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Abstract

Three Essays on Intensive Care Unit Capacity Planning

by Felipe Fontes Rodrigues

The Intensive Care Unit (ICU) is a resource-intensive, costly environment. Data gathered from
patients during their stay in the ICU has traditionally been used for clinical purposes, but can
have a significant impact on healthcare capacity planning and patient flow. There is a need to
study how metrics collected in Canadian ICUs, such as the Multiple Organ Dysfunction
Syndrome (MODS) score and the Nine Equivalents of Nursing Manpower Use Score (NEMS)
can be used to improve capacity planning decisions. Using discrete-event simulation, statistical,
survival and machine learning models, 1 have built long- and short-term capacity planning
models to help hospital administrators better manage patient flows in the ICU. This dissertation
consists of three essays that explore the use of these metrics in ICU capacity planning.

In the first essay, I study the incorporation of the nursing manpower score NEMS into a
discrete-event simulation model to estimate optimal long-term capacity levels of critical care
beds in both Level 3 (ICU) and Level 2 (step-down) units. Using data from London Health
Sciences Centre (LHSC) University Hospital, I demonstrate the benefits of simulating patients’
daily NEMS changes as triggers for transfer to a step-down unit. This essay also examines ways
in which transfer to a step-down unit may improve patient length of stay (LOS), flow and costs.

In the second essay, | demonstrate that the ICU LOS literature shows the predominance
of multiple linear regression models for individual patients’ ICU LOS and outcome predictions
(e.g., death, discharge, long stay). Using data from LHSC’s two ICUs, I compare the
performances of well known statistical models with contemporary supervised machine learning
models in predicting such outcomes. I show that there is no dominant model in terms of
individual patients’ LOS predictions, but that outcome prediction (death, discharge, long stay)
performance can be improved by using supervised machine learning techniques.

In the third essay, I build on the use of NEMS to simulate realistic ICU LOS for long-
term capacity planning, and on the use of NEMS and MODS to predict individual ICU LOS in
order to improve short-term capacity planning. First, I fit a parametric survival model called the
Accelerated Failure Time (Weibull AFT) model with LHSC’s UH data. Then I analyze the

model’s hazard rates, event time ratios and LOS, both at the time of the patient’s arrival in the



ICU and after 3 days’ stay. Finally, I generate daily patient survival probabilities and pool them
to predict future expected ICU occupancy rates. Using survival probability pooling for short-
term capacity planning is a novel use of the ATF model, and may be used to accurately predict

ICU occupancy.

Keywords: Bed capacity planning, Patient flow, Step-down beds, NEMS, MODS, Length of
stay, Discrete-event simulation, Prediction models, Parametric Survival, Accelerated Failure

Time, Supervised Machine learning, Survival probability, Patient pooling.

ii



Statement of Co-Authorship

I hereby declare that this thesis incorporates material that is a result of joint research.

Essay 1 was co-authored with Drs. Gregory S. Zaric and David A. Stanford.

Essay 2 was co-authored with Drs. Gregory S. Zaric and John G. Wilson.

Essay 3 was co-authored with Drs. Gregory S. Zaric and John G. Wilson.

As the first author, I was in charge of all aspects of these projects, including formulating
research questions, literature review, research design, model formulation and analysis, and
preparing the first and final versions of the manuscripts.

With the above exceptions, I certify that this dissertation and the research to which it
refers, is fully my own.

This dissertation includes 3 original papers, the first of which was published in 2017 and
is reproduced in chapter 2: F. Rodrigues, G.S. Zaric, D.A. Stanford, Discrete event simulation
model for planning Level 2 “step-down” bed needs using NEMS, Operations Research for

Health Care, 2017, doi.org/10.1016/j.0rhc.2017.10.001.

iii



Epigraph

“So that thou incline thine ear unto wisdom, [and] apply thine heart to understanding;

Proverbs 2:2

"..That knowledge, grounded on accuracy, aided by labour, and promoted by perseverance,
will finally overcome all difficulties, raise ignorance from despair,
and establish happiness in the paths of science."”
Book of the Work,
Grand Lodge of A.F. & A.M. of Canada in the Province of Ontario, 2017
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Chapter 1

Introduction

ICU beds are among the most expensive resources in a hospital, costing more than $3,500/day
([1, 81]). As a result, hospitals strive to find a balance in capacity that allows them to fulfill
demand, while keeping costs under control ([3, 4, 5]). Congestion caused by insufficient capacity
creates overstay and triggers "off-service", which refers to transfer to a ward other than the one
intended for the patient. Overstays are costly ([109]) and can be detrimental to patient health
([7]).Oft-service, meanwhile, creates clinical mismatch with staff, and causes delays and
coordination issues ([8]). It is, therefore, natural for hospital administrators to look for cost
savings in the ICU through better resource management [71, 10, 13, 52].

Canadian hospitals often experience higher utilization rates than their North American
counterparts ([79]). In the ICU, high utilization entails high costs, as there is usually a one-to-one
patient/nurse ratio compared to a five-to-one ratio on the wards. Given that the ICU entails the
highest level of care in any given hospital, nursing workloads serve as a good proxy for a patient
readiness to step down from the ICU.

