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Abstract 21 

 22 

Saturn’s moon Titan has all the ingredients needed to produce “life as we know 23 

it”. When exposed to liquid water, organic molecules analogous to those found on 24 

Titan produce a range of biomolecules such as amino acids. Titan thus provides a 25 

natural laboratory for studying the products of prebiotic chemistry. In this work, 26 

we examine the ideal locales to search for evidence of, or progression towards, 27 

life on Titan. We determine that the best sites to identify biological molecules are 28 

deposits of impact melt on the floors of large, fresh impact craters, specifically 29 

Sinlap, Selk, and Menrva craters. We find that it is not possible to identify 30 

biomolecules on Titan through remote sensing, but rather through in-situ 31 

measurements capable of identifying a wide range of biological molecules. Given 32 

the non-uniformity of impact melt exposures on the floor of a weathered impact 33 

crater, the ideal lander would be capable of precision targeting. This would allow 34 

it to identify the locations of fresh impact melt deposits, and/or sites where the 35 

melt deposits have been exposed through erosion or mass wasting. Determining 36 

the extent of prebiotic chemistry within these melt deposits would help us to 37 

understand how life could originate on a world very different from Earth. 38 

 39 

Key words: Titan; Prebiotic chemistry; Solar system exploration; Impact 40 

processes; Volcanism 41 
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1. Introduction 43 

 44 

 Saturn’s moon Titan has all the ingredients for life as we know it1. Titan’s 45 

dense nitrogen-methane atmosphere supports a rich organic photochemistry 46 

(Hörst, 2017). Ultraviolet photons and charged particles dissociate the methane 47 

and nitrogen in the atmosphere to produce a suite of carbon, hydrogen, and 48 

nitrogen containing products (CxHyNz), which eventually settle onto the surface. 49 

These products have been observed in Titan’s atmosphere by the Voyager 50 

missions (Hanel et al., 1981; Kunde et al., 1981; Maguire et al., 1981) and in both 51 

the atmosphere and on the surface by the Cassini-Huygens mission (Niemann et 52 

al., 2005; Lavvas et al., 2008; Janssen et al., 2016). 53 

 Once on the surface, the products of Titan’s photochemistry may react 54 

with liquid water in certain circumstances. Titan’s surface is on average too cold 55 

for liquid water (~94 K – Fulchignoni et al., 2005), but transient liquid water 56 

environments may be found in impact melts and cryolavas (Thompson and Sagan, 57 

1992; O’Brien et al., 2005; Neish et al., 2006). When organic molecules found on 58 

Titan’s surface are exposed to liquid water, they quickly incorporate oxygen 59 

(Neish et al., 2008; 2009) to produce a range of biomolecules that include amino 60 

acids and possibly nucleobases (Neish et al., 2010; Poch et al., 2012; Cleaves et 61 

al., 2014). Impact melts and cryolavas of different volumes - and hence, different 62 
                                                
1 Here and throughout this paper, we use the term “life as we know it” to refer to carbon-based life 
that uses water as a solvent. 
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freezing timescales (O’Brien et al., 2005; Davies et al., 2010) - give us a unique 63 

window into the extent to which prebiotic chemistry can proceed over different 64 

time scales. 65 

Thus, Titan provides a natural laboratory for studying the products of 66 

prebiotic chemistry. These products provide crucial insight into what may be the 67 

first steps towards life in an environment that is rich in carbon and nitrogen, as 68 

well as water. It is even possible that life arose on Titan and survived for a short 69 

interval before its habitat froze. Alternatively, life may have developed in Titan’s 70 

subsurface ocean, and evidence of this life could be brought to the surface through 71 

geophysical processes such as volcanism (Fortes, 2000). A new exploration 72 

strategy is required to collect the results of these natural experiments; such 73 

measurements are not possible with the currently available data from the Voyager 74 

and Cassini-Huygens missions.  75 

Even before Cassini reached the outer solar system, it was recognized 76 

that a post-Cassini scientific priority, especially for astrobiology, would be to 77 

access surface material for detailed investigation (Chyba et al., 1999; Lorenz, 78 

2000). More recently, identifying “Planetary Habitats” was included as one of the 79 

three crosscutting themes of the National Research Council’s “Visions and 80 

Voyages for Planetary Science in the Decade 2013-2022” (Space Studies Board, 81 

2012). In addition, Titan is currently listed as one of six potential mission themes 82 
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for NASA’s next New Frontiers mission2. Such a mission could be specifically 83 

designed to identify the products of prebiotic chemistry on Titan’s surface.  84 

In this work, we determine the ideal locales to search for biomolecules 85 

on Titan, and suggest mission scenarios to test the hypothesis that the first steps 86 

towards life have already occurred there. In this scenario, we would consider a 87 

substantial presence of biomolecules (i.e., compounds that are essential to life as 88 

we know it) as either a compelling indicator of an advanced prebiotic 89 

environment or as a possible sign of extinct (or more speculatively, extant) life.  90 

 91 

2. Geological settings for aqueous chemistry on Titan 92 

 93 

 Liquid water is both a crucial source of oxygen and a useful solvent for the 94 

generation of biomolecules on Titan’s surface. Thus, if we wish to identify 95 

molecular indicators of prebiotic chemistry on Titan, we need to determine where 96 

liquid water is most likely to have persisted. Although Titan’s average surface 97 

temperature of ~94 K precludes the existence of bodies of liquid water over 98 

geologic timescales (unless there is an active hotspot – see Schulze-Makuch and 99 

Grinspoon, 2005), it does not rule out the presence of water on the surface for 100 

short periods of time. We are likely to find transient liquid water environments on 101 

the surface of Titan in two distinct geological settings: (1) cryovolcanic lavas and 102 

                                                
2 See https://newfrontiers.larc.nasa.gov. 
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(2) melt in impact craters. In addition, Titan's deep interior has a liquid water 103 

layer perhaps hundreds of kilometers thick, which may also contain biomolecules 104 

(Fortes, 2000; Iess et al., 2012). Samples of this ocean may be transported to the 105 

surface through cryovolcanic processes before eventually freezing. Thus, if we 106 

wish to find biomolecules on the surface of Titan, we should focus our search in 107 

and around cryovolcanoes and impact craters. 108 

 109 

2.1 Cryovolcanoes 110 

 111 

 On Titan, lavas are generally referred to as cryolavas, since they involve 112 

the eruption of substances that are considered volatiles on the surface of Earth 113 

