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Abstract

Time synchronization is an issue that affects data accuracy within wireless sensor networks

(WSNs). This issue is due to the complex nature of the wireless medium and can be mitigated

with accurate time synchronization. This research focuses on the Flooding Time Synchroniza-

tion Protocol (FTSP) since it is considered as the gold standard for accuracy in WSNs. FTSP

minimizes the synchronization error by executing an algorithm that creates a unified time for

the network reporting micro-second accuracy. Most synchronization protocols use the FTSP

implementation as a benchmark for comparison. The current and only FTSP implementation

runs on the TinyOS platform and is fully available online on GitHub. However, this imple-

mentation contains flaws that make micro-second accuracy impossible. This study reports a

complete FTSP implementation that achieves micro-second accuracy after applying modifica-

tions to the current implementation. The new implementation provides a new standard to be

used by future researches as a benchmark.

Keywords: Wireless sensor networks, synchronization protocols, FTSP, implementation,

TinyOS, time synchronization.
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Chapter 1

Introduction

During the last decade, the majority of engineering applications and processes have migrated

from wired systems to networks of nodes that are wirelessly connected. This change is largely

due to the wide range of merits that wireless communication offers such as versatility and scal-

ablity. These properties allow the end nodes to be easily added/removed in addition to accom-

modating the deployment of nodes in areas that are difficult for humans to reach. WSN’s are

used in a wide range of applications most of which utilize the mobile nature of the network by

placing the sensor nodes on moving parts. This ad-hoc setup allows for many different network

arrangements that can be made within wireless sensor networks, however, along with these ad-

vantages come added complexities. The unreliable nature of the wireless medium makes it

difficult to provide accurate timing information in situations where time-stamp precision is

critical. Time synchronization is used to obtain the exact time that the sensor sends/receives

data or to calculate the current time of the sensor relative to the rest of the network. The need

for time synchronization is largely because in most WSN applications, data is only as accu-

rate as the time-stamp associated with it. To elaborate with an example, a health monitoring

application developed by R.A. Bloomfield et al. [1], proposed a knee measurement system

which utilizes wireless sensor nodes placed at different locations on a patient’s knee to obtain

information on the health of the joint. The test involves basic movements of the joint for the

course of an hour. In order to reconstruct the correct alignment of the joint after the experi-

ment is completed, one must ensure that the gathered data is modeled from all the sensors at

the same time. Otherwise it would not be an accurate depiction of the exercise making the

1



2 Chapter 1. Introduction

data unreliable. In scenarios like these and many more, time synchronization becomes a chal-

lenge. More specifically, a synchronization protocol is needed in order to ensure the timely

arrival of packets with their corresponding correct time-stamps. Synchronization protocols are

algorithms that attempt to bridge the gap between the time the packet was sent and the time

it was received. This calculation done by estimating either the sent or received time to match

the other. For example, in the case of the flooding time synchronization protocol (FTSP), the

sender will embed its own time as the global time and the receiver will take its received time as

the local time. The protocol then works to estimate the global time from the local time by sub-

tracting calculated estimates of the errors that a packet encounters during wireless transmission

and reception.

This study shows the steps taken to provide a practical implementation of the flooding time

synchronization protocol. The original FTSP paper by Maroti et al. [2] is used as a basis for

this implementation. The available code is studied and it was discovered that there were many

discrepancies between the current implementation [3] and the characteristics of the FTSP that

were detailed in the original paper. Chapter 2 provides some background on the need of syn-

chronization protocols and the currently used protocols in WSN’s. Section 2.2.2 delivers an

overview of the most widely used wireless synchronization protocols including the flooding

time synchronization protocol. Finally, an argument regarding the integrity of the current im-

plementation [3] is presented and backed by a number of recent studies. Chapter 3 explains

the current implementation [3] and the areas where it is lacking. Chapter 3 also includes a

fully functional FTSP solution equipped with a detailed explanation of the modifications done.

Chapter 4 compares the results of this implementation to what was reported by Maroti et al.

[2] and Chapter 5 concludes the study.

1.1 Contributions

The contribution that this thesis achieves is quite important for the field of wireless sensor

networks. The work done in this study is motivated by the absence of a complete FTSP im-

plementation. In addition, research has shown that the results reported in the original 2004

FTSP paper are still being used as a benchmark for new and upcoming synchronization pro-
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tocols. This work provides a new implementation that will be available for future researchers

as the new benchmark for the FTSP. Implementation flaws in the current implementation are

addressed and corrected in this thesis and a new hardware calibration step is added to achieve

micro-second accuracy. The comprehensive research conducted on the challenging time syn-

chronization problem in this thesis extends the value of the work done to reach a larger audi-

ence. Researchers, working with WSN applications which require micro-second level accu-

racy, will now have a fully functional FTSP implementation with easily reproducible results at

their disposal.



Chapter 2

Literature Review

2.1 Wireless Sensor Networks

With the increase in technological advancements, more emphasis has been put on enhancing

the wireless efficiency of current systems. Specifically speaking, wireless sensor networks have

become the basis under which most new applications are built upon. A wireless sensor network,

as the name suggests, is a collection of sensors, stationary or mobile, that are placed in various

locations connected together over a wireless medium. Applications of wireless sensors extend

from smart home networks, area surveillance to military operations and remote sensing [4].

They are usually placed in areas of interest where measurements are to be taken over a period of

time. Initially, WSNs were used to sense and send physical and/or environmental data in order

to monitor a certain behavior, for example, their use in smart home monitoring and vegetable

greenhouse monitoring [5]. Recent advancements in WSNs have created an added complexity

to the networks. Their uses now extend to military target tracking and surveillance, natural

disaster relief, bio medical health monitoring, object and behavior tracking and automation

and hazardous environment exploration [6,7] to name a few; see Figure 2.1 for more WSN

applications.

Furthermore, wireless sensor networks are being utilized in recent medical advancements

in order to monitor a patient’s health profile remotely by checking the physiological data of

the patient [8]. In the military, WSNs are mostly used for detection of any kind of danger

or threat such as sensing chemical or nuclear attacks and alerting the appropriate channels.

4



2.1. Wireless Sensor Networks 5

Figure 2.1: Applications of Wireless Sensor Networks [6]

Sensing may also be in the form of visual detection of foreign air crafts for national security

purposes. As for a wireless sensor network’s role in natural disasters, they are mainly used for

prediction purposes by monitoring the environment and making forecasts based on calculations

from sensor readings. This kind of WSN application is often used for forest fire monitoring,

earthquake detection and gathering data to learn more about certain ecosystems. More common

and everyday uses of wireless sensor networks are sensors which monitor public areas such as

malls and create alerts if the security is compromised. In addition, some parking lots employ

sensors which can help detect empty parking spaces in order to reduce traffic congestion [9].

Finally, a more complex yet very useful application of wireless sensors is in interplanetary

exploration and high energy physics [10].

The end nodes of WSNs are characteristically low power devices since they usually consist

of one or more sensors, a processor, memory, a power supply, a radio, and an actuator if needed.

WSNs have little or no infrastructure, therefore they can be classified into two types: structured

and unstructured. Unstructured WSNs are deployed in a location of interest and left unattended
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to perform monitoring and reporting functions. This type of wireless sensor network has the

advantage of being scalable in size since the nodes are deployed in an ad hoc manner on the

field. Node mobility provides the option of sensor deployment in locations that are hard for

humans to reach. However, this characteristic causes fault detection and troubleshooting to

become more difficult. Structured wireless sensor networks are systems of sensors which are

organized in a pre-planned setting. Although this can reduce uncertainty by having easier

access and lower management cost, the amount of nodes that can be used is limited [6].

One of the main challenges of wireless sensor networks is energy consumption. This issue

is due to the large number of processes that sensor nodes need to perform regularly within

their limited lifetime. Another more debated issue that arises is time synchronization which

is done to ensure that all of the sensor nodes have a common global time [11]. Due to the

nature of events taking place in a wireless sensor network, timing is of utmost importance. The

usefulness and validity of the data received is dependent on the time it was received. One of

the simplest examples of time-synchronization is implementing power-saving techniques for

the sensor nodes. Since these algorithms would require the nodes to switch their radios on/off

depending on a certain time schedule, accurate timing must be established among all nodes in

the network for these techniques to work [12].

The unreliability of the wireless medium poses a major threat network security in WSNs.

The susceptible nature of the wireless communication medium makes it accessible to any de-

vice within the vicinity. This lack of security allows an intruder to easily intercept the signal

within the network and make malicious changes [13]. Finally, although the scalability of WSNs

is considered an advantage, it also introduces stringent constraints on the network that need to

be satisfied in order to realize that characteristic [14].

2.2 The Time Synchronization Problem

Time synchronization was initially an issue that was faced by wired networks way before wire-

less networks and has been studied thoroughly from that angle. The GPS (Global Positioning

System), aimed to provide accurate location and timing information for nodes to solve that

issue for wired networks. However, it was revealed that the system was not power efficient and



2.2. The Time Synchronization Problem 7

not widely available thereby motivating the development of software based time synchroniza-

tion protocols such as NTP (Network Time Protocol)[15]. These protocols will ensure that the

tasks are ordered and processes are time-stamped by a simple call to the kernel. This proce-

dure confirms that the source of time for all the sensors in the network emerge from the same

clock thereby eliminating any ambiguity that is otherwise faced with wireless networks. GPS

coupled with NTP displayed great results for time synchronization in wired networks which

were in the order of a few microseconds [16].

Due to the nature of wireless sensor networks, it is not possible to replicate the same solu-

tion for the time synchronization problem. The limited hardware and computing capabilities of

wireless sensor networks in addition to network instability introduced by the wireless medium

require the creation of a solution unique to WSNs [17]. Furthermore, the characteristics of

wireless sensor nodes as standalone devices impose added complexity. The nodes are each

equipped with sensors, their own physical clock and a processor. This set-up introduces a vari-

able variance to the system making it difficult to choose a common time [18]. As a result,

time-synchronization protocols are designed in order to minimize the error caused by these

uncertainties. In the next section, the different synchronization protocols will be discussed in

addition to their role in reducing uncertainty in wireless sensor networks.

2.2.1 Time Synchronization in Wireless Sensor Networks

Synchronization protocols can be classified in many ways, for the purposes of this study, they

will be classified by their main features. The most common kinds of synchronization protocols

are listed below:

• Internal synchronization vs external synchronization:

Internal synchronization does not have a global time therefore the aim of the protocol is

to minimize the difference between the nodes. With external synchronization, there is a

global time such as UTC (Universal Time Controller) that is available and used by the

nodes [18].

• Master-slave vs peer-to-peer synchronization:

Master-slave synchronization is one where there is one clock (master node clock) that all
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the other nodes synchronize their clock/time to. With peer-peer synchronization, nodes

can communicate directly with each other and by that removing the risk of the master

node failing [18].

• Sender-to-receiver vs receiver-to-receiver synchronization:

Sender to receiver will calculate the delay based on the difference in time-stamps between

the sender and receiver in addition to the time it takes to propagate. However, receiver

to receiver synchronization eliminates the sender role and thereby all nodes will only

operate as receiving nodes. The time-stamps are calculated based on the difference in

times between two receivers when they get the same message [19].

