
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

1-2006

A Soft Computing Framework for Software Effort
Estimation
Xishi Huang
University of Toronto, edxhuang@gmail.com

Danny Ho
NFA-Estimation Inc., danny@nfa-estimation.com

Jing Ren
University of Ontario Institute of Technology, jing.ren@uoit.ca

Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
@article{DBLP:journals/soco/HuangHRC06, author = {Xishi Huang and Danny Ho and Jing Ren and Luiz Fernando Capretz}, title
= {A soft computing framework for software effort estimation}, journal = {Soft Comput.}, volume = {10}, number = {2}, year =
{2006}, pages = {170-177}, ee = {http://dx.doi.org/10.1007/s00500-004-0442-z}, bibsource = {DBLP, http://dblp.uni-trier.de} }

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/215388569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 1

A Soft Computing Framework for Software Effort Estimation

Xishi Huang, Danny Ho1, Jing Ren, Luiz F. Capretz
Dept. of ECE, University of Western Ontario, London, Ontario, N6G 1H1, Canada

1Toronto Design Center, Motorola Canada Ltd., Markham, Ontario, L6G 1B3, Canada

Abstract

Accurate software estimation such as cost
estimation, quality estimation and risk analysis is a major
issue in software project management. In this paper, we
present a soft computing framework to tackle this
challenging problem. We first use a preprocessing neuro-
fuzzy inference system to handle the dependencies among
contributing factors and decouple the effects of the
contributing factors into individuals. Then we use a
neuro-fuzzy bank to calibrate the parameters of
contributing factors. In order to extend our framework
into fields that lack of an appropriate algorithmic model
of their own, we propose a default algorithmic model that
can be replaced when a better model is available. One
feature of this framework is that the architecture is
inherently independent of the choice of algorithmic
models or the nature of the estimation problems. By
integrating neural networks, fuzzy logic and algorithmic
models into one scheme, this framework has learning
ability, integration capability of both expert knowledge
and project data, good interpretability, and robustness to
imprecise and uncertain inputs. Validation using industry
project data shows that the framework produces good
results when used to predict software cost.

1. Introduction

Software development is notorious for going over

time and budget and the development cost is difficult to
estimate beforehand. This problem lies in the fact that
software development is a complex process due to the
number of factors involved, including the human factor,
the complexity of the product that is developed, the
variety of development platforms, and the difficulty of
managing large projects. As software development has
become an essential investment for many organizations,
accurate software cost estimation models are needed to
effectively predict, monitor, control and assess software
development. Since estimation accuracy is largely
affected by modeling accuracy, finding good models for
software estimation is now one of the most important
objectives of the software engineering community.

Various software cost estimation models [1] - [6]
have been developed over the last decades. But because
cost estimation problem is a complex problem and has
features such as highly complex nonlinear relationships;
imprecise and uncertain measurement of software metrics
and software processes change rapidly, no model is
proved to be the perfect solution so far.

COCOMO [1], [2] is arguably the most popular and
widely used software estimation model, which integrates
valuable expert knowledge. COCOMO, however, has
some limitations. It cannot effectively deal with imprecise
and uncertain information, and calibration of COCOMO
is one of the most important tasks that need to be done in
order to get accurate estimations. For example, the
COCOMO model can only take on discrete ratings such
as six linguistic terms: Very Low (VL), Low (L),
Nominal (N), High (H), Very High (VH) and Extra High
(XH). This limitation might cause a problem in that the
model might produce two quite different cost estimations
for two similar projects (e.g. extreme cases: 203 staff-
months vs. 2886 staff-months).

In recent years, some models have been proposed to
solve this problem based on neural network or fuzzy logic
techniques. Neural networks has learning ability and is
good at modeling complex nonlinear relationships; fuzzy
logic can deal with imprecise and uncertain measurement
of software metrics, provide more flexibility to integrate
expert knowledge into the model, and can be easily
understood and interpreted. Although these efforts
showed a promising research direction in software cost
estimation, the approaches based on neural network or
fuzzy logic are far from mature.

