
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

4-2012

An Open Source Usability Maturity Model (OS-
UMM)
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Arif Raza
National University of Science and Technology - Pakistan, arif_raza@mcs.edu.pk

Faheem Ahmed
Thompson River University, fahmed@tru.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons

Citation of this paper:
Capretz, Luiz Fernando; Raza, Arif; and Ahmed, Faheem, "An Open Source Usability Maturity Model (OS-UMM)" (2012). Electrical
and Computer Engineering Publications. 155.
https://ir.lib.uwo.ca/electricalpub/155

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/215388521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/155?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages

An open source usability maturity model (OS-UMM)

Arif Raza a,⇑, Luiz Fernando Capretz a, Faheem Ahmed b

a Department of Electrical & Computer Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
b Faculty of Information Technology, United Arab Emirates University, P. O. Box 17551, Al Ain, United Arab Emirates

a r t i c l e i n f o

Article history:
Available online 12 February 2012

Keywords:
Open source software
Usability evaluation
Maturity model
Empirical analysis

a b s t r a c t

User satisfaction has always been a major factor in the success of software, regardless of whether it is
closed proprietary or open source software (OSS). In open source projects, usability aspects cannot be
improved unless there are ways to test and measure them. Hence, the increasing popularity of open
source projects among novice and non-technical users necessitates a usability evaluation methodology.
Consequently, this paper presents a usability maturity model specifically aimed at usability-related
issues for open source projects. In particular, the model examines the degree of coordination between
open source projects and their usability aspects. The measuring instrument of the model contains factors
that have been selected from four of our empirical studies, which examine the perspectives of OSS users,
developers, contributors and the industry. In addition to presenting the usability maturity model, this
paper discusses assessment questionnaires, a rating methodology and two case studies.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Open source software refers to software that is equipped with
licenses providing current and future users with the right to use,
inspect, modify, and distribute modified or unmodified versions
of the software to others. Raymond (1999) maintains that the
development culture of OSS, along with the concept of providing
free access to the software and its source code, raises the status
of OSS to that of a phenomenon. With the involvement of and
acceptance from large commercial IT vendors, OSS products have
transitioned from a fringe activity into the mainstream software
culture (Fitzgerald, 2006). Researchers who study OSS quality
-related issues such as quality control, quality assurance
techniques, and risk assessment, testing and usability agree that
OSS quality-related issues differ significantly from those of closed
proprietary software (Benson, Muller-Prove, & Mzourek, 2004;
Çetin & Göktürk, 2007; Crowston, Annabi, & Howison, 2003).

In the ISO 9241-11 (1998) standard, usability is defined as ‘‘the
extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a spec-
ified context of use.’’ The International Organization for Standardiza-
tion and The International Electro technical Commission ISO/IEC
9126-1 (2001) categorizes software quality attributes into six cate-

gories: functionality, reliability, usability, efficiency, maintainabil-
ity and portability. Alternatively, this particular standard defines
usability as ‘‘the capability of the software product to be understood,
learned, used and attractive to the user, when used under specified con-
ditions’’. However, Bevan (2009) maintains that ‘‘these standards
provide a great way to integrate usability with quality, but do not help
if quality is a low priority in your organization.’’ He also identifies four
human-centered activities for software design, which include
understanding and specifying the context of use, specifying the user
requirements, design solutions and evaluation.

According to Gill (1996), user satisfaction with a system can be
enhanced through intrinsic motivational factors such as increased
sense of user control, more task variety, less task routine, and
providing capabilities to move task performance to higher levels.
Oviatt and Cohen (2000) report that a profound shift is now occur-
ring toward embracing users’ natural behavior as the center of the
human–computer interface. Picard (1997) suggested several appli-
cations where it is beneficial for computers to recognize human
emotions for example, knowing the user’s emotions; the computer
can become a more effective tutor. According to Bianchi-Berthouze
and Lisetti (2002) three key points are very important when devel-
oping systems that capture affective information: embodiment
(experiencing physical reality), dynamics (mapping the experience
and the emotional state onto a temporal process and a particular
label), and adaptive interaction (conveying emotive response,
responding to a recognized emotional state).

Lieberman, Paternò, and Wulf (2006) emphasize user participa-
tion in earlier stage of software design. However they realize that
specific categorization of user requirements would not be easy
due to their diversity and on-going changes. They thus stress end

0747-5632/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chb.2012.01.018

⇑ Corresponding author. Address: Department of Electrical & Computer
Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9.
Tel.: +1 226 688 5372; fax: +1 519 8502436.

E-mail addresses: araza7@uwo.ca (A. Raza), lcapretz@uwo.ca (L.F. Capretz),
f.ahmed@uaeu.ac.ae (F. Ahmed).

Computers in Human Behavior 28 (2012) 1109–1121

Contents lists available at SciVerse ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh

http://dx.doi.org/10.1016/j.chb.2012.01.018
mailto:araza7@uwo.ca
mailto:lcapretz@uwo.ca
mailto:f.ahmed@uaeu.ac.ae
http://dx.doi.org/10.1016/j.chb.2012.01.018
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh

users to show flexibility in adapting the system. The authors desire
that users should adjust themselves to adapt systems according to
their skill level. Underscoring human emotions in human com-
puter interaction, Cristescu (2008) highlight the issues of ‘‘emo-
tional design approach, the importance of nonverbal as an
instrument of usability evaluation and the role of emotions in hu-
man–computer interaction.’’ The author observes that users might
get frustrated or annoyed with any new complex interface. The
author proposes the nonverbal as a usability evaluation tool to
avoid such problems. Barbeite and Weiss (2004) consider ‘‘anxiety’’
and ‘‘self-efficacy’’ as the two main parameters to determine hu-
man behavior. In the study, self-efficacy is considered an important
predictor of computer use whereas anxiety is considered a predic-
tor of self-efficacy and is correlated with different indicators of
computer usage.

Iivari, Hedberg, and Kirves (2008) observe that OSS is targeted
to the general public. Highlighting the importance of usability in
businesses, they observe that ‘‘typically, the OSS developers do not
have knowledge about the non technical users, their tasks and the
context of use.’’ Hence, these authors suggest the necessity of ex-
pert opinions as well as realistic user feedback at an earlier de-
sign stage. Çetin and Göktürk (2007) believe that traditionally,
usability and user-centric designs have been challenges in open
source software. Nevertheless, they indicate their optimistic belief
that usability is beginning to become institutionalized in open
source projects. On the other hand, Zhao and Deek (2005) identify
a weak relationship between OSS and usability. Specifically, they
observe that requests of experienced users of OSS do not neces-
sarily reflect the requirements of non-experienced users. Further-
more, they highlight the lack of resources to conduct formal
usability and emphasize the importance of building effective
communication systems to involve novice users and to provide
them with usability knowledge. Andreasen, Nielsen, Schrøder,
and Stage (2007) argue that remote usability testing is very rele-
vant in an OSS environment. Specifically, they believe that remote
usability testing has the potential to cross geographical and orga-
nizational boundaries for supporting OSS development. Moreover,
Hedberg, Iivari, Rajanen, and Harjumaa (2007) state that the tar-
get users of OSS projects are no longer only co-developers; conse-
quently, OSS systems need to be designed to meet the
requirements, expectations and demands of a non-technical user.

This research work presents a usability maturity model for open
source projects. In particular, it provides a methodology for evalu-
ating the current usability maturity of an OSS project. The measur-
ing instrument of the model contains factors that have been
selected from four of our empirical studies, which examine the per-
spectives of OSS contributors, users, developers, and the industry
(Raza & Capretz, 2010; Raza, Capretz, & Ahmed, 2010a, 2010b,
2011). To the best of our knowledge, this is the first study of its
kind within the open source field. The model has been developed
in response to a need for measuring how well open source software
projects support usability. Specifically, it is intended for use in
assessing and improving the usability aspect in open source soft-
ware development.

In the next section, we present a literature review that is re-
lated to the usability testing, usability models and maturity mod-
els that motivated this research. Section 3 illustrates the
framework of the open source usability maturity model (OS-
UMM). Subsequently, Section 4 explains the performance scale
and the rating methodology for the model. In Section 5, the reli-
ability and validity analyses of questionnaires is presented. Sec-
tion 6 discusses the case studies and the assessment
methodology of the model. In Section 7, we discuss the achieve-
ments as well as limitations of the model and of this research
work in general. Finally, Section 8 provides a conclusion to the
paper.

2. Literature review

2.1. General usability assessment and measurement

Aspects of usability cannot be improved unless there are ways
to test and measure them. While studying current practices in
usability measurement, Hornbæk (2006) acknowledges the fact
that usability cannot be directly measured. He identifies several
challenges to usability measurement, such as understanding the
relationship between objective and subjective measures of usabil-
ity, measuring learnability, extending satisfaction measures be-
yond post-use questionnaires and studying correlations between
different measures.