• Clock correction vs un-tethered clocks:

Due to the difference in characteristics of hardware clocks and crystal oscillators between

nodes, the clock drift issue arises. Some synchronization protocols will perform a certain

clock-correction mechanism to account for that problem [18].

• Probabilistic vs deterministic synchronization:

This refers to the way that the clock offset is measured. With probabilistic synchroniza-

tion, the maximum clock offset is calculated based on a probabilistic guarantee with a

known probability of failure. Deterministic synchronization protocols will have an upper

and lower bound set for the clock offset.[18]

• MAC-layer-based approach vs non-MAC-layer-based approach:

Some synchronization protocols are implemented at the MAC layer and are tightly linked

to the access scheme used in order to perform time-synchronization making it more ac-

curate however not modular. In other protocols which are not at the MAC layer, although

they will not offer the same accuracy as those who are but have the advantage of being

modular [10].

In addition to the attributes discussed, the synchronization protocols are also characterized

by the kinds of errors they help minimize. As shown in Figure 2.2, the main errors faced by

wireless sensor networks are a result of radio message delays. Table 2.1 summarizes the delays

that significantly affect radio message delivery.
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Figure 2.2: Sources of Radio Message Delay

2.2.2 Time Synchronization Protocols for Wireless Sensor Networks

Accurate time synchronization is one of the most debated issues faced by wireless sensor net-

works; therefore, there are many protocols that hope to bridge this gap. In this section, various

kinds of protocols that are being used to synchronize the times of the nodes within a wire-

less network will be discussed. In addition, a comparison will be made using the attributes

discussed in Section 2.2.1. The initial comparison of the most common time synchronization

protocols for WSNs is done in Tables 2.2 and 2.3 [20, 21]. A more detailed explanation on each

synchronization protocol along with a brief overview of the algorithms used is also provided in

this chapter. Finally, an in-depth study on the Flooding Time Synchronization Protocol (FTSP)

is presented.

Reference Broadcast Time Synchronization (RBS)

The reference broadcast time synchronization protocol is a receiver-receiver based determin-

istic protocol that offers high energy conservation due to its post-facto synchronization [28].

Post-facto synchronization means that the synchronization of the nodes is only done when

necessary. In addition, RBS protocol uses the broadcasting feature of wireless communica-

tions, this gives an added advantage since a broadcast means the message can reach a number
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Table 2.1: Overview of Radio Message Errors

Radio Message

Delay
Comments

Error

Magnitude

for Mica2

Send/Receive

Time for the assembly of the packet to be sent

and signalling to MAC layer/ Time for the processing

of received message and signalling to receiving application.

0 - 100 ms

Access Time for packet to access the channel. 10 - 500 ms

Transmission/

Reception

Time for packet to be sent from the first to last bit/

Time for the packet to be received from the first to last bit.
10 - 20 ms

Propagation Time for the packet to travel through air. <1 µs

Interrupt Handling

Time incurred from sections in the code disabling interrupts

which are raised from the radio chip to indicate message

transmission or reception to the microprocessor.

5 - 30 µs

Encoding/Decoding
Time to transform binary data to electromagnetic waves/

Time to transform electromagnetic waves to binary data.

100 - 200

µs

Byte Alignment Delay incurred from bits being received in incorrect order. 0 - 400 µs

Clock Drift
Delay due to different characteristics of hardware oscillators

making them have different frequencies.
>40 µs

of receivers at almost the same time. Similarly to the flooding time synchronization protocol

(FTSP), RBS also exploits this physical property of the wireless medium [18].

Although RBS does not employ MAC layer time-stamping, it can obtain fairly good ac-

curacy because of its receiver-receiver feature. This attribute will allow the elimination of

non-deterministic errors that arise from radio message delivery, such as send and access time,

through reducing the critical path. Figure 2.3 shows how the critical path is reduced by choos-

ing receiver-receiver based synchronization. As illustrated in Figure 2.3, since both receivers

will receive the broadcast message, the difference between their local times can then be taken

in order to estimate the clock offset and correct their times accordingly. Even though RBS

can provide good accuracy, it does not account for any clock correction among the nodes since
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Table 2.2: Comparison of Synchronization protocols

Protocol
Master-to-slave/

Peer-to-peer

Internal/

External

Sender-receiver/

Receiver-receiver

RBS [22] Peer-to-peer Both Receiver-receiver

TPSN [23] Master-to-slave Both Sender-receiver

FTSP [2] Master-to-slave Both Sender-receiver

DMTS [24] Master-to-slave Both Sender-receiver

Romer’s protocol [25] Peer-to-peer Internal Sender-receiver

Mock et Al. [26] Master-to-slave Internal Receiver-receiver

Sichitiu and Veerarittiphans [27] Peer-to-peer Internal Sender-receiver

Figure 2.3: Critical path comparison, the sender-receiver critical path (left) and the receiver-

receiver critical path (right) [22]

there is no global time to synchronize to. Although this may reduce cost, it comes at an expense

to the precision of the protocol [18].

Timing-Sync Protocol for Sensor Networks (TPSN)

The timing-sync protocol for sensor networks is a protocol that improved upon the RBS pro-

tocol’s time-stamping weakness. This was achieved by performing MAC layer time-stamping

which resulted in the synchronization error measured for TPSN being reduced by over half than

that of RBS, refer to Table 2.3. TPSN takes a more common sender-receiver approach with

message exchange offering easier handshaking between nodes in order to achieve network-

wide synchronization.
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Table 2.3: Comparison of Synchronization protocols Cont’d

Protocol
Clock

Correction

Probabilistic/

Deterministic

MAC layer/

Standard

Sync

Error

(µs)

RBS [22] No Deterministic Standard 29.1

TPSN [23] Yes Deterministic MAC layer 16.9

FTSP [2] Yes Deterministic MAC layer 1.48

DMTS [24] No Deterministic Standard 32

Romer’s protocol [25] No Deterministic Standard 200

Mock et Al. [26] Yes Deterministic MAC layer 300

Sichitiu and Veerarittiphans [27] Yes Deterministic MAC layer 3000

Prior to the start of this protocol the authors have assumed that the network has a hierar-

chical structure consisting of nodes which are each assigned a certain level (i.e. level i, level

(i + 1), ..). This protocol has two main phases:

• Level Discovery phase.

• Synchronization phase.

In the discovery state, a root node is selected and given a label: level 0. The newly elected

root node will then start the synchronization phase by synchronizing each level i node with a

level (i − 1) node until they are all synchronized to the level 0 node; the root node [23].

Delay Measurement Time Synchronization Protocol (DMTS)

This sender-receiver algorithm elects a master node which transmits the same synchronization

message to all the receivers at the same time. The master’s time is taken as the global time and

all the receivers will calculate their respective delays from this global time. They will then set

their local time to be the global time plus the delay calculated. The delay that is calculated will

take care of some radio message errors, however, the delay caused by the transmission time,

send/receive times and access time remain. This protocol deals with those two errors in the

following ways:
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• Sender processing time and access time: The protocol will only take a time-stamp when

a clear channel is detected to remove the error caused by those two delays.

• Transmission time: This protocol divides the transmission times into two separate times

since the transmit speeds may be different for each: preamble/start symbols transmission

time and the data transmission time. The delay is then calculated from the speeds of each

part of transmission [24].

Romer’s Protocol

Romer’s protocol was created for time synchronization in Ad Hoc Networks. AD Hoc networks

describe networks in which their nodes are mobile and prone to changes. The protocol does not

work by synchronizing clocks, however, it works on synchronizing time stamps of local clocks

through time transformation. Time synchronization is done by first embedding a time stamp in

the message being sent, and when it is received, the receiver will transform the sender’s time-

stamp to the Coordinated Universal Time (UTC) and finally to the local time of the receiver.

This procedure gives a lower and upper bound on the time stamp in addition to the real-time.

The time taken from the generation of a time stamp at the sender to the reception of it at the

receiver node. The lower and upper bounds of this time are calculated and transformed to the

time of the receiver. The receiver, now equipped with the upper and lower bounds will subtract

this transformed time from the time of arrival which is taken at the reception by the receiver’s

local clock [25].

Mock et Al.

This protocol utilizes the master-to-slave mechanism and extends the IEEE 802.11 standard

where a chosen master will send out a “high-priority” message for all the other “slave” nodes

to synchronize their virtual clocks to. In addition, this protocol is similar to RBS since it too

uses the property of the wireless medium and by that reduces the critical path in the same way.

This is summarized by the following steps:

• The master prepares an “indication message” at time t1 and broadcasts it at time t2.
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• All of the nodes (master and slave) then receive the “indication message” and record

their local time stamp at reception.

• The master then sends its time stamp for the last indication message to all the slaves.

• The slave nodes then correct their local clocks based on the difference between the re-

ceived time stamp and the local time stamp.

Mock et al. defined a unique rate-based correction algorithm that provides continuous time

synchronization for applications where message loss can’t be tolerated. Initially, a maximum

value is set on the number of messages that can be lost during transmission, this is labeled as

“OD” or omission degree. The number of time stamp values “n” needed to ensure that not

more than “OD” number of messages are consecutively lost is then calculated, this is given

by: n = OD + 1. The protocol then includes the last calculated “n” number of synchronization

messages within the current synchronization message. This procedure will allow the receiver

to synchronize its clock to the master even if a current message loss was detected [26].

Sichitiu and Veerarittiphans Protocol

This protocol works with both the Mini-sync and Tiny-sync algorithms in order to achieve

deterministic clock synchronization. It is characterized by low complexity and computational

power in addition to operating with limited resources. Tiny-sync and Mini-sync are different in

the amount of resources they use; Tiny-sync using considerably less resources than Mini-sync.

They do however share a lot of common features such as the deterministic nature of calculating

the clock offset and their tolerance to message losses. The way the algorithms calculate the

clock offset is by extending the set-valued estimation method. Sichitiu and Veerarittiphans

protocol modifies the set-valued estimation method slightly and relates the processors and local

time of the nodes in a network to each other using the linear equations below:

t1(t) = a12t2(t) + b12,

a12 = a1 − a2,

b12 = b1 − b2

(2.1)
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Where t1(t) and t(2) are functions of the local clock of nodes 1 and 2 respectively and t is

the UTC. Variables ai and bi are the clock drift and offset of the ith node. These equations

provide a data collection algorithm to get data points (at least two) which are then used for

time synchronization. The main three data points needed to set the clock drift and offset are

governed by the inequalities below:

to(t) < a12tb(t) + b12

tr(t) > a12tb(t) + b12

(2.2)

Where to is a probe message sent from node 1 to node 2 and tb is the same probe message

time-stamped at the receiver and returned to the sender (node 1) who then records the time of

reception of this message as tr.

Flooding Time Synchronization Protocol (FTSP)

The Flooding Time Synchronization Protocol (FTSP) is a sender-receiver protocol created by

Maroti et al. that achieves micro-second accuracy in multi-hop networks. FTSP’s robustness

and level of precision is considered to be the best when compared to other available protocols

for sensor networks and has been used for time synchronization in a counter sniper appli-

cation [29]. Table 2.3 shows how FTSP’s synchronization precision surpasses all the other

synchronization protocols described with an average reported time synchronization error of a

single-hop case being 1.48 µs. FTSP differentiates itself from other protocols with its ability

to create a synchronization point with only one broadcast message and its promise to remove

interrupt jitter through several techniques such as multiple time-stamping [2, 30].

