
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2004

Software Process Model for Component-Based
Development
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
Capretz, Luiz Fernando, "Software Process Model for Component-Based Development" (2004). Electrical and Computer Engineering
Publications. 134.
https://ir.lib.uwo.ca/electricalpub/134

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/215388577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/134?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages

Information Technology Journal 3 (2): 176-183, 2004
ISSN 1682-6027
© 2004 Asian Network for Scientific Information

Corresponding Author: L.F. Capretz, Department of Electrical and Computer Engineering, University of Western Ontario,
London, ON, Canada, N6A 5B9 Tel: +1 519 6612111 x85482 Fax: +1 519 8502436
E-mail: lcapretz@eng.uwo.ca

176

A Software Process Model for Component-Based Development

L.F. Capretz
Department of Electrical and Computer Engineering,

University of Western Ontario, London, ON, Canada, N6A 5B9

Abstract: In the present study software life cycle and reusability issues that arise during component-based
software development are discussed. The first part concentrates on mechanisms to achieve software reusability,
such as composition and inheritance, it also outlines the main reasons why software is not extensively reused
and examines the difficulties associated with software reusability. In the second part, the main issues
concerning a seamless software life cycle model are considered, its purpose was to present a software life cycle
model that takes component-based software development into account. Finally, the article covers other general
aspects that form a more complete assessment of the whole software process; for instance, the most frequently
used abstraction mechanisms and an estimate of the time and effort spent on each phase of the described life
cycle model.

Key words: Component-based software development, software life cycle model, software process, software
reusability

INTRODUCTION development and prototyping. The Spiral Model has

A component is a self-contained piece of software through prototyping, but without a clear and explicit goal,
that provides clear functionality, has open interfaces and this process can degenerate into uncontrollable hacking.
offers plug-and-play services. Component-based software The Fountain Model supports incremental and iterative
engineering is expected to have a significant impact on software development, which takes place during the
the software industry and hopefully on how software production of object-oriented software.
engineers construct systems, so this technique is here to A growing number of companies in the software
stay . There are initiatives in that direction, such as industry are following a process that iterates among[1]

COM+ , Enterprise JavaBeans , Component-Broker and design, building components, testing and feedback from[2] [3] [4]

CORBA , among others. Component-based software customers . Fingar discusses the application of[5]

engineering has broad implications for how software frameworks to e-business technical environment and
engineers acquire, build and evolve software systems. addresses the issues that how component-based
Hence, it is expected dramatic change in designer’s e-commerce frameworks are essential to the agility
primary roles and required skills for software companies need to respond to rapidly changing
development. e-commerce business models. However, one of the main

Numerous software life cycle models have been shortcomings of such models is that none of them
proposed. Their primary utility is to identify and arrange explicitly encourages reusability along their phases.
the phases and stages involved in software development Therefore, a software life cycle model that emphasizes the
and evolution. They also accrue guidance to the importance of component reuse during software
sequence in which the major tasks to construct and development is very much in demand.
maintain a software system should be performed. So, it is
appropriate to examine different software life cycle models Reusing components: The concepts of software
in general and point out their strengths and weaknesses reusability and component-based software development
before an alternative one is put forward. are so interrelated that it is often difficult to talk about one

The Waterfall Model has been long used by without mentioning the other. This section describes an[6]

software engineers, but it takes no account of bottom-up approach to software reuse while the analysis and design

[7]

been proposed mainly to speed up software development

[8]

[9] [10]

Infrom. Technol. J., 3 (2): 176-183, 2004

177

Fig. 1: Mechanisms for software reuse

phases are carried out. The strategy to be explained Relationship between components: So far, most of the
encourages the reuse of software in such way that while work that has been done in the reusability arena involves
its steps are performed, reusability through composition, storing and recovering components from reusable
generalization and specialization mechanisms is libraries, but there are yet many complications related to
considered. reusing such components. To illustrate, as software