(e.g., water, water-ammonia mixtures, etc.). Features suggested to be caused by 114 

cryovolcanism were first discovered on the icy satellites during the Voyager 115 

missions (e.g., Jankowski and Squyres, 1988; Showman et al., 2004). More recent 116 

observations point to the existence of present-day activity on Enceladus (Porco et 117 

al., 2006) and Europa (Roth et al., 2014; Sparks et al., 2017). 118 

Two conditions must be met for cryovolcanic flows to be present on a 119 

surface: liquids must be present in the interior and those liquids must then migrate 120 

to the surface. Theoretical models of Titan’s formation and evolution predict that 121 

a substantial liquid water layer must still exist in its interior, provided a sufficient 122 

amount of ammonia is present in the ocean (Tobie et al., 2005). Observations by 123 
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the Cassini mission have confirmed the presence of a liquid water subsurface 124 

ocean. Measurements of the tidal love number by the Radio Science experiment 125 

require that Titan’s interior is deformable over its orbital period, consistent with a 126 

global ocean at depth (Iess et al., 2012). In addition, the Permittivity, Wave and 127 

Altimetry instrument on ESA’s Huygens probe detected a electric current in 128 

Titan’s ionosphere, consistent with a Schumann resonance between two 129 

conductive layers. The lower layer was estimated to lie 55-80 km below the 130 

surface, suggestive of a salty, subsurface ocean (Béghin et al., 2012). Other 131 

analyses of Titan’s overall shape, topography, and gravity field are consistent 132 

with an ice shell of this thickness overlying a relatively dense subsurface ocean 133 

(Nimmo and Bills, 2010; Mitri et al., 2014) 134 

The second requirement for cryovolcanism is for liquid to be transported 135 

from the interior to the surface. One plausible way to transport lava is through 136 

fluid-filled cracks. Mitri et al. (2008) proposed a model in which ammonia-water 137 

pockets are formed through cracking at the base of the ice I shell. As these 138 

ammonia-water pockets undergo partial freezing, the ammonia concentration in 139 

the pockets would increase, decreasing the negative buoyancy of the ammonia–140 

water mixture. Unlike pure liquid water, a liquid ammonia-water mixture of 141 

peritectic composition (ρ = 946 kg m-3) is near-neutral buoyancy in ice (ρ = 917 142 

kg m-3) (Croft et al. 1988). Though these pockets could not easily become 143 

buoyant on their own (given the difference in density of ~20-30 kg m-3), they are 144 
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sufficiently close to the neutral buoyancy point that large-scale tectonic stress 145 

patterns (tides, non-synchronous rotation, satellite volume changes, solid state 146 

convection, or subsurface pressure gradients associated with topography) could 147 

enable the ammonia-water to erupt effusively onto the surface. Evidence of such 148 

stress patterns are observed on Titan (Cook-Hallet et al., 2015; Liu et al., 2016). 149 

Any lava extruded in this way would likely have a peritectic composition near 150 

that of pure ammonia dihydrate (33 wt. % ammonia).  151 

 We can test the hypothesis that cryolavas have erupted onto Titan’s 152 

surface by looking for morphological constructs on the surface consistent with 153 

volcanism. The Cassini RADAR instrument has imaged approximately two-thirds 154 

of the surface of Titan, producing views of the landscape with resolutions as good 155 

as 350 m. Although it is difficult to conclusively identify cryovolcanic constructs 156 

at these resolutions (Moore and Pappalardo, 2011), several features remain 157 

difficult to explain through any other geologic process (Lopes et al., 2013). The 158 

most intriguing of these features is Sotra Patera (part of a region formerly known 159 

as Sotra Facula). This region includes the deepest pit and some of the highest 160 

mountains on Titan, as well as the associated flow-like features of Mohini 161 

Fluctus, a 200 km feature extending from Sotra Patera with a lobate edge (Figure 162 

1). If Sotra Patera is indeed a volcanic construct, the lava flows there would be an 163 

interesting location for studying the interaction of liquid water with organic 164 

molecules on Titan’s surface.  165 



9 

9 

However, unless this region represents a persistent hot spot, it is unlikely 166 

that the lava will remain liquid long enough for aqueous chemistry to produce 167 

complex, biological molecules. (Thus far, no evidence of hot spots has been 168 

observed on Titan – Lopes et al., 2013.) Flow lobes tens of meters thick in Mohini 169 

Fluctus (Lopes et al., 2013) would likely cool over relatively short timescales: if 170 

heat is lost only by conduction, the one-dimensional thermal conduction equation 171 

predicts that it should take only one year for a ten-meter-thick flow of water or 172 

ammonia dihydrate to completely freeze. Even a 200 m high cryovolcanic dome 173 

that is 90 km in radius is expected to take only several hundred years to freeze 174 

completely (Neish et al., 2006).  175 

In addition, if these lavas have a peritectic composition close to that of 176 

pure ammonia dihydrate, they would erupt close to a temperature of 176 K. This 177 

would significantly affect reaction rates. In a 13 wt. % ammonia solution at 253 178 

K, reactions between Titan haze analogues and ammonia-water have half-lives of 179 

a few days (Neish et al., 2009). According to the Arrhenius equation, a reaction at 180 

253 K with an activation energy of 50 kJ/mol would take 3 x 104 times longer in a 181 

peritectic melt at 176 K. Thus, a reaction that took a few days to complete at the 182 

higher temperature would take a few hundred years to complete at the lower 183 

temperature. The aqueous chemistry in cryolavas may not have sufficient time or 184 

energy to produce more complicated prebiotic molecules. 185 

More speculatively, Titan’s subsurface ocean may contain biomolecules, 186 



10 

10 

or even simple life forms (Fortes, 2000). Evidence of such biology could be found 187 

frozen in the cryovolcanic lavas on the surface of Titan. However, given the 188 

uncertain presence of biomolecules in the subsurface ocean, and the challenges 189 

inherent in transporting material to the surface, we judge the priority for 190 

exploration should focus on another geologic setting where biomolecules are 191 

more likely to be present: impact melt deposits. 192 

 193 

2.2 Impact craters 194 

 195 

When a comet or asteroid impacts a planet, energy becomes available to 196 

melt its surface. Ponds and flows of melted crustal rock are observed in and 197 

around impact craters on terrestrial planets (e.g. Hawke and Head, 1977). Models 198 

suggest that melt should be produced on icy satellites as well (Pierazzo et al., 199 

