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Abstract

Several advances are made in connection with the approximation and estimation of heavy-

tailed distributions, some of which also befit other types of distributions. It is first explained

that on initially applying the Esscher transform to heavy-tailed density functions such as the

Pareto, Student-t and Cauchy, said densities can be approximated by employing a certain

moment-based methodology. Alternatively, density approximants can be obtained by appro-

priately truncating such distributions or mapping them onto finite supports. These techniques

are then extended to the context of density estimation, their validity being demonstrated by

means of simulation studies. As well, illustrative actuarial examples are presented. Novel

approaches involving the use of the Box-Cox transform in conjunction with empirical saddle-

point density estimates and generalized beta density functions are introduced for determining

the empirical endpoints associated with various types of distributions. Additionally, an itera-

tive algorithm and an approximation expressed in terms of a linear combination of Bernstein

polynomials are proposed for securing smooth bona fide density functions. Finally, a certain

polynomial adjustment is applied to bivariate empirical saddlepoint density estimates in order

to accurately model bivariate data sets. The implementation of the proposed methodologies

such as the constrained estimation of the four parameters of the generalized beta distribution

and the adjusted bivariate empirical saddlepoint density estimation technique in the symbolic

computing package Mathematica also represents a notable contribution of this dissertation.

Keywords: Density approximation, heavy-tailed distributions, bona fide density estimates,

empirical distributional endpoints, empirical saddlepoint estimates, bivariate density estima-

tion, symbolic computing.
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It is the glory of God to conceal a matter;
to search out a matter is the glory of kings.

(Proverbs 25:2)
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Chapter 1

Introduction

1.1 Overview of the proposed scholarly contributions

It is not uncommon to encounter heavy-tailed distributions in actuarial or econometric applica-

tions. A drawback associated with many of those distributions is that they only possess a finite

number of moments, which curtails the applicability of moment-based density approximation

or estimation techniques. In Chapter 2, we propose three approaches to modify such distribu-

tions so that all the moments of the resulting distributions exist. In particular, it is explained that

on initially applying the Esscher transform to density functions such as the Pareto, Student-t

and Cauchy, one can utilize a certain moment-based technique whereby the tilted density func-

tions are expressed as the product of a base density function and a polynomial adjustment.

Alternatively, density approximants can be secured by appropriately truncating the distribu-

tions or mapping them onto finite supports. The validity of these approaches is corroborated

by making use of simulated data. Extensions to the context of density estimation, in which

case sample moments are employed in lieu of exact moments, are discussed and illustrative

examples involving actuarial data sets are presented. As well, applications hinging on type-II

Pareto and Student-t distributions are provided. Novel approaches involving making use of the

Box-Cox transform in conjunction with empirical saddlepoint density estimates and general-

ized beta density functions are introduced in Chapter 3 for determining the empirical endpoints

of a distribution. It should be emphasized that the ‘end points’ obtained from the first approach

are in fact points beyond which the distribution is of no practical significance. Such empirical

points ought to be useful for instance in actuarial applications, in which case the distributions

do not actually have an infinite support. It may happen that an approximant or an estimate of a

density function could be slightly negative on the support of the distribution. Techniques such

as those proposed by Gajek (1986) and Glad et al. (2003) have been suggested to circumvent

1



2 Chapter 1. Introduction

this shortcoming. However, the resulting density functions are not differentiable everywhere.

We are proposing two new approaches in Chapter 4 namely, an iterative algorithm and a tech-

nique relying on approximating a function by means of Bernstein polynomials, for obtaining

smooth bona fide density functions. A polynomial adjustment is applied to a bivariate empirical

saddlepoint density estimate which is based on a sample estimate of the cumulant generating

function in Chapter 5, which includes several numerical examples. As it turns out, the density

functions obtained by making use of this new approach are more accurate than those deter-

mined from the widely utilized kernel density estimation approach. Finally, some concluding

remarks are included in Chapter 6 where avenues for future developments are suggested.

Certain characterizations of distributional tail behavior are provided in the next subsection.

Some of the main moment-based density approximation techniques are described in Section

1.3. Polynomially adjusted density approximants and empirical saddlepoint estimates are dis-

cussed in Section 1.4.

1.2 Characterizations of heavy-tailed distributions

Heavy-tailed distributions are of interest in distribution theory, data analysis, and various ac-

tuarial applications. Klugman et al. (2012) provided several classification categories between

light- and heavy-tailed distribution which are based, for instance, on moments, the hazard rate

function and the mean excess loss function. Parzen (1979) examined the limiting behavior of

density quantile functions which can be expressed as

f (Q(u)) ∼

 (1 − u)α for α > 0 and α , 1

(1 − u) (log 1
1−u )1−β for α = 1 and 0 ≤ β ≤ 1

(1.1)

where f and Q represent the density and quantile function, respectively, and f1(u) ∼ f2(u)

denotes that the ratio f1(u)/ f2(u) converges to a positive finite constant as u → 1. The param-

eter α determines three types of tail behavior: short tails, medium tails and long tails which

correspond to α < 1, α = 1 and α > 1, respectively.

In order to refine the tail classification advocated by Parzen (1979), Schuster (1984) relied

on two quantities, namely,

α = lim
u→1−
−

1 − u
f (Q(u))

∂ log
[
f (Q(u))

]
∂u

(1.2)

and

c = lim
u→1−

(1 − u)/ f (Q(u)) = lim
u→1−

1/h (Q(u)) , (1.3)
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where f , Q, and h represent the density, quantile and hazard function, respectively, to obtain

five categories of tail behavior:

Short 0 < α < 1

Medium-Short α = 1 c = 0

Medium-Medium α = 1 0 < c < ∞

Medium-Long α = 1 c = ∞

Long α > 1.

The latter criterion has a theoretical connection with the limiting size of extreme spacings.

The reader may refer to Rojo (1996), whose classification, which involves more categories,

is based on the residual lifetime distributions. Rojo (2010) reviewed the aforementioned clas-

sifications of the tail behavior, carried out simulation studies and assigned categories to sample

of observations. Table 1.1 provides a classification for some commonly used distributions as

specified in Parzen (1979), Schuster (1984) and Rojo (1996). Heavy-tailed distributions belong

to the medium-long and long tail categories in Schuster’s classification.

Distribution Parzen Schuster Rojo

Uniform Short Short Super-Short

Beta Short Short Super-Short

Exponential Medium Medium-Medium Medium

Logistic Medium Medium-Medium Medium

Extreme value Medium Medium-Short Moderately-Short

Normal Medium Medium-Short Weakly-Short

Lognormal Medium Medium-Long Weakly-Long

Weibull (k < 1) Medium Medium-Long Weakly-Long

Weibull (k = 1) Medium Medium-Medium Medium

Weibull (k > 1) Medium Medium-Short Weakly-Short

Cauchy Long Long Weakly-Long

Pareto (k > 1) Long Long Weakly-Long

Pareto (k = 1) Long Long Moderately-Long

Pareto (k < 1) Long Long Super-Long

Table 1.1: Classification of tail behaviors for certain distributions



4 Chapter 1. Introduction

1.3 Various types of moment-based density function approx-
imations

Various density approximation techniques that are associated with the moments or the cumu-

lants of a distribution have been proposed in the statistical literature. For instance, Pearson’s

curves, which are discussed in Solomon and Stephens (1978), rely only on the first few mo-

ments of a distribution. In that case, the density function, f (x), is assumed to satisfy the

following differential equation:

1
f (x)

d f (x)
dx

=
− (C1 + x)

C0 + C1x + C2x2 . (1.4)

where C0, C1 and C2 are constants.

Johnson curves, which are described in Elderton and Johnson (1969), make use of the first

four moments of a distribution to approximate a density on the basis of a system of frequency

curves whose support can be finite, infinite or semi-infinite. Edgeworth expansions as proposed

by Edgeworth (1905) and further developed by Fisher and Cornish (1960) and Hill and Davis

(1968), aim at increasing the accuracy of an approximation by making use of Taylor series ex-

pansions and appealing to the central limit theorem. The resulting approximants are expressed

in terms of Hermite polynomials whose coefficients are determined from the cumulants of the

target distribution.

The saddlepoint approximation, which was pioneered by Daniels (1954), has been exten-

sively investigated for several decades. Goutis and Casella (1995) discussed the motivation for

applying this technique. Jensen (1995) extensively covered the application of this method to

various types of random variables, including i.i.d. sums, compound sums, Markov chains, and

a sum of independent but not necessarily identically distributed variables. In this instance, the

density approximant is expressed as

f (x) =
1√

2πK ′′(ŝ)
exp [K(ŝ) − ŝx] (1.5)

where K(t) is the cumulant generating function, that is, K(t) = ln E
(
etX

)
and ŝ is the solution

to K
′

(ŝ) = x. The main advantage of the saddlepoint approximation is its accuracy in the tails

of the target density.
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1.4 Techniques used for modeling heavy-tailed distributions

1.4.1 Polynomially adjusted density approximation

Provost (2005) proposed a unified methodology for approximating density functions whereby

the approximant is expressed as the product of a base density function and a polynomial ad-

justment. This methodology applies to various types of distributions, including those that are

multimodal.

Let fX(x) be the density function of a continuous random variable X defined on the interval

(a,b) and E(X`) ≡ µX(`). Letting Y = (X − u)/s, u ∈ R, s ∈ R+, the density function of Y ,

fY(y) = s fX(u + sy), is defined on the interval (a0,b0), where a0 = a−u
s and b0 = b−u

s . The

moments of Y can be evaluated as follows:

µY(`) = E
(X − u

s

)`
=

1
s`

∑̀
k=0

(
`

k

)
µX(k) (−u)`−k. (1.6)

Let ψY(y) denote a base density function, that is, an initial approximation to fY(y) and mY(`)

be its associated `th moment, that is,
∫ b0

a0
y`ψY(y) dy. Assuming that µY(i), i =1,2,. . . , and mY( j),

j =1,2,. . . exist and are uniquely defined, the approximant to fY(y) can be expressed as

fYd (y) = ψY(y)
d∑

k=0

ξk yk (1.7)

where d is a suitable degree for the polynomial adjustment and the ξk’s are its coefficients.

The choice of the base density function, ψY(y), depends on the support of the random

variable Y and the features of the distribution, as indicated by a histogram of the data. Such

approximants are mathematically equivalent to those that are adjusted by certain linear com-

binations of orthogonal polynomials. For example, when beta, gamma and Gaussian distri-

butions are taken as base densities, the adjustments will respectively involve Jacobi, Laguerre

and Hermite polynomials, which can be generated from the associated weight functions, as

discussed in Provost and Jiang (2012) and Ha and Provost (2008). The r parameters of ψY(y)

can be estimated by making use of the method of moments, that is, by equating µY(`) to mY(`),

` =1,2,. . . ,r.

The coefficients, ξk, of the polynomial degree k are determined by solving the system of

equations resulting from equating the hth moment of the target distribution to the hth moment

associated with the density approximant for h = 0, 1, . . . , d, that is,

∫ b0

a0

yh ψY(y)
d∑

k=0

ξk yk dy =

∫ b0

a0

yh fY(y) dy, h = 0, 1, . . . , d. (1.8)
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This leads to a system of linear equations which yields the following solution in matrix nota-

tion:



ξ0

ξ1
...

ξd


=



mY(0) mY(1) · · · mY(d − 1) mY(d)

mY(1) mY(2) · · · mY(d) mY(d + 1)
...

...
. . .

...
...

mY(d) mY(d + 1) · · · mY(2d − 1) mY(2d)



−1

µY(0)

µY(1)
...

µY(d)


(1.9)

The degree of the polynomial adjustment is chosen to be the degree at which the integrated

squared difference (IS D) as defined in Equation (1.10) or the integrated squared error (IS E)

as specified by Equation (1.11) stop decreasing noticeably or satisfy a predetermined tolerance

level. The IS D between approximants of successive degrees is defined as

IS Dd
∆ =

∫ b0

a0

(
fYd (x) − fYd+1(x)

)2dx, d = r + 1, r + 2, . . . (1.10)

If the target density is known, the IS E between the exact and the approximated densities is

evaluated as follows:

IS Ed =

∫ b0

a0

(
fYd (x) − fY(x)

)2dx, d = r + 1, r + 2, . . . (1.11)

The minimum degree of the polynomial adjustment is set to be r + 1 since the base density

already matches the first r moments.

Finally, the approximate density for X obtained by applying the inverse transformation is

given by

fXd (x) = ψY

( x − u
s

) d∑
k=0

ξk

s

( x − u
s

)k
. (1.12)

Generally, the approximants can be regarded as nearly bona fide density functions. How-

ever, it should be noted that the resulting density approximants may occasionally happen to be

slightly negative on certain sub-ranges of their supports. In order to obtain a truly bona fide

density function, one can set the density to be zero wherever it becomes negative and normal-

ize the resulting function so that it integrates to one. Alternatively, an algorithm proposed by

Gajek (1986) can be applied. This aspect is investigated in Chapter 4.

1.4.2 The empirical saddlepoint density estimation approach

Suppose that the analytical form of the cumulant generating function is unknown. Given the

sample of observations x1, x2, . . . , xn, the empirical cumulant generating function, as introduced

by Davison and Hinkley (1988), is estimated by
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K̂n(s) = log

1
n

n∑
i=1

esxi

 (1.13)

where n is the sample size. The estimates of the first and second derivative of K̂n(s) are

K̂n
′
(s) =

∑n
i=1 xi esxi∑n

i=1 esxi
(1.14)

and

K̂n
′′

(s) =

∑n
i=1 xi

2 esxi∑n
i=1 esxi

− K̂n
′
(s)

2
. (1.15)

The empirical saddlepoint estimation, denoted by f̂n(x), is expressed as follows:

f̂n(x) =
(
2π K̂n

′′
(ŝ)

)− 1
2 eK̂n(ŝ)−ŝx (1.16)

where ŝ is such that K̂n
′
(ŝ) = x.

Feuerverger (1989) discussed the properties of the empirical saddlepoint approximation, as

well as those of the empirical moment and cumulant generating functions. Monti and Ronchetti

(1993) investigated the relationship between the empirical log-likelihood and the empirical

saddlepoint approximations to obtain nonparametric density estimates and confidence regions

for a multivariate M-estimator.

The following propositions will be used in this dissertation.

Proposition 1.4.1 The boundary of K̂n
′
(s) lies in the interval (min xi,max xi).

Proof Let x(i) be the ordered observations from a sample where x(1) < x(2) < · · · < x(n) and n is

the sample size. Making use of Equation (1.14),

lim
s→∞

K̂n
′
(s) = lim

s→∞

x(n) esx(n) +
∑n−1

i=1 x(i) esx(i)

esx(n) +
∑n−1

i=1 esx(i)

= lim
s→∞

x(n) +
∑n−1

i=1 x(i) es(x(i)−x(n))

1 +
∑n−1

i=1 es(x(i)−x(n))
. (1.17)

Since x(i) − x(n) < 0 for any x(i), the limit of the sums in both the numerator and the denom-

inator is zero. Therefore lim
s→∞

K̂n
′
(s) = x(n).

In the same way,

lim
s→−∞

K̂n
′
(s) = lim

s→−∞

x(1) esx(1) +
∑n

i=2 x(i) esx(i)

esx(1) +
∑n

i=2 esx(i)

= lim
s→−∞

x(1) +
∑n−1

i=2 x(i) es(x(i)−x(1))

1 +
∑n−1

i=2 es(x(i)−x(1))
(1.18)
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As s(x(i) − x(1)) < 0 for any x(i) and s → −∞, the limit of sums in both the numerator and

the denominator is zero. Therefore, lim
s→−∞

K̂n
′
(s) = x(1). Hence, the result holds.

Proposition 1.4.2 K̂n(s) is a strictly convex function.

Proof Let X be a convex set in a real vector space and let f : X → R be a function. The

function f is strictly convex if

∀x1 , x2 ∈ X,∀t ∈ (0, 1) : f (tx1 + (1 − t)x2) ≤ t f (x1) + (1 − t) f (x2). (1.19)

Replacing f (x) with K̂n(s) on the left side in Equation (1.19) and making use of Hölder’s

inequality, the empirical cumulant generating function can be expressed as

K̂n (ta + (1 − t)b) = log

1
n

n∑
i=1

e(ta+(1−t)b)xi


= log

1
n

n∑
i=1

e(axi)te(bxi)(1−t)


≤ log


1
n

n∑
i=1

eaxi

t1
n

n∑
i=1

ebxi

1−t
= t K̂n(a) + (1 − t) K̂n(b)

which establishes the strict convexity. Replacing K̂n
′
(s) with K̂n

′′
(s) in Equation (1.17) and

(1.18) confirms that both lim
s→∞

K̂n
′′

(s) and lim
s→−∞

K̂n
′′

(s) are zero, and then the condition of strict

convexity is being met.
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Chapter 2

Density Approximation Techniques as
Applied to Heavy-tailed Distributions

2.1 Introduction

Novel density estimation and approximation techniques applying to heavy-tailed distribution

are introduced in this chapter.

In Section 2.2, we propose to initially apply to the exponential tilting technique (the Esscher

transform) before approximating the densities of heavy-tailed distributions. Then, a so-called

polynomially adjusted density approximation technique is utilized. As explained in Provost

(2005), Ha and Provost (2007) and Chapter 1 of this thesis, the resulting approximant is ex-

pressed as the product of a base density and a polynomial adjustment. The following two

sections cover the approximation of such distributions by forming a compact support through

truncation and by applying the transformation of variables technique, respectively. Several il-

lustrative examples involving heavy-tailed distributions such as the Type II Pareto (Lomax),

Cauchy, and Student-t are presented in the last section. Special consideration is also paid to

symmetric distributions.

2.2 Density approximation via exponential tilting

2.2.1 Exponentially tilted distributions

An exponentially tilted distribution is obtained by transforming the target probability density

function, fX(x), into the following probability density function,

fXθ(x) =
e−θx fX(x)
L fX(x)(θ)

, θ ∈ R (2.1)

11
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where L fX(x)(θ) =
∫ ∞
−∞

e−θx fX(x) dx is the bilateral Laplace transform of fX(x). The original

definition of the Laplace transform, that is, the unilateral Laplace transform, is utilized when

the support of X is the positive half-line.

This technique has previously been utilized in actuarial science and financial mathematics.

Esscher (1932) initially used this approach to approximate the distribution of aggregate claims

at a point of interest, x0, the tilting parameter θ being such that the mean of the transformed

distribution equals x0. Gerber and Shiu (1994) and Elliot et al. (2005) utilized the exponential

tilting method to value derivative securities whose prices were governed by certain stochas-

tic processes with stationary and independent increments. Bühlmann (1980) introduced the

Esscher premium principle as a risk measure within the framework of utility theory and risk

exchange. Cox et al. (2005) demonstrated how to utilize multivariate exponential tilting for

pricing certain securities. This technique is also used in importance sampling, as discussed for

instance in Siegmund (1976).