The approach focuses on a collection of software systems become mature, the libraries may grow as
systems within a certain application domain and domain-specific reusable libraries and reusable
encourages reuse of software components from an components can be added over time. It does not take long
existing reusable library for that application domain. It for such libraries to expand to enormous proportions and
addresses the mechanisms employed when components often with multiple versions of a component, which makes
are reused from the reusable library. Moreover, it it difficult for designers to look for components that might
recognizes the iterative nature of software creation, hence meet their needs.
repetitions are incorporated into the reuse process where Reusable libraries are usually large and their
appropriate. organization turns them problematic to find potentially

The reuse process is well-suited for reusable components. One of the great difficulties in
component-based software development because the identifying reusable components lies in the fact that there
composition, generalization and specialization are natural is discordance in terminology between different people,
mechanisms, which are used in any software process. that is, a component which someone is looking for is
Underlying the reuse of software components, there are described in the libraries by unfamiliar or unexpected
activities that address the identification of reusable terminology.
components and their deployment into the developing In order to reuse a component, naturally, the software
system (Fig. 1). engineer must find it first. Therefore, a good classification

Reusability implies development with reuse and scheme for arranging components is vital to the selection
development for reuse. Initially, the software engineer process. The arrangement can be an aid to understanding
identifies potentially reusable components from an a component when software reuse demands adaptability
existing reusable library, the components are then of that component to match new requirements. Besides,
selected and reused through composition, generalization the search for a component is a difficult task in that it
and specialization mechanisms. At the end of the software must be selected the one which requires the least effort to
development, there may be many new potentially reusable adapt, with the goal being an exact matching between
components that need to be classified and stored into the what is needed and what is available. The learning curve
reusable library. In the future, such components can be for reusable components may be substantial. However,
reused in other systems. the time and effort required for this selection process is

Infrom. Technol. J., 3 (2): 176-183, 2004

178

 decreased by the presence of semantic information within information present in a reusable library is compatible with
the reusable library. Therefore, software engineers must the information dealt with by the software process model
be able to find a connection between what is needed and to be presented later in the article. Therefore, enquiries to
what is available. Relationships between components can a reusable library, which stores such relations and
be used to facilitate the search for potentially reusable manipulates the same concepts as component-based
ones. process model to be described, can be undertaken.

The relationships between components could be:
has-a, is-a, uses-a, is-part-of-a. Such relationships could Reusability process: The decisions involving the reuse of
be taken as a classification scheme to provide a network a component are very important in that, the one which
of pre-defined links between components, thus requires the least effort to adapt must be selected, with an
introducing some semantic information and a vocabulary exact match between what is needed and what is available
into the reusable library. being the goal. Basically, the selection of a component

A scheme for representing relationships between from a reusable library imposes four steps:
components of a reusable library entails on organizing
them through a set of pre-defined relations. Such relations 1. Identifying the required (target) component
allow components to be arranged and connected to others 2. Selecting potentially reusable components
that can also be reused. In addition, relations express links 3. Understanding the components
between different components, facilitating the 4. Adapting (specializing, generalizing, composing or
understanding of the components. Relations applied to adjusting) the components to satisfy the needs of
express design information between two or more reusable the developing software system
components can help solve the problem of discordance of
terminology between people because the relations The search for a component in a reusable library can
establish fixed semantic information between components. lead to one of the following possible results:
Four different relations to link components are proposed:

Compose (<component-1>, <list-of-components>): This available component is reached
relation represented <component-1> as a composition of ! Some closely matching components are collected,
components in a <list-of-components> (has-a then adaptations are necessary
relationship). Complex software system behaviour can be ! The requirements are changed in order to fit available
achieved with compositions that combine the simple components
behaviour of several types of components. ! No reusable component can be found, then the target

Inherit (<component-1>, <component-2>): This relation
indicated that <component-1> is a generalization of Following a procedure which helps select potentially
<component-2> or the other way round that <component- reusable components is fundamental to the reuse process.
2> is a specialization of <component-1> (is-a relationship). The procedure (Fig. 2) illustrates a typical attempt to reuse

Use (<component-1>, <list-of-components>): This relation elucidates exclusively the selection of potentially reusable
indicated that <component-1> interacts with components components; classification and storage issues are
in a <list-of-components> (uses-a relationship). It means considered later in the next section. By properly arranging
that any operation of <component-1> uses any operations a component using the relations described previously, the
defined in any component in a <list-of-components>. chance of finding potentially reusable components is