In discussing two usability case studies, Craven and Booth
(2006) state that ‘‘cognitive walkthroughs, heuristic evaluation, ex-
pert usability evaluations and usability audits, are often directed more
towards expert usability testing rather than managing the user testing
in-house.’’

Miller (2006) considers usability testing a journey that starts
with a project’s beginning and continues through prototyping,
completion, and even after releasing. He maintains that ‘‘just be-
cause the project is done doesn’t mean the project’s usability work is
finished.’’ Moreover, he believes that in such studies, open-ended,
broad questions should be asked to the participants. Since he con-
siders usability as a quality assurance aspect, he does not see any
incompatibility between usability testing and rational product
processes.

Çetin and Göktürk (2008) observe that although the testing of
software traditionally consumes considerable time, there is a lim-
ited amount of formal testing conducted by OSS developers. Fur-
thermore, the authors realize that usability is a non-functional
quality attribute, and, as it is a ‘‘subjective’’ matter, it cannot be
measured directly. Lastly, they maintain that OSS developers need
to recognize the usability level of their projects.

Aberdour (2007) contrasts the ‘‘formal and structured testing’’
that is typical in closed software development with the ‘‘unstruc-
tured and informal testing’’ in OSS development. Finally, Hedberg
et al. (2007) identify that the processes of ‘‘test coverage, test-driven
development and testing performed by developers’’ require more
attention in OSS projects through formal and sufficient test plans
that ensure errors are caught before the release of the software.

2.2. Usability issues in open source projects

The facts that the users of OSS are no longer limited to develop-
ers and the software quality is determined by end user’s experi-
ence, make the usability an important quality attribute than it is
generally realized. In an empirical study related to user participa-
tion, Iivari (2009) observes that users have informative, consulta-
tive and participative roles in OSS projects. Also, Bevan (2008)
recommends the incorporation of human-centered design re-
sources in the earlier stages of the software life cycle.

In an empirical study related to usability issues in OSS, Andrea-
sen, Nielsen, Schrøder, and Stage (2006) realize that both the user-
centered design strategy and the usability engineering has largely
been neglected in OSS research and development. While they find
that OSS developers are interested in usability, it is neither consid-
ered one of the top priorities nor adopted by any systemic evalua-
tion method. Although these authors recognize the increasing
awareness among OSS developers, they identify a gap between
the technical contributors of OSS and the usability professionals,
and hence, they emphasize the need for a greater focus on usability
in open source projects.

In examining the usability errors reported by OSS users, Zhao
and Deek (2006) observe that the average user does not know

1110 A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121

how to effectively report these errors. Nichols and Twidale (2006)
identify similar difficulties faced by users in reporting usability
bugs. Specifically, they observe that usability issues, as expected,
are more subjective in nature and could prolong the process of ana-
lyzing and fixing the related bugs.

Moreover, Raza and Capretz (2009) maintain that software
developers have an egocentric viewpoint of their designs; the
developers consider themselves as the end users and believe that
a design they consider acceptable will be sufficient for the targeted
users.

Abran et al. (2003) do not consider software usability as a lux-
ury; rather, they consider it as a prime attribute of productivity and
software acceptance. According to these authors, usability has dif-
ferent meanings for each stakeholder, as it is a ‘‘determinant of per-
formance’’ for end users, ‘‘a major decision point in selecting a
product’’ for managers, and it entails ‘‘issues like design quality, doc-
umentation maintainability’’ for software developers.

According to Zhao and Deek (2006), ‘‘developing an effective
method for learning usability inspection is necessary for non-expert
inspectors to contribute to OSS usability improvement.’’ In particular,
these authors consider the exploratory learning method as one of
the best methods, as it allows people to learn according to their
own understanding. In conclusion, they state the existence of a po-
sitive relationship between their proposed exploratory learning
methods and the effectiveness of usability inspection; neverthe-
less, the conclusion is limited by the scope of their study.

2.3. Usability models

While doing a literature survey of existing work in this research
area, we found many usability models. However, the vast majority
of these models do not provide validation of their proposed metrics
or they are not specifically aimed at issues related to open source
projects.

Winter, Wagner, and Deissenboeck (2008) propose a usability
model relating system properties to user activities. The authors
claim that their model ‘‘fosters preciseness and completeness,’’ pro-
vides a basis for analysis and measurement and describes the sys-
tem’s usability in relation to the activities performed by the user.
However, as the authors admit, the model requires refinement to
more specific contexts.

Çetin and Göktürk (2008) stress the importance of testing and
measurement by stating that ‘‘one can’t improve what is not mea-
sured.’’ Accordingly, the authors propose a metric model using lit-
erature research and survey findings to measure and analyze the
usability of an OSS project. However, no validation of the proposed
metrics has been presented.

Moraga, Calero, Piattini, and Diaz (2007) propose a usability
model for portlets and utilize different attributes from ISO-9126
that affect usability. In its application to real portlet, the adequa-
cies of the portlet, along with some weaknesses related to usabil-
ity, have been identified. Currently, the authors plan to complete
a validation of the presented model.

Seffah, Donyaee, Kline, and Padda (2006) have developed the
Quality in Use Integrated Measurement (QUIM) model for measur-
ing software usability. This hierarchical model decomposes usabil-
ity into a series of sub-factors that are quantifiable by means of one
or more specific metrics, which consist of either a formula or
countable data. However, considering their model as a first step to-
wards their goal, the authors state ‘‘more attention to the informa-
tion about the user and the context is also required to facilitate the
selection and the customization of many of the proposed metrics
and higher-level criteria.’’

In their effort to present a consolidated usability model, Abran
et al. (2003) present an analysis of ISO-9241-11 and ISO-9126.
Consequently, they discover that ISO-9241-11 was developed by

human computer interaction (HCI) specialists, whereas ISO-9126
resulted from the efforts of software engineering (SE) experts.
The authors propose a revised integrated usability model that in-
cludes ‘‘learnability’’ and ‘‘security’’ as their baseline from ISO-
9241 and the structured hierarchy from ISO-9126. However, they
realize more work needs to be done in the area of usability model-
ing; specifically, it needs more consensus among researchers and
requires a more comprehensive model.

Granollers, Lorés, and Perdrix (2003) have created The Usability
Engineering Process Model (UEPM), which integrates SE with HCI
activities and focuses upon usability. Specifically, they discuss their
‘‘process model as an offer for the development of interactive applica-
tions integrating the specific models and tasks of usability with the life
cycle of SE.’’ The authors consider the validation of the model by
real world projects as vital, and accordingly, they state that they
are in the process of developing different paradigm applications.

2.4. Maturity models

Software process assessment models, such as CMM (Paulk, We-
ber, Curtis, & Chrissis, 1995) and CMMI (Chrissis, Konran, & Shrum,
2006) define maturity levels in stages with the objective of qualita-
tively illustrating the maturity of the software engineering process.

In his report, Earthy (1999) presents a ‘‘Usability Maturity Model:
Processes’’ to assess an organization’s capability of performing
activities related to human-centered processes. Specifically, the
model consists of seven possible processes that may occur during
system development. Furthermore, conforming to ISO 15504, this
model describes six capability levels, as listed in Table 1.

Earthy’s ‘‘Usability Maturity Model: Human Centredness Scale’’
(1998) presents how organizations could progress through six lev-
els of human-centered processes. Additionally, a rating methodol-
ogy assesses ‘‘the level of maturity reached by an organisation in its
capability to do human-centred design.’’ The maturity scale accords
to ISO 15504, SPICE.

Lethbridge (2007) presents the User and Usability Maturity
Model (UUMM), which has been modeled after the Capability
Maturity Model, and which can assess an organization’s capabili-
ties with users and usability-related issues. The model covers four
dimensions, including ‘‘involvement with users, training of the team,
development processes and evaluation processes.’’ However, the
authors have not yet used the model to conduct an assessment
of an organization.

Table 1 summarizes the existing maturity models and their
respective scales. As previously discussed, none of these scales de-
scribe the maturity of software processes in terms of issues specif-
ically related to open source projects. As a result, our work expands
upon the concepts presented in these studies by proposing a scale
that reflects the usability maturity of an open source software pro-
ject; the proposed maturity scale includes key usability factors,
such as User Requirements, User Feedback, Usability Learning,
User-Centered Design Methodologies, Understandability, Learna-
bility, Operability, Attractiveness, Usability Bug Reporting, Usabil-
ity Testing and Documentation. Our maturity scale includes five
levels, which, in ascending order, include Preliminary, Recognized,
Defined, Streamlined and Institutionalized. Accordingly, this matu-
rity scale results in a framework, as described below, which con-
sists of a set of questionnaires for each level. The set of
statements in the questionnaires are further subdivided into ele-
ven usability factors and incorporate four usability dimensions.