Idri et al. [7] introduced the fuzzy logic technique to
the COCOMO model. But this fuzzy COCOMO model
does not have learning ability, and the results are not
good in comparison with the original COCOMO model.
Ryder [8] applied fuzzy modeling techniques to the
COCOMO model and the Function Points model. The
fuzzy expert systems are mentioned, but there is no
detailed description and no validation results. The fuzzy
logic technique is used for software cost estimation [9]-
[10], but there are no experiments or validation. Wittig
and Finnie [11] developed a software estimation model
using neural networks and derived high prediction
accuracies. Although their model has high accuracies for

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 2

its training dataset, the model has not been well-accepted
by the community due to its lack of explanation. Neural
networks operate as ‘black boxes’ and do not provide any
information or reasoning about how the outputs are
derived [12].

To help solving the software estimation problems,
we propose a soft computing framework based on the
“divide and conquer” approach. By using a preprocessing
neuro-fuzzy inference system to deal with the
dependencies among contributing factors, we decouple
the effects of contributing factors into individuals, and
then we propose a neuro-fuzzy bank for calibrating the
factor parameters. The requirements for training project
data and computation are greatly reduced, and the fuzzy
if-then rules in the neuro-fuzzy bank can remain
unchanged for different applications. We validate our soft
computing framework with industry project data from
several sources and results show that our framework
consistently gives good and reasonable performance.

2. A Soft Computing Framework (SCF)

Software estimation is a wide research area including
cost estimation, quality estimation, risk analysis, etc. A
general problem abstracted from different applications
can be formulated as follows: given some information
about a project such as ratings of contributing factors, the
soft computing framework captures the features of the
project, along with the built-in knowledge learned from
the historical project data and expert knowledge, to output
an accurate and reasonable estimation result. The
estimation can provide a powerful assistance to software
practice.

An intuitive attempt to solve that problem is to use a
five-layer neuro-fuzzy model for software estimation
[13]. In this model, the inputs are the rating values or
measurements of the contributing factors and the output is
the estimated software output metric. That is, we use a
neuro-fuzzy model to handle the dependencies among
contributing factors and to calibrate all the parameters of
fuzzy if-then rules. Unfortunately, when it comes to a
practical problem, the rule base contains a great number
of fuzzy rules that result from all the combination of the
rating levels of all contributing factors. For example,
COCOMO [1], [2] is arguably the most popular and
widely used software estimation model. COCOMO II has
twenty-two cost drivers, and each cost driver has four to
six rating levels. If we use the five-layer neuro-fuzzy
model to estimate the software cost, we need about 422 to
622 fuzzy rules to deal with all combinations, in theory.

As a result, this approach causes the following
problems: (1) First, it needs a very large historical project
data set to calibrate the model parameters because the
number of project data should be at least greater than the
number of fuzzy rules. Unfortunately software project

data sets are usually scarce and small. This approach is
thus not practical in many cases. (2) The computation will
go very high; (3) It is difficult for users, even experts, to
check and validate the calibrated fuzzy rules. (4) This
approach is not flexible for different applications because
the change of application will result in re-definition of all
the fuzzy rules. Therefore, this approach is not practical
for many software estimation problems, especially for
high dimension problems.

For many software estimation problems, the effects
of contributing factors on the estimated software output
metrics are usually not strongly coupled together, and
strong effect dependency exists only on a small number
of combinations of contributing factors. Most
combinations have no dependency or weak dependency.
Consequently, given a specific software estimation
problem, we can find the combinations of contributing
factors with strong effect dependency based on expert
knowledge and analysis of the characteristics of the
problem, and then only handle dependency on this small
part of combinations. This will greatly reduce the
complexity of the estimation problem and make the
problem tractable.

The framework described in this paper is a general
form for software estimation. It is applicable to various
applications such as cost estimation, quality estimation,
risk analysis, etc. In this framework (see Figure 1), we
first propose a preprocessing neuro-fuzzy inference
system (PNFIS) to handle the dependencies among
contributing factors. Then we use a neuro-fuzzy bank to
map the adjusted rating values of contributing factors into
the corresponding numerical multiplier values. Finally,
we output the estimation through an algorithmic model
such as COCOMO.