In order to apply the polynomially adjusted density approximation methodology described

in Section 1.4.1, all the moments associated with the target density and the base density must

be finite. Accordingly, this approximation approach cannot be directly applied to heavy-tailed

distributions, which often have a limited number of moments. Examples of such distributions

include the type II Pareto and the Cauchy distributions. Moreover, as was shown in Provost

(2005), the resulting approximant may prove inaccurate when the tail behavior of a distribution

under consideration does not match that of the assumed base density.

To mitigate those issues, we propose to exponentially tilt the target density function before

attempting to determine a polynomially adjusted approximant.

2.2.2 The general algorithm

The following algorithm is utilized to approximate density functions that are transformed via

the exponential tilting technique on the basis of their theoretical moments.

1. Given the density function, fX(x), we obtain the corresponding exponentially tilted den-

sity function, fXθ(x), as specified by Equation (2.1).

2. The `th moment associated with the tilted density is determined as follows:

µXθ(`) =

∫ ∞

−∞

x` fXθ(x)dx. (2.2)

3. The approximant of the tilted density, f̃Xd,θ(x), is expressed as the product of the base

density, ψXθ(x), and a polynomial adjustment of degree d:
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f̃Xd,θ(x) = ψXθ(x)
d∑

k=0

ξkxk. (2.3)

4. The methodology described in Section 1.4.1 is applied to estimate the parameter(s) of

the base density and to determine the coefficients of the polynomial adjustment, which

are obtained by equating
∫ ∞
−∞

xh fXθ(x) dx to
∫ ∞
−∞

xh f̃Xd,θ(x) dx for h = 0, 1, . . . , d.

5. The approximant of the target density is then recovered by applying the inverse tilting

transformation, that is,

fXd,θ(x) = exp(θx) · L fX(x)(θ) · f̃Xd,θ(x). (2.4)

6. Using the integrated squared error (IS E) formula,

IS Ed,θ =

∫ ∞

∞

(
fXd,θ(x) − fX(x)

)2
dx, θ ∈ R, d = 3, 4, . . . , (2.5)

we select the ‘optimal’ polynomial degree d as well as the appropriate tilting parameter,

θ, according to the criteria specified in Section 1.4.1.

2.3 Truncating the support of a distribution for approxima-
tion purposes

Let X be a random variable having a finite number of moments, whose support is the interval
(−∞,∞). Let gX(a,b)(x) denote the corresponding truncated distribution on the interval (a, b),

whose density function is given by

gX(a,b)(x) =
fX(x)∫ b

a
fX(x)dx

, a < x < b (2.6)

where fX(x) is the density function of X. For the case of a target density function defined on

the interval [0,∞), one can set the right-truncation points b as a certain percentile of the target

density, leaving a = 0 since the right-tail behaviour is of interest. If both tails are present and

the distribution is symmetric around zero, one can choose a = −b as the truncation points so

that a and b represent pth and (100 − p)th percentile, respectively.

As the support of X(a,b) is now compact, all the moments of the truncated random variable

exists. And thus, the approximation methodology described in Section 1.4.1 can be applied.

Accordingly, the target density, fX(x), can be approximated as follows:
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1. The `th moment associated with gX(a,b)(x) as specified in Equation (2.6) is given by

µX(a,b)(`) =

∫ b

a
x` fX(x)dx∫ b

a
fX(x)dx

. (2.7)

2. A uniform density on the interval (a, b) is used as base density and the approximant is

then

f̃Xd,(a,b)(x) =
1

b − a

d∑
k=0

ξkxk. (2.8)

3. The coefficients of the polynomial adjustments, ξk, are determined by solving the linear

system resulting from equating
∫ b

a
xhgX(x) dx to

∫ b

a
xh f̃Xd,(a,b)(x) dx for h = 0, 1, . . . , d.

4. The approximant of the target density on the interval (a, b) is then

fXd,(a,b)(x) =

(∫ b

a
fXθ(x)dx

)
· f̃Xd,(a,b)(x). (2.9)

5. The ‘optimal’ polynomial degree d is selected on the basis of the ISE between fXd,(a,b)(x)

and fX(x), denoted by IS EXd,(a,b) .

2.4 Density approximation via the transformation of vari-
ables technique

Consider a random variable X defined on the interval [0,∞) and the transformed variable,

Y = X
X+δ

, whose support is the interval [0, 1). Since all the moments of Y exist, the density

approximation methodology discussed in Section1.4.1 can be implemented.

More specifically, this methodology involves the following steps:

1. Given fX(x), the density function of X, the density function of Y = X
X+δ

is

fY(y) =
δ

(1 − y)2 fX

(
yδ

1 − y

)
(2.10)

and the required associated moments are evaluated.

2. The approximant of the density of Y , fYd (x), is expressed as a polynomial as in Equation

(2.8), with a = 0 and b = 1.
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3. The coefficients of this polynomial, denoted by ξk, are determined by solving the linear

systems resulting from equating
∫ 1

0
yh fY(y) dy to

∫ 1

0
yh fYd (y) dy for h = 0, 1, . . . , d.

4. The approximant of the target density of X is then obtained by applying the inverse

transformation:

fXd,δ(x) =
δ

(x + δ)2 fYd

( x
x + δ

)
. (2.11)

5. The ‘optimal’ polynomial degree, d, and the parameter, δ, is selected on the basis of the

ISE between fXd,δ(x) and fX(x), denoted by IS Ed,δ.

2.5 Applications

In this section, we apply the three proposed density approximation methodologies to certain

heavy-tailed distributions. More specifically, we will approximate the density functions of the

type II Pareto, Cauchy, and Student-t distributions. Additionally, the approximation technique

relying on exponential tilting is applied in the context of density estimation on the basis of

a sample of observed values. Applications involving heavy-tailed actuarial data sets are pre-

sented.

2.5.1 Type II Pareto distribution

In the actuarial context, Pareto distributed individual loss random variables are utilized to

model extreme loss and risky types of insurance coverage. Since this distribution is not ex-

ponentially bounded, it results in very large values having positive probabilities.

Let X follow a type II Pareto (also called Lomax) distribution, denoted Pareto II (α, β), with

density function

fX(x) =
αβα

(x + β)α+1 , for x ≥ 0 and α, β > 0. (2.12)

The `th moment of X is given by

µX(`) =

β
` Γ(` + 1) Γ(α − `) / Γ(α) if ` < α

∞ if ` ≥ α
, (2.13)

the number of finite moments depending on the value of the shape parameter α.
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Approximation via exponential tilting

According to Nadarajah (2006), the analytical solution of the Laplace transform can be ex-

pressed either in terms of an incomplete gamma function or the Whittaker function. The solu-

tion involving the incomplete gamma function is

L fX(x)(θ) = α(βθ)α · eβθ · Γ(−α, βθ) (2.14)

where Γ(a, x) =
∫ ∞

x
ta−1 e−tdt, whereas the solution given in terms of Whittaker’s function is

L fX(x)(θ) = α(βθ)
α−1

2 · e
βθ
2 · W− α+1

2 ,− α2
(βθ) , (2.15)

whereWc,d(z) denotes the Whittaker function, which can be expressed as

Wc,d(z) =
e−

z
2 zd+ 1

2

Γ(d − c + 1
2 )

∫ ∞

0
td−c− 1

2 (1 + t)d+c− 1
2 e−zt dt, (2.16)

where Γ(z) =
∫ ∞

0
tz−1 e−tdt.

We make use of Equation (2.15) to obtain the corresponding tilted distribution as Equation

(2.14) can occasionally produce complex numbers.

Consider X ∼ Pareto II (α, β), where the symbol “ ∼ ” means “is distributed as”. We

obtained a new representation of the `th moment of the tilted Type II Pareto distribution, which

is

µXθ(`) =

(
β

θ

)`/2
Γ(` + 1)

W− α+`+1
2 ,− α−`2

(βθ)

W− α+1
2 ,− α2

(βθ)
. (2.17)

The tilted density is then approximated by making use of Equation (2.3).

No matter what positive real value is being used for the tilting parameter, the tilted density

takes on a finite value at x = 0. Figure 2.1 shows a plot of the tilted density function of the

Pareto II (3.5, 3.5) where the tilting parameter is θ = 1.5. This suggests taking the exponential

density function as base density, that is, ψX(x) = 1
λ
e−

x
λ , x > 0, where parameter λ is estimated

by µXθ(1).

Other steps that are described in the algorithm included in Section 2.2, such as determining

the coefficients of the polynomial adjustments and recovering the approximant of the target

density, are then implemented. The resulting function is finally normalized in order to obtain a

bona fide density function.

We select the degree of the polynomial adjustment, d, and the tilting parameter, θ, such that

the ISE with respect to d and θ, as defined in Equation (2.5), is minimized.
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Specifying the value of the tilting parameter can be challenging as it can theoretically take

on any positive real values. As suggested by Figure 2.2, the approximant appears to be robust

with respect to the choice of the tilting parameter.

To illustrate how the tilting parameter is chosen, let θ be discretized to two decimals. Figure

2.3 illustrates how the IS Ed,θ behaves with respect to given values of θ and d, the polynomial

adjustment degree. Generally, up to polynomial degree 32, the higher the polynomial degree,

the lower the IS Ed,θ becomes. For any polynomial degree, d, there is a certain local minimum

of IS Ed,θ around a tilting value in the neighbourhood of θ = α
β
. However, as arg min

θ

IS Ed,θ

gradually increases as d increases, it is difficult to select one particular numerical value of θ

as the ‘optimal’ tilting parameter. Furthermore, when the polynomial degree is higher, the ap-

proximant pattern gradually becomes irregular and exhibits outliers mainly due to the presence

of potentially singular points occurring when IS Ed,θ is evaluated numerically.

In light of these considerations, we take θ = α
β

= 1 as the reference point for the tilting

parameter. The resulting IS Ed,θ values shown in Table 2.1 indicate that the local minimum of

IS Ed,θ occurs at d = 32 and θ = 1.12.

After applying the inverse tilting transformation, the approximant obtained with d = 32

and θ = 1.12 is seen to be in close agreement with the target density in Figure 2.4.

Figure 2.5 where a gamma density is used as base density illustrates how inaccurate the

resulting approximant can be when one resorts to the polynomially adjusted approximation

methodology without exponential tilting.

Related to actuarial applications, risk measures are important tools in pricing, loss reserv-

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Figure 2.1: Plot of the tilted Lomax density function (α = 3.5, β = 3.5, θ = 1.5)
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(a) d = 14 and θ = 3
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(b) d = 16 and θ = 0.8

Figure 2.2: The exact (solid line) and approximated densities (dashed line) of the Lomax

distribution for different polynomial degrees and tilting parameters

ing and quantitative risk management. Formally, given a random variable X with distribution

function FX(x) and a confidence level κ ∈ (0, 1), the Value-at-Risk (VaR) and Tail Value-at-Risk

(TVaR) are respectively defined as

1.0 1.5 2.0 2.5
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Figure 2.3: Plots of the log of the integrated Square error (IS E) with respect to θ

(Top left panel: d=12 / Top right panel: d=18 /

Bottom left panel: d=24 / Bottom right panel: d=32)
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VaRκ(X) = inf {` ∈ R : FX(`) ≥ κ} (2.18)

and

TVaRκ(X) = E(X|X > VaRκ(X)) =
1

1 − κ

∫ 1

κ

VaRt(X) dt . (2.19)

In the actuarial literature, those two risk measures are known as the quantile premium principle

and conditional tail expectation, respectively.

Let Xd,θ be a random variable associated with the density approximant obtained from apply-

ing the exponential tilting technique, fXd,θ(x). Letting X ∼ Pareto II(3.5, 3.5) as in the previous

example, Tables 2.2 and 2.3 provide specific values of VaR and TVaR for the exact and several

approximated distributions. We observe that VaR and TVaR values obtained from the approxi-

mated distributions are generally quite close to those determined from the exact distribution.

Table 2.1: IS Ed,θ’s for the Pareto II (α = 3.5, β = 3.5)

for various values of θ (left column) and d (at the top)
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Figure 2.4: Exact density (solid line) and fXd=32,θ=1.12(x) (dashed line).

IS E = 1.45698 × 10−10
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Figure 2.5: Exact density (solid line) and the approximant obtained without applying

exponential tilting (dashed line)
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κ VaRκ(X) VaRκ(Xd=30,θ=0.88) VaRκ(Xd=31,θ=1) VaRκ(Xd=32,θ=1.12)

0.8 2.04337 2.04318 2.04317 2.04335

0.9 3.25744 3.25691 3.2569 3.25739

0.99 9.54658 9.53524 9.53499 9.54544

0.999 21.689 21.4872 21.4679 21.6657

IS E N/A 7.94042 × 10−10 4.57864 × 10−10 1.45698 × 10−10

Table 2.2: VaRκ for X and Xd,θ

Approximating density functions from truncated distributions

We now follow the algorithm presented in Section 2.3 to obtain an approximant for a type II

Pareto density function with parameters (α = 3.5, β = 3.5) on the intervals [0, 95th percentile]

and [0, 99th percentile]. Figure 2.6 shows that the exact density superimposed on each of the

two approximants, which consists of polynomials of degrees 25.

The differences between the exact density and its approximants are plotted in Figure 2.7.

We observe that as the support becomes narrower, the error between the exact and approxi-

mated density functions and the ISE become smaller. In addition, the magnitude of error term

increases steeply in the extreme right tail.

Approximation via transformation of variables

Consider the type II Pareto density function, fX(x) =
αβα

(x+β)α+1 , and the density function obtained

by applying the transformation Y = X
X+δ

with δ = β, which turns out to be a beta density

function, that is given by fY(y) = α(1 − y)α−1, 0 ≤ y ≤ 1. For illustrative purposes, we are

making use of a Pareto II (3.5, 3.5) distribution. On applying the transformation with δ = 3.5,

the resulting 9th degree polynomial approximant is seen to be in close agreement with the target

density in Figure 2.8.

κ TVaRκ(X) TVaRκ(Xd=30,θ=0.88) TVaRκ(Xd=31,θ=1) TVaRκ(Xd=32,θ=1.12)

0.8 4.26072 4.24757 4.24679 4.25501

0.9 5.96042 5.93443 5.93289 5.94903

0.99 14.7652 14.5228 14.5089 14.6532

0.999 31.7646 29.6872 29.5781 30.6841

IS E N/A 7.94042 × 10−10 4.57864 × 10−10 1.45698 × 10−10

Table 2.3: TVaRκ for X and Xd,θ
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(a) Approximant on [0, 95th percentile]

IS E = 4.49857 × 10−11
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(b) Approximant on [0, 99th percentile]

IS E = 1.40519 × 10−7

Figure 2.6: Exact density (solid line) and the approximants obtained using

different truncation points (dashed line)

Generally, the ‘optimal’ approximant is obtained when the IS Ed,δ is minimized with respect

to the transformation parameter δ and the polynomial degree, d. Figure 2.9 illustrates the

patterns followed by the log of IS Ed,δ with respect changes in δ discretized by two decimal

points, while keeping certain polynomial degrees, d, fixed. The discontinuities of IS Ed,δ’s are

observed due to issues associated with the numerical integration. The IS Ed,δ is minimized at

1 2 3 4

-0.00002

-0.000015
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(a) Approximant on [0, 95th percentile]
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-0.00010

-0.00005
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0.00010

0.00015

(b) Approximant on [0, 99th percentile]

Figure 2.7: The difference between exact density and the approximants obtained using

different truncation points
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(d, δ) = (5.2, 9), the correspond numerical value being 1.31067 × 10−14. As in Figure 2.8, the

resulting approximant is in close agreement with the target density. Additionally, Table 2.4

provides specific values of the VaR associated the exact density and the approximant obtained

via exponential tilting and transformation of variables.

The TVaR associated with approximant via transformation of variables cannot be evaluated

as Equation (2.11) becomes

fXd,δ(x) =

d∑
k=0

ξk
δ · xk

(x + δ)k+2 , (2.20)

in which case even the first moment associated with the approximant is unavailable.
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Figure 2.8: Exact density (solid line) and fXd=9,δ=3.5(x) (dashed line).

IS E = 1.30606 × 10−12

κ VaRκ(X) VaRκ(Xd=32,θ=1.12) VaRκ(Xd=9,δ=5.2)

0.8 2.04337 2.04335 2.04337

0.9 3.25744 3.25739 3.25744

0.99 9.54658 9.54546 9.54659

0.999 21.689 21.662 21.6888

IS E N/A 1.45698 × 10−10 1.31067 × 10−14

Table 2.4: VaRκ for X and Xd,θ
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Figure 2.9: Plots of the log of integrated square error (ISE) with respect to δ

(Top left panel: d=7 / Top right panel: d=8 /

Bottom left panel: d=9 / Bottom right panel: d=10)

2.5.2 The Student-t distribution

Let Y be a Student-t random variable with degrees of freedom ν, whose density function is

given by

fY(y; ν) =
Γ( ν+1

2 )
√
ν π Γ( ν2 )

(
1 +

y2

ν

)− ν+1
2

, −∞ < y < ∞, ν > 0. (2.21)

For ν > 1, the `th moment of Y is given by

µX(`) =

0 ` odd when 0 < ` < ν
1

√
πΓ( ν2 )

[
Γ( `+1

2 )Γ( ν−`2 )ν
`
2

]
` even when 0 < ` < ν

. (2.22)

Approximation via exponential tilting

As the Laplace transform of the Student-t distribution on ν degrees of freedom does not exist

and the number of available moment which depends on ν is finite, we consider the half-Student-

t distribution and approximate its distribution by utilizing a symmetrization technique, which

was discussed in Ha (2007).



2.5. Applications 25

As the desity function of Y is symmetric about zero, the transformation X = |Y | yields the

half-Student-t density function: fX(x) = 2 fY(x), x > 0. For instance, when ν = 1 and 3, the

analytic solutions of the Laplace transform of the half-Student-t distribution are respectively

L fY (y;ν=1)(θ) =
2Ci(θ) sin(θ) + (π − 2Si(θ)) cos(θ)

π
(2.23)

and

L fY (y;ν=3)(θ) =

2 ×G3,1
1,3

 3
4θ

2
∣∣∣∣∣ 1

2

0, 1
2 ,

3
2


π

3
2

(2.24)

where Ci(θ) = −
∫ ∞
θ

cos(t)
t dt, and Si(θ) =

∫ θ

0
sin(t)

t dt represent the cosine integral and the sine

integral respectively, and

Gm,n
p,q

z ∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

 =
1

2πi

∫
L

(∏m
j=1 Γ

(
b j − s

)) (∏n
j=1 Γ

(
1 − a j + s

))(∏p
j=n+1 Γ

(
a j − s

)) (∏q
j=m+1 Γ

(
1 − b j + s

)) zs ds (2.25)

denotes Meijer’s G-function, where m, n, p, and q are integers with 0 ≤ m ≤ q and 0 ≤

n ≤ p, i =
√
−1 and the infinite contour of integration L, which represents a suitable closed

contour in the complex plane, separates the poles of Γ
(
b j − s

)
, j = 1, 2, . . . ,m from the poles

of Γ
(
1 − a j + s

)
, j = 1, 2, . . . , n.

Here are new representations of the `th moment of the tilted half-Student-t distribution.

