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Estimating software development effort is an important task in the management of large software projects. The task is challenging,
and it has been receiving the attentions of researchers ever since software was developed for commercial purpose. A number of
estimation models exist for effort prediction. However, there is a need for novel models to obtain more accurate estimations.
The primary purpose of this study is to propose a precise method of estimation by selecting the most popular models in order
to improve accuracy. Consequently, the final results are very precise and reliable when they are applied to a real dataset in a
software project. Empirical validation of this approach uses the International Software Benchmarking Standards Group (ISBSG)
Data Repository Version 10 to demonstrate the improvement in software estimation accuracy.

Copyright © 2009 L. F. Capretz and V. Marza. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

Estimating software development effort remains a com-
plex problem that attracts considerable research attention.
Improving the estimation techniques that are currently avail-
able to project managers would facilitate increased control of
time and money in software development. Furthermore, any
improvement in the accuracy of predicting the development
effort can significantly reduce the costs from errors, such
as estimating inaccurately, misleading tendering bids, and
disabling the monitoring progress.

In order to manage the dynamic development envi-
ronments, many researchers have applied the artificial
intelligence- (AI-) based frameworks, such as neural network
and case-base reasoning models [1]. Among these AI-based
prediction models, neural networks (NNs) are recognized
for their ability to produce reasonably accurate predictions
in situations where complex relationships between inputs
and outputs exist and where the input data is distorted
by high noise levels [2]. Existing research describes several
parametric models such as COCOMO [3] and SLIM [4] as
well as various nonparametric models such as Fuzzy Logic
(FL), the Neural Network (NN), and various combinations

of these models, such as the Neurofuzzy method; however,
our proposed voting framework is a unique model that
extends current works.

In the last two decades, Artificial Neural Network (ANN)
has been used for predictions in diverse applications; it is
the most commonly used learning-oriented approach for
estimating software development effort. Huang et al. [5]
propose a model combining fuzzy logic and neural network.
The main benefit of this model is its good interpretability
by using the fuzzy rules. Another great advantage of this
research is that they could put together expert knowledge
(fuzzy rules), project data, and traditional algorithmic model
into one general framework that may have a wide range of
applicability in software cost estimation.

Saliu et al. [6] present a Fuzzy Logic Model (FLM) based
upon triangular membership functions. Results showed that
the FLM was slightly better than COCOMO equations. In
addition, they reported promising experimental summary
results in spite of the little background knowledge of the rule
base and training data. It does signify that there are potentials
for improvements when the framework is deployed in prac-
tice, since experienced experts could augment the dataset
value with their knowledge.
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Figure 1: Research methodology.

Martin et al. [7] explained that regression modeling is
one of the most widely used statistical modeling technique
for fitting a response (dependent) variable as a function
of predicator (Independent) variables. Development effort
constitutes a dependent variable while all the factors that
influence on effort are independent variables. Jiang and
Naudé [8] statistically examine the factors that influence
development effort. Their paper proposes a parsimonious
parametric model for prediction of effort which is both
simple and accurate than previous models.

Despite all research done in the field of software esti-
mation, improving accuracy remains a daunting task. This
work tries to get the best of current techniques using a
voting approach. The remainder of this paper is structured
into four sections. In Section 2, we briefly introduce the
proposed model and prepare the dataset. Section 3 presents
the various parts of the proposed model. The experimental
results are examined in Section 4, and finally, Section 5
discusses conclusions and points out to future research.

2. Research Method

The aim of this study is to build and evaluate an estimation
model that improves accuracy as a result of voting among
traditional popular models.

2.1. Proposed Model Description. All of the estimation
approaches that we will describe in detail are valuable as
software development effort estimation models. However, by
comparing and voting among them, we can achieve greater
accuracy estimation. A schematic diagram of our proposed
model is depicted in Figure 1.

Since the Neurofuzzy model has a lower MMRE than
other models, we can utilize it as the basic model with which
all other models are compared. For each model, we first
calculate the following factor:

X(k) = |OutNeuro −Outk|
OutNeuro

∗ 100, (1)

Table 1: Summary of our model variable.

