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Abstract

Accurate structure analysis of high-resolution 3D biomedical images of vessels is a challeng-
ing issue and in demand for medical diagnosis nowadays. Previous curvature regularization
based methods [10, 32] give promising results. However, their mathematical models are not
designed for bifurcations and generate significant artifacts in such areas. To address the is-
sue, we propose a new geometric regularization principle for reconstructing vector fields based
on prior knowledge about their divergence. In our work, we focus on vector fields modeling
blood flow pattern that should be divergent in arteries and convergent in veins. We show that
this previously ignored regularization constraint can significantly improve the quality of vessel
tree reconstruction particularly around bifurcations where non-zero divergence is concentrated.
Our divergence prior is critical for resolving (binary) sign ambiguity in flow orientations pro-
duced by standard vessel filters, e.g. Frangi. Our vessel tree centerline reconstruction com-
bines divergence constraints with robust curvature regularization. Our unsupervised method
can reconstruct complete vessel trees with near-capillary details on both synthetic and real 3D
volumes. Also, our method reduces angular reconstruction errors at bifurcations by a factor of
two.

Keywords: Computer vision, divergence constraint, curvature regularization, vessel tree
reconstruction
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Chapter 1

Introduction

3D imaging plays more important role in medical diagnosis. Doctors usually make diagnostic
decisions based on the analysis of organ structure obtained from Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), etc. Modern imaging techniques bring microscopic re-
sults and, hence, many advanced analysis methods arise as well. However, some tasks, like
near-capillary vessel structure analysis, still remain challenging. Figure1.1 shows an example
of a mouse cardiac CT image resolving vessels at near-capillary level. As a consequence of
the emergence of high resolution imaging techniques, new robust analysis algorithms are very
required.

In Section 1.1, we introduce several techniques for biomedical vascular imaging. In Section
1.2, we give an overview of existing vessel detection algorithms and their limitations. Our
motivation and contribution are described in Section 1.3. The outline of thesis is given in
Section 1.4.

1.1 Biomedical Vascular Imaging

There are mainly three modalities for vascular imaging. First is X-ray which has been used for
many years to image large vessel structure. X-ray is the oldest imaging technique and, however,
has an obvious shortcoming that the 3D structures and organs overlap in 2D projection image.
Due to the fast development of computation speed and algorithm researchers invented cross-
sectional imaging which allows much clearer imaging of complicated structures inside a body.

Second, MRI uses strong magnetic fields and radio waves of a specific form to produce 3D
images inside body. Advanced MRI techniques, such as Diffusion Tensor Imaging (DTI), can
provide us additional information about the region of the interest inside a body.

Third, CT can generate 3D volume data from 2D X-ray cross-sectional images taken from
different positions. Modern CT imaging techniques can produce fairly high-resolution im-

1



2 Chapter 1. Introduction

(a) cardiac microscopy CT volume

(b) zoom-in

Figure 1.1: Visualization (Maximum Intensity Projection) of the raw volumetric data obtained
from a mouse heart by micro computer tomography (micro-CT). The data is provided by Maria
Drangova from the Robarts Research Institute in London, Canada.



1.2. Vessel Detection Overview 3

ages of certain parts of our body, like coronary vessels. Current Micro-computed Tomography
(micro-CT) is able to provide ultra high resolution (voxel size<= 20µm3)

Medical diagnosis usually needs advanced analysis of the organ structure from medical
images, such as vascular tree topology, angle between bifurcating branches and the diameter
of vessels. However, existing methods, such as optical measurement, are extremely time-
consuming and need a large amount of manual work [22]. Consequently, there is a need for
an automatic and efficient framework for vessel detection and analysis. The method has to be
robust with respect to the wide range of vessel scales and complicated topology of the vascular
tree [10].

Generally, the newer micro-CT already has higher signal-to-noise ratios (SNR). However,
people are using it to solve more challenging image analysis problems, such as analyzing blood
vessels at near-capillary level. This analysis was particularly impossible before, since even the
micro-CT has low SNR at near capillary level. As seen in the Figure 1.1(b), it is hard to
distinguish the thin near-capillary vessels from the background by intensity alone.

1.2 Vessel Detection Overview

There is plenty of prior work on estimation of vessels in computer vision and biomedical
imaging communities [34]. Typically, pixel-level detection of tubular structures is based on
multi-scale eigen analysis of intensity Hessians developed by Frangi et al. [16], which will
be reviewed in Section 2.1, and other research groups [14]. At any given point (pixel/voxel)
such vessel enhancement filters output a tubularness/vesselness measure and estimates of the
vessel’s scale and orientation, which describes the flow direction upto to a sign. While such
local analysis of Hessians is very useful, simple thresholding of points with large-enough ves-
selness measure is often unreliable as a method for computing the vessel tree structure. While
thresholding works well for detecting relatively large vessels, detection of smaller vessels is
complicated by noise, partial voluming, and outliers (e.g. ring artifacts caused by an improp-
erly calibrated CT-scan [20]). More importantly, standard tubular filters exhibit signal loss at
vessel bifurcations as those do not look like tubes.

Regularization methods can address the vessel continuation problems due to noise, out-
liers, and signal loss at thinner parts and bifurcations. D. Marin et al.[32] and E. Chesakov
[10] employ the curvature regularization for vessel centerline extraction on 3D images resolv-
ing near-capillary vessels. Based on the analysis of their drawbacks, we adapt the curvature
regularizer for a robust version and propose a new regularization prior based on knowledge
of the flow pattern divergence. Particularly, this new prior is critical for disambiguating flow
directions, which provide important cues about the vessel tree structure. Followed subsections



4 Chapter 1. Introduction

outline existing regularization methods for vessel reconstruction and motivate our approach.

1.2.1 Vessel Representation: Centerline or Segment

Two common approaches to representing vessels in reconstruction methods are volumetric bi-
nary mask and centerline. A volumetric mask is typical for techniques directly computing
vessel segmentation, i.e. binary labeling of pixels/voxels. In contrast, centerline is a 1D ab-
straction of the vessel. But, if combined with information about vessel radii, it is easy to obtain
a volumetric mask or segmentation from the vessel’s centerline, e.g. using MAT [43]. Vice
versa, centerline could be estimated from the vessel’s binary mask using skeletonization algo-
rithms. Bouix et al. [4] adapted a skeletonization algorithm for centerline extraction on tubular
structures. The skeletonization algorithm exploits properties of the average outward flux of
the gradient vector field of a Euclidean distance function from the boundary of the structure.
However, this method relies on the quality of the segmentation output (or boundary detection
output) and it only utilizes local information to estimate the medial curve, which results in
very unsmoothed centerline, see Figure 1.2(b). Note that, in Figure 1.2, I showed results after
applying minimum spanning tree which will be explained in Section 2.3.