1997; Artemieva and Lunine 2003; Kraus et al. 2011) and smooth regions at the 200 

center of the largest craters on Ganymede have been interpreted to be solidified 201 

impact melt (Jones et al., 2003; Bray et al., 2012).  202 

Titan's atmosphere is capable of shielding the surface from smaller 203 

impactors (Ivanov et al., 1997; Artemieva and Lunine, 2005; Korycansky and 204 

Zahnle, 2005), so any projectile that does strike the surface must necessarily be 205 

large. Such impactors would melt a substantial amount of Titan's crust. Artemieva 206 

and Lunine (2003) conducted three-dimensional hydrodynamical simulations of 207 
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impacts into Titan's crust, and found that a 2 km icy projectile entering the 208 

atmosphere at an oblique angle with a velocity of 7 km/s would generate 2-5 % 209 

melt by volume within a transient crater 10-25 km in diameter. The amount of 210 

melt increases with impact energy, so larger craters would contain a larger 211 

percentage of melt by volume (Grieve and Cintala, 1992; Cintala and Grieve, 212 

1998; Elder et al., 2012). 213 

This melt could collect in the lowest parts of the crater, forming a sheet 214 

several hundred meters thick. Given the higher density of liquid water compared 215 

to the density of ice I, some melt could also drain into fractures in the crater floor 216 

before freezing, forming the central pit features seen in craters on many icy 217 

satellites (Elder et al., 2012). Using fracture volumes estimated from the gravity 218 

anomalies observed over terrestrial impact craters, and assuming flow through 219 

plane parallel fractures, Elder et al. (2012) estimated that melt will be retained for 220 

Titan craters with diameters greater than ~90 km. However, this is a somewhat 221 

idealized situation; in reality, fractures in the brecciated floor of an impact crater 222 

are much more sinuous, with variable direction and width. If the fractures have a 223 

tortuosity of two, only ~1/3 as much melt would drain (Elder et al., 2012). 224 

(Tortuosity is the ratio of the length of the fracture to the depth of the fractured 225 

region.) In addition, it is likely that fractures do not have a constant width, which 226 

would cause the flow to slow through narrower passages, reducing the total 227 

amount of melt volume drained. Since larger craters produce a larger fraction of 228 
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melt by volume than smaller craters (Grieve and Cintala, 1992), a reduced 229 

drainage efficiency means that melt could also be retained for somewhat smaller 230 

impact craters on Titan (larger craters would simply retain more melt than they 231 

would if there was more efficient drainage). 232 

The organics found on Titan’s surface could then react with melt present 233 

on the crater floor, in its ejecta blanket, or perhaps mixed with melt that drains 234 

into fractures. Artemieva and Lunine (2003) found that a significant fraction 235 

(10%) of Titan’s organic surface layer would be only lightly shocked in an 236 

impact. As a result, these organic molecules would be only partially altered, 237 

providing reactants for any subsequent aqueous chemistry. In impact craters on 238 

Earth, impact melt often incorporates large amounts of clastic material from non-239 

melted, but shocked target rocks (Osinski et al., 2017), suggesting there would be 240 

efficient mixing between liquid water and organic clasts on Titan. In this way, 241 

impact melts could provide “oases” for prebiotic chemistry to occur on Titan’s 242 

surface.  243 

Once melted by the impact, any liquid water generated would begin to 244 

cool to the ambient temperature of ~94 K. Thompson and Sagan (1992) were the 245 

first to estimate the lifetime of melt pools generated in impacts on Titan. They 246 

approximated the melt as a buried sphere of water freezing inward, and found 247 

lifetimes of ~104 yr for a 10 km diameter crater, and ~106 yr for a 100 km 248 

diameter crater. O'Brien et. al. (2005) refined the calculation using a thermal 249 
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conduction code, including more realistic geometries (such as sheets of melt 250 

several hundreds of meters thick) and the possibility of water-ammonia melt 251 

mixtures. With the melt fraction calculated by Artemieva and Lunine (2003), they 252 

found somewhat shorter lifetimes of ~102-103 yr for a 15 km diameter crater, and 253 

~103-104 yr for a 150 km diameter crater. These lifetimes are considerably longer 254 

than those for lava flows tens of meters thick, allowing more time for aqueous 255 

chemistry to proceed. (Lifetimes could be reduced if a significant proportion of 256 

the melt were to drain into the bottom of the crater, as discussed above.) 257 

Impact melts would provide an excellent medium for aqueous chemistry 258 

on Titan. In addition to having longer freezing timescales than cryovolcanic 259 

flows, they are also likely to be emplaced at much higher temperatures. Melted 260 

crustal rock (as opposed to water extruded from depth) is more likely to yield a 261 

water-rich composition, with temperatures near the water liquidus (273 K), not 262 

the ammonia-water peritectic (176 K). Temperatures may even exceed the 263 

liquidus initially, given the large amounts of energy available from an impact. For 264 

example, there is evidence for super-heating of several hundred Kelvins in impact 265 

melts on Earth (Horz, 1965; El Goresy, 1965) and the Moon (Simonds et al., 266 

1976). This could increase the temperature of the melt above the liquidus, 267 

accelerating the chemistry occurring in the melt ponds. Reactions between Titan 268 

haze analogues and liquid water were roughly 20 times faster at 40°C than at 0°C 269 

(Neish et al., 2008). 270 
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 How many craters are available for such chemistry on Titan? We expect 271 

impact cratering to be an important process in the Saturnian system, whose 272 

satellites retain thousands of scars from past impacts (e.g., Kirchoff and Schenk, 273 

2010). Before Cassini arrived at Saturn, the cratering history on Titan was 274 

unknown from direct observations, so estimates of the cratering rate were made 275 

by extrapolating the crater distributions observed on other Saturnian satellites, or 276 

by predicting impact rates by comet populations. Such estimates suggested that at 277 

least several hundred craters larger than 20 km in diameter should be present on 278 

