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A Soft Computing Framework for Software Effort Estimation 
 
 

Xishi Huang, Danny Ho1, Jing Ren, Luiz F. Capretz 
Dept. of ECE, University of Western Ontario, London, Ontario, N6G 1H1, Canada 

1Toronto Design Center, Motorola Canada Ltd., Markham, Ontario, L6G 1B3, Canada 
 
 

Abstract 
 

Accurate software estimation such as cost 
estimation, quality estimation and risk analysis is a major 
issue in software project management. In this paper, we 
present a soft computing framework to tackle this 
challenging problem. We first use a preprocessing neuro-
fuzzy inference system to handle the dependencies among 
contributing factors and decouple the effects of the 
contributing factors into individuals. Then we use a 
neuro-fuzzy bank to calibrate the parameters of 
contributing factors. In order to extend our framework 
into fields that lack of an appropriate algorithmic model 
of their own, we propose a default algorithmic model that 
can be replaced when a better model is available. One 
feature of this framework is that the architecture is 
inherently independent of the choice of algorithmic 
models or the nature of the estimation problems. By 
integrating neural networks, fuzzy logic and algorithmic 
models into one scheme, this framework has learning 
ability, integration capability of both expert knowledge 
and project data, good interpretability, and robustness to 
imprecise and uncertain inputs. Validation using industry 
project data shows that the framework produces good 
results when used to predict software cost. 

 
1. Introduction 

 
Software development is notorious for going over 

time and budget and the development cost is difficult to 
estimate beforehand. This problem lies in the fact that 
software development is a complex process due to the 
number of factors involved, including the human factor, 
the complexity of the product that is developed, the 
variety of development platforms, and the difficulty of 
managing large projects. As software development has 
become an essential investment for many organizations, 
accurate software cost estimation models are needed to 
effectively predict, monitor, control and assess software 
development. Since estimation accuracy is largely 
affected by modeling accuracy, finding good models for 
software estimation is now one of the most important 
objectives of the software engineering community.  

Various software cost estimation models [1] - [6] 
have been developed over the last decades. But because 
cost estimation problem is a complex problem and has 
features such as highly complex nonlinear relationships; 
imprecise and uncertain measurement of software metrics 
and software processes change rapidly, no model is 
proved to be the perfect solution so far. 

COCOMO [1], [2] is arguably the most popular and 
widely used software estimation model, which integrates 
valuable expert knowledge. COCOMO, however, has 
some limitations. It cannot effectively deal with imprecise 
and uncertain information, and calibration of COCOMO 
is one of the most important tasks that need to be done in 
order to get accurate estimations. For example, the 
COCOMO model can only take on discrete ratings such 
as six linguistic terms: Very Low (VL), Low (L), 
Nominal (N), High (H), Very High (VH) and Extra High 
(XH). This limitation might cause a problem in that the 
model might produce two quite different cost estimations 
for two similar projects (e.g. extreme cases: 203 staff-
months vs. 2886 staff-months). 

In recent years, some models have been proposed to 
solve this problem based on neural network or fuzzy logic 
techniques. Neural networks has learning ability and is 
good at modeling complex nonlinear relationships; fuzzy 
logic can deal with imprecise and uncertain measurement 
of software metrics, provide more flexibility to integrate 
expert knowledge into the model, and can be easily 
understood and interpreted. Although these efforts 
showed a promising research direction in software cost 
estimation, the approaches based on neural network or 
fuzzy logic are far from mature.  

Idri et al. [7] introduced the fuzzy logic technique to 
the COCOMO model. But this fuzzy COCOMO model 
does not have learning ability, and the results are not 
good in comparison with the original COCOMO model. 
Ryder [8] applied fuzzy modeling techniques to the 
COCOMO model and the Function Points model. The 
fuzzy expert systems are mentioned, but there is no 
detailed description and no validation results. The fuzzy 
logic technique is used for software cost estimation [9]-
[10], but there are no experiments or validation. Wittig 
and Finnie [11] developed a software estimation model 
using neural networks and derived high prediction 
accuracies. Although their model has high accuracies for 
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its training dataset, the model has not been well-accepted 
by the community due to its lack of explanation. Neural 
networks operate as ‘black boxes’ and do not provide any 
information or reasoning about how the outputs are 
derived [12]. 