In the following sections, we introduce the
architecture of the framework and a detailed learning
algorithm. There are three major components in our soft
computing framework: Preprocessing Neuro-Fuzzy
Inference System (PNFIS), Neuro-Fuzzy Bank (NFB) and
Algorithmic Model, as depicted in Figure 1. The symbols
used in this paper are explained in the appendix.

This architecture is applicable to various applications
and allows the utilization of more information from
different sources such as expert knowledge and project
data. The change of the application will only cause the
redefinition of the fuzzy if-then rules in the first part
(PNFIS) and the replacement of the algorithmic model in
the third part; the rest will remain the same. The expert
knowledge on contributing factor dependency is encoded
in the first part: preprocessing neuro-fuzzy inference
system. The conventional algorithmic model reflects
important knowledge on a specific software estimation
problem. We use the neuro-fuzzy bank to calibrate the
parameters of the algorithmic model through learning
from industry project data. Thus, we can integrate the

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 3

numerical project data, expert knowledge, and
conventional algorithmic model into one framework.
According to information theory, this process should

yield more accurate estimation results. Next, we will
introduce the three major components individually in
detail.

Figure 1. A soft computing framework for software estimation

2.1 Preprocessing Neuro-Fuzzy Inference System
(PNFIS)

In many model-based approaches, it is assumed that

the effects of contributing factors on the estimated
software output metric are independent, but this
assumption is often arguable. Even for some very popular
and widely used models such as COCOMO, experts
diverge from this assumption. However, there is one thing
we can claim: this assumption does not hold for all
models in all situations. When this assumption breaks
down, properly handling of the dependencies among
contributing factors becomes essential to improve
estimation accuracy. Unfortunately, it is not an easy task
in most cases; dependency is inherently a very complex

problem as we have to consider the effect of any possible
combinations. It is common sense that when it comes to a
very complicated situation, experts usually have better
understandings of the dependency than any of the
advanced computation machines invented so far.
Therefore better utilization of expert knowledge is the
key to handle this dependency problem. In this paper, we
propose the use of a preprocessing neuro-fuzzy inference
system (PNFIS) that encodes expert knowledge into fuzzy
if-then rules; PNFIS can effectively resolve the effect
dependencies among the contributing factors. The inputs
of PNFIS are the ratings of the contributing factors
(RFis), and its output is the adjusted ratings of
contributing factors (ARFis), as shown in Figures 2 and 3.

Figure 2. The structure of PNFi in PNFIS

FM2

…

NFB1

NFBN

Algorithmic Model NFB2

Output Metric
Mo

FM1

FMN

RF2

RF1

RFn

ARF1

ARFn

Preprocessing

Neuro-Fuzzy

Inference

System

(PNFIS)

2
,,, 21 AMNVVV L

ARF2

…

… ……

… ……
Π NAN1

Σ
… …… …

Π NA1N1

RF1

ARFi

PFPi1

PFPik

w1

wk

1w

kw

11 iPFPw

ikk PFPw

Layer1 Layer3 Layer4 Layer5 Layer2

Π NANNn

Π NA11

RFN

…

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 4

In PNFIS, fuzzy rules take the form of:
Fuzzy Rule k: IF (RF1 is A1jk) AND (RF2 is A2jk) AND …
AND (RFN is ANjk) THEN ARFi=PFPik*RFi
where PFPik is an adjustable parameter.

The output iARF can be expressed as:

);,,,(21 PNFNPNFii PRFRFRFfARF L= ,

 Ni ,,2,1 L= .

2.2. The Neuro-fuzzy Bank (NFB)

In the neuro-fuzzy bank, element i is a neuro-fuzzy

subsystem (NFBi), which is associated with contributing
factor i. Each contributing factor has several qualitative
rating levels, for example, the COCOMO II model uses

six rating levels: Very Low (VL), Low (L), Nominal (N),
High (H), Very High (VH) and Extra High (XH) for
most cost drivers. For a software estimation program, we
usually have to define each contributing factor and the
corresponding rating criteria for each rating level. But
when we use the algorithmic model to estimate the
software output metric, we need to use a numerical value
corresponding to the rating value of each factor in the
mathematical formula. So for every contributing factor,
each rating level relates to a quantitative value called
parameter value, which is used in the algorithmic model.
That is, there is a mapping from rating values to
numerical values for each contributing factor. One goal
of building a software estimation model is to calibrate its
parameter values based on the expert knowledge and
project data.