In Ontario, two measures are collected daily from ICU patients: the Nine Equivalents of
Nursing Manpower Use (NEMS) score ([33]) and the Multiple Organ Dysfunction Syndrome,
(MODS) score ([59]). NEMS is composed of nine items:

1. Basic monitoring: hourly vital signs, regular record and calculation of fluid balance
Intravenous medication

Mechanical ventilatory support

Supplementary ventilatory care: breathing spontaneously through endotracheal tube
Single vasoactive medication

Multiple vasoactive medications

Dialysis

el T A R B

Specific interventions in the ICU: such as, endotracheal intubation, introduction of a
pacemaker, cardioversion, endoscopy, emergency operation in the past 24 hours, gastric
lavage; routine interventions, such as, X-rays, echocardiography, electrocardiography,

dressings, introduction of venous or arterial lines, are not included



9. Specific interventions outside the ICU: such as, surgical intervention or diagnostic
procedures; the intervention/procedure is related to the severity of the illness of the

patient and makes an extra demand upon manpower in the ICU

Given that NEMS can be used as a proxy for patient readiness to step down to a lower level of
care, this makes it an ideal parameter for LOS simulations and capacity planning. MODS, on the
other hand, is an organ severity score. It tracks the degree of dysfunction of six vital organs, from

"none" to "severe", and is composed of the following:

1. Lungs: a respiratory ratio measured as PaO2/FiO2
Kidneys: serum creatinine level

Liver: serum bilirubin level

Heart and vascular system: pressure adjusted heart ratio

Blood: platelet count

AN O

Brain: Glasgow coma score

We hypothesize that MODS and NEMS may be used to estimate a patient’s LOS in the
ICU. Ny using these measures, we may not only estimate ICU capacity requirements but also
predict patient LOS, which, in turn, can help schedule staff, elective surgeries and downstream
bed allocation.

At the London Health Sciences Centre, patients discharged from the ICU are sent directly
to the wards, which represents a flow of patients from the highest level of care to the lowest. This
flow creates long stays in the ICU as patients remain in an ICU bed until they are healthy enough
to go to the ward. Hospital administrators have thus proposed creating an intermediary "step-
down" unit in which patients who no longer require ICU care but are not yet ready for transfer to
the wards may be cared for. The aim is to shorten ICU LOS in order to allow for the faster
release of beds for patients in the greatest need. Estimating step down was a critical issue in
properly planning the capacity of the new step-down unit as well as in assessing the appropriate
capacity of the ICU. As such, I approach the estimation of ICU LOS (and consequently, step
down) from several different perspectives, which are explored in the following chapters.

In Chapter 2, I address the ICU long-term capacity and resource allocation problem by
developing a a discrete-event simulation model that estimates Level 2 bed needs for LHSC’s

University Hospital. There are many studies that approach hospital long-term capacity issues,



using either queuing networks (e.g. [26, 30, 18, 70]) or discrete-event simulation (e.g. [20, 88,
97]). My model extends the literature as it includes the entirety of the hospital’s inpatient flow to
model overstay and off-service. I also include the ICU’s daily stochastic flow based on NEMS to
simulate patients health progression over time, triggering either the patient’s stay for another 24
hours, step down or death. I found that including daily NEMS measuring creates a realistic
simulation of patient LOS, which, in turn, allows for more precise long-term capacity planning.
My results show significant gains in terms of patient flow increase, reduction of overstay and
off-service and overall cost reduction.

In Chapter 3, I approach the estimation of step-down times via LOS and patient outcome
(discharge, death, long stay) prediction models. The current literature relies heavily on multiple
regression models using acute physiology scores such as APACHE for covariates (e.g. [61, 78,
112]). To predict patient outcomes, I develop several prediction models based instead on MODS
and NEMS measures, which are collected by Canadian hospitals upon the patient’s arrival in the
ICU. My goal is two-fold: to accurately predict LOS and patient outcomes via MODS and
NEMS; and to compare and define the best performing ICU LOS prediction models. The models
were built using conventional statistical methods, such as linear regression and parametric and
non-parametric survival models. I also explore the use of supervised machine learning models,
such as CART, Random Forests, Support vector machines and Neural networks. My results
suggest that mortality and long stay may be more accurately predicted using supervised machine
learning rather than logistic regression. With regard to LOS predictions, I find no single to be
dominant model in all performance metrics.

Chapter 4 also deals with ICU LOS predictions, but focuses on short-term capacity
planning. The literature recognizes that predictions made upon arrival in the ICU may be
improved by being updated later during the patient’s stay and by updating various severity scores
(e.g. [31, 9]). I use an Accelerated Failure Time (AFT) model to handle the updating model of
the LHSC University Hospital ICU at days 1 and 3. Using MODS and day 3 NEMS measures, [
show that day 3 LOS predictions provide better model fit in terms of residuals, but have smaller
benefits in terms of performance metrics such as R?, MAE and RMSE. In this chapter I also
develop tools for aggregate prediction of ICU demand. Using the same AFT model fitted with
MODS and NEMS day 1 data, I produce individual patients’ survival functions and estimate
their survival probabilities over time. Then I pool the survival probabilities into daily patient

cohorts to predict short-term ICU bed demand. Performance metrics demonstrate the superior



accuracy of the AFT model in predicting the LHSC University Hospital’s aggregate 1CU

demand, with the additional benefit of providing meaningful hazard rates and event time ratios.
In the final chapter, I summarize the main results and managerial insights of each ICU

capacity planning model. I also propose new avenues for research and highlight policy

implications of the adoption of my models by ICUs across Canada.