3. Framework of OS-UMM

In comparison to other software issues, usability issues are
more subjective in nature and hence more debatable. For example,

A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121 1111

a user interface (UI) element may be confusing to some people and
clear to others. However, usability aspects nevertheless need to be
tested and measured. The increasing popularity of usability assess-
ment in open source software projects necessitates a usability
maturity evaluation methodology. To the best of our knowledge,
no usability maturity model has been created for OSS. Conse-
quently, we present a usability assessment methodology for OSS
projects, which is the first study of its kind in the area of open
source software.

The assessment questionnaires, which aim to collect informa-
tion about the usability of an OSS project, comprise of the frame-
work of our methodology. Apart from some of its limitations, the
methodology contributes significantly to the area of open source
software by addressing the immensely important topic of usability
assessment. As already mentioned above, in four of our empirical
studies from OSS users, developers, contributors and industry
members, we have been able to identify eighteen key usability fac-
tors. Three of these factors, including Usability Guidelines, Usabil-
ity Expert Opinions and Usability at an Architectural Level, were
deemed statistically insignificant for OSS usability. After combin-
ing some overlapping factors, such as User Requirements, User
Expectations, Incremental Design Approach, Knowledge of UCD
Methods, Usability Testing and Usability Assessment, we have ob-
tained eleven key usability practices, which are depicted in Table 2.

The methodology for assessing usability process activities aims
to establish a comprehensive strategy for evaluating usability in an
OSS project. Specifically, this framework describes the OSS usabil-
ity assessment methodology and determines the current maturity
level of the usability process in an OSS project. Furthermore, it is
structured to ascertain the way in which various usability process
activities are conducted during the life cycle of an OSS project. In
general, the maturity assessment of OSS usability aims to coordi-
nate open source software with usability-related process activities.
The functional framework consists of a set of questionnaires specif-
ically designed to evaluate the usability maturity at each level.

As depicted in Table 2, the usability assessment methodology
for an OSS project includes eleven key usability factors, which
are grouped into a set of four dimensions that include ‘‘Usability
Methodology’’, ‘‘Design Strategy’’, ‘‘Assessment’’ and ‘‘Documenta-
tion’’. In particular, the dimension of ‘‘Usability Methodology’’
incorporates User Requirements, User Feedback and Usability
Learning. The ‘‘Design Strategy’’ dimension covers User-Centered
Design Methodology, Understandability, Learnability, Operability
and Attractiveness, and the ‘‘Assessment’’ Dimension comprises
Usability Bug Reporting and Usability Testing.

The usability maturity of an OSS project is determined by the
extent to which the project managers and developers agree with
each statement in the questionnaire. The number of statements
varies for each maturity level as well as for each usability factor.
We will use the following set of abbreviations to identify each fac-
tor: User Requirements (URs), User Feedback (UFB), Usability
Learning (UL), User-Centered Design Methodology (UCD), Under-
standability (U), Learnability (L), Operability (O), Attractiveness
(A), Usability Bug Reporting (UBR), Usability Testing (UT) and Doc-
umentation (D). In the questionnaires for our maturity model, the
following abbreviations and symbols are used:

UF = Usability Factor.
ML = Maturity Level (an integer).
S = Statement.
UN = Usability Factor Number (an integer).
SN = Statement Number (an integer).

3.1. Level 1: Preliminary

The first level for the usability maturity of open source software
projects is referred to as ‘‘Preliminary,’’ which indicates that the
software project does not have a stable and organized methodol-
ogy for implementing usability. In this level, there is no evidence
that the OSS project team practices usability to improve the soft-
ware quality of their project. Additionally, there are no defined
procedures for collecting user requirements and feedback, imple-
menting usability learning, incorporating user-centered design
methodology, performing usability assessment and providing doc-
umentation. In general, it is evident that usability is not considered
to be important, and, consequently, the project does not have suf-
ficient resources and skills to strategically implement usability. A
project that is not qualified for any of the levels from Level 2 to Le-
vel 5 is, by default, considered to be at Level 1. As a result, our mod-
el has no measuring instrument for assessing the usability of an
OSS project when it is at the ‘‘Preliminary’’ level.

3.2. Level 2: Recognized

The next OSS usability level has been defined as ‘‘Recognized.’’ In
this level, project teams recognize the potential benefits of usabil-
ity in open source projects, and accordingly, they show interest in

Table 1
Maturity models and their scales.

CMM (Paulk
et al., 1995)

CMMI (Chrissis
et al., 2006)

UUMM (Lethbridge et al., 2007) Usability maturity model:
Processes (Earthy, 1999)

Usability maturity model: human
centredness scale (Earthy, 1998)

Initial Initial Haphazard Incomplete Unrecognized
Repeatable Managed Defined input from users and usability

awareness
Performed Recognized

Defined Defined Iterative interactions with users and
design for usability

Managed Considered

Managed Quantitatively
Managed

Controlled and measured involvement
of users

Established Implemented

Optimizing Optimizing Continually improving usability Predictable Integrated
Optimizing Institutionalized

Table 2
Configuration of OSS usability assessment methodology.

Dimension
no.

Dimension Practice
no.

Key usability factors

1. Usability
methodology

1. Users’ Requirements

2. Users’ Feedback
3. Usability Learning

2. Design strategy 4. User-Centered Design (UCD)
Methodology

5. Understandability
6. Learnability
7. Operability
8. Attractiveness

3. Assessment 9. Usability Bug Reporting
10. Usability Testing

4. Documentation 11. Documentation

1112 A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121

usability. Also, teams make efforts to collect user requirements and
feedback, and project developers acquire knowledge of UCD meth-
odology. Both teams and developers recognize the fact that end
users face difficulties in reporting usability related errors and
hence understand the need for usability assessment plans. Addi-
tionally, project managers realize the importance of documenta-
tion at various stages of software project development. Overall,
the project team understands and recognizes the importance of
usability in the success of their project, which is in the phase of
developing an infrastructure for usability implementation. The
measuring instrument for assessing the usability maturity of an
OSS project, when it is at the ‘‘Recognized’’ level, is illustrated in
Appendix A.

3.3. Level 3: Defined

An OSS project at the ‘‘Defined’’ level establishes an infrastruc-
ture for implementing usability. Specifically, the project team is
able to collect and fulfil its users’ requirements and expectations.
Furthermore, they are able to collect feedback from users, by utiliz-
ing a planned strategy to improve both software quality and
usability. Project managers understand, define and implement
user-centered design principles in their product. Through a sys-
temic monitoring structure, team members have the competency
to maintain and enhance a project’s Understandability, Learnabili-
ty, Operability and Attractiveness. Essential technical skills are also
adopted by the project team to provide users with a convenient
usability bug reporting facility and to conduct necessary usability
testing. The measuring instrument for the usability maturity of
an OSS project at Level 3 is illustrated in Appendix B.

3.4. Level 4: Streamlined

The fourth level for the usability maturity of an OSS project is
referred to as ‘‘Streamlined.’’ In this level, the project team has ac-
quired sufficient resources for meeting its users’ requirements.
Additionally, they have established a management system for
recording users’ feedback and taking the necessary steps to address
that feedback. New members of the development team are man-
dated to learn usability principles and guidelines, and project
teams consult usability experts regarding the definition and imple-
mentation of the user-centered design principles in their product.
Through a systemic monitoring structure, the Understandability,
Learnability, Operability and Attractiveness of projects are regu-
larly monitored. Moreover, quantifiable metrics are used to con-
duct usability assessments and the documentation of projects is
regularly maintained. Appendix C illustrates the measuring instru-
ment for the usability maturity of an OSS project when it is at the
‘‘Streamlined’’ level.

3.5. Level 5: Institutionalized

The highest level for the usability maturity of open source
software projects is referred to as ‘‘Institutionalized.’’ An OSS

project at this level considers usability as an asset that is neces-
sary for achieving its goals and remaining successful. Specifically,
the project has sufficient resources and skills for collecting user
feedback and for understanding user expectations. Similarly, the
project team establishes a firm commitment to usability learning
and UCD methodology, and they continuously make improve-
ments in the areas of Understandability, Learnability, Operability
and software attractiveness. Furthermore, they constantly im-
prove the usability bug reporting service through innovative
methods and ensure the effectiveness of usability assessment
by using quantitative metrics. The measuring instrument for
the usability maturity of an OSS project at Level 5 is illustrated
in Appendix D.

Table 3 summarizes the number of items in assessment ques-
tionnaires for each usability factor related to all the five maturity
levels.