Variables Scale Description

Effort (output) Ratio Normalized work effort

AFP (Input) Ratio Adjusted function points

MTS (Input) Ratio Max team size

DT (Input) Nominal Development type

DP (Input) Nominal Development platform

LT (Input) Nominal Language type

DTech (Input) Nominal Development techniques

where K represents the various models mentioned in this
article. In the case, where there is less than 10% error, X is
lower than 10, we can use that model in calculating output
and using it in average formula. Each output is computed
by averaging the output models which have lower than 10%
Error.

2.2. Data Preparation. As previously mentioned, the empir-
ical validation of this study uses International Software
Benchmarking Standards Group (ISBSG) Data Repository,
Version 10. Specifically, the dataset contains information on
4106 projects, two-thirds of which were developed between
the years 2000 and 2007. Projects with any missing values
were discarded from further use in the model building,
because they may potentially affect the effort estimates.
After preprocessing the data, the ISBSG contained 439
software projects with six effort drivers for constructing the
estimation models. These six effort drivers are divided and
classified as having either ratio or nominal scales. Those
with ratio scales include Adjusted Function Points (AFPs)
and Max Team Size (MTS), whereas Development Type
(DT), Development Platform (DP), Language Type (LT), and
Development Technique (DTech) all have nominal scales, as
shown in Table 1.

In the case of nominal scale variables, our model relies
on the assistance of expert knowledge. A brief description of
these variables is as follows.
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Table 2: Coefficients of nominal scale variables.

Nominal scale variables Coefficients

Language type

2GL 0

3GL −0.40

4GL −0.85

ApG −0.71

Development platform

Mid-range −0.12

Multiplatform −0.15

PC −0.46

Mainframe 0

Development type
New-development 0.29

Enhancement 0

Redevelopment 0.56

Development technique RAD −0.23

(i) Language Type. Language type contributes signifi-
cantly to the software development effort. Its assistance is
evident from the regression coefficients of 3GL (−0.40),
4GL (−0.85), and ApG (−0.71). These values are relative
to the value (0) for 2GL, which is the default development
language. Thus, fourth-generation languages (4GLs) are
more useful for reducing development effort than third-
generation languages (3GLs).

(ii) Development Platform. The computer platform has
been considered an important cost driver in estimating soft-
ware effort. Mainframe computers need to serve numerous
users and process large amount of data quickly. Hence,
software development for mainframe computers requires
considerable effort, while the development for personal
computers requires a much smaller effort. Moreover, in
comparison to single platform development, multiplatform
development requires much more effort, especially as it
involves repeated work on the building and testing of all
platforms. Mid-range computers, designed to be hosts in a
multiuser environment, are of relatively smaller scale and
thus require less effort than mainframe computers.

(iii) Development Type. While new development involves
building software from scratch, software enhancement sim-
ply adds, changes, or deletes the functionality of previously
existing systems to adapt to evolving business requirements.
In some cases, software requires frequent and major changes
involving substantial costs; so it is preferable to develop it
completely. However, for software that requires relatively
few and simple changes, enhancement is more suitable and
inexpensive than complete redevelopment.

(iv) Development Techniques. Rapid Application Devel-
opment (RAD) [9] is a software development technique that
focuses on building applications in a very short period of
time. The key objective of RAD is the fast development
of high-quality systems with low costs. Projects using RAD
achieved significantly higher productivity than those using
traditional development methods [10]. Thus, by using RAD,
we can significantly reduce the development effort.

Table 2 illustrates the coefficients of nominal scale
variables, and Table 3 shows the coefficients of ratio scale
variables.

Table 3: Coefficients of ratio scale variables.

Nominal scale variables Coefficients

Log (size) 0.56

Log (Team size) 0.68

Table 4: Different kinds of development types.

Development type Assigned number Number of cases

Enhancement 0 188

New-development 0.29 238

Redevelopment 0.56 13

Table 5: Different kinds of language types.

Language type Assigned number Number of cases

2GL 0 0

3GL −0.40 209

4GL −0.85 199

ApG −0.71 31

Table 6: Different kinds of development platforms.

Development platform Assigned number Number of cases

Main-frame 0 207

Mid-range −0.12 110

Multiplatform −0.15 5

PC −0.46 117

Table 7: Different kinds of methodology acquirement.