In the context of regularization-based methods for vessel reconstruction, centerline repre-
sentation offers significant advantages since powerful higher-order regularizers are easier to
apply to 1D structures. For example, centerline’s curvature can be regularized [32], while con-
ceptually comparable regularization for vessel segmentation requires optimization of Gaussian
or minimum curvature of the vessel’s surface, with no known practical algorithms. In general,
curvature remains a challenging regularization criteria for surfaces [41, 44, 19, 40, 37]. Al-
ternatively, some vessel segmentation methods use simpler first-order regularizers producing
minimal surfaces. While tractable, such regularizers impose a wrong prior for surfaces of thin
structures due to their bias to compact blob shapes (a.k.a. shrinking bias).

1.2.2 Towards Whole Tree Centerline

Many vessel reconstruction methods directly compute centerlines of different types that can be
informaly defined as simplified (e.g. regularized) 1D representation of the blood flow pathlines.
For example, the A/B shortest path methods require a user to specify two end points of a vessel
and apply the Dijkstra [12] to find an optimal pathline on a graph with edge weights based on
vesselness measure.

Interactive A/B methods are not practical for large vessel tree reconstruction problems.
While it is OK to ask a user to identify the tree root, manual identification of all the end points
(leaves) is infeasible. There are tracing techniques [3] designed to trace vessel tree from a given
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(a)

(b)

Figure 1.2: Vessel centerline extracted by different methods. (a) minimum spanning tree (MST)
built on the result of minimizing (2.12) [10]. (b) MST built on the output of skeleton-based
algorithm [4].

root based on vesselness measures and some local continuation heuristics. Our evaluations on
synthetic data with ground truth show that local tracing methods do not work well for large
trees with many thin vessels even if we use the ground truth to provide all tree leaves as extra
seeds in addition to the root.
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Our goal is unsupervised reconstruction of the whole vessel tree centerline. We optimize
a global objective function for a field of centerline tangents. Such objectives can combine
vesselness measures as unary potentials with different regularization constraints addressing
centerline completion. Related prior work using centerline curvature regularization is reviewed
in Section 2.2.

1.3 Contributions

This work addresses an important limitation of vessel tree reconstruction methods due to sign
ambiguity in vessel orientation produced by local vesselness filters, e.g. Frangi. This orien-
tation is described by the smallest eigenvector of the local intensity Hessian, but its sign is
ambiguous. Thus, the actual flow directions are not known, even though they are an impor-
tant reconstruction cue particularly at bifurcations. This binary direction ambiguity can be
resolved only by looking at the global configuration of vessel orientations (tangents) allowing
to determine a consistent flow pattern.

We propose a divergence prior for disambiguating the global flow pattern over the vessel
tree, see Figure 1.3. This prior can be imposed as a regularization constraint for a vector field
of oriented unit tangents for vessel pathlines. We penalize negative (or positive) divergence for
such unit tangent flow to enforce a consistent flow pattern1. The summary of our contributions:

• Prior knowledge about divergence is generally useful for vector field inference. We
propose a way to evaluate divergence for sparsely sampled vector fields via pairwise
potentials. This makes divergence constraints amenable to a wide range of optimization
methods for discrete of continuous hidden variables.

• As an important application, we show that known divergence can disambiguate vessel
directions produced by standard vessel filters, e.g. Frangi [16]. This requires estimation
of binary “sign” variables. The constraint penalizing positive (or negative) divergence is
non-submodular, but it is well optimized by TRW-s [25].

• To estimate vessel tree centerline, the divergence constraint can be combined with ro-
bust oriented curvature regularization for pathline tangents. Additional options include
outliers/detection variables [32] and/or tree structure completion techniques, e.g. using
Minimum Spanning Tree (MST).

1This divergence constraint is specific to unit tangent flow. Note that divergence for consistent blood flow
velocities is zero even at bifurcations assuming incompressible blood.
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(a) divergent vessels (arteries) (b) inconsistent divergence

(c) convergent vessels (veins)

Figure 1.3: [Vessel-tree divergence] Vessels are the blood flow pathlines and could be as-
signed orientations. Green arrows represent vessels with blood flow orientation. To estimate
orientations, we penalilze negative (or positive) “vessel divergence”, which we define as the
divergence of oriented unit tangents of vessels/pathlines. Such unit tangent flow divergence is
positive (red) or negative (blue) at bifurcations, see (a-c). Note that standard curvature models
[38, 32] and oriented curvature models given in (3.2) either can not distinguish (b) from (a)
and (c) or may even prefer (b) depending on specific combinations of bifurcation angles. For
example, compare vessel direction disambiguation based on curvature and the divergence prior
in Figure 3.4 (a) and (b).
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• We provide extensive quantitative validation on synthetic vessel data, as well as qualita-
tive results on real high-resolution volumes.

1.4 Thesis Structure

This thesis is organized as follows. In Chapter 2 we introduce the basic elements in our vessel
centerline extraction method. In Chapter 3 we introduce the concept of oriented curvature and
divergence constraints as well as the optimization algorithms. In Chapter 4 we evaluate our
proposed method on both synthetic data and real data. Chapter 5 concludes our work and gives
feasible directions for future work.



Chapter 2

Background on Vessel-tree Reconstruction

This chapter outlines several basic elements in our approach. In Section 2.1, we describe the
mechanism of the vessel enhancement filter developed by Frangi et al. [16]. The output of this
filter1 is thresholded and then used as the input for the curvature regularization framework, as
described in Section 2.2. The Minimum Spanning Tree (MST) [27] is finally used for extracting
tree topology and we describe an MST variant based on arc length in Section 2.3.

2.1 Vessel Enhancement Filter

This section describes the algorithm for multiscale vessel enhancement filtering developed by
Frangi et al. [16]. The basic idea behind the algorithm is using multiscale eigen analysis of the
intensity Hessian matrix.