Figure 3. Element NFBii in the neuro-fuzzy bank

Based on the above features of contributing factors,
the structure of each neuro-fuzzy subsystem (NFBi) is
chosen as a simplified version of Adaptive Neuro-fuzzy
Inference System (ANFIS) [14], as shown in Figure 2.
The input of element i is the adjusted rating value ARFi
of contributing factor i; the output is the corresponding
numerical value FMi that is used as the input of the
algorithmic model (mathematical formula). For element i
of NFB, which is functionally equivalent to a Takaki and
Sugeno’s type [15] of the fuzzy system consisting of the
following fuzzy rules:

Fuzzy Rule (i,k): If ARFi is Aik, then FMi=FMPik ,
k=1,2,…,Ni

where Ni is the number of rating levels for factor i, Aik is
a fuzzy set associated with the k-th rating level of factor
i, and FMPik is the corresponding parameter value

associated with the k-th rating level. For example, if the
contributing factor i has the six rating levels, NFBi is
composed of the following six fuzzy if-then rules:
Fuzzy Rule (i,1): If ARFi is Ai1 (Very Low),

then FMi=FMPi1 ,
Fuzzy Rule (i,2): If ARFi is Ai2 (Low),

then FMi=FMPi2 ,
Fuzzy Rule (i,3): If ARFi is Ai3 (Nominal),

then FMi=FMPi3 ,
Fuzzy Rule (I,4): If ARFi is Ai4 (High),

then FMi=FMPi4 ,
Fuzzy Rule (i,5): If ARFi is Ai5 (Very High),

then FMi=FMPi5 ,
Fuzzy Rule (i,6): If ARFi is Ai6 (Extra High),

then FMi=FMPi6 .
For each element NFBi, we also propose a

monotonic constraint on the corresponding contributing

Π

Π

Π

N

N

NAi6

Ai2

Ai1

Σ

… …… …

ARFi FMi

FMPi1

FMPi6

FMPi2

w1

w6

1w

6w

11 iFMPw

66 iFMPw

Layer1 Layer3 Layer4 Layer5 Layer2

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 5

factor i to guarantee that calibrated results are reasonable.
Monotonic constraints reflect the expert knowledge
about effects of contributing factors on the estimated
software output metric. For most contributing factors,
when the rating value of a contributing factor goes high,
the estimated software output metric should change
monotonically, in other words, it increases or decreases
along only one direction, it cannot increase and then
decrease or vice versa. Therefore, we can formulate
monotonic constraints as follows:

)(,21 FIiFMPFMPFMP INCiNii i
∈≤≤≤ L

)(,21 FIiFMPFMPFMP DECiNii i
∈≥≥≥ L

where)(FIINC is the index set of increasing
contributing factors whose higher rating value
corresponds to the higher value of the estimated software
output metric, and)(FIDEC is the index set of
decreasing contributing factors whose higher rating value
corresponds to the lower value of the estimated software
output metric. If we do not put monotonic constraints on
the neuro-fuzzy bank during the learning process, we
might get counterintuitive calibrated results. One
advantage of the neuro-fuzzy bank is that we can easily
integrate monotonic constraints of contributing factors
into our soft computing framework, thus avoid
counterintuitive calibrated results. It is much more
difficult to place monotonic constraints on a standard
five-layer neuro-fuzzy system.

We can look at the functionality of NFBi from two
perspectives. From the learning perspective, we can treat
NFBi as a neural network so that we can use available
learning algorithms for neural networks to calibrate the
corresponding parameters, and NFBi has learning and
adaptation capability. From the reasoning perspective,
NFBi can be considered as a fuzzy logic system. Its
output is derived using fuzzy if-then rules and the
reasoning process is transparent in the way similar to the
decision-making process of human beings. Therefore, the
neuro-fuzzy subsystem NFBi is not a black box. The
whole reasoning process is clear to the user and can be
traced and validated by users/experts. Consequently, our
neuro-fuzzy model is more easily accepted for project
management.

