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Extending UML-RT for Control System Modeling 

 
Qimin Gao, L.J. Brown and L .F. Capretz 

Department of Electrical and Computer Engineering,  
The University of Western Ontario London, Ontario, Canada N6A 5B9 

 
Abstract: There is a growing interest in adopting object technologies for the development of real-time 
control systems. Several commercial tools, currently available, provide object-oriented modeling and 
design support for real-time control systems. While these products provide many useful facilities, such 
as visualization tools and automatic code generation, they are all weak in addressing the central 
characteristic of real-time control systems design, i.e., providing support for a designer to reason about 
timeliness properties. We believe an approach that integrates the advancements in both object 
modeling and design methods and real-time scheduling theory is the key to successful use of object 
technology for real-time software. Surprisingly several past approaches to integrate the two either 
restrict the object models, or do not allow sophisticated schedulability analysis techniques. This study 
shows how schedulability analysis can be integrated with UML for Real-Time (UML-RT) to deal with 
timing properties in real time control systems. More specifically, we develop the schedulability and 
feasibility analysis modeling for the external messages that may suffer release jitter due to being 
dispatched by a tick driven scheduler in real-time control system and we also develop the 
scheduliablity modeling for sporadic activities, where messages arrive sporadically then execute 
periodically for some bounded time. This method can be used to cope with timing constraints in 
realistic and complex real-time control systems. Using this method, a designer can quickly evaluate the 
impact of various implementation decisions on schedulability. In conjunction with automatic code-
generation, we believe that this will greatly streamline the design and development of real-time control 
systems software. 
 
Key words: UML-RT, Real-Time Control Systems, Object-Oriented Design, Real-Time Scheduling Theory 

 
INTRODUCTION 

 
Real-time control systems are concurrent systems with 
timing constraints. They have widespread use in 
industrial, commercial and military applications. They 
require both logical correctness and timing correctness, 
the logical correctness can be expressed in terms of 
correct input and output, the timing correctness can be 
expressed that the system must meet the time-critical 
deadlines to prevent a catastrophic system failure. Real-
time control systems are one kind of hard real-time 
systems. They are differentiated from other types of 
systems by the timing requirements associated with 
some or all of their computations. As a result, 
validating such systems requires that these additional 
timing constraints also be satisfied. This verification is 
especially necessary for the real-time control systems, 
where fatal situations may occurs if any timing 
constraints are not met. Typically, the designer of real-
time control systems has dealt with these timeliness 
properties by using their intuitive engineering skills to 
design such systems and then by substantiating their 
design through systems simulation. While this method 
produces the desired effect after possibly several 
iterations, it greatly relies on the abilities of the 

designer and unnecessarily consumes an elaborate 
amount of time and effort.  
To eliminate these shortcomings, there have been many 
attempts to make use of object-oriented technology for 
real-time software. Some of them have come from the 
industrial area [1-4], while others have come from 
academia [5-7]. Many of these claims are mostly based 
on assumption that real-time scheduling theory can be 
used to perform schedulability analysis. But, traditional 
real-time scheduling theory results can be directly used 
only when the object models are restricted to look like 
the tasking models employed in real-time scheduling 
theory, as it has been done in [6]. In other cases, either 
the claims are unsupported [3] or based on less 
sophisticated analysis [5]. [8] provides the first attempt 
to apply real-time scheduling theory to the object-
oriented design by use of the state-of the art in the both 
fields. In their study, they show how to integrate 
traditional scheduliability analysis techniques with 
object-oriented design models based on the assumptions 
that the entire external message arrives perfectly on 
periodic or aperiodic time interval. [9] provides the first 
attempts to commercially implement scheduling theory 
for UML model design by using the technologies in [8], 
these integrated tools allow issues on timeliness to be  
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addressed much earlier on in the development process. 
However, some critical issues regarding real-time 
control systems are not well addressed by the current 
approaches, especially because schedulability analysis 
for real-time control systems has not been effectively 
incorporated. Although some researchers [8, 9] have 
addressed this problems by providing code synthesis of 
scheduling aspects and functionality aspects models, 
they have mainly focused on the assumptions that all 
external events arrives perfectly on periodic or 
aperiodic without release jitter and sporadic effects. In 
general the real–time control systems are not the case, a 
message may be delayed by the polling of a tick 
scheduler, or perhaps awaiting the arrival of a message 
and some real-time control systems have messages that 
behave as so-called sporadically periodic; a message 
arrival at some time, executes periodically for a 
bounded number of periods and then re-arrives 
periodically for a number of times and then does not re-
arrive for a larger time. Examples of such messages are 
interrupt handlers for burst interrupts or certain 
monitoring messages in real-time control systems. Until 
now there is no extended method of the object-oriented 
design methodologies to deal with these timing 
constraints for real-time control systems. Thus the 
above analysis methods need to be improved. 
In this study, we will present an approach to 
incorporating schedulability analysis in a UML for 
Real-Time (UML-RT) model-based development 
process [10]. Using this approach, satisfaction of the 
end-to-end timing constraints of real-time control 
systems can be verified and the schedulability analysis 
results will be used for aspect-oriented code generation 
in the model transformation and automatic code 
generation. 
 
