
Western University
Scholarship@Western

Geography Publications Geography Department

2017

Morpho-sedimentary characteristics of proximal
gravel braided river deposits in a Froude-scaled
physical model
Peter Ashmore
pashmore@uwo.ca

Tobias Gardner

Pauline Leduc

Follow this and additional works at: https://ir.lib.uwo.ca/geographypub

Part of the Geomorphology Commons, Physical and Environmental Geography Commons, and
the Sedimentology Commons

Citation of this paper:
Ashmore, Peter; Gardner, Tobias; and Leduc, Pauline, "Morpho-sedimentary characteristics of proximal gravel braided river deposits
in a Froude-scaled physical model" (2017). Geography Publications. 357.
https://ir.lib.uwo.ca/geographypub/357

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/geographypub?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/geography?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/geographypub?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1053?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1079?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/geographypub/357?utm_source=ir.lib.uwo.ca%2Fgeographypub%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages


This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/sed.12409 

This article is protected by copyright. All rights reserved. 

DR. TOBI  GARDNER (Orcid ID : 0000-0002-9434-3420) 

Article type      : Original Manuscript 

 

Corresponding author mail id:- tobigardner@gmail.com 

 

Morpho-sedimentary characteristics of proximal gravel braided river 

deposits in a Froude-scaled physical model 

 

Tobi Gardner1, Peter Ashmore, and Pauline Leduc 

 

Department of Geography, Western University, London, Ontario, Canada 

1Now at Capital Region District, Victoria BC Canada 

 

Associate Editor – Vern Manville 

Short Title – Morpho-sedimentary of proximal braided river deposits 

 

ABSTRACT 

A Froude-scaled physical model of a proximal gravel-bed braided river was used to 

connect the river morphological characteristics, and sedimentary processes and 

forms, to deposit geometry. High resolution continuous three-dimensional 

topographic data was acquired from sequential photogrammetric digital elevation 

models paired with grain-size surface maps derived from image analysis of textural 

properties of the surface. From these data the full three-dimensional development of 

the braided river deposit and grain-size sorting patterns was compiled over an 

experimental time period of 40 hours during which the model river reworked a large 
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portion of the braided channel. The minimum surface of the deposit is developed 

progressively over time by erosion, migration and avulsion of channels, and by local 

scour at channel confluences. The maximum surface of the deposit is formed by 

amalgamation of braid bar surfaces and has less overall relief than the minimum 

surface. Confluence scour constitutes about 5% of the area of the minimum surface. 

Migration of individual confluences is limited to distances of the order of the width 

and length of the confluence so that confluences do not form laterally extensive 

deposits and basal surfaces. Maximum and minimum surfaces have very similar 

grain-size distributions, and there is no extensive basal coarse layer. Deposit 

maximum thickness is strongly associated with large channel confluences which 

occur as deeper areas along the main channel belt and make up a large proportion of 

the thickest portions of the deposit.  

 

Keywords:  Braided river sedimentology, confluence deposits, deposit geometry, morpho-

sedimentary processes, physical-scale modelling. 

 

INTRODUCTION 

Gravel-braided river bed deposit geometry and grain-size sorting patterns are 

controlled by channel-scale topography, grain-size distributions, pattern geometry 

and kinetics, and bar and bedform characteristics (Bluck, 1974, 1979; Boothroyd & 

Ashley, 1975; Bridge 1993; Ashworth et al., 1999; Moreton et al, 2002; Lunt & Bridge, 

2004; Bridge & Lunt, 2006; van de Lageweg et al. 2013a).  Research on modern 

gravel braided river deposits from field documentation and physical models has 

shown that they consist of an array of remnants of bars, channel and scour fills and 

larger-scale bar assemblages (McDonald & Banerjee, 1971; Smith, 1974; Boothroyd & 
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Ashley, 1975; Bluck, 1974, 1979; Hein & Walker, 1977; Moreton et al, 2002; Sheets et 

al., 2002; Lunt & Bridge, 2004; Lunt et al., 2004; Bridge & Lunt, 2006). Bars form 

by gradual lateral and downstream accretion of initial unit bars (Smith, 1974; 

Ashmore, 1982; Bridge 1993 and 2003), and by a combination of lateral migration 

and secondary braiding or ‘partial avulsion’ (e.g. Ashmore, 1982; Leddy et al., 1993; 

Egozi & Ashmore, 2009). Coarse-grained gravelly braided deposits are made up of 

poorly-sorted, horizontally-bedded stratified sheets with bedding planes that are 

roughly parallel to the bar surface with channel units identifiable in cross-section in 

aggraded deposits (MacDonald & Banerjee, 1971; Boothroyd & Ashley, 1975; Church 

& Gilbert, 1975; Rust, 1975; Hein & Walker, 1977; Bluck, 1979, Steel & Thompson, 

1983; Moreton et al., 2002; Lunt & Bridge, 2004; Lunt et al., 2004). At channel 

reach scale, considerable local variability in strata characteristics and grain size is the 

result of complex and variable histories of bar deposition and development (Bluck, 

1979).  

Particularly in pro-glacial settings, there are well-documented transitions in 

modern channel and bar morphology and sedimentary processes and deposits from 

(ice) proximal to distal locations covering a range of channel and sedimentary 

characteristics (MacDonald & Banerjee, 1971; Smith, 1974; Boothroyd & Ashley, 

1975; Church & Gilbert, 1975; Rust, 1975; Hein & Walker, 1977; Marren, 2005). In 

particular, the proximal–distal transition is one of increasing depth relative to grain 

size, and increasing sediment mobility, accompanied by changes in dominant bar 

forms from longitudinal with height similar to D90 no slip face to multi-lobate 

linguoid forms with frequent lee slip faces. Bedding characteristics transition from 

horizontal to cross-bedded in this transition of bar types. Larger scale trough cross-

bedding has been documented in Pleistocene deposits of what are presumably much 
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larger scale rivers with large-scale multi-lobate, linguoid bedforms (e.g. Church & 

Gilbert, 1975; Rust, 1975; Siegenthaler & Huggenberger, 1993; Beres et al., 1999; 

Huggenberger & Regli, 2006)  

Quantitative analysis of braiding deposit set thicknesses (van de Lageweg et al., 

2013a) from a small-scale river model has shown that set thickness is tied to channel 

scale morphological processes and is typically equivalent to 10 to 40% of channel 

depth, with one to three vertical sets in most locations. Bar and channel fill deposits 

have a range of sorting patterns with weak horizontal, or slightly inclined, 

stratification and may appear stacked and cyclic (Smith, 1974; Miall, 1977; Bluck, 

1979; Bentham et al., 1993; Sambrook-Smith, 2000; Bridge & Lunt 2006; Marren, 

2005). Grain size varies between bedding units but there is little evidence for distinct 

vertical trends in grain size in the gravel size fraction and channel deposits (as 

distinct from overbank sediments) (Boothroyd & Ashley, 1975, fig. 25; Bluck 1979; 

Heintz et al., 2003; Lunt & Bridge, 2004; Lunt et al., 2004; Marren, 2005; Guerit et 

al, 2014).  