Remark 1: In the neuro-fuzzy bank, each element is
a “standard” neuro-fuzzy subsystem. The number of
elements is equal to the number of rating contributing
factors. In each element, the number of fuzzy rules
equals the number of rating levels of the corresponding
factor.

Remark 2: For a given problem, once the number of
rating contributing factors and the number of rating
levels of each factor is determined, the structure and
fuzzy rules of the neuro-fuzzy bank are determined. Only

the fuzzy rule parameters are needed to fine-tune through
the learning process from numerical project data.

Remark 3: Guideline for determining rating levels:
how to determine the appropriate number of rating levels.
On the one hand, fewer rating levels imply coarse and
less accurate description of contributing factors, but the
system is easy to use since users can give more accurate
rating values. On the other hand, too many rating levels
for one factor indicate more accurate descriptions of
contributing factors, but the definition and rating criteria
of each level are more complicated. Users usually have
difficulty rating the factors. That is, the rating errors tend
to be larger. Therefore, there is a balance between the
number of rating levels and ease of use.

2.3. Algorithmic Models

The use of algorithmic models to predict software

output metrics is one of the most popular and traditional
software estimation techniques. An algorithmic
estimation model can be built by analyzing a software
output metric and attributes of completed projects, and
used to predict the software output metric based on the
attributes of software product and development process.
Many algorithmic models have been proposed to estimate
different software metrics, such as software development
cost, software maintenance cost, software quality, and
software development productivity. For example, the
COCOMOII post architecture model [1] is widely used to
predict the software development effort:

() ∏
=

×+ ×∑×= =

17

1

01.0
5

1

i
i

SFB EMSizeAEffort i
i

where A and B are constants, Size refers to the size of
software product, scale factors SFi’s and effort
multipliers EMi’s are the attributes of software product,
platform, personnel and project.

Software development productivity is estimated by
the productivity-benchmarking equations [16]:

Productivity= ∏
=

bN

i
iFMA

1

where A is a constant, FMi's are the contributing factors,
Nb is the number of contributing factors, A, FMi's, Nb are
different for different business sectors.

In order to predict the software maintenance effort,
Maxwell proposed an algorithmic model of the form
[16]:

Maintenance Effort = ∏
=

4

1

)(
i

i
B FMSizeA

where A and B are constants, FMi's are the contributing
factors.

By analyzing many algorithmic models, we find that
many software output metrics take the following forms:

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 6

Software output metric = ∏
=

bN

i
iFMA

1

 or

Software output metric = ∑
=

N

i
iFMA

1

where A is a constant, FMi's are the major factors that
contribute to the software output metric.

For convenience, we call the above models the
default algorithmic models in our soft computing
framework. If there is no algorithmic model for a given
software estimation problem, we suggest to select one of
the above default model or its variant as the algorithmic
model based on the characteristics of the problem.

Although many algorithmic models are usually not
very accurate, they reflect a lot of useful expert
knowledge in this field. In order to make the best use of
this kind of expert knowledge, it is worthwhile to
integrate the algorithmic model into our soft computing
framework. Calibrating the parameters of algorithmic
models is usually a very challenging task. In our soft
computing framework, parameters of the algorithmic
model are calibrated by the neuro-fuzzy bank through
learning.

3. Software Estimation Process

The whole estimation process consists of two major

steps. In the first step, we calibrate the framework
through learning based on historical project data. In the
second step, we use the calibrated framework to predict
the software output metric of the software product under
development and to analyze calibrated parameters for
decision-making.

3.1 Reasoning Process

Because we adopt the same type of neuro-fuzzy
inference system (ANFIS) in both the preprocessing
neuro-fuzzy inference subsystem and the neuro-fuzzy
bank, for convenience to illustrate the concepts and
reasoning processing, we consider only the i-th element
NFBi in the neuro-fuzzy bank having the rule base:

Fuzzy Rule (i,k): If ARFi is Aik, then FMi=FMPik ,
k=1,2,…,Ni

Now we describe the functions of the neuro-fuzzy
subsystem layer by layer.

Layer 1: This layer is used to calculate the
membership values for each rule. The activation function
of a node in this layer is defined as the corresponding
membership function:
)(1

iikk ARFO µ=

where iARF is the adjusted rating value of the i-th

contributing factor,)(iik ARFµ is the membership
function of fuzzy set Aik., which is associated with the kth
rating level such as Low, High.