UML-RT and Real-Time Scheduling Theory: The 
Unified Modeling Language (UML) is a graphical 
modeling language for visualizing, specifying, 
constructing and documenting the artifacts of software 
systems. The UML is a widely accepted language and it 
is becoming a de-facto standard for object-oriented 
modeling. UML has a strong set of general purpose 
modeling language concepts and has been designed as 
an open-ended language applicable across different 
domains. The tool, named UML-RT for real-time, 
developed by the Rational Corporation, uses UML to 
express the original ROOM (Real-Time Object-
Oriented Modeling) concepts and their extensions. 
UML-RT uses the notion of capsules to describe 
concurrent, active objects. Capsules are objects that 
communicate with other capsules through interfaces 
called ports and have each their own thread of 
execution. Capsules differ from other classes in that 
capsules can call operations on classes. Sending 
messages through public ports is the only method that 
capsules    can   communicate  with  other  capsules.  In  
 

addition to that, capsules have their behavior defined by  
UML hierarchical state machines (whereas classes have 
their behavior defined by methods). The collaborative 
behavior of the collection of sub-capsules can be 
described in a number of ways. Sequence diagrams 
illustrate capsule interactions through message 
exchanges in a time sequence. Every capsule in the 
sequence diagram has a lifeline. Time progresses from 
top to bottom along a lifeline. Sequence diagrams use 
directed message arrows to describe messages sent 
from one capsule to another. The horizontal dimension 
represents the different objects in the interaction. 
Scheduling theory for real-time systems has received a 
great deal of attention. The first contribution to real-
time scheduling theory was made by [11]. They 
developed optimal static and dynamic priority 
scheduling algorithm for hard real-time systems. In 
general, real-time scheduling theory models are 
centered on end-to-end system behavior, which are 
modeled using the notion of tasks. A task represents an 
entity requiring execution in some specified 
environment and it has several characteristics affiliated 
with it. Basically, scheduling theory modeling 
expresses a real-time control system as a collection of 
tasks. Since then, significant progress has been made on 
generalizing and improving the schedulability analysis. 
The authors developed exact schedulability analysis to 
determine worst-case timing behavior for tasks with 
hard real-time constraints in the RMA model 
considered in their initial work [11], as well as extended 
models, such as arbitrary deadlines, release jitter, 
sporadic and periodic tasks [12-18].  
Most of the deterministic schedulability analysis 
techniques follow the same approach. First, the notion 
of the critical instant of a task is defined to be an instant 
at which a request for that task will have the largest 
response time. Then, the notion of busy period at level ‘ 
i ’ is defined to be a continuous interval of time during 
which events of priority ‘ i ’ or higher are being 
processed [11]. With these concepts, the calculation of 
the worst-case response time of an action involves the 
computation of the response time for successive arrivals 
of the action, starting from a critical instant until the 
end of the busy period, also the response time of a 
particular instant of action can be calculated by 
considering the effects of the blocking factor from 
lower priority actions and the interference factor from 
higher or equal priority actions, including the previous 
instance of the same action. If the worst-case response 
time of the action is less than or equal to it’s deadline, 
the action can be said to be schedulable and feasible. 
Otherwise, the action is not schedulable or feasible. 
 