Development technology Assigned number Number of cases

RAD −0.23 59

Nine other technologies
(waterfall, prototyping, data
modeling, process, modeling,
JAD (joint application
development), regression
testing, OO (object oriented
analysis & design), business
area modeling)

0 380

3. Brief Description of Incorporated
Models in Voting

The models considered in this work are based on Statistical
Models, Fuzzy Logic Models, Neural Network Models,
Neurofuzzy Models, and Multiple Regression Models.

3.1. Statistical Model. For this type of model, the effort
drivers are divided into two parts; first, there are drivers with
a direct effect on effort, such as AFP, MTS, and DT, where
applying the drivers will increase the development effort.
The second type of driver has an inverse effect on effort and
therefore a negative coefficient, including DTech, LT, and DP.
For nominal scale factors, we assign a coefficient to each of
them, which are obtained from statistical models and are
illustrated in Tables 4, 5, 6, and 7.
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Table 8: The two input variables for effort estimation.

Direct effect variable X1 Exp(4.24+0.56∗ log(Size)+0.68∗ log(Team Size)+γkΦ(Development Type k)) k = 1, 2, 3

Inverse effect variable X2
Exp(αiΦ(Language Typei)+β jΦ(Development Platform j)+Φ(Development Technology))
i = 1, 2, 3, 4; j = 1, 2, 3, 4

The purpose of the Statistical Model is to assign effort
as the dependent variable and to make the other variables
the predicators. Preliminary analysis indicated that multiple
colinearity within the data was not a problem. Since regres-
sion analysis based on AIC (Akaike’s Information Criterion)
tends to overestimate the number of parameters when the
sample size is large [11], the results produced by AIC produce
inaccurate measures and thus should not be the sole source
of analysis. Rather, the use of AIC should be combined with
other statistical criterion, such as the Analysis of Variance
(ANOVA). By considering both procedures, it is evident that
the two methods produce similarly significant factors; this
model is described as follows:

Log(Effort) =4.24+0.56∗log(Size)+0.68∗log(Team Size)

+ αiΦ
(

Language Typei
)

+ β jΦ
(
Development Platform j

)

+ γkΦ
(
Development Type k

)

− 0.23Φ(RAD),

i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2, 3.
(2)

In this case, the function Φ is the indicator function, with
binary values of 1 or 0. Specifically, a value of 1 means that
the relevant development technique in the parentheses is
used; otherwise the value is 0. By applying this equation to
the dataset, the results evident in Table 10 are obtained.

3.2. Fuzzy Logic Model. Fuzzy logic enhances the user’s
ability to interpret the model, allowing the user to view,
evaluate, criticize, and possibly adapt the model. Prediction
can be explained through a series of rules [12]. After
analyzing the fuzzy logic model, experts can check the
model to avoid the adverse effects of unusual data, thereby
increasing its robustness [13]. Additionally, fuzzy logic
models can be easily understood in comparison to regression
models and the neural network, thus making it an effective
communication tool for management [14]. In comparison
to fuzzy logic, case-based reasoning is similarly easy to
interpret, but it requires a high volume of data [15].

The number of fuzzy rules for six input variables and
three membership functions is calculated by 36, which equals
729. As a result, writing these rules is an arduous task; so
based on the statistical model we use two input variables, the
direct effect and the inverse effect, which are demonstrated
in Table 8.

The fuzzy rules for these variables are based on the
correlation (r) between pairs of variables. Correlation, the
degree to which two sets of data are related, varies from −1.0

Table 9: Correlation between variables.

r X1 X2 Effort

X1 1 0.5 0.8

X2 — 1 0.4

Effort — — 1

to 1.0. The Correlation Coefficient for the input variables is
calculated from the following equation:

r = n[
∑

(Xi · Yi)]− (
∑
Xi)(

∑
Yi)√[

n
(∑

X2
i

)− (
∑
Xi)

2
][
n
(∑

Y 2
i

)− (
∑
Yi)

2
] . (3)

As a result, the correlation of the variables, based on (1), is
depicted in Table 9.

An acceptable correlation should have an absolute value
higher than 0.5. Since the correlation of variables under
the principal diagonal of Table 9 did not meet this criterion
and thus was redundant data, we left it blank. The fuzzy
inference process uses the Mamdani Approach for evaluating
each variable complexity degree when linguistic terms, fuzzy
sets, and fuzzy rules are defined. Specifically, we apply
the minimum method to evaluate the “and” operation,
and consequently, we obtain one number that represents
the antecedent result for that rule. The antecedent result,
as a single number, creates the consequence using the
minimum implication method. Overall, each rule is applied
in the implication process and produces one result. The
aggregation using the maximum method is processed to
combine all consequences from all the rules and produces
one fuzzy set as the output. Finally, the output fuzzy set
is defuzzified to a crisp single number using the centroid
calculation method [16]. This Two-Input-One-Output fuzzy
logic system for Effort is depicted in Figure 2. Moreover, the
results of this model are shown in Table 10.