Framework (<component-1>, <framework-1>): This suitable component is reduced because the classification
relation associates a <component-1> with a <framework- scheme based on relations can guide designers through
1> defined by the software engineer (is-part-of-a the various components quickly and efficiently.
relationship). Selection involves browsing to find a component,

The relations compose, inherit and use can be retrieving it and transferring it from the reusable library to
perceived straightforwardly, whereas the framework the system database. While searching for components it
relation should be made explicit by the software engineer. is necessary to address the equivalence between the
The relations presented may be viewed as an alternative target component and any near matching components.
textual notation to describe a software system. The The best component selected for reuse may also require

! An identical match between the target and an

should be created from scratch

a component from a reusable library. The procedure

increased. Furthermore, the effort required to get a

Infrom. Technol. J., 3 (2): 176-183, 2004

179

begin
//The process of component reuse.
//Given a keyword for a target component,
//search libraries for potentially reusable components and their relations.

if identical match between the target and an available component exists
then
//reuse by composition
retrieve it and reuse it
else
collect fitting components
for each collect component
assess the degree of matching
endfor
rank the components
select the best component
if the target can be a subclass of the best component

then
//reuse by specialization
put the target as subclass and inherit commonalities
else

if the target shares commonalities with the best component
then

//reuse by generalization
create a new abstract superclass
put the target and the best component as subclasses

else
//specialization and generalization are not convenient
if possible
then

adjust the best component to the requirements or
adjust the requirements to the best component

else
//reusability is not possible
create the target component from scratch

endif
endif

endif
endif

end

Fig. 2: A procedure for software reuse Through the promotion of the specialization,

specialization, generalization or adjustment to the design phase, application-dependent components should
requirements of the new software system in which it will be revised, so that they can be sufficiently generic to be
be reused. Sometimes, it is preferable to change the of use in a wider range of applications rather than in the
requirements in order to reuse the available components. single system for which they were originally developed.
The adaptability of components depends on the This generality requires extra effort during the design and
difference between the requirements and the features implementation phases in the short term, but in the long
offered by existing components, as well as the skill and term, after a sufficiently broad reusable library is created,
experience of the designer. The process of adapting it will lead to a significant reduction in overall software
components is the least likely to become automated in the development time and effort.
reusability process. Development for reuse should therefore be with

Lifetime of reusable components: Not only does satisfying the specific needs of the application that is
reusability involve reusing existing components in a new being designed. In contrast, the specific parts of a design
software system, but also designing components that are are those parts that turn a general set of components into
meant for reuse. While a piece of software is being a specific software design for a particular application. For
developed, it might be realized that some components can example, one can have the design of a general set of
be generalized and reused in future software development. classes for dealing with text string in a windowing
An important issue in the quest of reusability is how to environment. One specific application could use that set
make a potentially reusable component available to other of classes to design a text-formatting program; another

Fig. 3: Lifetime of a reusable component

people. The component must be understandable,
well-written and well-documented. Lastly, the component
must be easily adaptable for different uses, either in
original or in modified form. Therefore, developing
reusable components is considerably more difficult and
imposes much greater expense than producing ordinary
components, although it may still be worth the
investment.

As component-based software is produced
essentially out of interrelated collections of independently
developed components, it is important to understand the
stages that such components go through. The stages
reflect the activities involving the identification, design,
implementation, verification, classification, storage,
refinement, selection and reuse of the component.
Figure 3 depicts the lifetime of a reusable component.

generalization and composition mechanisms during the

generality in mind with perhaps less emphasis on

Infrom. Technol. J., 3 (2): 176-183, 2004

180

application could use the same classes to define a text A component-based process model: The creation of
editor.

Tools can play an important role during the
manipulation of reusable libraries by selecting or storing
components and browsing the libraries. There must be in
fact two kinds of libraries: reusable libraries from which
components of interest can be picked up and to which
new generic reusable components can be added, as well
as the software system database that keeps information
concerning a particular software under construction.
Modification of components in the reusable library is not
recommendable; a copy of the component should be
taken into the software system database and refinements
carried out there.