Scour at anabranch confluences is a significant feature of gravel braided river 

morphology and sediment transport (Ashmore, 1993, 2013; Bridge, 1993; Bridge, 

2003; Ashmore & Gardner, 2008) related to the distinctive secondary flow structure 

(Bridge, 2003). Scour occurs at the intersection of the main active channels of the 

braided river around major braid bars and therefore scour areas form, migrate and 

infill as the confluent anabranches change morphology and position, and shift 

location by local avulsion (Ashmore, 1993). The dimensions of confluence scour 

holes are controlled by the total flow through the confluence and secondarily by the 

confluence angle and symmetry (Ashmore & Parker, 1983).  Because gravel braided 

anabranches have typically low sinuosity, scour at bends and bar margins may be less 
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pronounced than at confluences (Ashmore & Gardner, 2008; Ashmore, 2013). Scour 

at anabranch confluences is likely to exert strong local control on deposit geometry 

and potentially lead to diagnostic deposit characteristics (Ashmore & Parker, 1983; 

Klaassen & Vermeer, 1988; Bridge, 1993; Bristow et al., 1993; Siegenthaler & 

Huggenberger, 1993; Best & Ashworth, 1997; Leclair et al., 1997; Miall & Jones, 

2003; Marren, 2005; Sambrook-Smith et al., 2006; Gardner & Ashmore, 2011), 

although earlier studies of pro-glacial alluvium make little mention of these features 

(Smith, 1974; Boothroyd & Ashley, 1975; Church & Gilbert, 1975; Rust, 1975; Hein & 

Walker, 1977). Confluences may migrate laterally and longitudinally, but direct 

evidence and data on migration distances is very limited (Best & Rhoads, 2008; 

Ashmore & Gardner, 2008). Ashmore (1993) shows examples of confluence 

adjustment in a physical model but observed only relatively short (less than the 

confluence dimensions) migration distances. It is possible that confluence deposits 

may comprise a significant proportion of the preserved river deposits overall 

(Huggenberger & Regli, 2006), although this may vary in the proximal–distal 

transition (Siegenthaler & Huggenberger, 1993), and that basal surfaces may be 

formed by extensive migration of confluence scour (Best & Ashworth, 1997). 

Confluences are mentioned in sedimentological syntheses of braided river deposits 

(Bridge, 1993; Lunt et al., 2004; Bridge & Lunt, 2006; Marren, 2005; Miall, 2014) 

and the occurrence of open-framework gravel at the lower erosion surface has been 

interpreted to represent confluence scour sediments in some cases (Siegenthaler & 

Huggenberger, 1993; Lunt et al., 2004; Wooldridge & Hickin, 2005). However, to 

date, confluence-related contributions to braided river deposit geometry and 

sedimentology have not been analyzed quantitatively and from direct observations of 

deposit formation.  
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Further data on the processes affecting deposit geometry and granulometry in 

three-dimensions and directly observed during active formation of the deposits 

would aid process-based understanding and quantitative information on gravelly 

braided alluvium, including the contribution from anabranch confluence zones.  

Small-scale physical models have been shown to be a useful source of this type of 

quantitative information in both aggradational and non-aggradational conditions for 

braiding and other river planforms (e.g. Peakall, 1996; Moreton et al., 2002; Paola et 

al., 2009; van de Lageweg et al, 2013a,b; Van dijk et al 2012 and 2013; Kleinhans & 

Van den Berg, 2011).   

The objective of this study is to expand and extend previous analysis of data 

from a physical model of a gravel braided river (Gardner & Ashmore, 2011; Leduc at 

et al. 2015) to document the quantitative three-dimensional geometry of proximal 

gravelly braided alluvium, including channel confluence deposits and their 

contribution to deposit geometry. A quantification of this kind from physical model 

data has not been done previously.  This approach is referred to herein as the 

morpho-sedimentary characteristics of gravel braided rivers to signal the explicit 

quantitative linking of the known bar-scale morphology and morphological changes 

to the deposit geometry and granulometry. This analysis of deposit geometry during 

formation complements existing facies and stratal analyses, gravel braided river 

alluvium from field investigations (Boothroyd & Ashley, 1975; Bluck, 1979; Bridge & 

Lunt, 2006), and previous analysis from physical models for a range of river types 

(Moreton et al., 2002; van de Lageweg et al, 2013a,b; Van dijk et al. 2012 and 2013; 

Kleinhans & Van den Berg, 2011). 
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METHODS:  

Physical Model 

A Froude-scale physical model (Peakall et al., 1996; Young & Warburton, 1996) 

was used to simulate a gravel-bed braided river (Fig. 1) to give geometric, kinematic 

and dynamic similarity between the model and the full scale river.  The flume is 18 m 

long and 3 m wide, and the model was scaled to a pro-glacial river at a field site in the 

Canadian Rockies (see Ashmore et al., 2011) at approximately 1:30 length ratio under 

constant discharge of 2.1 l/s (equivalent to about 12 m3s-1 in the pro-glacial river, 

which is a typical diurnal peak flow of that river during meltwater season) and slope 

of 1.5%. The grain-size distribution was used as the primary geometric scale ratio and 

the complete gravel grain-size distribution was scaled geometrically in the model 

(Fig. 2). The grain sizes in the model range from 0.17 mm to 16 mm, with D50 of 

approximately 1.3 mm and D90 of 3.6 mm (Fig. 2).  The distribution was truncated at 

the fine end (equivalent to about 4 to 5 mm in the prototype) to avoid particle 

suspension (turbidity) and formation of ripples in the model, so as to preserve 

hydraulic (for example, form and grain resistance) and gravel bedform similarity. 