This protocol uses the flooding or broadcasting of the synchronization message (which in-

cludes the root’s time otherwise called the global time) to all nodes and the receiving node

would generate its own local time thereby creating a global-local time pair. This difference

in the times is therefore called the offset for that pair and since the timestamp is embedded in

the synchronization message, overhead is reduced by achieving time synchronization though

one message transmission. Most of the errors that arise from radio message delivery can be

eliminated at the MAC layer time stamping; however, interrupt handling time, encoding/de-

coding times, clock drift and byte alignment are all sources of error that this protocol aims
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to reduce. Both the interrupt handling time and the encoding/decoding time are dramatically

reduced through the multiple time stamping technique described in the next section. The byte

alignment time is calculated using the SYNC bytes and linear regression is used to reduce clock

drift as explained in the sections below.

FTSP also extends its protocol to network-wide time synchronization through multi-hop

synchronization using a unique node ID. This feature allows the network to be dynamic and

the synchronization root node to be re-elected whenever needed. The mechanism with which

this protocol elects/re-elects the root is as follows:

1. When a node waits for “ROOT TIMEOUT” number of seconds without receiving a syn-

chronization message, it declares itself to be the root node, this ensures that there is at

least one root in the network after “ROOT TIMEOUT” number of seconds.

2. In order to ensure that there is only one root node in the network (adhering to the master-

slave dynamic),when a node receives a message with a root ID smaller than its own, it

updates the nodes root ID with the one that was just received.

3. Finally, all the nodes with higher root ID will give up their status to the ones with lower

root ID until the lower remains and only one root in the network remains.

4. Every node will then be synchronized to the global time of the node one level higher that

itself [2, 30].

Multiple Time-stamping : The Flooding Time Synchronization Protocol credits its multi-

ple time stamping technique taken at both the sender and receiver for its micro-second accuracy.

Maroti et al. [2, 30] documented that multiple time-stamps (≈ 6 according to their calculations)

are to be taken at each byte boundary after the SYNC bytes have been sent. The format of the

packets is shown in Figure 2.4. The aforementioned time stamps will then be normalized by

subtracting a certain delta from them which corresponds to the nominal byte transmission time

after which they will be minimized and finally averaged. A more detailed explanation of this

procedure is described below. As indicated in Figure 2.5, t1 to t6 are to be minimized by choos-

ing the minimum of each two normalized time-stamps starting with t′6 being equal to t6. Maroti

et al. defines the BYTE TIME as the time it takes to transmit a byte and calculates it based on
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Figure 2.4: Packet format

Figure 2.5: Multiple Time-Stamping Technique

the transfer rate of the hardware. The transfer rate indicated in [2] is 38.4 kbps for the Mica2

hardware used and since each cycle will transmit 16 bits (address bits followed by the 8 data

bits)[31] this computes a delta of 417 µs [32]. However, in the case of the Mica2, this research

shows that this delta value does not hold due to hardware clock instability, Chapter 3 provides

more insight on this issue. To elaborate on the time-stamping procedure, see the equations

below.

t′5 = min(t5, t′6 − ∆)

t′4 = min(t4, t′5 − ∆)

t′3 = min(t3, t′4 − ∆)

t′2 = min(t2, t′3 − ∆)

t′1 = min(t1, t′2 − ∆)

(2.3)

The average of these time stamps is then calculated as follows:

t′avg =

∑6
i=1 t′i
6

(2.4)

This final timestamp is then further corrected with the byte alignment and clock drift approxi-

mation calculations and then embedded in the same packet.
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Byte Alignment: Byte alignment errors arise from the difference in the order of the sent

and received bytes. FTSP combats this at the receiver by utilizing the synchronization (sync)

bytes in order to indicate the start of the data received. Once the preamble bytes are received

in the listen state, the protocol moves into the synchronization (sync) state where it compares

the incoming bytes to the sync bytes and stores the number of bits it took until the sync bytes

are received, this is called the offset. This value is obtained from the speed of the radio. For

example, at a data rate of 19.2 kbps, the time delay is calculated for a bit offset of 0 to 7 bits to

be 0 to 365 µs respectively [2], see Table 2.4. These values are then used as a look-up table to

provide the delay incurred for the bit offset calculated at the receiver.

Table 2.4: Byte Alignment Time Delay at 19.2 kbps

Bit Offset Corresponding Time in µs

0 0

1 52.1

2 104.3

3 156.4

4 208.5

5 260.6

6 312.7

7 364.8

Clock Drift: The implementation of the protocol [3] was done on the Mica2 [33] hardware

motes and because different sensor motes have different clocks, errors resulting from clock drift

are inevitable. FTSP uses linear regression and the method of least squares to calculate clock

drift and correct the timestamp accordingly. The method of least squares is defined by the

following steps:

A number of ordered pairs (xi, yi) must be obtained to calculate the mean, refer to Equation
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2.5.

X =

n∑
i=1

xi

n
Y =

n∑
i=1

yi

n
(2.5)

The next step is to calculate the slope of the line of best fit using these calculated averages

for any new data point. This is used to forecast the upcoming data points and by that reduce

uncertainty. The equation to calculate the slope using this method is shown below:

m =

n∑
i=1

(xi − X)(yi − Y)

n∑
i=1

(xi − X)2
(2.6)

The authors of the paper have indicated that they achieved good results using only 8 data

points. This means that every 8 packets received, the linear regression and method of least

squares is used to recalculate the slope and then use it as a multiple to help predict the upcoming

data. In the case of this protocol, the data points were (time, offset) where offset is the difference

between the local and global times and time is the current local time of the mote. They then

set the slope to be equal to the clock skew and used it to transform the local time to a global

time. This was the mechanism through which FTSP eliminated clock drift. Although the effect

of clock drift might be slower than other phenomena, the Mica2 oscillators introduce drifts of

up to 40 µs per second [2, 30].

FTSP in Recent Studies

According to a recent study made by D. Djenouri and M. Bagaa [34] on synchronization pro-

tocols, it was argued that an implementation which truly follows the FTSP guidelines was not

currently available . Furthermore, new and upcoming synchronization protocols are still com-

paring their efficiency to the values that were reported in the original FTSP paper. For example,

Glossy [35] is a synchronization protocol designed to flood the network with the goal of im-

plicit time synchronization. In the 2011 paper explaining the Glossy protocol, the authors and

creators of the protocol compared it to FTSP. They mentioned the synchronization error (in

the microsecond rage) obtained in Maroti et al.’s paper and used it to show how their protocol

compares to that without re-creating the implementation.
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Average TimeSync (ATS) [36] is another synchronization protocol created in 2011 which

also uses FTSP as a benchmark in addition to calling it “the defacto standard for time synchro-

nization in WSN”. In their testing they have indicated that they did use the widely available

FTSP TinyOS [37] implementation in addition to testing both protocols in a 3x3 WSN grid

with a synchronization period T = 60 s. Since this study argues that the available online code

is not a true translation of the flooding time synchronization protocol, the relevancy of the

previous comparison might be affected.

In 2011, Thomas Kunz and Ereth MCKnight-MacNeil [38] implemented the clock sam-

pling mutual network synchronization (CS-MNS) algorithm in TinyOS on a hardware similar

to the Mica2 and compared its performance to that of the FTSP. It was found that the FTSP

performed rather poorly than otherwise reported in the original paper. Their final results show

that the CS-MNS algorithm had a final synchronization error of 31 µs compared to 61 µs for

FTSP. While the authors of [39] attempted to use the TinyOS 2.x [3] implementation to recre-

ate the results in order to compare with their own protocol, they found that while using the

default parameter settings, the available code FTSP was unable to synchronize the nodes in

the network. The faults they have uncovered in the implementation lead to them modifying

the code in order to obtain results which could be comparable to their own. This variation in

the FTSP code is due to its shortcomings and results in possibly different adaptations of the

protocol which may not be a true translation of the algorithm of FTSP.

The Energy-Balanced time Synchronization protocol (EBS) described in [40] uses FTSP

as a benchmark when analyzing the efficiency of the synchronization protocol. The novel time

synchronization protocol introduced in [41] is implemented in TinyOS and resulted in test re-

sults up to 40% better than those of FTSP. In an attempt to improve the FTSP, the authors

in [42] suggest that their changes to the protocol improves battery life by reducing the num-

ber of sent and received frames by 20%. The testing they have done was via simulation on

OMNeT++, which is an object-oriented modular discrete event network simulator and not on

actual hardware.

P.A Sommer [43] indicated a much deliberated issue that affects the accuracy of the current

FTSP implementation. Due to the nature of the synchronization protocol, the nodes in FTSP

will always synchronize with the node that is one level up; however, the way the protocol was
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implemented currently adds room for error. This error would occur because of a resetting of

the linear regression process in the case that the difference between the actual received time

and the calculated received time exceeds a certain limit. Since the next node will now not

receive a synchronization message from this node that is currently resetting and attempting to

re-establish synchronization, it will declare itself as the root and by that degrade the perfor-

mance of the network. P.A Sommer explains how the current implementation does not account

for errors that result from this scenario which have proven to be detrimental to the accuracy

of the FTSP. In order to ensure that this error is not exhibited in their implementation, the

authors had to fix the root to one specific node and tested the protocol. The average one-hop

synchronization error recorded after this modification was 9.04 µs.

F. Wang et al. [44] created the Extensible time synchronization protocol (ETSP) and used

FTSP as a benchmark to compare their protocol’s performance. The authors implemented both

protocols on the SCSC-RFA1 sensor node from Shandong Computer Science Center which

has similar features to the Mica2 [45]. With their FTSP implementation, they achieved a time

synchronization error that ranged from -2 to 5 ticks whereas they reported an average error

of around 1 tick for ETSP for a single-hop network. Since this sensor node uses a 32 kHz

oscillator, a tick in this setting was defined as 31.25 µs [45] giving us a reported error of -

62.5 to 156.3 µs for the FTSP. These results contradict the precision claims of the original

FTSP paper resulting in poor time synchronization performance when tested by F. Wang et al.

causing them to rule in favor of ETSP.

Furthermore, a recent paper claims that the FTSP is in fact a low accuracy algorithm that

is only useful for short-term applications [46]. This claim contradicts the definition of the

FTSP; it has been advertised as a precise synchronization protocol that achieves micro-second

range accuracy. However both [46] and [47] challenge that claim. G. Huang et al. [46] report

that using the FTSP with a one minute re-synchronization rate achieves a 90 µs error. They

then suggest that FTSP is suitable for low accuracy applications such as surveillance whereas

the authors of the FTSP paper have indicated that it has been used in a sensor network-based

counter-sniper system [28]. There appears to be a huge disconnect between the claims of the

authors of the FTSP paper and the current implementation of the protocol: is it or is it not

the high-precision protocol that achieves micro-second accuracy? The more well versed in the
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time-synchronization community seem to side with the latter on that argument and doubt the

accuracy of FTSP whereas others creating their own protocols still use it as the bench mark for

time-synchronization.