To help solving the software estimation problems, 
we propose a soft computing framework based on the 
“divide and conquer” approach. By using a preprocessing 
neuro-fuzzy inference system to deal with the 
dependencies among contributing factors, we decouple 
the effects of contributing factors into individuals, and 
then we propose a neuro-fuzzy bank for calibrating the 
factor parameters. The requirements for training project 
data and computation are greatly reduced, and the fuzzy 
if-then rules in the neuro-fuzzy bank can remain 
unchanged for different applications. We validate our soft 
computing framework with industry project data from 
several sources and results show that our framework 
consistently gives good and reasonable performance. 
 
2. A Soft Computing Framework (SCF) 
 

Software estimation is a wide research area including 
cost estimation, quality estimation, risk analysis, etc. A 
general problem abstracted from different applications 
can be formulated as follows: given some information 
about a project such as ratings of contributing factors, the 
soft computing framework captures the features of the 
project, along with the built-in knowledge learned from 
the historical project data and expert knowledge, to output 
an accurate and reasonable estimation result. The 
estimation can provide a powerful assistance to software 
practice. 

An intuitive attempt to solve that problem is to use a 
five-layer neuro-fuzzy model for software estimation 
[13]. In this model, the inputs are the rating values or 
measurements of the contributing factors and the output is 
the estimated software output metric. That is, we use a 
neuro-fuzzy model to handle the dependencies among 
contributing factors and to calibrate all the parameters of 
fuzzy if-then rules. Unfortunately, when it comes to a 
practical problem, the rule base contains a great number 
of fuzzy rules that result from all the combination of the 
rating levels of all contributing factors. For example, 
COCOMO [1], [2] is arguably the most popular and 
widely used software estimation model. COCOMO II has 
twenty-two cost drivers, and each cost driver has four to 
six rating levels. If we use the five-layer neuro-fuzzy 
model to estimate the software cost, we need about 422 to 
622 fuzzy rules to deal with all combinations, in theory.  

As a result, this approach causes the following 
problems: (1) First, it needs a very large historical project 
data set to calibrate the model parameters because the 
number of project data should be at least greater than the 
number of fuzzy rules. Unfortunately software project 

data sets are usually scarce and small. This approach is 
thus not practical in many cases. (2) The computation will 
go very high; (3) It is difficult for users, even experts, to 
check and validate the calibrated fuzzy rules. (4) This 
approach is not flexible for different applications because 
the change of application will result in re-definition of all 
the fuzzy rules. Therefore, this approach is not practical 
for many software estimation problems, especially for 
high dimension problems. 

For many software estimation problems, the effects 
of contributing factors on the estimated software output 
metrics are usually not strongly coupled together, and 
strong effect dependency exists only on a small number 
of combinations of contributing factors. Most 
combinations have no dependency or weak dependency. 
Consequently, given a specific software estimation 
problem, we can find the combinations of contributing 
factors with strong effect dependency based on expert 
knowledge and analysis of the characteristics of the 
problem, and then only handle dependency on this small 
part of combinations. This will greatly reduce the 
complexity of the estimation problem and make the 
problem tractable. 

The framework described in this paper is a general 
form for software estimation. It is applicable to various 
applications such as cost estimation, quality estimation, 
risk analysis, etc. In this framework (see Figure 1), we 
first propose a preprocessing neuro-fuzzy inference 
system (PNFIS) to handle the dependencies among 
contributing factors. Then we use a neuro-fuzzy bank to 
map the adjusted rating values of contributing factors into 
the corresponding numerical multiplier values. Finally, 
we output the estimation through an algorithmic model 
such as COCOMO.  

In the following sections, we introduce the 
architecture of the framework and a detailed learning 
algorithm. There are three major components in our soft 
computing framework: Preprocessing Neuro-Fuzzy 
Inference System (PNFIS), Neuro-Fuzzy Bank (NFB) and 
Algorithmic Model, as depicted in Figure 1. The symbols 
used in this paper are explained in the appendix. 