Consequently the sand fraction in the full scale river is not represented in the model. 

The consequences of this are not known in detail but gravel transport dominates the 

morphology and overall dynamics of this type of braided river so that overall gravel 

deposit dimensions are expected to be similar between model and the full scale river. 

In the full scale river, sand occurs mainly as matrix in the gravel and locally as very 

thin slack water deposits (Boothroyd & Ashley, 1975; Bluck, 1979; Sambrook Smith, 

2000). Froude scaling preserves the same non-dimensional bed shear stress (Shields 

parameter) in the model as in the full scale river across all size fractions so that bed 

material mobility, transport conditions and sorting are reproduced in the model 
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along with morphological similarity (Ashmore, 1982, Ashmore & Parker, 1983, 

Peakall et al., 1996; Young & Warburton, 1996).  Channel depths are of the order of a 

maximum of 10 times D90 so that flows are relatively shallow, Reynolds numbers are 

relatively low but flow is turbulent or transitional and boundaries are hydraulically 

rough (Gardner, 2009). For channel depth of 0.03m (typical of larger channels in the 

model), Shields stress is of the order of 0.21 for D50 and 0.075 for D90. At lower 

depths partial transport (limited mobility of the largest grains) will occur, as it would 

in the full scale river. Bedforms are dominated by planar gravel sheets and unit bars; 

no dune-like bedforms or ripples occur. While scaled to a particular site the model 

generically represents conditions in other proximal (low depth/grain size ratio) 

gravel braided rivers. 

Discharge was constant throughout the experiment as an experimental 

simplification against which varying discharge data might later be compared. Flow 

was turned off hourly to acquire dry-bed images for photogrammetry. Sediment was 

recirculated so that the experiments were run in net equilibrium in terms of total 

sediment mass balance. The net equilibrium state was chosen so as to isolate the 

connection between channel morphology and the resulting deposit geometry and 

grain-size characteristics without the influence of overall aggradation or aggradation 

rate (see also van de Lageweg et al., 2013 a,b). Successive digital elevation models 

(DEMs) over the course of the experiment show some overall redistribution of 

sediment within the flume so that slight (a few millimetres) net aggradation occurred 

within the 10 m length used for data collection. The experiment simulated the 

morpho-dynamics and floodplain reworking of the river over a time period sufficient 

to rework a large area of the river bed within the model and for substantial channel 

pattern development and topographic changes to occur. The 41 hours of flume time, 
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assuming ‘bankfull’ conditions occurring only a few days per year, represents several 

years of development in a full scale river. 

The experiment was run for an extended period of over 200 hours and a sample 

period of 41 hours was selected for analysis (experiment hours 139 to 179). The flume 

bed was fully braided during this time and some of the braiding bed features were 

inherited from earlier in the experiment. Orthophotographs and DEMs were 

extracted from hourly images of the dry bed surface during this time period. This 

approach allowed for high-frequency measurements of the river bed deposit (see also 

van de Lageweg., et al 2013a). Further details of the experiments and model river 

morphology are also in Gardner & Ashmore (2011) and Egozi & Ashmore (2008, 

2009). 

 

Photogrammetry 

The source data are DEMs and grain size maps acquired hourly with vertical 

stereo photos of the riverbed (with flow turned off) using a 6.3 mega-pixel Canon 

10D digital camera using a Canon 20 mm lens (Canon, Tokyo, Japan). The camera 

was secured to a platform that ran the length of the flume on rails attached to the 

roof trusses in the ceiling of the laboratory. For these experiments, the external self-

calibrating bundle adjustment program GAP (Chandler & Clark, 1992) was used to 

estimate the camera parameters (Chandler et al., 2005; Wackrow et al., 2008).  

The camera was remotely triggered and photographs overlapped by 

approximately 75% and covered a 3 m width and 12 m length of the flume.  A ground 

control point (GCP) network of 74 control points was set up in the river model for 

photogrammetric control. Twenty-one (28%) of the GCPs distributed throughout the 
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flume were designated as check points to assess the calibration solution (Chandler, 

1999). 

All photogrammetric processing was completed in Leica Photogrammetry 

Suite (LPS) v9.1 (Leica, Wetzlar, Germany).  The optimal settings for 

photogrammetric restitution were derived through iterative testing in LPS. The 

accuracy of the triangulation routine was assessed by comparing the object-

coordinate and image-coordinate residuals generated by LPS (Chandler et al., 2001). 

These residuals represent the root-mean-square-error (rmse) of the GCPs and 

indicate the change between input coordinates (object space) and the newly-

estimated coordinates derived from the triangulation routine. The rmse for the GCPs 

was <0.7 mm (X, Y, Z directions) and <0.7 µm in the object space and image space, 

respectively, combining a 2D camera calibration model in LPS with an external 

camera calibration (Chandler et al., 2005; Chandler & Clark, 1992 – GAP 

calibration). Orthophotographs and DEMs were generated from alternate image 

pairs (Wackrow et al., 2008). 

 

Digital Elevation Models (DEMs) 

The pixel cell resolution of the output DEMs was 3 × 3 mm. Error assessments 

were made on the DEMs following routines similar to those described by Brasington 

& Smart (2003), Chandler et al. (2005), and Wackrow et al. (2008). Digital elevation 

model accuracy was assessed using the residuals of the input GCP elevations and the 

modelled GCP elevations (e.g. Brasington & Smart, 2003). An independent estimate 

of precision was made by comparing the elevations of 60 paired-points from regions 

known to have no change between DEM epochs. Internal reliability was assessed by 
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measuring the elevation at points on different image-pairs that covered the same 

area (e.g. Pyle et al., 1997). Based on these error assessments, the output DEMs had 

an accuracy of 2 mm (±1.3 mm), internal reliability was 1 mm and vertical change 

detection accuracy was ±3 mm which is equivalent to D90 of the flume sediment. 