Layer 2: This layer calculates the firing strength for
each rule. The inputs are the membership values in the
premise of the fuzzy rule. The output is the product of all
input membership values, which is called the firing
strength of the corresponding fuzzy rule. Because there is
only one condition in the premise of each fuzzy rule, the
firing strength is the same as the membership value
obtained from Layer 1.
 1

kk Ow = .
Layer 3: This layer is used to normalize the firing

strength for each fuzzy rule. The output of the kth node is
called the normalized firing strength, which is defined as:

 iN

j
j

k
k Nk

w

ww
i

,,2,1,

1

L==

∑
=

Layer 4: In this layer, the reasoning result of a rule is
calculated as follows:
 ikkk FMPwO =4

Parameters }{ ikFMP in this layer are called consequent
parameters.

Layer 5: This layer sums up all the reasoning results
of fuzzy rules we get from Layer 4, i.e.,
 ∑=

k
kk OO 45 .

In summary, the overall output of the i-th element
NFBi in the neuro-fuzzy bank is

∑ ∑∑
=

==
iN

k
ik

j
iij

iik

k
ikki FMP

ARF
ARFFMPwFM

1)(
)(

µ
µ

.

3.2 Learning Algorithms

Given NN project data points),(odnn MX ,

NNn ,,2,1 L= the learning problem of parameters P
in our soft computing framework can be formulated as
the following optimizing problem:

 ∑
=

 −
=

NN

n odn

odnon
n M

MMwE
1

2

 (1)

subject to the following monotonic constraints:
)(,21 FIiFMPFMPFMP INCiNii i

∈≤≤≤ L (2)

)(,21 FIiFMPFMPFMP DECiNii i
∈≥≥≥ L (3)

where:

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 7

E : the total weighted squared relative errors for all
projects,

nw : the weight of Project n,

odnM : the desired (actual) value of the software
output metric for Project n,

nX : the vector value of X for Project n.

);(PXfM nSCFon = (4)

);(PXfM SCFo = (5)

);,,,(21 PNFNPNFii PRFRFRFfARF L= ,

 Ni ,,2,1 L= (6)

∑ ∑=

=

=
iN

k
ik

j
iij

iik

NFBiNFBii

FMP
ARF

ARF
PARFfFM

1)(
)(

);(

µ
µ

 Ni ,,2,1 L= (7)

);,,,
,,,,(

221

21

2 AMN

NAMo

PVVV
FMFMFMfM

AM
L

L=
 (8)

The learning algorithm for our soft computing

framework is as follows:

i

l
i

l
i P

EPP
∂
∂

−=+ α1 (9)

where 0>α is the learning rate, l is the current
iteration index,

()∑
= ∂

∂
−=

∂
∂ NN

n i

on
odnon

odn

n

i P
MMM

M
w

P
E

1
2

2
 (10)

i

SCF

i

on

P
f

P
M

∂
∂

=
∂

∂
 ,i.e., (11)

NFBi

NFBi

i

AM

NFBi

on

P
f

FM
f

P
M

∂
∂

⋅
∂
∂

=
∂
∂

 (12)

iAM

AM

iAM

on

P
f

P
M

22 ∂
∂

=
∂
∂

 (13)

PNFi

PNFi

i

NFBi

i

AM

PNFi

on

P
f

ARF
f

FM
f

P
M

∂
∂

⋅
∂
∂

⋅
∂
∂

=
∂
∂

 (14)

Remark: Although we derive the learning algorithm

for all parameters P , we can calibrate only a part of
parameters at one time for a specific software estimation
problem.

4. Case Studies

In this section, we use data from the software industry to
validate our soft computing framework and discuss two
case studies.