Titan
 
(Zahnle et al. 2003). Now that Cassini RADAR has been able to observe 279 

Titan’s surface, an extreme paucity of craters is observed. Only 23 certain or 280 

nearly certain craters and ~10 probable craters have been observed on Titan in this 281 

size range, with a handful of smaller crater candidates (Wood et al., 2010; Neish 282 

and Lorenz, 2012; Neish et al., 2016). This population has crater depths 283 

consistently shallower than similarly sized fresh craters on Ganymede, suggestive 284 

of extensive modification by erosion and burial (Neish et al., 2013). Although 285 

aeolian infilling appears to be the dominant modification process on Titan, fluvial 286 

erosion seems to play an important secondary role (Neish et al., 2016). In 287 

addition, there is an almost complete absence of craters near Titan’s poles, which 288 

may be indicative of marine impacts into a former ocean in these regions (Neish 289 

and Lorenz, 2014) or an increased rate of fluvial erosion (Neish et al., 2016). 290 
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 We therefore judge that the best targets for observing the products of 291 

aqueous – and possibly biological – chemistry on Titan are the floors of large, 292 

relatively fresh impact craters. Fresh impact craters on Titan are subject to a 293 

minimal amount of fluvial incision (which would expose the core of any impact 294 

melt sheet), but little to no burial by sand or sediments (Neish et al., 2016). These 295 

structures will contain the largest amount of impact melt, and that melt will be 296 

easier to access with a spacecraft than the melt in more degraded craters (where it 297 

is likely buried under a thick deposit of sediment).  298 

To determine the best candidates for such studies, we consider the relative 299 

degradation states of all ‘certain’ or ‘nearly certain’ craters on Titan with 300 

diameters greater than 75 km (i.e., those craters most likely to retain impact melt). 301 

As in Neish et al. (2013), we quantify the degradation state of a crater by 302 

considering the relative depth of a Titan crater compared to a fresh, unmodified 303 

crater on Ganymede with a similar diameter. The relative depth, R, is given by 304 

R(D) = 1 - dt(D)/dg(D) where dt(D) is the depth of a crater with diameter D on 305 

Titan, and dg(D) is the depth of a crater with diameter D on Ganymede. A relative 306 

depth of zero indicates the crater has the same depth as a crater on Ganymede and 307 

is thus unmodified by erosion; a relative depth of one indicates the crater is 308 

completely flat. 309 

 There is topography data for seven craters on Titan with D > 75 km. The 310 

relative depths of five of these craters were previously reported in Neish et al. 311 
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(2013) and Neish et al. (2015). Topography data for the sixth crater – the ~80 km 312 

diameter Selk crater – was obtained during Cassini’s T95 pass of Titan on 14 313 

October 2013 (Figure 2a). A topographic profile was acquired through the center 314 

of the crater using the SARTopo technique (Stiles et al., 2009). We calculated 315 

depth, d = h1 – h2, by taking the difference between the highest point on the crater 316 

rim and the lowest point on the crater floor, on both sides of the crater, d1 and d2 317 

(Figure 2b). Systematic errors in height, dhi, were propagated throughout the 318 

analysis. These errors were determined from radar instrument noise and viewing 319 

geometry (Stiles et al., 2009). Using this technique, the depth of Selk is 470 ± 90 320 

m.  321 

Topography data for the seventh crater – the ~140 km diameter Forseti – 322 

was generated from stereo topography produced from overlapping radar images 323 

from the T23 and T84 passes of Titan. Unfortunately, the stereo pair only covers 324 

the northeast corner of the crater, so our depth estimate is based solely on the rim 325 

heights and floor depths observed in this quadrant (Figure 3a). The floor elevation 326 

is -2144 ± 35 m and the rim elevation is -1963 ± 54 m, for an average depth of 327 

180 ± 60 m. In addition, there is a SARTopo profile through the northeast portion 328 

of the crater, generated using data from Cassini’s T23 pass (Figure 3b). 329 

Unfortunately, there is a data gap present on the crater floor, so we are only able 330 

to calculate a minimum crater depth using this data set (Figure 3c). Using the 331 

same technique as described for Selk, we found a minimum crater depth of 410 ± 332 
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50 m. This differs significantly from the depth derived from the stereo pair.  333 

There are several possible reasons for this discrepancy. The crater floor 334 

may appear to be level with the crater rim in the stereo pair due to a lack of 335 

features on the floor. Identifiable features present in both images are necessary to 336 

make stereo measurements. This situation could cause elevations on the crater 337 

floor to be interpolated from the nearest rim points, artificially raising points on 338 

the crater floor in the stereo data. In addition, impact craters often have large 339 

variations in rim height (see, for example, Neish et al. 2017). By only measuring 340 

one quadrant of the crater rim, we may not be getting a representative sample of 341 

the rim height, thus biasing our result by using a lower than average portion of the 342 

crater rim for depth measurements. 343 

Updated topography data are also available for the ~100 km diameter 344 

Hano crater. The data were generated from stereo topography produced from 345 

overlapping radar images from Cassini’s T16 and T84 passes of Titan, and cover 346 

more than half of the crater from the southwest quadrant to the northeast quadrant. 347 

The result shows a crater with little noticeable topography (Figure 4a). In fact, the 348 

average heights in the rim region (-1500 ± 170 m) and the average heights in the 349 

floor region (-1510 ± 140 m) are nearly identical, suggesting that Hano crater is 350 

essentially flat (R ~ 1). The initial depth estimate (d = 525 ± 100 m) by Neish et 351 

al. (2013) using SARTopo only took into consideration one profile across the 352 

southernmost rim of the crater, so it is possible that profile was not representative 353 
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of the crater as a whole. An updated SARTopo profile is now available, covering 354 

both the northern and southern rim of Hano crater (Figure 4b). Using the same 355 

technique as described for Selk, we found a new crater depth of 420 ± 40 m 356 

(Figure 4c). As with Forseti, the stereo and SARTopo values differ considerably 357 

for Hano crater, possibly for the same reasons outlined above. However, both of 358 

the newly derived depths are lower than the initial estimate from Neish et al. 359 

(2013). Thus, Hano appears to be more degraded than originally suggested, which 360 

is consistent with its observed morphology in the RADAR data (Wood et al., 361 

2010). 362 

 We summarize the relative depths of the seven craters in Table 1. Of 363 

these, only two have relative depths < 0.6 for all current topography 364 

measurements: Sinlap and Selk. We judge these to be the least degraded craters in 365 

this size range. In terms of relative depth, Sinlap would be considered the 366 

‘freshest’ crater on Titan, with R = 0.4 ± 0.2. It is difficult to assess the relative 367 

depth of the largest crater on Titan, Menrva, since craters in this size range (D > 368 

