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ABSTRACT 

 

Biomass gasification yields a blend of H2, CO, CH4 and CO2, designated as syngas. Syngas can be 

further combusted using fluidizable oxygen carriers (OCs) during power generation via Chemical 

Looping Combustion (CLC). To improve syngas CLC and establish its application, a new Ni-

based oxygen carrier with a Co and La modified γ-Al2O3 support was studied. This type of OC 

considerably limits the NiAl2O4 formation. Therefore, the oxygen carrier was engineered using a 

special preparation methodology to eliminate NiAl2O4 species formation. This promising Highly 

Performing Oxygen Carrier (HPOC) was characterized using XRD, BET, H2-TPR, NH3-TPD and 

pulse chemisorption.  

 

Isothermal CLC runs were carried out in the CREC Riser Simulator which is a novel mini-batch 

fluidized bed reactor. A computational fluid dynamics (CFD) simulation was developed using the 

COMSOL Multiphysics® module to analyse gas-solid mixing patterns in the CREC Riser 

Simulator. This CFD model allowed to calculate the axial and circumferential gas velocities, the 

pressure changes and the geometrical modifications required in the reactor. 

 

Reactivity runs using the CREC Riser Simulator, were developed as follows: a) 2-40s reaction 

times, b) 550-650°C, c) H2/CO ratios at 2.5 and 1.33 and d) 0.5 and 1 fuel to HPOC oxygen 

stoichiometric ratios. Encouraging results were obtained employing a 2.5 H2/CO ratio with a 92% 

CO2 yield and 90% CO, 95% H2 and 91% CH4 conversions. As well, the HPOC showed an oxygen 

transport capacity in the 1.84-3.0 wt% (gO2/gOC) range, with a 40-70% oxygen conversion. 

 

A thermodynamic based model was established to predict the CLC syngas conversion limits. 

Additionally, a kinetic model was proposed for syngas CLC using the HPOC. This solid state 

kinetics considers a Nucleation and a Nuclei Growth Model (NNGM). This kinetics led to a ten 

intrinsic kinetic parameter model. These parameters were determined via numerical regression 

within a 95% confidence interval and with small cross-correlation coefficients. As a result, the 

kinetic rate constants showed that the reactivity of the syngas species could be expressed following 

the H2>CO>CH4 order.  
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Given the high performance and stability of the developed HPOC and the successful established 

kinetics, a computational particle fluid dynamics (CPFD) simulation for a 100kW CLC facility 

was developed. This simulation used a hybrid Barracuda VR CPFD model featuring “single 

particles” and “clustered particles”. According to the simulated CLC performance, it is anticipated 

that 90% CO2 yields can be achieved as follows: a) in a 25-m length downer unit simulated using 

the “single particle” model, b) in a 30-m downer unit simulated with the “clustered particles” 

model. Furthermore, it was observed that a L-type loop seal with air-pulse system eliminates the 

CO2 gas leakage, which usually occurs when the syngas moves from the fuel reactor to the air 

reactor. 

 

Keywords: Chemical Looping Combustion, Syngas, Nickel Oxide, Nickel Aluminate, Negative 

CO2 emission, CREC Riser Simulator, Kinetic Modelling, Reactor Simulation.  
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CHAPTER 1 LITERATURE REVIEW 

1.1 Introduction 

Energy demands  are expected to rise 60% by 2030, with 85% of that energy anticipated to come 

from fossil fuels [1]. Among the greenhouse gases (e.g. CO2; NOx; CH4), CO2 is the one that has 

the largest impact on global warming. Fossil-fueled power plants contribute to the significant CO2 

world emissions (~33-40%) [2]. Fortunately, technologies, such as CO2 sequestration and 

Chemical Looping Combustion (CLC) have been developed to mitigate CO2 emissions. However, 

for an effective CO2 sequestration, highly concentrated CO2 is required, which adds additional 

costs to CO2 capture.  

In this respect, Chemical Looping Combustion (CLC) is a promising technology which can 

maximize combustion efficiency, separate CO2 inherently and reduce CO2 capture costs 

significantly (100$/ton CO2) [3,4]. In addition to this, CLC can provide: a) a high thermal 

efficiency b) flameless combustion and c) the formation of small amounts of nitrogen oxide (NOx). 

 

However, suitable oxygen carriers are still an issue for large-scale CLC applications. Ni, Cu, Co, 

Fe and Mn are well known metal candidates that can perform as oxygen carriers for CLC. A 

detailed review on this issue can be found elsewhere [5,6]. Recently, a novel Ni-based oxygen 

carrier with a La-Co modified γ-Al2O3 support was reported by Quddus et al. [7] for methane 

combustion.  

Several fossil fuels can be used for energy production such as natural gas, coal and biomass. 

However, as large amounts of fossil fuel derived CO2 emissions continue to steadily increase, it is 

of primary importance to improve CO2 capture processes. One valuable alternative is to use 

renewable feedstock such as biomass, in power stations. Biomass is the result of CO2 capture in 

plants from the atmosphere via photosynthesis. Biomass can be converted into syngas, which can 

in turn, be used as a fuel in power stations. Syngas contains mostly CO and H2 with some CH4 and 

CO2. On balance, complete combustion of syngas leads to net zero CO2 fossil fuel based emissions.  
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Thus, it is the goal of this PhD research to investigate the performance of this Ni-based oxygen 

carrier (La-Co modified γ-Al2O3 support) for syngas combustion. Furthermore, it is also the aim 

of this research to consider for this OC in terms of its reactivity, its thermal stability and its carbon 

deposition.  

 

To address these issues, the present chapter reviews the state-of-the-art considering: a) a CLC 

process development, b) the evaluation of suitable oxygen carriers, c) the bench-scale reactors to 

analyze oxygen carrier performance, d) the kinetic modeling, and e) the large scale CLC 

performance simulations. 

1.2 Chemical Looping Combustion (CLC) 

Lewis et al, first suggested the concept of CLC. Subsequently, the approach for the production of 

pure CO2 from a hydrocarbon gas was proposed [8]. CLC enables one to increase the number of 

fossil fuel based power plants, obtaining higher thermal efficiency with minimum energy losses 

[9]. In addition, significant electrical efficiency (50-60%) can be achieved by using a CLC 

integrated power generation system where the CO2 emission rate is rather low (0.33 kg/kWh). This 

appears to be the case while compared with a conventional fossil fuel power plant [10].  

 

CLC typically employs a dual circulating fluidized bed system configured of two interconnected 

fluidized bed reactors known as air reactor and fuel reactor (refer to Figure 1-1). The solid oxygen 

carrier is circulated between the air and fuel reactors to be oxidized by air and reduced by fuel, 

respectively. Thus, the supported metal oxide oxygen carrier is circulated through a loop and 

carries oxygen for the purpose of efficient combustion. This yields a flue gas composed primarily 

of carbon dioxide and water vapor as well as other trace pollutants. Therefore, the CO2 can easily 

be recovered by condensing water vapor. This eliminates the need of an additional energy intensive 

CO2 separation process step. The free of water CO2 can be sequestrated and used for other 

applications. 
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Figure 1-1: Schematic diagram of typical Chemical Looping Combustion process 

 

A description of the overall reaction stoichiometry in the fuel reactor can be considered using Eq. 

(1-1): 

 

Fuel Reactor: reduction  

(𝑛 +  𝑚 + 4𝑘)𝑀𝑦𝑂𝑥 + 𝑛𝐶𝑂 + 𝑚𝐻2 + 𝑘𝐶𝐻4

⇌ (𝑛 +  𝑚 + 4𝑘)𝑀𝑦𝑂𝑥−1   +  (𝑚 + 2𝑘)𝐻2𝑂 +  (𝑛 + 𝑘)𝐶𝑂2 

(1-1) 

Air Reactor: oxidation  

𝑀𝑦𝑂𝑥−1 +
1

2
𝑂2(𝑎𝑖𝑟) ⇌  𝑀𝑦𝑂𝑥 + (𝑎𝑖𝑟: 𝑁2 + 𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑: 𝑂2) 

(1-2) 

 

After the completion of fuel combustion, the reduced metal-oxide MyOx-1 (or metal) is transported 

to the air reactor. Then, the MyOx-1 is re-oxidized according to Eq. (1-2).  This yields an outlet gas 

stream from the air reactor containing nitrogen and unreacted oxygen. These gases can be released 

to the atmosphere with minimum negative environment impact. 

1.3 Thermodynamic Efficiency of CLC Process 

As mentioned previously in this chapter, CLC consists of two interconnected reactors. A 

comprehensive thermodynamic analysis of the CLC process was reported in technical literature 
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[11]. This model represented the overall process as an internal combustion (IC) engine. The 

objective of this study was to determine the overall efficiency as shaft work generation.  

 

Regarding oxygen carrier selection, there are two important thermodynamic criteria to be 

considered:  a) equilibrium temperatures of the redox reactions involved have to be below the 

anticipated materials metallurgical limits b) the CLC must take place at temperatures high enough 

to obtain important CLC reaction rates.  

 

 
Figure 1-2: Schematic Diagram of an Ideal CLC System for Power Production [11] 

 

Figure 1-2 reports a schematic representation of methane or syngas CLC using metal (species M) 

based oxygen carriers. As shown in Figure 1-2, methane CLC may typically lead to heat released 

(Qhot) in the air reactor and heat consumed (Qcold) in the fuel reactor (McGlashan 2008). However, 

in the case of syngas, CLC may involve slightly exothermic reactions in the fuel reactor (Ref). 

Thus, the syngas CLC process has to be evaluated with a Qcold close to zero.  

 

Furthermore, and as shown in Figure 1-2, shaft work (W) evaluations, involve the algebraic 

addition of air reactor enthalpy, fuel reactor enthalpy and heat losses (Qo). As a result, 

thermodynamics provide shaft work availability. This can be established assuming that a) ΔSo ≈0 

and b) ΔSo <0, where S is an absolute entropy.  
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In particular and for Qo ≈0 (adiabatic case for oxidizer and reducer reactors), one can define an 

overall efficiency for an IC engine as ηCLC=Wnet/(-ΔHo)fuel, with  Wnet  being the work output from 

the heat engine. Thus, Wnet,HC=Qhotηth,engine=-(ΔHo)oxid ηth,engine.  

 

Thus, ηCLC,HC=Ψ ηth,engine, where, Ψ=(ΔHo)oxid /(ΔHo)fuel. As a result, the process thermal efficiency 

has to be multiplied by an oxygen carrier and fuel system dependent factor.  

 

Finally, by applying Hess’ law, the Carnot efficiency of the heat engine in a CLC system can be 

written as: 

𝜂𝑡ℎ,𝐶𝑎𝑟𝑛𝑜𝑡,𝐶𝐿𝐶,𝑟𝑒𝑣,𝐻𝐶 =
𝜓 − Ω

𝜓(1 − Ω)
, 𝑤ℎ𝑒𝑟𝑒 Ω =

(Δ𝑆𝑜)𝑜𝑥𝑖𝑑𝑒

(Δ𝑆𝑜)𝑓𝑢𝑒𝑙
 

Detailed discussions including the case of ΔSo <0, are reviewed by McGlashan [11]. This 

manuscript reports the ηth,Carnot,CLC(%) as 82.05, for the system using NiO as oxygen carrier with 

coal as fuel. This appears to be indeed, an attractive industrial application for CLC. 

1.4 Oxygen Carrier Requirements 

The various requirements for a better oxygen carriers performance are listed below [5,6]: 

 Adequate oxygen transport capacity, 

 Favorable thermodynamics regarding the fuel conversion to CO2 and H2O at CLC 

temperatures, 

 Good fluidizability of the oxygen carrier under expected operating conditions,   

 High reactivity for reduction and oxidation reactions, in order to reduce the solid inventory 

in the fluidized bed reactors, keeping this reactivity during many successive redox cycles, 

 Resistance to attrition with minimum losses of elutriated solids and negligible particle 

agglomeration, 

 Negligible carbon deposition. This deposited carbon can be released as CO2 in the air 

reactor, thus reducing overall CO2 capture efficiency, 

 Environment friendly characteristics and economic feasibility. 
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Unsurprisingly, pure metal oxides do not meet the above described characteristics, with oxidation 

and reduction reaction rates quickly decreasing in a few cycles [12]. This shows the need of a 

proper metal support, providing a high surface area and increased attrition resistance [13].  

 

In all these respects, preparation methods have desirable effects on reaction performance and 

oxygen carrier stability. Several well-established methods can be found in the literature 

(Bartholomew et al. 2006) such as impregnation, adsorption/ion exchange, precipitation, sol-gel, 

spray drying and others. When considering the pros and cons of these techniques, the incipient wet 

impregnation method is considered as appropriate to achieve high metal dispersion over a desired 

support [14–16]. In addition, all the methods listed above, provide easy control of metal loading, 

being feasible for large-scale oxygen carrier production. However, one has to consider that special 

care has to be taken when implementing incipient wet impregnation, given that this leads to a non-

uniform metal dispersion in the pore support. 

 

Furthermore, numerous research studies have been performed when choosing metals such as Co, 

Cu, Mn and Fe as oxygen carriers, for industrial applications. As well, different metal supports 

(e.g. TiO2, SiO2, Al2O3) were tested to find stable and fluidizable oxygen carriers. Nevertheless, 

while oxygen carrier reactivity is a desirable property, it is not the only consideration criteria. 

Oxygen carriers may agglomerate or form undesirable species via metal-support interactions [17–

19]. 

 

Given the above, and based on thermodynamics, reactivity and stability analysis, NiO was found 

to be attractive for CLC applications. However, unsupported NiO has shown poor performance in 

repeated redox cycles, as Ni crystallites agglomerate [20]. Thus, dispersed NiO over an Al2O3 

support could be considered as an attractive alternative, given the alumina high thermal stability 

at high temperatures [21–23]. Furthermore, γ-Al2O3 support can be manufactured with good 

fluidization properties, which make it most suitable for fluidized bed CLC.   

 

Nevertheless, undesirable metal support interactions may occur, leading to undesirable nickel 

aluminate formation. To address this issue, in literature using of NiAl2O4 as a support is found 
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[24]. This NiAl2O4 support increases nickel content requirements, making CLC less predictable. 

Thus, there are still significant challenges in the implementation of the NiAl2O4 oxygen carriers.    

Regarding Ni-based oxygen carriers, it has been shown that these OCs can provide 1.84-6wt% 

oxygen transport capacity and 40-50wt% solid oxygen conversion at 750ºC-1000ºC under excess 

oxygen conditions [25,26]. Nevertheless, these OCs displayed low stability due to metal support 

interactions. In contrast, carefully designed Ni-based OCs, modified with La and Co, can display 

high thermal stability and less metal support interactions as shown by our research team at the 

CREC Laboratories, University of Western Ontario [14,27]. It was demonstrated that methane 

CLC with these OCs, yields 1.84-3.45% oxygen transport capacity and 40-72% solid conversion 

at 600-680ºC. Nevertheless, the observed NiAl2O4 formed still presents a significant drawback for 

the oxygen carrier [14,15,27]. 

Given all of the above and the incentives for the syngas CLC, the aim of the present study is to 

develop a novel fluidizable HPOC having the following properties: a) High performance at 550-

650ºC within a 40s reaction time range, b) Enhanced oxygen transport capacity and OC oxygen 

conversion, c) Excellent CO2 yields for efficient CO2 sequestration, d) An OC free of NiAl2O4 

formation.  

1.5 Syngas CLC 

 

Syngas is a mixture of CO and H2, can be produced from hydrocarbons and coal. As well, syngas 

can be manufactured via biomass gasification. Depending on the source, syngas may contain CH4, 

CO2 and other undesired species as well. Syngas is as beneficial as natural gas in terms of an 

energy conversion application. However, to establish a syngas CLC system, highly performing 

oxygen carriers are a prime requirement. This PhD research considers CLC experiments using a 

syngas with a composition representative of those found in biomass gasification.  

 

It is apparent that a nickel-based oxygen carrier is promising with respect to high reactivity, and 

stability.  While several studies were already affected with methane CLC, there is very limited 

research carried out on syngas CLC and nickel-based oxygen carriers. Table 1-1 reports a summary 

of syngas CLC, with nickel-based supported oxygen carriers.  
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Table 1-1: Summary of Syngas CLC with a Nickel-Based Oxygen Carrier [6] 

Metal Oxide 

Loading (%) 

Support 

Material  

Preparation 

Method 

Reacting Agent Reactor 

System 

References 

35 Al2O3 COP Coal, syngas + H2S, 

CO, O2 

TGA, CLC [28–30] 

2.5-20 α-Al2O3 IMP CH4, H2, O2 TPR, TPO, 

CREC-RS 

[15,31,32] 

18 α-Al2O3 IMP Syngas, CH4, H2, CO TGA, bFB, 

CLC 300 W 

[33–35] 

5 Co-Al2O3 IMP CH4, O2 CREC-RS [27,36] 

20 La-Al2O3 IMP CH4, Biomass CREC-RS [37] 

30 MgAl2O4 SC+MM CH4, Syngas TGA [26] 

20-40 NiAl2O4 SC+MM CH4, H2,  Syngas TGA [26,38] 

60 NiAl2O4 DIS+SD CH4, H2,  Syngas TGA, pFxB [20,39,40] 

CREC-RS: Chemical Reaction Engineering Centre Riser Simulator (a batch fluidized bed reactor), COP: co-

precipitation, IMP: impregnation, FG: freeze granulation, SC: solution combustion, MM: mechanical mixing, DIS: 

dissolution, SD: spray drying , pFxB: pressurized fixed bed, TGA: thermogravimetric analyzer, TPR: temperature 

programmed reduction, TPO: temperature programmed oxidation 

 

To understand syngas CLC, it is very important to perform reactivity studies in a batch fluidized 

bed reactor unit. This can help to develop valuable kinetic models for future applications as well 

as to develop designs of large-scale CLC reactors. Investigation on methane CLC using the 

CREC Riser Simulator, has already being developed by several researcher [7,36]. However, 

there is no prior article we are aware of, where syngas CLC was studied in the CREC Riser 

Simulator reactor. 

1.6 Novel Tool for CLC Studies 

The CREC Riser Simulator is a novel bench-scale reactor unit especially designed to determine 

catalyst performance under very short contact times (typically 2-40s). This novel device has been 

invented by de Lasa [41] . It was initially developed to determine the kinetic parameters of the 

catalytic cracking of hydrocarbons [42].  
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In the last 10 years, the CREC Riser Simulator has been applied to study a diversity of catalytic 

reactions including: a) chemical looping combustion, a) the steam and dry reforming of methane, 

c) the catalytic and thermal gasification of biomass, e) the oxy-dehydrogenation of light gases, f) 

the catalytic desulfurization of gasoline; among others [14,43,52–54,44–51].  

 

In the CREC Riser Simulator as described in CHAPTER 3, a rotating impeller creates adequate up 

flow gas conditions. Due to this, particles contained in a centrally placed basket, are fluidized. The 

special engineering of this unit provides both fluidized particles and high gas mixing. Under a 

typical 4000-6000 rpm speed, the high gas recirculation yields a quasi-constant reactant 

concentration for all gas phase species. 

 

Because of the intensive gas and particle fluidization in CREC Riser Simulator basket, the CREC 

Riser Simulator can be considered as a “fluidized batch reactor” described by the following 

equation: 

VT

dCi

dt
 =  ri W (1-3) 

 

Where, VT represents the total reactor volume in cm3, Ci stands for the mass concentration of “i” 

species in g/cm3, t denotes the reaction time in seconds, ri is the rate of either the formation or 

the consumption of “i” in grams of “i” species/(gcat s), and W stands for the mass of oxygen 

carrier in grams.  

 

Thus, and in agreement with Eq.(1-3), the CREC Riser Simulator has to operate with 

approximately the same gas species compositions in all reactor locations, at every reaction time. 

In this respect, one can consider that reaction times in the CREC Riser Simulator are equivalent to 

the residence times in an industrial riser or an industrial downer unit. This similarity of reactions 

and residence time in the 2-40s range mimics the anticipated oxygen carrier conversion and syngas 

conversion rates. As a result, the CREC Riser Simulator provides an excellent basis for reaction 

kinetics and catalyst performance studies under the conditions of downers and risers.  
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Gas mixing and particle fluidization in the CREC Riser Simulator were studied using hot wire 

anemometry, fiber optic techniques and a Plexiglas unit [55]. Fiber optics, hot wire anemometry 

and pressure drop measurements were implemented to establish both fluidization and gas 

recirculating flows [41]. Using this method axial downward gas velocities in the outer reactor 

section were measured. This allowed calculation of the recirculating gas flows and the mixing 

times. Good fluidization and mixing times were observed at a 6300 rpm impeller speed rotation. 

Mixing times with high gas recirculation were smaller than 0.1 seconds. 

 

On the other hand, CFD offers unique opportunities for the understanding of flows in the CREC 

Riser Simulator (CHAPTER 4). This allows one to therefore, introduce a CREC Riser Simulator 

“without vertical baffles”. On this basis, a double vortex fluid structure can be computed as 

follows: a) an upflow vortex promoted by a rotating impeller, in the center section of the CREC 

Riser Simulator, b) a downflow vortex generated at the tip of the rotating impeller blades 

centrifugal forces. One should notice that the second downflow vortex becomes a rotating upflow 

at the bottom of the CREC Riser Simulator. Altogether, this leads, to strong gas mixing in the inner 

and outer reactor spaces as well as intense fluidization in the reactor basket. Thus, a fluid flow in 

the chamber of CREC Riser Simulator can be viewed as two vortices, a central spiraling upflow 

and a peripheral spiraling downflow. With this end in mind, a CFD model based on COMSOL 

Multiphysics® is considered in the present study. Using CFD, a double vortex structure with high 

mixing patterns is described as shown in CHAPTER 4. 

1.7 CLC Reaction Network 

The CLC reaction mechanism is a fundamentally based description required for the development 

of a kinetic model.  