In the 2017 paper, F. Gong et al. [48] present a new way of measuring the performance of

the FTSP while comparing it with a real test-bed FTSP implementation. The protocol is tested

on a TelosB hardware unit using the TinyOS version 2.1.2 [3]. As explained in this research,

the TinyOS version 2.1.2 implementation does not implement the true function of the flooding

time synchronization protocol and therefore their results might not be a true representation of

the protocol. L.Li et al. [49] used a different approach to examine the protocol performance,

they obtained results using the network simulator software ns3 (version 3.26). This paper

presents a new protocol which synchronizes time-stamps from the receiver to a reference time

in a reactive fashion called on demand timestamp synchronization framework (OTSF). The

creators of OTSF compare the performance of their novel protocol to that of the FTSP through

ns3 simulations. Their test results vary with the average sleep interval of the radio, this value

ranges from a minimum of 5 s to a maximum of 25 s. Their mean squared error for the

synchronization error of the FTSP simulation showed a best case scenario of 110 µs at the

minimum average sleep interval of 5 s.

The temperature-compensated Kalman based distributed synchronization protocol (TKDS)

is proposed in [50] and tested against FTSP. The authors vary the effective delay in wireless

transmission and observe how that changes the reported skew and offset values. J. Wang et al.

[51] defined the maximum single-hop delay (effective delay) to be equal to the cycle length

of the transmitter. In the case of [50], they set the default value to be 100 µs and offset and

skew values for FTSP were measured accordingly. At that effective delay, the reported FTSP

skew error was 12 parts per million (which is a unit used to measure the timing accuracy of the

crystals in clock oscillators [52]) and an offset of 16 µs. Since the experiment ran for 10 mins

or 600 seconds, then the skew would be 12
106 × 600 = 7.2 ms. The summation of both gives us a

rather poor result for the Flooding time synchronization protocol. In [53], a modified version

of FTSP, FTSP+, is proposed and implemented with TinyOS 2.1.2. The authors aimed to

improve upon the modularity of the FTSP protocol by eliminating MAC layer time-stamping

and instead performing the time-stamps at the application layer while compensating for the
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stack delay. The accuracy of the FTSP+ was then determined by showing the results of their

implementation on hardware similar to the Mica2. It was noted that this 2016 paper used the

values reported by Maroti et al. in the 2004 paper as a benchmark for comparison of their

proposed protocol’s synchronization error results.

This argument raises the question: If the results in the original paper that was published

in 2004 are not repeatable, how is FTSP still being used as a benchmark for all the new and

upcoming synchronization protocols? The fact remains that there isn’t a single complete FTSP

implementation to be used by others highlighting a need for a fully functional widely available

implementation to ensure a fair comparison.
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TinyOS FTSP Implementation

3.1 Current Implementation

The implementation currently being set as the official code for the Flooding Time Synchro-

nization Protocol, which is found on GitHub [3], does not translate the algorithm described

by the flooding time synchronization protocol. One of the first issues noticed was the use of

a millisecond clock in the current implementation for time-stamping purposes. In addition,

the implementation does not perform the multiple time-stamping technique which the FTSP

is characterized by. Moreover, seeing as the time-stamps must be taken after each byte trans-

mission or reception, the byte-wise radio must employ its byte-wise radio chip (CC1000 from

Texas Instruments). According to TEP 133 (TinyOS Enhancement Proposals number 133)

[54], which talks about packet-level time synchronization, the time-stamping approach used is

not one intended for the FTSP. The approach they have used is explained below:

• Sender: time-stamp taken at start of transmission and at the end, the delta of the two

times is embedded in the message.

• Receiver: a local time-stamp is taken at receiver and the delta that was embedded in the

transmitted packet is subtracted from it to obtain the time of the receiver with reference

to the transmitter.

Although the previous procedure outlines a time-stamping mechanism, it does not correspond

to the one required to carry out the FTSP. To be able to perform this protocol as instructed, the

24
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following values are required:

• Sender: time-stamps of first six bytes sent after the transmission of SYNC bytes

• Receiver: time-stamps of first six bytes received after the reception of SYNC bytes

In the code segments below, the current implementation of FTSP appears to use a single time-

stamp and by that confirming that multiple time-stamping does not take place. The program-

ming language used for the FTSP implementation is nesC (nc). NesC is an extension to the C

programming language created for event-driven programming on the TinyOs platform [55].

This code is taken from the TimeSyncP.nc file in the tinyos-release/tos/lib/ftsp/ repository

found on GitHub [3].

1

2 t a s k void sendMsg ( )

3 {

4 u i n t 3 2 t loca lT ime , g l o b a l T i m e ;

5

6

7 g l o b a l T i m e = l o c a l T i m e = c a l l GlobalTime . ge tLoca lT ime ( ) ;

8 c a l l GlobalTime . l o c a l 2 G l o b a l (& g l o b a l T i m e ) ;

9

10 i f ( n u m E n t r i e s < ENTRY SEND LIMIT && outgoingMsg−> r o o t I D !=

11 TOS NODE ID ) {

12 ++ h e a r t B e a t s ;

13 s t a t e &= ˜ STATE SENDING ;

14 }

15 e l s e i f ( c a l l Send . send (AM BROADCAST ADDR, &outgo ingMsgBuf fe r ,

16 TIMESYNCMSG LEN, l o c a l T i m e ) != SUCCESS ) {

17 s t a t e &= ˜ STATE SENDING ;

18 s i g n a l TimeSyncNot i fy . m s g s e n t ( ) ;

19 }

20 }

This code segment describes what happens when a message is to be sent. A time-stamp is

taken when the call GlobalTime.getLocalTime() is made and that is only done once per packet.
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The interface GlobalTime is defined for this protocol and specifically the call mentioned has

the function of returning the local time of the mote.

In order to find out if the byte-wise time-stamping was implemented, the interrupt which

would be used to trigger the time-stamping event was found in the original code for the CC1000

radio. Specifically, the function below which is found in the file CC1000SendReceiveP.nc

seems to do that job:

void sendNextByte() {

call HplCC1000Spi.writeByte(nextTxByte);

count++;

}

HplCC1000Spi.writeByte(nextTxByte) will write the byte ”nextTxByte” to the CC1000 bus

thereby allowing us to take a time-stamp at around the same time that happens. After careful

research and inspection of the FTSP code available, it was confirmed that this function was

never used to create byte-wise time-stamps thereby making it impossible for the protocol to

work as specified.

3.1.1 Problem Formulation

Concerns regarding the feasibility of micro-second precision synchronization have been raised

on the TinyOS - Help archived online forum [56]. Responses from the authors of the FTSP pa-

per stated that the paper uses an older TinyOS 1.x-based implementation that offers microsecond-

precision time-stamping on the Mica2 hardware. However, that implementation has been

phased out and in the current implementation [3], there does not exist a Hardware Interface

Layer (HIL) component providing micro second granularity. Since the protocol promises mi-

crosecond accuracy, it would be impossible to obtain that kind of accuracy using a millisecond

clock to record time-stamps. The code snippet below taken from the current FTSP implemen-

tation shows that the TMilli clock is the current denomination chosen for the time-stamp:

module TestFtspC

{
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uses

{

interface GlobalTime<TMilli>;

interface TimeSyncInfo;

interface Receive;

interface AMSend;

interface Packet;

interface Leds;

interface PacketTimeStamp<TMilli,uint32_t>;

interface Boot;

interface SplitControl as RadioControl;

}

The above FTSP test code is taken from GitHub [3]: tinyos−release/apps/tests/TestFtsp/

Ftsp/TestFtspC.nc. As previously stated, both the GlobalTime interface and the Packet-

Timestamp interface appear to use a TMilli clock. In addition to that, line 71 in the file

TestFTSPC.nc (Appendix A), clearly shows only one timestamp being taken at the receiver:

uint32 t rxT imestamp = callPacketT imeS tamp.timestamp(msgPtr). As for the sender times-

tamp, that is embedded in the packet during the transmission of the packet. Current im-

plementation embeds a single timestamp from the sender taken after the SYNC bytes have

been sent, however that value is not used at the receiver, the TestFTSP application found

online estimates the global time from the local time (received time) using the command:

call GlobalTime.local2Global(&rxTimestamp). This function is defined in the file

tinyos − release/tos/lib/ f tsp/TimeS yncP.nc as:

async command error_t GlobalTime.local2Global(uint32_t *time)

{

*time += offsetAverage +

(int32_t)(skew * (int32_t)(*time - localAverage));

return is_synced();
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}

The variables shown in this function only take into account the clock drift calculations when

estimating the global time. The CalculateConversion() function will convert the local time to

the global time and is called once from within the processMsg() function. ProcessMsg() is a

task that is posted when a packet is received (in the Receive.receive function). The code de-

scribed fails to perform multiple time-stamping thereby eliminating the possibility of carrying

out the FTSP as initially defined.

3.2 Complete FTSP Implementation

3.2.1 Specifications and Software Setup

The authors of the flooding time synchronization protocol tested the protocol on the Mica2

wireless mote from crossbow that runs the TinyOS open source platform. The two main com-

ponents of the mica2 chip are the Atmega128 Atmel micro-processor chip and the Texas Instru-

ments CC1000 byte-wise radio. TinyOS uses the nesC programming language for event-driven

component-based programming that is widely used in embedded systems [55]. Furthermore,

the code is compiled from within the command line interface using the make tool which is

supported by an extensive make system defined for TinyOS which is to be prompted from

within the application directory of the desired code. In addition, a specific “tinyos-tool-chain”

is needed which contains all the packages used in order to compile the code and program the

hardware (also referred to as a mote). This tool-chain is available on the online GitHub [3]

repository: tinyos/tinyos-release version 2.1.2.

It was concluded that the best option was to run TinyOS on the Linux kernel since it is the

most recently supported kernel. For the purpose of this research a virtual machine was created

which ran Linux, Ubuntu 14.04 since it was found that the TinyOS tool-chain worked best on

that edition. Avr-dude is the compiler used for this hardware and the packages which make up

the tinyos-tool-chain are shown below.

• avr-binutils-tinyos.

• avr-gcc-tinyos.
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• avr-libc-tinyos.

• avr-optional-tinyos.

• avr-tinyos-base.

• avrdude-tinyos.

In addition, tinyos-tools and the nesC library must also be downloaded and installed. Finally,

since PC-mote communications are java-based, it is vital to install the Java Development Kit

for mote programming.

The Mica2 radio is rated for 900 MHz however it has a range of frequencies it can be

set to in the make file of each application. It is crucial to set all of the frequencies of the

motes to be the same to allow for radio communication through the following command:

CFLAGS += -DCC1K_DEF_FREQ=900000000. Since this application depends on radio com-

munications from specific nodes, it is important to set the node ID of the mote that can be

done at the time of programming. The MIB510 programming board is used to program the

Mica2 through the command make install.0x0002 mica2 mib510,dev/ttyUSB0 where

0x0002 is the nodeID and /dev/ttyUSB0 is the port through which the programmer is connected

to. Prior to downloading the program on the mote, it must first be compiled offline using the

“make mica2” command and manually debugged. Testing and debugging are done online using

the hardware since there isn’t an integrated development environment for the Mica2 hardware.

3.2.2 Mica2 Hardware Calibration

Due to the hardware limitations of the Mica2, this step was added to obtain micro-second

accuracy for the synchronization error values. More details on the nature of this limitation

are described in the next section under implementation difficulties. The values that need to be

re-calculated for each Mica2 unit are the byte transmission time (the time it takes to transmit

a byte) and the bit offset time. In order to obtain these values the following procedure was

carried out:

• Record the time-stamps taken after the sync bytes have been sent/received and calculate

the difference between each consecutive time-stamp, this will be the byte transmission
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time taken for further calculations. The byte transmission time is calculated for the

sender and the receiver as slight differences were noticed that might affect data accuracy.