The Hessian matrix consists of second-order derivatives which are sensitive to noise. Hence,
we usually use, say, a Gaussian kernel filter to smooth image before computing the Hessian
matrix. Now, consider such a smoothed image and a function giving intensity value I(p, s) for
each pixel p at scale s defined by the Gaussian kernel.

In order to analyze the local behavior of the image, we usually consider the Taylor expan-
sion up to second-order in the neighborhood of p:

I(p + δp, s) ≈ I(p, s) + δpT∇Ip,s + δpT Hp,sδp (2.1)

where ∇Ip,s and Hp,s are gradient vector and Hessian matrix evaluated at p, respectively.

To calculate these differential operators in a well-posed fashion, we resort to the concept
of linear scale space theory [15, 23]. In this framework, the differentiation is defined as the

1Non-maximum suppression is usually applied on the output to reduce data size.

9



10 Chapter 2. Background on Vessel-tree Reconstruction

convolution with the derivative of the Gaussian function. For instance2,

∂

∂x
I(p, s) = I(p, s) ∗

∂

∂x
G(p, s), (2.2)

where p = (x, y, z) is the location of pixel p, G represents the three-dimensional Gaussian
kernel and ∗ is the convolution symbol. Here,

∂

∂x
G(p, s) =

1√
(2πs2)3

exp(
||p||2

2s2 ) ·
−x
s2 . (2.3)

Then, the Hessian matrix in Equation (2.1) is given by:

Hp,s =


∂2

∂x2 I(p, s) ∂2

∂x∂y I(p, s) ∂2

∂x∂z I(p, s)
∂2

∂y∂x I(p, s) ∂2

∂y2 I(p, s) ∂2

∂y∂z I(p, s)
∂2

∂z∂x I(p, s) ∂2

∂z∂y I(p, s) ∂2

∂z2 I(p, s)

 . (2.4)

Let λs,k denote the eigenvalue and µs,k denote the eigenvector, then:

Hp,sµs,k = λs,kµs,k, k = 1, 2, 3, (2.5)

Without loss of generality the eigenvalues are ordered by: |λs,1| ≤ |λs,2| ≤ |λs,3|. The eigenvector
µs,1 indicates the direction of minimum intensity variation, i.e. along the vessel. The µs,2 and
µs,3 form a base for the orthogonal plane.

The three following local structures can be identified by analyzing eigenvalues: a plate-
like structure(|λs,1| ≈ 0, |λs,1| ≈ |λs,2|, |λs,2| � |λs,3|), a curvilinear structure(|λs,1| ≈ 0, |λs,1| �

|λs,2|, |λs,2| ≈ |λs,3|) and a blob-like structure(|λs,1| ≈ |λs,2| ≈ |λs,3|) [16][10]. Furthermore, Frangi
et al. [16] propose a vesselness measure which indicates the probability of a pixel belonging to
the vessel. For each pixel p, the vesselness measure at scale s is defined as:

V(p, s) =

0, i f λs,2 > 0 or λs,3 > 0

exp(−
R2

A,s

2α2 )(1 − exp(−
R2

B,s

2β2 ))(1 − exp(− M2
s

2γ2 )) otherwise
(2.6)

where:
RA,s =

|λs,1 |√
|λs,2 ||λs,3 |

RB,s =
|λs,2 |

|λs,3 |

Ms =
√
|λs,1|

2 + |λs,2|
2 + |λs,3|

2.

(2.7)

RA,s distinguishes between a blob-like (RA,s ≈ 1) and a curvilinear or a plate-like (RA,s ≈

2For simplicity, we omit the parameter for defining the normalized derivative introduced by Lindeberg [31].
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0) structure. RB,s distinguishes between a curvilinear (RB,s ≈ 1) and a plate-like (RB,s ≈ 0)
structures. The Frobenius norm Ms has a maximal response at a high contrast region and low
response at the background. Hence the vesselness measure in Equation (2.6) is high if the pixel
belongs to vessels (characterized by small |λs,1| and large |λs,2|,|λs,3| ) and low otherwise. α, β
and γ are hyperparameters that control the sensitivity of the vesselness measure to RA,s, RB,s

and Ms, respectively.

Eventually, we compute the vesselness measure at each pixel p by:

V(p) = max
smin≤s≤smax

V(p, s) (2.8)

where the scale range [smin, smax] must cover that of the expected vessel radii. The s with a
highest response of V(p, s) approximates the vessel radius.

2.2 Curvature Regularization for Centerline

In this section, we review related prior work using curvature regularization to extract center-
line. The output of Frangi filter is noisy and simple thresholding of points with large-enough
vesselness measure value is often unreliable as a method for vascular tree reconstruction. The
presence of near-capillary vessels exacerbates the effect of such thresholding. To address this
issue, the curvature, a second-order smoothness term, is used to regularize the model parame-
ters defining the centerline, see Figure 2.1(a). In general, curvature has been studied for image
segmentation [41, 44, 42, 6, 19, 40, 37, 32], for stereo or multi-view-reconstruction [30, 39, 47],
connectivity measures in analysis of diffusion MRI [35], for tubular structures extraction [32],
for inpainting [2, 8] and edge completion [17, 46, 1].

Olsson et al. [38] propose curvature approximation for surface fitting regularization. Their
framework exploits tangential approximation of surfaces and assumes that the data points are
noisy readings of the surface. The method estimates local surface patches, which are param-
eterized by a tangent plane. It is assumed that the distance from the data point to its tangent
plane is a surface norm. That implicitly defines the point of tangency.

Assume there is a smooth curve, see Figure 2.1(b). Points p and q on the curve and tangents
lp and lq at these points are given. Then the integrals of curvature κ(·) is estimated by:∫ q

p
|κ(s)|ds ≈

||p − lq||

||p − q||
(2.9)

and ∫ q

p
|κ(s)|2ds ≈

||p − lq||
2

||p − q||3
, (2.10)
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lq

p

q

p~ q~

lp

||p-lp||
~

||q-lp||

(a) (b)

Figure 2.1: Centerline definition and curvature model of [38]. (a) illustrates an example of
noisy measurements along with the centerline C. (b) illustrates the curvature model. Given
two points p and q on the red curve (centerline) and two tangents lp and lq at these points, the
integrals of curvature are approximated by ((2.9)-(2.11))

where ||p − lq|| is the distance between point p and the tangent line at point q represented by
vector lq. Olsson et al. [38] explores properties of these approximations and argues

κpq(lp, lq) :=
1
2
||p − lq||

2 + ||q − lp||
2

||p − q||2
(2.11)

is a better regularizer, where we used a variant of the symmetric version of integral in (2.10).