In a CLC system, the oxidation reaction rate, under the anticipated operating conditions (550-

650ºC), is high enough not to show a dependency of the reduction cycle on the thermal level 

[56,57] . Thus (1-4), represents the best stoichiometry to describe the oxidation of the NiO oxygen 

carrier is as follows: 

 

𝑁𝑖 +
1

2
𝑂2 → 𝑁𝑖𝑂; Δ𝐻𝑜 = −293.7 𝑘𝐽/𝑚𝑜𝑙  

(1-4) 
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Furthermore, in the fuel reactor (FR), there are a number syngas (CO, H2, CH4, CO2) reactions 

with NiO oxygen carrier, those take place. All of them contribute to the overall reduction CLC 

process as follows:  

𝐶𝐻4 + 4𝑁𝑖𝑂 ↔ 4𝑁𝑖 + 𝐶𝑂2 + 2𝐻2𝑂; Δ𝐻𝑜 = 156.5 𝑘𝐽/𝑚𝑜𝑙 

𝐶𝐻4 + 3𝑁𝑖𝑂 ↔ 3𝑁𝑖 + 𝐶𝑂 + 2𝐻2𝑂; Δ𝐻𝑜 = 199.8 𝑘𝐽/𝑚𝑜𝑙 

𝐶𝑂 + 𝑁𝑖𝑂 ↔ 𝑁𝑖 + 𝐶𝑂2; Δ𝐻𝑜 = −43.27 𝑘𝐽/𝑚𝑜𝑙 

𝐻2 + 𝑁𝑖𝑂 ↔ 𝐻2𝑂 + 𝑁𝑖; Δ𝐻𝑜 = −2.13 𝑘𝐽/𝑚𝑜𝑙 

𝐶𝐻4 + 𝐶𝑂2  ↔ 2𝐶𝑂 + 2𝐻2 (𝐷𝑅𝑀); Δ𝐻𝑜 = 247𝑘𝐽/𝑚𝑜𝑙 

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 2𝐻2 (𝑊𝐺𝑆𝑅); Δ𝐻𝑜 = −41.2 𝑘𝐽/𝑚𝑜𝑙 

𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 (𝑆𝑅𝑀); Δ𝐻𝑜 = 206𝑘𝐽/𝑚𝑜𝑙 

𝐶 + 2𝐻2𝑂 ↔ 𝐶𝑂 + 𝐻2 (𝐶𝐺); Δ𝐻𝑜 = 131.3 𝑘𝐽/𝑚𝑜𝑙 

𝐶 + 𝐶𝑂2 ↔ 2𝐶𝑂 (𝐵𝑅); Δ𝐻𝑜 = 172.5 𝑘𝐽/𝑚𝑜𝑙 

𝐶 + 2𝐻2 ↔ 𝐶𝐻4 (𝐻𝐺); Δ𝐻𝑜 = −74.5𝑘𝐽/𝑚𝑜𝑙 

𝐶 + 𝑁𝑖𝑂 ↔ 𝑁𝑖 + 𝐶𝑂; Δ𝐻𝑜 = 129.2 𝑘𝐽/𝑚𝑜𝑙 

𝐶7𝐻8 + 18𝑁𝑖𝑂 ↔ 7𝐶𝑂2 + 4𝐻2𝑂 + 𝑁𝑖; Δ𝐻𝑜 = 542.71𝑘𝐽/𝑚𝑜𝑙 

𝐶7𝐻8 + 𝐻2𝑂 ↔ 7𝐶𝑂 + 11𝐻2; Δ𝐻𝑜 = −582 𝑘𝐽/𝑚𝑜𝑙 

 

with BR: Boudouard Reaction; CG: Char Gasification; DRM: Dry Reforming; HG: 

Hydrogenating Gasification; SRM: Steam Reforming; WGSR: Water Gas Shift Reaction 

The above-described reactions, based on observable species, are the ones often used for kinetic 

modelling. This is the case even when acknowledging that actual reaction mechanisms may 

involve intermediates including radical species [7,58].  One should not however, that the selection 

of observable chemical species, as main contributors of the nickel based kinetic model, could be a 

function depend on the specific oxygen carrier employed.  

1.8 Thermodynamic Limit of Syngas CLC and Ni-based OC 

A thermodynamic analysis can be developed to calculate equilibrium products of syngas and NiO 

oxygen carrier reactions within a range of 25-700oC at 1 atm pressure. Equilibrium refers to the 

stable condition of chemical reactions after which no overall reaction takes place. This is achieved 

by minimizing the Gibbs Free Energy [59]. There are two approaches for analyzing the equilibrium 
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condition: a) the stoichiometric approach b) the non-stoichiometric approach. The first approach 

requires well-defined reactions with balanced stoichiometric equations.  

 

One can write a generic chemical reaction as in Eq.(1-5): 

 

aA(g)  +  bB(s)  ↔ cC(g)  +  dD(g)  +  eE(s) (1-5) 

 

Assuming that Eq.(1-5) applies at chemical equilibrium, an equilibrium constant can be calculated 

as follows: 

𝐾𝑐 =
[𝐶]𝑐[𝐷]𝑑[𝐸]𝑒

[𝐴]𝑎[𝐵]𝑏
 

 

where, [A], [B], [C], [D] and [E] represent activities of both gas and solid reactants and products. 

At high temperatures and close to atmospheric pressure conditions, the reactants and the products 

activities in the gas phase can be approximated to their partial pressures. In addition, the activity 

of solid compounds can be considered as a unity. Then, the equilibrium constant can be rewritten 

as follows:  

 

𝐾𝑝 =
[𝑃𝐶]𝑐[𝑃𝐷]𝑑

[𝑃𝐴]𝑎
 

 

where, B and E are solids and [PB]B=1, [PE]E=1   

 

A similar approach for the CLC thermodynamic analysis can be found in [60,61].  

 

Furthermore, the equilibrium constant Kp can be determined from the Gibbs free energy of reaction 

(ΔGr) using Kp =exp[-ΔGr/RT]; with , ΔGr=∑(ΔGf)final - ∑(ΔGf)initial and R=8.314 J/(mol.K). One 

should note that the ΔGf for pure substances can be obtained from the thermodynamic property 

available database [62]. 
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Figure 1-3: Equilibrium Constant as a Function of Temperature 

 

Figure 1-3 reports the change in the equilibrium constant with temperature, for eight possible 

syngas CLC reactions. This analysis was developed with a 20% CO, 10% CH4, 20% CO2 and 50% 

H2 syngas. It also considered the stoichiometric amounts of NiO oxygen carrier required for syngas 

combustion into CO2 and H2O.  

 

Thus, one can see that while equilibrium constants for various CLC syngas reactions can be 

calculated as shown in Figure 1-3, using the formation Gibbs free energies and formation 

enthalpies, there is still a lack of numerical solutions for solving the independent set of resulting 

equations. A numerical solution for this set of independent equations using nickel oxide is reported 

later in CHAPTER 6 of the present PhD dissertation.   

1.9 Kinetic Modeling of CLC System 

A kinetic model provides important information regarding mass and heat transfer processes inside 

the oxygen carrier particles by time. This can be accomplished by analyzing reaction performance 

during the reduction and oxidation cycles of CLC. In this respect, the kinetic model has to be 

specific enough to include oxygen transport capacity and OC physicochemical properties. Thus, 
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to accomplish this, various kinetic parameters have to be assessed for the various reactions 

involved. Table 1-2 reports a brief review on kinetic data for Ni-based oxygen carriers on Al2O3 

support. Kinetic parameters for other oxygen carriers can be found elsewhere [6].  

 

Table 1-2: Reported Kinetic Parameters for Reduction and Oxidation using Ni-based Oxygen 

Carriers and a Gaseous Fuel 

Oxygen Carrier 

(wt%)/Support 

Experimental 

Condition 

Kinetic 

model* 

Activation Energy 

 kJ/mol 
References 

NiO(60)/Al2O3 
TGA 

(600-950oC) 
SCM 

ECH4=78, 

EH2=26 
[63,64] 

NiO(20)/Al2O3 
TPR-TPO 

(200-750oC) 
NNGM 

EH2=53, 

EO2=45 
[32] 

NiO(20)-Co/Al2O3 
TPO-TPR(200-750oC) 

CREC Riser (650oC) 
NNGM 

ECH4=49, EH2=45, 

EO2=44 
[65] 

NiO(20)/Al2O3 CREC Riser (680oC) 

SCM, 

NNGM, 

PLM 

ECH4=51, 44, 39 

 
[15] 

NiO(20)/La-Al2O3 

TPR-TPO (200-

750oC) 

CREC Riser (650oC) 

NNGM EH2=73, ECH4=70, [52] 

NiO(40)/NiAl2O4 TPR (300-600oC) SCM EH2=96, [38] 

NiO(65)/Al2O3 TGA (800-950oC) SCM 
ECH4=55, EH2=28, 

ECO=28 
[66] 

NiO(15)/Al2O3 
Fixed Bed (600-

900oC) 
MVM 

ECH4=77, EH2=26, 

ECO=27 
[67] 

NiO(40)/NiAl2O4 TGA (750-1000oC) SCM 
ECH4=70, EH2=35, 

ECO=34 
[68] 

NiO(18)/Al2O3 TGA (700-950oC) SCM 

EH2=20, 

ECO=18, 

EO2=24 

[25] 

NiO(21)/γAl2O3 TGA (700-950oC) SCM 

EH2=5 (NiO), 235 (NiAl2O4) 

ECO=5 (NiO), 89 (NiAl2O4) 

ECH4=5 (NiO), 375 (NiAl2O4) 

EO2=22 

[69] 

*MVM: Modified Volumetric Model, NNGM: Nucleation and Nuclei Growth Model, PLM: Power 

Law Model, SCM: Shrinking Core Model 

As an OC support, gamma alumina has received much attention due to its high surface area (190 

m2/g) [52,70]. However, the potential formation of nickel aluminate may be an eventual issue, 
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reducing OC reactivity. In addition, high temperature (>750°C) CLC operation may be required 

to reduce nickel aluminate [16,71].  

Preventing the formation of NiAl2O4 by incorporating a cobalt additive in the OC, was reported 

by Quddus et al. [14]. It was found however, that controlling temperatures during OC preparation 

and CLC operation has a great effect on nickel aluminate formation and as a result, OC 

performance.  

Considering these issues, this PhD thesis reports a development of a HPOC in CHAPTER 5, where 

the NiAl2O4 is excluded very effectively. The stable performance of this HPOC was demonstrated 

using a syngas with H2/CO ratios of 2.5 and 1.33, at 550-650°C. This HPOC had at least, a 90% 

CO2 yield. 

An OC reaction rate model should also include a mechanistic solid state kinetic model accounting 

for: a) nucleation b) geometrical contraction, c) diffusion d) reaction order and e) power law 

[72,73]. In this respect, OC and CLC operating conditions must be selected to obtain an overall 

CLC reaction rate unaffected by either external or internal mass transfer.  

Given the above, the Nucleation and Nuclei Growth Model (NNGM) [52,74,75] and the Shrinking 

Core Model (SCM) [64,66,69] have been considered to describe the solid state changes of the OCs. 

The SCM considers the CLC reaction initiation at the outer surface of the NiO crystallites, where 

NiO is converted into Ni0. This process continues inward until the crystallite metal core is reached.  

As an alternative and according to the NNGM, the gas-solid reaction proceeds by nucleation, 

which means that once the reduction of a site is achieved, the reduction of neighboring unreacted 

NiO is initiated. Metal crystals dispersed in the porous support may have imperfections (e.g. 

cracks, surface, and point defects) [76]. It is at these metal sites, known as nucleation sites, that 

the activation energy displays a minimum value [77]. Therefore, the NNGM model has been found 

to be more suitable, especially with OCs where there is no influence of internal mass transfer on 

the overall CLC rate [73]. 

Regarding the CLC, it can be described as a function of the degree of OC reduction and as a 

function of the partial pressure of the gas phase chemical species [36,78] On this basis, several 

possible reactions including non-catalytic and catalytic reactions can be accounted for [6]. This 
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choice is critical to develop an adequate kinetic model and to determine intrinsic kinetic 

parameters.  

Given the promising results obtained with the new HPOC, a comprehensive kinetic model, which 

describes the CLC using syngas, was investigated in the present study. The kinetic parameters 

were evaluated using experimental data obtained in the CREC Riser Simulator. It is anticipated 

that the proposed kinetic model may facilitate the evaluation of large-scale CLC reactor 

performance.  

1.10  Large Scale and Demonstration Unit Simulation 

Computational Particle Fluid Dynamics (CPFD) of the CLC process is considered helpful in the 

process of designing the air reactor and the fuel reactor at a large scale via the optimization of 

critical parameters. As well, by incorporating the reaction kinetic model, CPFD can be used to 

describe the performance of the CLC process with various configurations.  

According to the technical literature, a typical air reactor can be designed as a riser while the fuel 

reactor using low superficial gas velocity can be designed as a bubbling fluidized bed.  

As well, in some cases, the air reactor can be designed as a small fluidized bed followed by a riser 

connected on its top. One can notice however, that there are no studies that report an air reactor as 

a riser and a fuel reactor as a downer. Table 1-3 displays a brief list of pilot scale CLC systems 

available at different locations.  In addition, Table 1-4 presents some recent works on large scale 

demonstration unit simulation that developed the CLC process using various configurations. 

Table 1-3: Summary of the Different Reactor Sizes and Configurations [79] 

Designed 

Capacity 

(kW) 

Fluidization Regime 

Location 
Air Reactor Fuel Reactor 

100 
Bubbling bed with 

riser 

CFB in bubbling 

regime 

Chalmers University of 

Technology 

100 
Bubbling bed with 

riser 
Bubbling bed 

National Energy Technology 

Laboratory 

100 CFB in fast regime Moving bed The Ohio State University 

120 CFB in fast regime 

 

CFB in fast 

fluidization regime 

Vienna University of Technology 
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1000 CFB in fast regime 
CFB in fast 

Fluidization  regime 
Technische Universität Darmstadt 

CFB: circulating fluidized bed  

 

Table 1-4: A Summary of Recent Work on Large-Scale Simulations Using the CLC Process [6] 

Oxygen Carrier Fuel 
Reactor 

Configuration 

Reactor 

Capacity 
References 

58wt% NiO on 

bentonite 

CH4 FR: bFB Batch Mode [80] 

FR: bFB; AR: Riser 12 kWth [81] 

Fe-Ni on bentonite CH4 FR: bFB  1 kWth [82]  

30.7wt.% FeO-ilmenite CH4, H2, 

CO 

FR: DFB; AR: DFB 

and Riser 

42kW [83] 

Glass beads (Geldart A 

and B) 

Cold Run AR: CFB; FR: CFB 10kW [79] 

AR: air reactor; bFB: bubbling fluidized bed; DFB: dense fluidized bed; FR: fuel reactor;  

As a result, it was felt that a complete system simulation based on Barracuda VR could be 

especially valuable. Barracuda VR allows Computational Particle Fluid Dynamics (CPFD) using 

an Eulerian–Lagrangian approach. CPFD considers a Lagrangian entity in order to define a 

computational particle. A computational particle involves uniform properties such as composition, 

size, density, and temperature. This software considers a MP-PIC (multi-phase particle-in-cell) 

method to model particle-fluid and particle-particle interactions. As well, Barracuda VR allows 

one to incorporate reaction kinetics and as a result, to simulate a large-scale CLC unit operating at 

relatively low computational time. A detailed description of the development of momentum 

equations and numerical approach are reported in the technical literature [84–86].  

 

Regarding the required drag model for circulating fluidized bed simulation, Wen-Yu (spherical 

particle) [79] and Ganser Model (for non-spherical particle) correlations can be used in CPFD. 

Furthermore, the formation of particle clusters is also considered in this PhD research. This 

assessment is based on the particle cluster size distribution determined by Lanza et al. [87] for very 

similar particles.  
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Given all of the above, this study makes possible, as will be described in CHAPTER 7, a riser and 

downer configuration for CLC given: (a) the demonstrated high syngas conversion per pass in the 

downflow fuel reactor, (b) the manageable oxygen carrier particle circulation; (c) the anticipated 

low CO2 gas leaking in the loop-seal between fuel reactor and air reactor. 

1.11  Conclusions 

 

The following can be considered to be the main conclusions of this literature review:   

a) Biomass-derived syngas can be used as a fuel in CLC, mitigating the negative CO2 

emissions impact. This approach could be employed very effectively in power stations.  

b) CLC thermodynamic models can be employed to set conversion boundaries for syngas 

CLC. This is considered of special significance, while using fluidizable oxygen carriers 

with important potential for industrial scale applications.  

c) Special experimental tools are needed to develop the kinetics that could be employed for 

CLC processes involving circulating fluidized beds. These experimental tools should be 

ranked and evaluated using CFD simulations to secure high gas mixing and good OC 

fluidization.  

d) Phenomenologically based kinetics models based on solid-state reactions, on metal 

supported oxygen carriers are needed. This is required for an adequate description of 

chemical changes in syngas CLC. 

e) CPFD simulations such as the one offered by Barracuda VR have to be considered to secure 

an adequate accounting of the kinetic models and the fluid dynamics while considering 

riser-downer integrated systems in large-scale CLC units. 
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CHAPTER 2 SCOPE OF RESEARCH 

The opening remarks in CHAPTER 1, state that a highly performance oxygen carrier (HPOC) 

based on nickel over a fluidizable γ-Al2O3 support could become a promising alternative for CLC 

processes. This is the case, given the anticipated HPOC thermal stability and low metal-support 

interactions. On this basis, one can speculate that the proposed HPOC will allow large times-on-

stream as well as a high syngas combustion performance, making CLC with the proposed HPOC 

an economically viable process alternative.  

 

2.1 Specific Objectives 

2.1.1 CFD Simulation of Novel CREC Riser Simulator: Mixing Patterns 

As described in this PhD dissertation, the CREC Riser Simulator reactor will be used as a main 

experimental tool to evaluate the HPOC performance with syngas. Hence, one of the main 

objectives of this thesis is to describe unit flow patterns. This will allow assessing gas-solid mixing 

at high temperatures and pressures as well as evaluating the adequacy of the CREC Riser Simulator 

unit for HPOC performance evaluations. 

 

2.1.2 Enhanced Oxygen Carriers: Preparation, Characterization  

Another important objective of this PhD thesis is to establish the structural and reactivity properties 

of the HPOC (Ni-Co-La/γ-Al2O3). In this context, one should consider the effect of the HPOC 

preparation methods on high HPOC reactivity, consistent with the high conversion of nickel 

aluminate into nickel oxide. With this end, it is planned to characterize the HPOC through the 

oxidation and reduction cycles, by using TPR and TPO. In addition, the NH3-TPD, the BET-

Adsorption Isotherm, the XRD and the pulse chemisorption analysis will be performed to further 

establish the HPOC physicochemical properties. 

 

2.1.3 CLC performance using Syngas and Highly Performing Oxygen Carrier   

Furthermore, given the importance of demonstrating the value of the HPOC for syngas CLC, a 

mini-fluidized CREC Riser Simulator will be used.  Simulated biomass derived syngas, with 

different H2/CO ratios is proposed to be employed during the runs. As well, a broad range of 



 

20 

 

temperatures and fuel/oxygen stoichiometric ratios will be considered.  To complement reactivity 

studies, a thermodynamic analysis will be developed. Furthermore, this will be done to calculate 

equilibrium product composition following HPOC syngas combustion.  

 

2.1.4 CLC using Syngas: Detailed Reaction Mechanism and Kinetic Modelling  

Based on reactivity runs, a reaction mechanism for the Ni-Co-La/γ-Al2O3 oxygen carrier will be 

established. This will allow establishing the most suitable conditions for better CLC processes. As 

well and on this basis, a phenomenologically based kinetic model will be developed using the 

statistical based evaluation of parameters with the calculation of the 95% confidence intervals and 

parameter cross-correlation. The proposed kinetic modeling approach could be of special value for 

the scale-up of CLC in large fluidized bed units. 

 

2.1.5 CPFD Barracuda Simulation of Large Demonstration Scale Air-Fuel 

Reactors 

Finally and using the established kinetics, a large demonstration scale CLC interconnected air-fuel 

reactor (riser-downer) process model will be established using CPFD Barracuda. Data obtained 

will allow: (a) The calculation of the riser air reactor and downer fuel reactor performances; (b) 

The calculation of the required HPOC circulation; (c) The evaluation of the extent of CO2 gas 

leaking in the CLC unit at the loop-seal.  

 

2.2 Accomplishments of Research Objectives 

The present PhD dissertation includes the following completed research as reported in published 

and submitted manuscripts: 

a. Manuscript 1: I. Ahmed, S. Rostom, A. Lanza, H. de Lasa, “Computational Fluid Dynamics 

study of the CREC Riser Simulator: Mixing patterns, Powder Technology”, Volume 316, 

2017, Pages 641-649, ISSN 0032-5910, https://doi.org/10.1016/j.powtec.2016.12.030. 

IF=3.32 

 

https://doi.org/10.1016/j.powtec.2016.12.030
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The manuscript mentioned above considers computational fluid dynamics in the mini-fluidized 

CREC Riser Simulator. These calculations were developed to secure adequate gas mixing while 

evaluating the HPOC performance. Detailed results are reported in CHAPTER 4 of this thesis.   

 

b. Manuscript 2: I. Ahmed, H. de Lasa, “Syngas Chemical Looping Combustion using a 

Highly Performing Fluidizable Oxygen Carrier”, Catalyst Today, 2019. 

https://doi.org/10.1016/j.cattod.2019.01.011, IF: 4.66  

 

This article has recently been accepted with minor revision by the Catalysis Today Journal. This 

was an invited contribution for a Special Issue to Honor Prof. D. Bukur, University of Texas. This 

manuscript reports the development and characterization of the HPOC and its reactivity using 

syngas. Detailed results are reported in the CHAPTER 5 of this PhD Dissertation. 

 

c. Manuscript 3: I. Ahmed, H. de Lasa, “Kinetic Model for the Syngas Chemical Looping 

Combustion using a Nickel-Based Highly Performing Fluidizable Oxygen Carrier”, 2019, 

Industrial & Engineering Chemistry Research, (Accepted, 2019), IF: 3.14 

 

This invited article has recently been submitted to Industrial & Engineering Chemistry Research 

journal as one of the 110 papers for 110-year anniversary of I&ECR journal first issue. This 

manuscript describes and evaluate a phenomenologically based kinetic model with special value 

for the simulation of large-scale downer reactor units using CLC. A reaction mechanism is 

proposed and kinetic parameters are established using a statistically based analysis.  Detailed 

results are reported in CHAPTER 6 of this PhD Dissertation. 

 

d. Manuscript 4: I. Ahmed, H. de Lasa, “Industrial Scale Riser/Downer Simulation of Syngas 

Chemical Looping Combustion of using Highly Performing Fluidizable Oxygen Carrier”.  

 

This article is under preparation and will be submitted in early 2019, to Chemical Engineering and 

Technology (IF: 2.05). This manuscript considers a demonstration scale simulation of syngas 

chemical looping combustion using the HPOC. The CPFD Barracuda software is employed to 

account for both the fluid dynamics and the HPOC in a CLC downer unit. Various findings are 

reported in CHAPTER 7 of this PhD dissertation.  

https://doi-org.proxy1.lib.uwo.ca/10.1016/j.cattod.2019.01.011
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CHAPTER 3 EXPERIMENTAL METHODOLOGY 

3.1 Introduction 

This chapter describes the several experimental apparatuses and methodologies used in this PhD 

dissertation. This chapter reports the HPOC preparation method and its detailed physicochemical 

characterization. Additional details about the development of the fluidizable HPOC are provided 

CHAPTER 5. 

All CLC experiments were performed with simulated biomass derived syngas in a mini-fluidized 

bed reactor CREC Riser Simulator. Details of the adopted operational procedures, as well as 

product analysis are also discussed in this section. Furthermore, supplementary information on 

operational protocols, calibrations and mass balance calculations are provided in Appendix-A. 

3.2 Method of Oxygen Carrier Preparation 

The Incipient Wetness Impregnation (IWI) method was found to be suitable for the preparation of 

the HPOC as already reported, in the technical literature [7,36,69]. The IWI provides a simple 

method, allowing close control of the metal loading in the fluidizable support, limiting coke 

formation, as will be discussed in CHAPTER 6. 

There are four main steps involved in the HPOC preparation: a) support impregnation, b) HPOC 

precursor drying, c) reduction of the metal precursor loaded in the HPOC and d) HPOC calcination. 

To accomplish these steps, 20 g of γ-Al2O3 were typically added into a sealed conical flask with 

its lateral outlet exit connected to a 250 mmHg vacuum. Then, metal precursor solutions were 

prepared to reach the desired nominal metal percentile. For instance, a 0.5 ml/g of support solution 

was chosen to fill the γ-Al2O3 total pore volume. Using a syringe, the precursor solution was added 

drop-by-drop ensuring homogeneous support impregnation through the flux sealing. After these 

steps were completed, drying was performed using a 0.5oC/min heating until 140oC was reached, 

with drying continuing for at least 4h. Then, the HPOC precursor was reduced in a specially 

designed mini-fluidized bed. This mini-fluidized bed was installed inside a furnace (Thermolyne 

48000) to be able maintain a desired temperature according to the preparation techniques. For 

HPOC reduction, a continuous 10%H2 and 90%Ar gas flow was circulated throughout the HPOC 

bed with gas velocities being about 3 times the minimum fluidization velocity. Finally, the HPOC 
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was calcined in the same furnace under continuous airflow. Additional information regarding 

metal loading equipment, the mini-fluidized bed system, and the used furnace in the present study 

is provided in Appendix A. 