• The calculated byte transmission time is divided by 8 to get a single bit transmission

time. This value is used to calculate the bit offset time from the bit offset at the receiver.

For a bit offset of 0 the bit offset time is 0 µs, for a bit offset of 1 the bit offset time is

1× (single bit transmission time), for a bit offset of 2 the bit offset time is 2× (single bit

transmission time) and so on until a bit offset of 7. This calculation will populate the

bit offset correction array with the new values that better match the clock of the Mica2

hardware being used. These newly calculated constants will be the values used for the

byte alignment calculations.

3.2.3 Description of Implementation Code

The Flooding Time Synchronization promised to minimize interrupt and software jitter through

its novel multiple time-stamping technique. This research and investigation confirmed that this

technique has not been part of the current online code repository containing the implementation

of the protocol. Consequently, the implementation presented in the following sections alters

the available code by taking into account the FTSP algorithm and the shortcomings described

earlier to perform the desired outcome. The base files used for this are listed below:

• TestFtspC.nc.

• CC1000SendReceiveP.nc.

• CC1000CsmaRadioC.nc.

The files below were created in order to utilize the micro-second clock:

• TimeSyncMicroC.nc.

• MuxAlarmMicro32_.nc.

• MuxAlarmMicro32.nc.

• MuxAlarmMicro16_.nc.
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• MuxAlarmMicro16.nc.

• AlarmCounterMicroP.nc.

• HilTimerMicroC.nc.

• TimerMicroC.nc.

• TimerMicroP.nc.

Micro-Second Clock

Given that the HIL component providing TMicro time does not exist, the 32 kHz code was

used as a base for a TMicro implementation. In addition to changing the wiring to use the

newly created TMicro HIL component, all the precision tags used for the interfaces which are

part of the time-stamping process were changed to [TMicro].

Starting with the TestFtspC.nc file, the precision tags in the GlobalTime interface and

PacketTimeStamp interfaces were changed from from TMilli to TMicro. In addition, similar

changes had to be done in the CC1000SendReceiveP.nc file which describes the logic behind

the sending and receiving functions of the CC1000 radio. Currently both the PacketTimeStamp

and LocalTime interfaces in CC1000SendReceiveP.nc are defined for TMilli and T32khz but

not TMicro. In order to use TMicro precision for those interfaces they must be defined in the

CC1000SendReceiveP.nc file. The following definitions were developed:

• async command bool PacketTimeStampMicro.isValid(message_t* msg).

This function will return a boolean value to indicate whether the timestamp of the mes-

sage (msg) is valid or not by performing a check. The same check is done on all denom-

inations (TMilli, T32kHz, TMicro) since the over the air value is always 32 kHz.

• async command uint32_t PacketTimeStampMicro.timestamp(message_t*

msg). Since the value of the timestamp is always in the 32khz precision, in order to

translate it to Micro it must be shifted. In the approach specified, this timestamp will

calculate the offset in 32 kHz, shift it by 5 (offset >> 5) and add it to the current local

time in TMicro.
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• async command void PacketTimeStampMicro.clear(message_t* msg)

Removes current Time-stamp.

• async command void PacketTimeStampMicro.set(message_t* msg,

uint32_t value)

Using the same mechanism of calculating the offset of the timestamp and adding it to the

local time, the setting is done the same way in TMicro then translated to 32 kHz before

being inserted in the metadata of the packet.

The configuration file CC1000CsmaRadioC.nc was also changed by providing the wiring

for the PacketTimeStampMicro interface to the CC1000SendReceiveP.nc. In addition, the

TimeSyncMicroC.nc file had to be created in order to be able to use the defined FTSP TimeSyncP

component with the micro-second granularity. TimeSyncC.nc was used as a template and the

precision was changed to TMicro for all.

However, after careful examination of the ftsp code found in tos/lib/ftsp, changing the pre-

cision of the current time-stamping code still does not reflect the flooding time synchronization

protocol algorithm therefore the packet time-stamping has to be done from scratch. This issue

is explained further in the multiple time-stamping code section. Nevertheless, obtaining the

Local Time in TMicro is needed in order to carry on with the time-stamping. That step is done

by creating the following components:

components CounterMicro32C, new CounterToLocalTimeC(TMicro) as

CounterToLocalTimeMicroC;

After which they are then wired to give us LocalTimeMicro for the CC1000SendReceiveP.nc

file:

CounterToLocalTimeMicroC.Counter -> CounterMicro32C;

SendReceive.LocalTimeMicro -> CounterToLocalTimeMicroC;

The HilTimerMicroC file created describes a microsecond timer for the Mica2 that is built

upon a hardware timer. The interfaces provided are Init, Timer<TMicro> as

TimerMicro[uint8_t num] and LocalTime<TMicro>. The implementation is shown be-

low:

1 i m p l e m e n t a t i o n {
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2

3 enum {

4 TIMER COUNT = un iqueCoun t (UQ TIMER MICRO)

5 } ;

6

7 components AlarmCounterMicroP , new AlarmToTimerC ( TMicro ) ,

8 new V i r t u a l i z e T i m e r C ( TMicro , TIMER COUNT) ,

9 new CounterToLocalTimeC ( TMicro ) ;

10

11 I n i t = AlarmCounterMicroP ;

12

13 TimerMicro = V i r t u a l i z e T i m e r C ;

14 V i r t u a l i z e T i m e r C . TimerFrom −> AlarmToTimerC ;

15 AlarmToTimerC . Alarm −> AlarmCounterMicroP ;

16

17 LocalTime = CounterToLocalTimeC ;

18 CounterToLocalTimeC . Coun te r −> AlarmCounterMicroP ;

19 }

TEP 102 [54] describes how the timers are chosen, it states that “a new timer is allocated

using unique(UQ T IMER MILLI) to obtain a new unique timer number,” has been changed

to UQ T IMER MICRO for this study. They explained how the timer will then be “used to

index the TimerMilli parameterised interface.” In the case of this thesis, it is the TimerMicro

interface. The header file Timer.h defines UQ T IMER MICRO which has been used in the

newly created TimerMicroC and HilTimerMicroC files. TimerMicroC.nc and TimerMicroP.nc

files were both created.

Since the HilTimerMicroC depends on an AlarmCounterMicroP component, it had to be

created. The AlarmCounterMicroP.nc file configures the hardware timer for use as the Mica2’s

microsecond timer with the AlarmCounterMicroC.nc being the wiring file created for it.

Finally, a TimerMicroP.nc file was created outlining the configuration of virtualized mi-

crosecond timers which auto-wire the timer implementation (TimerC) to the boot sequence

and export the various Timer interfaces. TimerMicroC.nc was then added to create the ab-

straction for this timer in the form of a component which is instantiated in order to give an

independent microsecond granularity timer as per the recommendations of TEP 102 [54].
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Multiple Time-stamping Code

The multiple time-stamping is done on a byte-by-byte basis at the sender and receiver in

the CC1000SendReceiveP.nc file. The function used to obtain the time is the LocalTimeMi-

cro.get() that was discussed earlier. A counter was created in order to hold the number of bytes

sent after the sync bytes have been sent, lets call that txcount. Similarly the receiver also had a

counter which held the number of bytes received after the sync byte has been received, this is

labelled rxcount. These respective tx/rx counters are set after the SYNC byte is transmitted/re-

ceived and the number of bytes sent after the SYNC byte is then calculated using a difference

of the local rx/tx count (which remains constant throughout the packet) and the packet count

(which is incremented after each byte transmission or reception throughout the packet). Both

the packet counter and the local tx/rx counters are reset for a new packet. Using this difference,

the first six bytes that are sent/received are time-stamped and their time-stamps are recorded.

The values of the time-stamps are then used in order to obtain t′, which as explained in Equa-

tion (2.3), is the minimum of the last received timestamp minus the byte transmission time and

the current received timestamp. The byte transmission time for the hardware was calculated

using the procedure detailed in Section 3.2.2, this produced a value of 378 ticks for the sender

and 384 for the receiver. The time-stamps are recorded first and then compared to each other

starting with the last timestamp until the first one with the results of that comparison being

held in a new variable. The average of these minimized normalized time-stamps is then taken

and embedded into the sender/receiver before the packet is finished transmitting/receiving. The

pseudo code used for the data transmission is shown below:

1 void t x D a t a ( ) {

2

3 sendNextByte ( ) ;

4

5 i f ( nex tTxByte == SYNC BYTE2) {

6 / / SYNC WORD has j u s t been s e n t

7 t xCoun t = c o u n t ;

8 }

9

10 i f ( ( c o u n t − t xCoun t ) < 6) {
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11 t [ ( c o u n t − t xCoun t ) ] = c a l l LocalTimeMicro . g e t ( ) ;

12 }

13 i f ( ( c o u n t − t xCoun t ) == 6) {

14

15 t p [5 ]= t [ 5 ] ;

16

17 f o r ( i = 4 ; i >= 0 ; i −−) {

18 t p [ i ] = min ( ( t p [ i +1]− d e l t a ) , t [ i ] ) ;

19 t o t a l = t o t a l + t p [ i ] ;

20 }

21 t o t a l = t o t a l + t p [ 5 ] ;

22

23 avg = ( t o t a l / 6 ) ;

24 }

25 }

The time-stamping code at the receiver follows the same algorithm of the transmitter with

the exception of the setting of time-stamp values after the calculations are done. The transmit-

ter will embed the timestamp in the radio count message and the receiver will set its local calcu-

lated time-stamp in the metadata of the message using getMetadata(rxBufPtr)->timestamp

= Received Timestamp. Since the location of the calculated timestamp is at a lower level

(happening in CC1000SendReceiveP.nc), the higher level application file (TestFtspC.nc) is then

able to access this value through the function call:

PacketT imeS tamp.timestamp(msgPtr). The current setup of the applications has RadioCount-

toLeds being programmed as the sender (root) node and TestFtsp being the receiver node

(which will be synchronizing itself to the root). Therefore the txData function will differ from

the sender to receiver. The receiving node will have the job of calculating the received multiple

time-stamps, combining them into one and also performing the clock drift calculations on the

past 8 packet Time-stamps in order to correct its own “Local Time” while the sender keeps its

own time as the “Global Time”. The receiver will then relay all of the data in a radio message

to a Base Station node which is connected to the PC via UART.
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Clock-Drift Code

The current clock drift code that is available is implemented in the TimeSyncP file. A version

of that implementation was programmed on the receiver node. The same logic that was used at

the original FTSP implementation was followed and implemented in the TestFtspC.nc applica-

tion file. The packet-level time-stamps were recorded and a counter kept track of the packets

received in order to perform a linear regression on the last 8 time-stamps received. At each

sending interval the skew is recalculated and applied to the local time to obtain a global time

estimate. The estimated global time is then taken by performing the following operation using

the calculated skew value:

localtime = localtime + o f f setAverage + skew(localtime − localAverage) (3.1)

The localtime is the receivers time at the reception, the offsetAverage is the average of the

difference between the global and local times and the skew is the slope calculated with linear

regression as explained in Equation (2.6).