Marin et al. [32] generalized this surface fitting problems to detection problems where ma-
jority of the data points, e.g. image pixels, do not belong to a thin structure. In order to do that,
they introduced binary variables in their energy indicating if a data point belongs to the thin
structure. One of their applications is vessel detection. The proposed vessel-tree extraction
system includes vessel enhancement filtering, non-maximum suppression for data reduction,
tangent approximation of vessel centerline and minimum spanning tree for tree topology ex-
traction. Assuming that detection variables are computed, the tangent approximation of ves-
sels’ centerline is found by minimizing energy:

Eu(l) =
∑

p

|| p̃ − lp||
2 + γ

∑
(p,q)∈N

κpq(lp, lq), (2.12)

where summations are over detected vessel points, p̃ is the noisy measurement, lp is the tangent
vector at point p, the denoised point location p is constrained to be the closest point on tangent
line at p, andN ⊂ Ω2 is the neighborhood system. The curvature term in the energy makes the
tangents ”collapse” onto a one-dimensional centerline as shown in Figure 2.2(a)(b). However,
the same figures also show artifacts around bifurcations where undesired triangular structure
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forms indicating unoriented tangent model limitation. This phenomenon is the main issue we
solve in this thesis and will be addressed in next chapter.

(a)

(b)

Figure 2.2: Triangle artifacts at bifurcation. Optimization of energy (2.12) ignoring tangent
orientations often leads to a strong local minima as in (a) and (b). The line segments are the
estimated tangents of the centerline.

2.3 Minimum Spanning Tree with Arc Length

The outputs of minimizing energy (2.12) are simply locations of the points along with tangent
vectors. In order to extract the tree topology, we employ the Minimum Spanning Tree algorithm
developed by Kruskal [27].

Normally, given a set of point cloud and a graph built on it, the weight of each edge is
computed by calculating the Euclidean distance between two end points of such an edge. In
our case, we consider the anisotropy of vessel structure and exploit the tangent at each point
to compute the arc length as edge weight. Since two tangents at each pair of points may not
be coplanar, we use the average of two arc lengths as the edge weight. For simplicity, we only
show the two-dimensional case here, see Figure 2.3. Such edge weight has a good property
where, considering two fixed points, the edge weight will be smaller if two tangents at ends of
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the edge become collinear. Thereby, it is more robust to use the MST algorithm with such a
edge weight for vessel tree extraction.







Figure 2.3: Illustration of the arc. The red curve is the arc from point P to Q, which is tangential
with lp at point P. Point O is the center of the circle to which the arc belongs. θ is the osculation
angle.

In practice, there is one issue regarding the calculation of the arc length. Computing the arc
length involves the cross-product of lp and lq, which becomes quite numerically unstable when
the two tangents are almost collinear. Hence, we adopt a stable approach for approximating
the arc length.

Considering two points P and Q and the tangents lp and lq at these points, see Figure 2.3,
we introduce an arc that is tangential with lp and lq

3. In 4OPT , we have

sinθ =

||P−Q||
2

r
. (2.13)

In 4PQS , we also have

sinθ =
||Q − lp||

||P − Q||
. (2.14)

3Since this is a two-dimensional case, the arc must be tangential to both tangents.
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Combining (2.13) and (2.14) yields

r =
||P − Q||2

2 ∗ ||Q − lp||
. (2.15)

The arc length P̂Q is calculated by r · 2θ and substituting (2.14) and (2.15) into it yields:

P̂Q =
||P − Q||2

||Q − lp||
· arcsin(

||Q − lp||

||P − Q||
). (2.16)

Then, we exploit the Taylor expansion of arcsin(x) up to the second term to approximate the
arc length:

P̂Q ≈ ||P − Q|| +
||Q − lp||

2

6||P − Q||
. (2.17)



Chapter 3

Oriented Curvature and Divergence
Constraints

In this chapter we focus on analysis of failure cases, e.g. the triangle artifact as shown in Fig-
ure 2.2, and improvement of the regularization stage for tangent approximation. In particular
we will show the drawbacks of the curvature models (2.9-2.11) in the context of vessel tree ex-
traction and propose a solution, as described in the following sections. In Section 3.1 and 3.2,
we present an oriented version of the curvature model and its limitations. Then we introduce an
important constraint (prior) using concept of divergence in Section 3.3. Finally, we will review
the optimization algorithms addressing the mixed integer non-linear problem in Section 3.4.

3.1 Oriented Curvature Constraint

Previous works [38, 40, 32] ignored orientations of tangent vectors lp p∈Ω. Equations (2.9)-
(2.12) do not depend on the orientations of l. In practice, the orientations of vectors are
arbitrarily defined. Ignoring the orientation in energy (2.12) results in significant ”triangle”
artifacts around bifurcations, see Figure 2.2. Consider an illustrative example in Figure 3.1(a).
Each of the three tangents interacts with the other two. The prior knowledge about blood flow
pattern dictates that among those three tangents there should be one incoming and one outcom-
ing. Introduction of orientation allows us to distinguish between the incoming and outcoming
tangents and subsequently inactivate one of the interactions, see Figure 3.1(b), resulting in
disappearance of these artifacts, see Figure 3.2.

In order to introduce oriented curvature, we introduce a new vector field l̄p, which we call
oriented. Then, we introduce energy Eo(l̄) by replacing curvature term in energy (2.12) with a

16
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60°

120°

(a) (b) (c)

Figure 3.1: Illustrative examples of three interacting tangents with unoriented curvature (a) as
in energy (2.12) and two alternative oriented configurations (b) and (c) with oriented curvature
as in energy (3.1). The green line denotes pairwise interaction with low curvature value. Note,
that unoriented curvature (2.9–2.11) always chooses the smallest angle for calculation. The red
line shows “inactive” pairwise interaction, i.e. interaction where curvature in (3.2) reaches the
high saturation threshold.

new oriented curvature as following:

Eo(l̄) =
∑

p

|| p̃ − l̄p||
2 + γ

∑
(p,q)∈N

κ̄pq(l̄p, l̄q) (3.1)

where

κ̄pq(l̄p, l̄q) :=

κpq(l̄p, l̄q) < l̄p, l̄q >≤ τ

1 otherwise
(3.2)

and < l̄p, l̄q > is the dot product of l̄p and l̄q and τ ≤ 0 is a positive threshold discussed in
Figure 3.3.