When ν = 1 (also referred to as the half-Cauchy distribution), one has

µXθ(`; θ; ν = 1) =



1 if ` = 0
(π−2Si(θ)) sin(θ)−2Ci(θ) cos(θ)
2Ci(θ) sin(θ)+(π−2Si(θ)) cos(θ) if ` = 1

−2Ci(θ) sin(θ)+2Si(θ) cos(θ)+ 2
θ−π cos(θ)

2Ci(θ) sin(θ)+(π−2Si(θ)) cos(θ) if ` = 2

G3,1
1,3

 θ24
∣∣∣∣∣ 1−`

2
1−`

2 , 0,
1
2


2Ci(θ) sin(θ)+(π−2Si(θ)) cos(θ)

1
√
π

if ` = 3, 4, . . . ,

(2.26)

and when ν = 3, one has
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µXθ(`; θ; ν = 3) =



1 if ` = 0

√
3`×G3,1

1,3

 3
4 θ

2

∣∣∣∣∣ 1−`
2

0, 1
2 ,

3−`
2


G3,1

1,3

 3
4 θ

2

∣∣∣∣∣ 1
2

0, 1
2 ,

3
2


if ` = 1, 2

√
3`×G3,1

1,3

 3
4 θ

2

∣∣∣∣∣ 1−`
2

3−`
2 , 0,

1
2


G3,1

1,3

 3
4 θ

2

∣∣∣∣∣ 1
2

0, 1
2 ,

3
2


if ` = 3, 4, . . .

(2.27)

If the degree of freedom is odd and greater than or equal to three, the `th tilted moment

is represented by a ratio of Meijer’s G-function. However, when the degrees of freedom are

even, an explicit solution does not exist so that each tilted moment needs to be evaluated via

numerical integration.

As the plot of the tilted half-Student-t density function is decreasing and takes a finite value

at x = 0, the exponential density function is used as base density, its parameter being estimated

from µXθ(1).

On observing the behavior of IS Ed,θ with respect to the tilting parameter, θ, we determined

that fixing θ = ν+1
ν+2 , as the reference point for the tilting parameter generally yields accurate

approximants. Exceptionally, when we attempt to approximate the half-Cauchy distribution,

for which ν = 1, setting the tilting parameter θ equal to one significantly lowers the IS Ed,θ. The

alternating behavior of the log of IS Ed,θ with θ = 1, ν = 1 is presented in Figure 2.10. Once

the approximant of half-Cauchy density, fXd,θ(x) as specified in Equation (2.4), is obtained after

applying the inverse tilting transformation, the approximant of the Cauchy density, which is

symmetric, is obtained as follows:

fYd,θ(x) =
1
2

fXd,θ(−x) 1(−∞,0)(x) +
1
2

fXd,θ(x) 1(0,∞)(x) (2.28)

where 1A(x) =

 1 if x ∈ A

0 if x < A
.

Figure 2.11 shows the target density superimposed on the approximant consisting of a 37th

degree polynomial.
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Figure 2.10: Plot of the log of IS Ed,θ with θ = 1
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Figure 2.11: Exact density (green solid line) and fXd=37,θ=1.12(x) (red dashed line).

IS E = 3.10482 × 10−6
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Figure 2.12: Plots of the exact (solid line) and approximant (dashed line) of

Student-t density for various degrees of freedom, ν

(Top left panel: ν=1 / Top right panel: ν=2 /

Bottom left panel: ν=3 / Bottom right panel: ν=4)

Approximating density functions from truncated distributions

We now attempt to approximate the truncated density function of a Student-t random variable

by applying the methodology discussed in Section 2.3. Fixing the polynomial degree to 19,

plots of the resulting approximants of the Student-t density functions with degrees of freedom

1, 2, 3, and 4 within two-sided 99% probability intervals are presented in Figure 2.12. For low

numbers of degrees of freedom, the approximants show oscillating patterns, which is not the

case (except when ν = 1) when the symmetrization technique is applied as can be seen from

Figure 2.13.

Approximation via transformation of variables

Once the symmetrization technique is applied, the half-Student-t density functions with any

degree of freedom, ν, are approximated by making use of the methodology in Section 2.4. The

approximants of the Student-t density functions are recovered by using Equation 2.28.

The approximants of the Student-t density functions with degree of freedom 1, 2, 3, and 4,

along with IS Ed,δ’s are included in Figure 2.14.
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2.5.3 Estimating densities from data by means of exponential tilting

This section explains how the density approximation methodology that is based on exponential

tilting, which is discussed in Section 2.2, is applied when a sample of observations is available.

As the counterpart of dentisy approximants, which make use of the exact tilted moments, the

density estimates rely on the sample tilted moments.

Consider an observation vector x = (x1, x2, . . . , xn). In the context of density estimation in

conjunction with the exponential tilting, the following points ought to be considered:

1. Before the density is estimated, the sample should be rescaled so that the sample standard

deviation be equal to one. Heavy-tailed features are detected from the extreme quantiles

of the sample or from the positive-sloped mean excess plot, as discussed by Ghosh and

Resnick (2010). To justify the application of the exponential tilting technique, the result-

ing estimate needs to be compared to that obtained without tilting.

2. The `th sample tilted moment with tilting parameter θ, denoted by mθ(`), is given by
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Figure 2.13: Plots of the exact (solid line) and approximant (dashed line) of

the truncated Student-t density by applying symmetrization technique

(Top left panel: ν=1 / Top right panel: ν=2 /

Bottom left panel: ν=3 / Bottom right panel: ν=4)
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Figure 2.14: Plots of the exact (solid line) and approximants (dashed line) of

Student-t densities obtained by applying the transformation of variables techniques
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Bottom left panel: ν=3 / Bottom right panel: ν=4)

mθ(`) =

∑n
j=1 exp (−θx j) x j

`∑n
j=1 exp (−θx j)

. (2.29)

3. A histogram of the data can be utilized to identify an appropriate distribution to be used

as base density function. For non-negative samples, gamma or exponential density func-

tions are usually suitable as base densities.

For the gamma base density function, that is,

ψX(x) =
1

Γ(α)βα
xα−1e−x/β, x ≥ 0, (2.30)

the parameters α and β are estimated by

α =
mθ(1)2

mθ(2) − mθ(1)2 and β =
mθ(2)
mθ(1)

− mθ(1). (2.31)
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If the histogram is more or less symmetric, the symmetrization technique discussed in

Section 2.5.2 is applied to the half-distribution; then a gamma or exponential density

function can be utilized as base density function, with a shift of location if necessary.

4. The choice of the tilting parameter, θ, as well as the degree of the polynomial adjust-

ment, d, is based on the Anderson-Darling test. Let ADd,θ denote the Anderson-Darling

test statistic evaluated at the resulting cumulative distribution function (CDF) whose as-

sociated tilting parameter and polynomial adjustment degree are respectively θ and d,

that is,

ADd,θ = −n −
n∑

k=1

2k − 1
n

[
log

(
1 − Fd,θ(x(n−k+1))

)
+ log(Fd,θ(x(k))

]
(2.32)

where n is the sample size, Fd,θ(x) denotes the CDF determined from the density estimate,

fd,θ(x), and x(1) < x(2) < · · · < x(n) is the ordered sample.

Such a discrepancy measure can be used even when fd,θ(x) is slightly negative at some

sample points. However, the log-likelihood statistics or related discrepancy measures,

such as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion

(BIC), are inappropriate when the adjusted density estimates take on negative values.

5. From the several candidates of fd,θ(x) having low ADd,θ values, it is desirable to choose

one that has no root. If, however, we cannot find such a density estimate, then we choose

the one having an even number of roots in the right tail. The resulting density estimate

can be made bona fide by setting the density to be zero wherever it becomes negative and

normalizing it.

Simulated data from a type II Pareto distribution

Consider a simulated sample of size 5,000 from a Pareto II (3.5, 35) distribution. Once the

values are rescaled by dividing them by their standard deviation, the methodology described in

Section 2.2 is applied, except that the exact tilted moments are replaced with the sample tilted

moments. In this case, an exponential density function is used as base density function.

Plots of ADd,θ values for polynomial adjustments of various degrees are shown in Figure

2.15. When taking parsimony into account, the graphs indicate that one can select d = 9 and

θ = 3, as suitable polynomial degree and tilting parameter, respectively.

The density estimate is obtained after applying the inverse tilting and scale transformations.

The resulting density estimate is plotted in Figure 2.16.
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Figure 2.15: Plots of ADd,θ vs θ leading to the selection of the optimal d and θ
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Figure 2.16: Histogram of the simulated data from a Pareto II (3.5, 35) distribution

and plots of the exact density (solid line) and the density estimate (dashed line)
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κ Empirical Pareto (3.5,35) TEP (d = 9 and θ = 3) BCP (d = 4 and λ = 0.1)

0.8 20.3432 20.4337 20.4421 20.2569

0.9 33.0825 32.5774 32.7712 33.0464

0.95 48.7676 47.3741 48.2939 49.1294

0.99 100.004 95.4658 97.6907 104.338

Table 2.5: VaRκ from the sample, exact distribution and density estimates

Before comparing the risk measures associated with the density estimates, we introduce the

following notations:

1. Tilted Exponential Polynomial (TEP) as the density estimate resulting from the exponen-

tial tilting technique, where the exponential density function is used as the base density

(d and θ represent the degree of the polynomial adjustment and tilting parameter, respec-

tively).

2. Tilted Gamma polynomial (TGP) as the density estimate resulting from applying the

exponential tilting technique, where the gamma density function is used as the base den-

sity (d and θ represent the degree of the polynomial adjustment and tilting parameter,

respectively).

3. Box-Cox Polynomial (BCP) as the density estimate obtained by applying the Box-Cox

transformation in conjunction with a polynomial adjustment. This transformation, intro-

duced by Box and Cox (1964), is defined as

y(λ) =

 yλ−1
λ

if λ , 0

log y if λ = 0
. (2.33)

Once the sample is transformed to a more or less symmetric shape by applying Box-Cox

transform, the normal density function which is used as base density, is estimated and

a polynomial adjustment is applied, as discussed in Section 1.4.1 (d and λ represent the

degree of the polynomial adjustment and transformation parameter, respectively).

Once those estimates are back-transformed, we can compare the risk measures, which is

done in Tables 2.5 and 2.6 for VaR and TVaR, respectively.

Simulated data from a Student-t distribution

Consider a simulated sample of size 10,000 from a Student-t distribution on 3 degrees of free-

dom. After rescaling, symmetrizing and applying the exponential tilting technique along with
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Figure 2.17: Histogram of the simulated data from a Student-t distribution on 3 degrees of

freedom, the assumed density (solid line) and the density estimate (dashed line)

making use of an exponential density function as base density for estimating the ‘half Student-t’

density function, one can select d = 7 and θ = 0.9 as the degree of the polynomial adjustment

and tilting parameter. The plot of the density estimate superimposed on a histogram of the

sample data are included in Figure 2.17.

Automobile insurance claims data set

This data set, which was introduced by Frees (2011), consists of 6,773 individual claim amounts

for private passenger automobile insurance issued by a large US mid-western property and ca-

sualty insurance company. This data set was originally used to examine claim distributions for

several risk classification categories.

The summary statistics for the rescaled data whose standard deviation is equal to one are

κ Empirical Pareto (3.5,35) TEP (d = 9 and θ = 3) BCP (d = 4 and λ = 0.1)

0.8 44.9521 42.6072 42.6498 44.6046

0.9 64.2477 59.6042 59.7103 63.5354

0.95 89.0128 80.3238 79.9156 87.2058

0.99 182.639 147.652 137.345 166.829

Table 2.6: TVaRκ from the sample, exact distribution and density estimates



2.5. Applications 35

0 2 4 6 8
0.0

0.5

1.0

1.5

(a) TEP (d = 11, θ = 1.1)

AD = 0.592737

0 2 4 6 8
0.0

0.5

1.0

1.5

(b) TGP (d = 9, θ = 1.5)

AD = 0.409576

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

(c) Kernel density estimate

AD = 24.6244

Figure 2.18: Density estimates and rescaled histogram for the auto insurance claims data set

presented in Table 2.7. The heavy-tailed nature of the sample is clearly suggested by the high

kurtosis measure as well as an extreme maximum observed value.

Interestingly, after the proposed density estimation methodology is applied including the

exponential tilting and several ADd,θ values are compared, both a TEP (d = 11, θ = 1.1) es-

timate and a TGP (d = 9, θ = 1.5) estimate provide suitable models fits as can be seen from

Figure 2.18. We note that the exponential tilting is also useful in the context of density estima-

tion since otherwise the tail of the resulting density estimate presents undesirable fluctuations

with subintervals where the estimates are negative. A kernel estimate is also included in this

figure for comparison purposes, indicating that it is outperformed by the proposed estimates.

Additionally, neither density estimate has a root in the right tail. VaR and TVaR are com-

pared in Tables 2.8 and 2.9, respectively.

The Danish fire data set

The Danish fire data set is often used in applications involving extreme value theory; see for

instance McNeil (1997) and Resnick (1997). Collected at Copenhagen Reinsurance from 1980

Sample size 6773 Min 0.70008

Mean 0.70008 1st quartile 0.19787

Skewness 6.23567 2nd quartile 0.37844

Kurtosis 87.2775 3rd quartile 0.80751

Max 22.6679

Table 2.7: Summary of the rescaled automobile insurance claims data set

(Original standard deviation: 2,646.91)
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to 1990, the data consists of inflation-adjusted total fire losses, expressed in millions of Danish

Krone. Although the sample size of the full data set is 2,492, we confine our attention to 2,156

losses exceeding one million Krone, taking into account the insurance deductible.

As various density estimate candidates are suggested, we describe each one, along with the

determination of the parameters, such as the degree of polynomial adjustment (d), the tilting

parameter (θ) and the Box-Cox transform parameter (λ).

1. Density I: TEP from the rescaled data

Table 2.10 provides summary statistics for the rescaled data, which are clearly indicative

of a heavy-tailed distribution. After comparing the density estimates obtained with and

without exponential tilting, along with the choice of a gamma or exponential density

functions as base densities, a TEP (d = 9, θ = 1.15) estimate which has no root in the

right tail is a possible candidate. However, the corresponding Anderson-Darling test

statistic, which is equal to 44.29 is large due to the fact that the deductible was not taken

into consideration. As Figure 2.19 (a) reveals, the back-transformed density estimate

does not provide a good fit around the mode of the distribution.

2. Density II: Location-shifted TEP from the rescaled data

This shortcoming is circumvented by making use of a shifted density estimate. Given

a deductible level, d0, and denoting by σ the standard deviation of the sample x =

(x1, x2, . . . , xn), where xi > d0 for i = 1, 2, . . . , n, the linear transformation y = x−d0
σ

κ Empirical TEP (d = 11, θ = 1.1) TGP (d = 9, θ = 1.5) BCP (d = 7, λ = 0)

0.8 2545 2591.97 2576.89 2534.5

0.9 4171.01 4159.98 4185.58 4224.53

0.95 6356.9 6468.07 6356.05 6358.44

0.99 12091.5 12413.1 11971.5 12668.8

Table 2.8: VaRκ based on the auto insurance claims data

κ Empirical TEP (d = 11, θ = 1.1) TGP (d = 9 and θ = 1.5) BCP (d = 7 and λ = 0)

0.8 5518.88 5452.73 5585.01 5521.61

0.9 7772.38 7641.58 8028.22 7800.34

0.95 10415.8 10156.1 10609.9 10465

0.99 18263.7 17027.9 19404.8 18070.7

Table 2.9: TVaRκ based on the auto insurance claims data
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Sample size 2156 Min 0.117608

Mean 0.398392 1st quartile 0.156057

Skewness 18.7093 2nd quartile 0.208751

Kurtosis 483.462 3rd quartile 0.34858

Max 30.781

Table 2.10: Summary of the rescaled Danish fire data

(Original standard deviation: 8.52743)

ensures that the rescaled sample vector has a minimum value that is close to zero. The

minimizer of the Anderson-Darling test statistic is determined and no roots are present in

the right tail of the resulting density estimate that was obtained with exponential tilting

from an exponential density function as the base density, its parameters being d̂ = 5 and

θ̂ = 4.8, which yields ADd̂,θ̂ = 11.2854.

3. Density III: Location-shifted TGP from the rescaled data

When the gamma density function is utilized as base density for determining a density

estimate with exponential tilting, the fit of the distribution is further improved as the

ADd̂,θ̂ value is then 0.730527 with d̂ = 9 and θ̂ = 3.6.

4. Density IV: BCP from the rescaled data

Once the methodology for estimating the BCP that is described in Section 6.3.1 is ap-

plied, in which case the Box-Cox transform parameter takes on the value −1 and a degree

5 for the polynomial adjustment is suitable.

5. Density V: Exponential polynomial from the log-scaled data

As the deductible level, d0, is one, other possible density estimates result from the log-

scaled data. The summary statistics for the log-scaled data that are included in Table

2.11 suggest a light-tailed distribution, in which case exponential tilting may not be

necessary. Using the exponential density function as base density in conjunction with

a polynomial adjustment of degree 9 results in two roots in the right tail. Although the

Anderson-Darling test statistics are slightly smaller with adjustments of larger degrees,

the number of roots in the tail then increases, which would preclude choosing a higher

polynomial adjustment degree. Bona fide density estimates can be obtained by following

the methodology described in Chapter 4.

6. Density VI: TEP from the log-scaled data
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Sample size 2156 Min 0.00288882

Mean 0.790965 1st quartile 0.285752

S.D. 0.716333 2nd quartile 0.576672

Skewness 1.76413 3rd quartile 1.0894

Kurtosis 7.1908 Max 5.57311

Table 2.11: Summary of the log-scaled Danish fire data

A density estimate with exponential tilting for which d = 7 and θ = 0.7 is considered and

its VaR is compared to those associated with aforementioned density candidates. Table

2.12 presents specific VaR values associated the various density estimates. Figure 2.19

includes plots of the density estimates superimposed of a histogram of the original data.

In light of the Anderson-Darling test statistics, the VaR values appearing in Table 2.11 and

parsimony considerations, density estimate VI could be viewed as being the most suitable.

κ Empirical Density II DensityIII Density IV Density V Density VI

0.8 3.48145 3.35407 3.51668 3.32754 3.4303 3.32754

0.9 5.56174 4.87409 5.35254 5.11591 5.70866 5.73878

0.95 10.0111 7.20204 9.32785 7.94532 9.50778 9.7081

0.99 26.2146 12.9562 22.1245 26.3172 27.7974 27.7927

Table 2.12: VaRκ values obtained from the sample and the density estimates
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Figure 2.19: Density estimates and histogram of the original data for the Danish fire data set
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Chapter 3

Novel Approaches for Estimating
Distributional Endpoints

3.1 Introduction

Given a continuous distribution function F, its left and right endpoints are defined as L :=

inf{x : F(x) > 0} and U := sup{x : F(x) < 1}. Various statistical methods have been pro-

posed for estimating endpoints, particularly U < +∞. Hall (1982) considered the maximum

likelihood estimate which is expressed in terms of the largest order statistics. Hall and Wang

(1999) proposed minimum-distance estimates, which include Greenwood’s statistic. Estimates

obtained from maximizing a semiparametric likelihood in a Bayesian context were explored

by Hall and Wang (2005). Estimates involving high-order moments and normal measurement

errors were discussed by Girard et al. (2012) and Leng et al. (2018). Confidence intervals for

endpoint estimates were investigated by Loh (1984) and Li et al. (2011).