Byte Alignment Code

The available implementation of the byte alignment correction has the following values:

1 From t h e f i l e CC1000SendReceiveP . nc :

2 . . . .

3 # i f d e f PLATFORM MICA2

4 / / e s t i m a t e d c a l i b r a t i o n , 1 9 . 2 Kbps data , Manches ter Encoding ,

5 / / t i m e i n j i f f i e s (32768 Hz )

6 s t a t i c c o n s t i n t 8 t BIT CORRECTION [ 8 ] = { 27 , 28 , 30 , 32 , 34 ,

7 36 , 38 , 40 } ;

8 . . . .

This array is then used to obtain the delay in jiffies, as stated in the comment above the

array declaration. Each jiffy is equal to about 30.5 µs. Table 3.1 shows a translation of these

numbers for each bit offset. Comparing the values from Table 3.1 with those in Table 2.4,

many discrepancies are noted and therefore do not follow the concept that Maroti et al. [2]

described in their paper. For this implementation, the hardware calibration was done to get
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Table 3.1: Current FTSP Code Byte Alignment Time Delay

Bit Offset Corresponding Time in µs

0 824.0

1 854.0

2 915.0

3 976.0

4 1037.0

5 1098.0

6 1159.0

7 1220.0

the byte transmission time and ultimately the delay corresponding to each bit offset. Hardware

calibration of the Mica2 used in this study produced the following bit correction array:

1 . . . .

2 # i f d e f PLATFORM MICA2

3 / / e s t i m a t e d c a l i b r a t i o n

4 / / t i m e i n t i c k s (1 t i c k = 0 . 9 5 microsecond )

5 s t a t i c c o n s t i n t 8 t BIT CORRECTION [ 8 ] = { 0 , 48 , 96 , 144 , 192 ,

6 240 , 288 , 3 3 6 } ;

7 . . . .

3.2.4 Implementation Difficulties

Due to the nature of the wireless medium, packet loss was a problem that was visible in the

testing and results. In order to ensure that packet loss was minimized, acknowledgments were

used to ensure reliability. This function returns a boolean true or false if an acknowledgement

was received after which it was programmed to re-transmit if it had failed. In addition, the

way the code was setup only allowed a message to be sent after it has been received and from

within the receiving function. The Isforme() function was also used at the receiver to ensure

that the node is not bombarded with any other packets which could have otherwise caused it

to drop the packets addressed to the node. The NodeID of each mote is specified at the time
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of the program download on the hardware and this number was then hard-coded in the sending

function. In addition, the interval that the packets were sent was increased from the 250 ms in

the original RadioCounttoLeds file to 1 s. Applying the previous changes helped reduce the

packet loss to 0%.

When reporting the averaged and minimized time-stamps at the sender and receiver, the

overflow issue was faced. Keeping in mind that the time-stamps are uint_32 types, adding

six of them may cause an overflow in the “total” variable which holds the sum of the time-

stamps. Overflow will cause the value of the variable to default to an unknown number giving

inaccurate readings. When trying to overcome this problem, one of the solutions was to change

the size of the total variable to uint_64 while keeping the average variable as 32-bit number.

However, doing so did not work with the code as the radio was unable to handle a variable of

that size even when casting the final time-stamp to type uint_32.

A workaround that was attempted was having a 64-bit total and choosing the lowest 32

bits of the average then setting those to the final time-stamp uint_32 type variable instead of

type-casting it. It seemed that it was a size issue, when programming the RadioCounttoLEDs

mote having more than one 64 bit variable was too much for it to handle. Consequently, in

order to be able to keep all the variables a uint_32 type, a certain offset was subtracted from

the time-stamps if an overflow was suspected. In order to know if an overflow is suspected a

check is done after collecting all six time-stamps on the last timestamp and the overflow flag is

updated to true. See the updated pseudo code below for more details:

1 void t x D a t a ( ) {

2

3 sendNextByte ( ) ;

4

5 i f ( nex tTxByte == SYNC BYTE2) {

6 / / SYNC WORD has j u s t been s e n t

7 myCount = c o u n t ;

8 }

9

10 i f ( ( c o u n t − myCount ) < 6) {

11 t [ ( c o u n t − myCount ) ] = c a l l LocalTimeMicro . g e t ( ) ;

12 }
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13 i f ( ( c o u n t − myCount ) == 6) {

14

15 t p [5 ]= t [ 5 ] ;

16

17 i f ( t p [ 5 ] > y ) {

18 / / where y i s t h e maximum v a l u e a u i n t 3 2 v a r i a b l e may ho ld i n t h i s case

19 / / t o p r e v e n t o v e r f l o w d u r i n g t h e summation o f t h e t o t a l t ime −s tamps

20 o v e r f l o w = TRUE;

21 s e t t p [ 5 ] = t p [ 5 ] − x ;

22 / / where x i s a known v a l u e t h a t w i l l be added back a f t e r t h e average

23 / / i s c a l c u l a t e d t o p r e v e n t o v e r f l o w

24 }

25 e l s e {

26 o v e r f l o w = FALSE ;

27 }

28 f o r ( i = 4 ; i >= 0 ; i −−) {

29 i f ( o v e r f l o w == TRUE) {

30 t p [ i ] = min ( ( t p [ i +1]− d e l t a ) , ( t [ i ]− x ) ) ;

31 t o t a l = t o t a l + t p [ i ] ;

32 }

33 e l s e i f ( o v e r f l o w == FALSE) {

34 t p [ i ] = min ( ( t p [ i +1]− d e l t a ) , t [ i ] ) ;

35 t o t a l = t o t a l + t p [ i ] ;

36 }

37 }

38 t o t a l = t o t a l + t p [ 5 ] ;

39

40 i f ( o v e r f l o w == TRUE) {

41 avg = ( t o t a l / 6 ) + x ;

42 }

43 e l s e i f ( o v e r f l o w == FALSE) {

44 avg = ( t o t a l / 6 ) ;

45 }

46 }

47 }

Another problem faced was visible in the synchronization error that was calculated. The
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data obtained displayed a periodic delay of unknown origin every 256 packets that disrupted

the results and caused inaccuracies. Initially, it was thought to be a delay caused by the

atomic sections in the code disabling interrupts. After further investigation, this delay ap-

peared to be the result of the residual function of the pre-existing code. The reason behind

this error was found out to be caused by the beaconing rate of FTSP which was set by the

PFLAGS+=-DTIMESYNC_RATE=3 command in the Makefile.

Finally, a more complicated timing issue was discovered much later in the study due to

its finer effect on the results. This problem was one that required expert in depth hardware

understanding of the Mica2 hardware which included the ATmega128L and the CC1000 data-

sheets [31, 57]. Initially the problem started by measuring the “byte transmission time” of

the Mica2 device. In [32], Maroti indicates that the Mica2 byte time is 417 µs, however, when

measured, the data indicated a much lower value. This discovery was made by investigating the

six time-stamps taken at the sender and receiver prior to computing the averaged single time-

stamp. The time between each consecutive time-stamp, which corresponds to the time after a

byte of data is sent or received, was calculated to be around 365 µs. A constant difference of 52

µs indicated that the number specified by the creator of the FTSP as around 417 µs was merely

just one obtained specifically for their own hardware and is not universal to all. This discovery

adds to the argument that the results shown by the authors of FTSP paper are not repeatable

since they were tailor-made for a specific hardware unit. Even more so, research into the nature

of the TinyOS platform revealed that there exists a hardware limitation in the Mica2 device.

TEP 102 [54] states that the Mica2 hardware running at 7.37 MHz is unable to produce an

exact binary micro-second timer and so the closest it can achieve is an accuracy of 7.37MHz/8.

This sparked an interest in discovering why that is the case and so more research in the code

provided, CC1000 radio data-sheet and ATmega128L micro-processor data-sheet was carried

out. The outcome indicated that the Mica2’s external crystal is rated at 7.3728 MHz, however,

the micro-processor was programmed to run at 8 MHz with their reasoning being “rather than

introduce a plethora of precisions, we believe it is often best to pick the existing precision

closest to what can be provided, along with appropriate documentation” taken from TEP 102

[54]. The authors therefore have shown that only up to a 92% accuracy was possible with the

current timers and alarms that TinyOS employs that directly affects the results obtained since
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FTSP claims micro-second accuracy. The former statement indicates that the use of TinyOS

to obtain micro-second accuracy is impossible unless certain adjustments were made to the

results based on each specific hardware. This limitation is the reason for the extra calibration

step added in the implementation. Therefore, in order for the FTSP to provide micro-second

accuracy one must not simply just follow the steps in the original paper, rather, use the method

outlined in this study to ensure that the Mica2 is properly calibrated.

Implementing the FTSP as described in the original paper without calibration resulted in

an average synchronization error of around 13 µs. Applying the modifications described in

this thesis reduced the error to about 1.4 µs clustered about a mean of 5 µs. In order to realize

single micro-second accuracy precision, a few constants had to be re-calculated from the raw

data obtained from the Mica2 hardware used. Using the hardware calibration procedure, the

byte transmission time was recalculated to be 365 µs and the bit offset time ranged from 0 µs

for a bit offset of 0 to 320 µs for a bit offset of 7.
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Protocol Testing and Results

4.1 Test-bed setup

In this section both the original test- carried out by Maroti et al. and the tests done in this study

are presented. The results obtained from the tests are then compared to to those reported in the

original FTSP paper.

4.1.1 FTSP original test-bed

In order to ensure that the protocol is performing as predicted, accurate and controlled testing

is required. Before creating s test setup, the original FTSP paper test-bed was first examined.

The parameters used and results obtained by Maroti et al. are summarized in Table 4.1.
As mentioned in Table 4.1, Maroti et al. [2] performed an offline linear regression in order

to compensate for the clock offset and skew. They have included a histogram of their error

values and it showed that the majority of their error values were within the 1 µs range, see

Figure 4.9. They then used this offline regression as a base for their online implementation.

The FTSP paper indicated that the sender node was programmed to communicate its local

time to the receiver node as the global time, the receiver then computes the deviation of the

received value (global time) from its own local time at reception as the offset. The skew is

then calculated as the sum of the offsets divided by the sum of the local times. Due to memory

constraints of the Mica2 hardware, the authors programmed the receiver to perform a linear

42
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Table 4.1: Original FTSP paper test parameters and results [2]

Original FTSP paper

Hardware 4 units of Mica2 motes

Total experiment time 10 minutes

Packet sending period 5 seconds

Distance between nodes
Insignificant as the propagation delay is

less than 1µs for up to 300 meters

Calculated values
Clock offset and skew calculated

offline using linear regression

Average synchronization error calculation
The absolute value of the difference between

the global and local time-stamps

Reported average synchronization error 1.4 µs for offline Linear regression

1.48 µs for online Linear regression

Reported maximum synchronization error 4.2 µs for offline Linear regression

6.48 µs for online Linear regression

regression on the data from the last received 8 packets. At a synchronization interval of 30 s,

they obtained an average absolute error of 1.48 µs and a maximum absolute error of 6.48 µs.

This thesis implements and tests the FTSP in order to reproduce the results reported by Maroti

et al [2].