4.1 Case I. Software Cost Estimation with the
COCOMO model

In this case study, there is a total of 69 project data
available, including 6 project data from the industry [17],
[18] and 63 project data from the original COCOMO’81
database [2]. Because most of these project data are
compatible only with the intermediate COCOMO’81
model, the algorithmic model employs the COCOMO’81
intermediate model, described by:

() ∏
=

××==
15

1i
i

B
ko EMSizeAEffortM k

where Ak and Bk are constants specific to each project
mode (k=1:organic, k=2:semi-detached or k=3:
embedded), iEM s are the cost drivers. In this case, the

estimated software output metric oM is software

development effort, SizeVEMFM ii == 1, , 15=N ,

12 =AMN , that is, the neuro-fuzzy bank has fifteen
elements, and each element has four to six rating levels.
The experiment results (see Table 1) show that our soft
computing framework can greatly improve cost
estimation accuracy when compared with the standard
COCOMO model. Because the COCOMO II model is the
more advanced version and has a similar structure to
COCOMO'81, we will further validate our soft
computing framework when COCOMOII projects data
becomes available.

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 8

Table 1. Cost estimation for all 69 projects data points

COCOMO81 Model Soft computing framework Improvement Predict

Projects Accuracy # Projects Accuracy

20% 49 71% 62 89% 18%

30% 56 81% 64 92% 11%

50% 65 94% 67 97% 3%

100% 69 100% 69 100% 0%

Table 2. Effort estimation for all 63 projects data points

Stepwise ANOVA Model Soft computing framework Predict

Projects Accuracy # Projects Accuracy

Improvement

20% 21 33% 28 44% 11%

25% 25 39% 33 52% 13%

30% 33 52% 37 58% 6%

50% 50 79% 52 82% 3%

100% 63 100% 63 100% 0%

4.2 Case II. Software Development Effort
Estimation

With data from 63 projects, Maxwell [17] used the
analysis of variance (ANOVA) approach to build multi-
variable models to predict the software development
effort. In our soft computing framework, we select the
1993 Model B as the algorithmic model, i.e.,

() ∏
=

××==
4

1i
i

B
o FMSizeAEffortM

where A and B are constants, iFM s are the four
contributing factors. In this case, the estimated software
output metric oM is software development effort,

1,4 2 == AMNN , that is, the neuro-fuzzy bank has
four elements, and each element has five or two rating
levels. The experiment results are shown in Table 2.
Estimation accuracy is not very high due to the low
quality of this dataset with many outliers (project data
with large noise) in this dataset, however, our soft
computing framework improves estimation accuracy a lot
when compared with the stepwise ANOVA model.

5. Conclusions

This paper has presented a general framework for
software estimation. The framework concentrates on the

preprocessing neuro-fuzzy inference system, the neuro-
fuzzy bank and the algorithmic model. We consider as the
rating value of contributing factor as input and produce
software metric as output. This framework has been
validated with project data from industry.

The main benefit of this approach is its good
interpretability, that is, by using the fuzzy rules, the
approach tries to simulate the software engineers' line of
thought when they are doing software estimation.
Another great advantage of this research is that we could
put together expert knowledge (fuzzy rules), project data
and the traditional algorithmic model into one general
framework that can have a wide range of applicability in
software cost estimation, software quality estimation and
risk analysis.

References

[1] B.W. Boehm et al., Software Cost Estimation with

COCOMO II, Prentice Hall, 2000.
[2] B.W. Boehm, Software Engineering Economics, Prentice

Hall 1981.
[3] L. Putnam and W. Myers, Measures for Excellence,

Yourdon Press, 1992.
[4] S. MacDonell and A. Gray, “A Comparison of Modeling

Techniques for Software Development Effort
Prediction,” International Conference on Neural
Information Processing and Intelligent Information
Systems, Springer, pp. 869–872, 1997.

Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006

 9

[5] M. Shepperd and M. Schofield, “Estimating Software
Project Effort Using Analogies,” IEEE Trans. on
Software Engineering, vol. 23,no. 12, pp. 736-743, 1997.

[6] S. Chulani, Bayesian Analysis of Software Cost and
Quality Models, doctoral dissertation, Dept. Computer
Science, University of Southern California, 1999.

[7] A. Idri, A. Abran and L. Kjiri, “COCOMO Cost Model
Using Fuzzy Logic,” 7th International Conference on
Fuzzy Theory and Technology, 2000.

[8] J. Ryder, “Fuzzy Modeling of Software Effort
Prediction,” IEEE Conference on Information
Technology, pp. 53-56, 1998.