150 km) on icy satellites are associated with a sharp reduction in crater depth and 369 

anomalous impact morphologies (Schenk, 2002). However, given the large 370 

amount of impact melt expected in such a large crater, it remains a high priority 371 

target for future exploration. The craters of interest are shown in Figure 5. 372 

 373 

3. Identifying biological molecules on Titan 374 
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 375 

 To identify biological molecules on Titan, it will be necessary to obtain 376 

more detailed data than are currently available from past ground- and space-based 377 

observations. As we describe below, the remote sensing data sets lack the spatial 378 

and spectral resolution to make definitive conclusions about the composition of 379 

Titan’s surface. Compositional information regarding the potential presence of 380 

biological molecules could be obtained from in-situ observations, but only if (a) 381 

the associated instrumentation is designed for such a task, and (b) the surface 382 

material can be obtained from the targeted regions described in Section 2. In this 383 

section, we describe the difficulties in assessing surface composition remotely, 384 

and describe possible approaches for in-situ detection of biological molecules. 385 

 386 

3.1 Detection by remote sensing? 387 

 388 

To date, Titan has been a focus of a number of spacecraft missions, as well 389 

as numerous Earth-based telescopic observations. The collected data have 390 

provided global observations of Titan’s atmosphere and surface at a range of 391 

spatial and spectral resolutions. However, it has remained a difficult challenge to 392 

determine the composition of Titan’s surface from remote observations (Hörst, 393 

2017), for reasons we expand upon below. 394 
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Pioneer 11 was the first spacecraft to encounter Saturn, and acquired the 395 

first near range images of Titan in 1979 (Tomasko, 1980). This set the stage for 396 

the Voyager missions, which flew by Saturn and Titan in 1980 (Voyager 1) and 397 

1981 (Voyager 2), respectively (Stone, 1977). The Voyager missions returned 398 

important information about Titan’s atmospheric chemistry (e.g., Hanel et al., 399 

1981; Kunde et al., 1981; Maguire et al., 1981; Yung et al., 1984), but the 400 

cameras on Voyager were unable to resolve any of the fine details of the surface 401 

(Richardson et al. 2004). Such images were not obtained until the Cassini-402 

Huygens mission entered orbit around Saturn in 2004. Over the past thirteen years, 403 

the Cassini RADAR, VIMS (Visual and Infrared Mapping Spectrometer), and ISS 404 

(Imaging Science Subsystem) instruments have provided our first detailed looks 405 

at the surface of Titan (Elachi et al., 2005; Barnes et al., 2005; Porco et al., 2005), 406 

with the RADAR instrument providing the highest resolution views. However, 407 

only ~2/3 of Titan’s surface was imaged by the RADAR instrument by the end of 408 

the Cassini mission, at resolutions of 350 - 2000 m. This limited spatial resolution 409 

impacts our ability to differentiate surface units on Titan, and hence, determine 410 

their differing compositions. 411 

In addition to the limited spatial resolution available for Titan, there is 412 

limited spectral resolution available for compositional analysis. Due to the 413 

presence of Titan’s thick nitrogen-methane atmosphere, remote spectroscopic 414 

measurements are restricted to a discrete number of atmospheric ‘windows’, 415 
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where scattering and/or absorption are reduced (Lorenz and Mitton, 2002). For 416 

example, the VIMS instrument on Cassini has only been able to image the surface 417 

of Titan at seven atmospheric windows at wavelengths ranging between 0.94 and 418 

5 µm (Brown et al., 2004).  419 

High spectral resolution is crucial for the remote identification of surface 420 

materials. The observation of key spectral features has provided essential 421 

information about the composition of many planetary bodies, including the 422 

identification of water ice on the Galilean satellites (Pilcher et al., 1972), 423 

carbonates on Mars (Ehlmann et al., 2008), and hydroxyl on the Moon (Pieters et 424 

al., 2009; Clark, 2009; Sunshine et al., 2009). With only a handful of wavelengths 425 

available for surface analysis, similar identifications may be impossible on Titan. 426 

The observations are further complicated by residual absorption and scattering 427 

within Titan’s atmospheric windows. For example, Hayne et al. (2014) found 428 

strong atmospheric attenuation in the 2.7 µm window compared to the 2.8 µm 429 

window, resulting in a reversal of the spectral slope expected for water ice.  430 

These limitations are present for both orbital and aerial platforms (such as 431 

a balloon or aircraft). This is true even though the amount of atmospheric 432 

absorption between an aerial platform and the surface is much less than that 433 

encountered by an orbiter. For example, the Huygens probe was able to image 434 

Titan’s surface at the meter scale from an altitude of 10 km (Tomasko et al., 435 

2005), but surface spectra could not be obtained outside of a few specific 436 
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spectroscopic windows (Tomasko et al., 2005). This is because at these altitudes, 437 

there is little solar illumination for the surface to reflect, since much of the 438 

sunlight has been absorbed or scattered by the overlying atmosphere (Tomasko et 439 

al., 2005). McDonald et al. (2015) modeled the effect of methane absorption with 440 

altitude, and found a slight widening of the spectral windows at altitudes closer to 441 

the surface. However, they neglected to include the effects of atmospheric 442 

scattering, and thus judge that the broadening they observe is at best an upper 443 

limit. As a result, an airplane or balloon would provide little if any improvement 444 

in the wavelengths available for spectroscopy over an orbiter. Given these 445 

constraints, it would be difficult for a remote spectrometer to identify spectral 446 

features associated with common biological molecules on Titan. 447 

To test this hypothesis, we obtained reflectance spectra of several 448 

molecules of biological interest in the laboratory. These include a pure powdered 449 

sample of the amino acid glycine, a pure powdered sample of the amino acid 450 

alanine, as well as a reflectance spectrum of a sample of glycine that had been 451 

dissolved in water, frozen, and desiccated under vacuum (Figure 6a). We used an 452 

ultra-high vacuum system that is able to obtain bidirectional reflectance spectra 453 

(i=0°, e=30°) using a Bruker FTIR spectrometer. The spectrometer has a typical 454 

resolution of 4 cm-1 (or ~10 nm at 5 µm, more than two times higher resolution 455 

than VIMS), and a wavelength range limited to ~1.8 – 5.5 µm (see Hibbitts and 456 

Szanyi, 2007).  457 
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When we compare the brightness of the laboratory spectra in the 2, 2.7, 458 