 

Perspective errors tend to be most common at the periphery of vertical images 

(Wolf & Dewitt, 2000) and for this reason GCPs at the periphery of the images were 

excluded and all analysis was completed on a cropped DEM template.  The individual 

cropped DEMs were assembled in ERDAS Imagine to generate DEM mosaics of a 2.5 

x 10 m section of the physical model (Fig. 3B).  

 

During the 41 hours of experiment time the bed elevation varied over a range of 

values at each location. From the minimum and maximum values at each point two 

specific surfaces are defined here: the minimum surface and the maximum surface 

denoted by the lowest and highest elevations at each point during the 41 hours of 

experiment time. The difference between these two surfaces over the areal extent of 

the data has been referred to as the morphological active layer (Leduc et al., 2015) 

and below it is used to assess deposit thickness in the active channel between highest 

braid bar surfaces and the lower channel and scour elevations.  

 

Orthophotographs 

Digital elevation models (DEMs) generated from the photogrammetric 

restitution were used to generate the orthophotographs (Fig. 3A). True accuracy of 

the orthophotographs was determined by comparing the measured distance between 
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GCPs in the river model to the same points measured on the orthophotographs. This 

analysis indicated that the mean accuracy of the orthophotographs was 0.7 mm (± 

0.5 mm).  

Grain Texture Maps  

River bed grain texture information was derived from the vertical images using 

an empirical predictive relationship between image texture properties and surficial 

grain size. The basis of the approach is described in Carbonneau et al. (2005a) and 

Carbonneau (2005b), where local image texture properties were derived from a 64 

grey-level co-occurrence matrix (Haralick et al., 1973) and correlated to samples of 

homogeneous bed-surface grain patches. Extensive calibration and parameter testing 

improved the accuracy and reliability of the textural analysis and mapping (see 

Leduc et al. 2015). The sampling window was 7 x 7 pixels (chosen based on median 

grain size and image resolution) and the best fit of the data was based on the entropy 

index. Calibration was developed by sampling small patches of grains on the model 

surface using adhesive. The samples were then physically sieved to derive the patch 

grain size statistics. Fifty-eight patches had uniform grain size and an additional 152 

samples randomly distributed across the surface had the full range of grain sizes and 

gradations. Half of the samples were used to develop the calibration and the other 

half to validate the calibration and derive error statistics (see Leduc et al., 2015, fig. 

1). The mean absolute error of the median grain size of a patch was 0.38 mm, 

standard deviation was 0.61 mm. The relative error of the absolute grain size ranged 

from 0 to 100% but over half of the calibration set had an error less than 20%. The 

derived data are image-based grain-size estimates of the median grain size, not 

strictly physically-measured grain sizes (Leduc et al., 2015). Maps of this grain size 

were produced in Scilab® using the ortho-rectified output images and mosaicked into 
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a continuous map for each time period (Fig. 3C). Very clear particle size sorting is 

apparent throughout the runs with patterns very similar to those observed in the 

field (for example, lateral sorting in bends and confluences, bar head coarsening, 

longitudinal sorting on bars) (Leduc et al., 2015) (Fig. 4). 

RESULTS 

Channel morphology and dynamics 

The intent of the analysis is to relate deposit and maximum/minimum surface 

geometry to the river morphology and processes of morphological change (scour, bar 

formation, migration, avulsion). Therefore this section begins with a short 

description of the morphological changes over the 41 hour analysis period. These 

morphological changes and associated sediment sorting patterns can be viewed in 

the time lapse animations of DEMs and grain maps included with the additional 

material for the paper.   

The experiment was initiated from a straight channel with a trapezoidal cross-

section (1.5 cm deep, 50 cm wide) and a braided morphology self-formed within a 

few hours. The braided morphology persisted and was constantly active for the 

remainder of the experiment. At the beginning of the observation period, after over 

130 hours of braiding activity, the river had reworked the entire model area and had 

a fully-developed and active braided morphology. During the subsequent 41 hours, 

the main channel underwent considerable morphological changes; anabranch 

confluences were formed and abandoned, new bars were deposited and there was 

one major avulsion of the main channel. However, some areas of the flume had no 

measurable elevation change due to inactive channels occupying the area during the 
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sampled period. These ‘no change’ areas constitute about 30% of the measured area 

and are mainly large, stable braid bars; they were removed from the analysis.  

At the start of the observation period a single main active channel (an active 

channel is defined as one showing measurable morphological change over time, see 

Egozi & Ashmore, 2009; Ashmore et al., 2011) was established on the right-hand side 

of the flume at the upstream end of the study reach. A single dominant active 

anabranch, with a larger number of inactive (or less active) channels appears to be 

characteristic of many gravel-bed braided rivers (Ashmore, 2013). This channel 

extended obliquely downstream and across the flume to join a large, formerly active, 

channel on the left side. A number of well-developed braid bars and secondary 

channels developed but only one secondary channel showed significant 

morphological change during the observation period. This active secondary channel 

originated at a persistent bifurcation area near the middle of the observed area, 

flowed along the right side of the flume in the downstream part of the observation 

area and remained partially active throughout the observation period undergoing 

local scour, fill, bar development and lateral migration. This relatively low active 

braiding intensity at any particular time is typical for proximal braided channels 

(Bertoldi et al., 2009; Egozi & Ashmore, 2009; Ashmore et al., 2011). In the last one 

or two hours of the observations this channel became the route for a major avulsion 

and re-configuration of the channel pattern. Anabranch sinuosity was less than 1.05. 

This planform differs from the higher sinuosity main channel with systematic lateral 

migration and chute cutoffs analyzed by van de Lageweg et al. (2013a).  

Morphological activity was focused around the zone of the main active 

anabranch which underwent significant morphological change. This includes: 

formation and abandonment of confluences with other anabranches and around new 
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braid bars developed within the active channel zone; formation of lateral bars; mid-

channel bar formation and bifurcation around new bars; formation and 

abandonment of several active secondary branches; partial avulsions (Egozi & 

Ashmore, 2009) and a major avulsion in the last two hours of the time period. Egozi 

& Ashmore (2009, figs 6 to 10) show examples of channel and planform dynamics 

during another experiment in the same flume at the same slope and discharge as the 

current experiment.   