4. Performance scale and rating methodology

4.1. Performance scale

The maturity level of an OSS project is determined by its abil-
ity to demonstrate the usability factors. In order to determine this
level, we have used a five-level scale to rate a project’s perfor-
mance. The rating is a quantitative indication of the extent to
which a project agrees with each statement in the questionnaires,
and, more specifically, the way in which a project fulfils the
requirements of a specific maturity level. Table 4 shows the ordi-
nal ratings used to measure each usability factor, including ‘‘Ful-
filled’’, ‘‘Largely Fulfilled’’, ‘‘Partially Fulfilled’’, ‘‘Not Fulfilled’’ and
‘‘Not Applicable.’’ To increase the flexibility of our methodology,
the rating of ‘‘Not Applicable’’ has been included in the model. In
order to maintain the consistency of our usability assessment
with the already accepted and validated popular scales, we have
structured the performance scales and their thresholds close to
the BOOTSTRAP methodology (Wang & King, 2000). However,
the linguistic expressions have been slightly modified according
to the design of the questionnaires in our model, OS-UMM. Over-
all, our rating methodology allows stakeholders to evaluate the
usability maturity of an OSS project based on their level of agree-
ment with the statements. Thus, our methodology uses the self-
assessment approach.

4.2. Rating methodology

As previously mentioned, we have partially derived the rating
methodology from the BOOTSTRAP algorithm (Wang & King,
2000). We have used terms, such as Usability Rating (URUM), Num-
ber of Fulfilled Statements (NFUM), Passing Threshold (PTUM) and
Usability Maturity Level (UML).

Let URUM [i, j] be a rating of the ith usability factor of the jth
maturity level. Subsequently, according to the scales defined in
Table 4, it can be summarized as:

Table 3
Framework of OS-UMM.

Maturity level Usability factors and number of items in assessment questionnaire

UR UF UL UCD U L O A UBR UT D Total

Preliminary None 0
Recognized 2 3 3 3 2 3 3 3 2 3 2 29
Defined 2 3 3 3 2 2 2 2 3 4 3 29
Streamlined 2 2 3 3 3 2 3 3 2 3 2 28
Institutionalized 3 2 2 3 2 2 2 2 2 3 2 25

A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121 1113

URUM [i,
j]

=4, if the fulfillment of the condition/statement is at
least 80%
=3, if the fulfillment of the condition/statement is
from 66.7% to 79.9%
=2, if the fulfillment of the condition/statement is
from 33.3% to 66.6%
=1, if the fulfillment of the condition/statement is
less than 33.3%
=0, if the condition/statement is not applicable

An ith condition/statement at the jth maturity level is consid-
ered fulfilled if URUM [i, j] P 3 or URUM [i, j] is 0. The number of con-
ditions/statements fulfilled at jth maturity level is defined as:

NFUM

[j]
=Number of {URUM [i, j]|Fulfilled}

=Number of {URUM [i, j]|URUM [i, j] P 3 or URUM [i,
j] = 0}

The usability maturity is considered to be achieved if 80% of the
conditions or statements in the questionnaire are fulfilled. Thus, if
NUM [j] is the total number of statements at the jth maturity level,
then the passing threshold (PTUM) at the jth maturity level is de-
fined as:

PTUM½j� ¼ NUM½j� � 80%

With the values calculated to the nearest ten, the passing threshold
of 80% at each Usability Maturity Level is illustrated in Table 5.

The Usability Maturity Level (UML) is defined as the highest
maturity level at which the number of conditions or statements
fulfilled is greater than or equal to the passing threshold PTUM[j];
hence:

UML ¼ maxfjjNFUM½j�P PTUM½j�g

5. Reliability and validity analysis of questionnaires

The two integral features of any empirical study are reliability
and validity. Reliability refers to the consistency of the measure-
ment, and validity is the extent to which a measurement reflects
the true value. In order to conduct a pilot study, we selected active
projects from sourceforge.net that had an activity level of 90% or
greater, in different categories. First of all, we established contacts
with project managers in these open source projects. In particular,
we sent personalized emails describing the scope and objectives of
the study. As a result, we received responses from 10 project man-
agers, who provided us with their extent of agreement to each
statement in the questionnaire. The projects involved in this pilot
study are categorized as Database (2), Desktop Environment (2),
Software Development (2), Education (1), Enterprise (1), Games/
Entertainment (1) and Networking (1).

The pilot study allows us to analyze the reliability and the con-
struct validity of the questionnaire designed. For this empirical
investigation, we used the most common approaches in for con-
ducting reliability and validity analysis of the measuring instru-
ments. The reliability of the multiple-item measurement scales
for the five maturity levels is evaluated by using internal-consis-
tency analysis, which is performed with the coefficient alpha
(Cronbach, 1951). In our analysis, the coefficient alpha ranges from
0.55 to 0.96, as shown in Table 6. Nunnally and Bernste (1994)
maintain that a reliability coefficient of 0.70 or higher for a mea-
suring instrument is satisfactory. However, other researchers are
more lenient in this regard; van de Ven and Ferry (1980) state that
a reliability coefficient of 0.55 or higher is satisfactory, whereas
Osterhof (2001) suggests that a coefficient of 0.60 or higher is sat-
isfactory. Our analysis demonstrates that most of the questionnaire
items developed for our maturity model satisfy the criteria of Nun-
nally and Bernste (1994), whereas some of the items with an alpha
coefficient of less than 0.70 still fall within the acceptable range of
van de Ven and Ferry (1980) and Osterhof (2001). Therefore, based
on the criteria for reliability, we conclude that all the items devel-
oped for this empirical investigation are reliable.

Table 4
Performance scale.

Scale # Linguistic expression of performance scale Rating threshold (%)

OS-UMM BOOTSRAP

4 Fulfilled Completely satisfied P80
3 Largely fulfilled Largely satisfied 66.7–79.9
2 Partially fulfilled Partially satisfied 33.3–66.6
1 Not fulfilled Absent/Poor 633.2
0 Not applicable – –

Table 5
Rating threshold for the open source usability assessment.

Usability maturity level Total questions Pass threshold 80%

Preliminary 0 Not applicable
Recognized 29 23
Defined 29 23
Streamlined 28 22
Institutionalized 25 20

Table 6
Reliability analysis of usability factors.

Maturity level Usability factors

UR UF UL UCD U L O A UBR UT D

Preliminary Not applicable
Recognized 0.58 0.64 0.72 0.55 0.62 0.55 0.67 0.90 0.94 0.80 0.93
Defined 0.62 0.73 0.76 0.93 0.74 0.67 0.92 0.55 0.75 0.88 0.64
Streamlined 0.81 0.79 0.73 0.76 0.95 0.74 0.69 0.80 0.61 0.86 0.88
Institutionalized 0.80 0.96 0.87 0.89 0.56 0.63 0.58 0.92 0.93 0.75 0.61

1114 A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121

Campbell and Fiske (1959) state that convergent validity occurs
when scale items correlate and move in the same direction for a gi-
ven assembly. Principal component analysis (Comrey & Lee, 1992)
is performed for all eleven usability factors in each maturity level
and reported in Table 7. Specifically, we have utilized the Eigen va-
lue (Kaiser, 1970) as a reference point to observe the construct
validity using principal component analysis. In this study, we have
used the Eigen value-one-criterion, also known as the Kaiser Crite-
rion (Kaiser, 1960; Stevens, 1986), where any component having
an Eigen value greater than one is retained. Eigen value analysis re-
veals that the items present in questionnaires completely form a
single factor. Therefore, we conclude that the convergent validity
can be regarded as sufficient.

6. Case studies

6.1. Assessment methodology

In order to perform the project’s usability maturity assessment,
we applied our model to two OSS projects. To protect the privacy of
the two projects, they will be referred to as ‘‘A’’ and ‘‘B.’’ These OSS
projects are conscious of and realize the importance of usability as
mentioned on their websites.

The participants were informed that the assessment was a part
of a research study and neither the identity of an individual nor of a
project would be disclosed in any subsequent publication.

The questionnaires designed for OS-UMM are used to measure
the usability maturity of each open source software project. The
individuals participating in the study were requested to provide
their extent of agreement with each statement by using a Likert
scale ranging from 0 to 4, as illustrated in Table 4. Subsequently,
the respondents completed the questionnaire by starting at Level
2 and finishing at Level 5.

The respondents of this study were either project managers or
developers. Keeping up the spirit of OSS projects, all the communi-
cation with the respondents was through email and the survey
link. The participants took part in the study voluntarily, as they
were neither offered nor paid any compensation.

Both the case studies are discussed in the following sections.
We received multiple responses from each project, and thus, the
amount of bias in the sample is limited. A variety of respondents,
both project managers and developers from each organization,
provided a more accurate overall description of the project. Also,
we performed an inter-rater agreement analysis, which provided
information regarding the extent of agreement among the raters
within each organization; this analysis is described in following
section.