The connection between oriented field l̄ and l is

l̄p = xp · lp (3.3)

where binary variables xp ∈ {−1, 1} flip or preserve the arbitrary defined orientations of lp.

3.2 Curvature and Orientation Ambiguity

Introduction of oriented curvature resolves triangle artifacts, see Figure 3.2. However, the
orientations are not known in advance. For example, Frangi filter [16] defines a tangent as a
unit eigenvector of a special matrix. The unit eigenvectors are defined up to orientation, which
is chosen arbitrarily. One may propose to treat energy (3.1) as a function of tangent orientations
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(a)

(b)

Figure 3.2: Elimination of triangle artifact at bifurcation. New curvature term (3.2) takes into
account tangent orientation resolving the artifact.

x via relationship (3.3) as follows:

Eo(x) := Eo({xp · lp})
∣∣∣∣
lp=const

. (3.4)

However, energy (3.4) is under-constrained because it allows multiple equally good solutions,
see Figure 3.1(b) and (c). The example in (b) shows a divergent pattern while (c) shows a con-
vergent pattern suggesting artery/vein ambiguity. Unfortunately, energy (3.4) does not enforce
consistent flow pattern convergent bifurcations as in Figure 1.3. Real data experiments confirm
this conclusion, see Figure 3.4(a).

Thus, oriented curvature model (3.1) has a significant problem. While it can resolve ”tri-
angle artifacts” at bifurcations, see Figure 2.2, it will break the wrong sides of the triangles
at many bifurcations where it estimates the flow pattern incorrectly and then give the incor-
rect estimation of centerline, see Figure 3.5. Below we introduce our divergence prior directly
enforcing consistent flow pattern over the vessel tree.
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Figure 3.3: Robustness of curvature (3.2). The pairs of tangent vectors that has angle greater
than acos τ are not considered as belonging to the same vessel. A constant penalty is assigned
to such pairs. This “turns off” smoothness enforcement at bifurcations.

3.3 Divergence Constraint

The divergence constraint is imposed by estimating divergence. Figure 3.6 describe our (finite
element) model for estimating divergence of a sparse vector field l̄p|p ∈ Ω defined for a finite
set of points Ω ⊂ R3. We extrapolate the vector field over the whole domain R3 assuming
constancy of the vectors on the interior of the Voronoi cells for p ∈ Ω, see Figure 3.6(a). Thus
vectors change only in the (narrow) region around the cell facets where all non-zero divergence
is concentrated. To compute the integral of divergence in the area between two neighboring
points p, q ∈ Ω, see Figure 3.6(b), we estimate the flux of the extrapolated vector field over
ε-thin box f εpq around facet fpq∫

f εpq

〈l̄, ns〉 ds =
〈l̄q, pq〉 − 〈l̄p, pq〉

|pq|
· | fpq| + o(ε),

where ns is the outward unit normal of the box and | fpq| is the facet’s area. Then, the divergence
theorem implies the following formula for the integral of divergence of the vector field inside
box f εpq:

∇l̄pq =
〈l̄q, pq〉 − 〈l̄p, pq〉

|pq|
· | fpq|, (3.5)
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(a) oriented curvature only (3.4)

(b) with divergence prior (3.7)

Figure 3.4: Disambiguating flow directions in Frangi output [16]. Both examples use fixed
(unoriented) vessel tangents {lp} produced by the filter and compute (oriented) vectors l̄p = xplp

(3.3) by optimizing binary sign variables {xp} using energies (3.4) in (a) and (3.7) in (b). The
circles indicate divergent (red) or convergent (blue) bifurcations similarly to the diagrams in
Figure 1.3. The extra divergence constraint in (3.6) enforces consistent flow pattern (b).
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(a) tangent vectors at convergence for energy (3.1)

(b) tangent vectors at convergence for energy (3.6)

Figure 3.5: Centerline estimation for the data in Figure 3.4. Instead of showing tangent orien-
tations estimated at the first iteration as in Figure 3.4, we now show the final result at conver-
gence for minimizing energy (3.1) in (a) and energy (3.6) in (b). Blue circle shows bifurcation
reconstruction artifacts due to wrong estimation of vessel orientations in Figure 3.4(a).
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where we ignore only infinitesimally negligible o(ε) term.

(a) Voronoi cells for p, q ∈ Ω and facet fpq (b) ε-thin box f εpq around facet fpq

Figure 3.6: Divergence of a sparse vector field {l̄p|p ∈ Ω}. Assuming that the corresponding
“extrapolated” dense vector field is constant inside Voronoi cells (a), it is easy to estimate (non-
zero) divergence ∇l̄pq (3.5) concentrated in a narrow region f εpq around each facet (b) using the
divergence theorem.

3.4 Oriented Centerline Estimation

Constraints for divergence ∇l̄pq in the regions between neighbors p, q ∈ D in Delaugney tri-
angulation of Ω can be combined with Eo( p̄) in (3.1) to obtain the following joint energy for
estimating oriented centerline tangents l̄p:

E(l̄) = Eo(l̄) + λ
∑

(p,q)∈D

(∇l̄pq)−, (3.6)

where the negative part operator (·)− encourages a divergent flow pattern as in Figure 1.3(a).
Alternatively, one can use (·)+ to encourage a convergent flow pattern as in Figure 1.3(c). This
joint energy for oriented centerline estimation E(l̄) combines Frangi measurements, centerline
curvature regularity, and consistency of the flow pattern, see Figure 2.2(b). Note that specific
value of facet size in (3.5) had a negligible effect in our centerline estimation tests as it only
changes a relative weight of the divergence penalty at any given location. For simplicity, one
may use | fpq| ≈ const for all p, q ∈ D.