An   Example   of Control System: For instance, Fig. 
1 depicts   a   typical  reverse  rolling  mill   in   the  
steel rolling   mill. It    has  a    payoff    reel, a     rolling 
mill    and    a     tension    reel. A   hot    coil     strip   is  
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Fig. 1: The Reverse Rolling Mill 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Structure Model of Automatic Gauge Control System 
 
uncoiled    by   the   payoff  reel. The   strip   is rolled to 
the specified thickness and coiled by the tension reel. 
The aim of the rolling process is to reduce the thickness 
of a strip to a desired thickness gauge. This is done by 
applying a force to the strip while moving through the 
roll gap. In order to meet increasing demand for the 
high precision of strip thickness. a new automatic gauge 
control system was developed with containing Roll Gap 
Control, Roll Speed Control and Roll Eccentricity 
Compensation. The Roll Gap Control System attempts 
to adjust the force from the hydraulic cylinder and 
hence the roll gap, to ensure the output thickness of the 
rolled strip. The Roll Speed Control System 
automatically adjusts the roll speed according to the 
mass flow theory and the tension of the steel strip to 
reduce the influence of thickness fluctuation and satisfy 
the high quality requirements. The roll eccentricity 
compensation system is applied to adjust the roll gap 
according the right compensation amplitude. If the 
eccentricity compensation is not done as the right value, 
it cannot cancel the effect of eccentricity in the rolling 
process; it can make the strip thickness become worse. 
The eccentricity compensation must be done in the right 

time or right phase. Even if it is done in the right 
amplitude, but it is not done at the right time, it can also 
make the strip thickness worse. All the control systems 
must guarantee their functional requirements and timing 
requirements. In order to design such systems, we will 
use the object–oriented analysis and design 
methodologies to analysis the functional requirements 
and timing requirements in such real-time control 
systems. 
 
Control System Modeling in UML-RT: The basic 
architecture entity in UML-RT is an active object; these 
active objects are called capsules. These capsules 
interact with each other only through sending and 
receiving messages via interface objects called ports 
that are specialized attributes of capsules. A capsule 
may have an internal structure that can be specified 
using an object diagram or collaboration diagram. The 
nodes of internal structure are also capsules, which may 
have an internal structure of their own and so on. This 
hierarchical decomposition allows the modeling of 
complex system structures. Fig. 2 shows   the   structure  
models   of     the    automatic    gauge   control   system  
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Fig. 3:  Sequence Diagram of Automatic Gauge Control System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Method Description of Automatic Gauge Control System 
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Fig. 5: The General Description of Automatic Gauge Control System 
 
Table 1: Time Characteristics of Automatic Gauge Control System 
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Fig. 6: Extended Sequence Diagram of Automatic Gauge Control System 
 
consisting   of  several active object and interconnection 
between objects through ports. In UML-RT, The 
sequence diagram represents the behavior of a capsule. 
It shows the sequence of messages between objects. 
The graphical syntax for sequence diagram in automatic 
gauge control system is shown in Fig. 3. This figure 
shows all the elements used in most sequence diagrams. 
The vertical instance lines represent objects 
participating in the scenario. The horizontal arrows are 
messages. Each message line starts at the originator 
object and ends at the target objects and has a message 
name on the line, such as the Thickness_Control object 
sends the Get_Steel_Thickness_h() message to the 
Thickness_Sensor object. In the sequence diagram, the 
time flows from the top to bottom and the time axis 
only shows sequence. 
 
Extended Analysis Model for Real-time Control 
Systems: Based UML-RT and automatic code 
generation methodologies and tools, we can 
automatically produce a feasible real-time control 
system and executable codes. But for the real-time 
control systems with release jitter and sporadic effects, 
we must improve these methodologies, especially in 
schedulability analysis models and schedulability 
analysis methods. We developed a schedulability 
analysis model for real-time control systems based on 