3.3 Temperature-Programmed Reduction (TPR) and Oxidation (TPO) 

TPR and TPO were performed by using a Micromeritics Autochem II 2920 Analyzer. During each 

experiment, 130-140 mg of an oxygen carrier sample was contacted with a 10% hydrogen (H2) gas 

mixture balanced with argon (Ar) for TPR, and 5% oxygen (O2) balanced with helium (He) for 

TPO. A flow rate of 50 cm3/min was employed for both TPR and TPO. The sample was heated 

using a 15°C/min ramp until it reached the desired temperature.  The gas leaving the sample tube 

circulated to the TCD through a cold trap. This step ensured that this gas was comprised of water 

free H2. The O2 consumption was monitored using a thermal conductivity detector (TCD). The 

amount of H2 or O2 uptake by the HPOC sample was calculated via the numerical integration of 

the TPR and TPO profile areas, respectively. TPR analysis allowed one to know the available 

lattice oxygen for CLC. Consecutive TPR and TPO were effected to study the stability of the 

oxygen carrier while being subjected to several oxidation and reduction cycles. 

3.4 H2 Pulse Chemisorption 

Pulse chemisorption was performed at a 50ºC temperature following TPR runs using the 

Micromeritics Autochem II 2920 Unit. When utilizing this technique, a stream of argon gas was 

circulated through a bed containing approximately 130 to 140 mg of oxygen carrier at a 50 cm3/min 

rate. Then, a series of 1.0 cm3 STP pulses containing 10% hydrogen (H2) balanced with argon (Ar) 

gas were injected. Each consecutive pulse injection was effected every 1.5 min. The effluent H2 

peaks were monitored using a TCD. When two consecutive H2 peaks had essentially the same area, 

the HPOC sample was considered as hydrogen-saturated, indicating that no additional hydrogen 

could be chemisorbed.  

The amount of chemically adsorbed hydrogen on the active sites of the oxygen carrier was used to 

calculate the percent metal dispersion as follows: 

%𝐷 =
𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑡𝑎𝑙 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
= (𝜈 ×

𝑉𝑎𝑑𝑠

𝑉𝑔
×

𝑀𝑊

𝑊
× 100) × 100 
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where, %D is the percent of metal dispersion, ν is the stoichiometric factor (here, ν=2, indicating 

that 1 mole of H2 is chemisorbed with 2 moles of Ni atoms), Vads is the chemisorbed volume of H2 

(cm3/g), Vg is the molar gas volume at STP (i.e. 22414 cm3/mole), MW is the molecular weight of 

metal (g/g-mole) and W is the % metal loading.  

As well, the average crystal size (dv) of the metal on the support was calculated from the percent 

metal dispersion by using the following equation: 

𝑑𝑣 =
𝜙𝑉𝑚

𝑆𝑚
×

1

%𝐷
 

where,  is the particle shape constant, Vm represents the volume of metal atoms (nm3), and Sm is 

the average surface area (nm2) of metal particles exposed per surface metal atom. 

On this basis, pulse chemisorption allowed the calculation of both metal dispersion and average 

metal crystal size in the HPOC [88]. 

3.5 Temperature-Programmed Desorption (TPD) 

The ammonia (NH3) TPD technique was used to establish the relative abundance of both Bronsted 

and Lewis acid sites. A Micromeritics Autochem II 2920 Unit was used for TPD experiments. 

Before the TPD experiments, the oxygen carrier sample was pre-treated by flowing helium (He) 

through it at 650oC for 20 min. and then cooled down to 100oC. Following this, a stream of gas 

containing 5% NH3 balanced with He, was circulated through a bed containing approximately 170 

to 190 mg of the OC sample, at a rate of 50 cm3/min and at 100oC for 1 h.  After NH3 adsorption, 

the HPOC sample was purged using helium again for 1 h, at the desired adsorption temperature. 

During the desorption, the temperature in the bed was programmed to rise at a linear rate of 

20oC/min from ambient to 650°C, while a stream of He gas was circulated in the bed.  Once the 

temperature in the bed exceeded the desorption energy, NH3 was released from the HPOC sample 

surface. A TCD was used to quantify the ammonia in the OC. On this basis, the total acidity of the 

sample was determined by integrating the eluted ammonia peak representing the volumetric 

change of NH3 in cm3 STP/min. with time in min. 
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3.6 Surface Area and Pore Size Distribution 

The specific surface area and pore size distribution (PSD) of the prepared oxygen carrier were 

determined using by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) Methods, 

respectively. Nitrogen adsorption-desorption was developed at 77.35 K in an ASAP 2010 

Analyzer. Before each measurement, a 150−250 mg oxygen carrier sample was degassed at 200ºC 

for 2 h and until the pressure was below 5 mmHg. Adsorption isotherms were measured within a 

relative pressure range of 0.001 to 1 at 77.35 K. 

3.7 X-ray Diffraction (XRD) 

X-ray powder diffraction patterns were obtained using a Rigaku Miniflex Diffractometer equipped 

with a monochromatic Cu Kα radiation source (wavelength = 0.15406 nm, 40 kV, 40 mA). The 

samples were scanned every 0.02º from 10 to 80º with a scanning speed of 2º/min. Identification 

of the phase was made with the help of the Joint Committee on Powder Diffraction Standards 

(JCPDS) Files. 

 

3.8 CREC Riser Simulator for Oxygen Carrier Evaluation 

The CREC Riser Simulator is a reactor where the performance of a heterogeneous catalyst or 

oxygen carrier can be analyzed. The amount of catalyst or oxygen carrier used is in the order of 1 

gram. Figure 3-1a provides a schematic diagram of CREC Riser Simulator Reactor (50.7 cm3 

reactor volume) and its auxiliary components. As shown in Figure 3-1b, the CREC Riser Simulator 

includes two sections: an upper section and a lower section. These two sections can be easily 

disassembled allowing the loading and unloading of a HPOC in and from a central basket. Metallic 

gaskets seal both upper and lower sections of the CREC Riser Simulator. 

 

Two 20-micron grids allow HPOC particles to be confined inside the central basket. The catalyst 

basket is placed in the lower reactor section. This creates an annulus section in between the catalyst 

basket and lower shell section. As well, there is an impeller located in the upper reactor section. 

The impeller rotation produces both a suction effect as well as a compression, causing the gas to 

move in the upward direction through the inside of the basket and in a downward direction through 

the outer annulus.  
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Figure 3-1: Schematic Diagram of CREC Riser Simulator: a) Reactor system showing CLC 

application and b) Catalyst/oxygen carrier basket (4PV: four-port valve, 6PV: six-port valve, 

MFC: mass flow controller) 

 

Figure 3-1a also describes the various auxiliary components of the CREC Riser Simulator 

including the injection port for gases or liquids, the vacuum box, the 4PV and the 6PV. In the 

CREC Riser Simulator, the reaction time is controlled using an automatic four-port valve (4PV) 

that opens the reactor to the vacuum box. The vacuum box collects products and helps to transfer 

the CLC gas phase products into a gas sampling loop (1 cm3) when the six-port valve (6PV) is in 

the “load” mode. After loading the gas product sample into the gas-sampling loop, the CLC 

products were directed to a gas chromatograph (GC) for further analysis, while having the 6PV in 

the “inject” mode. The CREC Riser Simulator and its auxiliary components altogether provide: a) 
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an almost instantaneous reactant injection, b) gas-solid reactions under controlled conditions, c) 

quick product evacuation, and d) “online” product analysis via gas chromatography.  

 

3.8.1 Reactor Preparation for Reaction 

For each CLC run, 175 mgs of the HPOC were loaded inside the reactor basket. Then, the lower 

section of the reactor was attached to the upper section using a metallic seal. This metallic seal 

ensured the absence of gas leaks during runs. Following this, argon was circulated through the 

reactor and vacuum box. This argon floe carried away any impurities of chemical species 

remaining in the CREC Riser Simulator reactor and reactor lines from previous experiments. 

Following this, the vacuum box was set to 150oC, in order to ensure that all reactant and product 

species were in the gas-phase.  

 

Once the argon purge was completed, both the upper and lower reactor sections were progressively 

heated until the reaction temperature was reached. Then, and once the selected temperature was 

reached, the argon flow was stopped and the reactor was closed at close to atmospheric pressure 

by manually shutting the 4PV. Following this, the vacuum box was evacuated and set at 3.0 psi 

using a vacuum pump. Once all these preliminary steps were completed, the reactor was ready for 

the CLC experiments feeding syngas, with the GC being kept at standby conditions. 

 

3.8.2 Performing Reaction 

The injector port of the CREC Riser Simulator Reactor allowed injecting set amounts (5-10 ml) of 

syngas using a syringe. Following this, and once a pre-selected time was reached; a triggered timer 

opened the 4PV automatically, releasing all the gas phase products into a vacuum box. Both during 

the reaction period, as well as during evacuations, the total pressures in the reactor and vacuum 

box were recorded continuously. Then, a representative CLC product sample was collected inside 

the sample loop of the 6PV. Once this step was completed, the CLC product held in the sample 

loop of the 6PV was sent to a GC, equipped with a TCD and FID, for product identification and 

quantification. 
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3.8.3 Product Analysis System 

3.8.3.1 Sample Analysis  

Figure 3-2 reports the flow diagram for product analysis from the CLC experiments.  

 

Figure 3-2: Schematic Flow Diagram of Product Analysis System 

In the CLC runs, argon was used as a carrier gas, to accurately detect H2 using a TCD (Thermal 

Conductivity Detector) and CO, CH4, CO2 utilizing a FID (Flame Ionization Detector), configured 

with a Methanizer (MTN). The MTN converts CO and CO2 into CH4. Hence, CO, CH4 and CO2 

are all detected in FID as CH4 peaks. Furthermore, different retention times and calibrations help 

to both identify and quantify individual gas species collected in the GC inlet sample loop in µmole 

units per cm3 units. 

Regarding the GC analysis, a temperature program was developed to obtain efficient species 

separation using a GC- packed column. Furthermore, to establish quantification and calibration 

profiles for individual species in the 1 cm3 sample volume, a standard gas composition with 

20vol% CO, 50vol% H2, 10vol% CO2 and 10vol% CH4 was used. The detailed configuration of 

the GC system, the gas calibration methods and the individual profiles of calibration are all 

mentioned in Appendix A. 

3.8.3.2 Post-Analysis Calculations  

Based on the collected data, the HPOC performance was evaluated. The HPOC performance was 

established based on CO2 yield, OC oxygen conversion and individual component conversion as 

per Eqs. (3-1), (3-2) and (3-3), respectively: 
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𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝐶𝑂2 , 𝑌𝐶𝑂2
% = (

𝑛𝐶𝑂2

𝑛𝐶𝑂 + 𝑛𝐶𝐻4
+ 𝑛𝐶𝑂2

 
)

𝑝𝑟𝑜𝑑𝑢𝑐𝑡

× 100 
(3-1) 

 

𝑂𝐶 𝑜𝑥𝑦𝑔𝑒𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝛼 % =
(𝑂𝑥𝑦𝑔𝑒𝑛)𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑔𝑎𝑠
− (𝑂𝑥𝑦𝑔𝑒𝑛)𝑓𝑒𝑒𝑑

𝑔𝑎𝑠

(𝑂𝑥𝑦𝑔𝑒𝑛)𝑓𝑒𝑒𝑑
𝑠𝑜𝑙𝑖𝑑 

× 100 
(3-2) 

 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋𝑖% = (1 −
𝑛𝑖,𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑛𝑖,𝑓𝑒𝑒𝑑
) × 100 

(3-3) 

 

where, ni = moles of i in the gaseous product/feed, i=CO, H2, CH4 

3.9 Conclusions 

This chapter describes the methods of HPOC characterizations and experimental evaluation 

required for this PhD research. The following are the most important conclusions of this chapter: 

a) An incipient wetness impregnation (IWI) successfully implemented for the preparation of 

the Ni-based oxygen carrier. This method involved a small-scale fluidized bed where both 

reduction and calcination of OC precursor were developed. This method secured a targeted 

amount of metal loadings in the supported OC. 

b) The H2-TPR and O2-TPO were valuable to determine the amount of active lattice oxygen 

in OC and also to detect the possible presence of nickel aluminate. Furthermore, 

consecutive TPR and TPO helped showing the stability of OC under successive oxidation-

reduction cycles. The X-ray diffraction (XRD) was also used to confirm the absence of 

nickel aluminate. 

c) The particle size distribution, BET specific surface area, N2-adsorption isotherm, pore size 

distribution, acidity-basicity (TPD), and metal dispersion by chemisorption were also 

determined to complete the physicochemical characterization of the HPOC as shown in 

CHAPTER 5. 

d) The CREC Riser Simulator reactor was used successfully employed to carry out syngas 

and HPOC reactivity. This allowed us quantification of CLC products at various reaction 

times, temperatures and fuel to OC stoichiometric ratios. These valuable experimental data 

led as shown in CHAPTER 6 to the development of a kinetic model for HPOC. 
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CHAPTER 4 CFD MODEL FOR CREC RISER SIMULATOR 

4.1 Introduction 

The CREC Riser Simulator Reactor is a novel mini-riser unit. This chapter describes a laminar-

turbulent CFD (Computational Fluid Dynamics) simulation using the COMSOL Multiphysics® 

module to establish gas-solid mixing patterns. The proposed CFD calculations are verified using 

both experimental data (<10-15% difference) and mass balance errors (< 0.1%). Results show the 

significant detrimental effect of basket vertical baffles implemented in earlier designs of the CREC 

Riser Simulator Reactor. Based on this, it is demonstrated that a double vortex flow leading to 

high gas mixing is favored in a new reactor configuration “without” basket vertical baffles. For 

instance, at 4200 rpm, in a basket unit loaded with 0.8 gm of catalyst, close to 69 cm/s gas axial 

velocities were observed. This shows turbulent or fast fluidization conditions with smaller than 

0.51s mixing times. In addition, this new suggested design with enhanced mixing, places the 

CREC Riser Simulator in a new class of laboratory scale fluidized catalytic units.  

 

This CFD model also allows calculating axial and circumferential gas velocities, and pressure 

changes. Reported results demonstrate that a modified basket “without” vertical baffles provides 

enhanced gas-phase mixing and particle fluidization. These new findings are valuable to operate 

the CREC Riser Simulator for extended periods, with intense mixing both in the inner and outer 

unit reactor chambers, limiting fine particle carry over.  

4.2 Modeling Strategy  

4.2.1 Gas and Solid Phases Considered 

Regarding the developed numerical simulation, air at 25 C and 1 atm were considered. FCC 

particles with a bulk density of 0.83-1.01 gm/cc and a particle size distribution in the 53-75 micron 

diameter range were selected for the calculations [89]. These particles belong to  group-A particles 

in the Geldart’s powder classification [90]. 

4.2.2 Geometry Considerations 

Regarding the developed numerical simulation, air at 25 C and 1 atm were considered. FCC 

particles with a bulk density of 0.83-1.01 gm/cc and a particle size distribution in the 53-75 micron 
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diameter range were selected for the calculations [89]. These particles belong to  group-A particles 

in the Geldart’s powder classification [90]. 

4.2.3 Geometry Considerations 

A reactor and basket geometry was proposed as described in Figure 4-1. This figure describes the 

various inner reactors components such as the vertical baffles and basket grids. Model 

simplification assumes that impeller blades and basket vertical baffles are of negligible thickness 

(e.g. 1.6 mm) as suggested by [91,92]. These assumptions are adequate given the small changes in 

the flow pattern caused by these extra geometry specifications [93]. 

 

 

Figure 4-1: Geometry Considerations for the CREC Riser Simulator Modelling 

 

Furthermore, in the CREC Riser Simulator, there is: a) A rotating component (turbine) where a 

suction effect is followed by a mild compression, b) A static component reactor body where the 

fluid moves downwards in the periphery and returns upwards in the basket. Thus, the rotating 

component (impeller) creates the driving force for gas recirculation.  

4.2.4 Model Development 

To proceed with the CFD simulation, one has to establish a model for the rotating parts, with a 

potential wide variation of RPM (e.g. from 525 to 6300 rpm). To accomplish this, the following 

has to be considered: 

 Flows may encompass both laminar flow (e.g. at 500 rpm, Re~900) and turbulent flow (e.g. 

at 5000 rpm Re~9000). This is the case given the expected laminar and turbulent flows at 

various impeller speeds and different locations in the CREC Riser Simulator. In this respect, 

the Reynolds number (Re) can be calculated based on an impeller Reynolds number 

(Re=D2Nρ/µ). As a result, this yields: a) a maximum value for N (rev/s), b) defined set values 
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for the impeller rotation, c) an impeller diameter D (m) d) a fluid density ρ (kg/m3) and (Pa.s) 

e) a fluid viscosity µ. 

 Flow patterns can be described using mass continuity as per Eq.(4-1). As well, the Navier-

Stokes Equation can be used for laminar and turbulent flows, utilizing Eq.(4-2) and Eq.(4-3), 

respectively. In the latter case, an average Reynolds approximation can be considered, using 

the turbulent kinetic energy (k) and the turbulent kinetic energy dissipation rates () given by 

Eq.(4-4) and Eq.(4-5). With this aim, the RANS Standard K- model is used [94]. This option 

is considered adequate to simulate rotational flows in confined spaces with low pressure 

drops. This model was also proposed for gas-solid fluidization systems [92,95], with 

𝐶𝜇 = 0.09, 𝐶𝑒1 = 1.44, 𝐶𝑒2 = 1.92, 𝜎𝑘 = 1.0, 𝜎𝑒 = 1.3. This approach showed good 

numerical calculation convergence within reasonable computational times [92]. 

 Flow can be assumed isothermal. This is satisfactory given the low mixing energy dissipated. 

It was experimentally observed that inert fluid mixing (e.g. air) in the CREC Riser Simulator 

(a batch unit) at 25 C and 1 atm, does not change the reactor temperature. 

 Gas flow is simulated assuming that gravitational forces are the only external forces to be 

accounted for in the numerical solution.  

 Wall roughness and its effect on gas flow is hypothesized to be negligible. This is adequate 

given the inner smooth reactor surface finishing achieved, during the CREC Riser Simulator 

manufacturing. 

 

For the CREC Riser Simulator, a first available governing equation is given by mass continuity: 

𝜕𝜌

𝜕𝑡∗
+ 𝜌∇. 𝒖 = 0 (4-1) 

4.2.4.1 Laminar Flow Model-Navier Stokes Equation 

At low impeller rotational speeds, the Navier-Stokes Equation for laminar flow can be reduced to 

the following:  

 

𝜌
𝜕𝒖

𝜕𝑡∗ + 𝜌(𝒖. ∇)𝒖 = ∇. [−𝑝𝑰 +  𝜇(∇𝒖 + (∇𝒖)𝑇) −
2

3
𝜇(∇. 𝒖)𝑰] + 𝐹; (4-2) 
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Where, ρ is the fluid density, u is the fluid velocity, t* is the frozen time, µ is the fluid viscosity, F 

is the volume or body force which acts through the volume of the body. 

4.2.4.2 Turbulent Flow Model-Navier Stokes Equation  

For the turbulent flow, the Reynolds Average Navier-Stokes equation (RANS) Standard k-ϵ model 

[96] can be considered as follows: 

𝜌
𝜕𝒖

𝜕𝑡∗
+ 𝜌(𝒖. ∇)𝒖 = ∇. [−𝑝𝑰 + (𝜇 + 𝜇𝑇)(∇𝒖 + (∇𝒖)𝑇) −

2

3
(𝜇 + 𝜇𝑇)(∇. 𝒖)𝑰 −

2

3
𝜌𝑘𝑰] + 𝐹 (4-3) 

While using this model, the following considerations apply: 

a) The kinetic energy of turbulence (k) and dissipation rate of turbulent kinetic energy (ϵ) 

equations are calculated as: 

𝜌
𝜕𝑘

𝜕𝑡∗
+ 𝜌(𝒖. ∇)𝑘 = ∇. [(𝜇 +

𝜇𝑇

𝜎𝑘
) ∇𝑘] + 𝑃𝑘 − 𝜌𝜖 (4-4) 

𝜌
𝜕𝜖

𝜕𝑡∗
+ 𝜌(𝒖. ∇)𝜖 = ∇. [(𝜇 +

𝜇𝑇

𝜎𝑒
) ∇𝜖] + 𝐶𝑒1

𝜖

𝑘
𝑃𝑘 − 𝐶𝑒2 𝜌

𝜖2

𝑘
  (4-5) 

b) The production of turbulent kinetic energy due to the mean flow gradient, Pk is evaluated 

as: 

𝑃𝑘 = 𝜇𝑇 [ ∇𝒖: (∇𝒖 + (∇𝒖)𝑇) −
2

3
(∇. 𝒖)2] −

2

3
𝜌𝑘 ∇. 𝒖  (4-6) 

Where, µT is the turbulent viscosity which is evaluated as µT=ρCµk2/ϵ. σk, σe, Ce1, Ce2, Cµ are 

turbulence model coefficients. 

4.2.4.3 Flow through the Basket Grids and Particle Bed 

In order to complete the fluid dynamic description, one has to consider a mass continuity equation 

and a momentum balance equation applied to the two grids of the CREC Riser Simulator basket 

as follows: 

[𝜌𝒖. 𝒏]−
+ = 0 

(4-7) 

[𝑝 − 𝒏𝑇 [𝜇(∇𝒖 + (∇𝒖)𝑇) −
2

3
𝜇(∇. 𝒖)𝑰] 𝒏 + 𝜌(𝒖. 𝒏)𝟐 ]

−

+

= −
𝐾𝑔𝑟𝑖𝑑  

2
𝜌−(𝒏. 𝒖−)2 − 𝛥𝑝𝑏𝑒𝑑 (4-8) 
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[𝑝 − 𝒏𝑇 [(𝜇 + 𝜇𝑇)(∇𝒖 + (∇𝒖)𝑇) −
2

3
(𝜇 + 𝜇𝑇)(∇. 𝒖)𝑰 −

2

3
𝜌𝑘𝑰] 𝒏 + 𝜌(𝒖. 𝒏)𝟐 ]

−

+

= −
𝐾𝑔𝑟𝑖𝑑

2
𝜌−(𝒏. 𝒖−)2 − 𝛥𝑝𝑏𝑒𝑑 

(4-9) 

Where, σs is the fraction of solid area of the basket grid. The grid type has 20 micron size parallel 

orifices that can be described using a σs=0.76 (opening area fraction 0.24). Pressure drop occurs 

both in the grids and particle bed. The flow resistance coefficient was determined as, 

Kgrid=0.98((1−σs)
-2 −1)1.09 and pbed  was approximated with the p at minimum fluidization 

velocity. The signs “−” and “+” indicate the fluid flow conditions at the bottom and top surface of 

the grids. 

One should notice that Eqs. (4-7), (4-8) and (4-9) are valuable to account for the pressure reduction 

in the various parallel orifices of the basket grids and throughout the particle bed. 

4.3 Initial Values and Boundary Conditions 

4.3.1 Initial Values for Computations 

The fluid flow in the CREC Riser Simulator can be studied under steady state conditions. Given 

that this reactor operates as a batch unit, one can see that the impeller motion creates both a mild 

compression and mild suction. This promotes a downwards fluid flow circulation into the outer 

annulus region, and then an upwards fluid flow through in the center of the unit.  