Chapter 2

Discrete event simulation model for planning Level 2 “step
down” bed needs using NEMS

Abstract

In highly congested hospitals it may be common for patients to overstay at Intensive Care Units
(ICU]) due to blockages and imbalances in capacity. This is inadequate clinically, as patients
occupy a service they no longer need; operationally, as it disrupts flow from upstream units; and
financially as ICU beds are more expensive than ward beds. Step-down beds, also known as
Level 2 beds, have become an increasingly popular and less expensive alternative to ICU beds
to deal with this issue. We developed a discrete event simulation model that estimates Level 2
bed needs for a large university hospital. The model innovates by simulating the entirety of the
hospital’s inpatient flow and most importantly, the ICU’s daily stochastic flows based on a
nursing workload scoring metrics called "Nine Equivalents of Nursing Manpower Use Score|"
(NEMS). Using data from a large academic hospital, the model shows the benefits of Level 2

beds in improving both patient flow and costs.'?
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2.1 Introduction

Contemporary hospitals in developed countries strive to provide the best possible patient care
while keeping costs at reasonable levels ([28, 29, 30]). Hospital beds are too costly to remain
idle, while insufficient beds can be detrimental to in patient care ([31]). Critical care in particular
is very expensive: in the USA and Canada, ward beds cost as much as $1,000/day while critical
care beds surpass $3,500/day ([32, 81]).

The University Hospital (UH|) campus of the London Health Sciences Centre (LHSC|)
is a 400 bed hospital responsible for approximately 6,200 surgeries, 60,000 emergency visits,
300,000 ambulatory visits and 17,000 inpatient admissions per year ([34]). It routinely
experiences bed utilization rates above 85% which are high compared to the North American
average of 67.6% for comparable sized hospitals ([79]). When the wards at UH become
congested there is pressure on the Medical-Surgical Intensive care unit (MSICU)) to take one of
two actions: hold some patients in ICU longer than they care (“overstay”), or transfer some
patients to a ward other than their intended one ("off-service"). Overstay creates a ripple effect in
upstream units such as the Operating Room (OR|) and the Emergency Department (ED)),
resulting in a disruption in patient flow upstream, delayed surgeries and lengthy ED visits. Off-
service is sub-optimal clinically because of staff specialization, such as intensivist nurses and
physicians. Off-service is also sub-optimal operationally because specialist doctors must visit
different wards to see their patients, creating delays and coordination issues. Thus, off-service
treatment should be avoided whenever possible ([36]). LHSC estimates that up to 30% of
patients in the specialized Multi-Organ Transplant unit are off-service patients.

To improve patient flow, provide adequate care and reduce costs, UH intends to
implement an intermediary care unit between the MSICU and its downstream wards, called
"step-down" or, "Level 2" unit (L2]). These wards usually do not support ventilation, but they
can still provide some organ support (see Table 2.1]). They are less costly in technology and in
the patient/nurse ratio, typically two patients per nurse rather than one-on-one found in ICU.
Among UH’s primary concerns is the determination of the ideal capacity a new L2 unit should

have if such unit were to be employed.



This research assesses the impact of step-down beds on a number of hospital metrics
including throughput, length of stay (LOS]), “ off-service” and cost. We develop a DES| model
to analyze a hospital’s L.2 bed needs that incorporates the changes in ICU patient health through
time, where patient health is modeled by the NEMS. We address the following research

questions:

1. What is the impact of a L2 unit on throughput, off-service, inpatient LOS and cost?
2. What is the optimal allocation of MSICU and Level 2 beds for UH?

2.2 Literature Review

2.2.1 Research streams

There ares two main streams of literature related to bed capacity management and planning:

queuing models and discrete-event simulation (DES) models ([24]). Queuing models range from
analytical queuing methodology such as the use of the M / M / 1 ([49]) and Erlang loss models
([48, 86]) to the use of complex network models ([30, 26, 43, 70]). [49] presents a survey of this

stream of literature, and taxonomies have been devised by [46, 47, 24].
2.2.2 Discrete Event Simulation in Health Care Capacity Management

DES is a popular alternative to queuing models because it is possible to study applications with
large scale and scope and to relax many of the assumptions necessary in queuing models. The
DES literature most often focuses on a single unit of a hospital (e.g. ED, OR) and/or on a single
type of patients (e.g. trauma, surgery, cardiac). Research is usually focused on designing a new
patient flow strategy (early transfers, faster service, better schedules) often in combination with
structural improvements, such as pooling, or increased capacity. For example, [49] tested pooling
respiratory patients into a single unit similar to a L2 unit. [50] found pooling to show significant
improvements in patient throughput and flow balance. [88, 86] share those findings, but stress
that pooling patients seems to be particularly beneficial in high variance service time settings
such as ICU’s. [97] simulate a high dependency unit (HDU) and they found that pooling alone
only managed to reduce transfers/off-service but kept similar throughput and utilization levels.