This architecture is applicable to various applications 
and allows the utilization of more information from 
different sources such as expert knowledge and project 
data. The change of the application will only cause the 
redefinition of the fuzzy if-then rules in the first part 
(PNFIS) and the replacement of the algorithmic model in 
the third part; the rest will remain the same. The expert 
knowledge on contributing factor dependency is encoded 
in the first part: preprocessing neuro-fuzzy inference 
system. The conventional algorithmic model reflects 
important knowledge on a specific software estimation 
problem. We use the neuro-fuzzy bank to calibrate the 
parameters of the algorithmic model through learning 
from industry project data. Thus, we can integrate the 
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numerical project data, expert knowledge, and 
conventional algorithmic model into one framework. 
According to information theory, this process should 

yield more accurate estimation results. Next, we will 
introduce the three major components individually in 
detail. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A soft computing framework for software estimation 

 
2.1 Preprocessing Neuro-Fuzzy Inference System 
(PNFIS) 

 
In many model-based approaches, it is assumed that 

the effects of contributing factors on the estimated 
software output metric are independent, but this 
assumption is often arguable. Even for some very popular 
and widely used models such as COCOMO, experts 
diverge from this assumption. However, there is one thing 
we can claim: this assumption does not hold for all 
models in all situations. When this assumption breaks 
down, properly handling of the dependencies among 
contributing factors becomes essential to improve 
estimation accuracy. Unfortunately, it is not an easy task 
in most cases; dependency is inherently a very complex 

problem as we have to consider the effect of any possible 
combinations. It is common sense that when it comes to a 
very complicated situation, experts usually have better 
understandings of the dependency than any of the 
advanced computation machines invented so far. 
Therefore better utilization of expert knowledge is the 
key to handle this dependency problem. In this paper, we 
propose the use of a preprocessing neuro-fuzzy inference 
system (PNFIS) that encodes expert knowledge into fuzzy 
if-then rules; PNFIS can effectively resolve the effect 
dependencies among the contributing factors. The inputs 
of PNFIS are the ratings of the contributing factors 
(RFis), and its output is the adjusted ratings of 
contributing factors (ARFis), as shown in Figures 2 and 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 2. The structure of PNFi in PNFIS 
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In PNFIS, fuzzy rules take the form of:  
Fuzzy Rule k: IF (RF1 is A1jk) AND (RF2 is A2jk) AND … 
AND (RFN is ANjk)  THEN ARFi=PFPik*RFi 
where PFPik is an adjustable parameter. 

The output iARF  can be expressed as: 

);,,,( 21 PNFNPNFii PRFRFRFfARF L= ,  

      Ni ,,2,1 L= . 
 

2.2. The Neuro-fuzzy Bank (NFB)  
 
In the neuro-fuzzy bank, element i is a neuro-fuzzy 

subsystem (NFBi), which is associated with contributing 
factor i. Each contributing factor has several qualitative 
rating levels, for example, the COCOMO II model uses 

six rating levels: Very Low (VL), Low (L), Nominal (N), 
High (H), Very High (VH) and Extra High (XH) for 
most cost drivers. For a software estimation program, we 
usually have to define each contributing factor and the 
corresponding rating criteria for each rating level. But 
when we use the algorithmic model to estimate the 
software output metric, we need to use a numerical value 
corresponding to the rating value of each factor in the 
mathematical formula. So for every contributing factor, 
each rating level relates to a quantitative value called 
parameter value, which is used in the algorithmic model. 
That is, there is a mapping from rating values to 
numerical values for each contributing factor. One goal 
of building a software estimation model is to calibrate its 
parameter values based on the expert knowledge and 
project data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Element NFBii in the neuro-fuzzy bank 
 

Based on the above features of contributing factors, 
the structure of each neuro-fuzzy subsystem (NFBi) is 
chosen as a simplified version of Adaptive Neuro-fuzzy 
Inference System (ANFIS) [14], as shown in Figure 2. 
The input of element i is the adjusted rating value ARFi 
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algorithmic model (mathematical formula). For element i 
of NFB, which is functionally equivalent to a Takaki and 
Sugeno’s type [15] of the fuzzy system consisting of the 
following fuzzy rules: 