UML-RT and automatic code generation 
methodologies. Our schedulability analysis model is 
restricted to uni-processor single thread implementation 
environment and it is applicable to the design models 
and implementation models presented in UML-RT. To 
facilitate schedulability analysis, our schedulability 
analysis model can be systematically derived from the 
application models and implementation models. The 
analysis gives a view of the real-time control system 
that focuses on end-to-end behaviors, instead of object 
behaviors. This is useful since timing constraints in the 
real-time control systems are often “end-to-end” in 
nature, i.e., from the system inputs to system outputs 
and thus, span a computation that may involve the 
collaboration of multiple objects. 
In our study, we assume that real-time control systems 
are implemented in a uni-processor single thread 
environment and it is made up of a set of transactions, 
where transaction denotes a single end-to-end 
computation within the system. Specifically, it refers to 
the entire causal set of actions executed as a result of 
the arrival of an external event that originated from an 
external source. External event sources are typically 
input devices (such as sensors) that interrupt the CPU-
running embedded software. These external events can 
be periodic or aperiodic and also have jitter and 
sporadically periodic characteristics. We express the 
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real-time control system as a collection of transactions 
that capture all computation in the design model. We 
also use the term action to capture the processing 
information associated with an external or internal 
event. In our model, an action captures this entire run-
to-completion processing of an event. The execution of 
an action may generate internal events that trigger the 
execution of other actions. Thus, each transaction can 
be expressed as a collection of actions and events. Each 
action is a composite action and composed from 
primitive sub-actions, these primitive sub-actions 
include send, call and return actions [8], which generate 
internal events through sending messages to other 
objects. 
 
Notation: In our study, we use event and message as 
synonymous. Let ε = {E 1 , E 2 ,…, E n , E 1+n , …, 
E N } represent the set of all event-streams in the 
system, where E 1 , E2, …, E n  denote external event 
streams and the remaining are internal ones. All 
external events are assumed to be asynchronous, 
periodic, aperiodic events and sporadic events with 
release jitter. We use J i  to represent the jitter time of 
external event E i . T i  and t i  represents the outer 
period and inner period for sporadically periodic 
external events E i . If the external event is without 
sporadic effects, then inner period of such event is 
equal to its outer period. Each external event stream 
E i corresponds to a transaction iτ . We also use A i  to 
represent an action that is associated with each event 
E i . An action may be decomposed into a sequence of 
sub-actions A i  = {a 1,i , a 2,i ,  a 3,i , …, a

ini, }, where each 
a ji , denotes a primitive action, such as sending a 
message, calling a message and returning a message. 
We use q to represent the instance ‘q’ of action A i . 

Within this model, each action A i  represents the entire 
“run-to-completion” processing associated with an 
event E i  and it is characterized as either 
asynchronously triggered or synchronously triggered, 
depending on whether the triggering event is 
asynchronous or synchronous. Each action A i  executes 
within the context of an active object (capsule) Õ(A i ) 
and it is also characterized by a priority (π ( A i )), 
which is the same as the priority of its triggering event 
Ei. Each action A i  is also characterized by the 
computation time ( C (A i )) and the deadline ( D (A i )). 
Each sub-action a ji , of A i  is characterized by a 
computation time C (a ji , ) (abbreviated as C ji , ); the 
computation time of an action is simply the sum of its 
component sub-actions, i.e.,  
 

i.e., �=
j

jii CAC ,)( , also 

the computation time of any sequential sub-group of 
sub-actions a pi ,  to a qi ,  where p ≤ q is 
 

 �
≤

=

=
qj

pj
jiqpi CC ,..., .  

Each event and action is part of a transaction. For the 
rest of this study, we use superscript to denote 
transactions. For example, τ

iA  represents an action and 
τ
iE  represents an event, both of which belong to 

transaction τ. Adding the superscript for external events 
{E k : k=1, 2, …, n} is unnecessary since there is 
exactly one external event associated with each 
transaction, i.e., external event E k  belongs to 
transaction k and would be denoted as k

kE . In this case, 
the superscript will be omitted. 
 
Communication Relationships: We assumed that 
there are two types of communication relationships 
between actions, asynchronous and synchronous. We 
use symbol “�” to denote asynchronous relationship. 
An asynchronous relationship A i  � A j  indicates that 
action A i  generates an asynchronous signal event Ej 

(using a send sub-action) that triggers the execution of 
action A j . Likewise, we use symbol “�” to denote 
synchronous relationship. A synchronous relationship 
A i � A k indicates that action Ai generates a 
synchronous call event E k  (using a call sub-action) that 
triggers the execution of action A k . We assume that if 
the events have a synchronous relationship, the actions 
have the same priority. We also use a “causes” 
relationship and use the symbol ∝∝∝∝ for that purpose. 
Both asynchronous and synchronous relationships are 
also causes relationships, i.e., A i  → A j  => (A i  ∝ 
A j ) and A i  ⇔ A j   => (A i  ∝ A j ), Moreover, the 
causes relationship is transitive, thus (A i  ∝ A j ) ∧ (A j  

∝ A k ) => A i  ∝ A k . When A i  ∝ A j . We say that A j  

is a successor of A i  since A i  must execute (at least 
partially) for A j  to be triggered. 
 