If a newly implemented component does not exist in
the reusable library, then a decision has to be made as to
whether that new component should be considered as
reusable and be incorporated into the reusable library.
Before a component is added to the library, it must be
verified and frozen. The verification is just applied to the
component, not to the whole software system and should
include treatment of exceptional conditions. Storing a
component also involves getting it from the software
system database, classifying it, relating it to other
components and putting it into the reusable library.

For a component to be a viable candidate for
inclusion into a reusable library, it must first:

! Be clearly defined in terms of its interface and
functionality

! Have a reasonable performance in terms of time and
space required to execute its operations

! Be a generic abstraction, which means that the
functionality it provides must be sufficient enough to
model the real-world entities abstracted

! Have a robust behaviour if it is misused or pushed to
its limits, that is, exceptions must be handled

It is also very important to separate sets of client
components from server components. Client components
are often application-dependent and they make decisions
and switch the control flow among several server
components. Client components should not directly
perform calculations or implement complex algorithms. On
the other hand, server components perform specific and
detailed operations, executing general computations to
implement a certain self-contained algorithm and rarely
change the control flow. Therefore, server components
are more likely to be reused in other systems than client
components since the former are more application-
independent and basically wait to receive requests from
client components. Thus, as far as design for reuse is
concerned, sets of server components are preferable.

software is characterized by change and instability and
therefore any diagrammatic representation of the
component-based process model should consider
overlapping and iteration between its phases. A
consensus may be drawn on the phases pertinent to a
software life cycle. Although the main phases may
overlap each other and iteration is also possible, the
planned phases are: system analysis, domain analysis,
design (static and dynamic) and implementation.
Maintenance is an important operational phase, in which
bugs are corrected and extra requirements met.

An outcome of this software life cycle model is the
emphasis on reusability during software development and
evolution and the production of reusable components
meant to be useful in future projects. This is naturally
supported by the object-oriented paradigm due to
inheritance and encapsulation. Reusability also implies
the use of composition techniques during software
development. This is achieved by initially selecting
reusable components and aggregating them, or by
refining the software to a point where it is possible to pick
out components from the reusable library, as explained
above.

Figure 4 represent a pictorial representation of how
the system analysis, domain analysis, design,
implementation and maintenance phases proceed
iteratively over time and how reuse of components from
the reusable library is taken into consideration within the
software life cycle model. Reusability within this life cycle
is smoother and more effective than within the traditional
models because it integrates at its core the concern for
reuse and its mechanisms.

System analysis: This phase involves high-level analysis
of the application for the purpose of understanding its
essential features. The system analysis phase demands
the system analyst to:

! Study the application and its constraints
! Understand the requirements expected to be satisfied

by the software system
! Create an abstract model of the application in which

these requirements are met

This phase may conduce to the identification of the
major parts of the application, so that the system can be
divided into large components based on the functionality
that should be offered. A glimpse of the preliminary
components that model the application can come up as
well.

Infrom. Technol. J., 3 (2): 176-183, 2004

181

Fig. 4: A component-based life cycle model

At this stage, the services delivered by a software should ask, “Where are components that I can directly or
system helps figure out its subsystems and major indirectly reuse to solve this problem?'' A procedure to
components. However, as compared to functional guide them over this task has been presented above. At
decomposition, this phase is neither concerned with the this point, they should be able to examine a reusable
details of functions in terms of algorithms, nor which library and to select components that closely match the
functions can be refined into other sub-functions, but it component necessary to build the software.
worries over mapping the application in terms of The designer looks for components trying out a
components. The result of this phase is an abstract
model of the application, which may be graphical or
textual, using a formal or informal method, as the system
analyst wishes.

Domain analysis: Domain analysis involves the
examination of a certain application domain and seeks to
identify and arrange entities that commonly occur in
systems within the application domain. Thus, domain
analysis is an activity that should be carried out at the
beginning of software production.

The domain analysis phase primarily seeks to abstract
and arrange concepts that form the vocabulary of the
application domain. At this stage a common terminology
is drawn. Large applications should be broken into parts,
so that specialists in a specific application domain can
carry out the domain analysis in that application domain.