 

Maximum and Minimum Surfaces of Braided River Deposit 

The sequence of 41 hourly DEMs was analyzed to determine the evolution of the 

river and the topography of the maximum and minimum (upper and lower) surfaces 

of the deposit. Maximum and minimum surface maps were derived by overlaying all 

DEMs to extract the highest and lowest elevation value for each pixel from the 41 

DEMs. The resulting maximum and minimum boundary surfaces are topographically 

distinct (Fig. 5A and 5B) and are easily differentiated from one another and from 

typical bed topography, based on the frequency distributions of their surface 

elevations (Fig. 6). 

 

The minimum surface shows the channel features typical of a braided river, 

where areas of maximum scour are associated with, for example, erosion by the 

larger anabranches, scour in bends and confluences, and lateral migration or 

avulsion of anabranches and larger channels. The maximum boundary surface is also 

defined by a distinct morphology characterised by the amalgamation of individual 

bars, the cumulative geometry of major braid bar surfaces and the overall bar 

elevations along the river. Cross-sections of the minimum and maximum surfaces at 
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2.33 m, 6.33 m and 9.93 m demonstrate the considerable differences in relief across 

the two surfaces (Fig. 7). 

 

The maximum differences in elevation between the maximum and minimum 

surfaces occur at locations of greater channel activity (for example, cross-sections at 

6.33 m and 9.93 m). The profile at 6.33 m shows the large difference between the 

surfaces at a cross-section as a result of channel activity. The small difference at the 

left of the profile is indicative of an area of very minor topographic change while the 

much wider differences to the right results from substantial channel erosion and fill. 

Differences in the elevation distributions for the two surfaces can also be described 

using simple frequency distributions. Elevations overlap to a small extent because 

higher elevations in the minimum surface are the bases of minor channels which may 

be higher than some bar tops or other features in the maximum surface. The 

elevation distributions fit simple gamma distribution which aligns with observations 

of van de Lageweg et al. (2013b). The maximum surface distribution is narrower than 

that of the minimum surface because the latter reflects channel and bed topography 

while the former reflects primary bar top elevations which have an upper limit in 

elevation (Fig. 8). 

 

Gardner & Ashmore (2011) showed that by determining the time at which each 

pixel reached its minimum value it is possible to map the ‘age’ of the surface. This 

map shows that distinct tracts of the surface develop at different times, tied directly 

to the channel geometry and kinetics, with no systematic age pattern across the 

surface. The surface is formed by channel avulsion with very limited systematic 

lateral migration and bar accretion. In this way the formation of the braided river 

minimum surface differs from the more-systematic lateral channel migration of a 
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meandering channel or chute-dominated higher-sinuosity braiding (van de Lageweg 

et al., 2013a,b). The minimum surface is not sub-planar and is not formed by 

continuous lateral planation.  

 

Grain-size distribution of maximum and minimum surfaces 

The maximum and minimum surfaces have a similar range in grain size but 

different spatial patterns of grain-size variation. The maximum surface grain map 

shows a wide range of grain sizes tied to the major bar features with patchy patterns 

of fine and coarse grains (Bluck, 1979; Rice & Church, 2010) (Fig. 9A). Coarser areas 

may be partially winnowed and reflect ‘maturing’ of the grain surface over time 

(Bluck, 1979; Ashworth et al., 1992). The grain patterns on the minimum surface 

grain map (Fig. 9B) reflect the more-organized channel topography of this surface 

(Fig. 6). Active areas of the bed show elongated coarse-grained and fine-grained 

elements mainly parallel to the channel margins. The minimum surface grain map 

shows no extensive patches of coarse-grained lag deposits and the grain-size 

population is very similar to that of the maximum surface (Fig. 9A). The main feature 

that distinguishes the two boundary surfaces is the configuration and shape of the 

textural units, which is determined by the channel morphology, and by the erosional 

and depositional processes at each surface. In addition, the grain-size distribution of 

the surfaces is almost identical to that of the river bed itself at any given time (Fig. 

10). For example, a Kolmogorov–Smirnov test of the distributions gave D statistics of 

0.110 (time 179 versus maximum surface) 0.070 (time 179 versus minimum surface) 

and 0.060 (maximum surface versus minimum surface), all of which show no 

significant difference at alpha of 0.05. Thus, at the channel-reach scale, there is no 
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statistical distinction between the grain-size distributions of the river bed, the 

minimum or the maximum surfaces (see also Leduc et al., 2015). 

 

Deposit Thickness  

The thickness of the deposit was computed by differencing the maximum and 

minimum surfaces, resulting in a DEM of difference that shows the deposit thickness 

above the minimum surface (Fig. 11). The maximum surface is, in effect, the time-

integrated floodplain elevation of the braid bar tops and associated channels 

(Rheinfelds & Nanson, 1993). Subsequent reworking may erode parts of the higher 

surface so one can think of this as the maximum deposit thickness based on bed 

elevation information and perhaps not the ‘true’ deposit thickness depending on 

post-depositional changes. However, bar tops are the least likely areas to undergo 

subsequent erosion under the experimental conditions, except by lateral bar 

trimming. Maximum bed thickness of the deposit is 0.048 m (scales to 1.55 m at the 

prototype scale) and the mean deposit thickness is about 0.015 m (scales to 0.48 m). 

Maximum thicknesses coincide with the main active channel belt. The distribution of 

thickness values shows a skewed distribution with a long tail towards higher 

thickness which follows a Gumbel distribution with a significance level of 0.01 for a 

Kolmogorov–Smirnov distribution test (Fig. 12).  

The cumulative distribution demonstrates that only about 15% of the deposit is 

greater than 0.02 m (scales to 0.64m in full scale river) in thickness. Based on 

measurements from the DEMs, the mean anabranch depth was about 0.015 m and 

the mean confluence depth was 0.023 m. If channel depth approximates deposit 

thickness (Bridge, 2003; Lunt & Bridge 2006; van de Lageweg et al., 2013b), then it 
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appears that confluences make up a distinct part of the thickness distribution (see 

below). The areas of maximum thickness coincide with the areas of lowest elevation 

on the minimum surface map indicating that local scour processes and channel 

erosion, rather than channel aggradation or bar top elevations, controls the bed 

thickness at the channel-scale (Ashworth et al., 1999). Bed thickness reflects the 

channel-scale erosion below a low-relief maximum (depositional) surface formed by 

amalgamation of the surfaces of major braid bars. This control of bed thickness by 

basal erosion can be shown by plotting local deposit thickness against elevation for 

the maximum and minimum surface. There is a much stronger trend for deposit 

thickness with lower minimum surface elevation than with higher maximum surface 

elevation (Fig. 13). 