4.1.2 Recreated FTSP test-bed

The FTSP test application that is currently available on the online GitHub repository does not

provide an accurate test scenario for the protocol as previously discussed. The TestFtspC.nc

and CC1000SendReceiveP.nc files had to be modified to test the new implementation. Due to

limited resources, only 3 Mica2 nodes could be procured for the experiment. The sender node

was programmed with the RadioCounttoLedsC.nc app as the readme.txt file that the FTSP test

scenario suggests. However, the multiple time-stamping was implemented on a much lower

level, namely in the CC1000SendReceiveP.nc file, in order to get byte-wise granularity. The



44 Chapter 4. Protocol Testing and Results

test conducted in this study is programmed so that the sender node will perform the multiple

time-stamping and embed its averaged, normalized time into the message. As this message is

Table 4.2: Original vs recreated FTSP test parameters and results

Original FTSP paper New FTSP test-bed

Hardware 4 units of Mica2 motes 3 units of Mica2 motes

Total experiment time 10 minutes 10 + minutes

Packet sending period 5 seconds 1 second, 5 seconds

Distance between nodes
Insignificant as the propagation delay is

less than 1µs for up to 300 meters

Calculated values

Clock offset and skew calculated with

linear regression both offline and online using

the last 8 data points

Average synchronization

error calculation

The average of the absolute value of

the difference between the global

and local time-stamps

Average absolute synchronization

error with offline linear regression
1.4 µs 6.5 µs

Average absolute synchronization

error with online linear regression
1.48 µs 4.4 µs

Maximum synchronization error

with offline linear regression
4.2 µs 43 µs

Maximum synchronization error

with online linear regression
6.48 µs 9 µs

being received, the receiver node will perform multiple time-stamping at the byte-wise level

and apply the byte-alignment correction then report its own averaged normalized local time-

stamp in addition to the global time-stamp received. The receiver, which was programmed with

TestFtspC.nc already has code which will extract the information from the received message.

This code is used to get the global time. The receiver was then programmed to perform an

online linear regression on the last 8 data points and correct the local time accordingly. This is
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in line with the test that the authors of the FTSP paper carried out in order to show the effect of

computing the linear regression online. However due to limited resources, it was not possible

to run the test for 18 hours as the original paper had suggested. Instead, the same sending

period was used and tested for about 10-15 minutes to be consistent with the rest of the tests.

Table 4.2 shows a comparison of the test done in this thesis and the original FTSP test. Initially,

the sending period was set to 1 second, however, in order to recreate the results as accurately

as possible, a 5 second sending interval was chosen.

4.1.3 Test Results

In this section the progression of the effect that the error reducing techniques have on the data

is displayed. Figure 4.1 visualizes the four main sources of error that affected the data.

Figure 4.1: (a) The raw data with no error correction, (b) Multiple time-stamping, normaliza-

tion and minimization to remove interrupt and encoding/decoding errors, (c) Linear regression

to remove clock drift errors, (d) Bit offset delay at the receiver to compensate for byte alignment

errors.
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Raw data

In this section the difference between the sender time and the receiver time is displayed. Figure

4.2 shows the major errors that the FTSP aims to eliminate. The first error is represented by the

random large dips which correspond to interrupt jitter. In addition, the slow effect of the clock

drift caused an error that impacts the output with a negative slope. Bit offset errors are not quite

visible in Figure 4.2, but can be seen clearly in Figures 4.4 and 4.6. This error is responsible

for the high frequency errors that the plot exhibits.

Figure 4.2: Raw data without error correction, synchronization error is the difference between

the sender and receiver times

Data after multiple time-stamping

In this section the multiple time-stamping technique is applied and its effects are explained.

Figure 4.3 shows that the large errors have now disappeared as predicted. This behavior is

expected since the multiple time-stamping technique uses averaging to get rid of the outliers.

Further correction which included the normalization and minimization have also helped remove

any encoding/decoding errors. However, the slow impact of the clock drift is visible from the

negative slope that the data displays.

Data after multiple time-stamping and linear regression

In this section, the effects of both the multiple time-stamping and linear regression on the data

are studied. Figure 4.4 indicates that the data is now free from the negative slope that was
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Figure 4.3: Data after multiple time-stamping, offset error is the difference between the

sender’s corrected time (Global time) and the receivers corrected time (Local time) both af-

ter multiple time-stamping

brought about from the clock drift through linear regression correction - least squares method.

The range of the sync error is shown to be around -300 < sync error < 300 µs in Figure 4.4.

This range is still unacceptable for the FTSP and so the byte alignment correction must be

applied. Due to the nature of online linear regression, the initial few minutes of the data appear

to fluctuate before stabilizing. In order for online linear regression to be effective it would take

a few cycles for the hardware to secure enough data to perform the linear regression properly.

This initial inaccurate data is shown in the first part of the graph in Figure 4.5, however, it

quickly corrects itself after a few cycles as seen in the plot. The initial adjustment period is

removed for data analysis purposes and presented in Figure 4.4.

Data after multiple time-stamping, linear regression and byte alignment correction

The plot in Figure 4.6 shows the dramatic decrease that the byte alignment correction imple-

mentation had on the data. Using the calibration step in this study, the synchronization error

was reduced to a mean of 4.5 ticks with a standard deviation of 1.9 ticks, 1 tick is approxi-

mately 1 µs. The average maximum error calculated is 9 ticks throughout the 10 tests carried

out. All the results are available in Tables 4.3 and 4.4 in the next section.
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Figure 4.4: Data after multiple time-stamping and linear regression, offset error is the difference

between the Global time (sender) and the Estimated Global time which is the local time after

correction (receiver)

4.1.4 Result Analysis

In an attempt to keep the tests as similar as possible, the linear regression was implemented

online as suggested by the second test in the original paper. An offline regression for the same

values was also calculated. Testing was carried out multiple times and the data from 10 tests

was recorded to ensure reliability, Tables 4.3 and 4.4 detail the results obtained. The nature of

the data resulting from the tests conducted is studied and a histogram for both the offline and

online linear regression implementations has been created. This result is also compared to the

available plot from the original FTSP paper. Figure 4.7 represents the online linear regression

implementation histogram distribution. The results show that the statistical mean is offset by

around 4.5 ticks, however, the standard deviation shows that most of the values are within 1.9

ticks of the mean. If this offset is compensated for, a synchronization error of 1.3 µs can be

obtained with the implementation procedure outlined in this thesis.

Furthermore, the results from this study show a rather interesting phenomena in terms of

the linear regression calculation. The results of the online linear regression performed much

better than those calculated with an offline linear regression. A visualization of both results

is shown in Figure 4.8. Although this is not the typical outcome one would expect, it agrees

with the argument made throughout this study. More specifically, due to the aforementioned
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Figure 4.5: Synchronization error behavior during the online linear regression initial adjust-

ment period.

hardware clock limitations described in detail in Chapter 3 and then compensated for with the

extra calibration step, it is likely that the offline computation would perform rather poorly. The

instability of the hardware clocks is better compensated for with an online linear regression that

continuously recalculates the skew every 8 packets. In comparison, an offline linear regression

assumes that the clocks are stable throughout the experiment, this assumption does not hold in

the case of the Mica2 hardware.

The flooding time synchronization protocol implementation currently available does not

take into account the hardware limitations of the Mica2 (device it was tested on) but rather, the

authors present their results as ideal without having to do any extra steps and crediting the suc-

cess to the merits of the FTSP protocol. In reality, the resulting synchronization error obtained

without the calibration step that has been added was 13 µs with a very large standard devia-

tion. After performing the Mica2 calibration, the average synchronization error was reduced

to a mean of 4.3 µs with a standard deviation of 1.8 µs. The results show that the hardware

limitations imposed by the Mica2 hardware can be taken care of with the proper procedure. On

the contrary, the available implementation exhibits non-repeatability of the results reported by

the authors of the FTSP, in addition, no insight is offered as to how they have achieved a syn-

chronization accuracy of 1.4 µs. To summarize, this implementation produced results which

closely match those produced in the original FTSP paper while at the same time being easily

reproducible.
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Figure 4.6: Data after multiple time-stamping, linear regression and byte alignment correction,

offset error is the difference between the Global time (sender) and the Estimated Global time

which is the local time after correction (receiver).

Table 4.3: FTSP implementation test results in ticks (1 tick = 0.95 µs)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

Mean 4.7 4.9 4.6 4.8 4.7 4.3 4.3 2.4 5.1 5.5

Std

Dev
1.7 1.9 1.9 1.6 1.8 2.1 2.0 2.3 1.7 1.8

Min

Error
-1 -1 0 0 0 -1 0 -4 0 1

Max

Error
10 9 10 8 9 9 9 7 9 10
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Table 4.4: FTSP implementation average test results in ticks (1 tick = 0.95 µs)

Average Synchronization Error

Mean Error 4.5

Standard Deviation 1.9

Minimum Error -0.6

Maximum Error 9

Figure 4.7: Histogram of synchronization errors after online linear regression, mean = 4.4 µs,

standard deviation = 1.8 µs.

Figure 4.8: Comparison of synchronization errors between online and offline linear regression,

the offline linear regression produced the following results: mean = 0 µs, standard deviation =

9.4 µs.
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Figure 4.9: The FTSP original paper plot showing the error distribution of the offline linear

regression (offline LR) and online linear regression (30s and 300s) both of which refer to the

test’s time synchronization interval [2].
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Conclusion

Synchronization protocols in wireless sensor networks must take into account the unpredictable

nature of the wireless medium and provide accurate timing information while being reliable at

the same time. Maroti et al. [2] indicated that the main sources of time synchronization error

stemmed from software jitter resulting from the disabling of interrupts and encoding/decoding

errors. To further increase the accuracy of the protocol, they compensated for the clock drift

phenomenon that affects the local clocks of the hardware and also corrected the byte alignment

at the receiver nodes. The tests they conducted were on 4 units of the Mica2 hardware nodes

and produced an absolute average synchronization error of 1.4 µs. After a thorough study of

the methods used for error correcting that the FTSP employs, this study implements the pro-

tocol in an attempt to recreate the reported results. The multiple time-stamping technique was

implemented to compensate for interrupt jitter and encoding/decoding errors. This technique

takes six time-stamps and normalizes them by subtracting the time it takes to transmit a byte

and minimizing these values, an average is then taken and a single time-stamp is reported. At

the receiver end, the bit offset is calculated and the received time-stamps are further corrected

by adjusting the byte-alignment according to the bit offset calculated. For the clock drift, on-

line linear regression was performed on the last 8 data points in order to obtain the clock skew

which was taken as the slope calculated. The skew is then used as a multiplier to calculate

the estimated global time at the receiver from the local time and the time offset. The previous

techniques have been implemented as previously stated in this study, however, extra calibration

steps had to be done in order to obtain results similar to those reported in the original FTSP

53
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paper.