During this phase, the abstract model of the
application comprising high-level abstractions of software
components may be refined and new components can be
defined. Therefore, the boundary between system
analysis and domain analysis may at times seems fuzzy
because identifying key abstractions in the application
domain may be viewed as part of system analysis or
domain analysis. Nevertheless, at this level, domain
analysis is also concerned with the identification and
organization of potentially reusable components.

Design: Design is an exploratory process. When
designers face an application, they should not ask “How
do I work out a solution to this problem?'' Instead, they

variety of schemes in order to discover the most natural
and reasonable way to model the application. There has
been a tendency to present software design in such a
manner that it looks easy to do. Nevertheless, in the
design of large and complex software, identification of key
components is likely to take some time. During the design
phase the primary concern is to build a design model that
fulfils the overall software functionality.

The construction of the design model involves
identifying relevant components and producing both the
static design and the dynamic design. The static design
captures the generic and essential features of a system
and can be expanded to other systems within the same
application domain. In contrast, the dynamic design
captures behavioural aspects of a certain system and is
therefore more difficult to generalize to other systems.

As more components are identified along the design,
re-evaluation of the complete set of components is
required. Repetitions are not unusual, since a good design
usually takes several iterations. The number of
reiterations also depends on the designer's insight,
experience and knowledge about the application domain.
A bottom-up strategy should be considered if the
software engineer does not have a good perception of the
application domain.

Some components picked out during the design
phase should undergo further refinements (e.g. treatment
of exceptional conditions) until they become generic and
robust enough to be placed in a reusable library. This
surely adds an overhead to software construction, which
is more than compensated for by the long term savings
when such components are reused in future projects.

Infrom. Technol. J., 3 (2): 176-183, 2004

182

Table 1: Input, tasks and output of each phase
Phases vs I/O Input Tasks Output
System application: create an abstract
analysis user need and abstract model

software system model of the of the
requirements application application

Domain abstract identify potentially
Analysis model possible reusable

of the reusable components
application components

Design abstract model build static static (generic)
of the application and dynamic and
and potentially models dynamic (behaviour)
reusable components (design model) models

Implementation static (generic) implement software system
and the solution to the
dynamic (behaviour) models application
models

Maintenance delivered implement updated release
software system the of the
plus changes changes software system
to be introduced

Table 2: Phases versus abstraction mechanisms
Phases vs System Domain
mechanisms analysis analysis Design Implementation Maintenance
Classification X X X X X
Instantiation X X X
Generalization X X X X
Specialization X X X X
Decomposition X X
Composition X X X X

Implementation: The implementation phase is
characterized by the translation of a design model into a
programming language. The design model comprises
static concepts and dynamic behaviour represented by
the output of the design phase. In this phase the major
tasks involve the implementation of the identified
components, along with the cooperation among them.

The line between design and implementation is also
a blurred one. Implementing a component requires
defining the data structures reciprocal to attributes and
the algorithms corresponding to operations of that
component. It is also necessary to implement the control
flow that realizes the interaction between components and
specify the overall software behaviour. The best idea is to
isolate a component and decide whether a match can be
reused, or if it has to be implemented from scratch.

Maintenance: During software maintenance, changes are
introduced to a delivered software system. Such changes
are not meant only for correcting errors occurred during
operational software. These changes may be also for
enhancing, updating the system to anticipate future errors
or adapting the system in response to a modification in
the environment. After changes are introduced to the
system, an updated release of the software is generated.

During the maintenance phase, software components
may be accessed from, as well as new ones may be added

to the reusable library of the concerned application
domain. For instance, a change to adapt the software to a
new environment may specialize already existing
component, so that characteristics of the new
environment are taken into consideration, hence
expanding the spectrum of environments the reusable
components are able to deal with.

The input, tasks performed and output of each phase,
which evolves dynamically as the understanding a
software engineer has about the system grows (Table 1).
The phases are traceable during software construction
and evolution, as well as determine a component-based
software life cycle model.

Mechanisms prevalent in each life cycle phase: The most
frequently used mechanisms in each phase of the
software life cycle model are pointed out in Table 2. These
mechanisms are part of the abstraction process inherent
to software development. The results are based on the
development of a generic graphical interface for CASE
environments.