 

CFD simulations require adequate initial values in order to initiate calculations and to obtain a 

convergent numerical solution. These initially selected values were as follows: a) atmospheric 

pressure and ambient temperature, with gas density and viscosity defined at these conditions, b) 

gas velocity set at a zero value in the entire unit. The first of these initial conditions was considered 

adequate given the relatively small compressions/decompressions achieved in the unit while in 

steady operation (pressure change ± 0.1%). The second of these initial conditions applied to the 

gas velocity, which was set at zero allowing a progressive increase of both axial and 

circumferential gas velocities. This “unsteady” numerical solution mimics the physical conditions 

while turning the impeller on in the CRE Riser Simulator. This was accomplished in a “two stage” 

numerical solution process as will be described later in section 4.4.5 
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4.3.2 Boundary Conditions 

4.3.2.1 Laminar Flow Model 

There are a number of required boundary conditions for laminar flow used in the simulation. They 

are as follows:  

a) The slip velocity at the fluid-reactor interface and the fluid velocity at the outer reactor wall 

are zero (u=0). This is acceptable given that the overall CREC Riser Simulator unit is not 

moving, remaining motionless during experiments [91].  

b) All gas velocity components display a zero value at baffle surfaces (ub,face=0 where ub,face is the 

fluid velocity at either the “right face” or “left face” of the baffle). This is adequate given that 

the 6 vertical baffles in the catalyst basket remain motionless during experimental runs.  

c) The fluid component velocities at the face of the impeller blades are equal to the velocity of 

the impeller blade surface  (ui,face = uimp, where ui,face is the fluid velocity at either the “right 

face” or “left face” of the impeller blade, and uimp is the velocity of impeller blade wall). This 

is adequate given the small fluid inertial forces. Thus, the velocity of the impeller can be 

expressed as uimp= (∂x/ ∂t*)|x where x is the displacement vector of the impeller. 

4.3.2.2 Turbulent Flow Model 

Regarding the boundary conditions of the turbulent flow model, there are velocity changes in the 

near-wall boundary layer region, with zero relative velocity at the wall. In the case of Low 

Reynolds Number (LRN), and when the turbulent flow integration method is used, a very fine 

mesh close to the wall is needed at the boundary layer. In the case of a high Reynolds Number 

(HRN), given that it becomes computationally intensive [97], a wall function is considered to 

bridge the near-wall region and the bulk stream.  

 

This reduces computations and provide higher calculation accuracy. In this study, a standard wall 

function was used. It is applicable the RANS standard k-ϵ model [96]. This standard wall function 

has also been used also for several similar applications [98–101]. From a computational viewpoint, 

this method involves three steps.  
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A first step considers solving the momentum equation by determining the viscous force near the 

wall by using eq.(4-10) as follows:  

Where, uτ=√(τw/ρ) is shear velocity or friction velocity, τw is shear stress and δ+
w is wall lift-off 

also known as a dimensionless wall unit (y+).  

 

The second step considers the turbulent kinetic energy (k) change using k.n=0 where n is normal 

unit vector at the wall surface. Once this iterative calculation is completed, and k change is 

predicted, one can evaluate the energy dissipation rate as ϵ=ρCµk2 /kvδ
+

wµ where, kv is Von 

Karman’s constant. A detailed description of this approach can be found in [96,97].  

 

These boundary conditions are applied as a designated “wall function” to all reactor wall 

boundaries: reactor walls, vertical baffles surface and impeller blades. These boundary conditions 

have share a “zero-slip” and apply to all reactor walls including vertical baffles and impeller 

blades. They can be expressed as urel.n=0 and urel,tang=urel-(urel.n)n, where urel is the relative fluid 

velocity with the wall and urel,tang is the relative tangential fluid velocity with the wall. For instance, 

there is zero slip velocity assigned to the face of vertical baffles, and this can be expressed as 

ub,face.n=0 and urel,tang,face=urel,face-(urel,face.n)n . One should notice that the subscript “face” refers 

to either the “right face” of the baffle or the “left face” of the baffle. The same applies for the 

impeller moving blades.  

 

Furthermore, the near wall regions can be divided into three sections: a) the viscous sublayer 

(0<δ+
w<5), b) the buffer layer (5<δ+

w<30), c) the inertial sub-layer-sublayer (30<δ+
w<500) [102]. 

A dimensionless “wall-lift off” parameter can be determined as δ+
w= δwuτ/ν where, δw is the 

distance from the wall and ν is the kinematic viscosity. In this respect, the two laws of wall 

functions such as linear law and log-law are applicable when δ+
w=11 [97]. Hence, it is 

recommended to recheck the δ+
w magnitude at any stage of the calculations for model verification 

purposes [103].  

[(𝜇 + 𝜇𝑇)(∇𝒖 + (∇𝒖)𝑇) −
2

3
𝜌𝑘𝑰] 𝒏 = −

𝜌𝑢𝜏

𝛿𝑤
+

𝒖𝑡𝑎𝑛𝑔 (4-10) 
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4.4 Numerical Approach  

4.4.1 Computational Tools 

In this study to solve the flow numerically in the CREC Riser Simulator, a commercial software 

COMSOL Multiphysics® 5.1 CFD module was used. To accomplish this, the built-in tools were 

used for geometry and mesh design. In order to define fluid material properties (e.g. air), the built-

in material library was employed with careful verification of selected equations. To obtain the 

numerical solutions, a personal computer was employed comprising: a) a processor “Intel® 

Core™i7-3930K CPU @ 3.20 GHz - 3.20 GHz”, b) physical memory “RAM 16.0 GB” as 

hardware. A “Windows 7, 64bit” operating system was employed in order to get an enhanced 

performance of simulation software.  

4.4.2 Rotating Machinery Problem 

Due to the presence of the rotary impeller in the CREC Riser Simulator, a special technique is 

required to simulate the impeller [104]. In this study the method of “frozen rotor” was considered. 

Its main advantage is that it does not require the use of a moving mesh. The “frozen rotor” method 

describes relative motion velocities. This method considers non-uniform circumferential 

distribution of pressure and velocity.  

 

Figure 4-2: Computational Domains: a. Rotary fluid domain, b. Stationary fluid domain. 

 

In the present study, the COMSOL “Rotating Machinery” module was used. This module 

comprises both the “Laminar Flow” and the “Turbulent flow RANS Standard k-e” model including 
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the “frozen rotor” approach. Thus, one requires two computational domains for each of these two 

models, with the rotary fluid domain representing the whole region covered by impeller. This is 

designated as section “a” in Figure 4-2. The “frozen rotor” technique was thus, applied in this 

rotary fluid domain. For the stationary fluid domain, designated as section “b” in Figure 4-2, a 

“stationary conventional model” was employed. 

4.4.3  Symmetric Geometry 

Before generating the mesh, it is advantageous to identify a unit “slice” which can represent the 

unit of symmetric portion. This helps to reduce the total computational mesh elements as well as 

the computational time. This approach is acceptable if one can consider a symmetrical flow 

domain, as in the case of the CREC Riser Simulator.  

 

In this case as described in Figure 4-3, the reactor can be divided into six symmetric sections. This 

is possible because the reactor system comprises six blades of the impeller and six vertical baffles 

at the annular region. One portion out of these six sections as shown in Figure 4b can be considered 

as a control volume for computation. 

 

Figure 4-3: Symmetry Selection for Reactor “Slices” 

 

As a result, boundary conditions with periodicity can be construed at the surface of each of the 

slices. One should mention that this, allows one to use a finer mesh to solve turbulent flows. This 

approach reduces computational time significantly, with no need of accounting for the full reactor 

geometry. For instance, in case of the configuration “with vertical baffles and with grids” the 
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model takes ~2 hr with ~0.6 million numerical elements for each simulation at a certain rpm. Thus, 

this consideration reduces the requirement of RAM (Random Access Memory or physical 

memory) significantly.  

4.4.4 Mesh Selection 

Figure 4-4 describes the “slice” domain and the associated mesh selected. In this respect, 

COMSOL has a built-in mesh generator adequate for 3D meshes. It is always recommended to use 

more than one level of meshing to check mesh dependency on the numerical calculation [95,99].  

 

In the present study, two levels of meshes were used: a coarse mesh and fine mesh. Table 4-1 

reports elements and an element volume ratio for the three meshes relevant to the present study: 

a) A basket with vertical baffles and with grids, b) A basket without vertical baffles and without 

grids c) A basket without baffle and with grids. Figure 4-4a provides an illustration of a typical 

mesh pattern of a symmetric slice. Figure 4-4b provides a close up of a boundary layer region 

mesh, critical for getting the desired δ+
w value. 

 

 

Figure 4-4: Typical Mesh Pattern Indicating Boundary Layer Mesh 

Table 4-1: Mesh Parameters for Different Configurations 

Basket Geometry Configurations 
Element Volume ratio × 10-7 Total Elements  

Coarse mesh Fine mesh Coarse mesh Fine mesh 

1. With vertical baffles and with grids 31.14 8.62 233061 575429 

2. Without vertical baffles and without grids 34.53 2.71 192294 464130 

3. Without vertical baffles and with grids 25.18 4.72 192005 471881 



 

40 

 

4.4.5 Numerical Solution Strategy 

Initial guesses are very important for convergence. This is particularly true for impeller rotations 

higher than 1000 rpm. Lack of reasonable initial guesses may: a) generate a mathematically ill-

conditioned matrix during the calculation process, b) create high velocities in the rotary reactor 

section and zero velocities in the stationary reactor section. One possible way to handle this 

problem is to solve the system for low rpm using the laminar flow model (e.g. <500). Then, one 

can use these calculated values as initial guesses for the model equation solutions at higher rpm.  

 

Regarding the numerical solution implemented in this study, the steady state simulation FEM 

(finite element method) was used with the GMRES (Generalized minimal residual) method 

employed as solver. The FEM method has the ability to subdivide a given simulation into small 

parts that allows one to test the solution accuracy [105,106]. Regarding the GMRES method, it is 

an iterative process calculation originally reported by Saad and Schultz [107]. Using this approach, 

on can obtain good convergence with reasonable computation times.  

4.5 Mesh Independence and Model Verification 

Model verification was developed in the present study, via mass conservation using different 

computational mesh sizes. In addition, the wall lift-off (δ+
w) parameter which is so critical for 

confirming model adequacy at the wall near region was checked.  

 

 

Figure 4-5: Mass Balance Established on the Basis of the % Difference of the Surface Integrated 

Mass Flow Rates for: a) Downward axial flow (annular outlet section) and b) Upward axial flow 

upflow inner reactor (basket). 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2000 4000 6000 8000

M
as

s 
b

al
an

ce
 %

Impeller rotation (rev/min)

(b) Without vertical Baffles without Grid

Coarse mesh

Fine mesh

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2000 4000 6000 8000

M
as

s 
b

al
an

ce
 %

Impeller rotation (rev/min)

(c) Without vertical Baffles With Grid

Coarse mesh

Fine mesh

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2000 4000 6000 8000

M
as

s 
b

al
an

ce
 %

Impeller rotation (rev/min)

(a) With vertical Baffles With Grid

Coarse mesh

Fine mesh



 

41 

 

Figure 4-5 reports the % Mass Balance established as the difference between the surface integrated 

mass flow rates at the annulus section (downward axial flow) and at the inner reactor basket section 

(axial flow upflow). To check this, two meshes were employed: a) a “fine” one and b) a “coarse” 

one. Figure 4-5a describes the % Mass Balances for the configuration “with vertical baffles and 

with grids”. This configuration is close to the one of the originally developed CREC Riser 

Simulator unit [41].  

 

In this case, the maximum mass balance error is, in all cases, acceptable. This error is reduced 

from 1.5 to 0.4 %, moving from the fine to coarse mesh. Figure 4-5b refers to the configuration 

“without vertical baffles and without grids” configuration. The "without baffles and without grid" 

configuration is a hypothetical one, considered here as a reference. It is noticed that the Mass 

Balances % differences are more apparent for the “coarse” mesh. These results also show the 

numerical challenges of introducing both the vertical basket vertical baffles and the basket grids 

in the numerical calculation. Finally, Figure 4-5c reports the “without baffle with grid” 

configuration. This shows % Mass Balance errors of 0.25 % for the “coarse” mesh and 0.1% for 

the “fine” mesh. This further confirms the higher accuracy of calculations, once the preferred 

CREC Riser Simulator “without vertical baffles” is considered. 

 

Concerning the wall lift-off parameter δ+
w , it was found to be ~11.06 in all cases simulated, 

including when using the fine and coarse mesh. 

 

Figure 4-6 provides additional model verification comparing calculated axial velocities with data 

from [55]. This is the case for the "with vertical baffles with grids" configuration considering 

particles. One can see that as impeller rotation increases, the model shows close agreement with 

experiment data. For instance, at an impeller speed of 4200 rpm, the experimental gas velocity was 

~90.6 cm/s and the model predicting velocity was ~102.5 cm/s which yielded a 12% difference 

only. Given that 4200 rpm is a typical condition used in the CREC Riser Simulator [41], one can 

see the adequacy of the proposed numerical model to simulate axial fluid velocities in this unit. 
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Figure 4-6: Comparison of Experimental Axial Velocity (Original Configuration) and Model 

Axial Velocity inside the Catalyst Basket 

4.6 Results and Discussion 

4.6.1 Mixing Patterns 

Figure 4-7 reports streamline plots for both the “Original” and the “Proposed” configurations of 

CREC Riser Simulator, respectively at 4200 rpm for air at 25 C and 1 atm.  

 

Figure 4-7: CREC Riser Simulator Mixing Patterns at 4200 rpm for Air at 25 C and 1 atm a) 

Original Configuration (with vertical baffles with grids) b) Proposed Configuration (Without 

vertical baffles with grids) 
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display spiral like patterns. We can also notice that in the case of the proposed new configuration 

without vertical baffles (Figure 4-7b), this leads to tighter spirals both inside and outside the basket. 

Thus, one can argue that the vertical baffles of the original configuration limits circumferential 

motion and as a result, mixing in the two section of the CREC Riser Simulator. These well mixed 

patterns are necessary conditions for the full applicability of eq.(1-3). 

 

Figure 4-8: Simulated Average Axial Velocity inside the Catalyst Basket 

 

Figure 4-8 describes the average axial velocity inside the catalyst basket. One can see that axial 

gas velocities increase almost linearly with the impeller rotation in the original configuration. On 

the other hand, it is shown this same axial velocity augments more progressively in the proposed 

configuration, with impeller rotation. This allows one to show the following features for the 

proposed new configuration of the CREC Riser Simulator: a) excellent fluid mixing both inside 

and an outside the catalyst basket, b) limited axial gas velocity reducing the probability of small 

catalyst particles entrained plugging the upper grid.  

 

On the basis of the above, and given axial velocities, volumetric flows can be calculated at various 

rpm. For instance, this study reports an axial velocity of 100 cm/s at 4200 rpm in original 

configuration with 0.8 gm loaded particles. This yields a 140 cm3/s of volumetric flow and a 0.36s 

mixing time. Similarly, mixing time of 0.51s can be achieved in the “Proposed” new configuration. 
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This modest increase in mixing time is considered acceptable, given the enhanced overall mixing 

pattern in the proposed new configuration of the CREC Riser Simulator. 

4.6.2 Velocity and Pressure Profiles 

Figure 4-9 reports the axial gas velocity along the basket diameter at different RPMs for both the 

original and proposed CREC Riser Simulator configuration. For instance, in Figure 10b, one can 

observe at 3150 RPM, an axial gas velocity in the 80-95 cm/s range.  

 

Figure 4-9: Velocity Profile inside the Catalyst Basket for Air at 25 C and 1 atm a) “Original 

Configuration b) New “Proposed Configuration” 

 

In contrast, if the same axial gas velocity is analyzed in the new proposed configuration at 3150 

rpm, it changes in the 40-100 cm/s range which is much greater. Hence, it is anticipated that 

fluidized particles in the new proposed configuration, will move in a field of changing velocities 

with: a) upper motion close to the walls and b) downward motion towards the center. Thus, this 

shows that the proposed CREC Riser Simulator configuration not only enhances gas mixing but 

as well helps particle mixing considerably. Meeting these two conditions is valuable in the case of 

studying catalytic reactions where coke formation and adsorption phenomena can contribute. All 

this, also helps, towards the full applicability of eq.(1-3) so essential for accurate kinetic modeling, 

 

Figure 4-10a and Figure 4-10b describe the pressure field and gas velocities at 4200 RPM, in the 

new “Proposed” CREC Riser Simulator Reactor “without vertical baffles”. 
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Figure 4-10: Pressure Field and Velocity Magnitude of the new “Proposed” Configuration 

("without vertical baffles with grids") at 4200 RPM with air at 25 C and 1 atm. 

 

Figure 4-10a shows the expected pressure field with a maximum pressure at the impeller blade 

outer tip and a minimum pressure at “eye” of the impeller (center of the impeller). Furthermore, 

an additional pressure change across the unit is needed, given extra pressure drop in the two 20-

micron grids. In Figure 4-10b, the axial velocity inside the catalyst basket is shown to be lowest at 

the center and highest at the periphery. This is because of the spiral like flow in the ne “Proposed” 

CREC Riser Simulator which is responsible for better solid circulation under fluidized conditions. 

4.6.3 Impeller Rotation with Loaded Particles 

The effect of particle loading is considered for both the original and the new proposed 

configurations of the CREC Riser Simulator. Figure 4-11 reported the pressure drop change at 

various RPMs as per the cases simulated in section 4.6.2. Given that the CREC Riser Simulator is 

a batch reactor, at a certain impeller speed, the total pressure drop along the gas flow has to be the 

same as the one generated by impeller. One can see that if the flow resistance due to friction in 

grids and particles increases, the gas velocity is reduced accordingly, to keep the set pressure drop 

delivered by the impeller.  
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Figure 4-11: Changes of Pressure Drop with RPM in the New “Proposed” CREC Riser Simulator 

Unit. 

 

As already reported in Figure 4-8, the average axial velocity and its changes with impeller rotation 

and this for the two proposed CREC Riser Simulator configurations. Simulations include and 

exclude the particle bed, showing that the particle bed has a mild influence on axial gas velocities. 

On the other hand, and as already stated in Figure 4-8, the reactor configuration with and without 

external baffles is an important design factor affecting axial gas velocities. Elimination of baffles 

leads to a desirable stabilization effect with the impeller speed minimizing excessive particle carry 

over towards the upper grid.       

4.6.4 High Temperature Effect on Mixing Pattern 

Figure 4-12 describes the mixing patterns in the proposed CREC Riser Simulator configuration at: 

a) 25 C and 1atm, b) 500C and 1 atm, c) 500 C and 2 atm.  

 

Figure 4-12: Mixing Patterns at 4200 rpm for Different Temperatures in the new "Proposed 

Configuration. a) 25 C, 1 atm  b) 500 C,1 atm c) 500 C, 2 atm. 

 



 

47 

 

Comparing Figure 4-12a and Figure 4-12b, one can see that increasing temperature changes 

significantly the mixing patterns with: a) higher axial fluid velocities and b) reduced fluid 

circumferential velocities. However, the characteristic fluid pattern observed at 25°C and 1 atm 

(Figure 4-12a), is recovered at 500°C and 2 atm, as shown in Figure 4-12c.  

 

Thus, one can argue that a total pressure change or a total gas density change have a major effect 

on fluid patterns. It is known from experimentation with the CREC Riser Simulator that following 

feed injection, a typical reactor pressure at 500-600°C range is 2 atm [32,51,108]. Thus, the 

simulation performed, as described in Figure 13c, can be considered as a characteristic one in the 

new “Proposed” configuration of the CREC Riser Simulator providing good balance of gas axial 

velocities and gas circumferential velocities. 

4.7 Conclusions 

a) It is shown that computational fluid dynamics using COMSOL Multiphysics® module 

allow a description of mixing flow patterns in the CREC Riser Simulator. 

b) It is proven, the proposed CFD model is adequate for the CREC Riser Simulator. This is 

accomplished changing mesh size and using experimental data from a previous study [55].  

c) It is shown that the calculated streamlines and velocity distributions profiles obtained with 

CFD, allowed calculating both axial and circumferential gas flow patterns. 

d) It is demonstrated that a new configuration of the CREC Riser Simulator with a catalyst 

basket “without vertical baffles” provides a good balance of axial fluid motion and 

circumferenctial fluid circulation. 

e) It is shown that the CREC Riser Simulator with a catalyst basket “without vertical baffles” 

requires at 25°C and 1atm, a 4200-5250 rpm impeller speed. This is needed for both 

suitable particle fluidization and good fluid mixing (high circumferential and axial fluid 

recirculation flows). It is anticipated that this also leads to a safe of eq(1-3) application for 

kinetic modeling. 

f) It is proven via CFD that temperature has a significant effect on gas mixing patterns in the 

CREC Riser Simulator. To compensate for higher temperatures (e.g. 500C), higher total 

pressures are recommended (e.g. 2atm). These higher pressures allow one to recover the 
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desirable mixing patterns in the CREC Riser Simulator with a good balance of axial and 

circumferential recirculation flows. 

g) It is demonstrated that the successful application of the CREC Riser Simulator Reactor 

requires a CFD model. This would be valuable for assisting researchers to secure kinetic 

modeling suitable for continuous riser and downer units simulations. This should also be 

significant to secure in all experiments using the CREC Riser Simualtor good mixing and 

particle fludization. These are needed conditions for adequate gas-solid kinetics within 2-

40 seconds reaction times.  
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CHAPTER 5 OXYGEN CARRIER DEVELOPMENT AND SYNGAS CLC 

Biomass steam gasification yields a blend of H2, CO, CH4 and CO2, designated as syngas. Syngas 

can be further combusted using fluidizable oxygen carriers (OC). This operation which is known 

as Chemical Looping Combustion (CLC), is valuable for syngas combustion. Because, it involves 

nickel oxidation and nickel reduction, which are both exothermic reactions provided that syngas 

contains mostly H2 and CO. To improve syngas CLC and establish its application, a new Ni-based 

oxygen carrier was studied using a Co and La modified γ-Al2O3 support. This type of OC 

considerably limits the NiAl2O4 formation. This Highly Performing Oxygen Carrier (HPOC) was 

engineered using a special preparation methodology to exclude NiAl2O4 species formation.  

 

Regarding reactivity tests, the syngas used in this study, emulates the syngas that can be derived 

from biomass gasification containing H2, CO, CH4 and CO2. To establish the kinetic model, 

isothermal runs were developed in the CREC Riser Simulator which is a mini-batch fluidized bed 

reactor. The operating conditions were varied between 2-40s reaction times and 550-650°C, with 

the H2/CO ratio being 2.5 and 1.33 with a ψ fuel to HPOC stoichiometric parameter ratio being 

0.5 and 1. For the 2.5 and 1.33 H2/CO ratios, a 92% CO2 yield with 90% CO, 95% H2 and 91% 

CH4 conversions were achieved. As well, the HPOC showed an oxygen transport capacity ranging 

between 1.84-3.0 wt% (gO2/gOC) with a 40-70% solid conversion 

5.1 Oxygen Carrier for Syngas 

Based on the review and recent works the novel mixed metal oxygen carrier Ni-Co-La/γ-Al2O3 

has better reactivity, enhanced thermal stability, and low metal support interaction with minimum 

crystallite agglomeration. This novel mixed metal oxygen carrier showed very well performance 

for methane chemical looping combustion [5,14,52,69] 

It is anticipated that this oxygen carrier will have good performance for syngas. However, potential 

improvements of it are contemplated as part of this research for optimum performance using 

syngas. This novel oxygen carrier will be investigated for syngas combustion in the CREC Riser 

simulator. This will be most valuable for the design and implementation of new fluidizable CLC 

units.  
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An OC (20Ni1Co5La/γ-Al2O3) was developed which consisted of 20wt% Ni over -alumina. It 

also included 1wt% Co and 5wt% La additives. Co and La additives have valuable effects on both 

NiAl2O4 and carbon formation reduction, respectively. This OC shares some common properties 

with the OC originally developed by Quddus et al. [14] and can further be referred in the present 

study, as OC-Ref. 