Confluences at the Minimum Surface 

The areas of channel confluence are often zones of deepest scour and maximum 

deposit thickness (Ashmore & Gardner, 2008). This is a unique and potentially 

diagnostic feature of some braided river deposits (see Introduction). However, there 

are few, if any, quantitative data on the contribution of confluences to deposit 

geometry and minimum surface characteristics. The contribution of confluence scour 

to development of the minimum surface was assessed by mapping (manually) the 

time-integrated area of 31 confluences to identify those pixels in confluences that 

coincided with minimum surface elevations using the hourly paired DEMs and 

orthophotographs. Confluences have a very distinct and identifiable morphology 

(Ashmore & Gardner, 2008; Fig. 4) so that the area of the confluence can be 

identified from the elevation data and visually in the DEMs.  
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Upstream limits of confluences were defined by the upstream anabranch 

termination at the head of the confluence (often with an obvious negative step in bed 

elevation) and the downstream extent by the location at which channel depth 

returned to a depth similar to the upstream anabranches. Each confluence was 

mapped at hourly intervals by delineating the area of the confluence scour zone on 

the orthophotographs until the confluence was abandoned or filled in. Confluence 

elevation data were derived by overlaying the confluence area and DEM for each 

hour that the confluence existed. The portions of each confluence that formed the 

minimum surface were patched together and area and elevation data were derived.  

Individual confluences occupy very small areas of the entire experimental river 

at a given time but if they exist for several hours the migration of the confluent 

channels may extend the area affected by confluence scour both laterally and 

longitudinally and cover a much larger area of the river cumulatively over time 

(Ashmore & Gardner, 2008). Confluence angles ranged from 5 to 81 degrees; they 

form at an active anabranch confluence, develop with the changes in size, orientation 

and position of the confluent anabranches, and then become inactive and infilled 

when those anabranches shift location, at which point new confluences form in new 

locations (Fig. 14). Average life span of confluences was 5 hours, longitudinal 

migration length averaged about 1.4 times confluence length and lateral migration 

was typically 1 times confluence width. Migration direction was no more than 

plus/minus 30 degrees from the flume (river) long axis and typically much less, 

suggesting that lateral migration is very limited in most cases.  

Based on these maps and associated data, confluences occupied approximately 

21% of the active area of the river bed during the experiment (Fig. 14A) and about 5% 

of the area of the minimum erosion surface (Fig. 14B). Although the areal 
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contribution of confluences to the minimum surface was small, confluences do have a 

consistent effect on the minimum surface because 26 of the 31 confluences [158 of 

176 (90%) confluence measurements] included in the analysis eroded to the 

minimum surface in at least part of their extent. This varies spatially and there are 

areas of denser, persistent confluence occurrence especially near the centre of the 

mapped channel area (Fig. 14).  

 

Confluence Deposit Thickness 

The confluence deposit thickness was derived by subtracting the minimum 

surface associated only with confluence zones from the maximum surface. The 

resulting map (Fig. 14C) shows the varying deposit thickness at each confluence, and 

that the deeper deposits generally coincide with the confluences that contributed the 

largest area to the minimum surface (compare with Fig. 14A and B).  

The isolation of the confluence deposits and the relative lack of connection 

among the confluence deposits are striking. These spatial patterns are similar to 

outcrop interpretations of ancient braided rivers that have documented confluence 

deposits in isolated clusters (e.g. Cowan, 1991; Miall & Jones, 2003). Figure 14C 

shows that the confluence deposits are distributed mainly along the main channel 

belt and are part of the main body of the deposit setting the maximum thickness of 

the strata associated with large scale braid bars and channel fills and are 

comparatively thicker than other portions of the river deposit (Fig. 15). Deposits not 

associated with confluences averaged 0.016 m thickness (which scales up to 0.38 m 

at the prototype scale), while confluence deposits averaged 0.022 m thickness (scales 

to 0.74 m at the prototype scale) (Table 1). Although confluences made up 5% of the 

total area of the minimum surface (Fig. 14C), the volumetric contribution of 
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confluences to the deposit was 22%, so that, because of the deposit thickness, 

confluence deposits make up a greater proportion of braided river deposits than their 

areal contribution to the minimum surface. There is overlap between the thicknesses 

of confluence and non-confluence deposits but confluence deposits make up a large 

proportion of the thicker deposits and almost all of the deposit thicknesses that 

exceed 0.035m (scales to 1.12 m equivalent to about 10 times D90 of the bed 

sediment) (Fig. 15). 

 

DISCUSSION 

The results of this quantitative analysis of proximal gravelly braided river 

deposit topography, geometry and particle size characteristics expands existing 

knowledge of this type of alluvium in several respects. By mapping river bed 

topography at braid bar and anabranch confluence–diffluence scales over time the 

minimum and maximum elevations of the surface at any location can be defined and 

combined into surfaces that define the topography of lower (erosion) surface and the 

upper (depositional) surface of the deposit. It retains substantial topography related 

to major channels, confluence scour and avulsion rather than systematic lateral 

migration. The locally variable time of formation of the basal surface (Gardner & 

Ashmore, 2011) reflects these dynamics and the tendency for this type of low-

sinuosity channel to undergo repeated local avulsion and cutoff rather than develop 

by extensive lateral migration and planation. The topography of the maximum 

surface differs from the minimum surface reflecting the merging of the tops of the 

major braid bars. This contrasting topography of the maximum and minimum 

surface, and the more symmetrical frequency distributions, differ from those in 

higher sinuosity channels with chute cutoffs (van de Lageweg et al., 2013, a,b). The 
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observation that the minimum surface is not formed by progressive lateral migration 

of channels or confluence scour at the base of major braid bars differs from 

assumptions and descriptions for some braided rivers (Miall, 1977; Best & Ashworth, 

1997; Bridge & Lunt, 2006; Best & Rhoads, 2008). These differences may be related 

to different channel dynamics in differing river types. Documentation and further 

understanding these differences would aid future deposit interpretation and 

syntheses of braided river morpho-sedimentary characteristics.  