Optimization of oriented centerline energy E(l̄) in (3.6) over oriented tangents l̄p can be
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Figure 3.7: Representative example of decrease in energy (3.6) for block-coordinate descent
iterating optimization of (3.7) and (3.8). For initialization, we use raw undirected tangents {lp}

generated by Frangi filter [16]. Then, we iteratively reestimate binary sign variables {xp} and
unoriented tangents {lp}.

done via block-coordinate descent. As follows from definition (3.3):

E(l̄) ≡ E(xp · lp).

We iterate TRW-s [25] for optimizing non-submodular energy for binary ”sign” disambiguation
variables xp

E(x) := E(xp · lp)
∣∣∣
lp=const

(3.7)

and trust region [48, 32] for optimizing robust energy for aligning tangents into 1D centerline

E(l) := E(xp · lp)
∣∣∣
xp=const

. (3.8)

Figure 3.7 shows a representative example illustrating convergence of energy (3.6) in a few
iterations. In next subsections, more details regarding TRW-s and trust region are explained.

Note that the divergence constraint in joint energy (3.6) resolves the problem of under-
constrained objective (3.1) discussed at the end of Sectioin 3.1. Since the flow pattern consis-
tency is enforced, optimization of (3.6) should lead to a consistent resolution of the triangle
artifacts at bifurcation, see Figure 3.5(b). Our experimental results support this claim as shown
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in next chapter.

3.4.1 Binary Optimization via TRW-s

Combinatorial optimization, especially binary optimization, is of fundamental importance in
computer vision. For instance, binary segmentation can be viewed as assigning label 0 or 1
to each pixel to minimize an energy. When such energy is submodular, we can efficiently
optimize it via graph cuts to get the optimal solution [5, 21, 24]. However, minimizing such
energy is generally NP-hard, so researchers have also focused on approximate algorithms.

Linear programming(LP) relaxation is widely studied in the context of solving such binary
optimization [9, 26, 45]. Wainwright et al. [45] studied such optimization problem in the
context of tree-reweighted message passing (TRW) which is a certain form closely related to LP
relaxation dual problem. However, the lower bound is not guaranteed to increase consistently
and thus the convergence can not be guaranteed. Kolmogorov [25] then proposed a sequential
version of TRW (TRW-s) and demonstrated that the lower bound does not decrease.

Here, we expand (3.4) as1

E(x) =
∑

p

1
σ2

p
|| p̃ − xplp||

2︸            ︷︷            ︸
θp(xp)

+
∑

(p,q)∈N

γκ̄pq(xplp, xqlq) + λ(∇l̄pq)−︸                            ︷︷                            ︸
θpq(xp,xq)

. (3.9)

We need to compute θp(1) and θp(−1) for each pixel p. As for each pair (p, q) in the neighbor-
hood system, we compute θpq(−1,−1), θpq(−1, 1), θpq(1,−1) and θpq(1, 1) based on (3.2) and
(3.5). Then, we use the TRW-s code provided by Kolmogorov to optimize (3.9).

3.4.2 Trust Region Optimization for Tangent Estimation

In this section, we talk about the trust region optimization for tangent estimation. Our problem
is formulated as minimizing the energy (3.8) and we expand the energy as

E(l) =
∑

p

1
σ2

p
|| p̃ − lp||

2︸        ︷︷        ︸
D2(lp)

+
∑

(p,q)∈N

γκ̄pq(lp, lq) + λ(∇lpq)−︸                     ︷︷                     ︸
V2(lp,lq)

, (3.10)

where σp denotes the radius of vessel and we leave out the fixed xp here. We also add unary
potential coefficient 1

σ2
p

which determines how far tangents lp can move away from p̃. Since
this data has high variability in vessel thickness, we can not use the same σ for each voxel [32].

1We made modifications by adding unary coefficients, which will be explained in Subsection 3.4.2, and using
the same neighborhood system for both curvature and divergence constraints.
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Figure 3.8: Illustration of the parameterization of point p. p̃ is the noisy observation of the
point p. Since p is assumed to be the closest point on tangent lp from p̃, p is calculated by the
orthogonal projection of p̃ onto the line lp.

We follow [10] for a detailed implementation. We parameterize the lp as two variables sp

and tp, which represent the two ends of the lp respectively, see Figure 3.8. We can represent
any point on the line through sp and tp by

sp + α(tp − sp),

where α ∈ R is a parameter determined by the position of such point. Since the denoised point
location p is assumed to be the closest point on the tangent lp from the noisy measurement p̃,
we can calculate the αp by:

αp =
( p̃ − sp)(tp − sp)
||tp − sp||

2 . (3.11)

Hence, p is given by:
p = sp + αp(tp − sp). (3.12)
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Then we reformulate (3.10) as an unconstrained non-linear least squares problem of the form:

min
x

F(x) = || f (x)||2 = f T (x) f (x), (3.13)

where2

x =



...

sp

tp
...

sq

tq
...


, f (x) =



...

D(lp)
...

D(lq)
...

V(lp, lq)
...


. (3.14)

In order to solve the problem of the form in (3.13), we adopt the Levenberg-Marquardt
algorithm which is a trust region second-order continuous iterative optimization method [29,
33, 48].

Trust region is a strategy for simultaneously choosing the most reasonable direction and
step size within a certain region that is trusted. To be specific, we first set a certain region
size. Within such region, we use a so called model function m(x) to approximate the objective
function and minimize the model function. If the optimal solution of the model function can
lead to a reasonable decrease of objective function, we will move on with the next iteration.
Otherwise, the region size will contract and we will find a new approximated minimizer.

Next, we first review the Levenberg-Marquardt algorithm and then move forward to an
inexact version. The Levenberg-Marquardt algorithm [29, 48] is an algorithm, which adopts
the trust region framework, for solving non-linear least square problem. In the kth iteration,
we approximate the objective function:

F(x) = f T (x) f (x) (3.15)

in Equation (3.13) with the model function

mk(x) = f̃ T
k (x) f̃k(x) (3.16)

where
f̃k(x) = f (xk) + J(xk)(x − xk) (3.17)

is the first order Taylor expansion at the neighbor of xk and J(xk) is the Jacobian matrix. Sub-

2For simplicity and cleanness, here we still use lp and lq to represent f (x).
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stituting (3.17) into (3.16) and supposing x − xk = δx, then we have:

mk(xk + δx) = f T (xk) f (xk) + 2 f (xk)T J(xk)δx + δxT J(xk)T J(xk)δx. (3.18)

Then we compute the gradient of mk(xk + δx) with respect to δx:

∇mk = 2JT (xk) f (xk) + 2JT (xk)J(xk)δx (3.19)

Next we can set (3.19) to zero and solve the system of linear equations

JT (xk)J(xk)δx = −JT (xk) f (xk) (3.20)

to obtain the solution δx∗k, which is used for updating the variable x by

xk+1 = xk + δx∗k. (3.21)

Notice that there is no constraint on δx. If this step does not lead to sufficient decrease of
objective function, we will contract the size of trust region. One possible way is to limit the
length of δx. However, Levenberg [29] proposed using a damped parameter λk > 0 to implicitly
control the size of trust region in each iteration by solving:

min
δx

mk(xk + δx) + λk||δx||2 (3.22)

where the value of λk can be chosen by many strategies [29]. Thereby, the system of equations
in (3.20) can be replaced by the following damped version:

(JT (xk)J(xk) + λkI)δx = −JT (xk) f (xk). (3.23)

In order to avoid the computation of JT (xk)J(xk) in (3.23) which is prohibitive for a large
size problem, and by observing that the Jacobian matrix is sparse, we adopted the inexact
Levenberg-Marquardt algorithm [48]. The algorithm internally uses LSQR [7] to solve lin-
ear least squares problem given in (3.22) in each iteration. The advantage of inexact Lev-
enbergMarquardt algorithm is that, instead of requiring a large amount of computation on
JT (xk)J(xk), it only needs the matrix-vector multiplications, which is much cheaper than the
operations of matrix-matrix multiplication. Wright and Holt [48] have also shown that one can
just apply a few iterations of LSQR on (3.22) to save big computational efforts.

In our work, we extended the implementation based on [10]. The main modification we
made is the evaluation of Jacobian matrix and objective function value according to (3.10).
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Jacobian matrix can be represented in the following symbolic form with respect to lp and
lq as:

J(...lp...lq...) =



∂D(lp)
∂lp

... 0
...

. . .
...

0 ...
∂D(lq)
∂lq

...
...

∂V(lp,lq)
∂lp

...
∂V(lp,lq)
∂lq


(3.24)

We adopt the automatic differentiation [36] to calculate the derivative values. There are two
modes in automatic differentiation: forward mode and reverse mode. We use the forward mode
which is accomplished by introduction of an algebra dual numbers3.

We show a simplified version of inexact Levenberg-Marquardt algorithm in Alg.1. Wright
and Holt [48] proposed a ratio ρ to decide whether the step should be accepted by comparing
it to some given threshold c1. Interested readers can refer to [10] for the update rule of λk.

Input : x0

1 k←0
2 evaluate J(xk)
3 while convergence criterion is not satisfied do
4 δx← LSQR minimizes mk(xk + δx) + λk||δx||2

5 ρ← F(xk)−F(xk+δx)
F(xk)−mk(xk+δx)−λk ||δx||2

6 if ρ < c1 then δx does not sufficiently decrease the objective function value and the
size of trust region is contracted

7 update λk

8 else δx is accepted
9 xk+1 ← xk + δx

10 evaluate J(xk+1)
11 update λk

12 k←k+1
13 end
14 end

Result: xk

Algorithm 1: Inexact LevenbergMarquardt Algorithm

3Refer to the link: https://en.wikipedia.org/wiki/Dual number



Chapter 4

Evaluation

Our experiments were conducted on both synthetic data and real data from the micro-CT scans.
We will show the main comparison results on synthetic data and few qualitative examples on
real data. Our goal is to find a better validation method for comparing different vessel center-
line extraction algorithms. In Section 4.1, we give both quantitative and qualitative results on
synthetic data. In Section 4.2, we also demonstrate the effectiveness of our proposed method
on real data.

4.1 Synthetic Vessel Volume

We used the modification1 of a method generating synthetic 3D vessel tree data [18]. The
generated data consists of CT-like volume and ground truth vessel centerline tree, see Figure 4.1
for an example. We generate 15 artificial volumes 100×100×100 containing synthetic vascular
trees with voxel intensities in the range 0 to 512. The size of each voxel is 0.046 mm. We use
three different levels of additive Gaussian noise [28] with standard deviations 5, 10 and 15.

Evaluation setup. Our evaluation system follows [32], see Figure 4.2. We first apply the
Frangi filter [16] with hyperparameters α = 0.5, β = 0.5, γ = 30, σmin = 0.023 mm and
σmax = 0.1152 mm. The filter computes a tubularness measure and estimates the tangent lp at
each voxel p. Then we threshold the tubularness measure to remove background pixels. Then
we use non-maximum suppression2 (NMS), resulting in voxel set Ω. We use a 26-connected
neighborhood system N. Next, we optimize our new joint energy (3.6) to disambiguate tangent
orientation and estimate centerline location, see Section 3.4. The hyperparameters are γ = 3.80
(see energy (3.1)), λ = 18.06 (see energy (3.6)), τ = cos 70◦ (see equation (3.2)), and the

1The implementation of [18] contains bugs, which were fixed.
2The use of NMS is mainly for data reduction. Our method is able to work on thresholded data directly, see

Figure 3.2(b).
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Figure 4.1: An example of one volume synthetic data. The white lines inside vessels denote
ground truth of centerline.

maximum number of iterations is 1500 for both TRW-s and Levenberg-Marquardt. Finally, we
extract oriented vessel tree centerline as the minimum spanning tree of the complete graph.

Energy (3.6) assumes a quadratic curvature term (2.11). However, if we replace it with
(2.9), we can get an absolute curvature variant of our energy.

We evaluate different regularization methods including energy (2.12) (QuaCurv), energy
(3.6) with either quadratic curvature (OriQuaCurv) or absolute curvature (OriAbsCurv) within
the system outline above. We also compare to a tracing method [3] and medial axis [4].

We adopt receiver operating characteristic (ROC) curve methodology for evaluation of
our methods and [4]. We compute recall and fall-out statistics of an extracted vessel tree for
different levels of the threshold. The computed statistics define the ROC curve.