FTSP has been labeled as the “gold standard” of synchronization protocols by many; how-

ever, there hasn’t been an implementation which produces an accuracy within the micro-second

range until now. The available FTSP implementation lacks the main attribute which the proto-

col heavily advertises: its novel multiple time-stamping technique. Other major errors with the

implementation included incorrect byte alignment code and their use of a milli-second clock

to obtain values which were supposed to be within micro-second accuracy. Finally, the current

FTSP implementation did not indicate nor compensate for the hardware limitation imposed

by the Mica2. Therefore, the absence of proper implementation documentation for the FTSP

motivated this study to provide a complete protocol implementation with easily reproducible

results. Testing of the new implementation was carried out on 3 units of the Mica2 hardware

and the global and local times were calculated and reported to the base-station node that ran

a java application to display the results in real-time on the laptop. Data was then taken and

statistical operations were carried out on it to better understand the nature of the output. As

indicated previously, testing for the FTSP was done many times and the results of 10 of these

tests (Tables 4.3, 4.4) were taken as the main data set. At first it was noticed how the error

changed with each correction technique being applied to the data and ensured that the results

were in line with theoretical predictions.

The averaging and minimization of time-stamps eliminated the large errors as would be ex-

pected from that technique. The added calibration procedure coupled with the byte-alignment

process served to decrease the magnitude of the high frequency errors as seen in Figure 4.6,

this effect is the result of bit offset correction at the receiver. Finally, the linear regression that

was implemented at the packet level removed the negative slope which is otherwise known as

the clock skew. In online linear regression correction, it is typical to have an initial adjustment

period since the node needs some time to gather enough data before beginning the correction.

This slight limitation that affected the first few cycles of the data is indicated in the results

and visible in Figure 4.5. Although the error minimizing techniques did perform as expected,

the results appeared to be shifted by a constant factor of 5. The average synchronization error

was calculated to be 4.4 µs with a standard deviation of 1.8 µs for online linear regression

and an average error of 0 µs with a standard deviation of 9.4 µs for offline linear regression.
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Interestingly, results showed that the online linear regression out-performed the offline linear

regression which can be explained by the hardware limitations imposed by the Mica2 clock.

This unusual behavior did go to show that the implementation presented in this study is able to

take into account the instability of the hardware clock in a way that an offline linear regression

would not be able to. The resulting error values which clustered around a mean of 4.4 µs all

exhibited the same offset and if accounted for could be reduced to the value of 1.4 µs that [2]

reported.

5.1 Contributions

As previously stated in Chapter 2, FTSP’s reported micro-second accuracy synchronization

error has been referred to by many new and upcoming synchronization protocols. However,

some recent papers have expressed some suspicion regarding the ability to recreate the results

that were obtained by the authors of the original FTSP report. The goal of this study was to

first test this protocol as detailed in the literature and provide a fully functional FTSP imple-

mentation for comparison purposes. The testing done throughout this study uncovered that

following the online implementation resulted in a synchronization error within the range of

tens of micro-seconds and not around 1 µs like the original paper suggested. This mismatch

launched a search into the nature of the hardware used for this experiment. It was discov-

ered that the Mica2 hardware used by Maroti et al. for the FTSP implementation to obtain a

synchronization error of 1.4 µs had a hardware limitation. Not only did the available imple-

mentation not follow the flooding time synchronization protocol, but there was an extra step

that had to be implemented in order to realize such high time synchronization accuracy on the

Mica2 hardware. This work provides a new implementation that will be available for future

researchers as the new benchmark for the FTSP. Implementation flaws in the current code are

corrected in this study and a new hardware calibration step is developed and presented. This

new implementation has achieved micro-second accuracy when testing on Mica2 hardware

nodes. In order for others to use this implementation, the hardware calibration process must be

communicated to the wider community before publishing the code on an open source software

such as GitHub.
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5.2 Future Work

In an attempt to understand how the authors of the FTSP were able to get an absolute synchro-

nization error of 1.4 µs in a wireless network configuration, the protocol presented in Maroti

et. al’s paper was carefully followed. Following the steps indicated in [2], the minimum syn-

chronization error that could be obtained was around 13 µs and so more research was done in

order to match the value reported. Research indicated that the hardware calibration step was a

key component in obtaining such high accuracy. That helped narrow down the synchronization

error to a mean of 4.4 µs with a standard deviation of 1.8 µs. Furthermore, a constant offset of

5 was visible in the test results, which if compensated for, would bring down the average syn-

chronization error to 1.3 µs. At the moment, the cause of this offset is not understood, however,

that research will constitute much of the future work for this study. Future work includes us-

ing a different approach than the hardware calibration to achieve micro-second accuracy. This

approach would be to create a true micro-second timer using the available virtualized timers

in the Mica2 as a base. However, this would require in-depth knowledge of the hardware and

more research regarding the hardware limitation of the Mica2.

In order to gain more insight on the sources of error, it would be beneficial to conduct a

detailed study of the other sources of error that plague synchronization within wireless sensor

networks. In addition, future research includes studying the effect of increasing the distance

between nodes on the propagation delay and how that will affect the time synchronization error.

Other approaches that could be taken in the future would be to procure more resources, such

as Mica2 hardware units, and run tests for longer periods of time in order to extract more in-

formation about the effect of the protocol on the data. For a more modern take on the FTSP, an

adaptation of the FTSP implementation could be created to run on a field programmable gate

array (FPGA) and by that making the protocol more accessible. Furthermore, a more advanced

yet costly option would be to build an embedded system which uses a micro-controller and a

byte-wise radio transceiver such as the CC1000 radio [31] from Texas instruments [58] since

the multiple time-stamping depends on byte-wise radio transmission/reception. Ultimately, in

addition to providing an implementation for the FTSP, this study investigated the state of avail-

able wireless synchronization protocol implementations and shed light to invaluable insight for
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research and development within wireless sensor networks.
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Appendix A

1 / ∗

2 ∗ C o p y r i g h t ( c ) 2002 , V a n d e r b i l t U n i v e r s i t y

3 ∗ A l l r i g h t s r e s e r v e d .

4 ∗

5 ∗ R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h or w i t h o u t

6 ∗ m o d i f i c a t i o n , are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s

7 ∗ are met :

8 ∗

9 ∗ − R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t

10 ∗ n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .

11 ∗ − R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t

12 ∗ n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e

13 ∗ d o c u m e n t a t i o n and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e

14 ∗ d i s t r i b u t i o n .

15 ∗ − N e i t h e r t h e name o f t h e c o p y r i g h t h o l d e r s nor t h e names o f

16 ∗ i t s c o n t r i b u t o r s may be used t o e n d o r s e or promote p r o d u c t s d e r i v e d

17 ∗ f rom t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .

18 ∗

19 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

20 ∗ ”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT

21 ∗ LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

22 ∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL

23 ∗ THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT ,

24 ∗ INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES

25 ∗ ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR

26 ∗ SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION )
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27 ∗ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT,

28 ∗ STRICT LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE)

29 ∗ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

30 ∗ OF THE POSSIBILITY OF SUCH DAMAGE.

31 ∗

32 ∗ @author : Mi k l o s Marot i , Brano Kusy ( k u s y @ i s i s . v a n d e r b i l t . edu )

33 ∗ Po r t ed t o T2 : 3 / 1 7 / 0 8 by Brano Kusy ( b r a n i s l a v . kusy@gmail . com )

34 ∗ /

35

36 # i n c l u d e ” T e s t F t s p . h ”

37 # i n c l u d e ” RadioCountToLeds . h ”

38

39 module T e s t F t s p C

40 {

41 u s e s

42 {

43 i n t e r f a c e GlobalTime<TMi l l i > ;

44 i n t e r f a c e TimeSyncInfo ;

45 i n t e r f a c e Rece ive ;

46 i n t e r f a c e AMSend ;

47 i n t e r f a c e P a c k e t ;

48 i n t e r f a c e Leds ;

49 i n t e r f a c e PacketTimeStamp<TMi l l i , u i n t 3 2 t > ;

50 i n t e r f a c e Boot ;

51 i n t e r f a c e S p l i t C o n t r o l a s R a d i o C o n t r o l ;

52 }

53 }

54

55 i m p l e m e n t a t i o n

56 {

57 m e s s a g e t msg ;

58 boo l l o c k e d = FALSE ;

59

60 e v e n t void Boot . b oo t e d ( ) {

61 c a l l R a d i o C o n t r o l . s t a r t ( ) ;

62 }
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63

64 e v e n t m e s s a g e t ∗ Rece ive . r e c e i v e ( m e s s a g e t ∗ msgPtr , void ∗ pay load ,

u i n t 8 t l e n )

65 {

66 c a l l Leds . l e d 0 T o g g l e ( ) ;

67 i f ( ! l o c k e d && c a l l PacketTimeStamp . i s V a l i d ( msgPtr ) ) {

68 r a d i o c o u n t m s g t ∗ rcm = ( r a d i o c o u n t m s g t ∗ ) c a l l P a c k e t .

g e t P a y l o a d ( msgPtr , s i z e o f ( r a d i o c o u n t m s g t ) ) ;

69 t e s t f t s p m s g t ∗ r e p o r t = ( t e s t f t s p m s g t ∗ ) c a l l P a c k e t .

g e t P a y l o a d (&msg , s i z e o f ( t e s t f t s p m s g t ) ) ;

70

71 u i n t 3 2 t rxTimestamp = c a l l PacketTimeStamp . t imes t amp ( msgPtr ) ;

72

73 r e p o r t −> s r c a d d r = TOS NODE ID ;

74 r e p o r t −>c o u n t e r = rcm−>c o u n t e r ;

75 r e p o r t −> l o c a l r x t i m e s t a m p = rxTimestamp ;

76 r e p o r t −> i s s y n c e d = c a l l GlobalTime . l o c a l 2 G l o b a l (& rxTimestamp ) ;

77 r e p o r t −>g l o b a l r x t i m e s t a m p = rxTimestamp ;

78 r e p o r t −>skew t imes 1000000 = ( u i n t 3 2 t ) c a l l TimeSyncInfo .

getSkew ( ) ∗1000000UL;

79 r e p o r t −> f t s p r o o t a d d r = c a l l TimeSyncInfo . ge tRoo t ID ( ) ;

80 r e p o r t −> f t s p s e q = c a l l TimeSyncInfo . getSeqNum ( ) ;

81 r e p o r t −> f t s p t a b l e e n t r i e s = c a l l TimeSyncInfo . ge tNumEnt r i e s ( ) ;

82

83 i f ( c a l l AMSend . send (AM BROADCAST ADDR, &msg , s i z e o f (

t e s t f t s p m s g t ) ) == SUCCESS) {

84 l o c k e d = TRUE;

85 }

86 }

87

88 re turn msgPtr ;

89 }

90

91 e v e n t void AMSend . sendDone ( m e s s a g e t ∗ p t r , e r r o r t s u c c e s s ) {

92 l o c k e d = FALSE ;

93 re turn ;
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94 }

95

96 e v e n t void R a d i o C o n t r o l . s t a r t D o n e ( e r r o r t e r r ) { }

97 e v e n t void R a d i o C o n t r o l . s topDone ( e r r o r t e r r o r ) { }

98 }



Curriculum Vitae

Name: Asma Khalil

Post-Secondary The University of Western Ontario

Education and London, ON

Degrees: 2009 - 2013 B.E.Sc.

University of Western Ontario

London, ON

2017 - 2018 M.E.Sc.

Honours and Steinmetz-Woonton (Merit) Scholarship

Awards: 2011

Related Work Teaching Assistant

Experience: The University of Western Ontario

2017 - 2018

69


	Current Implementation of the Flooding Time Synchronization Protocol in Wireless Sensor Networks
	Recommended Citation

	tmp.1548349170.pdf.pJmmf