6.2. Case Study – Project ‘‘A’’

Project ‘‘A’’ falls under the category of Desktop Environment
and deals with multiple related issues. The project has in excess
of 300 weekly downloads and is recommended by 97% of the users.
Furthermore, the project’s mailing list has over 300 subscribed

users, who discuss user-related issues as well as provide required
help and support. The extent to which Project A corresponds with
the statements in the questionnaires of each maturity level is rep-
resented in each cell of Table 8. According to the rating method dis-
cussed in Section 4.2, a statement is considered agreed upon if the
performance scale shown in Table 4 is either greater than or equal
to 3 or 0. From the data presented in Table 8, we have thus com-
puted NFUM (the Number of Fulfilled Statements), for each level.
For Level 2, NFUM is 23, for Level 3, it is 9, for Level 4 it is 6 and
for Level 5, NFUM is 5. According to the rating threshold for our
OS-UMM, NFUM at Level 2 has a pass threshold of 80%. Conse-
quently, Project A is therefore at the ‘‘Recognized’’ maturity level,
or Level 2.

6.3. Case Study – Project ‘‘B’’

Project ‘‘B’’ is a database project that allows data resources to be
accessed and integrated with one another. The project has more
than 200 weekly downloads and is recommended by 100% of the
users. Furthermore, it has a dedicated mailing list for users, with
more than 500 subscribed users to provide each another with help
and support discussion forum.

The numerical values entered into each cell of Table 9 represent
the extent to which Project B corresponds to the statements in the
questionnaires of each maturity level. Accordingly, we compute
that for Level 2, NFUM is 24, for Level 3, it is 19, for Level 4 it is
18 and for Level 5, NFUM is 17. According to the rating threshold
for our OS-UMM, NFUM at Level 2 has a pass threshold of 80%.
Based on the rating method discussed in Section 4.2, Project-B is
also at Level 2, or, the ‘‘Recognized’’ level. Table 10 summarizes
the assessment results for both case studies.

6.4. Inter-rater agreement analysis

Since multiple respondents from a single project may have dif-
fering opinions about the various usability factors, we have per-
formed an inter-rater agreement analysis, which provides
information about the extent of agreement between the raters
within one project (El Emam, 1999). According to Lee et al.
(2001), inter-rater agreement conforms to reproducibility and ad-
heres to the evaluation of the same processes. In order to evaluate
inter-rater agreement, The Kendall coefficient of concordance (von
Eye & Mun, 2005) is often used. However, Cohen’s Kappa (Cohen,
1960) is preferred to in cases where ordinal data is used.

In our study, we have conducted an inter-rater agreement anal-
ysis by using both Kendall and Kappa statistics. The total number
of respondents, including both project managers and developers
from Project A and Project B were 4 and 6 respectively.

Table 11 reports the Kendall and Kappa statistics for Project A.
The values of Kendall’s coefficient, Cohen’s Kappa and the Fleiss
Kappa coefficients can range from 0 to 1, with 0 indicating perfect
disagreement and 1 indicating perfect agreement (Landis & Koch,
1977). For Kendall’s coefficient, higher values indicate a stronger
association. In Project A, the Kendall’s coefficients range from

Table 7
Construct validity of usability factors.

Maturity level Usability factors

UR UF UL UCD U L O A UBR UT D

Preliminary Not Applicable
Recognized 1.23 1.46 2.05 1.62 1.18 1.75 1.87 2.56 1.89 2.14 1.87
Defined 1.15 2.05 2.23 2.86 1.74 1.51 1.85 1.44 2.03 3.05 1.76
Streamlined 1.80 1.30 1.75 1.67 2.83 1.27 1.89 2.19 1.44 2.36 1.82
Institutionalized 2.22 1.97 1.81 2.57 1.15 1.23 1.33 1.86 1.87 2.13 1.12

A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121 1115

0.95 to 0.99, as shown in Table 11. The benchmark for Kappa (El
Emam, 1999) includes four level scales, where <0.44 is poor,

0.44–0.62 is moderate, 0.62–0.78 is substantial, and >0.78 is excel-
lent. For Project A, the Kappa coefficients range from 0.64 to 0.89,

Table 8
Details of assessment results of Case Study A.

Recognized Defined Streamlined Institutionalized
Level-2 Level-3 Level-4 Level-5

Q. # Value Q. # Value Q. # Value Q. # Value

2.1.1 4 3.1.1 4 4.1.1 3 5.1.1 3
2.1.2 3 3.1.2 1 4.1.2 1 5.1.2 4
2.2.1 3 3.2.1 1 4.2.1 4 5.1.3 3
2.2.2 4 3.2.2 4 4.2.2 1 5.2.1 2
2.2.3 3 3.2.3 4 4.3.1 1 5.2.2 1
2.3.1 1 3.3.1 1 4.3.2 4 5.3.1 1
2.3.2 4 3.3.2 1 4.3.3 1 5.3.2 2
2.3.3 3 3.3.3 1 4.4.1 1 5.4.1 1
2.4.1 2 3.4.1 1 4.4.2 1 5.4.2 1
2.4.2 3 3.4.2 1 4.4.3 1 5.4.3 1
2.4.3 3 3.4.3 1 4.5.1 2 5.5.1 4
2.5.1 3 3.5.1 1 4.5.2 1 5.5.2 1
2.5.2 3 3.5.2 1 4.5.3 1 5.6.1 1
2.6.1 2 3.6.1 1 4.6.1 1 5.6.2 1
2.6.2 4 3.6.2 1 4.6.2 4 5.7.1 1
2.6.3 3 3.7.1 4 4.7.1 1 5.7.2 1
2.7.1 3 3.7.2 4 4.7.2 1 5.8.1 2
2.7.2 4 3.8.1 1 4.7.3 1 5.8.2 1
2.7.3 3 3.8.2 4 4.8.1 4 5.9.1 1
2.8.1 4 3.9.1 1 4.8.2 4 5.9.2 1
2.8.2 4 3.9.2 1 4.8.3 2 5.10.1 1
2.8.3 4 3.9.3 1 4.9.1 1 5.10.2 1
2.9.1 1 3.10.1 3 4.9.2 1 5.10.3 1
2.9.2 1 3.10.2 3 4.10.1 1 5.11.1 3
2.10.1 1 3.10.3 3 4.10.2 1 5.11.2 1
2.10.2 4 3.10.4 1 4.10.3 1
2.10.3 4 3.11.1 1 4.11.1 1
2.11.1 4 3.11.2 2 4.11.2 1
2.11.2 4 3.11.3 2

Table 9
Details of assessment results of Case Study B.

Recognized Defined Streamlined Institutionalized
Level-2 Level-3 Level-4 Level-5

Q. # Value Q. # Value Q. # Value Q. # Value

2.1.1 3 3.1.1 4 4.1.1 2 5.1.1 4
2.1.2 3 3.1.2 4 4.1.2 2 5.1.2 4
2.2.1 4 3.2.1 4 4.2.1 4 5.1.3 4
2.2.2 4 3.2.2 4 4.2.2 4 5.2.1 4
2.2.3 3 3.2.3 4 4.3.1 3 5.2.2 4
2.3.1 3 3.3.1 3 4.3.2 3 5.3.1 3
2.3.2 4 3.3.2 3 4.3.3 2 5.3.2 4
2.3.3 2 3.3.3 2 4.4.1 2 5.4.1 2
2.4.1 3 3.4.1 4 4.4.2 3 5.4.2 2
2.4.2 3 3.4.2 3 4.4.3 1 5.4.3 2
2.4.3 1 3.4.3 2 4.5.1 4 5.5.1 4
2.5.1 3 3.5.1 3 4.5.2 4 5.5.2 4
2.5.2 2 3.5.2 1 4.5.3 4 5.6.1 3
2.6.1 4 3.6.1 4 4.6.1 4 5.6.2 1
2.6.2 2 3.6.2 4 4.6.2 4 5.7.1 4
2.6.3 3 3.7.1 2 4.7.1 3 5.7.2 1
2.7.1 3 3.7.2 2 4.7.2 2 5.8.1 4
2.7.2 3 3.8.1 2 4.7.3 1 5.8.2 4
2.7.3 4 3.8.2 4 4.8.1 3 5.9.1 4
2.8.1 4 3.9.1 4 4.8.2 4 5.9.2 4
2.8.2 3 3.9.2 4 4.8.3 4 5.10.1 4
2.8.3 4 3.9.3 3 4.9.1 4 5.10.2 1
2.9.1 4 3.10.1 4 4.9.2 4 5.10.3 1
2.9.2 4 3.10.2 4 4.10.1 4 5.11.1 3
2.10.1 3 3.10.3 3 4.10.2 2 5.11.2 2
2.10.2 4 3.10.4 2 4.10.3 4
2.10.3 3 3.11.1 1 4.11.1 1
2.11.1 3 3.11.2 1 4.11.2 1
2.11.2 2 3.11.3 1

1116 A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121

and hence, fall into the category of substantial. For Project B, the
Kendall’s coefficients range from 0.95 to 0.99, and the Kappa coef-
ficients range from 0.62 to 0.68, as shown in Table 12. Hence, as in
the case of Project A, these coefficients are categorized as being
substantial.

7. Discussion

Maturity models in software engineering enable us to obtain
comprehensive information about different processes, their related
activities and their current maturity levels. Consequently, organi-
zations can use this information to improve their strategic plans
and future activities.