2.8, and 5 µm atmospheric windows, we find they are almost indistinguishable 459 

from each other. They are also rather featureless, unlike water ice, which shows a 460 

prominent absorption band at 2.8 µm (Figure 6b). Moreover, given the purity of 461 

these samples, the spectra presented here represent the absolute best-case scenario 462 

for identifying biological molecules remotely. The concentration of biomolecules 463 

in cryolavas and impact melts on Titan is likely to be much lower than the 464 

concentrations measured in the laboratory. For example, hydrogen cyanide 465 

(HCN), one biomolecule precursor (Ferris et al. 1978), is produced in Titan’s 466 

atmosphere at a rate of ~1.2 x 108 molecules cm-2 s-1 (Willacy et al. 2016). If 467 

Titan’s surface is ~1 Ga old (the upper limit estimated by Neish and Lorenz, 468 

2012), we would expect ~1011 moles of HCN per km2. For a 1 km2 region of lava 469 

or impact melt, this gives a HCN concentration of 1-10 M (for 10-100 m thick 470 

layers of water). If the yield of glycine in such a solution is ~1% (Ferris et al. 471 

1978), we would expect glycine concentrations of only 0.01-0.1 M in the lava or 472 

impact melt. Further, the unique identification of particular molecules within a 473 

complex mixture of organics is extremely challenging even with high sensitivity, 474 

given multiple overlapping spectral features (see, for example, Clark et al., 2009). 475 

Thus, remotely identifying biomolecules on Titan’s surface from above or 476 

within Titan's atmosphere would be difficult, even with an infrared camera that 477 

has finer spatial and spectral resolution and wider spectral range than VIMS.  478 
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 479 

3.2 Detection by in-situ sampling? 480 

 481 

Another approach for detecting biological molecules on Titan would be to 482 

sample the surface in situ. This approach would require specific measurement 483 

strategies. To date, only one spacecraft has acquired in situ information about 484 

Titan’s surface. In January 2005, the Huygens probe became the first (and only) 485 

spacecraft to descend through Titan’s atmosphere and land on its surface 486 

(Lebreton et al., 2005). It provided detailed information about Titan’s atmospheric 487 

profile and chemistry (Fulchignoni et al., 2005; Niemann et al., 2005), as well as 488 

information about Titan’s surface properties (Niemann et al., 2005; Tomasko et 489 

al., 2005; Zarnecki et al., 2005). The Huygens probe firmly identified methane 490 

and ethane, and tentatively identified cyanogen (C2N2), benzene (C6H6), and 491 

carbon dioxide (CO2) on the surface of Titan (Niemann et al. 2010).  492 

However, there has been as yet no identification of biological molecules 493 

on the surface of Titan, and it is unlikely that such identifications will be possible 494 

using the currently available data set. The Huygens probe was designed with 495 

essentially no information about Titan's surface and was not guaranteed to survive 496 

impact. As a result, it was not capable of precision landing near a site of 497 

astrobiological interest, such as an impact crater or cryovolcano. Even if it had 498 

landed in such an area, the mass resolution (1 amu) and mass range (1-140 amu) 499 
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of the Huygens GCMS (Gas Chromatograph Mass Spectrometer) were not suited 500 

to the identification of biological molecules. Oxygenated organic molecules (e.g., 501 

CvHxNyOz) have mass differences much less than 1 amu compared to non-502 

oxygenated molecules of similar molecular weight (e.g., Cv+1Hx+4Ny). 503 

Distinguishing between these products requires higher resolution mass 504 

spectrometers (see Neish et al, 2008; 2009; Hörst et al., 2012; Hörst, 2017) and/or 505 

a mechanism for separating different molecules with the same unit mass (Neish et 506 

al., 2010; Cleaves et al., 2014). In addition, many amino acids and nucleobases 507 

have masses in excess of 140 amu. Glutamine and glutamic acid fall into this 508 

mass range, and they represent half of the amino acids identified in one 509 

hydrolyzed sample of Titan haze analogues (Neish et al., 2010). Finally, and 510 

perhaps most importantly, the surface material sampled by GCMS did not 511 

encounter temperatures of more than ~150 K. As a result, no large complex 512 

molecules were volatilized and ingested into the instrument (Lorenz et al. 2006). 513 

The measurement of complex organics from a surface requires careful sample 514 

handling and processing to enable analysis of these molecules without 515 

degradation or conversion that obscures the chemical nature of the original 516 

material. The Huygens probe was not designed to perform this type of 517 

measurement.  518 

 Identification of biological molecules on Titan would require a spacecraft 519 

capable of precision landing, equipped with a payload that is designed to identify 520 
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the composition and distribution of the organic molecules present within the 521 

water-ice matrix. Existing or proposed spaceflight instrumentation could be used 522 

to accomplish the in-situ detection of complex organics and potential 523 

biomolecules in the Titan surface environment.  Since the deployment of the 524 

Huygens probe, two gas-chromatograph mass spectrometers have been flown that 525 

exploit a solid sample acquisition and processing capability to pyrolyse samples 526 

and measure a wide range of biological molecules (Goesmann et al., 2007; 527 

Mahaffy et al., 2012). Both the Rosetta COSAC and Mars Science Laboratory 528 

SAM instruments included chiral columns and derivatization agents to allow for 529 

the volatilization of key functional groups in biologically interesting molecules, 530 

such as amino acids, that would normally degrade or resist transport through the 531 

gas chromatography columns (Freissinet et al., 2010). This analysis technique has 532 

been demonstrated to successfully detect biomolecules in laboratory-based Titan 533 

organic analogs that have undergone hydrolysis (Hörst et al., 2012; Poch et al., 534 

2012). The ExoMars MOMA instrument includes an additional capability of 535 

laser-desorption mass spectrometry, which may have clear advantages in diverse 536 

surface environments and for the measurement of large refractory organic 537 

molecules (Siljestrom et al., 2014; Li et al., 2015; Goesmann et al., 2017). 538 

Sampling and measurement in organic-laden ices, as proposed here, has 539 

recently been discussed in the context of a science feasibility study of a landed 540 

Europa mission (Hand et al., 2017). With the goal of searching for signs of life, 541 
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the lander’s model payload includes an Organic Compositional Analyzer (OCA), 542 

baselined to be a GCMS for the detection and identification of molecular 543 

biosignatures, similar to those proposed as targets for Titan exploration. The 544 

sampling and measurement approach discussed for Europa is highly applicable to 545 

the Titan surface; in fact, the much-reduced radiation environment and anticipated 546 

high density of organic molecules eases the requirements for chemical 547 

characterization on Titan. Additional measurement approaches and sampling 548 

implementations have been discussed with respect to the challenges that are 549 

unique to cryogenic surfaces (Castillo et al., 2016). 550 

In Section 2, we identified the highest priority targets for exploration by in 551 

situ sampling systems: the floors of large, relatively unmodified impact craters 552 