The estimation of endpoints is also closely linked to extreme value theory. In fact, an end-

point is finite if the generalized extreme value distribution belongs to the reverse Weibull do-

main. Caers and Maes (1998) determined endpoint estimates by making use of a tail-weighted

quantile function. Alves and Nevas (2014) proposed a technique for estimating a finite end-

point in the Gumbel domain. As the behavior of the tails has to be taken account, endpoint

estimates can be obtained as a compromise between Hill’s estimator and a linear combination

of order statistics; this is extensively discussed in Resnick (2007).

Such estimates have been utilized in various applications, including the maximum life span

of human beings discussed by Aarssen and De Haan (1994) and Alves et al. (2017), records in

athletics investigated by Einmahl and Magnus (2008) and Hall (1999), and production frontiers

analyzed by Cazals et al. (2002).

42
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The aforementioned methods of estimating endpoints are based on certain underlying dis-

tributional assumptions, such as expressing a density function f (x) as xkL(x) where k is real

number and L(x) is slowly varying function, or presuming a specific type of the extreme value

distribution as underlying density function.

As the underlying distribution is usually unknown in the case of a sample, it can prove

challenging to determine endpoints, especially in the case of heavy-tailed distributions. This

chapter investigates alternative approaches for estimating endpoints, which are based on the

entire sample of observations and its moments.

We propose to determine empirical endpoints by making use of the empirical saddlepoint

approximation method, which is described in Section 1.4.2. Some computational issues en-

countered in evaluating the empirical saddlepoint estimates are discussed in Section 3.2. As

explained in Section 3.3, this method can be utilized in conjunction with the Box-Cox trans-

form for samples consisting of non-negative observations. As well, endpoint estimates based

on the 4-parameter generalized beta distribution are proposed in Section 3.4. In Section 3.5,

we conduct simulation studies and determine endpoints by making use of each method. We

initially generated samples from known distributions to elicit procedures for determining end-

points.

3.2 Computational issues related to the empirical saddlepoint
approach

One of the computational challenges associated with empirical saddlepoint estimation resides

in determining a solution ŝ as specified in Section 1.4.2, for values of x lying outside the range

of the sample of observations. In connection with this problem, Fasiolo et al. (2018) proposed

extended empirical saddlepoint approximations that are expressed as an adjusted weighted av-

erage of the empirical saddlepoint approximation and the theoretical cumulant generating func-

tion of a multivariate normal distribution. However, this method is valid only if the normality

assumption, which can be inferred to some extent from the summary statistics, holds.

We make use of a numerical solution that relies on numerous iterations of the Newton-

Raphson method to determine the empirical saddlepoint such that K̂n
′
(ŝ) = x where K̂n(s)

denotes the empirical cumulant generating function defined in Equation (1.13). Another issue

associated with this estimate stems from the fact that the Jacobian of the second derivative of

the cumulant generating function can be singular at some points located outside the range of

the sample. Although K̂n
′′

(s) cannot be equal to zero theoretically, it can be zero numerically

for some points lying outside of the range of the sample, which makes it impossible to evaluate
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Sample size L x(1) x(n) U

500 −3.08013 −2.52098 2.80998 3.98349

2,500 −3.92801 −3.33604 3.54335 4.81975

10,000 −5.22163 −4.22639 3.79761 5.04246

Table 3.1: Summary of endpoints and the extreme order statistics based on the empirical

saddlepoint estimate (Data simulated from a standard normal distribution)

the empirical saddlepoint estimates at such points.

The procedure for estimating endpoints can be described as follows: First, the original

sample values are rescaled by dividing them by the sample standard deviation. When the

standard deviation of the original data set is large, many missing points are encountered while

evaluating empirical saddlepoint estimates. To mitigate this issue, rescaling is advisable before

determining empirical saddlepoint estimates for points lying outside the range of the sample.

Notwithstanding these remarks, the patterns of the logarithm of the empirical saddlepoint

estimates determined for points lying outside of the range of the sample of observations provide

an indication for obtaining empirical endpoints. For illustrative purposes, consider samples of

sizes 500, 2,500, and 10,000, that are simulated from a standard normal distribution.

Once the sample is rescaled, we investigate the behavior of the logarithm of the empirical

saddlepoint estimates. Figure 3.1 presents the plots of those estimates which are transformed

back to the original scale, along with the minimum and maximum values of the sample, which

are indicated by red dots. The empirical endpoint is chosen to be the value of the support

at which the density estimate as determined from the first discernible arc of the empirical

saddlepoint estimates (interpolated or extrapolated values thereof) are of the order e−200 ≈

10−87. The same tolerance level will be used in all the applications. Table 3.1 includes the

empirical endpoint estimates, L and U, along with the extreme order statistics.

3.3 Combining the Box-Cox transform and the empirical sad-
dlepoint estimation method

The Box-Cox transform, as defined in Equation (2.33), is a useful tool for estimating the em-

pirical endpoints since the transformed data and the plot of the logarithm of the estimate are

then more symmetrical.

The following procedure is implemented for estimating empirical endpoints:
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Figure 3.1: Histograms of the data simulated from a standard normal distribution and

plots of the logarithm of the empirical saddlepoint estimates obtained from the rescaled data,

the red dots indicating the minimum and maximum values of the rescaled data

Algorithm 3.1

1. Apply the Box-Cox transform as specified by Equation (2.33). The parameter, λ, is such

that the following profile log likelihood function, l(λ), is maximized:

`(λ) = −
n
2

log
(
2πσ2(λ)

)
−

1
2

n∑
i=1

(xi(λ) − µ(λ))2

σ2(λ)
+ (λ − 1)

n∑
i=1

log xi (3.1)

where xi, xi(λ), µ(λ), σ2(λ) represent the ith observed sample value, the corresponding

transformed value, the mean of the transformed sample and the variance of the trans-
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formed sample, respectively.

2. Rescale the transformed data by dividing it by σ(λ).

3. Evaluate the logarithm of the empirical saddlepoint estimates lying outside of the range

of the transformed data resulting from applying Steps 1 and 2.

4. Choose the empirical endpoints such that the estimates in Step 3 meet a tolerance level

of e−200, while taking into account that the transformed support is

(0,∞)→


(
− 1
λσ2(λ) ,∞

)
if λ > 0

(−∞,∞) if λ = 0(
−∞,− 1

λσ2(λ)

)
if λ < 0

. (3.2)

If an empirical endpoint obtained from the Box-Cox-rescaled data lies beyond a lower or

upper bound as specified by Equation (3.2), which is indicative of a significant concen-

tration of the data in the neighborhood of the minimum or maximum value of the sample,

an empirical endpoint that is solely based on the rescaled data (using the same tolerance)

is sought.

5. Apply the back-transformation, based on the intervals specified in Equation (3.2), so that

the empirical endpoints can be identified on the original scale.

It should be pointed out that the resulting value, which is referred to as an empirical

endpoint, is not an endpoint per say but a point beyond which the distribution is of

no practical significance. The further an empirical endpoint lies in the tail a rescaled

distribution, the heavier the tail.

It should also be noted that e−200 is a tolerance that proves suitable for the various distri-

butions so far considered. Of course, one may set a lower or higher tolerance that might

better suit one’s own purpose.

Samples simulated from various types of distributions, including a heavy-tailed one, are

used to illustrate this methodology in Section 3.5.

3.4 Endpoints estimates based on the 4-parameter general-
ized beta distribution

Consider the 4-parameter generalized beta distribution, denoted by GB(α, β, L,U), whose den-

sity function is given by
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f (x) =
1

B(α, β)
(x − L)α−1 (U − x)β−1

(U − L)α+β−1 for L ≤ x ≤ U, (3.3)

where B(α, β) =
Γ(α) Γ(β)
Γ(α+β) , the shape parameters α and β being positive, and for instance Γ(v) =∫ ∞

0
tv−1 e−t dt. This approach provides estimated endpoints specified by the generalized beta

distribution which is utilized as a distributional model as opposed to the empirical endpoints

obtained from the saddlepoint approach. As a result, particularly large values are obtained as

estimated endpoints in the case of heavy-tailed distributions whose tails converge very slowly

to zero.

There exist two main methods for estimating the parameters of this distribution: the penal-

ized maximum likelihood estimation (PMLE) method and the feasibility-constrained moment

matching (FCMM) technique. When the distribution is very skewed, it is advisable to apply

the Box-Cox transform prior to estimating the parameters.

3.4.1 Penalized maximum likelihood estimation (PMLE) method

Letting the ordered observations be x(1) < x(2) < · · · < x(n) where n is the sample size, Wang

(2005) added penalization components to the likelihood function so that L ≤ x(1), U ≥ x(n), and

α and β remain positive. Given the x(i)’s, i = 1, . . . , n, the original and penalized likelihood

functions, denoted by lo and lp, respectively, are

lo(α, β, L,U) = − n log(B(α, β)) − n (α + β − 1) log(U − L)

+ (a − 1)

 n∑
i=1

log(x(i) − L)

 + (b − 1)

 n∑
i=1

log(U − x(i))

 (3.4)

and

lp(α, β, L,U) = lo(α, β, L,U) + log
(

x(1) − L
x(2) − L

)
+ log

(
U − x(n)

U − x(n−1)

)
. (3.5)

The parameters are estimated by solving the constrained maximization problem:

max
α,β,L,U

lp(α, β, L,U)

subject to α > 0, β > 0, L ≤ x(1), and U ≥ x(n). (3.6)

Making use of the previously simulated samples of sizes 500, 2,500, and 10,000 from the

standard normal distribution, the estimated values of the endpoints obtained with the PMLE

method are included in Table 3.2.
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Sample size L x(1) x(n) U

500 −4.12643 −2.52098 2.80998 5.16627

2,500 −15.5561 −3.33604 3.54335 19.1293

10,000 −72.4937 −4.22639 3.79761 19.2211

Table 3.2: Summary of endpoints and the extreme order statistics based on fitting a

generalized beta distribution with the PMLE method

(Data simulated from a standard normal distribution)

3.4.2 Feasibility-constrained moment matching (FCMM) technique

AbouRizk et al. (1994) proposed several methods for estimating the parameters of the general-

ized beta distribution. One of them referred to as the FCMM technique provides computational

efficiency as well as a close match to the central moments.

Consider a random variable X that is distributed as GB(α, β, L,U). Then the mean, variance,

skewness, and kurtosis of X can be expressed as follows:

µ = E(X) = L + (U − L)
α

α + β
(3.7)

σ2 = Var(X) = (U − L)2 αβ

(α + β)2(α + β + 1)
(3.8)

γ1 = E
[(X − µ

σ

)3]
=

2(β − α)
√
α + β + 1

(α + β + 1)
√
αβ

(3.9)

γ2 = E
[(X − µ

σ

)4]
=

3(α + β + 1)[2(α + β)2 + αβ(α + β − 6)]
αβ(α + β + 2)(α + β + 3)

(3.10)

Let x̄, s2, b1, b2 denote the sample mean, variance, skewness and kurtosis, which are given

by

x̄ =
1
n

n∑
i=1

xi (3.11)

s2 =
1
n

n∑
i=1

(xi − x̄)2 (3.12)

b1 =
1
n

n∑
i=1

( xi − x̄
s

)2

(3.13)
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Sample size L x(1) x(n) U

500 −4.82484 −2.52098 2.80998 6.03919

2,500 −15.576 −3.33604 3.54335 19.1591

10,000 −16.8676 −4.22639 3.79761 17.9655

Table 3.3: Summary of endpoints and the extreme order statistics based on fitting a

generalized beta distribution with the FCMM technique

(Data simulated from a standard normal distribution)
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Figure 3.2: Histograms of the data simulated from a standard normal distribution

and density estimates obtained by fitting a generalized beta distribution

(solid line: underlying density; dotted line: PMLE method; dashed line: FCMM technique)

b2 =
1
n

n∑
i=1

( xi − x̄
s

)4

(3.14)

where the xi’s and n denote the observations and the sample size, respectively.

As the moments in Equation (3.7)-(3.10) are functions of the four parameters, we estimate

those parameters by solving the constrained non-linear optimization problem:

min
α,β,L,U

(µ(α, β, L,U) − x̄)2 +
(
σ2(α, β, L,U) − s2

)2
+ (γ1(α, β) − b1)2 + (γ2(α, β) − b2)2

subject to α > 0, β > 0, L ≤ x(1), and U ≥ x(n). (3.15)

The estimated values of the endpoints obtained by applying the FCMM technique to the

data simulated from the standard normal distribution are included in Table 3.3. The plots of

the generalized beta density estimates are shown in Figure 3.2, superimposed on a histogram

of the data.
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3.5 Simulation studies

We generate samples from known distributions and apply the methodologies herein advocated

to obtain empirical and estimated endpoints.

3.5.1 A beta distribution

Let Beta (α, β) denote a beta distribution whose density function is given by

f (x) =
xα−1 (1 − x)β−1

B(α, β)
, 0 ≤ x ≤ 1, (3.16)

where both α and β are shape parameters and B(α, β) =
Γ(α) Γ(β)
Γ(α+β) .

Consider samples of size 500 and 2,500, that are simulated from a Beta(2, 5) distribution.

Once the Box-Cox transform is applied to the data which is then rescaled, the behavior of the

logarithm of empirical saddlepoint estimates is investigated.

Histograms of these samples along with the plots of the logarithm of the estimates lying

outside the range of the transformed sample are shown in Figure 3.3. Since the empirical

endpoint falls outside the transformed support in the left tail, only the rescaled data is being

utilized in accordance with Algorithm 3.1, the resulting density estimates being included in

Figure 3.3 (b) and (e). Table 3.4 includes the empirical endpoint estimates corresponding to a

tolerance of e−200 applied to the empirical saddlepoint density estimates, along with the extreme

order statistics.

Figure 3.4 shows the plots of the density estimates based on the generalized beta distribu-

tion whose parameters are determined by making use of the two methods described in Section

3.4, which are superimposed on a histogram of the data. The plot based on the PMLE method

is not included for the sample of size 2,500 as the fit of the resulting density estimate leaves

something to be desired. Table 3.5 provides endpoint estimates based on the fitted generalized

beta distribution along with the extreme order statistics. Based on prior knowledge, negative

values could of course be set equal to zero.

Sample size L x(1) x(n) U

500 −0.011126 0.009831 0.786359 0.965942

2,500 −0.007959 0.003414 0.863242 0.978048

Table 3.4: Summary of endpoints and the extreme order statistics based on the empirical

saddlepoint estimates (Data simualted from a Beta (2, 5) distribution)
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Figure 3.3: Histograms of the data simulated from a Beta (2, 5) distribution

and empirical density estimates based on Algorithm 3.1.

(red dots: sample minima and maxima)
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Figure 3.4: Histograms of the data simulated from a Beta(2, 5) distribution

and density estimates obtained by fitting a generalized beta distribution

(solid line: underlying density; dotted line: PMLE method; dashed line: FCMM technique)

3.5.2 A gamma distribution

Let Gamma (α, β) denote a gamma distribution whose density function is given by
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Method Sample size L x(1) x(n) U

PMLE 500 −0.111147 0.009831 0.786359 0.851286

FCMM 500 −0.011930 0.009831 0.786359 0.920395

FCMM 2,500 −0.004612 0.003414 0.863242 1.02274

Table 3.5: Summary of endpoints and extreme order statistics based on fitting a generalized

beta distribution with the PMLE method and FCMM technique

(Data simulated from a Beta (2, 5) distribution)

f (x) =
1

Γ(α) βα
xα−1e−x/β, x ≥ 0, (3.17)

where α and β are the positive shape and scale parameters, respectively. Consider samples of

size 500 and 2,500 simulated from the Gamma (3, 2.5) distribution.

We follow the same procedure, that is, applying the Box-Cox transform, rescaling the re-

sulting values so that the standard deviation becomes one, tracking the patterns of the empirical

saddlepoint estimates, and determining the empirical endpoints on the original scale. Figure

3.5 shows histograms of the samples along with the plots of the logarithm of the density esti-

mates lying outside of the range from the transformed sample. The resulting empirical endpoint

estimates along with the sample minima and maxima are included in Table 3.6.

The density plots of the fitted generalized beta distributions are superimposed on his-

tograms of the samples in Figure 3.6. The resulting endpoints are specified in Table 3.7. The

estimate based on the PMLE approach applied to the sample of size 2,500 is not included as an

upper bound estimate (U) since it is not consistent with the other upper bound estimates.

3.5.3 A generalized Pareto distribution

Let GP (m, α, s) denote a generalized Pareto distribution whose density function is given by

f (x) =
1
s

(
1 +

x − m
αs

)−α−1
, x ≥ m, (3.18)

Sample size L x(1) x(n) U

500 0.355658 0.73347 30.823 75.5683

2,500 0.129403 0.129403 35.2076 80.8711

Table 3.6: Summary of endpoints and extreme order statistics based on the empirical

saddlepoint estimate (Data simulated from a Gamma (3, 2.5) distribution)
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Figure 3.5: Histograms of the data simulated from a Gamma(3, 2.5) distribution

and empirical density estimates based on Algorithm 3.1.

(red dots: sample minima and maxima)
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Figure 3.6: Histograms of the data simulated from a Gamma (3, 2.5) distribution

and density estimates obtained by fitting generalized beta distributions

(solid line: underlying density; dotted line: PMLE method; dashed line: FCMM technique)

where m, α and s are the location, shape and scale parameters, respectively. This distribution

is utilized in conjunction with the peak-over-threshold method in the context of extreme value

theory, as discussed by Hosking and Wallis (1987) and Falk and Guillou (2008).

Samples of sizes 500 and 2,500 are simulated from the GP (0, 1, 1) distribution. Histograms
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Method Sample size L x(1) x(n) U

PMLE 500 0.27828 0.73347 30.823 6.62003 × 106

FCMM 500 0.73347 0.73347 30.823 1.67244 × 108

FCMM 2,500 0.246125 0.366762 35.2076 4.67695 × 105

Table 3.7: Summary of endpoints and extreme order statistics based on fitting generalized

beta distributions with the PMLE method and FCMM technique

(Data simulated from a Gamma (3, 2.5) distribution)

of the samples along with the plots of the logarithm of the estimates lying outside the range of

the transformed data are shown in Figure 3.7. Table 3.8 includes empirical endpoint estimates

based on the empirical saddlepoint approach along with extreme order statistics.