They could only achieve better results when pooling was combined with earlier stepping-down



of long stay patients. [105] found that capacity increase alone is not enough to stabilize OR
patient flows, often requiring faster service times as well. Comparable results are found by [55,
56, 57] in emergency department settings. [58, 59, 60] investigated congestion by smoothing
surgery schedules, which enabled performance gains in ICU utilization, LOS and off-service.
[64, 62, 8, 7, 65] suggest that highly congested health care systems may trigger other
responses—such as early discharges/transfers/off-service—in order to accommodate higher

demands, often with negative results.
2.2.3 Contributions of this paper

Our model attempts to correctly represent the complex flow and interactions present in modern
general hospitals without some of the simplifications found in the literature. Our DES model
includes “bounce-backs™ (patients being transferred back from wards to units upstream),
overstay and off-service endogenously. In other words, those phenomena are consequences of
congestion as opposed to exogenous parameters of the simulation. Thus, we are able to observe
congestion and the impact of changes in capacity and bed mix on congestion. We find a clear
trade-off between added capacity and changes in bed mix that might otherwise be absent in
previous models due to simplifying assumptions. A model that does not include all these
characteristics may provide little help in capacity planning problems.

In addition, we include in the ICU simulation the patient’s daily health changes in the form of a
death/NEMS scoring routine. This stochastic process provides a precise, realistic simulation of

an ICU patient and endogenously creates reliable LOS for bed capacity purposes.

2.3 Materials and Methods

2.3.1 [Initial Steps

The first step of the research was to meet with several managers at LHSC to understand the
problem and agree upon stakeholder involvement as suggested by [90]. The research objective
was defined during the first three exploratory meetings and validated after an initial research
proposal draft was presented. The research proposal was reviewed and approved by ethics boards

of LHSC and Western University. Management at LHSC were highly involved with the research,



periodically revising goals and methods and validating each step to ensure meaningful and

actionable results.

2.3.2 Model Overview

We built the DES model using the software package Simul8®. This software was chosen for
three main reasons. First, it has become a popular choice in the healthcare DES literature ([5, 77,
92]). Secondly, its ease of coding allows for flexible modeling, and it features a graphical
interface that plays an important role in conveying results to multiple stakeholders. Thirdly, and
because of the former two, our institution has experience in using this software for healthcare
DES research.

We built the model representing the current capacity allocation of UH as a baseline
scenario (Figure 2.1]; for a detailed model, see 6.1]). There are six entry points for inpatients:
Emergency Department (ED), Operating Room (OR), Clinics, Victoria Hospital (the other major
hospital in the LHSC system), OneConsult (inpatient transfers from other hospitals outside of the
LHSC system), ADT (Admission/Discharge/Transfer|). ADT is is a mock entry point the
hospital uses to temporarily admit patients while they are not assigned a bed in a ward. Each
entry point has its own inter-arrival time distributions (see 6|). Inpatients flow from the entry
points to the remaining units. There are two independent Level 3 units (MSICU and Cardiac-
Surgical Intensive Care Unit (CSRU]), three existing Level 2 units (tailored to other specific
patient groups) and twelve specialized wards (Table 6.4]). Patients exit the hospital via three
routes: Discharge, “Signed Out”, or Death.

Since the level of care is closely related to patient/nurse ratio, LHSC has historically used
nursing workload as a proxy for patient readiness to step down to a lower level of care. As part
of the MSICU’s routine, every patient is scored daily in a 56 point scale known as "Nine
equivalents of nursing manpower use score" or "NEMS" ([70]). The NEMS gives a measurement
of the workload a nurse has for each patient over time and is closely related to patient health
because as the patient’s health improves, less nursing attention is needed, resulting in a lower
NEMS. Empirically, LHSC considers a score below 10 to be a "Ward type" patient; scores
between 11-25 would be "L2 type" patient, and from 26-56 an "ICU type" patient (see Table

2.10).

2.3.3 Patient Flow Data



The model was fit using the most recent one year of data in which UH’s bed allocation was
stable (i.e., same number of beds in all units over the entire year), from December 1% 2013 to
November 30"™ 2014. Data was gathered from the hospital’s patient management system,

including:

1. Inpatient arrivals: patient registry number, age, sex, diagnosis, entry point, exit point,
service at arrival, service at discharge, discharge category (discharge, death, transfer),
dates and time of arrival and of discharge.

2. Inpatient Transfers: all of the above plus the date and time of entry and of exit of patients
into each unit of UH, origin and destination unit.