[9] A.R. Gray and S.G. MacDonell, “A Comparison of
Techniques for Developing Predictive Models of
Software Metrics,” Information and Software
Technology, vol. 3, pp. 425-437, 1997.

[10] W. Pedrycz, “Computational Intelligence and Visual
Computing: an Emerging Technology for Software
Engineering,” Soft Computing, vol. 7, pp. 33-44, 2002.

[11] G. Wittig and G. Finnie, “Estimating Software
Development Effort with Connectionist Models,”
Information and Software Technology, vol. 39, pp. 469-
476, 1997.

[12] A. Idri, T.M. Khoshgoftaar and A. Abran, “Can Neural
Networks Be Easily Interpreted in Software Cost
Estimation?,” IEEE International Conference on Fuzzy
Systems, pp. 1162 –1167, 2002.

[13] A. Gray and S. MacDonell, “A Comparison of
Techniques for Developing Predictive Models of
Software Metrics”, Information and Software
Technology, vol. 39, no. 6, pp. 425-437, 1997.

[14] R. J. S. Jang, “ANFIS: Adaptive-Network-Based Fuzzy
Inference System,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 23, pp. 665-685, 1993.

[15] T. Takaki and M. Sugeno, “Fuzzy Identification of
Systems and its Application to Modeling and Control”,
IEEE Trans. Systems., Man, and Cybernetics, vol. 15,
pp.116-132, 1985.

[16] K.D. Maxwell, “Applied Statistics for Software
Engineers”, Prentice Hall, 2002.

[17] K. D. Maxwell and P. Forselius, “Benchmarking
Software Development Productivity”, IEEE Software,
vol. 17, No. 1, pp. 80-88, Jan./Feb. 2000.

[18] D. Ho, “Experience Report on COCOMO and the Costar
Tool from Nortel’s Toronto Laboratory,” 11th
International Forum on COCOMO and Software Cost
Modeling, Los Angeles, October 1996.

[19] N. Panlilio-Yap and D. Ho, “Deploying Software
Estimation Technology and Tools: the IBM SWS
Toronto Lab experience,” 9th International Forum on
COCOMO and Software Cost Modeling, Los Angeles,
October 1994.

Appendix: Nomenclature

ikA : fuzzy set associated with the k-th rating level for
contributing factor i

iARF : adjusted rating value for contributing factor i

E : total weighted squared relative errors for all projects
EMi: effort multiplier

iFM : numerical value for contributing factor i

ikFMP : parameter value associated with the k-th rating
level for contributing factor i

)(FIINC : index set of increasing contributing factors

)(FI DEC : index set of decreasing contributing factors

oM : software output metric

onM : estimated value of oM for Project n

odnM : desired (actual) value of oM for Project n

N : number of contributing factors

2AMN : number of non-rating variables in the algorithmic
model

iN : number of rating levels for contributing factor i
NN: total number of project data points
NFB: neuro-fuzzy bank
NFBi: i-th element of the neuro-fuzzy bank

()2,, AMPNFNFB PPPP = : the parameter vector
including all adjustable parameters in our soft
computing framework

,,,,,,(111211 1 NNNFB FMPFMPFMPFMPP LL=

),,2 NNNN FMPFMP L : the parameter vector in

the neuro-fuzzy bank

PNFP : parameter vector in the preprocessing neuro-fuzzy
subsystem

2AMP : 21 AMNP× parameter vector in the algorithmic
model

ikPFP : parameter value associated with the k-th fuzzy if-
then rule in PNFIS

PNF, PNFIS: preprocessing neuro-fuzzy inference system

iRF : rating value for contributing factor i
SCF: soft computing framework
SFi: scale factor
Size: the size of software project

nw : weight of Project n

()
2

,,,,,,, 2121 AMNN VVVRFRFRFX LL= : input

vector consisting of contributing factors and non-
rating variables

nX : vector value of X for Project n

	Western University
	Scholarship@Western
	1-2006

	A Soft Computing Framework for Software Effort Estimation
	Xishi Huang
	Danny Ho
	Jing Ren
	Luiz Fernando Capretz
	Citation of this paper:

	Microsoft Word - Xishi-SoftComp.doc