Fuzzy Rule (i,k): If ARFi is Aik, then FMi=FMPik , 
k=1,2,…,Ni 

where Ni is the number of rating levels for factor i, Aik is 
a fuzzy set associated with the k-th rating level of factor 
i, and FMPik is the corresponding parameter value 

associated with the k-th rating level. For example, if the 
contributing factor i has the six rating levels, NFBi is 
composed of the following six fuzzy if-then rules: 
Fuzzy Rule (i,1):  If ARFi is Ai1 (Very Low),  

then FMi=FMPi1 , 
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then FMi=FMPi2 , 
Fuzzy Rule (i,3):  If ARFi is Ai3 (Nominal),  
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Fuzzy Rule (I,4):  If ARFi is Ai4 (High),  

then FMi=FMPi4 , 
Fuzzy Rule (i,5):  If ARFi is Ai5 (Very High),  

then FMi=FMPi5 , 
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factor i to guarantee that calibrated results are reasonable. 
Monotonic constraints reflect the expert knowledge 
about effects of contributing factors on the estimated 
software output metric. For most contributing factors, 
when the rating value of a contributing factor goes high, 
the estimated software output metric should change 
monotonically, in other words, it increases or decreases 
along only one direction, it cannot increase and then 
decrease or vice versa. Therefore, we can formulate 
monotonic constraints as follows: 

)(,21 FIiFMPFMPFMP INCiNii i
∈≤≤≤ L  

)(,21 FIiFMPFMPFMP DECiNii i
∈≥≥≥ L  

where )(FIINC  is the index set of increasing 
contributing factors whose higher rating value 
corresponds to the higher value of the estimated software 
output metric, and )(FIDEC  is the index set of 
decreasing contributing factors whose higher rating value 
corresponds to the lower value of the estimated software 
output metric. If we do not put monotonic constraints on 
the neuro-fuzzy bank during the learning process, we 
might get counterintuitive calibrated results. One 
advantage of the neuro-fuzzy bank is that we can easily 
integrate monotonic constraints of contributing factors 
into our soft computing framework, thus avoid 
counterintuitive calibrated results. It is much more 
difficult to place monotonic constraints on a standard 
five-layer neuro-fuzzy system.  

We can look at the functionality of NFBi from two 
perspectives. From the learning perspective, we can treat 
NFBi as a neural network so that we can use available 
learning algorithms for neural networks to calibrate the 
corresponding parameters, and NFBi has learning and 
adaptation capability. From the reasoning perspective, 
NFBi  can be considered as a fuzzy logic system. Its 
output is derived using fuzzy if-then rules and the 
reasoning process is transparent in the way similar to the 
decision-making process of human beings. Therefore, the 
neuro-fuzzy subsystem NFBi is not a black box. The 
whole reasoning process is clear to the user and can be 
traced and validated by users/experts. Consequently, our 
neuro-fuzzy model is more easily accepted for project 
management. 

Remark 1: In the neuro-fuzzy bank, each element is 
a “standard” neuro-fuzzy subsystem. The number of 
elements is equal to the number of rating contributing 
factors. In each element, the number of fuzzy rules 
equals the number of rating levels of the corresponding 
factor. 

Remark 2: For a given problem, once the number of 
rating contributing factors and the number of rating 
levels of each factor is determined, the structure and 
fuzzy rules of the neuro-fuzzy bank are determined. Only 

the fuzzy rule parameters are needed to fine-tune through 
the learning process from numerical project data. 

Remark 3: Guideline for determining rating levels: 
how to determine the appropriate number of rating levels. 
On the one hand, fewer rating levels imply coarse and 
less accurate description of contributing factors, but the 
system is easy to use since users can give more accurate 
rating values. On the other hand, too many rating levels 
for one factor indicate more accurate descriptions of 
contributing factors, but the definition and rating criteria 
of each level are more complicated. Users usually have 
difficulty rating the factors. That is, the rating errors tend 
to be larger. Therefore, there is a balance between the 
number of rating levels and ease of use. 