3. Hospital bed capacity: number of available beds in each unit during the research period

4. Nursing workloads: patient registry number, age, sex, diagnosis, discharge category
(discharge, death, transfer), time and daily NEMS measurements at MSICU

5. Costs: Estimated daily bed costs at each unit

We estimated length-of-stay (LOS) distributions for each unit, patient outcome distributions and
patient transfer matrix to represent transitions between hospital units. Note that LOS is ward-
specific but does not depend on patient type. For all cases, several distributions were considered
([20]) and chosen on basis of Akaike information criterion(AIC|, [3]) and Bayesian information

criterion (BIC|, [95, 53]), as is common in this line of research (e.g. [75, 86]).
2.3.4 Transition Probabilities

There were 17,380 patients representing 42,012 internal movements (an average of 2.41
records/patient) represented in the patient flow matrix (Figure 6.2]). Each transfer has an unique
destination. However, if the intended unit is full, then the practice is to transfer the patient to an
alternate unit, causing off-service care. In this way, individual off-service decisions are
determined probabilistically. Deaths from the MSICU were modeled separately using a
logarithmic function (Figure 6.4]).

During the patient’s stay at MSICU, patients receive a NEMS upon arrival to MSICU,
and a revised score every morning during their stay in MSICU. Once the patient reaches a
NEMS consistent with a L.2 type, she attempts to exit the MSICU and reach the new L2 unit. In
the baseline scenario, patients exit MSICU if they reach a ward type NEMS.

10



2.3.5 Cost Data

LHSC supplied cost per patient-day for each level of care (Table 2.1]) as well as capital
expenditure estimates for 8 and 15 L2 beds (originated for a previous investment in another site)
. We calculated annualized capital expenditures for the entire range from two to 28 L2 beds by
linear extrapolation and 10 year linear depreciation, consistent with Canadian accounting

practice (Table 6.6).

2.3.6 Simulation scenarios and runs

We evaluated the following scenarios:

1. Capacity increase with a L.2 unit: Adding a range from 2 to 20 L2 beds into the existing
baseline model.

2. Capacity re-allocation: Maintain a total of 25 beds while shifting capacity from MSICU
into the new L2 unit.

3. Capacity re-allocation: Increase the total to 30 beds while shifting capacity from MSICU

into the new L2 unit.

Each configuration of each scenario was simulated 200 times, using a one year warm-up period
followed by a one year data collection period. A different random seed number was used for
each run. Trial run times varied from 20 to 40 minutes using an Intel® Core 15-2400 CPU

3.10GHz 8GB RAM server.

2.4 Results

2.4.1 Model Validation

Our simulation model captures the individual physicians’ and nurses’ decisions to transfer or
discharge individual patients via a macro approach, using LOS distributions for each ward and a
probabilistic transition matrix for each patient movement. To validate this approach, we
compared patient arrival, throughput, LOS and cost results from the baseline simulation with
aggregate empirical data and cost data from publicly available documents such as LHSC’s

financial statements [67] and the Canadian Institute for Health Information yearly reports [29].
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The model is accurate in reproducing entry data, MSICU LOS and cost data (Table 2.2]).
Average throughput is within 1% of empirical data, while total LOS is within 0.4%. MSICU
LOS is slightly high (2.9%) but with a lower standard deviation, resulting in no statistically
significant difference compared to the empirical data. We concluded that the simulation model is

sufficiently valid to address the research questions. Results for all scenarios are summarized in

Table 2.4].
2.4.2 Scenario 1: Capacity increase with a New L2 unit

We evaluated the addition of extra beds in a general-purpose “net new capacity” step-down
ward. We simulated a range of 2 to 20 L2 beds in a dedicated unit immediately downstream from
the MSICU and did not alter the capacity of the MSICU (25 beds). We first assessed the impact
of the new capacity on off-service utilization. In the base case (i.e. no new capacity), the existing
specialized Level 2 units (MOTP|, CCU|, NOBS|) have a combined off-service load of 573
patients/year. This value drops to 225 patients/year as we add L2 beds. In the base case, the
Level 3 units (MSICU and CSRU) have a combined off-service of 621 patients/year. As L2 beds
are added, the off-service reduces to approximately 110 patients/year, representing a reduction of
82%. This reduction may represent a significant improvement in terms of patient care, as
approximately 500 more Level 3 patients are now able to be transferred to their intended wards.

Next we evaluated the impact of the new L2 beds on throughput. The addition of an L2
unit increases MSICU throughput up until 8-10 new beds where it stabilizes at approximately
1,068 patients/year (Figure 2.2]). The L2 unit’s throughput grows until 12-14 beds are added,
reaching 730-732 patients/year. This suggests that until the L2 unit capacity reaches 12 beds,
MSICU is still hosting “step-down ready” patients but after that point there is little clinical need
for extra beds.