The experiences of end users have profound impacts on the
success of a software project, and, as a result, usability and its re-
lated issues are a key area of research in the open source commu-
nity. In order to identify precise areas where improvement is
necessary, assessment needs to be performed. OSS is a relatively
new software area, having a history of producing software ‘‘by
engineers for engineers’’ (Benson et al., 2004). However, due to a
continual increase in the number of both technical and non-
technical users, the evaluation of OSS usability requires a compre-
hensive strategy, which has not yet been fully explored.

Our previous work utilized empirical investigation to
examine the impact of some key factors of OSS usability improve-

ment. Additionally, research models have been developed to
study and establish the relationship between key usability factors
from the perspective of different stakeholders. For the usabil-
ity assessment methodology of open source projects, the signifi-
cant key factors have been used as a measuring instrument to
present a Usability Maturity Model for OSS projects: OS-UMM.
The structural composition of OS-UMM consists of assessment
frameworks from four dimensions based on the perspectives of
OSS developers, users and contributors, who include architects,
designers, developers, testers and users, as well as the software
industry.

Subsequently, the model has been used to assess the current
maturity of an OSS project by defining an assessment methodology
and conducting case studies. Specifically, the methodology for
evaluating an OSS project’s usability maturity profile has become
an integral feature of the Usability Maturity Model. This model will
assist OSS designers/developers in performing usability assess-
ments for their projects in order to enhance their improvement
strategies.

7.1. Limitations of the assessment methodology

Our open source usability maturity model is questionnaire-
based, and hence, it is susceptible to certain limitations. Although
our model, which is based on four empirical studies, incorporates
five maturity levels and eleven different usability factors, we
may have inadvertently omitted other factors that affect usability
maturity, such as project size, project category and the role of
usability experts.

While we applied the most commonly used approaches in our
reliability and validity analysis, our measurements were based
mainly on the subjective assessments of project managers and
developers.

Since usability is not considered a top priority in the open
source software field, we obtained a limited amount of data from
open source project developers and managers.

Our case studies are based on self-assessment, so our assess-
ment techniques did not account for independent assessments.
Our rating methodology quantitatively assesses the maturity level
of different usability factors and evaluates the overall Usability
Maturity Level of an open source project. However, the model con-
tains a lack of explicit guidelines for improving the usability of a
project.

Although we recognize the limitations of our model, we believe
that the usability factors in OS-UMM have been validated through
empirical investigations and thus provide a comprehensive ap-
proach and a firm foundation for future research in this area.

8. Conclusion

Our usability maturity model for open source projects is based
on eleven key factors that we have identified and empirically ana-
lyzed in four previous studies. The usability assessment of open
source projects is an area where relatively little attention has been
paid by researchers, and, accordingly, the main contribution of this
work is a methodology that evaluates the usability maturity of an
OSS project. The framework of the model is comprised of assess-
ment questionnaires for four of the five maturity levels, as well
as a performance scale and a rating methodology. Additionally,
two case studies have been discussed, as we have examined the
performance of two OSS projects in the area of usability. Apart
from its limitations, this work contributes towards establishing a
comprehensive strategy for the usability maturity of OSS projects
and addresses the important issue of usability assessment in open
source projects.

Table 10
Summary of assessment results of case studies.

Usability
maturity level

Total
questions

Pass
threshold 80%

Project-A
NFUM

Project-B
NFUM

Preliminary None – – –
Recognized 29 23 23 24
Defined 29 23 9 19
Streamlined 28 22 6 18
Institutionalized 25 20 5 17

Table 11
The inter-rater agreement analysis of Project A.

Usability maturity level Kendall’s
coefficient of
concordance

Cohen’s
Kappa
statistics

Fleiss’ Kappa
statistics

Coef. X2 Coef. Z Coef. Z

Recognized 0.97 54.39** 0.84 6.79* 0.84 6.63*

Defined 0.98 55.25** 0.89 7.54* 0.89 7.47*

Streamlined 0.93 50.48** 0.64 5.64* 0.64 5.49*

Institutionalized 0.94 45.27** 0.72 6.42* 0.71 5.83*

* P < 0.001.
** P < 0.005.

Table 12
The inter-rater agreement analysis of Project B.

Usability maturity level Kendall’s
coefficient of
concordance

Cohen’s
Kappa
statistics

Fleiss’ Kappa
statistics

Coef. X2 Coef. Z Coef. Z

Recognized 0.95 53.48** 0.66 4.91* 0.65 4.49*

Defined 0.99 55.62** 0.64 6.07* 0.63 5.01*

Streamlined 0.99 53.91** 0.63 6.19 0.62 4.87*

Institutionalized 0.97 47.66** 0.68 5.19 0.68 5.19*

* P < 0.001.
** P < 0.005.

A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121 1117

Appendix A. The measuring instrument for assessing the
usability maturity of an OSS project, when it is at Level-2

UF.2.1 Users’ Requirements
S.2.1.1 Project designers and developers agree
that the only way to enhance software acceptance
level is to address users’ requirements
S.2.1.2 Project team is working on a strategy to
acquire prospective users’ requirements

UF.2.2 Users’ Feedback
S.2.2.1 Project managers collect and analyze
feedback from most of the personnel involved in
the project
S.2.2.2 Project management realizes that the
project’s success is mainly dependent upon users’
responses and feedback
S.2.2.3 There is still a lack of systematic and
planned management of users’ responses

UF.2.3 Usability Learning
S.2.3.1 Project designers and developers are
acquiring knowledge about the domain of
usability engineering
S.2.3.2 Usability related issues are handled and
learned by sharing each other’s viewpoints and
open discussion
S.2.3.3 Plans are developed to have formal
training for at least 20% of the developers, in
learning usability design principles

UF.2.4 User Centered Design (UCD) Methodology
S.2.4.1 Project team recognizes the importance of
UCD methodology
S.2.4.2 Project developers consider UCD as an
important tool to achieve the desired acceptance
level of their product for the target users
S.2.4.3 At least 20% members of the software
development team members have back ground
knowledge about UCD methods

UF.2.5 Understandability
S.2.5.1 Project designers and developers are
acquiring knowledge on how to increase
understandability of their product among the
users
S.2.5.2 OSS team still lacks systematic strategy to
enhance understandability level of their software
project considering their target users limitations

UF.2.6 Learnability
S.2.6.1 Project team realizes the need of
increasing learnability of their product for their
prospective users
S.2.6.2 There is a lack of technical knowledge
among team members about how to increase
learnability of their software
S.2.6.3 Project team considers increased
learnability as an option to reduce the number of
complaints from users

UF.2.7 Operability
S.2.7.1 Project developers agree in principle, that
what is operable for them may not be operable for
end users
S.2.7.2 Understanding the importance, project
team realizes the need of increasing operability of
their product

S.2.7.3 Developers are working on a strategic plan
to enhance operability of their software project

UF.2.8 Attractiveness
S.2.8.1 Project team collects information on how
to enhance attractiveness of their product
S.2.8.2 There is still a lack of defined strategic plan
to increase the project’s attractiveness
S.2.8.3 Project team promotes innovative ideas to
make their product pleasing for its users

UF.2.9 Usability Bug Reporting
S.2.9.1 Difficulties faced by users in reporting
usability related errors is realized by the
development team
S.2.9.2 Project development team is working on
plans to provide end users with a convenient way
to report bugs and errors

UF.2.10 Usability Testing
S.2.10.1 The project team realizes the need of a
usability assessment plan before and after the
release of their software
S.2.10.2 It is recognized that usability testing is as
necessary as functional testing
S.2.10.3 Project team collects information on how
to ensure comprehensive assessment of
functional and non functional requirements

UF.2.11 Documentation
S.2.11.1 Project team understands and realizes
the importance of documentation, however still
lacks systematic and planned strategy to do that
S.2.11.2 The project has no formal documentation
of users’ requirements, design, testing and future
improvement plans

Appendix B

B.1. Level 3: Defined

UF.3.1 Users’ Requirements
S.3.1.1 Identifying target users and collecting their
requirements are considered essential to achieve
software project’s success
S.3.1.2 A systematic procedure has been defined to
collect prospective users’ requirements

UF.3.2 Users’ Feedback
S.3.2.1 A planned strategy has been developed to
collect users’ feedback
S.3.2.2 Users’ feedback is recorded and maintained
regularly
S.3.2.3 Project managers analyze and use feedback to
improve quality of the OSS project

UF.3.3 Usability Learning
S.3.3.1 Project team is committed to acquire
knowledge about usability engineering
S.3.3.2 Project has adequate resources to allocate for
usability learning
S.3.3.3 At least 20% of the project developers have
formal training in learning usability design
principles

1118 A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121

UF.3.4 User Centered Design (UCD) Methodology
S.3.4.1 User Centered Design is considered essential
for the project to satisfy its potential users
S.3.4.2 User Centered Design is implemented in the
software design of the project
S.3.4.3 At least 50% of the software development
team members have back ground knowledge of UCD
methods