5.1.1 Preparation of the OC of Reference (OC-Ref) 

The OC designated as OC-Ref was prepared using an incipient wetness impregnation method as 

proposed by Quddus et al. [14]. Four main steps were considered: a) precursor impregnation over 

the support, b) drying, c) reduction of the metal precursor and d) calcination. The preparation of 

the OC-Ref typically involved 20 g of γ-Al2O3 (Sasol CATALOX® SCCa 5/200, sieved in the 

125-53 µm range), which were added into a sealed conical flask. The conical flask used had a 

lateral outlet connected to a 250-mmHg vacuum laboratory line. Using these materials, the 

following procedural steps were taken:  

a) First Impregnation Step with La Addition:  

 A precursor solution was prepared by dissolving 99.999% La (NO3)3.6H2O (Sigma-

Aldrich CAS 10277-43-7) in water.  

 A precursor La solution was added drop-by-drop to the alumina particles under vacuum 

and under intense solid mixing, to achieve 5wt% of La loading. 

 The obtained paste was dried at 140oC during 4 h, with the solid being reduced at 750oC 

during 8 h, in a bubbling fluidized bed with 10% H2 balanced with Ar. 

 

b) Second Impregnation Step with Co Addition 

 A precursor solution was prepared with 99.999% pure Co (NO3)2·6H2O (CAS 10026-

22-9, Sigma-Aldrich) in water.  

 A precursor Co solution was added drop-by-drop to the La-alumina powder under 

vacuum and under intense solid mixing, to achieve 1wt% of Co loading. 

 The drying of the obtained paste occurred at 140oC during 4 h, with the solid  being 

reduced at 750oC during 8 h, in a bubbling fluidized bed with 10% H2 balanced with 

Ar. 
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c) A Third Impregnation Step with Ni Addition 

 A precursor Ni solution was prepared by dissolving 99.999% Ni (NO3)2.6H2O (CAS 

13478-00-7, Sigma-Aldrich) in water. 

 A precursor Ni solution was added drop-by-drop to the La-Co-alumina powder under 

vacuum and under intense solid mixing. This was done to achieve 10wt%Ni loading.  

 The drying of the obtained paste took place at 140oC during 4 h, and the reduction of 

the solids took place at 750oC during 8 h, in a bubbling fluidized bed with 10% H2 

balanced with Ar. 

 In the case of the Ni addition, the previous steps were repeated and this twice to achieve 

a 20wt% Ni loading. Finally calcination was performed at 750oC which yield an OC 

with 20wt% Ni, 1wt%Co and 5wt% La. 

Unfortunately, and as reported in a previous study by Quddus et al. [14], this OC preparation led 

to an OC with non-negligible NiAl2O4 amounts formed. 

5.1.2 Preparation of the Fluidizable HPOC 

To circumvent the undesirable formation of NiAl2O4 in the OC-Ref, additional treatment steps in  

the OC-Ref preparation were implemented in the present study as follows: a) the OC was further 

treated in a tube furnace (Thermolyne 21100) with 10% H2 balanced with Ar, b) the temperature 

of the furnace was increased using a 15ºC/min ramp b) once 900ºC reached, this temperature was 

kept for 1h, c) the resulting OC was calcined at 650ºC.  

 

This yielded an OC with a highly re-dispersed nickel phase with little interaction with the -

alumina support. This new OC designated as the HPOC in the present study, provides more than 

90% of the nominal oxygen lattice at temperatures between 550-650ºC. The promising HPOC was 

characterized using XRD, BET, H2-TPR, NH3-TPD and pulse chemisorption as is described later 

in the manuscript. This methodology ensured, as will be shown in the upcoming sections of this 

manuscript, the complete decomposition of strongly bonded NiO on the alumina species, as well 

as the absence of NiAl2O4.  
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5.1.3 Characterization of OC-Ref and HPOC  

 

Figure 5-1: H2-TPR Profiles for the HPOC and the Oxygen Carrier used as the Reference (OC-

Ref). Operating conditions: 10%H2-Ar, 50 cm3/min., and a temperature ramp of 15oC/min up to 

desired level with 10 min. holding time. 

 

Figure 5-1 reports a typical H2-TPR analysis. One can observe that the OC-Ref yields 45% of the 

available lattice oxygen only, in the 300-650°C range, requiring higher thermal levels for complete 

OC oxygen utilization. Exposing the OCs to thermal levels higher than of 750ºC, promotes NiO 

transformation into NiAl2O4 [109,110], making the OC-Ref inherently less reliable. On the other 

hand, one can also observe as per the TPR for HPOC, that a H2-uptake of 50 cm3/g was recorded 

in the 300-650°C range. This H2-uptake stands close to the expected theoretical uptake value of 

57 cm3/g.  Thus, it is shown that the HPOC displays a valuable performance, given that it is very 

reactive in the targeted 300-650°C thermal range, yielding more than 90% of the available lattice 

oxygen as well as having an H2-uptake close to theoretical values. It is anticipated that this lower 

than 650°C OC operation will prevent the formation of NiAl2O4. 
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Figure 5-2: XRD Patterns for the HPOC and the OC-Ref under Oxidized State Conditions. The 

dotted line represents signal baseline. 

Figure 5-2 compares the XRD patterns of the new HPOC and the OC-Ref including the γ-Al2O3 

support. One can observe that smaller nickel aluminate peaks were detected for the HPOC at 37.01 

and 45.1 degrees in the 2 scale, with higher nickel oxide peaks detected at 37.29 and 43.3 degrees 

in the 2 scale. This strongly suggests that NiAl2O4 is being transformed to NiO via the additional 

reduction-calcination steps recommended for the HPOC. 

Table 5-1: Characterization of γ-Al2O3, OC-Ref and HPOC 

 γ-Al2O3 OC-Ref HPOC 

BET Surface Area, m2/g 191.1 107.5 95.2 

Pore Volume, cm3/g 0.53 0.37 0.35 

Avg. Pore Diameter, A 110.2 137.7 146.8 

TPR: H2 Uptake, cm3/g (STP) - 54 50 

TPD: NH3 Uptake,  cm3/g (STP) 6.0 3.63 2.89 

Ni Dispersion% - 0.85 1.27 

Crystal Size (nm) , dv - 115 77 
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Figure 5-3: Nitrogen (N2) adsorption−desorption isotherms for HPOC, OC-Ref and γ-Al2O3. All 

data are in the same linear scale with a shifted baseline. 

Figure 5-3 reports N2 adsorption−desorption isotherms for both the new HPOC and the previously 

studied OC-Ref. According to IUPAC classification, both OCs display type IV-A isotherms. This 

indicates larger pore width (>4nm) , with this being  consistent with the mesoporous γ-Al2O3 

support structure [111,112]. One can also observe that due to the metal additions over the support, 

some structural changes are observed in the support. However, no significant structural 

modifications were observed when comparing the HPOC and the OC-Ref N2-isotherms. All 

isotherms showed type H1 hysteresis loops which indicate well defined cylindrical-like pore 

channels in solid porous materials [111].  

One should note that the BET surface area is diminished from 191 m2/g in the alumina support, to 

95.2 m2/g in the HPOC and to 107.5m2/g in the OC-Ref once the various La, Co and Ni additions, 

are implemented. This is accompanied, as one can see in Figure 5-4, by both a moderate increase 

in pore diameter and a modest reduction in pore volume. One can postulate that the La, Co and Ni 

additions yield losses of smaller diameter pores, given that these pores are likely blocked. This 

results in specific surface area and pore volume losses.  
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Figure 5-4: Pore Size Distribution (PSD) of the HPOC, the OC-Ref and the γ-Al2O3 Support 

Determined by the BJH Desorption Pore Volume. 

Surface acidity has a great importance in CLC given that the potential acidity of the support can 

contribute to carbon formation. In this respect, the present study considers NH3-TPD to evaluate 

total acidity. Figure 5-5 and Table 5-1 report TPD profiles and total acidity (NH3 uptake) for the 

HPOC, the OC-Ref and γ-Al2O3 support. NH3-TPD shows that the selected preparation techniques 

for the HPOC contribute to acidity reduction. One should note that the high NH3 desorption peak 

at temperatures lower than 250ºC has a potential insignificant effect on acidity for the higher than 

600ºC temperatures anticipated for CLC operation.  

 

Figure 5-5: NH3-TPD Profiles of the HPOC, the OC-Ref and the γ-Al2O3 support. Notes: a) NH3 

was adsorbed at 100ºC, b) NH3 was desorbed at 20ºC/min heating rate. 
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5.1.4 Stability of the HPOC. 

Apart from requiring structural integrity, a stable OC performance is especially important for the 

industrial application of the HPOC. OC particles are reduced-oxidized thousands of times during 

a day of operation in a CLC plant. Thus, one reliable and valuable experiment to develop is one 

involving consecutive TPR/TPO cycles. This is relevant in order to assess both HPOC 

performance and stability.  

 

Figure 5-6: Consecutive TPR/TPO Cycles using the HPOC at 15ºC/min heating rate with a flow 

rate 50 cm3/min. (a) TPR: 10 vol.% H2/Ar as a reducing agent (b) TPO: 5 vol.% O2/He as an 

oxidizing agent 

Figure 5-6 shows that both TPR and TPO profiles display high reproducibility, in terms of total 

amounts of H2 and O2 consumed. As well, one should note the essentially unchanged TPR and 

TPO profiles in this diagram, with less than 2% fluctuations in H2-uptake (50 cm3/g) and O2-uptake 

(21 cm3/g).  

These results corroborate the progressive transition of nickel crystals to nickel oxide crystals 

during oxidation and vice versa, the conversion of NiO into Ni. All this is accomplished without 

OC structural properties being affected. Consistent with this, one can note that the close to 400ºC 

maximum observed peak temperatures for both reduction and oxidation, are adequate to allow fast 

HPOC reductions and oxidations, with these reactions being complete at desirable temperatures 

lower than 650ºC.  

0 100 200 300 400 500 600 700

In
te

n
si

ty
 (

a.
u

.)

Temperature (oC)

Cycle-1

Cycle-2

Cycle-3

Cycle-4

Cycle-5

Cycle-6

(a)

0 100 200 300 400 500 600 700

In
te

n
si

ty
 (

a.
u

.)

Temperature (oC)

Cycle-1
Cycle-2
Cycle-3
Cycle-4
Cycle-5
Cycle-6

(b)



 

57 

 

5.2 Syngas CLC Test Using CREC Riser Simulator 

CLC runs with the HPOC were carried out using syngas in the fluidized CREC Riser Simulator. 

Selected operation conditions were slightly above atmospheric pressure, with temperatures in the 

550-650ºC range and reaction times in between 2-40s. Two different syngas feedstock amounts 

were employed: a) stoichiometric amount of syngas (ψ=1), b) less than stoichiometric amount of 

syngas (ψ=0.5). 

5.2.1 Syngas source and composition 

Two types of syngas obtained from biomass gasification using a La2O3 promoted Ni/γ-Al2O3 

catalyst were considered: a) a gas mixture designated as “Syngas-250” with a H2/CO ratio of 2.5 

and 50v% H2, 20v% CO, 10v% CH4, 20v% CO2 (∆Hc
o=-258 kJ/mol) [113], b) a gas mixture 

designated as “Syngas-133” with a H2/CO ratio of 1.33 and 44v% H2, 33v% CO, 11v% CH4, 12v% 

CO2 (∆Hc
o=-288 kJ/mol). [114]. 

5.2.2 Pressure profile of Syngas CLC 

    

Figure 5-7: Pressure profile in CREC Riser Simulator: Reactivity test with HPOC and Syngas. 

 

Figure 5-7 reports typical pressure profiles in CREC Riser Simulator runs with syngas reacting 

with the HPOC lattice oxygen. The solid line in Figure 5-7 shows the total pressure in the reactor 

while the broken line displays the total pressure inside the vacuum box. One can notice that the 

syngas injection results in a sudden total pressure increase in the reactor unit. Following the syngas 
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injection, the CLC reduction reaction continues for a certain period until a “termination time” is 

reached. At this point, all CREC Riser reactor contents except the HPOC, are evacuated towards 

a vacuum box.   

One can also observe in Figure 5-7, that a limited total pressure rise is observed during the 

reduction period.  This can be explained considering that: a) there was no expected molar increase 

via reactions (5-1) and (5-2), b) there was a modest and anticipated molar rise via reactions (5-3) 

and (5-4), given that the methane fraction used in the syngas is limited. 

𝐻2 + 𝑁𝑖𝑂 → 𝑁𝑖 + 𝐻2𝑂 (5-1) 

𝐶𝑂 + 𝑁𝑖𝑂 → 𝑁𝑖 + 𝐶𝑂2 (5-2) 

𝐶𝐻4 + 𝑁𝑖𝑂 → 𝑁𝑖 + 𝐶𝑂2 + 2𝐻2𝑂 (5-3) 

𝐶𝐻4 + 𝑁𝑖𝑂 → 𝑁𝑖 + 𝐶𝑂 + 2𝐻2 (5-4) 

One can also see in Figure 5-7 that transfer of product species from the 50 cm3 reactor to the 1000 

cm3 vacuum box, at 150ºC and 3 psi, decreases the reactor pressure as well as increases mildly the 

vacuum box pressure. In this respect, the transfer of the product species to the vacuum box was 

almost instantaneous, with this preventing any further reaction from occurring. Upon completion 

of the sample evacuation, the product species were transferred from the vacuum box to gas 

chromatograph for further analysis.  

5.2.3 Effect of ψ ratio and temperature 

5.2.3.1 Syngas-250 (H2/CO=2.5) 

Figure 5-8 describes the CO2 yield for ψ=0.5 and ψ=1. It can be observed that 90% CO2 yields 

with the HPOC can be achieved at 600ºC and 40s reaction time. Similar yields were claimed by 

[25,115]. However, those authors require in excess to 800ºC temperatures, 900s reaction time and 

lower than 0.5 ψ ratios. 
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Figure 5-8: CO2 Yield from a Syngas-250 CLC Reaction at 600o C for ψ=0.5 and ψ=1. Reported 

data corresponds to at least 3 repeats with vertical bars showing standard deviations. 

  

Figure 5-9: OC oxygen conversion at 600o C for ψ=0.5 and ψ=1. Reported data corresponds to at 

least 3 repeats with vertical bars showing standard deviations. 

In the CLC processes, the extent of OC utilization is of great importance. High extent OC 

utilization reduces the OC solid recirculation considerably in the CLC plant. In this regard,  

Figure 5-9 shows that the OC conversion depends on the ψ stoichiometric ratio. In the case of 

using the syngas over oxygen on OC ratios of ψ=1 or ψ=0.5, the observed OC conversion were in 

the 40-58% at 600ºC. One should note that these OC conversions were achieved with an OC 

essentially free of NiAl2O4 species, as confirmed with TPR and XRD. These findings demonstrate 
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the major advantage of the proposed HPOC, versus other less stable  OCs  used at higher 

temperatures where NiAl2O4  species are always present  [115,116].  

 

Figure 5-10: Syngas-250 Conversion (CO, H2 and CH4) at 600o C for ψ=0.5 and ψ=1. Reported 

data corresponds to at least 3 repeats with vertical bars showing standard deviations. 

 

In CLC and from the point of view of syngas conversion, the combustion of individual species is 

a significant performance parameter. Figure 5-10 reports the CO, H2 and CH4 conversions for the 

ψ=0.5 and ψ=1 cases at 600ºC. In both cases, ψ=0.5 and ψ=1, at 10s reaction time and below, H2 

reactivity is high. This is the case versus the much slower CO and CH4 conversion rates. One can 

also notice however, that once this initial period completed, the H2 conversion either remains 

unchanged (ψ=0.5) or is reduced slightly (ψ=1), while the CO and CH4 conversions continue to 

increase. Thus, one can see that to take full advantage of the HPOC with significant combustion 

of all three-syngas species (H2, CO and CH4), a reaction time of not less than 40s. is required at 

600ºC.  It is on this basis that one can speculate that hydrogen is more prone to be oxidized by the 

labile surface oxygen species during the initial stages of OC usage.  

 

However, once this labile surface oxygen is consumed, the hydrogen conversion is essentially 

stopped with remaining CO and CH4 species being combusted with the OC lattice oxygen. This 

effect can be explained by considering a different CH4 conversion mechanism at ψ=1, with the OC 

carrier having a significant density of oxygen deprived Ni sites. Ni species may then promote CH4 

reforming or alternatively NiO species [117] may contribute to both H2 and CO formation via 

reaction (5-4). These undesirable effects can however, be circumvented with the HPOC operated 

at 600°C and ψ=0.5, as shown in Figure 5-10. 
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Figure 5-11: Temperature Effect on CO2 Yield and OC oxygen conversion for ψ=0.5 and ψ=1. 

Reported data corresponds to at least 3 repeats with vertical bars showing standard deviations. 

Figure 5-11 describes the temperature effect on CO2 yields. It also shows the solid phase oxygen 

conversion in the 550 to 650ºC range and when using ψ=0.5 and 1 ratios. One can notice that there 

is a significant and consistent effect of the ψ parameter ratio while the influence of thermal levels 

is limited. This lack of influence of the thermal levels is also apparent in the conversion of 

individual species forming the syngas, as shown in Figure 5-12. This suggests a combustion 

process dominated by the diffusion of oxygen in the Ni crystallite lattice.  

 

Figure 5-12: Temperature Effect on Syngas Conversion (CO, H2 and CH4) for ψ=0.5 and ψ=1. 

Reported data corresponds to at least 3 repeats with vertical bars showing standard deviations. 
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5.2.3.2 Syngas-133 (H2/CO=1.33) 

Figure 5-13 reports the CO2 yield and the OC oxygen conversion using Syngas-133 at different 

temperatures (550-650°C) with different fuel to oxygen stoichiometric ratios (ψ=0.5 and ψ=1). 

One can observe that using a HPOC, CO2 yields as high as 85-92% are achievable with this being 

a function of the temperature selected. 

 

Figure 5-13: CO2 yield and OC oxygen conversion at different temperatures and with ψ for 

Syngas-133. Reported data corresponds to at least three repeats with vertical bars showing 

standard deviations. 

In particular one can notice in Figure 5-13 that for all cases reported, the overall CLC rates are 

moderately promoted as temperature increases and this for the two ψ=0.5 and ψ=1 stoichiometric 

ratios. 

Figure 5-14 reports the CO2 yields and the OC oxygen conversion for Syngas-250 CLC and 

Syngas-133 CLC, at 650°C and at ψ of 0.5 and 1. One can notice that the early CO2 yields are 

highly affected by the initial feed compositions. However, after 20s, CO2 yields become less 

dependent on the initial H2/CO ratios with a 92% CO2 achieved in Syngas-133 and Syngas-250.   
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Figure 5-14: Comparison between the CO2 yield and OC oxygen conversion for syngas-250 and 

syngas-133 at 650°C. Reported data corresponds to at least three repeats with vertical bars 

showing standard deviations. 

Figure 5-15 shows that the CO, H2 and CH4 conversions for syngas-133 are influenced by both 

temperature and ψ ratio. Thus and based on these experimental results using the HPOC, it can be 

shown a 90% CO, H2 and CH4 conversion for Syngas-133 is achievable.  

 

Figure 5-15: Syngas-133 conversion by CO, H2 and CH4 at three temperatures (550, 600 and 650 

°C), and 0.5 and 1 ψ ratios. Reported data corresponds to at least 3 repeats with vertical bars 

showing standard deviations. 
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the CLC rates was assigned to much lower oxygen availability in the OC, at extended reaction 

periods.  

 

5.2.4 Coke deposition 

Coke is a critical parameter for the CLC. Coke formation in the Fuel Reactor leads to coke being 

transported with the OC from the Fuel Reactor to the Air Reactor. In the Air Reactor, coke is 

burned forming CO2 which leaks to the atmosphere, thus negatively affecting the CLC CO2 capture 

efficiency.   

 

In the present study, the coke formed was evaluated using a total carbon measuring device 

(Shimadzu TOC-VCPH/SSM-5000A). Conditions considered were 600ºC, 40s reaction time and 

both ψ=0.5 and 1. It was valuable to observe that the coke formed with the HPOC was insignificant 

in all runs, with less than 0.07wt% carbon per unit weight of OC.   

 

In this respect, the very low coke obtained during all runs with the HPOC was assigned to the 

following: a) a very effective La modification, reducing support surface acidity and thus, coking 

as suggested by Dossumov et al. [117], b) coke formation being limited via transition coke 

gasification (C+H2O → CO + H2) as suggested by Wang et al. [118]. 

 

Thus, the reported results show that the 550-650ºC range provides an ample temperature range for 

the application of the proposed HPOC with the highest 650ºC  temperature level being favored to 

help best possible CLC plant thermal efficiency. Even though comparably high H2, CO and CH4 

conversions may also be possible with the HPOC at higher temperatures such as 700-750ºC, these 

thermal levels are not recommended and this to strictly limit NiAl2O4 formation [109] which is 

one of the main issues in CLC. 

5.3 Conclusion 

a) A 20wt%Ni 1wt%Co 5wt%La/γ-Al2O3 fluidizable and highly performing Oxygen Carrier 

(HPOC) was synthesized using an enhanced preparation method. This led to an OC 

essentially free of nickel aluminate. This was confirmed using XRD and TPR/TPO. Also 
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psychochemical properties were discuss based on BET N2-adsorption isotherm, NH3-TPD 

and H2-Pulse Chemisorption. 

b) Two types of synthesis gas were used as fuel with H2/CO=2.5 and H2/CO=1.33 in a 

present study. The HPOC showed excellent performances with either syngas at a 

stoichiometric ratio of ψ=0.5. The reaction produced a high CO2 yield (92%), CO 

conversion (90%), H2 conversion (95%) and CH4 conversion (91%). Moreover, the 

observed. 

c) The HPOC at ψ=0.5 stoichiometric ratio, 650ºC and 40s reaction time led to 40% OC 

oxygen conversion provided that maximum theoretical conversion is 50%. 

d) The HPOC yielded coke in minute amounts in all cases (< 0.07wt %).  

e) The HPOC showed little influence of thermal levels (550-650°C) on CLC performance. 

These findings point towards a CLC dominated by oxygen lattice diffusion.    
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CHAPTER 6 KINETIC MODELLING 

This chapter covers both the thermodynamics of CLC and the kinetic model developed for a highly 

performing nickel-based oxygen carrier (HPOC). This HPOC is free of nickel aluminates and can 

perform very efficiently at lower temperatures (i.e. 550-650°C).  

In this study, a kinetic model is proposed to predict syngas chemical looping combustion (CLC) 

using a HPOC. The syngas used in this study, emulates the syngas that can be derived from 

biomass gasification containing H2, CO, CH4 and CO2. To establish the kinetic model, isothermal 

runs are developed in the CREC Riser Simulator, which is a mini-batch fluidized bed reactor. The 

operating conditions are varied between 2-40s reaction times and 550-650°C, with the H2/CO ratio 

being 2.5 and 1.33 and the ψ fuel to HPOC stoichiometric ratio being 0.5 and 1. The solid-state 

kinetics considered uses of a Nucleation and Nuclei Growth Model (NNGM). The proposed 

kinetics leads to a model with ten independent intrinsic kinetic parameters. The various kinetic 

parameters are determined via numerical regression within a 95% confidence interval and small 

cross correlation coefficients. According to the frequency factors obtained, the reactivity of the 

species with a HPOC can be expressed following the H2>CO>CH4 order. Given that the HPOC 

shows high performance and stability, it is anticipated that the developed kinetic model could 

contribute to establishing large-scale reactor CLC for syngas combustion. As a precedent to this 

work, the CHAPTER 5 described the preparation, characterization and performance evaluation of 

this highly performing oxygen carrier. 