Synchronous Set: For the purpose of analysis, we 
define the term “synchronous set of A i  ”. The 
synchronous set of A i is a set of actions that can be 
built starting from action A i and adding all actions that 
are called synchronously from it. The process is 
repeated recursively until no more actions can be added 
to the list. We use ϒ (A i ) to denote the synchronous set 
of A i  and C (ϒ (A i )) to denote the cumulative 
execution time of all the actions in this synchronous set. 
We also call A i  as the root action of this synchronous 
set. 
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Release Jitter: The release jitter time is the maximum 
time that a message may be delayed between the arrival 
of the message that awakes the transaction and the time 
the message is put in the run-queue (release). In real-
time control systems, the external messages or events 
may suffer release jitter due to being dispatched by tick 
driven scheduler. The external events arrivals are not 
perfect periodic and aperiodic. In our analysis model, 
we assume that only the external events has release 
jitter problem and the internal events do not have jitter 
problem, because the internal event arrival is only 
decided by the action that represents the entire “run-to-
completion” processing associated with the internal 
event. 
Sporadically Periodic Event: Sporadically periodic 
event is a message that arrives at some time and 
executes periodically for a bounded number of periods 
(called inner periods) and then re-arrives periodically 
for a number of times and then does not re-arrive for a 
larger time (called outer periods). Some real-time 
control systems have messages that behave as so-called 
Sporadically periodic messages, example of such 
messages are interrupt handlers for burst interrupts, 
packet arrivals from a communication device, or some 
certain monitoring tasks. 
 
Extended UML-RT for Control System Modeling: 
We know that there are a lot of advantages of UML, 
UML-RT and automatic code generation methodologies 
for real-time control system development, such as 
consistency of model views, problem abstraction, 
improvement of problem abstract, stability and 
reusability, automatic code generation. Although these 
methodologies have a lot of advantages for real-time 
control systems, the explicit timing requirements in 
real-time system are not graphically expressed and the 
release jitter and sporadic effects in real-time control 
system are not addressed. In this chapter, we use the 
automatic gauge control system to illustrate our 
extensions of UML for real-time control systems. This 
real-time control system has release jitter and sporadic 
effects. 
 
General Description of Automatic Gauge Control 
System: Figure 4 and 5 give the general description of 
the automatic gauge control system. This system is 
made up of nine objects, where each object’s finite state 
machine is shown. We can observe that each objects 
has only one “real” state associated with it. We also 
notice that each object calls its SpecialInitization action 
during initialization, through the system event 
RTInitSignal and SpecialDestruction action during 
system shutdown, through the system event 
RTDestroySignal. In addition, there are three external 
events interacting with the system just described above. 

The first external is thickness setup event. This event is 
a periodic event with period 60 time unit and 3 time 
unit release jitter in the system. The second external 
event is Tension_AGC triggered event, which is an 
aperiodic event with period 200 time units and 5 time 
unit release jitter. The third external is Eccentricity 
Control triggered event; this event is a sporadical event, 
with outer period 900 time units and inner period 300 
time units. The entire external events arrive into the 
system at time 0. 
 
Timing Characteristics of Automatic Gauge Control 
System: We have described the automatic gauge 
control system functional requirements. Now, we will 
consider the timing characteristics of the system, Table 
1 shows the timing characteristics in the automatic 
gauge control system. All the timing properties can be 
derived from the real-time control system timing 
requirements. From the table we can see that events 
have unique priorities, can arrive at any time, but have 
variable bounded delay before being placed in a 
priority-order run-queue. Periodic and aperiodic events 
are given worst-case inter-arrival time and sporadically 
periodic events are given the outer period and inner 
period. Each event cannot re-arrive sooner than its 
inner-arrival time, each event may execute a bounded 
amount of computation and it is associated with the 
action, each action is given the worst-case execution 
time and deadline. This worst-case execution time value 
is deemed to contain the overhead due to context 
switching. The cost of pre-emption, within the model, is 
thus assumed to be zero. 
 