UF.3.5 Understandability
S.3.5.1 OSS team has defined a systematic strategy to
enhance understandability level of their software
project
S.3.5.2 Metrics have been defined to measure
understandability level of the project

UF.3.6 Learnability
S.3.6.1 Project team has adopted a well designed
methodology to enhance learnability of their
software
S.3.6.2 At least 50% of team developers have
sufficient knowledge and technical abilities to
improve learnability of the project

UF.3.7 Operability
S.3.7.1 Weak areas related to project’s operability
are identified and necessary steps are taken for
improvement
S.3.7.2 Keeping in mind user limitations, the project
team has developed a strategic plan to enhance
operability of their software project

UF.3.8 Attractiveness
S.3.8.1 A strategic plan is defined to increase
attractiveness of the project
S.3.8.2 Project team makes use of innovative ideas to
make their product pleasing for its users

UF.3.9 Usability Bug Reporting
S.3.9.1 At least 30% of the project developers have
acquired technical abilities to provide convenient
usability bug reporting facility to their users
S.3.9.2 Project team is committed to improve
usability bug reporting facility to their users
S.3.9.3 Difficulties faced by users in reporting
usability related errors is recorded and maintained
by the development team

UF.3.10 Usability Testing
S.3.10.1 The project team has established a usability
assessment plan to test the software before its
release
S.3.10.2 At least 25% of the testers have acquired
sufficient technical knowledge to assess software
project’s usability
S.3.10.3 The project managers allocate resources to
implement usability testing with actual users
S.3.10.4 The project has a defined road map for
usability testing during every phase of its
development

UF.3.11 Documentation
S.3.11.1 Project team has formal documentation of
user requirements, design and testing
S.3.11.2 Resources have been allocated for project
documentation and its maintenance
S.3.11.3 The project has well documented future
improvement plans

Appendix C

C.1. Level 4: Streamlined

UF.4.1 Users’ Requirements
S.4.1.1 The project has adequate resources and skills
to gather user requirements and is able to come up
to the expectations of its users
S.4.1.2 A project team sub-unit monitors and
ensures that the software design complies with the
user requirements

UF.4.2 Users’ Feedback
S.4.2.1 Project team learns from user feedback and
avoids repeating previous mistakes
S.4.2.2 A well established management system of
the project records user feedback regularly and takes
appropriate actions on its basis

UF.4.3 Usability Learning
S.4.3.1 Formal and informal methods are used by
project developers for usability learning
S.4.3.2 Usability knowledge is used to generate new
and innovative ideas
S.4.3.3 Existing developers are encouraged and new
developers are required to have formal training in
HCI and usability learning

UF.4.4 User Centered Design (UCD) Methodology
S.4.4.1 The project team has adequate resources and
skills to implement UCD methodology
S.4.4.2 Statistically collected information indicates
that the project has been successful in satisfying its
existing users and attracting new ones through
innovative use of UCD methods
S.4.4.3 The development team members consult HCI
and usability experts regularly regarding UCD
principles and their implementation

UF.4.5 Understandability
S.4.5.1 The understandability among the users is
regularly monitored through user feedback
S.4.5.2 Through already defined metrics,
understandability level of the project is measured
S.4.5.3 Necessary steps are taken, recorded and
monitored to enhance project’s understandability

UF.4.6 Learnability
S.4.6.1 New users’ ability to learn the software is
constantly monitored through their response and
feedback
S.4.6.2 The development team ensures that any
incorporation of new features in the software is
consistent with the previous design

UF.4.7 Operability
S.4.7.1 The defined strategic plan is implemented to
enhance operability of the software project
S.4.7.2 Modularized system design is followed in the
software project to make it more operable
S.4.7.3 Metrics have been developed to
quantitatively measure the software project’s
operability level

UF.4.8 Attractiveness
S.4.8.1 A strategic plan is implemented to increase
attractiveness of the project

(continued on next page)

A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121 1119

S.4.8.2 Project team regularly monitors the outcome
of innovative ideas to make their product pleasing
S.4.8.3 User feedback is collected and maintained
regularly about the software’s attractiveness

UF.4.9 Usability Bug Reporting
S.4.9.1 Project development team has developed a
service protocol to provide end users with a
convenient way to report usability bugs and errors
S.4.9.2 Project team monitors the use of the
developed service protocol for effective and easy
way of reporting usability bugs

UF.4.10 Usability Testing
S.4.10.1 The project testers learn from the previous
experience and test results and avoid repeating
mistakes
S.4.10.2 The project sub-unit implements the
defined road map for usability testing during every
phase of its development
S.4.10.3 A well established usability assessment
system with quantifiable metrics is implemented to
do usability testing regularly

UF.4.11 Documentation
S.4.11.1 Project documentation has a clear set of
guidelines to handle usability related issues
S.4.11.2 Project documentation provides a checklist
to inspect usability related issues

Appendix D

D.1. Level 5: Institutionalized

UF.5.1 Users’ Requirements
S.5.1.1 The project successfully responds to the user
requirements and come up to the expectations of its
users
S.5.1.2 Incorporating user requirements has become
essential part of the project software design.
S.5.1.3 User requirements are regularly reviewed
and updated

UF.5.2 Users’ Feedback
S.5.2.1 Regularly collected feedback is used to
improve software project’s quality in general and
usability in particular
S.5.2.2 The development team follows a schedule to
regularly conduct feedback reviews of the updates
made in the project

UF.5.3 Usability Learning
S.5.3.1 The project team is committed to usability
learning and improving knowledge in the area of HCI
and usability
S.5.3.2 The project developers successfully employ
innovative ideas based on their usability knowledge

UF.5.4 User Centered Design (UCD) Methodology
S.5.4.1 The project team considers UCD methodology
as an important strategic asset
S.5.4.2 UCD methodology is a prime design
methodology in the project
S.5.4.3 Research and development in UCD
methodology is a continuous process in the project

UF.5.5 Understandability

S.5.5.1 User feedback indicates their satisfaction and
ability to conveniently understand the software
features
S.5.5.2 The defined strategy to enhance
understandability level of the project is regularly
reviewed and updated as required

UF.5.6 Learnability
S.5.6.1 Interactive help is provided to end users to
enhance their learnability of the software project
S.5.6.2 Metrics are used to measure learnability level
regarding any new features in the software

UF.5.7 Operability
S.5.7.1 Advance features are introduced in software
in a gradual way to make it more operable and give
the users more control
S.5.7.2 Defined metrics are used to identify
weaknesses, quantitatively measure and improve
the project’s operability

UF.5.8 Attractiveness
S.5.8.1 A blend of standardized usability techniques
and innovative methods are used to make user
interface pleasing and attractive for the users
S.5.8.2 Regular monitoring of the strategic plan, its
outcome related to the project’s attractiveness and
its improvement are the parts of continuous
strategic efforts of the team

UF.5.9 Usability Bug Reporting
S.5.9.1 Project team regularly responds, maintains
and improves the already developed service protocol
for effective and easy reporting of usability bugs
S.5.9.2 Project developers are continuously
improving the usability bug reporting service

UF.5.10 Usability Testing
S.5.10.1 The project team experiments through
innovative methods to continuously improve the
process of usability testing
S.5.10.2 Quantifiable metrics are used to measure
usability effectively and objectively
S.5.10.3 A usability test management system keeps
track of usability tests and uses the results to
improve software quality and usability of the project

UF.5.11 Documentation
S.5.11.1 Project documentation is updated on
regular basis to reflect any modification
S.5.11.2 A log has been maintained to record user
complaints regarding usability related issues and the
actions taken upon them

References

Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE,
24(1), 58–64.

Abran, A., Surya, W., Khelifi, A., Rilling, J., Seffah, A., & Robert, F. (2003).
Consolidating the ISO usability models. 11th Annual International Software
Quality Management Conference.

Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., & Stage, J. (2007). What happened to
remote usability testing? An empirical study of three methods. The SIGCHI
conference on human factors in computing systems.

Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., & Stage, J. (2006). Usability in open
source software development: Opinions and practice. Information Technology
and Control, 35A(3), 303–312.

1120 A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121

Barbeite, F. G., & Weiss, E. M. (2004). Computer self-efficacy and anxiety scales for
an Internet sample: Testing measurement equivalence of existing measures and
development of new scales. Computers in Human Behaviour, 20(1), 1–15.

Benson, C., Muller-Prove, M., & Mzourek, J. (2004). Professional usability in open
source projects: GNOME, OpenOffice.org, NetBeans, CHI ‘04 extended abstracts
on Human Factors in Computing Systems, Vienna, Austria, 2004.

Bevan, N. (2008). Reducing risk through human centred design. I-USED, Pisa.
Bevan, N. (2009). International standards for usability should be more widely used.