3.3. Neural Network Model. Our neural network model uses
an RBF network, which is easier to train than an MLP
network. The RBF network is structured similarly to the MLP
in that it is a multilayer, feed-forward network. However,
unlike the MLP, the hidden units in the RBF are different
from the units in the input and output layers. Specifically,
they contain the RBF, a statistical transformation based on
a Gaussian distribution from which the neural network’s
name is derived [17]. Since the data of our variables differs
significantly, first, we normalized the data and then divided
it into two categories: 75% or 329 pieces are used for training
and 25% or 110 are used for testing. The trajectory of
the training phase is depicted in Figure 3. In particular, we
used the Generalized Regression Neural Network Model and
applied it to the dataset; the results are shown in Table 10.
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Figure 2: The fuzzy logic system for estimating effort.

Table 10: Comparison of models using MMRE, MMER, and Pred(25).

Multiple regression model Neural network model Fuzzy logic model Neurofuzzy model Statistical model Voting method

MMRE 0.649659945 0.739787708 0.74033832 0.282264458 1.115479582 0.30873679

MMER 0.207021353 0.23582904 2.531378977 0.201317968 0.367909284 0.125078979

Pred(25) 0.70615034 0.61731207 0.03416856 0.87471526 0.4829157 0.87471526

10−1

100

101

0 50 100 150 200 250 300

325 Epochs
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Performance is 0.424597, goal is 0

Figure 3: Progress of training phase.

3.4. Neurofuzzy Model. Among several current approaches,
the Neurofuzzy technique is a promising strategy that solves
several problems involving evaluation accuracy [18, 19]. This
approach is a suitable due to its built-in learning capacity, its
robustness in the case of uncertain input, and its ability to
utilize a variety of information from multiple sources.

In our method, the ANFIS (Adaptive Neurofuzzy Infer-
ence System) Architecture is used to implement the neuro-
fuzzy approach, which is functionally equivalent to a Sugeno-
type fuzzy rule base. Furthermore, it is also similar to a
radial-basis function network. First, each neuron in Layer
1 adapts to a parametric activation function and produces

the appropriate grade of membership for the given inputs
to satisfy the membership functions. The Gaussian Curve is
used for the membership function, which is given by

f (x) = exp

(
−0.5 (x − c)2

δ2

)
, (4)

where c is the mean, and δ is the variance. In Layer 2,
every node is a fixed node whose output is the product of
all incoming signals and represents the firing strength of
the ith rule. Subsequently, each node in Layer 3 calculates
the ratio of the ith rule’s firing strength relative to the sum
of the firing strengths for all rules. The nodes of Layer 4
are adaptive nodes, and they produce a node output by the
consequent parameters and normalized firing strength from
Layer 3. Finally, in Layer 5, there is a fixed node that totals all
incoming signals.

In order to find the best point for the epoch number, we
calculated the RMS, which shown in (3):

RMS = 1
MN

N∑

j=1

M∑

i=1

e2
i , (5)

whereN is the size of inputs, andM is the number of outputs.
The graph of the RMS, according to the number of epochs, is
depicted in Figure 4. We deemed the value of 1000 Epochs
suitable for producing appropriate results; the outcome of
this approach is indicated in Table 10.

3.5. Multiple Regression Model. For this model, we also use
two input variables, as shown in Table 8. A linear equation
with two independent variables may be expressed as

y = b0 + b1x1 + b2x2, (6)
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where b0, b1, and b2 are constants; x1 and x2 are the
independent variables, and y is the dependent variable,
which corresponds to the normalized work effort. For the
multiple regression equation, the values b0, b1, and b2 may
be obtained by solving another system of linear equations:

∑
y = nb0 + b1

(∑
x1

)
+ b2

(∑
x2

)
,

∑
x1y = b0

(∑
x1

)
+ b1

(∑
x2

1

)
+ b2

(∑
x1x2

)
,

∑
x2y = b0

(∑
x2

)
+ b1

(∑
x1x2

)
+ b2

(∑
x2

2

)
.