Utilization and LOS have a similar pattern (Figure 2.3|). The MSICU has a high initial
utilization rate (above 85%) that drops dramatically as L2 capacity is increased, eventually
stabilizing around 29% at 12 beds. As L2 beds are added, there is a rapid decline in MSICU LOS
until we reach 12 beds, where it stabilizes at approximately 59 hours (Figure 2.4|). Moreover,
the percentage of patients who stay more than 21 days in the MSICU reduces to approximately
zero after 8 beds. This suggests that additional L2 capacity allows the MSICU to return to its

clinical role of intensive care.
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Finally, we find that a maximum of 29 total beds (MSICU and L2 beds combined) are ever
occupied, which exceeds MSICU’s current capacity of 25 beds. This supports further
investigation of increased capacity in MSICU in Scenario 3 (Section 2.4.4]).

2.4.3 Scenario 2: Capacity re-allocation

This scenario involves creating a new L2 unit, but rather than creating new capacity, beds in the
existing MSICU would be closed and reallocated to the L2 unit. This scenario would apply in
case the hospital does not have additional space to create a new L2 unit or budget for net new
beds. Off-service loads are slightly higher than in Scenario 1. The minimum off-service load is
reached when there are 15 MSICU and 10 L2 beds, leading to total L3 off-service load of 150
instances per year. This figure represents an improvement in terms of patient care, as
approximately 470 patients can now be transferred to their intended wards. Off-service
performance then deteriorates as more beds are shifted from MSICU to the L2 unit. MSICU
becomes a bottleneck and upstream units are forced to send off-service patients to CSRU. This
situation represents a clear clinical misfit, as CSRU is a cardiac surgery unit, where both nurses
and physicians are heavily specialized in cardiac care. The treatment of patients intended for
MSICU in CSRU could result in deterioration of patient care and disruption of the cardiac
surgery patient flow.

MSICU throughput improvements start when there are 4 beds reaching an optimal value
of 1,050 patients/year when there are 15 MSICU and 10 L2 beds (Figure 2.2]). The L2 unit
reaches a peak throughput of 720 patient/year when there are 13 MSICU and 12 L2 beds. This is
similar to the maximum throughput achieved when we evaluated net new capacity in Scenario 1.
After that point, as MSICU beds are converted into L2 beds, the smaller number of MSICU beds
becomes a bottleneck to upstream units such as the ED and OR. Patient flow reduces
significantly and blockage becomes more frequent in those units due to high utilization rates at
MSICU. As the L2 unit is a dedicated downstream unit of MSICU, its throughput is also reduced
after 12 L2 beds.

MSICU LOS begins to improve after creating 4 L2 beds. The minimum LOS of 60.66
h/patient occurs when there are 13 MSICU and 12 L2 beds, representing a 63% improvement
relative to the base case. As more capacity is shifted to L2 beds, the LOS rises back to the 70

h/patient mark. This reduction represents a gain of at least 2,000 patient-days/year in the
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combined MSICU and L2 capacity. This confirms our earlier finding in Scenario 1: a .2 unit
provides opportunity for MSICU to go back to its clinical role, with minimum overstay.

This result makes sense due to the drastic reduction in long-stay patients in the MSICU (MSICU
LOS above 21 days—Figure 2.5]). Those patients often reach a L2 NEMS, triggering their
stepping-down into the New L2 unit. The result is higher availability of MSICU beds (Figure

2.3| (b)) for patients originating from upstream units, thus improving patient flow.
2.4.4 Scenario 3: New capacity and capacity reallocation

In this scenario we evaluated reallocation of beds along with net new capacity of 5 beds. Off-
service loads are between the two previous scenarios, with lowest values within a range of 20 to
16 MSICU beds. MSICU throughput is stable at 1,050 patients/year anywhere from 20 to 16
beds reaching a peak of 1.063 patients/year (Figure 2.2|), while L.2 throughput is stable within
the range of 10 to 18 beds, peaking at 720 patients/year. Therefore any mix from 20 MSICU and
10 L2 beds to 12 MSICU and 18 L2 beds have comparable results with the Scenario 2 while
providing a stable combined throughput. MSICU utilization rates are also significantly lower
than in the in Scenario 2, as seen in Figure 2.3|. With MSICU reaching a minimum slightly
below 40% (20 MSICU and 10 L2) and reaching a balanced utilization of approximately 45-47%
at 16 MSICU and 14 L2 beds.

Any mix from 20 MSICU and 10 L2 beds to 12 MSICU and 18 L2 beds yield
approximately 60h LOS, similar of the previous scenarios (Figure 2.4]). As in previous analysis,
the ability to step down long stay patients with low NEMS plays an important role in improving
patient flow (Figure 2.5]).

2.4.5 Costs

In all three scenarios a significant cost saving was possible relative to the current cost of
$3,500/patient-day in MSICU (Figure 2.6]). Combined MSICU and L2 costs decrease steadily in
all scenarios until they reach a minimum of $2,869.46/patient-day at 12 L2 beds under scenario
3. From that point on, under all scenarios, costs escalate, but never reach the current baseline
cost. This result can be explained by two factors. First, L2 operational costs represent only 57%
of MSICU’s. Initial increases in L2 capacity permit a timely step-down and immediate savings

occur. Second, after 12 L2 beds, the new L2 unit starts to have idle capacity. This is due to lack
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of demand in Scenario 1 and to MSICU constrained flow in Scenarios 2 and 3. Idle L2 beds

carry high fixed costs in the form capital expenditure, thus forming the upward half of the curve.