The fit based on the generalized beta distribution is not adequate when the original data is

utilized. Thus, we fit this distribution to the Box-Cox transformed data. The resulting density

estimates obtained by applying the inverse transform provide a suitable fit, as shown in Figure

3.8. The density estimate obtained by applying the FCMM technique on the sample of size 500
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Figure 3.7: Histograms of the data simulated from a GP(0, 1, 1) distribution

and empirical density estimates based on Algorithm 3.1.
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Sample size L x(1) x(n) U

500 4.71009 × 10−6 6.03906 × 10−4 1,374.79 128,836

2,500 9.56331 × 10−5 5.45281 × 10−4 9129.48 403,837

Table 3.8: Summary of endpoints and extreme order statistics based on the empirical

saddlepoint estimates (Data simulated from a GP (0, 1, 1) distribution)
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Figure 3.8: Histograms of the data simulated from a GP(0, 1, 1) distribution

and density estimates obtained by fitting generalized beta distributions

(solid line: underlying density; dotted line: PMLE method; dashed line: FCMM technique)

is not included since the upper endpoint estimate coincides with the maximum of the sample.

Table 3.9 includes the endpoint estimates based on the fitted generalized beta distributions.

Method Sample size L x(1) x(n) U

PMLE 500 7.0872 × 10−64 6.03906 × 10−4 1,374.79 1.49087 × 1013

PMLE 2,500 2.61842 × 10−46 5.45281 × 10−4 9129.48 3.03384 × 1017

FCMM 2,500 5.45281 × 10−4 5.45281 × 10−4 9129.48 6.96802 × 10948,484

Table 3.9: Summary of endpoints and the extreme order statistics based on fitting a

generalized beta distribution with the PMLE method and FCMM technique

(Data simulated from a GP (0, 1, 1) distribution)
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Chapter 4

On Securing Bona Fide Density Functions

4.1 Introduction

Some classes of efficient density estimation techniques may not necessarily produce bona fide

density functions. For instance, they may produce estimators that take slightly negative values

or do not integrate to one. Such density estimates can create serious problems for practition-

ers, as pointed out by Silverman (1986, p. 69), and several methods have been proposed for

modifying them with a view to obtain bona fide density estimates. Hall and Murison (1993),

Devroye and Gyöfri (1985), and Kałuszka (1998) mentioned that a bona fide density estimator,

f̆ (x), can be generated by normalizing the positive part of the initial estimate of the density

denoted by f (x):

f̆ (x) =
max( f (x), 0)∫
max( f (x), 0)

. (4.1)

Gajek (1986) proposed the following iterative scheme which makes use of a certain weight

function whose tail should be weighted strongly enough to make a density estimate bona fide.

Given the initial estimator, f̂ (x) and weight function, w(x), following the nth iteration, one has:

fn,GA(x) = max( fn−1,GA(x), 0) −
Cn−1 − 1

w(x)
∫

1
w(x) dx

for n = 1, 2, . . . (4.2)

with f0,GA(x) = f (x) and Cn−1 =
∫

max
(
fn−1,GA(x), 0

)
dx.

As the iteration process always guarantees that the integral of fn,GA(x) equals one, the only

condition to obtain a bona fide density function is that fn,GA(x) ≥ 0 for any x.

Glad et al. (2003) proposed a uniform vertical shift of the density in conjunction with the

removal of the negative part, resulting in a bona fide density estimator. Typically, the integral

58



4.1. Introduction 59

of the initial estimator which removes the negative part is greater than one, and the bona fide

estimator, fGL(x), is obtained as follows:

fGL(x) = max( f (x) − ξ, 0). (4.3)

where ξ is chosen such that
∫

fGL(x) dx = 1.

All three methodologies aim at removing negative parts. However, such corrections present

some drawbacks. First, there is no possibility of generating simulated values on the subintervals

where the function is set equal to zero. As the negative parts of the initial density estimator

occur mostly in the tail, one might confine the distribution to a compact support, resulting

in generating the simulated value only within that support. Secondly, the resulting bona fide

density estimators may not be everywhere differentiable. This leads to complicated closed

forms for the cumulative density function (CDF) and possible computational inefficiencies in

the calculation of the CDF’s.

In order to address the aforementioned issues, we propose a novel methodology for gener-

ating smooth bona fide density approximants having a compact support. This approach is based

on the moments of the normalized non-negative parts of the initial approximant. Unlike other

bona fide density estimators, this estimator is not only bona fide density but also differentiable

within the support of the density.

In Chapter 1, we introduced a polynomially-adjusted density approximation (PADA) method-

ology for distributions having a compact support. As discussed in Provost (2005), the resulting

approximant which has a polynomial form is equivalent to those obtained by means of linear

combinations of Legende polynomials. This methodology is a cornerstone of the subsequent

sections both with respect to density approximation and density estimation, which respectively

make use of exact and sample moments.

Section 4.2 discusses the process of obtaining a smooth bona fide density estimator. We

propose to make use of an iterative scheme in conjunction with the PADA methodology. The

final adjustment involves a vertical shift of the estimator at the last iteration, which is then

normalized.

Section 4.3 presents a numerical example and compares the density estimates resulting

from applying our methodology with those obtained with Glad’s and Gajek’s approaches. In

Section 4.4, we modify the initial density estimate by removing the negative parts and then by

approximating the resulting function by means of Bernstein polynomials.
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4.2 General algorithm of obtaining smooth bona fide density
functions

Once properly normalized, the approximants or the estimates are often bona fide density func-

tions. However, it may happen that they be slightly negative on certain sub-ranges of their

support. In order to obtain differentiable bona fide density functions on their entire support,

that is, smooth bona fide density functions, the following procedures is implemented.

1. An initial density estimate, fd0(x), is obtained by applying the PADA methodology. The

polynomial degree d0 is the minimizer of the sum of squared difference (S S Dd0), that is,

S S Dd0 =

n∑
i=1

(
Fe(xi) − Fd0(xi)

)2 (4.4)

where Fe(xi) denotes the empirical cumulative distribution function (CDF) and Fd0(xi)

the CDF associated with fd0(x) evaluated at the sample point xi.

2. When an estimate defined on the interval (a, b) is negative on subranges of the intervals

(a, a0) and (b0, b) where fd(a0) = 0, and fd(b0) = 0, the initial estimate is obtained

from truncating its support to the interval [a0, b0] and removing any remaining negative

parts within [a0, b0]. Such a correction which is also discussed in Efromovich (1999), is

expressed as

f0,d0(x) =
max( fXd0

(x), 0)∫ b0

a0
max( fXd0

(x), 0) dx
, a0 < x < b0. (4.5)

As max( fXd0
(x), 0) = 1

2 ( fXd0
(x) +

√
fXd0

(x)2), we reexpress Equation (4.5) as

f0,d0(x) =
( fXd0

(x) +

√
fXd0

(x)2)∫ b0

a0
( fXd0

(x) +

√
fXd0

(x)2) dx
(4.6)

to improve computational efficiency.

3. Set i = 1.

4. The ith iteration of the approximant of degree di, fdi(x), is obtained by approximating

fi−1,di−1(x) with the PADA methodology, that is,
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fdi(x) =
1

b − a

di∑
k=0

ξk yk. (4.7)

Note that we use the initial support interval [a, b]. Once the new truncation points (ai, bi)

are determined where fdi(ai) = 0 and fdi(bi) = 0, the new corrected estimate, fi,di(x), is

expressed as

fi,di(x) =

 fdi(x) for ai < x < bi

0 for a < x < ai and bi < x < b
. (4.8)

If min fi,di(x) ≥ 0, we make use of a multiplicative normalizing constant to obtain a

smooth bona fide density function. For the case where the minimum value of fi,di takes

slightly negative value, that is, for example −10−2 ≤ min fi,di(x) ≤ 0, we vertically shift

fi,di(x) and adjust the resulting function with a normalizing constant, that is,

fFIN(x) =

(
fi,di(x) +

∣∣∣min fi,di(x)
∣∣∣)∫ β

α

(
fi,di(x) +

∣∣∣min fi,di(x)
∣∣∣) dx

, (4.9)

where α and β are points of intersection with the abscissa that delimit the final support

of the approximant, which is the desired smooth bona fide density function, and stop.

Otherwise,

5. We replace fi,di(x) with

fi,di(x) =
( fXdi

(x) +

√
fXdi

(x)2)∫ bi

ai
( fXdi

(x) +

√
fXdi

(x)2) dx
; (4.10)

6. Set i = i + 1 and return to Step 4.

4.3 Numerical example

Let Beta(α, β) denote a beta distribution with shape parameters α and β. Consider a sample

of 200 observations simulated from a mixture of two equally weighted beta density functions

with parameters (α1 = 30, β1 = 5) and (α1 = 6, β1 = 25). The assumed density function is

expressed as

fX(x) =
1
2

x29(1 − x)4

B(30, 5)
+

1
2

x5(1 − x)24

B(6, 25)
(4.11)
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Figure 4.1: Histogram of a simulated sample and plot of the underlying

density function simulated from an equal mixture of Beta(30, 5) and Beta(6, 25)

where B(α, β) =
Γ(α) Γ(β)
Γ(α+β) . The histogram of the sample along with the plot of the assumed

density shown in Figure 4.1 are clearly indicative of a separated bimodal distribution. Without

loss of generality, the initial support is set to be that of the underlying distribution, that is, [0, 1].

The initial polynomial estimate is fd0=14(x). Its plot as well as the underlying density on

entire interval is superimposed on a histogram of the sample in Figure 4.2 and shown along

with the underlying density on some subranges of the support.

Once the truncation points are set and the associated polynomial density is determined, the

first iteration is completed. The plots of fd0=14(x) and fd1=19(x) are compared on three subranges

within the initial interval in Figure 4.3.

Similarly, plots fd2=19(x), resulting from the second iteration, along with those of fd0=14(x)

and fd1=19(x), are shown in Figure 4.4.

As the density approximant on the third iteration does not show a significant improvement

compared with fd2=19(x) and the local minimum takes a negative value within the truncation

point evaluated on the second iteration, the iteration procedure is stopped. Then a vertical shift

of fd2=19(x) that makes it nonnegative and the normalizing of the resulting function leads to a

smooth bona fide density function denoted by fFIN(x). Density estimates at each iteration stage

and the final density function are plotted in Figure 4.5.

Notice that, with each iteration step, the support, (ai, bi), becomes gradually wider, as Table

4.1 indicates.
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(d) On the interval [0.95, 1]

Figure 4.2: Plots of fd=14(x) on various subranges of the interval

(solid line: underlying density / dotted line: fd0=14(x))

4.3.1 Comparing Glad’s and Gajek’s approaches

Once the initial estimate, fd0=14(x), is obtained, applying Equation (4.3) with a suitable value

of ξ leads to the estimate obtained from Glad’s approach, fGL(x). Figure 4.6 shows that the

corrected density function, fGL(x), cannot eliminate several variations found in both tails and

the subregion located between the two modes. Even if the tail areas can be corrected by trun-

cating at (a0, b0), the bona fide densities obtained with this method may not be everywhere

differentiable.

Number of iteration step (i) ai bi

0 0.0512034 0.967463

1 0.0459074 0.972093

2 0.0438354 0.973245

Final 0.0421001 0.973735

Table 4.1: Support at each iteration and final step
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Figure 4.3: Plots of fd0=14(x) and fd1=19(x) on various subranges of the interval

(dotted red: fd0=14(x) / dot-dashed blue: fd1=19(x))

Gajek’s approach assumes strong weights in the tails as weight function, w(x); however,

Equation (4.2) entails a converse adjustment in the tails. Using the reciprocal of Epanech-

nikov’s density function as weight function, that is, w(x) = 1
6x(1−x) , and applying repeatedly

the iterative scheme relying on Equation (4.2) produces several density function corrections at

each iteration stage, denoted by fn,GL(x), where n represents the iteration number. The plot of

the final density estimate, denoted by fFIN,GA(x), along with corrections at each iteration are in-

cluded in Figure 4.7, indicating minimal adjustment in the tails. Even if the estimate truncated

at (a0, b0) is used as the initial estimate, a smooth correction between the modes of the sample

cannot be obtained.

4.4 Smooth density estimates expressed in terms of Bern-
stein polynomials

Let f be a continuous real-valued function of the interval [0, 1]. The sequence of Bernstein

polynomials, denoted by Bn( f ; x), is expressed as
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Figure 4.4: Plots of fd0=14(x), fd1=19(x), and fd2=19(x) on various subranges of the interval

(dotted red: fd0=14(x) / dot-dashed blue: fd1=19(x)) / dashed cyan: fd2=19(x))

Bn( f ; x) =

n∑
j=0

f
( j
n

) (
n
j

)
x j (1 − x)n− j (4.12)

The reader may refer to Farouki (2012), which provided a historical perspective on the use of

the Bernstein polynomials and their applications.

Consider the initial estimate, fd0=14(x), obtained in Section 4.3, which is truncated at a0 =

0.0512 and b0 = 0.9675 as specified in Table 4.1. Once the estimate is normalized, Bn( f ; x)

as defined in Equation (4.12) is estimated, which guarantees that the resulting approximants

is continuous and differentiable at any point in the interval [0, 1]. As shown in Figure 4.8, the

higher the degree n, the more accurate the approximant is. Then the resulting smooth function

can be further approximated with a spline. For example, a second-degree spline approximant

of B1000( f ; x) which is based on 40 equidistant points of the interval [0, 1], is plotted in Figure

4.9 along with the approximated function.

In cases where the function to be approximated points to a clearly separated bimodal or

multimodal distribution, which can be assessed by inspecting a preliminary representation of

the distribution such as a histogram, it is advisable to apply the proposed methodologies on
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Figure 4.5: Plots of fd0=14(x), fd1=19(x), fd2=19(x), and fFIN(x)

on various subranges of the interval

(dotted red: fd0=14(x) / dot-dashed blue: fd1=19(x)) /

dashed cyan: fd2=19(x)) / solid purple: fFIN(x))

subintervals wherein the data is only sparse in the neighborhoods of their respective endpoints

and then combine the appropriately weighted density estimates so obtained in a single one.
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Figure 4.6: Plots of fd0=14(x) and fGL(x) on various subranges of the interval

(dashed line: fd0=14(x) / solid line: fGL(x))
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Figure 4.7: Plots of fd0=14(x), f1,GA(x), f2,GA(x), and fFIN,GA(x)

on various subranges of the interval

(dotted red: fd0=14(x) / dot-dashed blue: f1,GA(x)) /

dashed cyan: f1,GA(x)) / solid purple: fFIN,GA(x))
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Figure 4.8: Plots of the normalized truncated fd0=14(x) (dotted lines)

and the Bernstein polynomial estimates of various degrees (solid lines)
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Figure 4.9: B1000( f ; x) (solid line) and its spline approximant (dashed line)
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Chapter 5

Adjusted Empirical Bivariate Saddlepoint
Estimates

5.1 Introduction

The saddlepoint appproximation is one of the most efficient statistical technique for obtaining

very accurate tail probabilities. Since the pioneering work of Daniels (1954), further develop-

ments have been described for instances in Butler (2007), Jensen (1995), Kolassa (1994) and

Goutis and Casella (1999). The multivariate saddlepoint density is expressed as

f (x) = (2π)−
d
2
∣∣∣K ′′

(ŝ)
∣∣∣− 1

2 exp
[
K(ŝ) − ŝT x

]
(5.1)

where d is the dimension and K(s) is the cumulant generating function, that is, K(s) = ln E
(
esT x

)
and ŝ is the solution to K

′

(ŝ) = x.

When a sample of observations is available, empirical saddlepoint estimates are used to

estimate density functions. In this chapter, we investigate an improved method for estimat-

ing bivariate density functions by combining an empirical saddlepoint estimate and a bivariate

polynomial adjustment. After introducing the empirical bivariate saddlepoint estimate in Sec-

tion 5.2, we propose to use the normalized exponential term of this estimate as an initial esti-

mate. Statistically, this term is connected to likelihood ratio statistics. The proposed adjusted

bivariate density estimate is expressed as the product of a spline representation of the normal-

ized exponential term and a bivariate polynomial adjustment, which is discussed in Section 5.3.

Section 5.4 presents several examples to illustrate how the methodology is applied.

71
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5.2 Empirical bivariate saddlepoint estimation

The univariate empirical saddlepoint estimate defined in Equation (1.16) can be extended to

the bivariate case. Suppose that the analytical form of the cumulant generating function is

unknown. Given a bivariate sample of observations x1, x2, . . . , xn where x j =
(
x1 j, x2 j

)T
, the

empirical cumulant generating function is given by

K̂n(θ) = log

1
n

n∑
i=1

eθ
T xi

 (5.2)

where θ = (θ1, θ2)T and n is the sample size. The estimates of the derivatives of the function

K̂n(θ) are

K̂n
′
(θ) =

∑n
i=1 xi eθ

T xi∑n
i=1 eθT xi

(5.3)

and

K̂n
′′

(θ) =

∑n
i=1 xi xi

T eθ
T xi∑n

i=1 eθT xi
− K̂n

′
(θ) K̂n

′
(θ)

T
. (5.4)

The empirical saddlepoint estimation, denoted by f̂n(x), is expressed as follows:

f̂n(x) = (2π)−1
∣∣∣K̂n

′′
(θ̂)

∣∣∣− 1
2 eK̂n(θ̂)− θ̂T x (5.5)

where θ̂ is the saddlepoint solution of the system of equation of

K̂n
′
(θ̂) = x. (5.6)

5.2.1 Computational issues related to the empirical saddlepoint estimate

Some of the computational issues encountered in connection with making use of the empirical

saddlepoint estimate are described in Section 3.2. Another difficulty in estimating the empirical

saddlepoint resides in the tail area as the convergence rate is then slower. This may lead to

overestimating the density around the tail, which is mainly due to underestimating K̂n
′′

(θ̂),

even if the saddlepoint solution, θ̂, exists. The reader may refer to Feuerverger (1989) and

Fasiolo et al. (2018) for a discussion of the asymptotics of the empirical saddlepoint estimate.

5.2.2 Normalized likelihood-like density function

Theoretically, the moment generating function, M(s), of random variable X can be expressed

as follows in terms of the cumulant generation function, K(s):
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eK(s) = M(s) =

∫ ∞

−∞

esx f (x) dx, (5.7)

which can be reexpressed as

1 =

∫ ∞

−∞

esx−K(s) f (x) dx. (5.8)

The integrand is a density indexed by the parameter s, which shall be denoted

f (x; s) = esx−K(s) f (x). (5.9)

This is referred to the Esscher transform (or exponentially tilted density function) of X. On

rearranging Equation (5.9), one has

eK(s)−sx =
f (x)

f (x; s)
. (5.10)

Butler (2007) discussed the statistical interpretation of Equation (5.10) in connection with test-

ing hypotheses on s and with likelihood ratio statistics. If the observed value of X is x, the

maximum likelihood estimate of s maximizes f (x; s), which coincides with the saddlepoint

solution, K′(s) = x. The application of likelihood statistics in conjunction with the saddlepoint

approximation is discussed by Barndorff-Nielsen (1983), Barndorff-Nielsen and Cox (1984),

Fraser (1988), and Jensen (1992).

The following proposition states the connection between likelihood ratio statistics and the

exponential term of the empirical bivariate saddlepoint estimate.

Proposition 5.2.1 Given x, whose associated saddlepoint solution is given in Equation (5.6),

the local maximum of eK̂n(θ)−θT x is obtained at x = x̄ where x̄ is the sample mean vector.

Proof As K̂n
′
(θ̂) is the function of x used to obtain the saddlepoint, we let g(x) = eK̂n(θ(x))−θ(x)T x.

