fragua 

Forest 2018 2741-
83314 

SWTH SY U 1 2 97 29.8 

La 
Fragua 

Forest 2018 1451-
90238 

SWTH ASY U 1 2 102 32.4 

Los 
Vientos  

Forest 2018 2741-
83081 

SWTH ASY U 0 2 101 28.2 

Los 
Vientos  

Forest 2018 2741-
83082 

SWTH SY U 0 2 97 26.8 

Los 
Vientos  

Forest 2018 2741-
83083 

SWTH ASY M 0 2 103 30.8 
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Los 
Vientos  

Forest 2018 1451-
53770 

SWTH ASY U 1 2 94 
 

Los 
Vientos  

Forest 2018 2741-
83084 

SWTH SY M 0 2 96 28.5 

Los 
Vientos  

Forest 2018 1451-
53343 

SWTH ASY U 1 2 96 30.6 

Los 
Vientos  

Forest 2018 1451-
53547 

SWTH ASY U 1 2 93 29.8 

Los 
Vientos 

Forest 2018 2741-
83405 

SWTH SY F 0 1 94 25.6 

Los 
Vientos 

Forest 2018 2741-
83406 

SWTH SY F 0 2 94 29.5 

Los 
Vientos 

Forest 2018 2741-
83407 

SWTH SY F 1 2 92 31 

Los 
Vientos 

Forest 2018 2741-
83408 

SWTH SY F 1 2 98 30.5 

Los 
Vientos 

Forest 2018 2741-
83221 

SWTH SY F 1 2 89 29.4 

Los 
Vientos 

Forest 2018 2741-
83222 

SWTH SY M 1 2 97 28.6 

Los 
Vientos 

Forest 2018 2741-
83223 

SWTH SY M 1 2 97 30 

Los 
Vientos 

Forest 2018 2741-
83224 

SWTH SY F 1 2 93 28.4 

Los 
Vientos 

Forest 2018 2741-
83225 

SWTH ASY U 1 2 99 29.2 

Los 
Vientos 

Forest 2018 2741-
83226 

SWTH ASY U 1 
 

100 29.6 

Los 
Vientos 

Forest 2018 2741-
83227 

SWTH SY M 0 2 97 30.1 

Los 
Vientos 

Forest 2018 2741-
83229 

SWTH ASY M 1 2 100 28.2 

Los 
Vientos 

Forest 2018 2741-
83230 

SWTH ASY U 1 2 96 27.5 

Los 
Vientos 

Forest 2018 2741-
83231 

SWTH ASY U 1 2 97 31.3 

Los 
Vientos 

Forest 2018 2741-
83232 

SWTH ASY U 2 2 91 29.9 

Los 
Vientos 

Forest 2018 2741-
83233 

SWTH SY U 1 2 98 31.4 

Los 
Vientos 

Forest 2018 2741-
83234 

SWTH SY U 1 2 94 30 

Los 
Vientos 

Forest 2018 2741-
83235 

SWTH AHY U 1 2 98 32.1 

Los 
Vientos 

Forest 2018 2741-
83237 

SWTH SY U 1 2 98 30.5 
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Los 
Vientos 