(7)

By solving this linear equations system, (4) gives the
following linear regression equation. The results of applying
this approach to our dataset are given in Table 10:

Effort = 0.44906 + 1.2235∗ X1 + 0.09046∗ X2. (8)

4. Experimental Results

The following experiments were used to validate our ap-
proach.

4.1. Evaluation Criteria. We employ two common criteria
for assessing and comparing the performance of cost esti-
mation models: the Relative Error (RE) given by (9) or the
Magnitude of Relative Error (MRE) given by (10), which are
defined as follows:

REi = Actual Efforti − Predicted Efforti
Actual Efforti

, (9)

MREi = |Actual Efforti − Predicted Efforti|
Actual Efforti

. (10)

The RE and MRE values are calculated for each project, i,
whose effort is subsequently predicted. For multiple projects,

the number of which is denoted by N ; we can also use the
Mean Magnitude of Relative Error (MMRE) :

MMREi = 1
N

N∑

i=1

|Actual Efforti − Predicted Efforti|
Actual Efforti

= 1
N

N∑

i=1

MREi.

(11)

For our purposes, the MER seems preferable to MRE,
especially since the MER measures the error relative to the
estimate. As a result, the MER is defined as follows:

MERi = |Actual Efforti − Predicted Efforti|
Predicted Efforti

. (12)

As in the case of the MRE and the MMRE, the MER
value is calculated for each observation, i, whose effort
is then predicted. The aggregation of MER from multiple
observations (N) can be achieved through the mean of MER
(MMER) as

MMER = 1
N

N∑

i=1

MERi. (13)

Another criterion that is commonly used is the prediction at
level p:

Pred
(
p
) = k

N
, (14)

where k is the number of projects in which the MRE is less
than or equal to p. In this case, we used the Pred(25).

4.2. Evaluation of Proposed Model. We used the MMRE,
MMER, and Pred(25) for comparing our method with each
previously mentioned model. This comparison, based on 439
input data, is shown in Table 10.

The best result in each row bolded in Table 10. As it can
be seen, our proposed method has a lower MMER among
the other models, and its MMRE is slightly higher than the
Neurofuzzy model which has the best MMRE. Also, both of
them have the same Pred(25).

4.3. Discussions of Results. For a more accurate comparison
of the models, we plot each MMER model against our
proposed model. Figures 5, 6, 7, 8, 9 illustrate comparative
diagrams.

These figures showed that most of the outputs in our
proposed model had less than 20% error while the other
models have not contained these situations.

5. Conclusion and Future Research

The major difference between our work and the previous
methods involves the fact that we have selected the popular
estimation models for achieving greater accuracy. Moreover,
our model was validated with 439 cases of ISBSG Version 10.
Overall, this research was focused on three ideas; first, soft-
ware development effort estimates are the basis for project
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Figure 6: MMER comparison between voting method and neural
network model.
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Figure 7: MMER comparison between voting method and fuzzy
logic model.
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Figure 8: MMER comparison between voting method and neuro-
fuzzy model.
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Figure 9: MMER comparison between voting method and statisti-
cal model.

bidding and planning, which are critical practices in the
software industry. Second, no single software development
estimation technique is ideal for all situations. Finally, a
careful comparison of several approaches and their respective
results can be useful for producing realistic estimates.

The results from Fuzzy Logic, Neural Network, Neu-
rofuzzy, Multiple Regression, and Statistical Models were
compared to the voting method based on the MMRE and
the MMER. Results showed that the voting approach has a
lower MMER in contrast with other models, and that the
MMRE of the voting model is slightly higher than that of the
Neurofuzzy Model, which has the best MMRE.

The primary limitation of this study involved too many
inputs for the models. Perhaps by using Genetic Algorithms
we can choose the most important features among the
inputs in order to reduce them. Moreover, we did not take
into account the factor primary programming languages
for reducing redundancy, since they belong to one of
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the languages types. Also, there are many development
techniques in the dataset, such as waterfall, and prototyping,
which can be combined with each other, but in practice, it
is very difficult to consider all of them. Nevertheless, these
limitations give us motivation to continue this research in
future.
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