The system analysis phase emphasizes arrangement
of high-level concepts in a real-world application and
decomposition of the software system. Several
mechanisms are relevant to the domain analysis stage, but
specialization, generalization and composition are vital to
achieve reusability. In the design phase all mechanisms
are fundamental. During the implementation and
maintenance phases, almost all mechanisms are essential
except decomposition, since at these latter stages the
foremost partition of the software have been done.

Percentage of time per each development stage:
Although it is difficult to draw distinct lines between two
adjacent phases, Figure 5 indicated an approximate
percentage of the amount of time likely to be spent on
each phase for a complete development of a system.
These statistics have been taken from the construction of
a few software systems. Despite the system analysis,
design and implementation phases being deeply
interrelated, it is clear that the design phase takes longer
because most of the tasks are done during such a phase.

Domain analysis is relevant to discover potentially
reusable components during software production.
Consequently, the amount of time spent on this phase,
naturally, must not be longer than that spent on other
phases. If the perceived cost of finding a certain
component is higher than the cost of creating a new
component from scratch, then all hope for reuse is lost.
For this reason, it is important to have at least minimal
library tools that allow software engineers to quickly
select and add reusable components as they are

Infrom. Technol. J., 3 (2): 176-183, 2004

183

Fig. 5: Phases versus software development time piece of software.

identified. Although maintenance accounts for the REFERENCES
majority of software costs, it is not included in Fig. 5
because it can be viewed as an operational phase that 1. Capretz, L.F., M.A.M. Capretz and D. Li, 2001.
succeeds software development. It is felt that the basic Component-based Software Development. 27th IEEE
reuse issues that the software development model Conference of the Industrial Electronics Society
encourages forms a useful basis for supporting software (IECON’01), Denver, pp: 1834-1837.
development and evolution. 2. Microsoft, 2004. COM+, www.microsoft.com/com/

One great advantage of this software process model tech/complus.asp.
is the conceptual continuity across all phases of the 3. SUN, 2004. Enterprise Java Beans. www.java.sun.
software life cycle. Not only do the software concepts com/products/ejb/index.html.
remain the same from system analysis down through 4. IBM., 2004. Component Broker. www.software.
implementation and maintenance, but they also stay ibm.com.
uniform during the refinement of a design. Therefore, 5. Object Management Group, 2004. The Common
when the described model is employed, the design phase Object Request Broker Architecture. www.omg.org.
is linked more closely to the system analysis and the 6. Royce, W.W., 1987. Managing the Development of
implementation phases because software engineers have Large Software Systems. Proceedings of IEEE 9th
to deal with similar abstract concepts throughout software International Conference on Software Engineering,
construction and evolution. Monterey, CA, IEEE Press, pp: 328-338.

During the system analysis and domain analysis 7. Boehm, B.W., 1988. A spiral model of software
phases, user needs, software requirements, development and enhancement. IEEE Computer,
functionalities, objectives and constraints of the system 21: 61-72.
are very much of interest. Thus, it is important to 8. Henderson-Sellers, B. and J.M. Edwards, 1990. The
understand the real-world application and an abstract object-oriented systems life cycle. Communications
model of that application should be achieved. When the of the ACM., 33: 142-159.
design phase is entered, the abstractions are refined. The 9. Cusumano, M.A. and R.W. Selby, 1997. How
design process should stop when the key generic Microsoft builds software. Communications of the
abstractions and the software behaviour are detailed ACM., 40: 53-61.
enough to be translated into a programming language. 10. Fingar, P., 2000. Component-based framework for
Thus, the design phase generates the templates for the E-commerce, Communications of the ACM., 43: 61-66.
implementation stage.

A software system is not merely produced out of
reusable components. On the contrary, usually,
components selected and derived from reusable libraries
are combined with newly written components and all
of them have to be bound together in the final software.
It is natural that with some of the components, the
software designer will face the decision of whether to
reuse them straightforwardly, adapt them and reuse, or
write them from scratch. The break-even-point of reusing
versus redoing lies where the cost of search plus
adaptation exceeds the cost of producing the respective

	Western University
	Scholarship@Western
	2004

	Software Process Model for Component-Based Development
	Luiz Fernando Capretz
	Citation of this paper:

	\chap{REUSABILITY AND LIFE CYCLE ISSUES}