Forest 2018 2741-
83238 

SWTH SY U 1 2 101 30.8 

Los 
Vientos 

Forest 2018 2741-
83239 

SWTH ASY U 0 2 100 29.8 

Los 
Vientos 

Forest 2018 2741-
83240 

SWTH ASY U 0 2 102 27.1 

Los 
Vientos 

Forest 2018 2741-
83241 

SWTH ASY U 0 2 96 29.5 

Los 
Vientos 

Forest 2018 2741-
83242 

SWTH ASY U 0 2 101 28.8 

Los 
Vientos 

Forest 2018 2741-
83243 

SWTH ASY U 0 2 95 30.7 

Los 
Vientos 

Forest 2018 2741-
83244 

SWTH SY U 1 2 95 32.1 

Los 
Vientos 

Forest 2018 1451-
53450 

SWTH ASY U 1 2 98 27.6 

Los 
Vientos 

Forest 2018 2741-
83245 

SWTH SY U 0 1 98 21.1 

Los 
Vientos 

Forest 2018 1451-
53070 

SWTH ASY U 1 2 99 34.9 

Los 
Vientos 

Forest 2018 2741-
83246 

SWTH SY U 1 2 92 31.9 

Los 
Vientos 

Forest 2018 2741-
83247 

SWTH SY U 1 2 98 27.5 

Los 
Vientos 

Forest 2018 2741-
83248 

SWTH ASY U 1 2 102 30 

Los 
Vientos 

Forest 2018 2741-
83249 

SWTH ASY U 0 2 102 29.1 

Los 
Vientos 

Forest 2018 2741-
83250 

SWTH ASY U 1 2 98 30.2 

Los 
Vientos 

Forest 2018 2741-
83251 

SWTH ASY U 0 2 100 29.3 

Los 
Vientos 

Forest 2018 2741-
83252 

SWTH ASY U 1 2 99 29.8 

Los 
Vientos 

Forest 2018 2741-
83253 

SWTH SY U 1 2 98 31 

Los 
Vientos 

Forest 2018 2741-
83254 

SWTH SY U 0 2 101 29.3 

Los 
Vientos 

Forest 2018 2741-
83255 

SWTH ASY U 0 2 105 31 

Los 
Vientos 

Forest 2018 2741-
83256 

SWTH ASY U 1 2 97 30.3 

Los 
Vientos 

Forest 2018 2741-
83257 

SWTH SY U 0 2 102 26.8 

Los 
Vientos 

Forest 2018 2741-
83258 

SWTH ASY U 0 2 102 27.1 
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Los 
Vientos 

Forest 2018 2741-
83259 

SWTH ASY U 1 2 99 28.5 

Los 
Vientos 

Forest 2018 2741-
83260 

SWTH ASY U 0 2 100 31.8 

Los 
Vientos 

Forest 2018 2741-
83261 

SWTH SY U 1 2 99 30 

Los 
Vientos 

Forest 2018 2741-
83262 

SWTH ASY U 1 2 97 29.8 

Los 
Vientos 

Forest 2018 2741-
83263 

SWTH ASY U 1 2 103 30.2 

Los 
Vientos 

Forest 2018 2741-
83264 

SWTH ASY U 0 2 94 28.2 

Los 
Vientos 

Forest 2018 2741-
83266 

SWTH ASY U 1 2 99 29.8 

Los 
Vientos 

Forest 2018 2741-
83267 

SWTH ASY U 0 2 100 29.4 

Los 
Vientos 

Forest 2018 2741-
83268 

SWTH ASY U 0 2 98 27.4 

Los 
Vientos 

Forest 2018 2741-
83269 

SWTH SY U 1 2 94 27.7 

Los 
Vientos 

Forest 2018 2741-
83270 

SWTH ASY U 1 2 95 31.4 

Los 
Vientos 

Forest 2018 2741-
83272 

SWTH ASY U 1 2 100 31.6 

Los 
Vientos 

Forest 2018 2741-
83274 

SWTH SY U 1 2 93 27.4 

Los 
Vientos 

Forest 2018 2741-
83281 

SWTH SY U 1 2 99 29.7 

Los 
Vientos 

Forest 2018 2741-
83282 

SWTH AHY U 1 2 101 30.3 

Los 
Vientos 

Forest 2018 2741-
83283 

SWTH ASY U 1 2 95 28.8 

Los 
Vientos 

Forest 2018 2741-
83285 

SWTH ASY U 1 2 100 25.6 

Los 
Vientos 

Forest 2018 2741-
83286 

SWTH SY U 1 2 98 31.4 

Los 
Vientos 

Forest 2018 2741-
83287 

SWTH ASY U 1 2 102 31.1 

Los 
Vientos 

Forest 2018 1451-
53724 

SWTH ASY U 0 2 102 32.4 

Los 
Vientos 

Forest 2018 2741-
83275 

SWTH SY U 0 2 95 26 

Los 
Vientos 

Forest 2018 2741-
83276 

SWTH ASY U 1 2 98 31 

Los 
Vientos 

Forest 2018 2741-
83277 

SWTH SY U 0 2 97 28.9 
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Los 
Vientos 