2.4.6 Increased arrivals

By increasing throughput capacity, the hospital may receive more patients. Thus, we simulated
an increase in the inpatient flow from ED and OR to see how well our optimal configurations
stand a hypothetical surge in demand. For Scenario 1, we focused on ED and OR, where
inpatients spend relatively little time waiting for their disposition from ED, or their scheduled
surgeries in OR.This is not the wait time to enter the ED, as we simulated only inpatient flow.
This wait is for patient disposition, i.e. the moment the patient is ready to receive a decision to
admit until the true admission and transfer to the intended location. A 10% increase in ED and
OR demand, representing an extra 1,200 patients/year, is enough to negate any gains achieved by
the introduction of net new L2 capacity (Table 2.3|).

Next, we focused on MSICU performance in Scenario 3. The inpatient surge is mostly
absorbed by MSICU and L2, reaching maximums of 1,300 and 930 patients/year respectively
(Figure 2.7] (a)). There is a gradual shift in the optimum bed mix to 16 MSICU and 14 L2 beds.
Utilization rates increase accordingly, reaching approximately 60% in the optimum throughput
bed mix (Figure 2.7] (b)). MSICU LOS changes little with the increase in ED and OR demand
(Figure 2.8|(a)). At 30% increase in demand, MSICU LOS rises to approximately 65
hours/patient. In terms of LOS, the optimal configuration shifts slightly to 16 MSICU beds and
14 L2 beds. Thus, the increase in inpatient volume does affect the values of MSICU patient flow
indicators but the optimal solution is robust to increased volumes.

Higher utilization in MSICU triggers congestion upstream. Particularly in the ED, at the
30% demand increase, there is an increase of 317% in the use of temporary ED beds (the ED
decant ward, with a capacity of 6 beds).

Combined MSICU and L2 patient-day costs remain similar even with a 30% inpatient
arrival increase (Figure 2.9| (a)), but the minimum shifts slightly from 18 MSICU beds and 12
L2 beds to 16 MSICU beds and 14 L2 beds. Figure 2.9] (b) shows that Scenario 3 had a robust
range in terms of total cost, with an approximate value of $14.5 million/year for a range of 18 to
12 MSICU beds and 12 to 18 L2 beds. In the 30% demand increase, however, total cost is
continuously decreasing, with the optimal mix costing an extra $4.7 million/year, or 33.4% more

than Scenario 3. This a direct result of MSICU’s diminishing capacity to absorb the increased
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demand. However, even a 30% increase in ED and OR volume in the optimal configuration is
not enough to return total MSICU and L2 cost to the level of the baseline scenario of $24
million, demonstrating the impact the L.2 unit has in UH’s cost structure (Figure 2.9 (b)).

2.4.7 Management Feedback

Preliminary results from this analysis were presented to a team of managers of LHSC in January
2017. The team consisted of the Vice President of Access and Flow, the Director of Clinical
Redesign, the Director of Critical Care, and the City-wide Chair and Chief of Medicine, among
others. Our research confirmed their intuition about the need for an L2 unit, but revealed
unanticipated findings in terms of the L2 unit’s ability to improve flow, reduce MSICU LOS
(63% from current levels) and reduce cost by approximately 40%. Implementation of the new [.2
unit is likely to occur in the near future.

The managers in attendance stated that our model was the first large scale DES model to
be used in UH. Our results led to questions about the need for a clinical study about the MSICU
long-stay population and their desired care pathway, as well as about UH’s capacity to deal with
increased demand. They concluded that our DES model provides support for further L2 capacity

studies in other LHSC sites as well, such as Victoria Hospital’s L2 clinical redesign.

2.5 Conclusions

We found that there are considerable performance gains to be made with the addition of a step-
down unit. In all scenarios, the optimal performance occurs when there are approximately 12 L2
beds yielding MSICU LOS of approximately 60 hours/patient, a cost reduction of 18% per
patient-day and 40% in total cost per year (see Table 2.4]).

It has been recognized for some time in health care simulation literature that
implementation does not necessarily follow the recommendations proposed by researchers ([79,
24, 90]). [41] report that from 59 articles surveyed in the literature, only 14 mentioned
implementation. Many reasons for this gap are possible, such as lack of client involvement, lack
of clear methodology and failure to communicate results properly. To avoid such problems, we
followed a general framework of the methodology based on previous literature ([83, 24, 41]) and
the | best practices ([86]). In particular, stakeholders were involved right from the beginning of

the study, validating and providing input in every step of the research.
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Our model has limitations. Our data represents only inpatient arrivals so our model does
not consider balking or reneging at any entry points. This means that all ED and OR arrivals are
admitted patients and must go through the system. We use a simplified model of the ED and thus
our model does not capture ED congestion. However, we believe that this does not have
significant impact on our analysis since ED arrivals that eventually visit MSICU are unlikely to
be turned down by UH due to their health status. Also, the Death/Stay/Step-down routine has a
minor drawback: once the patient is prevented from leaving MSICU due to blockage
downstream, the patient has to wait for the next morning to have a new chance to leave the
MSICU. In spite of this drawback, the model validation found accurate MSICU LOS.