Figure 6-1 illustrates the value of experimentation with the CREC Riser Simulator for the 

determination of a reaction mechanism and the development of a kinetic model. Additional details 

describing how the CREC Riser Simulator can be used for OC evaluation can be found in technical 

report [119,120].  
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Figure 6-1: Schematic diagram illustrating the value of CREC Riser Simulator experiments for 

the development of a kinetic model applicable in a downer reactor unit. 

 

6.1 Rate Limiting Steps 

Gamma alumina is a good porous support reported for Ni. The CLC reduction of this 

heterogeneous oxygen carrier involves a multistep process. The solid reduction rate may also 

include: a) internal and external diffusion, b) reacting species adsorption and intrinsic reaction 

steps. Thus, it is important to determine if the rate-limiting step is dependent on particle size and 

physicochemical properties.  

 

The potential OC particle external mass transfer influence can be neglected under the CREC Riser 

Simulator reactor operating conditions. This is the case, given the high gas superficial velocities 

[120], with fr,i>>(-rexp), where,  fr,i refers to the radial flux of the gaseous species “i” as described 

by eq. (6-1):  

𝑓𝑟,𝑖 = 𝑘𝑔(𝐶𝑏,𝑖 − 𝐶𝑠,𝑖) (6-1) 

(−𝑟𝑒𝑥𝑝) =
𝑁0

𝑤𝑆𝑒𝑥

𝑑𝛼

𝑑𝑡
  (6-2) 
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with Cb,i and Cs,i represent the gas species concentrations at bulk and at  the external surface of the 

particle, respectively.  

The calculation of the fr,i also requires one to know the kg mass transfer coefficient. This can be 

evaluated as kg=Sh DiA/dp; where, Sh is the Sherwood number, DiA stands for the species diffusion 

coefficient in argon and dp denotes the mean OC particle diameter. DiA can be evaluated using the 

Fuller Correlation [121,122]. The Sherwood number can be calculated using the Frossling’s 

correlation, Sh=2+0.6Re0.5Sc0.33, where, Re is Reynolds number and Sc is Schmidt number.  

One possible approach is to set kg at its lowest possible value, using Sh=2. This corresponds to the 

stagnant fluid around an OC particle model. Furthermore,  the (-rexp) as in eq. (6-2), can be 

calculated from the experimental data, with N0 being the number of consumable oxygen moles in 

the OC, α standing for the OC oxygen conversion, Sex denoting the external surface area per gram 

of sample and w representing the weight of OC. On this basis, the fr,i>>(- rexp) condition can be 

confirmed and  the influence of  the external mass transfer neglected.  

In order to calculate the possible internal mass transfer influence on  the CLC rate, the Weisz-

Prater measure can be used [123,124]. According to this, there is no internal mass transfer 

resistance when CWP<<1. CWP is a dimensionless number as shown in eq. (6-3), with ρOC being the 

OC apparent particle density and with Deff being the effective diffusivity considered as 0.1DiA 

[124]: 

𝐶𝑊𝑃 =
(−𝑟𝑒𝑥𝑝)𝑆𝑒𝑥𝜌𝑂𝐶(0.5𝑑𝑝)

2
 

𝐷𝑒𝑓𝑓𝐶𝑠,𝑖
  (6-3) 
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Table 6-1: Parameters Used to Determine the Negligible External and Internal Mass Transfer Limitations 

for the HPOC of the Present Study 

 H2 CO CH4 

fr,i (mol/m2/s) 39 5.2 1.9 

(–rexp) (mol/m2/s) 1.56×10-5 1.2×10-5 3.9×10-6 

Cb,i (mol/m3) 3.2 2.4 0.8 

kg (m/s) 12.16 2.17 2.36 

DAB (m
2/s) 5.29×10-4 9.45×10-5 1.03×10-4 

N0, (mole) ×10-6 160 120 40 

CWP 0.028 0.154 0.142 

Other Parameters: T=600ºC, P=20 psi, Dp =87 µm, dXp/dt=1.5 s–1 , 

w=175 mg,  Sex =87.8 m2/g 

 

Table 6-1 illustrates that for the HPOC runs of the present study, fr,i>>(-rexp). Thus, no influence 

of the external mass transfer can be assigned to the CLC rates. Furthermore, Cs,i=Cb,i  can also be 

postulated. Given that CWP<<1, a negligible internal diffusion in the overall CLC rate can be 

assumed. Thus, and as a result, the kinetic data obtained in the present study, represents the CLC 

intrinsic kinetics. On this basis, kinetic modeling can be developed. 

6.2 Thermodynamic Equilibrium Analysis 

A set of equilibrium compositions were determined for syngas and NiO reactions using 

equilibrium constants as discussed in CHAPTER 1. A stoichiometric amount of NiO oxygen 

carrier was used expecting full combustion into CO2 and H2O. Seven unknowns were found (i.e. 

mole fraction of CH4, H2, H2O, CO2, CO, Ni and NiO) at equilibrium condition. In determining 

seven unknowns, three independent reactions (i.e. 1, 2 and 4 in Figure 1-3) and four atomic 

balances (i.e. C, H, O and Ni) were accounted. Once the degree of freedom is zero the complete 

system of equations were solved using Matlab non-linear system solver, “fsolve”. Eventually the 

solution provides equilibrium compositions of all compounds. 

 

Similar analysis was done with non-stoichiometric approach (Gibbs free energy minimization) 

using ASPEN Plus and compared with the results generated in Matlab. This was essential for the 
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verification and validation of reaction consideration in thermodynamic model. The non-

stoichiometric analysis also accounted the existence of carbon formation during reaction.  

 

Figure 6-2a illustrates that thermodynamically above 300oC unconverted CO (0.05 to 0.9 mol%) 

and H2 (0.3 to 0.75 mol%) are found with augmented trend by temperature increase. In addition 

above 300oC there is no unconverted CH4 (see Figure 6-2b), which is a very promising outcome 

of NiO oxygen carrier application in CLC.  

 

Figure 6-2: Equilibrium dry gas composition of NiO-Syngas system at 1 atm (a) CO and H2 

vol%   (b) CO2, CH4 and Coke mole % (Syngas: 20% CO, 10% CH4, 20% CO2, 50% H2 by mol) 

 

Figure 6-2b also predicts the chemical equilibrium carbon formation of total equilibrium carbon 

which is 50 to 80% at less than 150oC. One can notice that there is no expected equilibrium carbon 

formation at above 150oC. Nevertheless, in practice lack of complete fuel oxidation, high acidity 

of OC support and tendency of reduced metal exposure can cause carbon deposition.  

 

Figure 6-3 : Comparison of change in equilibrium amount of compounds by temperatures. 
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Figure 6-5 reports the temperature effect on equilibrium mole amount of Ni, NiO, CO, H2, CO2 

and H2O. This helps to understand the responsible reactions for having unconverted CO and H2 

moles at equilibrium. 

 

Figure 6-5a and Figure 6-5b show the change in CO and H2 mole is only related to CO2 and H2O 

respectively. Essentially Figure 6-5c depicts a decrease of Ni by increase of NiO. Also, Figure 

6-5d indicates a combined change in CO and H2 mole that is completely dependent on the NiO 

mole change. Considering all these perspective, one could argue that the unconverted CO and H2 

are the resultants from the equilibrium reactions of 3 and 4 as follows.  

Reaction #3 CO + NiO ⇌ CO2 + Ni 

Reaction #4 H2 + NiO ⇌ H2O + Ni 

 

6.3 Kinetic Model Assumptions  

OC reduction involves solid and gas phase species accounting for: a) the OC solid-phase change 

given the lattice oxygen depletion, b) The gas-phase chemical species changes as a result of various 

inter-conversions reactions including those with lattice oxygen. Thus, an adequate kinetic model 

has to be formulated to describe these phenomena.  

 

Changes in the OC can be described using the Avrami-Erofeev NNGM Model with random 

nucleation (n=1) [65,125]. Eq. (6-4) refers to the function f(α), which describes the solid-phase 

oxygen changes, with n being the Avrami exponent:  

𝑓(𝛼) = 𝑛(1 − 𝛼)[− ln(1 − 𝛼)]
𝑛−1

𝑛  (6-4) 

 

As well the influence of the gas-phase species can be accounted in terms of species partial 

pressures. As a result, OC reduction involves several simultaneous reactions which are influenced 

by both the gas-phase reducing agent and by the OC properties [67,126].  

 

In this respect, and in the CLC of syngas, the H2 and CO are directly converted into H2O and CO2 

due to their high reactivity. Furthermore, as the reaction proceeds, the reduced OC shows less 

available NiO exposed sites. Thus, and according to the technical literature, thermodynamic 
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chemical equilibrium may be reached under experimental conditions [127–129]. One can thus 

postulate, that chemical equilibrium may influence syngas conversion kinetics. 

 

Figure 6-4 illustrates the overall CLC reaction mechanism on the HPOC surface providing an 

insight on the interactions of gas phase species such as H2, CO and CH4 with OC oxygen lattice. 

 

Figure 6-4: Description of the reaction mechanism on the HPOC Surface describing various 

interaction of H2, CO and CH4 with OC oxygen lattice 

 

Furthermore, regarding CH4 conversion with the HPOC free of nickel aluminate, one can observe: 

a) A dominant formation of H2 and CO from CH4 as described by reaction (6.1), b) a subsequent 

H2 and CO formation after reactions (6.2) and (6.3).  

 

𝐶𝐻4 + 𝑁𝑖𝑂
𝑘1
→ 𝐶𝑂 + 2𝐻2 + 𝑁𝑖 (6.1)  

𝐶𝑂 + 𝑁𝑖𝑂 
𝑘2
⇌
𝑘4

 𝐶𝑂2 + 𝑁𝑖 (6.2) 

𝐻2 + 𝑁𝑖𝑂  
𝑘3
⇌
𝑘5

 𝐻2𝑂 + 𝑁𝑖 (6.3) 

 

One should notice that the nickel catalytic effect is strongly dependent on the availability of the 

lattice oxygen in the OC. When using the HPOC, metal dispersion is limited to 2%. This suggests 

that even at OC partially reduced conditions, it is unlikely that a single atom of nickel will be 

formed without neighboring nickel oxide sites being present.  
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Furthermore, carbon formation is an indicator of the Ni catalytic reaction effect. However, one can 

consider that if the oxygen conversion in the OC is limited to less than 80%, it is unlikely that the 

catalytic reactions leading to carbon formation will have activated [130]. Hence, one can suggest 

that if this condition is adhered to, the Ni catalytic influence will be negligible and will not need 

to be included in the kinetic model.  

6.4 Kinetic Model Development 

The CH4, CO and H2 reactions with nickel oxide can be considered as first order reactions, as 

reported by several authors [27,57,67]. As well, the reverse contribution of CO2 and H2O reactions, 

in the presence of Ni crystallites, can be postulated as being of first order [127,128]. 

 

Thus, a general reaction rate expression can be written as in eq. (6-5), accounting for both solid-

phase oxygen conversion and individual gas-phase chemical species partial pressures. In this 

equation, r stands for the reaction rate, k(T) denotes  a temperature dependent apparent kinetic rate 

constant and Pi represents the partial pressure of “i” chemical species. 

 

𝑟 = 𝑘(𝑇)𝑃𝑖𝑓(𝛼)  (6-5) 

 

In particular, the kinetic rate constant (k) can be expressed using the Arrhenius equation as, 𝑘(𝑇) =

𝑘0,𝑖
𝑎𝑝𝑝𝑒

−𝐸
𝑖
𝑎𝑝𝑝

×103

𝑅
(

1

𝑇
−

1

𝑇𝑐
)
 where, k0,i

app is the pre-exponential factor, Ei
app is apparent activation energy 

and Tc is the centering temperature. The use of Tc reduces the cross-correlation between kinetic 

parameters. 

 

Considering NNGM random nucleation (n=1), and combining the resulting eq. (6-4) with eq. (6-5), 

the rate expression for reaction (6.1) can be written as in eq. (6-6). Using the same methodology, 

reaction (6.2) and (6.3) can be expressed by the eqs. (6-7) and (6-8), respectively as:  

 

𝑟1 = 𝑘1𝑃𝐶𝐻4
(1 − 𝛼) (6-6) 

𝑟2 − 𝑟4 = 𝑘2𝑃𝐶𝑂(1 − 𝛼) − 𝑘4𝑃𝐶𝑂2
𝛼 (6-7) 
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𝑟3 − 𝑟5 = 𝑘3𝑃𝐻2
(1 − 𝛼) − 𝑘5𝑃𝐻2𝑂𝛼 (6-8) 

 

where, r2 refers to the forward rate and r4 stands for to the backward rate of reaction (3.2). As well, 

r3 and r5 refer to forward and backward rates of reaction (6.3), respectively. 

 

In order to establish the postulated model, reduction reactions were conducted in CREC Riser 

Simulator. As discussed before in Section 6.1, and while assessing the overall CLC rate of reaction, 

one can determine that the external and internal mass transfer influence can be neglected. Hence, 

the change in chemical species only depends on the intrinsic reaction (-rn) and can be expressed 

as:  

(−𝑟𝑖) =
1

𝑉𝑅

𝑑𝑛𝑖

𝑑𝑡
=

1

𝑉𝑅

𝑑 (
𝑉𝑅𝑃𝑖

𝑅𝑇 )

𝑑𝑡
×

101325

14.7
 (6-9) 

 

where, ni represents the moles of “i” species (µmole), VR is the reactor volume (cm3), Pi stands for 

the  partial pressure (psi), R denotes the universal gas constant (J/mol/K), T represents the reactor 

temperature (K) and t is reaction time (s). As the VR and T are constant in each run performed, eq. 

(6-9) can be rewritten in terms of individual chemical species partial pressures as follows:  

𝑑𝑃𝑖

𝑑𝑡
=

1

𝑓1
∑
𝑖

(−𝑟𝑖) ;  𝑤ℎ𝑒𝑟𝑒, 𝑓1 =
1

𝑅𝑇
×

101325

14.7
 (6-10) 

Furthermore, combining eq. (6-6) with eq. (6-8) and eq. (6-10) leads to eqs. (6-11) to (6-15). Eq. 

(6-16) describes the total change in α, with N0
NiO being the initial nickel oxide amount (mole) in 

the OC.  

𝑑𝑃𝐶𝑂

𝑑𝑡
= (𝑟1 − 𝑟2 + 𝑟4) ×

1

𝑓1
  

(6-11) 

 

𝑑𝑃𝐶𝐻4

𝑑𝑡
= −𝑟1 ×

1

𝑓1
 

(6-12) 

 

𝑑𝑃𝐶𝑂2

𝑑𝑡
= (𝑟2 − 𝑟4) ×

1

𝑓1
 

(6-13) 

 

𝑑𝑃𝐻2

𝑑𝑡
= (2𝑟1 − 𝑟3 + 𝑟5) ×

1

𝑓1
 

(6-14) 
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𝑑𝑃𝐻2𝑂

𝑑𝑡
= (𝑟3 − 𝑟5) ×

1

𝑓1
 

(6-15) 

 

𝑑𝛼

𝑑𝑡
= (𝑟1 + 𝑟2 + 𝑟3 − 𝑟4 − 𝑟5) ×

𝑉𝑅 × 10−6

𝑁𝑁𝑖𝑂
0  

(6-16) 

 

6.5 Numerical Method Used 

Given eqs. (6-11) to (6-16), the k0,i
app and Ei

app
  kinetic parameters were determined numerically 

as follows: a) First, the initial parameter values were assigned and the set of ordinary differential 

equations were solved using the “ode45” function of MATLAB, b) Following this, the kinetic 

parameters were adjusted and  optimized by using a non-linear parameter optimization tool 

“lsqnonlin”, with the “trust-region-reflective” algorithm minimizing the objective function (fobj):  

𝑓𝑜𝑏𝑗 = √ ∑ (𝑃𝑖,𝑒𝑥𝑝 − 𝑃𝑖,𝑡ℎ)
2

+ (𝛼𝑒𝑥𝑝 − 𝛼𝑡ℎ)
2

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑖

  (6-17) 

 

where, Pi,exp and Pi,th are the partial pressures of component “i”(i= CH4, CO, CO2, H2 and H2O 

species) observed experimentally and predicted via the kinetic model, respectively. Furthermore, 

αi,exp denotes the experimental OC oxygen conversion while αi,th is the theoretical OC oxygen 

conversion.  

 

Regarding the numerical calculation development, the algorithm was used to minimize the error 

between the theoretical model and the experimental observations (>250 average data points). This 

was done to achieve 95% confidence intervals. Pre-exponential factors and activation energies for 

each reaction were all bound to remain positive during calculations. Cross-correlation coefficient 

matrices were also established. This was done to understand the mutual dependency between 

calculated kinetic parameters. 
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6.6 Results and Discussions 

6.6.1 Estimated Kinetic Parameters 

In this study, the kinetic parameters were assessed based on HPOC experimental data for CLC 

using both Syngas-250 and Syngas-133, separately. Table 6-2 reports the estimated parameters 

determined with low 95% confidence spans. One should note that the ten kinetic parameters were 

determined using 250 average observed data points, with at least 3 repeats for each experiment 

and a degree of freedom (DOF) of 240. 

In Table 6-2 the k1
0, k2

0, k3
0 frequency factors correspond to (6.1), (6.2) and (6.3) forward 

reactions. This shows that k1
0< k2

0< k3
0 is consistent with the initially observed CLC reactivity 

difference described above, with this being rH2>rCO>rCH4. Furthermore and regarding the 

backward reactions, the k4
0 and k5

0 display a k4
0 < k5

0 difference, showing that H2O displays a 

higher reactivity than CO2 on nickel sites. In other words, the retardation rates due to the reverse 

reactions are more significant for H2 than for CO.  

Table 6-2: Kinetic Parameters Determined for Syngas-250 and Syngas-133, Separately 

Apparent 

Parameters 

Syngas-250 Syngas-133 

Value 95% CI Value 95% CI 

k0,1
a 3.03×10-2 ±4.85×10-3 5.62×10-2 ±10.1×10-3 

k0,2 12.5×10-2 ±18.7×10-3 10.5×10-2 ±12.2×10-3 

k0,3 29.8×10-2  ±21.3×10-3 39.7×10-2 ±42.4×10-3 

k0,4 2.94×10-2 ±9.42×10-3 1.54×10-2 ±5.59×10-3 

k0,5 19.1×10-2 ±22.1×10-3 8.9×10-2 ±12.6×10-3 

E1
b 3.6×10-13 ±2.1×10-14 4.02×10-14 ±1.1×10-14 

E2 13.02 ±5.8 5.13 ±2.9 

E3 20.10 ±6.9 7.36 ±3.6 

E4 40.17 ±12.2 36.90 ±14.4 

E5 30.31 ±10.8 21.23 ±7.8 

m 250 

DOF 240 

amol.m-3psi-1s-1
; 

bkJmol-1
; Tc=873K; Degree of Freedom (DOF)= data points 

(m) – parameters (p)= 250 – 10= 240 
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Figure 6-5: Parity plot comparing experimental chemical species partial pressures with model 

predictions using Syngas-250 and HPOC. Data: 250 average data points for at least 3 repeats 

runs. Note: standard deviation=2.9%. 

 
Figure 6-6: Parity plot comparing experimental chemical species partial pressures with model 

predictions using Syngas-133 and HPOC. Data: 250 average data points for at least 3 repeats 

runs. Note: standard deviation=3.9%. 

Figure 6-5 and Figure 6-6 present parity plots for Syngas-250 and Syngas-133, respectively. These 

figures compare predicted and experimentally observed values for chemical species partial 

pressures at different reaction times, temperatures and ψ ratios. One can observe that the Syngas-

250 shows a standard deviation error of 2.9% while Syngas-133 shows a deviation error of 3.9%. 

Both of these deviations are considered acceptable and within the anticipated experimental error 

level. Thus, the estimated parameters and the kinetic model using either of the two syngas samples 

are considered adequate for the CLC using the HPOC.  
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Figure 6-7: Comparison of experimental chemical species partial pressures with those of model 

predictions at various conditions using the Syngas-250 Feed and a HPOC. 

 

 
Figure 6-8: Comparison of experimental chemical species partial pressures with those of model 

predictions at various conditions using Syngas-133 Feed and a HPOC 
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Furthermore, Figure 6-7 and Figure 6-8 illustrate the predicted partial pressures using the estimated 

kinetic parameters for both Syngas-250 and Syngas-133 and compare with experimental results. 

This comparison was developed at various reaction times. Thus, it appears that the proposed 

kinetics and the estimated kinetic parameters are able to fit the chemical species partial pressures 

well. This is the case for the entire range of reaction times, with no error bias observed for some 

specific reaction times.  

6.6.2 Model Verification and Validation 

This research considered the applicability of a CLC kinetic model for a HPOC using both Syngas-

250 and Syngas-133 with H2/CO ratios of 1.33 and 2.5, respectively. In principle, if the proposed 

kinetic model is adequate, it must be applicable for both Syngas-250 and Syngas-133, with a single 

set of kinetic parameters. To validate this, a single set of kinetic parameters was estimated using 

all of the experimental data of Syngas-250 and Syngas-133, simultaneously.  

Table 6-3:  Summary of Apparent Intrinsic Kinetic Parameters for the Proposed Kinetic Model and Cross-

correlation Matrix 

Apparent 

Parameters 
Value 95% CI 

Correlation matrix 

k0,1
a k0,2 k0,3 k0,4 k0,5 E1

b E2 E3 E4 E5 

k0,1
a 4.16×10-2 ±7.3×10-3 1          

k0,2 10.3×10-2 ±13.5×10-3 0.14 1         

k0,3 33.2×10-2 ±28.9×10-3 0.06 0.16 1        

k0,4 1.86×10-2 ±6.87×10-3 0.00 0.76 0.13 1       

k0,5 13.4×10-2 ±17.2×10-3 -0.13 0.06 0.70 0.21 1      

E1
b 4.4×10-7 ±3.2×10-8 -0.06 -0.01 -0.01 -0.01 0.01 1     

E2 3.89 ±2.1 -0.01 -0.01 0.01 -0.15 0.02 0.14 1    

E3 9.85 ±4.4 -0.01 0.01 0.05 -0.02 -0.04 0.07 0.16 1   

E4 37.13 ±11.5 -0.01 -0.16 -0.02 -0.39 -0.06 -0.01 0.75 0.12 1  

E5 23.48 ±9.7 0.00 0.01 0.02 -0.04 0.01 -0.13 0.05 0.70 0.21 1 

m 500 amol.m-3psi-1s-1
; 

bkJmol-1
; Tc=873K; Degree of freedom (DOF)= data points (m) – parameters (p)= 500 

– 10= 490 DOF 490 

 

Table 6-3 reports the single set of kinetic parameters including a 95% confidence interval. The ten 

model parameters are determined by 500 observed data points, averaged with at least 3 repeats of 

each experiment with a degree of freedom (DOF) of 490. One can notice that the 95% confidence 

spans are limited. Table 6-3 also presents the cross-correlation matrix for the kinetic parameters 

with most values being below 0.21 and none being more than 0.75. This shows the lack of 

dependence of calculated kinetic parameters. Thus and as a result, one can conclude that the kinetic 
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model proposed can predict the HPOC performance when using a significant range of syngas 

compositions. 

 

Table 6-3 reports a very low E1 energy of activation for CH4 in CLC. Furthermore, it has been 

reported in the technical literature that E1 may change in the 5-50 kJ/mol range [65,69,126], with 

the lowest observed values being  for OCs free of nickel aluminate. This is consistent with the low 

E1 observed for the HPOC free of nickel aluminate.  