The partial derivative of g(x) with respect to x is expressed as

∂g
∂x

=

(
∂K̂n

∂θ

∂θ

∂x
−
∂θ

∂x
x − θ(x)

)
g(x)

=

[(
∂K̂n

∂θ
− x

)
∂θ

∂x
− θ(x)

]
g(x). (5.11)

Since ∂K̂n
∂θ

= x, the only condition for ∂g
∂x = 0 to hold is θ(x) = 0. In light of Proposition 1.4.2,

the local maximum of g(x) is found at K̂n(0) = x̄. Hence, the result.
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On normalizing g(x), the resulting function,

g∗(x) =
g(x)∫

R2 g(x) dx
, (5.12)

becomes a density function, g∗(x) denoting the normalized likelihood-like density function.

5.3 Adjusted empirical bivariate saddlepoint estimates

Zareamoghaddam et al. (2017) proposed a bivariate density estimation methodology that

makes use of a bivariate polynomial adjustment. Similarly, the proposed density estimate is

expressed as the product of a normalized likelihood-like density function, g∗(x, y), which is

used as base density, and a bivariate polynomial adjustment, that is,

fp,q(x1, x2) = g∗(x1, x2)
p∑

i=0

q∑
j=0

ξi, j x1
i x2

j (5.13)

where p and q denotes the polynomial degree associated with x1 and x2, respectively.

Let the (k, `)th joint sample moment be denoted by µ(k, `) = 1
n

∑n
j=1 x1 j

kx2 j
` where (x1 j, x2 j)

is the jth bivariate sample observation, and let the (k, `)th joint moment associated with the base

density, g∗(x1, x2), be denoted by m(k, `) =
∫ ∫
R2 x1

k x2
` g∗(x1, x2) dx2 dx1.

To determine the coefficients ξi, j of the polynomial adjustment, the joint sample moments

are equated to the joint moments associated with fp,q(x1, x2):

µ(k, `) =

∫ ∞

−∞

∫ ∞

−∞

xky` fp,q(x, y) dx2 dx1

=

∫ ∞

−∞

∫ ∞

−∞

xky` g∗(x1, x2)
p∑

i=0

q∑
j=0

ξi, j x1
i x2

j dx2 dx1

=

p∑
i=0

q∑
j=0

∫ ∞

−∞

∫ ∞

−∞

ξi, j x1
k+i x2

`+ j g∗(x1, x2) dx2 dx1,

for k = 0, . . . , p and ` = 0, . . . , q, which yields the following (p+1)× (q+1) linear equations:

µ(k, `) =

p∑
i=0

q∑
j=0

ξi, j m(k + i, ` + j), k = 0, 1, 2, . . . , p, ` = 0, 1, 2, . . . , q. (5.14)

Therefore, the ξi, j’s can be obtained by solving the linear system M ξ = µ where ξ and µ are

vectors of dimensions (p + 1) × (q + 1) whose (i(q + 1) + ( j + 1))th component, ξi, j and µ(i, j),
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appear in the same order for i = 0, 1, . . . , p and j = 0, 1, . . . , q. Increasing p and q should

theoretically result in greater accuracy.

The polynomial degrees p and q are such that the sum of squared differences (S S Dp,q)

S S Dp,q =

n∑
i=1

(
Fe(x1i, x2i) − Fp,q(x1i, x2i)

)2
(5.15)

is minimized, Fe(x1i, x2i) denoting the empirical bivariate cumulative distribution function

(CDF) and Fp,q(x1i, x2i), the CDF associated with the density estimate fp,q(x1, x2) evaluated

at the sample point (x1i, x2i).

5.4 Numerical examples

5.4.1 Simulated data from a bivariate normal distribution

Let Nd (µ,V) denote a d-dimensional multivariate normal distribution where µ and V denote

the mean vector and covariance matrix. Consider a sample of 500 observations simulated from

a N2

35
 , 16 4

4 4

 distribution.

Once the original data set is transformed so that the covariance matrix is converted to

a correlation matrix, the exponential term of the empirical saddlepoint estimate is evaluated

locally at multiple points, including some points outside of the boundary of the sample. Then,

a second order bivariate interpolating spline is fitted to these points, representing a likelihood-

like statistics. This spline is normalized on the support, and the resulting surface serves as an

initial approximate density function, namely the base density function. The density estimate,

fâ,b̂(x, y), is obtained once the initial estimate is adjusted by an (â + 1) × (b̂ + 1)-term bivariate

polynomial, where â and b̂ are such that S S Dâ,b̂ is minimized.

Figure 5.1 shows a histogram of the rescaled data and the normalized exponential term

of the empirical saddlepoint density estimate. After applying the inverse transformation, the

resulting density estimate is plotted along with a kernel density estimate (KDE) in Figure 5.2.

Table 5.1 includes the values of S S Da,b for various polynomial degrees a and b.

5.4.2 Flood data set

The flood data was previously analyzed by Yue (2001) to model a five-parameter bivariate

gamma distribution. Making use of daily stream-flow values, this data set consists of flood

peaks, volumes, and duration in the Madawaska basin, Quebec, Canada, covering an area of

2,690 km2, from 1919 to 1995. In this case, only the peaks and the volumes are considered.
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Figure 5.1: Histogram of the rescaled data simulated from a bivariate normal distribution

and the normalized exponential term of the empirical saddlepoint density

The rescaled histogram and the plot of the normalized exponential term of the empirical

saddlepoint density estimate are shown in Figure 5.3. The plot of the density estimate resulting

from applying the inverse transformation and that of the KDE are included in Figure 5.4. Table

5.2 provides the S S Da,b values for various polynomial degrees a and b, the minimum of S S Da,b

being found at (a, b) = (1, 1).

5.4.3 Maximum speed data set

The maximum speed data was utilized by Castillo et al. (2005) to estimate the parameters of

the generalized extreme value distribution. This data set consists of the maximum car speed

recorded over 200 dry weekends at registered points on a highway and on a mountain. The

maximum speed was recorded for the first 1,000 cars passing through the given locations.

S S D2,2 = 0.0338222 S S DKDE = 0.059261

Figure 5.2: Adjusted density estimate, f2,2(x, y), and a kernel density estimate

of the original data simulated from a bivariate normal distribution
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0 1 2 3 4 5

0 0.693781 0.379499 0.175481 0.173828 0.22172 0.221641

1 0.482737 0.15753 0.0726933 0.0746046 0.0869459

2 0.296449 0.0590618 0.0338222 0.0364008

3 0.323535 0.0574198 0.0353862

4 0.349345 0.0609876

5 0.3492

Table 5.1: S S Da,b’s for the rescaled bivariate normal simulated data

with the values of a in the left column and those of b at the top

0 1 2 3

0 0.690451 0.223898 0.0667203 0.060882

1 0.413571 0.0492777 0.0711331

2 0.142395 0.0613828

3 0.142368

Table 5.2: S S Da,b’s for the rescaled flood data

with the values of a in the left and those of b at the top
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Figure 5.3: Histogram of the rescaled flood data

and the normalized exponential term of the empirical saddlepoint estimate

Figure 5.5 displays the rescaled histogram and the plot of the normalized exponential term

of the empirical saddlepoint density estimate. Figure 5.6 shows the plot of the density estimate

after applying the inverse transformation and that of a KDE. Table 5.3 presents the values of

S S Da,b for various polynomial degrees a and b, the minimum S S Da,b being found at (a, b) =

(2, 1).

5.4.4 Simulated data from a mixture of a Dirichlet and bivariate beta
density functions

The proposed methodology is also applied to a bimodal distribution. Let Dirichlet(a, b, c)

denote the bivariate Dirichlet distribution, whose density function is given by

S S D1,1 = 0.0492777 S S DKDE = 0.0782292

Figure 5.4: Histogram of the original flood data,

the adjusted density estimate, f1,1(x, y) and a kernel density estimate
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Figure 5.5: Histogram of the rescaled maximum speed data

and the normalized exponential term of the empirical saddlepoint estimate

f (x, y) =
xa−1 yb−1 (1 − x − y)c−1 Γ(a + b + c)

Γ(a) Γ(b) Γ(c)
for x > 0, y > 0, and x + y < 1. (5.16)

Let Beta ((a1, b1), (a2, b2)) denote the product of independent univariate beta density func-

tions, which is given by

f (x, y) =
xa1−1 (1 − x)b1−1

B(a1, b1)
·

ya2−1 (1 − y)b2−1

B(a2, b2)
for 0 < x < 1 and 0 < y < 1. (5.17)

Consider 2,500 values simulated from an equal mixture of Beta ((4, 2), (5, 3)) and Dirichlet

(2,3,2) density functions. The plot of the resulting density is shown in Figure 5.7. A histogram

of the simulated data set and the corresponding contour plot are included in Figure 5.8. The

S S D2,1 = 0.0364776 S S DKDE = 0.122108

Figure 5.6: Histogram of the original maximum speed data,

the adjusted density estimate, f2,1(x, y), and a kernel density estimate
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0 1 2 3 4

0 0.350409 0.728009 0.768645 0.758816 0.665429

1 0.20402 0.044134 0.0411254 0.0547479

2 0.177573 0.0364776 0.0470069

3 0.190414 0.0457248

4 0.187497

Table 5.3: S S Da,b’s for the rescaled maximum speed data

with the values of a in the left column and those of b at the top

Figure 5.7: The pdf of the mixture of Dirichlet and beta density functions

adjusted density estimate is plotted in Figure 5.9, along with a KDE. This estimate involves

higher orders for the polynomial adjustment in order to conform to the bimodality of the dis-

tribution. Additionally, the resulting density estimate exhibits a better fit since its associated

S S D (0.0536) is lower than that of the KDE (0.0750).
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5.8: Histogram of the original data simulated from a mixture of a Dirichlet and a

bivariate beta density functions and contour plot

S S D6,4 = 0.0536251 S S DKDE = 0.075049

Figure 5.9: Adjusted density estimate, f6,4(x, y), and a kernel density estimate

of the simulated data from a mixture of a Dirichlet and a bivariate beta density functions
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Chapter 6

Concluding Remarks and Further
Research Directions

6.1 Concluding remarks

Several developments are introduced in connection with the approximation and estimation of

heavy-tailed density functions, some of which also apply to other types of distributions. It is

explained in Chapter 2 that on initially applying the exponential tilting technique to heavy-

tailed density functions such as the Pareto, Student-t and Cauchy, one can approximate the

resulting densities by employing the polynomially adjusted denisty approximation technique

described in Section 1.4. Alternatively, density approximants can be obtained by truncation.

Density approximations can then be secured between the points of truncation. Incidentally, in

the context of density estimation, this method is related to the application of the peak-over-

threshold model, a Pareto distribution being used for modeling purposes beyond the truncation

point. The third methodology involves transforming the distributions so that their supports are

finite. These techniques are then extended to the context of density estimation and their validity

is corroborated by means of simulation studies. As well, illustrative actuarial applications are

presented.

Novel approaches whereby the Box-Cox transform and the empirical saddlepoint density

estimation technique are utilized for determining the empirical endpoints associated with var-

ious types of distributions in Chapter 3. An alternative technique based on the four-parameter

generalized beta density is also proposed.

Additionally, an iterative algorithm and an approximation expressed in terms of a linear

combination of Bernstein polynomials were introduced in Chapter 4 for obtaining smooth bona

fide density functions.
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6.2. Further research 85

A certain polynomial adjustment was applied to bivariate empirical saddlepoint density

estimates in Chapter 5 in order to accurately model bivariate data sets.

The implementation of the proposed methodologies such as the constrained estimation of

the four parameters of the generalized beta distribution and the adjusted bivariate empirical

saddlepoint density estimation technique in the symbolic computing package Mathematica also

represents a notable contribution of this dissertation. The Mathematica code needed for imple-

menting the main examples in each chapter, which constitutes another significant contribution

of this thesis, is included in the Appendix.

6.2 Further research

For instance, one could consider applying the Esscher transform or the transformation of vari-

ables technique to multivariate heavy-tailed distributions so that the multivariate counterpart of

the polynomially adjusted density estimation methodology could be applied.

Similarly, the univariate techniques proposed to secure bona fide density functions could be

extended to the multivariate distributions; the iterative approach is directly applicable whereas

the alternative methodology would rely on multivariate Bernstein polynomials.

As well, empirical multivariate saddlepoint density estimates could be utilized for estimat-

ing the endpoints of a multivariate distribution. This approach could also be used for obtaining

multivariate density estimates with polynomial adjustments.

Moreover, products of generalized beta densities could be employed for determining end-

points in each direction after standardization; then on taking the inverse transformation, one

could observe where these points are mapped with respect to the original distribution.



Appendix A

Mathematica code

The Mathematica code utilized for implementing the main numerical examples presented in

this dissertation is included in this appendix. The evaluation of the moments which are utilized

for approximating or estimating density functions is carried out with rational numbers so as to

prevent any loss of precision.
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A.1 Code for Chapter 2

� A.1.1 The density approximants of a type-II Pareto (3.5,3.5) distribution obtained via 
exponential tilting (Section 2.5.1)

� The target density

f@x_D :=
a ba

Hb + xLa+1

a = 3.5; b = 3.5;

Plot@f@xD, 8x, 0, 10<, PlotRange ® AllD

� Comparing the exact and numerically evaluated tilted moments given the tilting parameter Θ =
a

b

nc@s_D := a Hb * sL a-1

2 ã
b*s

2 WhittakerWB-
a + 1

2
, -

a

2
, b * sF;

fstar@x_, s_D :=
ã-s x f@xD

nc@sD
ΜNInt@h_, s_D := ΜNInt@h, sD = NIntegrateAxh fstar@x, sD, 8x, 0, ¥<E �� Chop

m@h_, s_D :=

m@h, sD = RationalizeB b

s

h

2

Gamma@h + 1D WhittakerWA -a-h-1

2
, -a+h

2
, b sE

WhittakerWA -a-1

2
, -a

2
, b sE , 10-300F

TableBΜNIntBn,
a

b
F, 8n, 0, 25<F

TableBNBmBh,
a

b
FF, 8h, 0, 25<F
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� The approximant of the tilted density

Α = 1;

Β@s_D := m@1, sD;

Ψ@y_, s_D := Ψ@y, sD = PDF@GammaDistribution@Α, Β@sDD, yD;

mgfbase@t_, s_D :=

mgfbase@t, sD = MomentGeneratingFunction@GammaDistribution@Α, Β@sDD, tD
mmbase@n_, s_D := mmbase@n, sD = D@mgfbase@t, sD, 8t, n<D �. t -> 0;

IMb@x_, s_, n_D := IMb@x, s, nD =

HInverse@Table@mmbase@q + r, sD, 8q, 0, n<, 8r, 0, n<DD. Table@m@j, sD, 8j, 0, n<DL.

Table@x^j, 8j, 0, n<D;

fappbefore@x_, s_, n_D := fappbefore@x, s, nD = Ψ@x, sD IMb@x, s, nD
Simplify@N@fappbefore@x, 3, 16DDD
Show@Plot@fstar@x, 3D, 8x, 0, 10<, PlotRange ® All, PlotStyle ® 8Green, Thick<D,

Plot@Evaluate@fappbefore@x, 3, 16DD, 8x, 0, 10<,

PlotRange ® All, PlotStyle ® 8Red, Dashed<DD

� The approximant of the target density via the inverse transformation

fapp@x_, s_, n_D :=

fapp@x, s, nD = ãs x * RationalizeAnc@sD, 10-30E * fappbefore@x, s, nD
nc1@s_, n_D := nc1@s, nD = RationalizeAIntegrate@fapp@x, s, nD, 8x, 0, ¥<D, 10-30E;

fappfinal@x_, s_, n_D := fappfinal@x, s, nD = fapp@x, s, nD � nc1@s, nD
Simplify@N@fappfinal@x, 1.12, 32DDD
Off@Reduce::"ratnz"D
N@Reduce@fappfinal@x, 1.12, 32D � 0, xDD
Show@Plot@f@xD, 8x, 0, 10<, PlotRange ® All, PlotStyle ® 8Green, Thick<D,

Plot@Evaluate@fappfinal@x, 1.12, 32DD,

8x, 0, 10<, PlotRange ® All, PlotStyle ® 8Red, Dashed<DD

� Comparing the integrated squared errors for several approximants

ISE@s_, h_D := ISE@s, hD = IntegrateAHfappfinal@x, s, hD - f@xDL2, 8x, 0, ¥<E
ListPlot@Table@8s, Log@ISE@s, 12DD<, 8s, 0.81, 2.9, 0.01<D,

PlotRange ® 8-23, -14<, PlotStyle ® GrayD
ListPlot@Table@8s, Log@ISE@s, 18DD<, 8s, 0.81, 2.9, 0.01<D,

PlotRange ® 8-23, -14<, PlotStyle ® CyanD
ListPlot@Table@8s, Log@ISE@s, 24DD<, 8s, 0.81, 2.9, 0.01<D,

PlotRange ® 8-23, -14<, PlotStyle ® GreenD
ListPlot@Table@8s, Log@ISE@s, 32DD<, 8s, 0.81, 2.9, 0.01<D,

PlotRange ® 8-23, -14<, PlotStyle ® RedD
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� Comparing  VaR and TVaR

U@k_ ?NumericQD := Integrate@fappfinal@x, 0.88, 30D, 8x, 0, k<D
V@k_ ?NumericQD := Integrate@fappfinal@x, 1, 31D, 8x, 0, k<D
W@k_ ?NumericQD := Integrate@fappfinal@x, 1.12, 32D, 8x, 0, k<D
q = 0.99;

NBRationalizeBb * JH1 - qL-
1

a - 1N, 10-100FF
q1 = NARationalizeAFindRoot@U@jD � q, 8j, start<D@@1DD@@2DD, 10-100EE
q2 = NARationalizeAFindRoot@V@jD � q, 8j, start<D@@1DD@@2DD, 10-100EE
q3 = NARationalizeAFindRoot@W@jD � q, 8j, start<D@@1DD@@2DD, 10-100EE

1

1 - q
à

q

1

b * JH1 - uL-
1

a - 1N âu

Integrate@x fappfinal@x, 0.88, 30D, 8x, q1, ¥<D
Integrate@fappfinal@x, 0.88, 30D, 8x, q1, ¥<D

Integrate@x fappfinal@x, 1, 31D, 8x, q2, ¥<D
Integrate@fappfinal@x, 1, 31D, 8x, q2, ¥<D

Integrate@x fappfinal@x, 1.12, 32D, 8x, q3, ¥<D
Integrate@fappfinal@x, 1.12, 32D, 8x, q3, ¥<D
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� A.1.2 The density approximants of a type-II Pareto (3.5,3.5) distribution obtained by 
truncation (Section 2.5.1)

� The approximant of the truncated density function on the interval [0, 95th percentile]

f@x_D :=
a ba

Hb + xLa+1

q@x_D := b * JH1 - xL-
1

a - 1N;

a = 3.5; b = 3.5;

v = 0.95;

m1@h_D := m1@hD = RationalizeAIntegrateAxh f@xD, 8x, 0, q@vD<E, 10-500E
N@Table@m1@hD, 8h, 0, 30<DD
m1trunc@h_D := m1trunc@hD =

m1@hD
m1@0D

m1base@h_D := m1base@hD = RationalizeB q@vDh

1 + h
, 10-500F

IMb1@x_, n_D := IMb1@x, nD =

HInverse@Table@m1base@r + cD, 8r, 0, n<, 8c, 0, n<DD. Table@m1trunc@jD, 8j, 0, n<DL.