 
2.3. Algorithmic Models 

 
The use of algorithmic models to predict software 

output metrics is one of the most popular and traditional 
software estimation techniques. An algorithmic 
estimation model can be built by analyzing a software 
output metric and attributes of completed projects, and 
used to predict the software output metric based on the 
attributes of software product and development process. 
Many algorithmic models have been proposed to estimate 
different software metrics, such as software development 
cost, software maintenance cost, software quality, and 
software development productivity. For example, the 
COCOMOII post architecture model [1] is widely used to 
predict the software development effort: 

( ) ∏
=

×+ ×∑×= =

17

1

01.0
5

1

i
i

SFB EMSizeAEffort i
i  

where A and B are constants, Size refers to the size of 
software product, scale factors SFi’s and effort 
multipliers EMi’s are the attributes of software product, 
platform, personnel and project.  

Software development productivity is estimated by 
the productivity-benchmarking equations [16]:  

Productivity= ∏
=

bN

i
iFMA

1

 

where A is a constant, FMi's are the contributing factors, 
Nb is the number of contributing factors, A, FMi's, Nb are 
different for different business sectors. 

In order to predict the software maintenance effort, 
Maxwell proposed an algorithmic model of the form 
[16]:  

Maintenance Effort = ∏
=

4

1

)(
i

i
B FMSizeA  

where A and B are constants, FMi's are the contributing 
factors. 

By analyzing many algorithmic models, we find that 
many software output metrics take the following forms: 
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Software output metric = ∏
=

bN

i
iFMA

1

 or 

Software output metric = ∑
=

N

i
iFMA

1
 

where A is a constant, FMi's are the major factors that 
contribute to the software output metric. 

For convenience, we call the above models the 
default algorithmic models in our soft computing 
framework. If there is no algorithmic model for a given 
software estimation problem, we suggest to select one of 
the above default model or its variant as the algorithmic 
model based on the characteristics of the problem. 

Although many algorithmic models are usually not 
very accurate, they reflect a lot of useful expert 
knowledge in this field. In order to make the best use of 
this kind of expert knowledge, it is worthwhile to 
integrate the algorithmic model into our soft computing 
framework. Calibrating the parameters of algorithmic 
models is usually a very challenging task. In our soft 
computing framework, parameters of the algorithmic 
model are calibrated by the neuro-fuzzy bank through 
learning. 

 
3. Software Estimation Process 

 
The whole estimation process consists of two major 

steps. In the first step, we calibrate the framework 
through learning based on historical project data. In the 
second step, we use the calibrated framework to predict 
the software output metric of the software product under 
development and to analyze calibrated parameters for 
decision-making. 

 
3.1 Reasoning Process 
 

Because we adopt the same type of neuro-fuzzy 
inference system (ANFIS) in both the preprocessing 
neuro-fuzzy inference subsystem and the neuro-fuzzy 
bank, for convenience to illustrate the concepts and 
reasoning processing, we consider only the i-th element 
NFBi in the neuro-fuzzy bank having the rule base:  

Fuzzy Rule (i,k): If ARFi is Aik, then FMi=FMPik , 
k=1,2,…,Ni 

Now we describe the functions of the neuro-fuzzy 
subsystem layer by layer. 

Layer 1: This layer is used to calculate the 
membership values for each rule. The activation function 
of a node in this layer is defined as the corresponding 
membership function: 
  )(1

iikk ARFO µ=  

where iARF  is the adjusted rating value of the i-th 

contributing factor, )( iik ARFµ  is the membership 
function of fuzzy set Aik., which is associated with the kth 
rating level such as Low, High.  