 

Concerning the E2 and E3 constants for CO and H2 CLC, one can note that the magnitude of the 

determined energies of activation are in the range of  reported values for the OC free of nickel 

aluminate [69,131] as well. Furthermore, and for the reverse reactions (6.2) and (6.3), the CO2 

conversion displayed a higher activation energy than the H2O conversion.  

 

Figure 6-9: Parity plot comparing the experimental chemical species partial pressures with model 

predictions for both Syngas-250 and Syngas-133. Data base: 500 averaged data points for at least 

3 repeat runs. Note: Standard Deviation=5.4%. 

 

Figure 6-9 compares the predicted partial pressures with the experimental observations, using the 

proposed kinetic model predictions for the HOPC and both Syngas-250 and Syngas-133. One can 

notice that the ensemble of data including the 500 data points show a standard deviation of 5.4%. 

Nevertheless, one can also observe that when one eliminates the 15 data points considered outlier 

data from the analysis, the standard deviation is reduced to 2%.  
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Figure 6-10: Comparison of experimental data and model predictions using the HPOC of this 

study and Syngas-250. Note: Parameters estimated use both Syngas-250 and Syngas-133 data. 

 

Figure 6-11: Comparison of Experimental Data and Model Predictions using the HPOC of this 

Study and Syngas-133. Note: Parameters estimated use both Syngas-250 and Syngas-133 data. 
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Figure 6-10 and Figure 6-11 describe the chemical species partial pressure changes for Syngas-

250 and Syngas-133 CLC when using the HPOC of this study at various reaction times. It appears 

that for the CLC of the two types of syngas studied, a single set of kinetic parameters can provide 

excellent fitting with no observable increased errors at some specific reaction times or conditions.  

Thus, the proposed phenomenological kinetics appears to be a trustable model for syngas CLC 

rates using the HPOC of this study. This kinetic model is demonstrated to be applicable in an 

ample range of operating conditions. This makes the model a valuable tool for the CLC simulation 

of larger circulating fluidized bed units.  

 

6.7 Conclusions 

a) A new 20wt%Ni 1wt%Co 5wt%La /γ-Al2O3, free of aluminate high oxygen carrier 

(HPOC) was successfully developed and tested with syngas in a CREC Riser Simulator 

reactor in the 550-650°C range. This syngas composition was the one anticipated from 

biomass gasification. The results are discussed in CHAPTER 5.  

b) Based on the experimental data obtained, a kinetic model was proposed for syngas CLC 

using the HPOC of the present study. The depletion of the lattice oxygen was described 

using the Avrami-Erofeev NNGM Model with random nucleation, while the CH4, H2 and 

CO consumption was accounted for via simultaneous heterogeneous gas-solid reactions. 

c) The resulting kinetic model involved ten parameters consisting of frequency factors (k0,i) 

and activation energies (Eapp,i). These parameters were determined using non-linear least-

squares regression with 95% confidence intervals and very limited cross-correlation 

between parameters.  

d) It is anticipated that the proposed kinetic model could have significant value for the 

development of large scale downer reactor units for CLC.  
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CHAPTER 7 LARGE AND DEMONSTRATION SCALE SIMULATION 

This chapter describes a Computational Particle Fluid Dynamics (CPFD) simulation using the 

BARRACUDA Virtual Reactor (VR) software. The goal is to establish a process model for a 

100kW CLC power plant. The proposed CLC system includes two interconnected reactors: A 

riser-air reactor and a downer-fuel reactor, with a controlled oxygen carrier circulation between 

the two reactors. To analyze this riser-downer CLC configuration a multi-scale drag model (non-

spherical Ganser’s) was implemented in Barracuda and the CLC volume averaged kinetics was 

coupled with CPFD. The hybrid Barracuda VR-CPFD model used the Eulerian-Lagrangian 

approach called the MP-PIC (multi-phase particle-in-cell) and considered clustered particles as 

well [87].  

Based on the CPFD data obtained, the following was accomplished: (a) The establishment of a 

riser-downer system for CLC performance assessment; (b) The calculation of the required oxygen 

carrier particle circulation; (c) The evaluation of the extent of CO2 gas leaking via the loop-seal. 

In addition, the CPFD simulation enabled the optimization of both the air reactor and fuel reactor 

designs for high CLC performance.  

 

7.1  Materials and Methods 

7.1.1 CLC Riser and Downer System 

A CLC process with a 100kW power generation capacity demonstration unit was considered. The 

CLC process involved the new HPOC of the present study together with a syngas having a 1.33 

H2/CO ratio.  

 

Figure 7-1 reports a schematic diagram of the proposed CLC configuration for the large-scale CLC 

simulation of this present study. Syngas was supplied via a top downer injection port. Thus, the 

HPOC particles, flowing down from the top cyclone encountered the injected syngas, mixing 

homogeneously. This occurred before the HPOC particles moved further downwards. The downer 

height and diameter were carefully selected to ensure that the total gas and HPOC residence times 

were compatible with the high syngas conversions desired. Furthermore, the product-HPOC outlet 

system of this process was cautiously designed to ensure efficient particle separation with 

minimum particle entrainment. Furthermore, the fuel downer reactor was connected in the 
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proposed CLC process, with an air reactor via a loop seal. It is at this section where the HPOC was 

allowed to enter into the air reactor via an air pulsation system. 

 

Figure 7-1: Schematic diagram of an Air Reactor (Riser) and Fuel Reactor (Downer) considered 

in the present study for CLC simulation 

 

Regarding the air reactor, it was configured with the following parts: a) A fast-fluidized bed region 

at the unit bottom and b) A riser transport region in the middle and top section. The fast fluidized 

bed bottom section, secures a region with (e.g. 20%) particle volume fraction suitable for installing 

a heat exchanger [132]. This heat exchanger helps removing the heat generated by the exothermic 

syngas CLC reactions. A secondary air flow is supplied to transport particles properly to the 

cyclone gas-solid separator. As it travels through the air reactor, the HPOC gets fully oxidized 

when it comes into contact with air. The cyclone separates the gas flow from the reactivated HPOC 

particles to be returned to the downer unit. 
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7.1.2  Oxygen Carrier Particle 

The particle size distribution (PSD) of HPOC was determined using Malvern Mastersizer 2000 

size analyser as reported in Figure 7-2. The PSD result shows a mean particle diameter (d50=87.1 

µm) with a standard deviation 31.2 µm.  

 

Figure 7-2: HPOC Particle Size Distribution 

Table 7-1 reports the various relevant physical properties of the HPOC relevant for the CPFD 

simulations as follows: a) particle mean diameter, b) particle density, c) particle sphericity, d) 

particle close pack volume fraction, d) particle-wall tangential and normal retention coefficients, 

e) diffuse bound , f) maximum momentum redirection from particle to particle collision.  

Table 7-1: Physical Properties of HPOC Particles 

Parameters Value 

Particle mean diameter, d50 [µm] 87.1 

Particle density, [kg/m3] 1800 

Particle sphericity 0.9 

Particle close pack volume fraction 0.6 

Particle-wall tangential retention coefficient 0.85 

Particle-wall normal retention coefficient 0.85 

Diffuse bounce 0 

Maximum momentum redirection from particle to particle collision 40% 
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Furthermore, both in the riser or in the downer reactors, particle moves as cluster of particles rather 

than as single particles. Therefore, besides the single particle analysis, clustered particles are 

highly important to accurately represent hydrodynamics and gas-solid interactions in downers. 

Given the physical properties (i.e. particle diameter, density and sphericity) were essentially 

identical to the ones of a previous research study in CREC Laboratories [87], the HPOC cluster 

reported in Figure 7-3, was considered in the present study. 

 

Figure 7-3: Clustered Particle Information: a) Distribution of number of particles in clusters for a 

gas velocity of 1.5 m/s and a particle mass flux 50 kg/m2/s [87] b) Expressed as cluster size 

distribution (cluster sphericity 0.64). 

 

7.1.3 Particle and Fluid Dynamic Models 

The CPFD methodology considers Reynolds Averaged Navier-Stokes equations to formulate fluid 

dynamics in the three dimensional space. The particle phase is described by the multi-phase-

particle-in-cell (MP-PIC) method [84] to evaluate dense particle flows. Unlike the discrete particle 

(DPM) (Cundaland Strack, 1979), MP-PIC calculates particle stress gradient as a gradient on the 

grid instead of each particle. 
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The volume averaged mass continuity and momentum equations [133,134] are described as 

Eq.(7-1) and Eq.(7-2).  

𝜕(휀𝑔𝜌𝑔)

𝜕𝑡
+ ∇ ∙ (휀𝑔𝜌𝑔𝒖𝑔) = 𝛿�̇�𝑝 (7-1) 

𝜕(휀𝑔𝜌𝑔𝒖𝑔)

𝜕𝑡
+ ∇ ∙ (휀𝑔𝜌𝑔𝒖𝑔𝒖𝑔) = −∇𝑝 − 𝑭 + 휀𝑔𝜌𝑔𝒈 + ∇ ∙ (휀𝑔𝜏𝑔) (7-2) 

where, εg is gas volume fraction, ρg is gas density, t is time, ug is gas velocity vector, δṁp is mass 

production rate in gas phase per unit volume due to particle-gas reaction, p is mean flow gas 

thermodynamic pressure, F is gas to particle momentum transfer rate per unit volume, g 

acceleration vector due to gravity, τg is stress tensor in gas phase. 

The properties of total gaseous phase are evaluated by the individual mass fraction (Yg,i). Eq.(7-3) 

presents the transport equation of individual gas species. 

𝜕(휀𝑔𝜌𝑔𝑌𝑔,𝑖)

𝜕𝑡
+ ∇ ∙ (휀𝑔𝜌𝑔𝑌𝑔,𝑖𝒖𝑔) = ∇ ∙ (휀𝑔𝜌𝑔𝐷∇𝑌𝑔,𝑖) + 𝛿�̇�𝑖,𝑐ℎ𝑒𝑚 

(7-3) 

 

The turbulent mass diffusivity, D=µ/ρgSc, where µ is a shear viscosity as a sum of laminar and 

turbulent viscosity according to Smargorinsky model [135], Sc is turbulent Schmidt number. 

 

The gas phase enthalpy balance equation can be written as Eq.(7-4) [136,137] where,  hg is 

enthalpy of gas, ϕ is viscous dissipation, q is conductive heat flux of gas and Q̇ is energy source  

per volume. The conservative energy exchange from particle to gas phase is noted as Sh and the 

enthalpy diffusion term as q̇D. 

 

𝜕(휀𝑔𝜌𝑔ℎ𝑔)

𝜕𝑡
+ ∇ ∙ (휀𝑔𝜌𝑔ℎ𝑔𝒖𝑔) = 휀𝑔 (

𝜕𝑝

𝜕𝑡
+ 𝒖𝑔 ∙ ∇𝑝) + 𝜙 − ∇ ∙ (휀𝑔𝒒) + �̇� + 𝑆ℎ + �̇�𝐷 

(7-4) 

 

The MP-PIC method considers a transport equation to describe particle phase dynamics via particle 

distribution function (PDF) [84]. Eq.(7-5) describes the function f(xp,up,mp,t) as PDF where xp is 

the particle spatial location, up is the particle velocity, mp is the particle mass, A is particle 

acceleration, D is drag function and τp is inter-particle normal stress. 
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𝜕𝑓

𝜕𝑡
+ ∇𝐱𝐩

∙ (𝑓𝒖𝑝) + ∇𝐮𝐩
∙ (𝑓𝑨) = (

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙

𝐷

  
(7-5) 

𝑨 =
𝑑𝒖𝑝

𝑑𝑡
= 𝐷(𝒖𝑔 − 𝒖𝑝) −

1

𝜌𝑝
∇𝑝 −

1

휀𝑝𝜌𝑝
∇𝜏𝑝  

(7-6) 

The PDF is improved by O’Rourke et al.  [138] adding a collision term on the right hand side of 

Eq.(7-5). 

The drag model can be defined as Eq. (7-7) with Cd drag coefficient. This study considered Non 

Spherical Ganser’s Model [139] which describes Cd depending on particle sphericity (ψ) by Eq. 

(7-8).                                                     

𝐷 =
3

8
𝐶𝑑

𝜌𝑔|𝒖𝑔 − 𝒖𝑝|

𝜌𝑝𝑟𝑝
 (7-7) 

Cd = 𝜃𝑔
𝑛0𝐾2 [

24

𝑅𝑒𝐾1𝐾2

(1 + 𝑐0(𝑅𝑒𝐾1𝐾2)𝑛1) +
24𝑐1

1 +
𝑐2

𝑅𝑒𝐾1𝐾2

]   (7-8) 

 

where, the constants are defined as c0=0.1118; c1=0.01794; c2=3305; n0=-2.65; n1=0.6567; 

n2=1.8148; n3=0.5743, the isometric shape constants are defined as, 𝐾1 = 3(1 + 2𝜓−0.5)−1 

and 𝐾2 = 10𝑛2(− 𝑙𝑜𝑔 𝜓)𝑛3
. 

 

Further details of the governing equations for the gas and particles including the numerical 

procedures for solving the equations can be found elsewhere [136,137].  

 

7.1.4 Reaction Kinetic Model Used 

The choice of kinetic model has a prime importance in CLC for large-scale simulations. Hence, 

with that end, syngas CLC using HPOC were performed using a mini fluidized bed batch reactor, 

CREC Riser Simulator [41] as described in CHAPTER 5. 
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Table 7-2: Kinetic Parameters Applied in CLC Large Scale Simulation 

Reaction 
Reaction Rate  

(mol.m-3s-1) 

k0,i 
app  

(mol.m-3psi-1s-1) 

Ei 
app  

(kJ/mol) 

𝐶𝐻4 + 𝑁𝑖𝑂
𝑘1
→ 𝐶𝑂 + 2𝐻2 + 𝑁𝑖 𝑟1 = 𝑘

1
𝑃𝐶𝐻4

(1 − 𝛼) k0,1 =4.16×10-2 E1=4.4×10-7 

𝐶𝑂 + 𝑁𝑖𝑂 
𝑘2
⇌
𝑘4

 𝐶𝑂2 + 𝑁𝑖 𝑟2 − 𝑟4 = 𝑘2𝑃𝐶𝑂(1 − 𝛼) − 𝑘4𝑃𝐶𝑂2
𝛼 

k0,2 =10.3×10-2 E2=3.89 

k0,4 =1.86×10-2 E4=9.85 

𝐻2 + 𝑁𝑖𝑂  
𝑘3

⇌
𝑘5

 𝐻2𝑂 + 𝑁𝑖 𝑟3 − 𝑟5 = 𝑘3𝑃𝐻2
(1 − 𝛼) − 𝑘5𝑃𝐻2𝑂𝛼 

k0,3=33.2×10-2 E3=37.13 

k0,5=13.4×10-2 E5=23.48 

𝑘𝑖(𝑇) = 𝑘0,𝑖

𝑎𝑝𝑝
𝑒

−𝐸𝑖
𝑎𝑝𝑝

×103

𝑅
(

1

𝑇
−

1

𝑇𝑐
)

; 𝑇𝑐 = 823𝐾 

 

Regarding the syngas CLC runs, they were performed at different temperatures (500-650ºC), times 

(2-40s) and two stoichiometric syngas to OC ratios (ψ=1 and ψ=0.5). The detailed performance 

and kinetic analysis is described in CHAPTER 6. Table 7-2 also reports the CLC kinetics and 

kinetic parameters for the CLC large-scale simulation. One should note that the reaction rates are 

expressed in Table 7-2 using volume-average kinetic parameters. Regarding CLC oxidation 

kinetics, a discrete model for nickel oxide formation from Ni was considered as reported by Dueso 

et al. [69] is used. 

 

7.1.5 Geometry Consideration 

A syngas CLC process is normally configured using an air reactor, a cyclone separator and a fuel 

reactor. Figure 7-4 reports the geometry for a large-scale CLC unit with its various dimensions. 

One should note that the air reactor bottom section was designed as a fast-fluidized bed. Using this 

approach, the HPOC particles were transported to the riser section with the anticipated high gas 

flow (0.01 kg/s inlet airflow).They entered into the cyclone via a cylindrical inlet designed for 

15m/s cyclone inlet gas velocity. 

 

Regarding the high efficiency cyclones, they were designed in the proposed CLC process 

configuration by following Stairmand’s guidelines [140]. As well, one should note that the 

proposed downflow fuel reactor diameter was larger than the down-comer of the cyclone. 

Therefore, a reducer cone section was proposed to make this connection possible.  
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Furthermore, the Product Outlet was designed to avoid particle entrainment. This Product Outlet 

was followed by a loop-seal connected to the air reactor. During the process operation, a HPOC 

concentration near to the close packing was maintained in the Product Outlet section. This was 

done to avoid CO2 leaking from the fuel reactor to the air reactor. Finally, a horizontal air pulsation 

flow was provided in the Loop Seal to feed the HPOC particles into the air reactor, having a steady 

HPOC circulation rate. Under the proposed conditions of the CLC system, a total HPOC particle 

inventory of 77 kg was used. 

 

 

Figure 7-4: Geometrical Characteristics of the Proposed Syngas CLC System  
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7.1.6 Initial and Boundary Conditions 

The objective of the present CPFD simulation for CLC simulation is to develop a model applicable   

under fully developed gas-solid flow. To achieve this, the CPFD simulations have to be started 

with satisfactory initial values begin the calculations. With this end, the following initial values 

were adopted: a) atmospheric pressure and 650ºC in the entire unit. Gas density and viscosity were 

defined at these conditions, b) gas velocity at zero in the entire domain. 

  

Figure 7-5: Schematic Diagram of a CLC Riser-Downer Configuration Indicating Boundary 

Conditions (BC)  
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Furthermore, Figure 7-5 reports the specific location of various boundary conditions used in the 

CPFD simulation as follows:  

 

a) An airflow rate (10 g/s) is provided to fluidize the HPOC at Boundary Condition 1 (BC-1).  

b) A secondary air flow is provided via four injection ports angled upwards at 45 degree to help 

with HPOC transport [141]. This is designated as Boundary Condition 6 (BC-6).  

c) Particles and gases are separated in a cyclone where pressure is kept at atmospheric conditions. 

This is designated as Boundary Condition 3.  

d) Eight (8) injection ports angled downwards 45 degrees downward provide syngas jets with a 

10 m/s high velocity. This allows uniform HPOC distribution across the downflow fuel reactor. 

This is designated as Boundary Condition 4 (BC-4).  

e) The HPOC and product gas reach an outlet product separator at 1 atm. This is designated as 

Boundary Condition 2 (BC-2).  

f) The loop-seal near the output product separator promotes particle densification assumed at a 

0.5 volume fraction. This is named as Boundary Condition 5 (BC-5). 

g) A steady HPOC circulation is achieved via an air pulsed air flow, preventing reverse gas flow 

towards the fuel reactor.  Air pulsation frequency can be optimized, to achieve the required 

solid circulation and hydraulic pressure at the bottom of the air reactor. 

7.1.7  Numerical Approach 

In this study, a commercial software BARRACUDA VR® 17.3.0 module was used for 

computation particle fluid dynamics coupled with CLC reaction. A detailed description of the PC 

configuration employed in order to use the software is discussed in CHAPTER 4. The platform of 

this software is based on a finite volume method. A single simulation including chemistry takes at 

least 72 hours.  

In this respect, time steps played a major role in the simulation output. In this simulation, time 

steps smaller than 0.002 seconds were used [87]. Furthermore, to obtain sufficient accuracy in the 

calculations, 364,580 numerical particles were considered.  

Regarding the various calculations developed, they included: a) A simulation of the complete 

system including the riser and the downer as reported in Figure 7-4 (7m × 0.4m × 1.4 m) with a 
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total of 100,000 cells in the computational mesh, Figure 7-6 reports a typical mesh used in this 

type of simulation, b) More detailed calculations in a downer unit with a 25m length and a 0.2 m 

diameter are given in Figure 7-12. 

 

Figure 7-6: Typical Computational Mesh Pattern: a) Upper part of the CLC system b) Lower part 

of the CLC system 

7.2  Simulation Results and Discussion  

7.2.1 Solid Circulation and Loop Seal  

Figure 7-7a illustrates the CPFD simulated particle volume fraction of the complete CLC system 

considered in this study. Figure 7-7b and Figure 7-7c report the HPOC mass flow and mass flux 

across the cut-planes (cross-section of reference) for both the Air Reactor-Riser and the Fuel 

Reactor-Downer.  

 

Thus, and on this basis, as reported in Figure 7-7b, a stable solid circulation of 1.5 kg/s was 

established with a 1-3% HPOC volume fraction in the fuel reactor after 60s of simulation time. As 

well, a 500 kg/s/m2 mass flux in the air reactor riser, and a 50 kg/s/m2 mass flux in the fuel reactor 

were achieved. These values are in good agreement with typical experimental values and industrial 

requirements [142,143]. 

a)

b)
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Controlling HPOC circulation is of critical importance in a CLC process. HPOC solid circulation 

depends on total system pressure, gas flow and solid holdup.  

 

  

Figure 7-7: Simulated HPOC Circulation in the CLC: a) Particle volume fractions in various unit 

locations, b) HPOC flow rates at various simulation times, c) HPOC mass fluxes through the 

reactors at various simulation times. Notes: i) Data or solid circulation reported using a 1 second 

averaging , ii) Dotted line shows a logarithm variation of both mass flow and mass flux 
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The HPOC upflow transport requires a positive pressure at the air-riser reactor bottom section. 

This higher pressure creates a hindrance for HPOC particle circulation from the fuel-downer to the 

air-riser. To address this issue, a valve is required. There are several kinds of valves available as 

reported in the literature [144–146]. In this study, a non-mechanical valve (L-valve) was 

implemented as a loop-seal. With this L-Valve, a particle hold-up densification was kept in the 

bottom section of the air-reactor (≈0.5), creating both a loop-seal and preventing a backflow up 

from the air-reactor to the fuel reactor. [144]. With this end, a high pressure pulsation air injection 

was supplied at 5 g/s as follows: a) By first opening the L-Valve for 150 milliseconds, b) By 

keeping it closed later for 1.5 s. This valve operation was repeated during the entire run. Using this 

operational approach, one avoids the fluidization of the HPOC particles at the bottom of downer 

reactor and ensures that there is no gas leaking between the air-reactor and the fuel reactor.  

 

7.2.2 Pressure Profiles  

Figure 7-8 reports the average pressure level using a total of seven (7) simulated pressure probes. 

One can see that there is a steady pressure reduction in the air-riser unit (from P-5 to P-1). 

Furthermore, the cyclone operates with a pressure drop, and as a result a lower pressure at the 

cyclone exit (P-2). This is a requirement for effective gas-solid separation. Furthermore and along 

the downer, there is a very small additional pressure change (from P-2 to P-4). This is only the 

case at the downer bottom section where the loop-seal ensures that the pressure at P-5 increases. 

One should note that P-5 is slightly above the air reactor bottom section pressure as shown in P-6. 

(P-5>P-6). Furthermore and in order to achieve steady HPOC solid circulation from the fuel reactor 

to the air reactor fluidized bed section pressurized pulsed is used.  These trends are in agreement 

with the results obtained by Wang et al. [147]. Regarding pressure changes in the riser, one can 

notice an almost linear decrease with column height, with this pressure gradient being a function 

of the solid hold-up. 
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Figure 7-8: Pressure Levels at Different Locations of the CLC Process 

7.2.3  Velocity Profiles and Volume Fraction 

Figure 7-9 reports radial velocity profiles for both gas and particles. The data corresponds to an 

upper location (4m) and a lower location (2m) along the CLC downer. Reported data corresponds 

to radial line averages performed in the x-direction of a x-y Cartesian downer cross-section 

domain.     