 

The grain-size distribution is much wider than that used in some other physical 

model experiments (for example, D90/D10 of the bed material is about 15 compared to 

about 5 in van de Lageweg et al., 2013a) and is a geometrically-scaled representation 

of the gravel component of the alluvium in the full scale river on which the model is 

based (see Introduction and Fig 2). In this way, full median grain size sorting 

patterns of gravel are reproduced in the model and the grain size mapping here ties 

local grain sizes to bed elevation. Grain-size characteristics of the minimum and 

maximum surfaces are not statistically different. While there are some patches and 

strings of coarser material at the basal surface there is no extensive planar, coarse-

grained base.  This reflects the avulsive nature of the channels and the complex 

elevational sorting in this type of channel. It is consistent with classic field 

observations such as Boothroyd & Ashley (1975) in proximal gravel braiding rivers. 

Grain size sorting patterns (for example, coarse or fine threads of particle size) at the 

basal surface follow the channel and major bar accretion orientations (Leduc et al., 

2015) but at the maximum surface spatial grain sorting patterns are less obviously 

tied to the channel structure and orientation. Instead the sorting patterns at the 

maximum surface appear to reflect the amalgamation of bars or perhaps channels 
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where sediment transport is no longer active. This absence of spatially-aggregated 

grain-size differences between the minimum and maximum surface gives 

quantitative support for previous observations of an overall absence of a general 

tendency for vertical grain-size differentiation within the channel (not overbank) 

deposits of gravelly braided alluvium (Boothroyd & Ashley, 1975, fig. 25; Bluck 1979; 

Sambrook Smith, 2000; Heintz et al., 2003; Lunt & Bridge, 2004; Lunt et al., 2004; 

Marren, 2005; Guerit et al, 2014). This is a result of complex spatial sorting so that, 

for example, coarse sediment may occur at high elevation at bar heads and at low 

elevations in channels, and bedload sheets may run up onto bar margins and tops. 

Finer particles occur at low elevation on bar tails, laterally in channels and 

confluences, and also higher on bar surfaces. Confluences are not necessarily areas of 

coarse lag (although local coarse deposits occur) because during formation they are 

areas of local peak bed shear stress and particle mobility and all particle sizes are 

mobile.  

In the physical model, confluences form along the main channel belt, have a 

limited spatial extent and do not exhibit continuous, extensive migration either 

laterally or longitudinally. Migration is typically limited to one to one and a half 

times confluence dimensions. Over time, confluences form and fill in different 

locations, primarily in relation to local avulsion and ‘partial avulsion’ along the main 

channel belt, to cumulatively affect larger portions of the deposit than the individual 

confluences at any particular time. Confluence scour forms a relatively small 

proportional area of the basal erosion surface, but many of the confluences form at 

least part of that surface and are associated with the lowest elevations of the surface. 

Previous model and field comparisons for this type of braided river have confirmed 

the scaling of confluences (Ashmore & Parker, 1993, Best & Ashworth, 1997), and 
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migration distances (scaled by river size) are similar to those reported by Best & 

Ashworth (1997) for a very large braided river confluence. Contrary to previous 

speculation for some braided river confluences (Best & Ashworth, 1997), confluences 

do not form extensive planation of the basal surface in this case. Field investigations 

of gravel braided river confluences over extended time periods are needed to confirm 

this finding. Large-scale scour and trough cross-bedding that is reported to comprise 

large proportions of some large-scale outwash deposits and interpreted to relate to 

confluence scour (Siegenthaler & Huggenberger, 1993; Huggenberger & Regli, 

2006) may be the deposits of large scale distal braided rivers with extensive, multi-

lobate, linguoid bars (Boothroyd & Ashley, 1975) and therefore different in character 

from the proximal braided gravel channel modelled here.  

Deposit thickness has a distinct distribution related primarily to channel 

geometry and erosion depth below the low relief maximum surface. Confluence scour 

is responsible for most of the thickest portions of the deposit and confluence areas 

have a higher average thickness than the non-confluence areas. This may also 

contribute to the heavier tail of the thickness distribution than the form associated 

with bedform and bar migration alone (Paola & Borgman, 1991; Ganti et al., 2011; 

Straub et al., 2012; van de Lageweg et al., 2013b).The recognition of the role of 

confluences in deposit geometry extends previous work on models of gravely braided 

alluvium (Moreton et al., 2002; Lunt & Bridge, 2004, Lunt et al., 2004; Marren, 

2005; Bridge & Lunt 2006) which depict confluence areas and fill but give no 

quantitative data of the kind derived in this study. Some further refinement of these 

deposit models may be useful, perhaps including confluences as an element of the 

primary channel fill (Moreton et al., 2002). Recent physical model experiments on 

deposit geometry van de Lageweg et al., (2013 a,b) comment that confluence erosion 
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lowers the elevation of the basal surface and therefore affects maximum set 

thickness. The results here confirm and add to this observation. Confluence scour is 

the main component of the tail of the maximum thickness distribution and this may 

be a distinctive feature of the deposit geometry of some braided rivers. Combined 

with existing knowledge of confluence geometry (Ashmore & Parker, 1983; Ashmore 

& Gardner, 2008; Best & Rhoads, 2008) this may be applied to interpretation and 

predictive analysis of deposits (van de Lageweg, 2013b).  

The experiment covers a limited time period and an interesting issue is whether 

the contribution of confluence zones to deposit geometry would change with a longer 

time for re-working of the river. There is substantial overlap in deposit thickness 

between confluence and non-confluence deposits so that extended reworking and 

channel pattern dynamics may not increase the proportion of confluence deposit 

volume over time but at present this is unknown. This is a problem – along with the 

effect of flow variation on deposit geometry – that is ripe for numerical simulation of 

the type that has been done for sand-bed anabranching rivers (Nicholas et al., 2016) 

in which much longer periods of reworking could be easily achieved and for which 

physical model results could provide some initial validation.  

The effects of varying discharge would be another useful research direction. 