Table@x^j, 8j, 0, n<D;

fapp1@x_, n_D := fapp1@x, nD = IfB0 £ x £ q@vD,

m1@0D RationalizeB 1

q@vD , 10-500F IMb1@x, nD, 0F;

Show@Plot@f@xD, 8x, 0, q@vD<, PlotRange ® All, AxesOrigin ® 80, 0<D, Plot@
Evaluate@fapp1@x, 25DD, 8x, 0, q@vD<, PlotStyle ® 8Red, Dashed<, PlotRange ® AllDD
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� A.1.3 Density approximants of a type-II Pareto (3.5,3.5) distribution obtained via 
transformation of variables (Section 2.5.1)

f@x_D :=
a ba

Hb + xLa+1

g@y_, Θ_D :=
Θ

H1 - yL2
fB Θ y

1 - y
F;

a = 3.5; b = 3.5;

Plot@f@xD, 8x, 0, 10<, PlotRange ® AllD
Plot@g@y, bD, 8y, 0, 1<, PlotRange ® AllD
m@h_, Θ_D := RationalizeAIntegrateAxh g@x, ΘD, 8x, 0, 1<E, 10-500E
mbase@h_D :=

1

h + 1
IMb@x_, Θ_, n_D :=

HInverse@Table@mbase@r + cD, 8r, 0, n<, 8c, 0, n<DD. Table@m@j, ΘD, 8j, 0, n<DL.

Table@x^j, 8j, 0, n<D;

gapp@x_, Θ_, n_D := IMb@x, Θ, nD;

Show@Plot@g@x, 2D, 8x, 0, 1<, PlotRange ® All, AxesOrigin ® 80, 0<D, Plot@
Evaluate@gapp@x, 2, 9DD, 8x, 0, 1<, PlotStyle ® 8Red, Dashed<, PlotRange ® AllDD

fapp@x_, Θ_, n_D :=
Θ

Hx + ΘL2
gappB x

x + Θ
, Θ, nF

Show@Plot@f@xD, 8x, 0, 10<, PlotRange ® All, AxesOrigin ® 80, 0<D,

Plot@fapp@x, 3.5, 9D, 8x, 0, 10<, PlotStyle ® 8Red, Dashed<, PlotRange ® AllDD
NBReduceBgappB x

x +
52

10

,
52

10
, 9F � 0, xFF
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� A.1.4 The density approximants of a Cauchy distribution obtained via exponential tilting 
(Section 2.5.2)

� Approximated density of a half-Cauchy distribution

f@x_D :=
2

Π I1 + x2M
Plot@f@xD, 8x, 0, 6<, PlotRange ® AllD
nc@s_D :=

nc@sD = RationalizeB 2 CosIntegral@sD Sin@sD + Cos@sD HΠ - 2 SinIntegral@sDL
Π

, 10-50F;

fstar@x_, s_D = fstar@x, sD =
ã-s x f@xD

nc@sD ;

Plot@Evaluate@fstar@x, 1DD, 8x, 0, 6<, PlotRange ® AllD
m@s_, h_D := WhichBh == 0,

2 CosIntegral@sD Sin@sD + Cos@sD HΠ - 2 SinIntegral@sDL
2 CosIntegral@sD Sin@sD + Cos@sD HΠ - 2 SinIntegral@sDL ,

h == 1,
-2 Cos@sD CosIntegral@sD + Sin@sD HΠ - 2 SinIntegral@sDL
2 CosIntegral@sD Sin@sD + Cos@sD HΠ - 2 SinIntegral@sDL , h == 2,

2

s
- Π Cos@sD - 2 CosIntegral@sD Sin@sD + 2 Cos@sD SinIntegral@sD �

H2 CosIntegral@sD Sin@sD + Cos@sD HΠ - 2 SinIntegral@sDLL,

h ³ 3, MeijerGB:: 1

2
-

h

2
>, 8<>, :: 1

2
-

h

2
, 0,

1

2
>, 8<>,

s2

4
F �

IH2 CosIntegral@sD Sin@sD + Cos@sD HΠ - 2 SinIntegral@sDLL Π1�2MF
Ψ@y_, s_D := Ψ@y, sD = PDF@GammaDistribution@Α, Β@sDD, yD;

mmbase@s_, n_D := mmbase@s, nD = Β@sDn Factorial@nD
IMb@x_, s_, n_D :=

IMb@x, s, nD = IInverse@Table@mmbase@s, r + tD, 8r, 0, n<, 8t, 0, n<DD.

TableARationalizeAm@s, jD, 10-50E, 8j, 0, n<EM.Table@x^j, 8j, 0, n<D;

fappbefore@x_, s_, n_D := fappbefore@x, s, nD = Ψ@x, sD IMb@x, s, nD
Show@Plot@Evaluate@fstar@x, 1DD, 8x, 0, 60<, PlotRange ® All,

PlotStyle ® 8Green, Thick<D, Plot@Evaluate@fappbefore@x, 1, 9DD,

8x, 0, 60<, PlotRange ® All, PlotStyle ® 8Red, Dashed<DD
fapp@x_, s_, h_D := ãs x * nc@sD * fappbefore@x, s, hD
nc1@s_, h_D := RationalizeAIntegrate@fapp@x, s, hD, 8x, 0, ¥<D, 10-30E;

fappfinal@x_, s_, h_D := fapp@x, s, hD � nc1@s, hD
Off@Reduce::"ratnz"D
N@Reduce@fappfinal@x, 1, 37D � 0, xDD
Show@Plot@f@xD, 8x, 0, 10<, PlotRange ® All, PlotStyle ® 8Green, Thick<D,

Plot@Evaluate@fappfinal@x, 1, 37DD, 8x, 0, 10<,

PlotRange ® All, PlotStyle ® 8Red, Dashed<DD
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� Obtaining an approximant of a Cauchy density function by applying the symmetrization technique

g@xD =
1

Π I1 + x2M ;

ShowB
Plot@Evaluate@g@xDD, 8x, -10, 10<, PlotRange ® All, PlotStyle ® 8Green, Thick<D,

PlotBEvaluateB 1

2
fappfinal@x, 1, 37D +

1

2
fappfinal@-x, 1, 37DF,

8x, -10, 10<, PlotRange ® All, PlotStyle ® 8Red, Dashed<FF
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� A.1.5 The density estimate obtained via exponential tilting for data simulated  from a type-II 
Pareto (3.5,35) distribution

� Using an exponential density as base density

SeedRandom@1437D
RNGUnif = RandomReal@1, 5 * 10^3D;

Α = 3.5; Β = 35;

RNGPareto = Β * JH1 - RNGUnifL-
1

Α - 1N;

Show@Histogram@RNGPareto, 80, 60, 1<, "PDF"D,

Plot@PDF@ParetoDistribution@b, a, 0D, xD, 8x, 0, 60<, PlotRange ® AllDD
n1 = Length@RNGParetoD;

Μ =
1

n1
Total@RNGParetoD;

Σ = SqrtB 1

n1 - 1
TotalAHRNGPareto - ΜL2EF;

moddata = RNGPareto � Σ;

LaplaceMoment@h_, Θ_D :=

LaplaceMoment@h, ΘD = RationalizeB TotalAã-Θ moddata moddatahE
n1

, 10-100F
Μ1@h_, Θ_D := Μ1@h, ΘD =

LaplaceMoment@h, ΘD
LaplaceMoment@0, ΘD ;

a2 = 1;

b2@Θ_D := b2@ΘD = Μ1@1, ΘD;

Ψ2@y_, Θ_D := PDF@GammaDistribution@a2, b2@ΘDD, yD;

mgfbase2@t_, Θ_D :=

MomentGeneratingFunction@GammaDistribution@a2, b2@ΘDD, tD;

mm2@n_, Θ_D := D@mgfbase2@t, ΘD, 8t, n<D �. t -> 0;

IMb2@x_, Θ_, n_D :=

IInverseARationalizeATable@mm2@r + s, ΘD, 8r, 0, n<, 8s, 0, n<D, 10-300EE.

Table@Μ1@j, ΘD, 8j, 0, n<DM.Table@x^j, 8j, 0, n<D;

fappbefore2@x_, Θ_, n_D := Ψ2@x, ΘD IMb2@x, Θ, nD;

fappafter2@x_, Θ_, n_D :=

fappafter2@x, Θ, nD = IãΘ x * LaplaceMoment@0, ΘD * fappbefore2@x, Θ, nDM �
IntegrateAãΘ t * LaplaceMoment@0, ΘD * fappbefore2@t, Θ, nD, 8t, 0, ¥<E

Show@Histogram@moddata, 80, 6, 0.1<, "PDF"D, Plot@Evaluate@fappafter2@x, 3.5, 8DD,

8x, 0, 10<, PlotRange ® All, PlotStyle ® 8Red, Dashed<DD
N@Reduce@IMb2@x, 3, 9D � 0, x, RealsDD
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� Anderson-Darling test with various tilting parameters and polynomial adjustment degrees

D@Θ_, h_D := ProbabilityDistribution@fappafter2@x, Θ, hD, 8x, 0, ¥<D
P@Θ_, h_D := P@Θ, hD = AndersonDarlingTest@moddata, D@Θ, hD, "TestStatistic"D
ListPlot@Table@8Θ, P@Θ, 3D<, 8Θ, 0.5, 5, 0.1<D, PlotStyle ® Black, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 4D<, 8Θ, 0.5, 5, 0.1<D, PlotStyle ® Pink, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 5D<, 8Θ, 0.5, 5, 0.1<D, PlotStyle ® Red, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 6D<, 8Θ, 0.5, 5, 0.1<D,

PlotStyle ® Orange, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 7D<, 8Θ, 0.5, 5, 0.1<D, PlotStyle ® Blue, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 8D<, 8Θ, 0.5, 5, 0.1<D, PlotStyle ® Cyan, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 9D<, 8Θ, 0.5, 5, 0.1<D, PlotStyle ® Brown, PlotRange ® 80, 5<D
ListPlot@Table@8Θ, P@Θ, 10D<, 8Θ, 0.5, 5, 0.1<D,

PlotStyle ® Purple, PlotRange ® 80, 5<D
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� A.1.6 The density estimate obtained via exponential tilting for the Automobile insurance 
claim data set

� Using a gamma density function as base density

AutoClaim = Import@"C:\\Users\\owner\\Documents\\John\\Research\\Moment-based

density\\AutoClaim.xlsx", 8"Data", 1<D;

Transpose@AutoClaimD;

data = %@@1DD;

n = Length@dataD
Μ =

1

n
Total@dataD;

Σ = SqrtB 1

n - 1
TotalAHdata - ΜL2EF;

Histogram@data, 50, "PDF"D
moddata = data � Σ;

LaplaceMoment@h_, Θ_D :=

LaplaceMoment@h, ΘD = RationalizeB TotalAã-Θ moddata moddatahE
n

, 10-100F
Μ1@h_, Θ_D := Μ1@h, ΘD =

LaplaceMoment@h, ΘD
LaplaceMoment@0, ΘD ;

a3@Θ_D := a3@ΘD =
Μ1@1, ΘD2

Μ1@2, ΘD - Μ1@1, ΘD2
;

b3@Θ_D := b3@ΘD =
Μ1@2, ΘD - Μ1@1, ΘD2

Μ1@1, ΘD ;

Ψ3@y_, Θ_D := Ψ3@y, ΘD = PDF@GammaDistribution@a3@ΘD, b3@ΘDD, yD;

mgfbase3@t_, Θ_D :=

mgfbase3@t, ΘD = MomentGeneratingFunction@GammaDistribution@a3@ΘD, b3@ΘDD, tD;

mm3@n_, Θ_D := mm3@n, ΘD = D@mgfbase3@t, ΘD, 8t, n<D �. t -> 0;

IMb3@x_, Θ_, n_D := IMb3@x, Θ, nD =

IInverseARationalizeATable@mm3@r + s, ΘD, 8r, 0, n<, 8s, 0, n<D, 10-300EE.

Table@Μ1@j, ΘD, 8j, 0, n<DM.Table@x^j, 8j, 0, n<D;

fappbefore3@x_, Θ_, n_D := fappbefore3@x, Θ, nD = Ψ3@x, ΘD IMb3@x, Θ, nD;

fappafter3@x_, Θ_, n_D :=

fappafter3@x, Θ, nD = IãΘ x * LaplaceMoment@0, ΘD * fappbefore3@x, Θ, nDM �
IntegrateAãΘ t * LaplaceMoment@0, ΘD * fappbefore3@t, Θ, nD, 8t, 0, ¥<E

Show@Histogram@moddata, 80, 9, 0.1<, "PDF"D, Plot@Evaluate@fappafter3@x, 1.5, 9DD,

8x, 0, 9<, PlotRange ® All, PlotStyle ® 8Red, Dashed<DD
N@Reduce@IMb3@x, 1.5, 9D � 0, x, RealsDD
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A.2 Code for Chapter 3

� A.2.1 Procedure for determining endpoints by making use of the Box-Cox transform and 
the empirical saddlepoint estimates

� Data simulated from a GP (0,1,1) distribution (sample size: 2,500)

SeedRandom@5832D
RNGUnif = RandomVariate@UniformDistribution@D, 2500D;

m = 0;

s = 1;

Α = 1;

RNGPareto = m +
s * HRNGUnif-Α - 1L

Α
;

n = Length@RNGUnifD;

f@x_D :=
1

s
1 +

Hx - mL
Α s

-Α-1

Show@Histogram@RNGPareto, 80, 20, 0.25<, "PDF"D,

Plot@f@xD, 8x, 0, 20<, PlotRange ® AllDD
8Min@RNGParetoD, Max@RNGParetoD<

� Applying the Box-Cox transform and rescaling it with the resulting standard deviation

autoboxcox@Λ_D := IfBΛ � 0, Log@RNGParetoD,
RNGParetoΛ - 1

Λ
F

prolikelihood@Λ_D :=

Total@Log@PDF@NormalDistribution@Mean@autoboxcox@ΛDD, StandardDeviation@
autoboxcox@ΛDDD, autoboxcox@ΛDDDD + HΛ - 1L * Total@Log@RNGParetoDD

ListPlot@Table@8Λ, prolikelihood@ΛD<, 8Λ, -1.5, 0.5, 0.1<DD
Λ1 = 0;

Histogram@autoboxcox@Λ1DD
8Min@autoboxcox@Λ1DD, Max@autoboxcox@Λ1DD<
Σ1 = StandardDeviation@autoboxcox@Λ1DD
standdata =

autoboxcox@Λ1D
Σ1

;

Histogram@standdata, 50, "PDF"D
8Min@standdataD, Max@standdataD<
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� The logarithm of the empirical saddlepoint estimates determined for points lying outside of the range of the sample

data = RationalizeAstanddata, 10-100E;

k@t_D := k@tD = LogASumAEdata@@jDD t � n, 8j, 1, n<EE;

k1@t_D := k1@tD = k'@tD;

k2@t_D := k2@tD = k''@tD;

Ζ@q_D := Ζ@qD = FindRoot@k1@ΖD � q, 8Ζ, 0<D@@1DD@@2DD;

g1@q_D :=
1

2 Π k2@Ζ@qDD
1�2

ãk@Ζ@qDD-Ζ@qD q;

w@q_D := w@qD = Sign@Ζ@qDD * Sqrt@2 * Hq * Ζ@qD - k@Ζ@qDDLD;

v@q_D := v@qD = Ζ@qD * Sqrt@k2@Ζ@qDDD;

FSaddle@q_D :=

FSaddle@qD = CDF@NormalDistribution@0, 1D, w@qD + H1 � w@qDL Log@Hv@qD � w@qDLDD;

Off@FindRoot::jsing, FindRoot::lstolD
tf1 = TableB:ãH-7.5+.01 iL*Σ1, LogB 1

ãH-7.5+.01 iL*Σ1
g1@-7.5 + 0.01 iDF>, 8i, 0, 400<F

ShowAListPlotA980, 0<, 9ã-3.5*Σ1, -750==, PlotStyle ® NoneE,

ListPlot@tf1, PlotRange ® AllD,

ListPlotA99ãMin@dataD*Σ1, 0==, PlotStyle ® Red, PlotMarkers ® 8"�", 15<EE
tf2 = TableB:ãH4.5+.01 iL*Σ1, LogB 1

ãH4.5+.01 iL*Σ1
g1@4.5 + 0.01 iDF>, 8i, 0, 400<F

ShowAListPlotA99ã4.5*Σ1, 0=, 9ã8.5*Σ1, -750==, PlotStyle ® NoneE,

ListPlot@tf2, PlotRange ® AllD,

ListPlotA99ãMax@dataD*Σ1, 0==, PlotStyle ® Red, PlotMarkers ® 8"�", 15<EE

� A.2.1 Obtaining estimated endpoints based on the generalized beta distribution

� Penalized maximum likelihood estimate method

likelihood@x_D :=

-Log@Beta@a, bDD - Ha + b - 1L Log@u - lD + Ha - 1L * Log@x - lD + Hb - 1L * Log@u - xD
opt = NMaximizeB:Total@likelihood@autoboxcox@Λ1DDD +

LogB Sort@autoboxcox@Λ1DD@@1DD - l

Sort@autoboxcox@Λ1DD@@2DD - l
F + LogB u - Sort@autoboxcox@Λ1DD@@nDD

u - Sort@autoboxcox@Λ1DD@@n - 1DD F,

a > 0, b > 0, l < Sort@autoboxcox@Λ1DD@@1DD, u > Sort@autoboxcox@Λ1DD@@nDD>,

8a, b, l, u<, MaxIterations ® 1000F
a1 = opt@@2DD@@1DD@@2DD
b1 = opt@@2DD@@2DD@@2DD
l1 = opt@@2DD@@3DD@@2DD
u1 = opt@@2DD@@4DD@@2DD
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� Feasibility constrained moment matching technique

opt1 = NMinimizeB: l + Hu - lL a

a + b
- Mean@autoboxcox@Λ1DD 2

+

Hu - lL2
a * b

Ha + bL2 Ha + b + 1L - StandardDeviation@autoboxcox@Λ1DD2
2

+

2 Hb - aL Sqrt@a + b + 1D
Ha + b + 2L Sqrt@a * bD - Skewness@autoboxcox@Λ1DD 2

+

3 Ha + b + 1L I2 Ha + bL2 + a * b * Ha + b - 6LM
a * b * Ha + b + 2L Ha + b + 3L - Kurtosis@autoboxcox@Λ1DD

2

, a > 0,

b > 0, l < Sort@autoboxcox@Λ1DD@@1DD, u > Sort@autoboxcox@Λ1DD@@nDD>, 8a, b, l, u<F
a2 = opt1@@2DD@@1DD@@2DD
b2 = opt1@@2DD@@2DD@@2DD
l2 = opt1@@2DD@@3DD@@2DD
u2 = opt1@@2DD@@4DD@@2DD

� Fitting the density estimates by applying the inverse transform

f1@x_D := IfBl1 £ x £ u1,
1

Beta@a1, b1D
Hx - l1La1-1 Hu1 - xLb1-1

Hu1 - l1La1+b1-1
, 0F

f2@x_D := IfBl2 £ x £ u2,
1

Beta@a2, b2D
Hx - l2La2-1 Hu2 - xLb2-1

Hu2 - l2La2+b2-1
, 0F

ShowBHistogram@RNGPareto, 80, 20, 0.25<, "PDF"D,

Plot@f@xD, 8x, 0, 20<, PlotRange ® AllD,

PlotB 1

x
f1@Log@xDD, 8x, 0, 20<, PlotStyle ® 8Green, Dotted<, PlotRange ® AllF,

PlotB 1

x
f2@Log@xDD, 8x, 0, 20<, PlotStyle ® 8Red, Dashed<, PlotRange ® AllFF
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A.3 Code for Chapter 4

� A.3.1 Procedure for obtaining a smooth bona fide density function

� Simulated data from a mixture of equally weighted beta density functions

SeedRandom@8267D
RNGUnif = RandomReal@1, 200D;

partition01 = Select@RNGUnif, ð > 0.5 &D;

partition02 = Select@RNGUnif, ð £ 0.5 &D;

n1 = Length@partition01D;

n2 = Length@partition02D;

RNGBeta1 = RandomVariate@BetaDistribution@30, 5D, n1D;

RNGBeta2 = RandomVariate@BetaDistribution@6, 25D, n2D;

RNGMixture = Join@RNGBeta1, RNGBeta2D;

f@x_D :=
1

2
PDF@BetaDistribution@30, 5D, xD +

1

2
PDF@BetaDistribution@6, 25D, xD;

Show@Histogram@RNGMixture, 50, "PDF"D, Plot@f@xD, 8x, 0, 1<, PlotRange ® AllDD

� Initial density estimate

n = Length@RNGMixtureD;

m@h_D := m@hD = RationalizeB TotalARNGMixturehE
n

, 10-20F;

Ψ@y_D := PDF@UniformDistribution@D, yD;

mm@h_D :=
1

h + 1
;

IMb@x_, n_D :=

HInverse@Table@mm@r + cD, 8r, 0, n<, 8c, 0, n<DD. Table@m@jD, 8j, 0, n<DL.