Forest 2018 2741-
83278 

SWTH SY U 1 1 96 24.9 

Los 
Vientos 

Forest 2018 2741-
83279 

SWTH SY U 1 2 92 29.1 

Los 
Vientos 

Forest 2018 2741-
83280 

SWTH ASY U 1 2 101 31.2 

Los 
Vientos 

Forest 2018 2741-
83217 

SWTH ASY U 1 2 101 31.5 

Los 
Vientos 

Forest 2018 2741-
83219 

SWTH AHY M 0 2 102 29.6 

Los 
Vientos 

Forest 2018 1451-
53356 

SWTH ASY U 1 1 99 29.6 

Los 
Vientos 

Forest 2018 2741-
83426 

SWTH SY M 1 2 97 29.1 

Los 
Vientos 

Forest 2018 2741-
83427 

SWTH ASY F 0 2 94 27 

Los 
Vientos 

Forest 2018 2741-
83429 

SWTH ASY U 2 2 99 28.4 

Los 
Vientos 

Forest 2018 2741-
83430 

SWTH SY U 1 2 92 26.4 

Los 
Vientos 

Forest 2018 2741-
83432 

SWTH SY U 1 2 98 30.5 

Los 
Vientos 

Forest 2018 2741-
83433 

SWTH SY U 1 2 95 26.9 

Los 
Vientos 

Forest 2018 2741-
83434 

SWTH ASY U 1 2 100 29.7 

Los 
Vientos 

Forest 2018 2741-
83435 

SWTH ASY U 1 3 100 31.8 

Los 
Vientos 

Forest 2018 2741-
83436 

SWTH ASY U 0 2 100 31.2 

Los 
Vientos 

Forest 2018 2741-
83437 

SWTH ASY U 1 2 101 32 

Los 
Vientos 

Forest 2018 2741-
83438 

SWTH ASY U 1 2 97 31 

Los 
Vientos 

Forest 2018 2741-
83439 

SWTH SY U 0 2 96 28.6 

Los 
Vientos 

Forest 2018 2741-
83440 

SWTH SY U 0 2 95 27.5 

Los 
Vientos 

Forest 2018 2741-
83441 

SWTH SY U 0 2 95 30.3 

Los 
Vientos 

Forest 2018 2741-
83442 

SWTH ASY U 1 2 101 31.2 

Los 
Vientos 

Forest 2018 2741-
83443 

SWTH SY U 0 2 97 28.5 

Los 
Vientos 

Forest 2018 2741-
83444 

SWTH SY U 0 2 94 28.6 
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Los 
Vientos 