Layer 2: This layer calculates the firing strength for 
each rule. The inputs are the membership values in the 
premise of the fuzzy rule. The output is the product of all 
input membership values, which is called the firing 
strength of the corresponding fuzzy rule. Because there is 
only one condition in the premise of each fuzzy rule, the 
firing strength is the same as the membership value 
obtained from Layer 1. 
  1

kk Ow = . 
Layer 3: This layer is used to normalize the firing 

strength for each fuzzy rule. The output of the kth node is 
called the normalized firing strength, which is defined as:  

  iN

j
j

k
k Nk

w

ww
i

,,2,1,

1

L==

∑
=

 

Layer 4: In this layer, the reasoning result of a rule is 
calculated as follows: 
  ikkk FMPwO =4  

Parameters }{ ikFMP  in this layer are called consequent 
parameters. 

Layer 5: This layer sums up all the reasoning results 
of fuzzy rules we get from Layer 4, i.e.,  
  ∑=

k
kk OO 45 . 

In summary, the overall output of the i-th element 
NFBi in the neuro-fuzzy bank is 

∑ ∑∑
=

==
iN

k
ik

j
iij

iik

k
ikki FMP

ARF
ARFFMPwFM

1 )(
)(

µ
µ

. 

3.2 Learning Algorithms 
 

Given NN project data points ),( odnn MX , 

NNn ,,2,1 L=  the learning problem of parameters P 
in our soft computing framework can be formulated as 
the following optimizing problem: 

  ∑
=








 −
=

NN

n odn

odnon
n M

MMwE
1

2

    (1) 

subject to the following monotonic constraints:  
)(,21 FIiFMPFMPFMP INCiNii i

∈≤≤≤ L     (2) 

)(,21 FIiFMPFMPFMP DECiNii i
∈≥≥≥ L     (3) 

where: 
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E :  the total weighted squared relative errors for all 
projects, 

nw :  the weight of Project n,  

odnM :  the desired (actual) value of the software 
output metric for Project n, 

nX :  the vector value of X  for Project n. 

);( PXfM nSCFon =       (4) 

);( PXfM SCFo =       (5) 

);,,,( 21 PNFNPNFii PRFRFRFfARF L= , 

 Ni ,,2,1 L=                     (6) 

∑ ∑=

=

=
iN

k
ik

j
iij

iik

NFBiNFBii

FMP
ARF

ARF
PARFfFM

1 )(
)(

);(

µ
µ    

   Ni ,,2,1 L=         (7) 

);,,,
,,,,(

221

21

2 AMN

NAMo

PVVV
FMFMFMfM

AM
L

L=
  (8) 

 
The learning algorithm for our soft computing 

framework is as follows: 

i

l
i

l
i P

EPP
∂
∂

−=+ α1         (9) 

where 0>α  is the learning rate, l is the current 
iteration index, 

( )∑
= ∂

∂
−=
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∂ NN
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=
∂
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  ,i.e.,                (11) 
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                 (12) 
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                   (13) 
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i

NFBi

i

AM
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on

P
f

ARF
f
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f

P
M
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⋅
∂
∂

⋅
∂
∂

=
∂
∂

              (14) 

 
Remark: Although we derive the learning algorithm 

for all parameters P , we can calibrate only a part of 
parameters at one time for a specific software estimation 
problem. 

 
4. Case Studies 

 
In this section, we use data from the software industry to 
validate our soft computing framework and discuss two 
case studies. 

 
4.1 Case I. Software Cost Estimation with the 
COCOMO model 
 

In this case study, there is a total of 69 project data 
available, including 6 project data from the industry [17], 
[18] and 63 project data from the original COCOMO’81 
database [2]. Because most of these project data are 
compatible only with the intermediate COCOMO’81 
model, the algorithmic model employs the COCOMO’81 
intermediate model, described by: 

( ) ∏
=

××==
15

1i
i

B
ko EMSizeAEffortM k  

where Ak and Bk are constants specific to each project 
mode (k=1:organic, k=2:semi-detached or k=3: 
embedded), iEM s are the cost drivers. In this case, the 

estimated software output metric oM  is software 

development effort, SizeVEMFM ii == 1, , 15=N , 

12 =AMN , that is, the neuro-fuzzy bank has fifteen 
elements, and each element has four to six rating levels. 
The experiment results (see Table 1) show that our soft 
computing framework can greatly improve cost 
estimation accuracy when compared with the standard 
COCOMO model. Because the COCOMO II model is the 
more advanced version and has a similar structure to 
COCOMO'81, we will further validate our soft 
computing framework when COCOMOII projects data 
becomes available. 
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Table 1. Cost estimation for all 69 projects data points 