Extensions of UML-RT for Real-time Control 
Systems: From UML and UML-RT, we know that the 
finite state machine behavior models of objects are 
useful for code-generation; they are not very conducive 
for reasoning about end-to-end behaviors, or scenarios. 
UML-RT uses sequence diagrams to model end-to-end 
system behaviors, or scenarios. However, sequence 
diagrams are weak in expressing a detailed 
specification of end-to-end behaviors, which is 
necessary for schedulability analysis. To express our 
ideas,  we    extend   the   sequence  diagram notation to  
capture detailed end-to-end behaviors. 
In the extended sequence diagram of UML-RT, we 
capture the details of the processing associated with an 
event. In the rest of the thesis, we will use the term 
action to refer to the entire run-to-completion 
processing for an event. Each action is, in general, a 
composite action and composed from primitive sub-
actions. These primitive sub-actions include the send, 
call and return actions described above, which generate 
internal events through sending messages to other 
objects. For the purpose of this thesis, we will restrict 
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our attention to a single sequence of sub-actions, 
although we note that conditional behavior (as may 
happen with guard conditions associated with 
transitions) can easily be incorporated. We will also 
assume that if an action is triggered by a synchronous 
message (generated from a call action), then that action 
must have a single reply action and that this action must 
be the last sub-action. In the extended sequence 
diagram of UML-RT, we also use the follows notations 
to represent the different event types. 
 
* We use  “ → ” to represent the asynchronous 

messages (events). 
* We use “           ” to represent the synchronous 

messages (events). 
* We use “         ” to represent the periodic 

messages (events). 
* We use “         ” to represent the aperiodic 

messages (events). 
* We use “            ” to represent the sporadically 

periodic messages (events). 
* We use “       ” to represent the release jitter time 

of messages (events). 
 
Figure 6 describes the automatic gauge control system 
for rolling mill as discussed. The transaction in the 
system is driven by different external events. As it can 
be seen, the Thickness_Control object obtains the steel 
strip thickness from the Thickness_Sensor object using 
a synchronous call action. It then does the control law 
calculations and generates a roll gap value, which is 
sent asynchronously to the Roll_Gap_Control object, 
the Roll_Gap_Control object is responsible to adjust 
the gap of roll in the No.1 Stand, then using this method 
to adjust the thickness of steel strip.  
The extended sequence diagram can easily be extended 
to include sub-actions associated with code executed by 
the real-time execution framework. In this extended 
sequence diagram, we can see the external events, 
internal event, actions and sub-actions. We can also to 
express the externals event arrival pattern, such as 
periodic external event with release jitter, aperiodic 
event with release jitter, sporadic external event with 
outer period and inner period. The extended sequence 
diagram is useful to capture timing constraints. Such as 
arrival  rates  of external events; periodic, aperiodic and  
sporadically periodic external messages (events); 
release jitter time of external messages (events); and 
end-to-end deadlines. This extended sequence diagram 
can be integrated with our proposed real-time 
scheduling algorithms [19] to analysis the 
schedulability and feasibility of control systems. This 
extended UML-RT can also be integrated with 
automatic code generation methodologies to produce 
code for the feasible control systems. Using this 

extended UML-RT, designers can quickly evaluate the 
impact of various implementation decisions on 
schedulability. In conjunction with automatic code-
generation, we believe that this will greatly streamline 
the design and development of real-time control system 
software. 

CONCLUSION 
 
Software design has become more and more important 
within the real-time control system design process since 
functionality implementation gradually migrated from 
hardware to software. Consequently, several 
commercial tools have become available that provide 
an integrated development environment for real-time 
control systems with object-oriented techniques to 
facilitate the design phase, e. g., Artisan Real-Time 
Studio (http://www.artisansw.com) and Rational Rose 
Real-Time (http://ibm.com). However, these tools lack 
the ‘real-time” support required by many of these 
systems, especially those with stringent timing 
constraints.  
This work put forward a formal model for specifying 
timeliness properties. The application of the model is 
shown within a realistic case study. We have extended 
UML sequence diagrams to visually describe the timing 
properties for real-time control systems. The proposed 
notation is generally applicable to any modeling 
language using active objects and explicit 
communication between objects through message 
passing. This method can be used to cope with timing 
constraints in realistic and complex real-time control 
systems.  
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