Forest 2018 2741-
83445 

SWTH ASY U 1 2 99 27.7 

Los 
Vientos 

Forest 2018 2741-
83446 

SWTH SY U 0 2 92 24.6 

Los 
Vientos 

Forest 2018 2741-
83447 

SWTH SY U 1 2 99 29.2 

Los 
Vientos 

Forest 2018 2741-
83448 

SWTH SY U 0 2 93 26.2 

Los 
Vientos 

Forest 2018 2741-
83449 

SWTH SY U 1 2 95 31 

Los 
Vientos 

Forest 2018 2741-
83450 

SWTH ASY U 0 2 98 26.8 

Los 
Vientos 

Forest 2018 2741-
83451 

SWTH SY U 0 2 95 29 

Los 
Vientos 

Forest 2018 2741-
83452 

SWTH SY U 0 2 98 28.7 

Los 
Vientos 

Forest 2018 2741-
83453 

SWTH SY U 1 2 96 27.5 

Los 
Vientos 

Coffee 2018 2741-
83410 

SWTH ASY U 0 2 100 27.8 

Los 
Vientos 

Coffee 2018 2741-
83411 

SWTH SY M 1 2 95 28.9 

Los 
Vientos 

Coffee 2018 2741-
83412 

SWTH SY F 0 2 94 29.5 

Los 
Vientos 

Coffee 2018 2741-
83414 

SWTH ASY U 1 2 93 28.56 

La 
Fragua 

Coffee 2018 2741-
83420 

SWTH SY F 1 2 101 31.8 

La 
Fragua 

Coffee 2018 2741-
83421 

SWTH SY M 1 2 96 27.2 

La 
Fragua 

Coffee 2018 2741-
83422 

SWTH SY M 1 2 95 29.2 

La 
Fragua 

Coffee 2018 2741-
83423 

SWTH SY M 1 2 98 30 

La 
Fragua 

Coffee 2018 2741-
83424 

SWTH AHY F 1 2 95 28.5 

La 
Fragua 

Coffee 2018 2741-
83425 

SWTH ASY U 1 2 98 30.3 

Los 
Vientos 

Coffee 2018 2741-
83087 

SWTH SY M 0 2 97 28.8 

Los 
Vientos 

Coffee 2018 2741-
83085 

SWTH SY U 0 1 92 25.7 

Los 
Vientos 

Coffee 2018 2741-
83089 

SWTH ASY U 1 2 102 34.6 

Los 
Vientos 

Coffee 2018 2741-
83092 

SWTH ASY U 1 2 100 29.5 
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Los 
Vientos 

Coffee 2018 2741-
83091 

SWTH SY F 0 2 92 27.5 

La 
Fragua  

Coffee 2018 2741-
83401 

SWTH SY F 1 2 94 28.6 

La 
Fragua  

Coffee 2018 2741-
83402 

SWTH SY M 1 2 99 29.6 

La 
Fragua  

Coffee 2018 2741-
83403 

SWTH SY F 1 2 92 26.9 

La 
Fragua  

Coffee 2018 1451-
90361 

SWTH ASY U 1 2 102 33.1 

La 
Fragua  

Coffee 2018 2741-
83404 

SWTH SY M 1 2 99 28.9 

La 
Fragua  

Coffee 2018 1451-
90153 

SWTH ASY U 0 2 101 29.6 

Los 
Vientos 

Coffee 2018 2741-
83454 

SWTH SY M 0 2 98 29.2 

Los 
Vientos 

Coffee 2018 2741-
83455 

SWTH ASY M 1 2 98 30.3 

Los 
Vientos 

Coffee 2018 2741-
83456 

SWTH ASY M 1 2 98 29.8 

Los 
Vientos 

Coffee 2018 2741-
83457 

SWTH ASY U 1 2 97 29.6 

Los 
Vientos 

Coffee 2018 2741-
83459 

SWTH SY U 1 2 94 28.8 

Los 
Vientos 

Coffee 2018 2741-
83460 

SWTH SY U 0 2 95 29.5 

Los 
Vientos 

Coffee 2018 2741-
83461 

SWTH SY U 1 2 98 31.6 

Los 
Vientos 

Coffee 2018 2741-
83462 

SWTH ASY U 1 2 95 32.9 

Los 
Vientos 

Coffee 2018 2741-
83463 

SWTH SY U 1 2 98 30.4 

Los 
Vientos 

Coffee 2018 2741-
83464 

SWTH SY U 0 2 94 30.8 

Los 
Vientos 

Coffee 2018 2741-
83465 

SWTH SY U 1 2 95 30.6 

Los 
Vientos 

Coffee 2018 2741-
83466 

SWTH ASY U 0 2 102 32.1 

Los 
Vientos 

Coffee 2018 2741-
83467 

SWTH ASY U 0 2 96 31 

Los 
Vientos 

Coffee 2018 2741-
83469 

SWTH ASY U 0 2 100 29.3 

Los 
Vientos 

Coffee 2018 2741-
83470 

SWTH SY U 0 2 90 27.9 

Los 
Vientos 

Coffee 2018 2741-
83471 

SWTH SY U 0 2 97 29 
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Los 
Vientos 