Table@x^j, 8j, 0, n<D;

fapp@x_, n_D := Ψ@xD IMb@x, nD;

N@Reduce@fapp@x, 14D � 0, xDD
Show@Histogram@RNGMixture, 80, 1, 0.025<, "PDF"D,

Plot@f@xD, 8x, 0, 1<, PlotRange ® All, PlotStyle ® GreenD,

Plot@Evaluate@fapp@x, 14DD, 8x, 0, 1<, PlotRange ® All, PlotStyle ® 8Red, Dotted<DD
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� Density estimate obtained from the first iteration

N@Reduce@fapp@x, 14D � 0, xDD
v1 = RationalizeAReduce@fapp@x, 14D � 0, xD@@4DD@@2DD, 10-100E;

v2 = RationalizeAReduce@fapp@x, 14D � 0, xD@@9DD@@2DD, 10-100E;

N@8v1, v2<D
Μ11@j_D := Μ11@jD =

RationalizeANIntegrateAxj fapp@x, 14D, 8x, v1, v2<, WorkingPrecision ® 20E, 10-300E
Μ12@j_D := Μ12@jD = RationalizeANIntegrateAxj SqrtAfapp@x, 14D2E,

8x, v1, v2<, WorkingPrecision ® 20E, 10-300E
Μ1mod@j_D := Μ1mod@jD =

1

2
* HΜ11@jD + Μ12@jDL

1

2
* HΜ11@0D + Μ12@0DL

Ψ1@y_D := PDF@UniformDistribution@D, yD;

mm1@h_D :=
1

h + 1
; IMb1@x_, j_D := IMb1@x, jD =

HInverse@Table@mm1@r + cD, 8r, 0, j<, 8c, 0, j<DD. Table@Μ1mod@hD, 8h, 0, j<DL.

Table@x^h, 8h, 0, j<D; fapp1@x_, j_D := fapp1@x, jD = Ψ1@xD IMb1@x, jD;

Show@Plot@Evaluate@fapp@x, 14DD, 8x, 0, 1<, PlotRange ® All,

PlotStyle ® 8Red, Dotted<D, Plot@Evaluate@fapp1@x, 19DD,

8x, 0, 1<, PlotStyle ® 8Blue, DotDashed<, PlotRange ® AllDD
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� Density estimate obtained from the second iteration

N@Reduce@fapp1@x, 19D � 0, xDD
v3 = RationalizeAReduce@fapp1@x, 19D � 0, xD@@4DD@@2DD, 10-100E;

v4 = RationalizeAReduce@fapp1@x, 19D � 0, xD@@9DD@@2DD, 10-100E;

N@8v3, v4<D
Μ21@j_D := Μ21@jD = RationalizeA

NIntegrateAxj fapp1@x, 19D, 8x, v3, v4<, WorkingPrecision ® 20E, 10-300E
Μ22@j_D := Μ22@jD = RationalizeANIntegrateAxj SqrtAfapp1@x, 19D2E,

8x, v3, v4<, WorkingPrecision ® 20E, 10-300E
Μ2mod@j_D := Μ2mod@jD =

1

2
* HΜ21@jD + Μ22@jDL

1

2
* HΜ21@0D + Μ22@0DL

Ψ2@y_D := PDF@UniformDistribution@D, yD;

mm2@h_D :=
1

h + 1
; IMb2@x_, j_D := IMb2@x, jD =

HInverse@Table@mm2@r + cD, 8r, 0, j<, 8c, 0, j<DD. Table@Μ2mod@hD, 8h, 0, j<DL.

Table@x^h, 8h, 0, j<D; fapp2@x_, j_D := fapp2@x, jD = Ψ2@xD IMb2@x, jD;

Show@Plot@Evaluate@fapp@x, 14DD, 8x, 0, 1<, PlotRange ® All,

PlotStyle ® 8Red, Dotted<D, Plot@Evaluate@fapp1@x, 19DD, 8x, 0, 1<,

PlotRange ® All, PlotStyle ® 8Blue, DotDashed<D, Plot@Evaluate@fapp2@x, 19DD,

8x, 0, 1<, PlotStyle ® 8Cyan, Dashed<, PlotRange ® AllDD
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� Final bona fide density estimate

N@Reduce@fapp2@x, 19D � 0DD
v5 = RationalizeAReduce@fapp2@x, 19D � 0, xD@@5DD@@2DD, 10-100E;

v6 = RationalizeAReduce@fapp2@x, 19D � 0, xD@@10DD@@2DD, 10-100E;

N@Reduce@D@fapp2@x, 19D, xD � 0DD
a1 = Reduce@D@fapp2@x, 19D, xD � 0D@@5DD@@2DD;

b1 = Reduce@D@fapp2@x, 19D, xD � 0D@@7DD@@2DD;

N@fapp2@a1, 19DD
N@fapp2@b1, 19DD
mn = RationalizeAfapp2@a1, 19D, 10-100E;

fab@x_D := fapp2@x, 19D + Abs@mnD
N@Reduce@fab@xD � 0DD
v7 = Reduce@fab@xD � 0D@@4DD@@2DD;

v8 = Reduce@fab@xD � 0D@@5DD@@2DD;

norcst = RationalizeANIntegrate@fab@xD, 8x, v7, v8<D, 10-100E;

fn@x_D := fn@xD =
fab@xD
norcst

Show@Histogram@RNGMixture, 50, "PDF"D,

Plot@Which@v7 £ x £ v8, fn@xD, x < v7, 0, x > v8, 0D,

8x, 0, 1<, PlotRange ® All, PlotStyle ® PurpleDD

� A.3.2 Density estimate obtained from Glad’s approach

S@k_ ?NumericQD :=

IntegrateB 1

2
IHfapp@x, 14D - kL + SqrtAHfapp@x, 14D - kL2EM, 8x, 0, 1<F;

c1 = RationalizeAFindRoot@S@kD � 1, 8k, 0.01<D@@1DD@@2DD, 10-300E;

fglad@x_D :=
1

2
IHfapp@x, 14D - c2L + SqrtAHfapp@x, 14D - c1L2EM;

Show@Plot@fapp@x, 14D, 8x, 0, 1<, PlotRange ® All, PlotStyle ® 8Red, Dashed<D,

Plot@fglad@xD, 8x, 0, 1<, PlotRange ® All, PlotStyle ® BlueDD
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� A.3.3 Density estimate obtained from Gajek’s approach

� Density estimate obtained from the first iteration

Μp11 = RationalizeANIntegrate@fapp@x, 14D, 8x, 0, 1<, WorkingPrecision ® 20D, 10-300E;

Μp12 = RationalizeA
NIntegrateASqrtAfapp@x, 14D2E, 8x, 0, 1<, WorkingPrecision ® 20E, 10-300E;

c11 =
1

2
HΜp11 + Μp12L;

h@x_D :=
1

6 x H1 - xL ;

fgajek1@x_D :=
1

2
* Ifapp@x, 14D + SqrtAfapp@x, 14D2EM -

c11 - 1

h@xD ;

Show@Plot@Evaluate@fapp@x, 14DD,

8x, 0, 1<, PlotRange ® All, PlotStyle ® 8Red, Dotted<D,

Plot@fgajek1@xD , 8x, 0, 1<, PlotStyle ® 8Blue, DotDashed<, PlotRange ® AllDD

� Density estimate obtained from the second iteration

Μp21 = RationalizeANIntegrate@fgajek1@xD, 8x, 0, 1<, WorkingPrecision ® 20D, 10-300E;

Μp22 = RationalizeA
NIntegrateASqrtAfgajek1@xD2E, 8x, 0, 1<, WorkingPrecision ® 20E, 10-300E;

c12 =
1

2
HΜp21 + Μp22L;

fgajek2@x_D :=
1

2
Ifgajek1@xD + SqrtAfgajek1@xD2EM -

Hc12 - 1L
h@xD ;

Show@Plot@Evaluate@fapp@x, 14DD,

8x, 0, 1<, PlotRange ® All, PlotStyle ® 8Red, Dotted<D,

Plot@fgajek1@xD , 8x, 0, 1<, PlotStyle ® 8Blue, DotDashed<, PlotRange ® AllD,

Plot@fgajek2@xD , 8x, 0, 1<, PlotStyle ® 8Cyan, Dashed<, PlotRange ® AllDD

104



� A.3.4 Smooth density estimate expressed in terms of Bernstein polynomials

v1 = RationalizeAReduce@fapp@x, 14D � 0, xD@@4DD@@2DD, 10-100E;

v2 = RationalizeAReduce@fapp@x, 14D � 0, xD@@9DD@@2DD, 10-100E;

N@8v1, v2<D
fapptrunc@x_, h_D := IfBv1 £ x < v2,

1

2
Ifapp@x, hD + SqrtAfapp@x, hD2EM, 0F;

nc = Integrate@fapptrunc@x, 14D, 8x, 0, 1<D;

fappbern2@x_, k_D :=

fappbern2@x, kD = â
v=0

k fapptruncA v

k
, 14E

nc
BernsteinBasis@k, v, xD

ShowBPlotBEvaluateB fapptrunc@x, 14D
nc

F, 8x, 0, 1<, PlotStyle ® 8Green, Dashed<F,

Plot@Evaluate@fappbern2@x, 1000DD, 8x, 0, 1<, PlotStyle ® RedDF
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A.4 Code for Chapter 5

� A.4.1 Procedure for obtaining an adjusted empirical saddlepoint estimate

� Simulated data from a mixture of Dirichlet and bivariate beta density functions

SeedRandom@2283D
RNGUnif = RandomReal@1, 2500D;

partition01 = Select@RNGUnif, ð > 0.5 &D;

partition02 = Select@RNGUnif, ð £ 0.5 &D;

n1 = Length@partition01D;

n2 = Length@partition02D;

RNGDirichlet = RandomVariate@DirichletDistribution@82, 3, 2<D, n1D;

RNGBetaX = RandomVariate@BetaDistribution@4, 2D, n2D;

RNGBetaY = RandomVariate@BetaDistribution@5, 3D, n2D;

RNGBeta = Transpose@8RNGBetaX, RNGBetaY<D;

data = Join@RNGDirichlet, RNGBetaD;

n = Length@dataD;

Plot3DB 1

2
PDF@DirichletDistribution@82, 3, 2<D, 8x, y<D +

1

2
PDF@BetaDistribution@4, 2D, xD * PDF@BetaDistribution@5, 3D, yD,

8x, 0, 1<, 8y, 0, 1<, Exclusions ® NoneF
Histogram3D@data, 20, "PDF"D
ShowBListPlot@dataD, ContourPlotB 1

2
PDF@DirichletDistribution@82, 3, 2<D, 8x, y<D +

1

2
PDF@BetaDistribution@4, 2D, xD * PDF@BetaDistribution@5, 3D, yD,

8x, 0, 1<, 8y, 0, 1<, ContourShading ® NoneFF
S = Covariance@dataD
rescaled = data.MatrixPower@DiagonalMatrix@Diagonal@SDD, -0.5D;

Histogram3D@rescaled, 20, "PDF"D
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� Fitting a second order bivariate interpolating spline to the locally evaluated exponential terms of the empirical 
saddlepoint estimates

data1 = RationalizeArescaled, 10-100E;

k@t1_, t2_D := k@t1, t2D = LogASumAEdata1@@jDD@@1DD*t1+data1@@jDD@@2DD*t2 � n, 8j, 1, n<EE;

k11@t1_, t2_D := k11@t1, t2D = D@k@x1, x2D, 8x1, 1<, 8x2, 0<D �. 8x1 ® t1, x2 ® t2<;

k12@t1_, t2_D := k12@t1, t2D = D@k@x1, x2D, 8x1, 0<, 8x2, 1<D �. 8x1 ® t1, x2 ® t2<;

k21@t1_, t2_D := k21@t1, t2D = D@k@x1, x2D, 8x1, 2<, 8x2, 0<D �. 8x1 ® t1, x2 ® t2<;

k22@t1_, t2_D := k22@t1, t2D = D@k@x1, x2D, 8x1, 1<, 8x2, 1<D �. 8x1 ® t1, x2 ® t2<;

k23@t1_, t2_D := k23@t1, t2D = D@k@x1, x2D, 8x1, 0<, 8x2, 2<D �. 8x1 ® t1, x2 ® t2<;

Ζ@x1_, x2_D :=

Ζ@x1, x2D = FindRoot@8k11@t1, t2D � x1 && k12@t1, t2D � x2<, 88t1, 0<, 8t2, 0<<D
r1@t1_, t2_D := ãk@Ζ@t1,t2D@@1DD@@2DD,Ζ@t1,t2D@@2DD@@2DDD-8Ζ@t1,t2D@@1DD@@2DD,Ζ@t1,t2D@@2DD@@2DD<.8t1,t2<
ListPlot3D@Flatten@Table@8x, y, r1@x, yD<, 8x, 0, 4.5, 0.25<, 8y, 0, 5.5, 0.25<D, 1D,

PlotRange ® AllD
gs = Interpolation@Flatten@Table@8x, y, r1@x, yD<,

8x, 0, 4.5, 0.25<, 8y, 0, 5.5, 0.25<D, 1D, InterpolationOrder ® 2D
nc = NIntegrate@gs@x, yD, 8x, 0, 4.5<, 8y, 0, 5.5<D
Plot3DB gs@x, yD

nc
, 8x, 0, 4.5<, 8y, 0, 5.5<, PlotRange ® AllF
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� Applying a bivariate polynomial adjustment

X = Transpose@rescaledD@@1DD;

Y = Transpose@rescaledD@@2DD;

jm@a_, b_D := jm@a, bD = RationalizeB TotalAXa YbE
n

, 10-100F
mm@i_, j_D :=

mm@i, jD = RationalizeANIntegrateAxi yj gs@x, yD, 8x, 0, 4.5<, 8y, 0, 5.5<E, 10-100E
mm1@i_, j_D := mm1@i, jD =

mm@i, jD
mm@0, 0D

Off@Inner::"normal"D
f3@L1_List, L2_ListD := Inner@Plus, L1, L2, ListD;

L3@∆1_, ∆2_D := L3@∆1, ∆2D = Flatten@Table@8i, j<, 8i, 0, ∆1<, 8j, 0, ∆2<D, 1D;

P3@∆1_, ∆2_D :=

P3@∆1, ∆2D = Table@f3@L3@∆1, ∆2D@@iDD, L3@∆1, ∆2D@@jDDD, 8i, 1, Length@L3@∆1, ∆2DD<,

8j, 1, Length@L3@∆1, ∆2DD<D; MM@∆1_, ∆2_D := MM@∆1, ∆2D =

RationalizeATable@mm1@P3@∆1, ∆2D@@i, jDD@@1DD, P3@∆1, ∆2D@@i, jDD@@2DDD,

8i, Length@P3@∆1, ∆2DD<, 8j, Length@P3@∆1, ∆2DD<D, 10-100E;

Μvect@∆1_, ∆2_D := Μvect@∆1, ∆2D = Table@jm@L3@∆1, ∆2D@@i, 1DD, L3@∆1, ∆2D@@i, 2DDD,

8i, Dimensions@L3@∆1, ∆2DD@@1DD<D;

Ε@∆1_, ∆2_D := Ε@∆1, ∆2D = Inverse@MM@∆1, ∆2DD.Μvect@∆1, ∆2D;

polfun@x_, y_, ∆1_, ∆2_D :=

polfun@x, y, ∆1, ∆2D = Flatten@Table@x^i y^j, 8i, 0, ∆1<, 8j, 0, ∆2<D, 1D;

fapp1@x_, y_, ∆1_, ∆2_D := fapp1@x, y, ∆1, ∆2D =

gs@x, yD
nc

Ε@∆1, ∆2D.polfun@x, y, ∆1, ∆2D
Plot3D@Evaluate@fapp1@x, y, 6, 4DD, 8x, 0, 4.5<, 8y, 0, 5.5<, PlotRange ® AllD
Plot3D@Det@MatrixPower@DiagonalMatrix@Diagonal@SDD, -0.5DD

Evaluate@fapp1@MatrixPower@DiagonalMatrix@Diagonal@SDD, -0.5D@@1DD@@1DD * x,

y * MatrixPower@DiagonalMatrix@Diagonal@SDD, -0.5D@@2DD@@2DD, 6, 4DD,

8x, 0, 1<, 8y, 0, 1<, PlotRange ® AllD

� Comparing the sums of squared differences

edis = EmpiricalDistribution@rescaledD;

SSD@i_, j_D :=

SSD@i, jD = â
k=1

n HNIntegrate@fapp1@x, y, i, jD, 8x, 0, rescaled@@kDD@@1DD<,

8y, 0, rescaled@@kDD@@2DD<D - CDF@edis, rescaled@@kDDDL2

SSD@0, 0D
SSD@6, 4D
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