One can see that for CPFD simulation yields  for a 0.85 m/s gas velocity  and  for a 3 m/s particle 

velocity, significant local variations of both gases and particle velocities are as follows a) ± 0.5 

m/s for the gases, b)  ±1 m/s variation for the particles. One can also see that in spite of these 

significant local gas and particle velocity variations, change in phase, with this being an intrinsic 

fluid dynamic property in the downer. The results are in agreement with other research [148] 

reported in the literature. 
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On this basis, one can consistently predict slip velocities between gases and particles in the 2 m/s 

range. This is expected given at 0.85 m/s superficial gas velocity, due to particle densification, 

particle velocities surpass the 0.6 m/s estimated terminal settling velocity.  

 

Figure 7-9: (a) Radial Gas and Particle Velocity Profiles and (b) Radial Particle Volume Fractions 

in the CLC Downer Unit using the “Single Particle” Model . Note: Observation times during 

downer operation were 1s, 2s, 3s. 

 

Figure 7-10 reports the axial velocity of the HPOC particles (up) and the gas velocity (ug) along 

the riser. One should note that each of the reported data points represents downer cross section 

averages at various downer heights. One could see that all reported cross-sectional average 

velocities are quite constant (3 m/s ±10% for the particles and for 0.5 m/s ± 10%). This is the case 

in spite of the significant local velocity variations as reported in Figure 7-9. 

 

Figure 7-10 also reports the average volume fraction along the downer. This property, as in the 

case of the cross-sectional average gas and particle velocity, appears to be a relatively constant 

one. The only exception to this trend is in the syngas feeding to the downer section, where an 

particle densification takes place. This is given the fluid redirection of particles coming from the 
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cyclone exit. However, once 1-2 m along the downer length is reached and a fully developed 

downer flow pattern is established, the particle volume fraction stabilizes as expected in a 1% 

particle volume fraction.    

 

Figure 7-10: Axial Fluid and Particle Velocities along the Fuel CLC Downer Length: a) Particle 

and fluid velocity b) Particle volume fraction. 

7.2.4  Simulated Reaction Analysis 

In order to make it relevant to CLC, Barracuda VR simulations included CLC reactions coupled 

to the particle-fluid solver module. To accomplish this, heterogeneous reactions were considered 

by employing the Lagrangian Chemistry Model which calculates chemical reaction rates for each 

computational particle. To achieve this, CLC calculations were developed first by considering a 

5m downer fuel reactor unit. 

Figure 7-11 reports gas species mass flow rates at the CLC downer outlet. One can see that 

computations involved two steps: a) An initial 28 seconds simulation time with the reaction 

module turned “off” to obtain a steady downer operation, b) An additional 15 seconds of simulation 

time with the reaction module turned “on”.  Once these two steps were completed, one could 

conclude that the calculated species flow rates represented the ones in a steady CLC downer unit. 

Regarding the observed mass flow rate oscillations, it is shown in the present study that they could 

be limited (Standard Deviations: 3%) by using simulation time steps smaller than 0.002s. An 

important fact to note is that the reported results show a theoretical 40% CO2 yield which is in line 
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with the experimental value of a 43% CO2 yield in the CREC Riser Simulator after 5 seconds of 

reaction time. For additional details, refer to CHAPTER 5. 

 

Figure 7-11: Simulated Total Gas Species Mass Flow in a Complete CLC Process using a 5 m 

downer. Note: a) The negative sign indicates a mass flow rate defined in downward direction, b) 

The CLC reaction module was activated after 28 second, c) Simulation time steps are: 0.002s 

Furthermore, to develop more relevant CLC simulations, and to reach a 90% CO2 yield, a 25m 

downer was considered suitable. In this case, both single and clustered particle models were 

included in the simulations. The solid downer entry flow rate was kept at 1.5 kg/s and the syngas 

fed was kept at 6 g/s. One significant change in the CPFD simulations at this point, was to turn 

“on” the CLC reaction module from the very beginning. This was required given that it was 

found that the initial period with the CLC reaction turned “off”, while was good for studying the 

downer flow without reaction and the added effect of CLC, was not strictly required for CLC 

with the same numerical solution being obtained.   

Figure 7-12 reports the syngas conversion performance in the downer using the “single particle” 

model. Reported results compare the 5m downer and the 20m downer with 45% CO2 yields, and 

80% CO2 yields, respectively. One should note that these results were obtained after 30s of 

simulation time. 
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Figure 7-12: Simulated total gas species mass flow rates at different downer height levels of 5m 

and 20m. Notes: a) downer height is defined in the downward direction and from the top of the 

unit, b) the negative sign is assigned to mass flow shows in the downward direction  

Furthermore and to provide realistic CPFD simulations of the CLC downer-fuel reactor, a unit 

performance analysis was also developed using the “particle cluster” model. This model considers 

a particle cluster size distribution as described in Section 7.1.2. This HPOC particle cluster 

distribution is expected to be result of a dynamic balance between cluster formation and cluster 

breakup [149]. 

Figure 7-13 reports the syngas combustion in the downer unit using the “particle cluster” model. 

In this case, the CLC reaction module in the CPFD Barracuda downer simulation was turned “on” 

from the very beginning of the calculation. One can see in Figure 7-13, that after 30s of simulation 

time, a 38% CO2 yield was obtained at 5m from downer top and a 70% CO2 yield was obtained at 

the end of the 20m downer reactor. Thus, it was observed that the additional flow details provided 

in the downer fluid dynamics using particle clusters, reduces about 15% the CO2 yield. As a 

consequence, the particle is an important factor to be considered in CPFD simulations of both 

demonstration and large scale CLC downer units. 

 

CO2 Yield = 45% CO2 Yield = 80%
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Figure 7-13: Total simulated gas species mass flow rates at different downer height levels using 

particle clusters with only downer system. Note: The negative sign indicates mass flows in a 

downward direction. 

Figure 7-14 predicts that, the CLC performance with 90% CO2 yield is achievable using HPOC 

by applying 25m downer reactor for the case of “single particle”. The provided solid flux was 50 

kg/s/m2 which also applied for clustered particle. For the case of particle cluster, it requires 30m 

downer reactor to achieve same 90% CO2 yield. Also this represents the worst case scenario for 

syngas conversion as the cluster size does not reduce all through the downer essentially no increase 

of surface area for reaction.  

 

Figure 7-14: Total simulated gas species mass flow rates and predicted only downer height levels 

for single and clustered particles to achieve 90% CO2 yield. Note: The negative sign indicates mass 

flows in a downward direction.  

Clustered Particle Clustered Particle

CO2 Yield = 70%
CO2 Yield = 38%

Single Particle 

CO2 Yield = 90%

Clustured Particle

CO2 Yield = 90%
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7.3  Conclusions 

 
a) A demonstration scale chemical looping combustion process was successfully simulated 

using both CPFD and CLC kinetics. This allowed designing and optimizing the CLC 

process for HPOC applications. 

b) The CLC system was established using a riser-air reactor and a downer-fuel reactor in a 

twin fluidized bed configuration. The use of a hybrid CPFD computational model was 

important to account for particle cluster formation. 

c) A desired solid circulation was achieved using an air pulsation system in the loop-seal 

section. The selected air pulsation frequency involved opening the L-Valve for 150 

milliseconds and keeping it closed later for 1.5s. 

d) An applicable HPOC kinetic model was incorporated into the CPFD simulation, by 

considering a CLC unit using both “single particle” and “clustered particle” models. It 

was predicted that a 90% CO2 yield can be obtained in a 25m downer reactor using 

“single particle” model and 30m downer reactor using “clustered particle” model with a 

solid flux of 50 kg/s/m2.   
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

a) The high performance of a nickel γ-alumina oxygen carrier (HPOC) was successfully 

demonstrated in the present study. With this end, CLC systematic runs were developed in 

a CREC Riser Simulator. 

b) The CREC Riser Simulator was evaluated prior to the CLC runs by employing CFD 

simulations. This allowed confirming that there was high gas mixing and good particle 

fluidization in this unit.  

c) A thermodynamic analysis was implemented in the present study, showing a consistent 

99% syngas equilibrium conversion below 800ºC. The thermodynamic model also 

predicted full methane conversion and OCs free of carbon, above 300ºC and 150oC, 

respectively.  

d) The HPOC showed an excellent CLC when using syngas (i.e. H2/CO=2.5 and H2/CO=1.33) 

at 650ºC with a ψ=0.5 fuel/OC stoichiometric ratio. Furthermore, in this case, a 92% CO2 

yield and 90% CO, 95% H2 and 91% CH4 conversions were obtained.  

e) The HPOC displayed an encouraging 40% OC oxygen conversion at 650ºC and 40s. This 

very valuable accomplishment given the 50% expected maximum OC conversion, 

displayed Coke was formed under these conditions in minute amounts (< 0.07wt %).  

f) The selected thermal level in the 550-650°C range had little influence on the HPOC 

performance. These findings point towards a CLC reaction dominated by oxygen lattice 

diffusion.    

g) A phenomenological kinetics based on solid-state reactions (Avrami-Erofeev NNGM) was 

proven suitable to describe syngas CLC using the HPOC.   

h) The resulting kinetics involved ten kinetic parameters (5 frequency factors and 5 activation 

energies). These parameters were successfully determined using non-linear least-squares 

data regression with 95% confidence intervals and limited cross-correlation between 

parameters.  

i) It was observed that according to the frequency factors obtained, the reactivity of the 

species using the HPOC could be expressed the following reactivity order: H2>CO>CH4. 
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j) It was demonstrated that the developed kinetic model could be applied to establish a 

computational particle fluid dynamics (CPFD) simulation in a 100kW CLC facility. This 

simulation uses a hybrid CPFD model featuring “single particles” and “clustered particles”.  

k) The CFD model shows that for particle clusters, 500 kg/s/m2 solid fluxes in the riser air 

reactor and 50 kg/s/m2 solid fluxes in the downer fuel reactor, can be obtained. Together 

with this, a 1% particle volume fraction with a 3m/s gas cluster particle slip velocity were 

obtained.  

l) The CFD results demonstrated that 90% CO2 yields can be achieved in a 25m length 

downer unit using a “single particle” model versus the 30m downer unit required for the 

“clustered particle” model. As well, it was proven that a L-type loop seal between the 

downer and riser yields negligible CO2 leakage. 

8.2 Recommendations 

a) It would be of interest to establish the effect of the feeder design on the performance of the 

downer unit and this to prevent fluid and OC non-uniform cross-section distributions.  

b) It would be valuable to consider vertical or horizontal tube heat exchangers inside the air-

fluidized bed. This would allow assessment of heat removal in the air reactor and 

evaluation of the effect of heat exchangers on the circulation of OC in the entire CLC 

process. 
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NOMENCLATURE  

c sound velocity at medium (m/s) 

Cb,i concentration in bulk phase(mol/m3) 

Cμ, Ce1, Ce2 turbulence model coefficients 

Ci mass concentration of “i” species 

Cs,i concentration at external surface of particles (mol/m3) 

CWP dimensionless number 

dp mean oxygen carrier particle diameter (m) 

dv average crystal diameter (m) 

%D metal Dispersion 

DiA diffusion coefficient in medium 

Ei
app apparent activation energy (kJ/mole) 

f1 conversion factor=101325/RT/14.7 where, R(J.mol-1K-1), T(K) 

f(α) function to describe lattice oxygen depletion at solid state 

fobj objective function 

F volume force (N) 

∆Ho heat of reaction (kJ/mole) 

∆Hc
o heat of combustion (kJ/mole) 

k kinetic energy of turbulence (J/Kg) 

kv von Karman’s constant  

k0,i
app pre-exponential or frequency factor (mol.m-3psi-1s-1) 

k(T) reaction rate constant as a function of temperature 

kg mass transfer coefficient 

k,m,n stoichiometric coefficient 

K1,K2 isometric shape constant 

Kc,Kp Equilibrium constant 

M Mach number 

mp Particle mass (kg) 

n Avrami’s equation  exponent 

ni moles of i in the gaseous product/feed 

p kinetic parameters 

Pi partial pressure of species “i” (psi) 

Pk production of turbulent kinetic energy due to the mean flow gradients (J/m3/s) 
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Pi,exp experimentally observed partial pressure of species “i” (psi) 

Pi,th model predicted partial pressure of species “i” (psi) 

(-rn) rate of nth reaction (mol.m-3s-1) 

(-ri) reaction rate of species “i” (mol.m-3s-1) 

(-rexp) experimental rate of reaction 

R universal gas constant 

Re Reynolds Number 

Sc Schmidt number 

Sh Sherwood number 

Sex external surface area (m2/g) 

Sm average surface area (nm2) exposed per surface metal atom 

Syngas-250 syngas with a H2/CO molar ratio of 2.5 

Syngas-133 syngas with a H2/CO molar ratio of 1.33 

T operating temperature (K) 

Tc centering temperature to reduce cross-correlation factor (K) 

t reaction time (s) 

t* frozen time(s) 

u fluid or particle velocity (m/s) 

ub,face fluid velocity at either the “right face” or “left face” of the baffle (m/s) 

ui,face Fluid velocity at either the “right face” or “left face” of the impeller blade (m/s),  

uimp velocity of impeller blade wall (m/s) 

urel relative fluid velocity with the wall (m/s) 

urel,tang relative tangential fluid velocity with the wall (m/s) 

uτ  shear velocity or friction velocity(m/s) 

Vg molar volume gas at STP (i.e. 22414 cm3/mole) 

Vm volume of metal atoms (nm3) 

VT total reactor volume (cm3) 

W Weight of the catalyst (g) 

x  Displacement vector of impeller surface (m) 

  

Symbols 

α  oxygen carrier oxygen conversion 

αi,exp experimentally observed solid-phase oxygen conversion 

αi,th model predicted observed solid-phase oxygen conversion 
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δ+
w  Wall lift-off also known as dimensionless wall unit (y+). 

 particle shape constant 

ψ fuel stoichiometric oxygen to supplied oxygen ratio 

ϵ Dissipation rate of  turbulent kinetic energy(J/(Kg/s) 

μ Viscosity(Pa.s) 

μT Turbulent viscosity(Pa.s) 

ν Kinematic viscosity(m2/s) or chemisorption stoichiometric factor 

ρ Fluid of particle density (kg/m3) 

ρOC apparent density of oxygen carrier particle 

σk ,σe Turbulence model coefficients 

τg stress tensor in gas phase (Pa) 

τw Shear stress(Pa) 

  

Abbreviation 

4PV/6PV Four Port Valve/ Six Port Valve 

BET Brunauer–Emmett–Teller 

BJH Barrett-Joyner-Halenda  

CCS Carbon Capture and Storage 

CFD Computational Fluid Dynamics 

CLC Chemical Looping Combustion 

CPFD Computational Particle Fluid Dynamics 

CREC Chemical Reaction Engineering Centre 

DOF Degree of Freedom 

FCC Fluid Catalytic Cracking  

FEM Finite Element Method 

FID Flame Ionization Detector 

GC Gas Chromatograph 

GMRES Generalized Minimal Residual 

HPOC Highly Performing Oxygen Carrier 

HRN High Reynolds Number 

IUPAC International Union of Pure and Applied Chemistry 

JCPDS Joint Committee on Powder Diffraction Standards 

LRN Low Reynolds Number  

MFC Mass Flow Controller 
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MTN Methanizer 

NNGM Nucleation and Nuclei Growth Model 

OC Oxygen Carrier 

OC-Ref Reference OC prepared by similar method of previous researcher 

PSD Pore Size Distribution 

RAM Random Access Memory 

RANS Reynolds Average Navier-Stokes equation 

RPM Rotation Per Minute 

STP Standard Temperature and Pressure (273.13K and 760 mmHg) 

SCM Shrinking Core Model 

TCD Thermal Conductivity Detector 

TPD Temperature Programmed Desorption 

TPO Temperature Programmed Oxidation 

TPR Temperature Programmed Reduction 

VR Virtual Reactor (Barracuda) 

XRD X-ray Diffraction 
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APPENDICES 

Appendix A Gas Chromatograph (GC) and Mass Balance 

GC Configuration 

Table A 1: Gas Chromatograph parameters used to analyze reaction product 

Parameters Properties 

Column (HaySep D 100/120) Length 9.1m, Film Thickness 2.0µm, Inner 

Diameter 2.0 mm 

Injection Temperature (oC) 200 

Flow Control Mode Flow 

Carrier Gas Argon 

Total Flow (ml/min) 20 

Purge Flow (ml/min) 3 

Oven Temperature Program Rate 

(oC/min) 

Temperature 

(oC) 

Hold Time 

(min) 

- 50 4 

20 200 18.5 

[TCD] [FID] 

Temperature (oC) 200 230 

Makeup Gas Argon H2 

Makeup Flow (ml/min) 15 15 

Flame n/a H2 40ml/min 

Air 400 ml/min 

Current (mA) 30 (-ve polarity) n/a 

Sample Actuator Program (Relay91) Time (min) Value 

 0.00 0 

0.01 1 

0.5 0 
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Figure A 1 is an gas chromatograph example established by injecting 2ml syngas. The syngas 

contains 50v% H2, 20v%CO, 10v%CH4, 20%CO2. 

 

 

Figure A 1: Typical Gas Chromatograph of a syngas sample 
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GC Calibration  

 

Figure A 2: Gas chromatograph calibration, H2 is calibrated using TCD and CO, CH4, CO2 are 

calibrated using FID 
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Mass Balance 

Amount of feed, 𝑛𝑓𝑒𝑒𝑑(𝜇𝑚𝑜𝑙) =
𝑉𝑓𝑒𝑒𝑑(𝑐𝑐)×𝑃𝑖𝑛𝑗(𝑝𝑠𝑖)×6870.75

𝑅(
𝐽

𝑚𝑜𝑙.𝐾
)×𝑇𝑖𝑛𝑗(𝐾)

 

where, Vfeed is gaseous feed volume, R is gas constant, Pinj and Tinj are pressure and temperature 

respectively of gas injector which is typically at room temperature and pressure.  

 

Initial Argon in reactor,  𝑛𝑅−𝐴𝑟(𝜇𝑚𝑜𝑙) =
𝑉𝑅(𝑐𝑐)×𝑃𝑖𝑅(𝑝𝑠𝑖)×6870.75

𝑅(
𝐽

𝑚𝑜𝑙.𝐾
)×𝑇𝑅(𝐾)

 

where, VR is reactor volume, PiR is initial reactor pressure and TR is reactor temperature  

 

Initial Argon in vacuum box, 𝑛𝑉−𝐴𝑟(𝜇𝑚𝑜𝑙) =
𝑉𝑉(𝑐𝑐)×𝑃𝑖𝑉(𝑝𝑠𝑖)×6870.75

𝑅(
𝐽

𝑚𝑜𝑙.𝐾
)×𝑇𝑉(𝐾)

 

where, VV is vacuum box volume, PiV is initial vacuum box pressure and TV is vacuum box 

temperature.  

 

Final gas amount in the reactor, (𝑛𝑅−𝐴𝑟 + 𝑛𝑃𝑅) (𝜇𝑚𝑜𝑙) =
𝑉𝑅(𝑐𝑐)×𝑃𝑓𝑅(𝑝𝑠𝑖)×6870.75

𝑅(
𝐽

𝑚𝑜𝑙.𝐾
)×𝑇𝑅(𝐾)

 

where, PfR is final reactor pressure. 

 

Product in the reactor, 𝑛𝑃𝑅(𝜇𝑚𝑜𝑙) =
𝑉𝑅(𝑐𝑐)×(𝑃𝑖𝑅−𝑃𝑓𝑅)(𝑝𝑠𝑖)×6870.75

𝑅(
𝐽

𝑚𝑜𝑙.𝐾
)×𝑇𝑅(𝐾)

  

Total gas amount in the system, 𝑛𝑇 = 𝑛𝑅−𝐴𝑟 + 𝑛𝑃𝑅 + 𝑛𝑉−𝐴𝑟  

 

Fraction of products in the vacuum box after opening the reactor, 𝑓𝑃 = 1 −
𝑛𝑅−𝐴𝑟+𝑛𝑉−𝐴𝑟

𝑛𝑇
 Total gas 

amount in 1 ml sample loop, 𝑛𝑆𝑇 (𝑢𝑚𝑜𝑙) =
𝑉𝑠(𝑐𝑐)×𝑃𝑓𝑉(𝑝𝑠𝑖)×6870.75

𝑅(
𝐽

𝑚𝑜𝑙.𝐾
)×𝑇𝑠(𝐾)

 

Where, PfV is final vacuum box pressure, Ts is smaple loop temperature which is recommended to 

keep as same as vacuum box temperature TV. 

 

Product in 1ml sample loop, 𝑛𝑆𝑝 (𝑢𝑚𝑜𝑙) = 𝑛𝑆𝑇 × 𝑓𝑃 

 

Amount of “i” compound in reactor product, 𝑛𝑃𝑅−𝐶𝑖 (𝑢𝑚𝑜𝑙) = 𝑛𝑃𝑅 ×
𝑛𝑠𝑝−𝑐𝑖

𝑛𝑠𝑝
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where, nsp-ci is the µmol amount in 1ml sample loop. This data is collected from calibrated GC 

system.  

 

These calculations are essential to establish material balance and to analyze reaction performance 

for a certain condition. 

Appendix B Oxygen Carrier (OC) Preparation Equipment  

Preparation of the OC-Ref and HPOC 

Precursor impregnation over the support 

 

Figure B 1: Necessary equipment for precursor impregnation 

 

A single batch preparation considers 20g γ-alumina in a Buchner flask as presented in Figure B 1. 

Prior to the metal impregnation, γ-alumina is dried under vacuum condition for at least for 2hr at 

200ºC to ensure the removal of all water moisture from the γ-alumina pore. Reaching 200ºC should 

follow 5ºC/min or less ramp to avoid particle fracture due to sudden evaporation of moisture. The 

temperature can be controlled using hot-plate magnetic stirrer system.  
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Once moisture removal is done and the system is at ambient temperature under vacuum condition, 

it is ready for injection of precursor solution. A sample lock is used in injection syringe system to 

control the precursor flow as drop wise. Stirring must be continued during the precursor 

impregnation as if the particle does not get wet. Once the complete precursor is injected it is kept 

under vacuum for at least 30 min. Sample is collected by equalizing pressure to the atmosphere. 

The sample is then collected in a ceramic evaporating dish as shown in Figure B 2b and kept in a 

furnace (Figure B 2a)  with drying temperature program as described in CHAPTER 5. 

 

Following drying step, the sample is collected into a small fluidized bed system (Figure B 2c) and 

installed into the same furnace. Both inlet and outlet of the fluidized bed is kept outside the furnace 

via the exhaust port. A 10%H2-Ar and air is flowed via inlet to reduce and calcine respectively at 

fluidized bed condition. In preparation of OC-Ref, 750ºC temperature was used for both reduction 

and calcination following a certain temperature program. 

 

 

Figure B 2: Equipment used for drying, reduction and calcination steps 

Preparation of the HPOC 

The OC-Ref is further treated to circumvent the undesirable formation of NiAl2O4 in the OC-Ref, 

additional treatment steps were implemented in the present study as follows: a) the OC was further 

treated in a tube furnace (Thermolyne 21100) with 10% H2 balanced with Ar, b) the temperature 
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of the furnace was increased using a 15ºC/min ramp b) once 900ºC reached, this temperature was 

kept for 1h, c) the resulting OC was calcined at 650ºC.  

Figure B 3  depicts an appearance of OC-Ref and HPOC. After the treatment to reduce nickel 

aluminate, the HPOC pigment appears as green olive where OC-Ref pigment was blue. 

 

Figure B 3: Appearance of OC-Ref and HPOC after preparation 
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