COCOMO81 Model Soft computing framework Improvement Predict 

# Projects Accuracy # Projects Accuracy  

20% 49 71% 62 89% 18% 

30% 56 81% 64 92% 11% 

50% 65 94% 67 97% 3% 

100% 69 100% 69 100% 0% 

 
Table 2. Effort estimation for all 63 projects data points 

 
Stepwise ANOVA Model Soft computing framework Predict 

# Projects Accuracy # Projects Accuracy 

Improvement 

20% 21 33% 28 44% 11% 

25% 25 39% 33 52% 13% 

30% 33 52% 37 58% 6% 

50% 50 79% 52 82% 3% 

100% 63 100% 63 100% 0% 

 
4.2 Case II. Software Development Effort 
Estimation 
 

With data from 63 projects, Maxwell [17] used the 
analysis of variance (ANOVA) approach to build multi-
variable models to predict the software development 
effort. In our soft computing framework, we select the 
1993 Model B as the algorithmic model, i.e., 

( ) ∏
=

××==
4

1i
i

B
o FMSizeAEffortM  

where A and B are constants, iFM s are the four 
contributing factors. In this case, the estimated software 
output metric oM  is software development effort, 

1,4 2 == AMNN , that is, the neuro-fuzzy bank has 
four elements, and each element has five or two rating 
levels. The experiment results are shown in Table 2. 
Estimation accuracy is not very high due to the low 
quality of this dataset with many outliers (project data 
with large noise) in this dataset, however, our soft 
computing framework improves estimation accuracy a lot 
when compared with the stepwise ANOVA model. 
 
5. Conclusions 
 

This paper has presented a general framework for 
software estimation. The framework concentrates on the 

preprocessing neuro-fuzzy inference system, the neuro-
fuzzy bank and the algorithmic model. We consider as the 
rating value of contributing factor as input and produce 
software metric as output. This framework has been 
validated with project data from industry. 

The main benefit of this approach is its good 
interpretability, that is, by using the fuzzy rules, the 
approach tries to simulate the software engineers' line of 
thought when they are doing software estimation. 
Another great advantage of this research is that we could 
put together expert knowledge (fuzzy rules), project data 
and the traditional algorithmic model into one general 
framework that can have a wide range of applicability in 
software cost estimation, software quality estimation and 
risk analysis. 

 
References 
 
[1] B.W. Boehm et al., Software Cost Estimation with 

COCOMO II, Prentice Hall, 2000. 
[2] B.W. Boehm, Software Engineering Economics, Prentice 

Hall 1981. 
[3] L. Putnam and W. Myers, Measures for Excellence, 

Yourdon Press, 1992. 
[4] S. MacDonell and A. Gray, “A Comparison of Modeling 

Techniques for Software Development Effort 
Prediction,” International Conference on Neural 
Information Processing and Intelligent Information 
Systems, Springer, pp. 869–872, 1997. 



Soft Computing, Volume 10, Number 2, pp. 170-177, Springer, January II 2006 

 9

[5] M. Shepperd and M. Schofield, “Estimating Software 
Project Effort Using Analogies,” IEEE Trans. on 
Software Engineering, vol. 23,no. 12, pp. 736-743, 1997. 

[6] S. Chulani, Bayesian Analysis of Software Cost and 
Quality Models, doctoral dissertation, Dept. Computer 
Science, University of Southern California, 1999. 

[7] A. Idri, A. Abran and L. Kjiri, “COCOMO Cost Model 
Using Fuzzy Logic,” 7th International Conference on 
Fuzzy Theory and Technology, 2000. 

[8] J. Ryder, “Fuzzy Modeling of Software Effort 
Prediction,” IEEE Conference on Information 
Technology, pp. 53-56, 1998. 