(specifically, Sinlap, Selk, and Menrva craters). Where, then, would be an ideal 553 

place to sample within these craters? Much of Titan is covered in a thick layer of 554 

organic molecules (Janssen et al., 2016), so not all impact melt deposits may be 555 

accessible on a crater floor or in its ejecta blanket. We need to identify locations 556 

where impact melt deposits have been recently exposed through erosion and/or 557 

mass wasting. 558 

 To identify an appropriate sampling site, we consider a relevant terrestrial 559 

analogue: Haughton crater in the Canadian Arctic. The 39 Ma Haughton impact 560 

structure is a well preserved 23 km diameter crater in a polar desert, with little to 561 

no obscuring vegetation (Osinski et al., 2005; Tornabene et al., 2005). Thus, it is 562 
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an excellent analogue for the study of craters on worlds that have experienced 563 

moderate amounts of erosion, such as Mars or Titan. We note that the 564 

geomorphology of the crater is what makes it a good analogue; the composition of 565 

the substrate and chemical weathering experienced by the primarily carbonate 566 

rocks at Haughton would be quite different from that experienced by a water-ice-567 

organic bedrock exposed to liquid hydrocarbons on Titan (Lorenz and Lunine, 568 

1996). In addition, the periglacial processes that dominate the landscape in the 569 

Canadian Arctic would not be found on Titan, where the temperatures are never 570 

low enough for liquid hydrocarbons to freeze (Hanley et al., 2017). 571 

Mapping in the interior of Haughton has revealed a large deposit of impact 572 

melt breccia in the crater floor (the light-toned materials in Figure 7a). Using 573 

geologic maps from Osinski et al. (2005), we estimate that this deposit represents 574 

~65% of the total area of the crater floor within 5 km of the crater centre (roughly 575 

half the radius, R, of the crater), and ~20% of the crater floor within 10 km of the 576 

crater centre (roughly one crater radius). Thus, a lander would have a high 577 

probability of encountering impact melt if it were to land within ½ R of the crater 578 

centre. 579 

Notably, this melt deposit has been incised by multiple river channels 580 

(Figure 7b), exposing fresh melt surfaces. Additional fluvial erosion and/or mass 581 

wasting then brings samples of melt to the flat, smooth, alluvial plain at the 582 

bottom of the crater (Figure 7c), where they would be easily accessible by a 583 
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lander. The benefit to accessing melt deposits at the bottom of river valleys is that 584 

no drilling would be needed to reach an unaltered melt sample. Since liquid 585 

hydrocarbons do not react chemically with water ice (Lorenz and Lunine, 1996), 586 

even samples exposed to erosion and weathering in the Titan environment would 587 

remain relatively pristine. We would also not expect any major alteration due to 588 

high-energy electromagnetic radiation and/or charged particles, since ultraviolet 589 

radiation and galactic cosmic rays do not penetrate all the way to the surface of 590 

Titan (Hörst, 2017). Thus, any biological molecules present would be trapped 591 

inside the chemically inert water ice, and so should be accessible when the sample 592 

is ingested into a lander. Therefore, if we can identify river valleys on the floors 593 

of Sinlap, Selk, and Menrva impact craters, these would be ideal landing sites.  594 

The present resolution offered by the Cassini RADAR instrument is 595 

insufficient to observe anything but the largest river channels; the Huygens probe 596 

saw many more channels near its eventual landing site than are resolved in the 597 

corresponding SAR images (e.g., Keller et al., 2008). Still, there is evidence for 598 

fluvial erosion in many of Titan’s craters; for example, there is evidence for large 599 

river channels in the ejecta blankets of both Selk (Soderblom et al., 2010) and 600 

Sinlap (Neish et al., 2015). Menrva is also characterized by many large fluvial 601 

networks (Lorenz et al., 2008; Wood et al., 2010; Williams et al., 2011), which 602 

likely expose impact melt deposits in the channel walls and as riverbed sediments. 603 

Imaging from a mobile aerial platform, or perhaps from an orbiter designed to 604 
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perform such measurements, could help to identify where the deposits of interest 605 

are most accessibly exposed. 606 

In this work, we have remained agnostic as to the origin of the biological 607 

molecules we seek to find in Titan’s impact craters. However, future mission 608 

planners may wish to differentiate between those biomolecules formed by abiotic 609 

processes and those formed by biotic processes. There are several indicators that 610 

may be able to differentiate between biomolecules of biotic origins from those of 611 

abiotic origins. For example, one may use isotopic signatures to differentiate 612 

between the two; life on Earth preferentially utilizes the lighter isotope of carbon, 613 

12C, over the heavier isotope, 13C (Cockell, 2015). One may also look for an 614 

abundance of molecules with a single chirality; life on Earth uses only the L-615 

stereoisomer of amino acids, and not their mirror image, the D-stereoisomer 616 

(McKay, 2016). Finally, one could consider the broader suite of molecules present 617 

in the melt pond; abiotic processes typically produce smooth distributions of 618 

organic material, while biologic processes select a highly specific set of molecules 619 

(McKay, 2004). 620 

 621 

4. Conclusions 622 

 623 

Biomolecules similar to those found on Earth are likely present on Titan. To 624 

identify and characterize them would require in-situ measurements of Titan’s 625 
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surface material, obtained through precision targeting of a lander, equipped with 626 

instrumentation capable of measuring a wide range of biological molecules. The 627 

ideal landing sites would be the floors of Titan’s largest, freshest impact craters, 628 

where mass wasting and fluvial erosion expose fresh deposits of impact melt for 629 

sampling. Impact craters are preferred over cryovolcanoes for a number of 630 

reasons, chief among them the temperature of the aqueous medium; higher 631 

temperatures at impact craters will increase reaction rates exponentially, 632 

increasing the likelihood of forming complex biomolecules. Determining the 633 

extent of prebiotic chemistry within these melt deposits would help us to 634 

understand how life could originate on a world very different from Earth, and 635 

shed light on prebiotic synthesis more generally. 636 
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Tables 1104 