Journal of Usability Studies, 4(3), 106–113.
Bianchi-Berthouze, N., & Lisetti, C. (2002). Modeling multimodal expression of

user’s affective subjective experience. User Modeling and User adapted.
Interaction, 12, 49–84.

Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by
the multi-trait multi-method matrix. Psychological Bulletin, 56(2), 81–105.

Çetin, G., & Göktürk, M. (2008). A measurement based framework for assessment of
usability-centricness of open source software projects. IEEE international
conference on signal image technology and internet based systems, SITIS ‘08,
2008.

Çetin, G., & Göktürk, M. (2007). Usability in open source community. ACM Interactions,
14(6), 38–40.

Chrissis, M. B., Konran, M., & Shrum, S. (2006). CMMI: Guidelines for process
integration and product improvement (2nd ed.). Addison–Wesley Publishing
Company, pp. 52–69.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20, 37–46.

Comrey, A. L., & Lee, H. B. (1992). A first course on factor analysis (2nd ed.). Hillsdale.
Craven, J., & Booth, H. (2006). Putting awareness into practice: Practical steps for

conducting usability tests. Library Review, 55(3), 179–194.
Cristescu, I. (2008). Emotions in human-computer interaction: The role of nonverbal

behavior in interactive systems. Revista Informatica Economică, 2(46), 110–116.
Cronbach, L. J. (1951). Coefficient alpha and the internal consistency of tests.

Psychometrica, 16, 297–334.
Crowston, K., Annabi, H., Howison, J. (2003). Defining open source software project

success. 24th International conference on information systems (ICIS), Seattle,
WA.

Earthy, J. (1998). Usability maturity model: Human-centredness scale.
IE2016 INUSE Deliverable D5.1.4s, 1998.

Earthy, J., (1999). Usability maturity model: Processes: Version 2.2. Lloyd’s Register,
London.

El Emam, K. (1999). Benchmarking kappa: Inter-rater agreement in software
process assessments. Empirical Software Engineering, 4(2), 113–133.

Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly,
30(3), 587–598.

Gill, T. G. (1996). Expert systems usage: Task change and intrinsic motivation (pp.
301–329). MIS Quarterly, Summer.

Granollers, T., Lorés, J., & Perdrix, F. (2003). Usability engineering process model.
Integration with software engineering, HCI-Intl’03, Crete-Greece.

Hedberg, H., Iivari, N., Rajanen, M., & Harjumaa, L. (2007). Assuring quality and
usability in open source software development. In The 1st international
workshop on emerging trends in FLOSS research and development, FLOSS,
IEEE Computer Society, Washington, DC, 2007, May 20–26.

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability
studies and research. International Journal of Human–Computer Studies, 64,
79–102.

Iivari, N. (2009). Constructing the users in open source software development: An
interpretive case study of user participation. Information Technology & People,
22(2), 132–156.

Iivari, N., Hedberg, H., & Kirves, T. (2008). Usability in company open source
software context – Initial findings from an empirical case study. Open
Source Development, Communities and Quality in IFIP International Federation
for Information Processing, 275, 359–365.

ISO 9241 (1998). Ergonomics requirements for office with visual display terminals
(VDTs).

International Standard ISO/IEC 9126-1 (2001). Software engineering – Product
quality – Part 1: Quality model (1st ed., 2001-06-15), 9–10.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis.
Educational and Psychological Measurement, 20, 141–151.

Kaiser, H. F. (1970). A second generation little Jiffy. Psychometrika, 35, 401–417.
Landis, J., & Koch, G. G. (1977). The measurement of observer agreement for

categorical data. Biometrics, 33, 159–174.
Lee, H. Y., Jung, H. W., Chung, C. S., Lee, J. M., Lee, K. W., & Jeong, H. J. (2001). Analysis

of inter-rater agreement in ISO/IEC 15504-based software process assessment.
2nd Asia–Pacific conference on quality software 2001, 341–348.

Lethbridge, T. (2007). UUMM: User and usability maturity model, personal notes.
School of Information Technology and Engineering, University of Ottawa, 2007,
Personal Information.

Lieberman, H., Paternò, F., & Wulf, V. (2006). End user development: Empowering
people to flexibly employ advanced information and communication technology.
Dordrecht: Springer.

Miller, J. (2006). Usability testing: A journey, not a destination. Internet Computing,
IEEE, 10(6), 80–83.

Moraga, M. Á., Calero, C., Piattini, M., & Diaz, O. (2007). Improving a portlet usability
model. Software Quality Control, 15(2), 155–177.

Nichols, D. M., & Twidale, M. B. (2006). Usability processes in open source projects.
Software Process: Improvement and Practice, 11(2), 149–162.

Nunnally, J. C., & Bernste, I. A. (1994). Psychometric theory (3rd ed.). New York:
McGraw Hill.

Osterhof, A. (2001). Classroom applications of educational measurement. NJ: Prentice
Hall.

Oviatt, S. L., & Cohen, P. R. (2000). Multimodal systems that process what comes
naturally. Communications of the ACM, 43(3), 45–53.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (1995). The capability maturity
model: Guidelines for improving the software process/CMU/SEI. Addison-Wesley
Publishing Company, pp. 15–28.

Picard, R. W. (1997). Affective computing. MIT Press.
Raymond, E. S. (1999). The cathedral and the bazaar. Sebastopol, CA: O’Reilly.
Raza, A., & Capretz, L. F. (2009). Usability as a dominant quality attribute. International

Conference on Software Engineering Research & Practice, SERP, 2009, 2, 571–575.
Raza, A., & Capretz, L. F. (2010). Contributors’ preference in open source software

usability: An empirical study. International Journal of Software Engineering &
Applications (IJSEA), 1(2), 45–64.

Raza, A., Capretz, L. F., & Ahmed, F. (2010a). Improvement of open source software
usability: An empirical evaluation from developers perspective, advances in
software engineering, vol. 2010, Article ID 517532, 12 pages, 2010. doi:10.1155/
2010/517532, 2010-b.

Raza, A., Capretz, L. F., & Ahmed, F. (2010b). Users’ perception of open source
usability: An empirical study. Engineering with Computers, Online First, 2011,
1–13.

Raza, A., Capretz, L. F., & Ahmed, F. (2011). An empirical study of open source
software usability – The industrial perspective. International Journal of Open
Source Software and Processes, 3(1), 1–16.

Seffah, A., Donyaee, M., Kline, R., & Padda, H. (2006). Usability measurement and
metrics: A consolidated model. Software Quality Journal, 14(2), 159–178.

Stevens, J. (1986). Applied multivariate statistics for the social sciences. NJ: Hillsdale.
van de Ven, A. H., & Ferry, D. L. (1980). Measuring and assessing organizations. NY:

John Wiley & Son.
von Eye, A., & Mun, E. Y. (2005). Analyzing rater agreement manifest variable methods.

London: LEA Publishers.
Wang, Y., & King, G. (2000). Software engineering processes: Principles and Applications.

NY: CRC Press, pp. 191–219.
Winter, S., Wagner, S., & Deissenboeck, F. (2008). A comprehensive model of

usability. In J. Gulliksen, et al. (Eds.), EIS 2007, LNCS 4940 (pp. 106–122).
Zhao, L., Deek, F. P. (2005). Improving open source software usability. 11th Americas

conference on information systems (pp. 923–928), August 11–14, Omaha, USA,
2005.

Zhao, L., Deek, F. P. (2006). Exploratory inspection – A learning model for improving
open source software usability. Conference on human factors in computing
systems CHI ’06, 1589–1594.

A. Raza et al. / Computers in Human Behavior 28 (2012) 1109–1121 1121

	Western University
	Scholarship@Western
	4-2012

	An Open Source Usability Maturity Model (OS-UMM)
	Luiz Fernando Capretz
	Arif Raza
	Faheem Ahmed
	Citation of this paper:

	An open source usability maturity model (OS-UMM)
	1 Introduction
	2 Literature review
	2.1 General usability assessment and measurement
	2.2 Usability issues in open source projects
	2.3 Usability models
	2.4 Maturity models

	3 Framework of OS-UMM
	3.1 Level 1: Preliminary
	3.2 Level 2: Recognized
	3.3 Level 3: Defined
	3.4 Level 4: Streamlined
	3.5 Level 5: Institutionalized

	4 Performance scale and rating methodology
	4.1 Performance scale
	4.2 Rating methodology

	5 Reliability and validity analysis of questionnaires
	6 Case studies
	6.1 Assessment methodology
	6.2 Case Study – Project “A”
	6.3 Case Study – Project “B”
	6.4 Inter-rater agreement analysis

	7 Discussion
	7.1 Limitations of the assessment methodology

	8 Conclusion
	Appendix A The measuring instrument for assessing the usability maturity of an OSS project, when it is at Level-2
	Appendix B
	B.1 Level 3: Defined

	Appendix C
	C.1 Level 4: Streamlined

	Appendix D
	D.1 Level 5: Institutionalized

	References