[9] A.R. Gray and S.G. MacDonell, “A Comparison of 
Techniques for Developing Predictive Models of 
Software Metrics,” Information and Software 
Technology, vol. 3, pp. 425-437, 1997. 

[10] W. Pedrycz, “Computational Intelligence and Visual 
Computing: an Emerging Technology for Software 
Engineering,” Soft Computing, vol. 7, pp. 33-44, 2002. 

[11] G. Wittig and G. Finnie, “Estimating Software 
Development Effort with Connectionist Models,” 
Information and Software Technology, vol. 39, pp. 469-
476, 1997. 

[12] A. Idri, T.M. Khoshgoftaar and A. Abran, “Can Neural 
Networks Be Easily Interpreted in Software Cost 
Estimation?,” IEEE International Conference on Fuzzy 
Systems, pp. 1162 –1167, 2002. 

[13] A. Gray and S. MacDonell, “A Comparison of 
Techniques for Developing Predictive Models of 
Software Metrics”, Information and Software 
Technology, vol. 39, no. 6, pp. 425-437, 1997. 

[14] R. J. S. Jang, “ANFIS: Adaptive-Network-Based Fuzzy 
Inference System,” IEEE Trans. Systems, Man, and 
Cybernetics, vol. 23, pp. 665-685, 1993. 

[15] T. Takaki and M. Sugeno, “Fuzzy Identification of 
Systems and its Application to Modeling and Control”, 
IEEE Trans. Systems., Man, and Cybernetics, vol. 15, 
pp.116-132, 1985. 

[16] K.D.  Maxwell, “Applied Statistics for Software 
Engineers”, Prentice Hall, 2002. 

[17] K. D. Maxwell and P. Forselius, “Benchmarking 
Software Development Productivity”, IEEE Software, 
vol. 17, No. 1, pp. 80-88, Jan./Feb. 2000. 

[18] D. Ho, “Experience Report on COCOMO and the Costar 
Tool from Nortel’s Toronto Laboratory,” 11th 
International Forum on COCOMO and Software Cost 
Modeling, Los Angeles, October 1996. 

[19] N. Panlilio-Yap and D. Ho, “Deploying Software 
Estimation Technology and Tools: the IBM SWS 
Toronto Lab experience,” 9th International Forum on 
COCOMO and Software Cost Modeling, Los Angeles, 
October 1994. 

 
Appendix: Nomenclature 
 

ikA : fuzzy set associated with the k-th rating level for 
contributing factor i 

iARF : adjusted rating value for contributing factor i 

E : total weighted squared relative errors for all projects 
EMi: effort multiplier 

iFM : numerical value for contributing factor i 

ikFMP : parameter value associated with the k-th rating 
level for contributing factor i 

)(FIINC : index set of increasing contributing factors 

)(FI DEC : index set of decreasing contributing factors 

oM : software output metric 

onM : estimated value of oM  for Project n 

odnM : desired (actual) value of oM  for Project n 

N : number of contributing factors 

2AMN : number of non-rating variables in the algorithmic 
model 

iN : number of rating levels for contributing factor i 
NN: total number of project data points 
NFB: neuro-fuzzy bank 
NFBi: i-th element of the neuro-fuzzy bank 

( )2,, AMPNFNFB PPPP =  : the parameter vector 
including all adjustable parameters in our soft 
computing framework 

,,,,,,( 111211 1 NNNFB FMPFMPFMPFMPP LL=  

),,2 NNNN FMPFMP L : the parameter vector in 

the neuro-fuzzy bank 

PNFP : parameter vector in the preprocessing neuro-fuzzy 
subsystem 

2AMP : 21 AMNP×  parameter vector in the algorithmic 
model 

ikPFP : parameter value associated with the k-th fuzzy if-
then rule in PNFIS 

PNF, PNFIS: preprocessing neuro-fuzzy inference system 

iRF : rating value for contributing factor i 
SCF: soft computing framework 
SFi: scale factor 
Size: the size of software project 

nw : weight of Project n 

( )
2

,,,,,,, 2121 AMNN VVVRFRFRFX LL= : input 

vector consisting of contributing factors and non-
rating variables 

nX : vector value of X  for Project n 
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