Coffee 2018 2741-
83472 

SWTH SY U 1 2 94 32.2 

Los 
Vientos 

Coffee 2018 2741-
83473 

SWTH SY U 1 2 95 27.9 

Los 
Vientos 

Coffee 2018 2741-
83474 

SWTH SY U 0 2 98 28.8 

Los 
Vientos 

Coffee 2018 2741-
83475 

SWTH SY U 0 2 98 29 

Los 
Vientos 

Coffee 2018 2741-
83476 

SWTH AHY U 1 2 100 29.5 

Los 
Vientos 

Coffee 2018 2741-
83477 

SWTH ASY U 1 2 97 29.4 

Los 
Vientos 

Coffee 2018 2741-
83478 

SWTH SY U 0 2 95 29.5 

Los 
Vientos 

Coffee 2018 2741-
83479 

SWTH SY U 1 2 98 32.9 

Los 
Vientos 

Coffee 2018 2741-
83480 

SWTH ASY U 1 2 98 28.9 

Los 
Vientos 

Coffee 2018 2741-
83481 

SWTH ASY U 1 2 97 31.8 

Los 
Vientos 

Coffee 2018 2741-
83482 

SWTH SY U 1 2 96 31.3 

Los 
Vientos 

Coffee 2018 2741-
83483 

SWTH ASY U 1 2 105 29.7 

Los 
Vientos 

Coffee 2018 2741-
83484 

SWTH ASY U 1 2 96 27.3 

Los 
Vientos 

Coffee 2018 2741-
83485 

SWTH SY U 1 2 96 29.2 

Los 
Vientos 

Coffee 2018 2741-
83486 

SWTH SY U 1 2 96 30.4 

Los 
Vientos 

Coffee 2018 2741-
83487 

SWTH ASY U 0 2 97 28.6 

Los 
Vientos 

Coffee 2018 2741-
83488 

SWTH AHY U 0 1 100 28.1 

Los 
Vientos 

Coffee 2018 2741-
83489 

SWTH ASY U 0 2 100 28.9 

Los 
Vientos 

Coffee 2018 2741-
83490 

SWTH SY U 0 2 99 28.6 

Los 
Vientos 

Coffee 2018 2741-
83491 

SWTH SY U 0 2 100 29.5 

Los 
Vientos 

Coffee 2018 2741-
83492 

SWTH AHY U 0 2 95 29.5 

Los 
Vientos 

Coffee 2018 2741-
83493 

SWTH ASY U 0 2 99 27.7 

Los 
Vientos 

Coffee 2018 2741-
83494 

SWTH ASY U 1 2 103 31.7 
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Los 
Vientos 