 1105 

Table 1:  Relative depths for seven ‘certain’ or ‘nearly certain’ craters on Titan 1106 
with D > 75 km. 1107 

Crater Diameter, 

D (km) 

Depth, d (m) Technique Relative depth, Ra Relative depth, Rc Source of Depth 

Measurement 

Soi 78 ± 2 240 ± 120 Stereo 0.78 ± 0.11 0.76 ± 0.12 Neish et al. (2015) 

Selk 79 ± 7 470 ± 90 SARTopo 0.58 ± 0.08 0.53 ± 0.09 This paper 

Sinlap 82 ± 2 640 (+160/-150) SARTopo 0.43 (+0.14/-0.13) 0.36 (+0.16/-0.15) Neish et al. (2013) 

Hano 100 ± 5 420 ± 40 SARTopo 0.65 ± 0.03 0.56 ± 0.04 This paper 

  ~0 Stereo ~1 ~1 This paper 

Afekan 115 ± 5 455 (+175/-180) SARTopo 0.62 (+0.15/-0.15)b 0.52 (+0.19/-0.19) Neish et al. (2013) 

Forseti 140 ± 10 180 ± 60 Stereo 0.85 ± 0.05b 0.80 ± 0.07 This paper 

  >410 ± 50  SARTopo < 0.66 ± 0.04b < 0.55 ± 0.06 This paper 

Menrva 425 ± 25 490 (+110/-120) SARTopo N/A N/A Neish et al. (2013) 
aGanymede crater depths from Table 4 in Bray et al. (2012). 1108 
bAssumed to have the same depth as a D = 100 km crater. 1109 
cGanymede crater depths from Figure 2b in Schenk (2002). 1110 

 1111 

  1112 
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Figures 1113 

 1114 

 1115 

FIG. 1. (a) Cassini RADAR image of Sotra Facula (centered near 13°S, 40°E). 1116 

Sotra Patera (a 1700 m deep pit), Doom Mons (a 1450 m high mountain), and 1117 

Mohini Fluctus (flow-like features tens of meters high) are labeled. (b) Cassini 1118 

VIMS image of Sotra Facula, overlaid on the Cassini RADAR image (R: average 1119 

over 4.90 to 5.07 µm, G: 2.02 µm, B: 1.28 µm). The dune fields are ‘brown’ in 1120 

colour and ‘blue’ regions may be enriched in water ice. The ‘yellowish-green’ 1121 

regions have an unknown composition, but may be a combination of water ice and 1122 

organic molecules (Neish et al., 2015). 1123 

 1124 



57 

57 

 1125 

FIG. 2. (a) SARTopo profiles overlain on a Cassini RADAR image of Selk crater. 1126 

The colours refer to the relative height at any point. North is up, and the image 1127 

covers the range 3.5 – 9.5°N, 196 – 202°W. (b) The westernmost SARTopo 1128 

profile from (a). Crosses indicate the points used to determine the depth of the 1129 

northern half of the crater, d1. Similar depth measurements were made in the 1130 

southern half of the crater.  1131 
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58 

 1132 

FIG. 3. (a) Stereo topography of Forseti crater in the overlapping region of the 1133 

T23 and T84 passes, overlain on a Cassini RADAR image. The crater is outlined 1134 

at bottom left. (b) SARTopo profiles overlaid on a Cassini RADAR image of 1135 

Forseti crater. The colours refer to the relative height at any point. North is up, 1136 

and the image covers the range 20 – 30°N, 5 – 15°W. (c) The westernmost 1137 

SARTopo profile from (a). Crosses indicate the points used to determine the 1138 

minimum depth of the crater. 1139 

 1140 
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 1141 

FIG. 4. (a) Stereo topography of Hano crater in the overlapping region of the T16 1142 

and T84 passes, overlain on a Cassini RADAR image. The regions of Hano crater 1143 

used to estimate the floor elevation (f) and rim elevation (r) are outlined at the 1144 

bottom. (b) SARTopo profiles overlaid on a Cassini RADAR image of Hano 1145 

crater. The colours refer to the relative height at any point. North is up, and the 1146 

image covers the range 35 – 45°N, 340 – 350°W. (c) The center SARTopo profile 1147 

from (a). Crosses indicate the points used to determine the depth of the crater. 1148 

 1149 

 1150 
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 1151 

FIG. 5. These three large, relatively unmodified impact craters on Titan would be 1152 

the best locations to identify biological molecules on its surface: (a) The 79 ± 7 1153 

km diameter Selk (7°N, 198°W), (b) the 82 ± 2 km diameter Sinlap (11°N, 1154 

16°W), (b) and (c) the 425 ± 25 km diameter Menrva (20°N, 87°W). 1155 

 1156 
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 1157 

FIG. 6. (a) Reflectance spectrum of powdered glycine (black), powdered alanine 1158 

(green), pure water ice (blue), and glycine dissolved in water, frozen, and later 1159 

warmed and desiccated under vacuum (red). Spectra of the amino acids have been 1160 

obtained at both 100 K and room temperature, and they are identical for these 1161 

materials. Shown in grey are the spectral windows through which VIMS can 1162 

observe surface features on Titan. (Note that the 3.1-µm feature in the spectrum of 1163 

dry glycine is due to water-ice build-up in the cryogenic infrared detector.) (b) 1164 

Spectra of water ice (blue), “dry” glycine (black), “dry” alanine (green), and 1165 

“wet” glycine (red) sampled in the four long-wavelength Titan atmospheric 1166 

windows. The water-ice spectrum has been shifted vertically by 0.3 for ease of 1167 

viewing.  1168 
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 1169 

FIG. 7. (a) Landsat-8 Operational Land Imager (OLI) natural colour image of 1170 

Haughton crater (75.4°N, 89.7°W) on Devon Island, Nunavut, Canada. The star 1171 

indicates the location of (b). North is up. (b) Lighter toned impact melt has been 1172 

exposed by the erosion of the impact crater interior by the Haughton River. View 1173 

is to the north. The box indicates the location where the author photographed 1174 

image (c). (c) Mass wasting and fluvial erosion brings samples of impact melt 1175 

breccia into the smooth river valley bottom. View is to the south, and a person is 1176 

visible on the ridgeline for scale. The box indicates the location where the author 1177 

photographed image (d). (d) If craters on Titan are similar in morphology to 1178 

Haughton, samples such as this ~10-cm cobble of impact melt breccia would be 1179 

safely accessible by a lander on the flat floor of a river valley. 1180 
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