While ground truth is defined by locations at bifurcations and leaves of the tree, all eval-
uated methods yield densly sampled points on the tree. Therefore, we resample both ground
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Frangi Filtering Non-maximum 
Suppression

Threshold

RegularizationMinimum Spanning 
Tree

Figure 4.2: Experimental flow diagram. We mainly compares regularization-based methods.

truth and reconstructed tree with step size 0.0023 mm. For each point on one tree, we find
the nearest point on the other tree and compute the Euclidean distance. If the distance is less
than max(r, c) voxels, this pair of points is considered a match. Here r is the vessel radius at
the corresponding point of the ground truth and c = 0.7 is a matching threshold measured in
voxels. The recall is

NGTmatch

NGTtotal

where NGTmatch is the number of matched points in the ground truth and NGTtotal is the total
number of points in the ground truth. The fall-out is

1 −
NRTmatch

NRTtotal

where NRTmatch is the number of matched points in the reconstructed tree and NRTtotal is the total
number of points in the reconstructed tree.

The tracing method of [3] requires a seed points list as an input. We generate four seed
lists as described in Figure 4.3. The ROC curves in Figure 4.3 favor our method. Note that
the left vertical parts of the ROC curves shift a bit right. This can be explained as follows.
With higher threshold on Frangi outputs, fewer points remain and this results in the decrease
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Figure 4.3: Comparison of our method (OriAbsCurv and OriQuaCurv) with the unoriented
quadratic curvature (QuaCurv) [32], non-maximum suppression (NMS) based on Frangi out-
puts, SegmentTubes (Aylward et al. [3]) and medial axis extraction (Bouix et al. [4]) at three
different noise levels. The four letters on yellow dots denote different seed point lists. a: using
root and all leaf points; b: using 50% of the mixture of all bifurcation and leaf points and root;
c: using middle points of all branch segments; d: using all bifurcation and leaf points and root.
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Figure 4.4: Comparison only at bifurcation point.
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of “Recall ratio” on the vertical parts of the curves. However, in the final stage where we use
MST to extract the tree, some improper connectivities of the tree show up because the graph
becomes sparse due to fewer points. These connectivities result in an increase of the “Fall-out
ratio”, which makes the curves shift right.

Since bifurcations are only a small fraction of the data, the improvements around bifurca-
tions are largely unnoticed in these curves. Therefore, we compute the ROC curves for only
bifurcation nodes. We use a bigger matching threshold c =

√
3 voxels. The results are shown in

Figure 4.4 where the gap between methods is bigger. Our proposed method better reconstructs
the vessel bifurcation which is very critical for diagnostic analysis.

In addition, we compute angle errors at bifurcations. In order to compute the angle error,
we first define the ground-truth angle as the one between two outcoming branches at the bifur-
cation point, see Figure 4.5(a). This can be easily obtained from our ground-truth tree which
provides flow orientation. Since our proposed method provides information of the orientation
representing the flow direction3, we can define the corresponding angle at the reconstructed bi-
furcation point. As shown in Figure 4.5(b), we first calculate three inner products < ~BO, ~lO >,
< ~BP, ~lP > and < ~BQ, ~lQ >. In our case, the largest two values are < ~BO, ~lO > and < ~BP, ~lP >

as these two are positive while the other one is negative. Then we have BO and BP as the two
outcoming branches which define the angle at the reconstructed bifurcation. The results are
shown in Figure 4.6 as well as a few representative examples in Figure 4.7.

4.2 Real Vessel Data

We obtained qualitative experimental results using a real micro-CT scan of a mouse’s heart as
shown in Figure 4.8. The size of the volume is 585× 525× 892 voxels. Most of the vessels are
thinner than the voxel size. Due to the size of the volume, the problem has higher computational
cost than in Section 4.1, we used modified GPU-implementation of the Inexact Levenberg-
Marquardt algorithm to handle the large volume size [10]. Figure 4.9 shows the reconstructed
centerline. Figure 4.10 demonstrate a significant improvement of centerline estimation around
bifurcations.

3We use the orientation provided by oriented model for unoriented one.
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(a) Ground truth bifurcation

ை

ொ



(b) Reconstructed bifurcation

Figure 4.5: Illustration of the angle at bifurcation point. (a) shows the ground truth where the
flow directions are well-defined. The angle θ is used as the ground truth angle of bifurcation. In
(b), the blue vectors represent the oriented tangents estimated by minimizing the energy (3.6).
The connections BO, BP and BQ are given by MST. The absolute difference of angle θ and φ
is the angle error.
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Figure 4.6: Angle error comparison.
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Figure 4.7: Examples of the results around bifurcations with regularization methods. White
line is the ground truth tree. A tree extracted from NMS ouput directly (without regularization)
is shown in the first row. Solution of (2.12) [32] is shown in second row. Our model (3.6) is
shown in third row. Our model (3.6) with absolute curvature is shown in the last row.
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Figure 4.8: Visualization (MIP) of the volumetric data after applying Frangi filter.
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Figure 4.9: Vessel tree reconstruction from real data in Figure 4.8 based on our method for esti-
mating centerline tangents using prior knowlegde about vessel divergence. The final tree struc-
ture is extracted by MST on K-nearest-neighbour (KNN) weighted graph with edge weights
wpq defined as the average arc-length between neighbors p and q for two circles containing p
and q and tangential to either lp or lq. Three different colors (red, blue, yellow) denote three
main branches.
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Figure 4.10: Qualitative comparison results on real data. Red represents the result of [32], see
(2.12). Blue curve is the centerline obtained based on our directed vessel estimation model (3.6)
with divergence prior and absolute curvature regularization. The yellow circles highlight im-
provements at bifurcations due to correct estimation of the flow direction.



Chapter 5

Conclusion and Future Work

We propose a divergence prior for vector field reconstruction problems. In the context of vessel
tree estimation, we use the divergent vessel prior to estimate vessel directions disambiguating
orientations produced by the Frangi filter. Our method significantly improves the accuracy
of reconstruction at bifurcations, reducing the corresponding angle estimation errors by about
50%.

There are interesting extensions for our work on estimating vessel orientations. For exam-
ple, such orientations can be directly used for extracting vessel tree topology or connectivity.
Instead of using standard MST on undirected graphs, e.g. as in [32], we can now use Chu-Liu-
Edmonds algorithm [11, 13] to compute a minimum spanning arborescence (a.k.a. directed
rooted tree) on a directed weighted graph where a weight of any edge (p, q) estimates the
length of a possible direct “vessel” connection specifically from p to q. Such a weight can
estimate the arc length from p to q along a unique circle such that it contains p and q.

41
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