Coffee 2018 2741-
83495 

SWTH SY U 0 2 94 29.4 

Los 
Vientos 

Coffee 2018 2741-
83496 

SWTH AHY U 0 2 93 28.9 

Los 
Vientos 

Coffee 2018 2741-
83497 

SWTH ASY U 1 2 96 30.9 

Los 
Vientos 

Coffee 2018 2741-
83498 

SWTH SY U 0 2 98 30.3 

Los 
Vientos 

Coffee 2018 2741-
83499 

SWTH ASY U 1 2 100 31.4 

Los 
Vientos 

Coffee 2018 2741-
83500 

SWTH ASY U 1 2 94 31 

Los 
Vientos 

Coffee 2018 2741-
83305 

SWTH SY U 1 2 94 31.2 

Los 
Vientos 

Coffee 2018 2741-
83306 

SWTH SY U 0 2 96 32.9 

Los 
Vientos 

Coffee 2018 2741-
83307 

SWTH ASY U 0 2 100 29 

La 
Fragua 

Coffee 2018 2741-
83315 

SWTH SY U 0 2 93 27.7 

La 
Fragua 

Coffee 2018 2741-
83316 

SWTH SY U 0 2 96 30.1 

La 
Fragua 

Coffee 2018 2741-
83317 

SWTH SY U 1 2 95 30.9 

La 
Fragua 

Coffee 2018 2741-
83318 

SWTH ASY U 0 2 101 31.7 

La 
Fragua 

Coffee 2018 2741-
83319 

SWTH SY U 0 2 99 31.3 

La 
Fragua 

Coffee 2018 2741-
83320 

SWTH SY U 1 2 95 30.8 

La 
Fragua 

Coffee 2018 1451-
53160 

SWTH ASY U 1 2 99 29.4 

Los 
Vientos 

Forest 2017 1451-
53542 

SWTH ASY F 1 1 100 29.1 

Los 
Vientos 

Forest 2017 1451-
53786 

SWTH ASY U 1 1 98 32.3 

La 
Fragua 

Forest 2018 1451-
76146 

SWTH ASY U 1 2 99 29.3 

La 
Fragua  

Coffee 2017 1451-
76973 

SWTH  ASY F 1 2 102 30.4 

La 
Fragua 

Coffee 2017 1451-
90320 

SWTH ASY U 1 3 97 30.6 

La 
Fragua 

Coffee 2017 1461-
64709 

SWTH ASY M 2 3 97 32.4 

La 
Fragua  

Forest 2017 1461-
64763 

SWTH  ASY F 1 2 95 28.8 
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Los 
Vientos 

Forest 2017 1461-
65577 

SWTH ASY U 0 2 101 30.6 

La 
Fragua  

Forest 2017 1461-
65711 

SWTH  AHY M 0 1 99 29.9 

La 
Fragua  

Coffee 2017 1461-
65720 

SWTH  ASY F 1 2 89 28.1 

Los 
Vientos 

Coffee 2017 1461-
65738 

SWTH ASY M 1 2 99 28.2 

Los 
Vientos 

Forest 2017 1461-
65762 

SWTH SY M 1 2 100 32 

Los 
Vientos 

Forest 2017 1461-
65775 

SWTH SY U 0 3 93 29.1 

La 
Fragua 

Coffee 2017 2741-
83052 

SWTH ASY M 1 3 100 31.3 

La 
Fragua 

Coffee 2017 2741-
83070 

SWTH SY F 1 3 95 30.4 

Los 
Vientos 

Coffee 2018 2741-
83088 

SWTH SY U 0 1 96 28.2 

La 
Fragua 

Forest 2018 2741-
83094 

SWTH SY M 1 2 97 30 

Los 
Vientos 

Forest 2017 2741-
83160 

SWTH SY U 1 2 93 30.3 

Los 
Vientos 

Forest 2017 2741-
83172 

SWTH SY F 1 1 94 29.1 

Los 
Vientos 

Forest 2018 2741-
83218 

SWTH SY M 0 2 99 27.8 

Los 
Vientos 

Forest 2018 2741-
83220 

SWTH SY F 0 2 94 28.6 

Los 
Vientos 

Forest 2018 2741-
83236 

SWTH SY U 1 2 95 31.6 

Los 
Vientos 

Forest 2018 2741-
83273 

SWTH SY U 1 2 95 30 

Los 
Vientos 

Forest 2018 2741-
83428 

SWTH SY U 1 3 92 27.6 

Los 
Vientos 

Forest 2018 2741-
83431 

SWTH ASY U 0 2 97 28.9 

Los 
Vientos 

Coffee 2018 2741-
83458 

SWTH ASY U 1 1 100 30.1 

Los 
Vientos 

Coffee 2018 2741-
83468 

SWTH SY U 0 2 96 28.6 
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 Appendix B. Animal Use Protocol 
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Appendix C. Colombia Export Permit   
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