Pro-glacial rivers have low variability in their peak flows and gravel-bed rivers are 

typically active only close to daily peak flow conditions. Examination of other flow 

regimes in which much higher peak flows are possible (for example, observations on 

Tagliamento River, Bertoldi et al, 2010) and the effects on planform and intensity 

geomorphological processes is likely to be reflected in deposit geometry and to be 

different from the proximal gravel case, and may provide contrasts with variable flow 

effects in sand-bed braiding (Nicholas et al., 2016).  
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While the formative processes of confluence flow structure, morpho-dynamics, 

and sedimentology is well documented, the results of this study indicate confluence 

behavior in these types of braided rivers and possibly confluences in larger river 

networks, may demonstrate scale-invariance. 

 

CONCLUSIONS 

A Froude-scaled physical model of a proximal gravel braided river was used to 

quantitatively characterize the geometry and grain-size characteristics of the river 

deposit from sequential digital elevation data and grain size maps of the model river 

bed. The data represent the sedimentary products of braid bar and anabranch–

confluence–diffluence morphology and processes – the basic morphological building 

blocks of braided river morphology. The main conclusions are: 

1. The minimum erosion surface has a greater range of elevation than the 

maximum deposition surface. The minimum surface has clear elements of channels 

and confluences while the maximum surface reflects the spatio-temporal integration 

of braid bar tops. Spatially aggregated grain-size distributions of the minimum and 

maximum surface are indistinguishable, there is no extensive basal coarse layer and 

no general vertical sorting pattern of grain sizes.  

2. A large proportion of anabranch confluence zones erode down to the 

minimum surface although they do not form the bulk of the area of the minimum 

surface over the time span of the experiment. Anabranch confluences show only 

limited migration equivalent to up to 1.5 times the confluence dimensions. The 

minimum surface is not formed by extensive lateral migration but by avulsion, 
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channel and confluence scour, and limited lateral channel development. This is 

consistent with the known morphology and dynamics of this type of river.   

3. Deposit thickness is determined mainly by the elevation of the minimum 

surface rather than the height of the depositional bar tops and maximum thickness is 

determined by confluence depths. Confluences form the thickest portion of the 

deposits.   
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FIGURE CAPTIONS 

Figure 1 – (A) Example of an orthophotograph of the wetted river bed at hour 134 of 
the experiment; flow is left to right. (B) Orthophotograph of the model prototype 
river, Sunwapta River, Alberta, proximal location near the source; flow is left to right. 

 

Figure 2 – Grain-size distribution curves of the flume river bed and an equivalent 
gravel bed river (Sunwapta River, Canada) used for scaling the model. Flume grain-
size distribution is scaled at a 1:30 ratio to the Sunwapta River.  

 

Figure 3 – (A) Orthophotograph; (B) digital elevation model (DEM); and (C) grain-
size map of model river bed surface at time 179 of experiments. 

 

Figure 4 – Examples of a channel confluence area in the model showing the major 
features, the visual delineation of the confluence area, and variable grain sorting. 
Arrows indicate flow direction, thick black lines are anabranch limits, thick dotted 
line is confluence scour zone and fine dotted line is zone of maximum scour depth; 
scale is approximate (flow is turned off). 

 

Figure 5 (A) Minimum surface and (B) maximum surface digital elevation model 
(DEM) of the model river deposit. White areas in (A) are those that did not 
experience measurable bed elevation change. Cross-section locations [vertical lines 
in (B)] refer to Fig. 7. Vertical scale is normalized height from bottom of deposit and 
flow direction is left to right.  

 

Figure 6 – Frequency distributions of maximum and minimum surfaces of braided 

river compared to elevation distribution of a single digital elevation model (DEM) 

(time 179 hours). 

 

Figure 7 – Cross-sections of boundary surfaces. Profiles were taken at 2.33 m, 6.33 m 
and 9.93 m (local survey datum of flume) from left to right across surface (top to 
bottom on Fig. 5B). 
 
Figure 8 – Gamma distribution fits to the elevation distributions of the maximum (A) 
and minimum (erosion) (B) surfaces. 
 

Figure 9 – Boundary surface maps for: (A) maximum bed surface texture (grain size) 
map; and (B) minimum bed surface texture (grain size) map with no-change areas 
(white) removed. Texture scale is non-dimensional, higher numbers are coarser 
texture. Flow direction is left to right. 
 



This article is protected by copyright. All rights reserved. 

Figure 10 – Equivalent texture (grain size) distribution for the minimum and 
maximum surface maps and experiment epoch 179. Higher equivalent texture is 
coarser grain size. 

 

Figure 11 – Deposit thickness digital elevation model (DEM); vertical (thickness) 
scale is in millimetres, white areas are no-change, flow direction is left to right. 

 

Figure 12 – Deposit thickness distributions: Frequency distribution of deposit 
thickness (black line) and cumulative frequency distribution of deposit thickness 
(dotted line). Gumbel distribution fit to the thickness distribution. 

 

Figure 13 – Relationship between deposit thickness and bounding surface elevation 

at minimum surface (A) and at maximum surface (B). There is a stronger tendency 

for deposit thickness to increase with lower minimum surface elevation than with 

higher maximum surface elevation. 

 

Figure 14 (A) Initial locations of confluences, based on experiment time, and areas of 
bed elevation change. Grey areas are active bed areas with notable bed elevation 
change; white areas did not experience net change beyond change detection 
resolution; coloured areas are the time-integrated areas occupied by the 31 
confluences analyzed. (B) Confluence areas, indicating migration patterns of the 31 
confluences analyzed. (C) Time-integrated minimum surface of river deposit (after 
Gardner & Ashmore, 2011) with overlay of confluence areas (black shaded areas) and 
confluence areas at the minimum surface (grey shaded areas), colour scale is 
experiment time in hours. (D) Confluence deposit thicknesses. Mean confluence 
deposit thickness is 0.022 m. Vertical (thickness) scale is in millimetres, flow 
direction is left to right in all maps. 

 

Figure 15 – Deposit thickness distributions. Data shown for overall deposit thickness 
(mean deposit), confluence deposit thickness (confluence deposits) and deposits not 
associated with confluences (non-confluence deposits). 
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Tables 

Table 1 –Summary statistics of river deposits  

 

Deposit 

Thickness 

Non-

Confluence 

Deposits 

Confluence 

Deposits 

Mean (m) 0.016 0.022 

Median (m) 0.016 0.021 

Mode (m) 0.016 0.021 

St. Dev.(m) 0.005 0.006 

Volume (m3) 0.24  0.07 

% Total 

Volume 

77.8 22.2 
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