There are several directions for further research. First, we will explore further the pooling
effects that one might have from merging inpatient wards and/or other specialized L2 units.
These units are all highly congested and susceptible to blockage, bounce-backs and grid-locks.
Also, we modeled all routing and discharge decisions between wards and other hospital units
probabilistically. An interesting avenue for future research would be to incorporate decision rules
for these occurrences. Second, we can use the data set to create predictive models for LOS based
on NEMS. These can then be used to create dynamic staffing models. Finally, we will develop
an analytical model that incorporates MSICU’s unique position in which it is squeezed between
ED/OR’s efforts to minimize wait times and the wards efforts to avoid re-admissions. This may

involve a combination of queuing and game theory.
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Table 2.1 Levels of care characteristics at LHSC

Level of care Bed characteristics Patient/nurse ratio Estimated cost
$/patient-day
1
1 Standard Ward bed: 3 or more to 1 $600
No organ support, no
ventilation
2 Step-down bed: 2to 1 $2,000

Support single failed organ
system, no ventilation
3 Intensive care bed: 1to1l $3.500
Invasive ventilation and
multiple organ support

1

Estimated cost provided by LHSC Management;

2

Nine equivalents of nursing manpower use score ([87])

18

NEMS
2

11 to 25

26 to 56
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Table 2.2 Output and Cost validation

Indicator Simulation Empirical data
-95% confidence Average 95% confidence

limit limit
Thr(?ughput 17,128.05 17,194.00 17,159.95 17380.00
(patients/year)
Average overall 6.84 6.87 6.90 6.90
LOS (days/stay) (129D
Cost of hospital $6,347.36 $6,345 .41 $6,343 .48 $6,123.00
stay (129D
Total operational $108.717.845 $109.103.,000 $109.488.155 $106 417,740
MSICU Average 162.12 164.24* 166.36 159 6*
LOS (hours) ’
MSICU Std Dev 174.13 177.96 181.80 2018
of LOS (hours) ’
MSICU Long 5.53% 5.26% 4.90%
stays (=504 5%
hours)

*P value and statistical significance:The two-tailed P value equals 0.5884

By conventional criteria, this difference is considered to be not statistically significant.

The mean of simulation minus raw input data equals 4.6400

Confidence interval: 95% confidence interval of this difference: From -12.2025 to 21.4825

Intermediate values used =0.5413

in calculations:

df = 1963

standard

error

difference = 8.572

20
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Difference

-1.07%

-0.40%

3.63%

291%

-11.81%

-0.27%
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Scenario

Table 2.3 Sensitivity in Inpatient flow

Wait for Disposition

Baseline

wait (h) std(h) <35
min

0.12 499 99%

25 MSICU and12  0.22 257  98%

L2
5% increase
10% increase
20% increase
30% increase

03 257 97%
1.13 634  94%
209 788 87%
26.67 50.1 55%

LOS
(h)
1.27

2.07

2.08
3.01
322
526

ED Decant

std
(LoS)
7.95

6.33

26

=1
hour
90%
84%

82%
75%
69%
52%

Queue for WC OR

wait (h) std (h)

0.35
0.75
1.01
128

1.26
1.03

1.03
1.69
1.98
224

=<1
hour
87%
93%

88%
79%
74%
69%

Total LOS

LOS

164.93
162.69

163.69

164.83
1652

173.25

std (h)

212.83
196.77

194.67
1942
1943

189.65
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Indicator Baseline
MSICU capacity 25
(beds)

L2 Capacity (beds) 0

Total Capacity 25
(beds)

Mean (beds) 19.1
Median (beds) 19
Mode (beds) 19
Max (beds) 25

Std. dev (beds) 328
Average utilization 76.40%
Max utilization 100%
Cumulative 21
frequency below

75%

Cumulative 25
frequency below

95%

LOS in MSICU (h) 164.24

Cost CAD $/patient- $3 477.44
day

Total Cost $24,019,830.00
MSICU+L2 CAD
$/year

Table 2.4 Scenario comparison

Scenario 1
25

12
37

144

14

14

29

4.02
38.92%

78.38%
=17

=25

60.37
$2.876.21

$14.909,503.75

30

Scenario 2

13

12
25

14.32
14

13

24

3.32
57.28%
96.00%
=16

60.66
$2,873.83

$14,760,363 .22

Scenario 3

18

12
30

1429
14

15

27

4.33

47.63%
90.00%
=17

=21

60.06
$2.,869 .46

$14,503,103.34



Chapter 3

ICU Length-of-stay prediction models based on NEMS and
MODS

Abstract

Length of stay (LOS|) is a critical metric for Intensive Care Unit (ICU]) resource
planning. If a hospital can estimate ICU patients’ LOS, then it can better schedule both staff and
elective surgeries and allocate beds to downstream wards. The "Nine Equivalents of Nursing
Manpower Use Score" (NEMS) | and “Multi-Organ Dysfunction Syndrome” (MODS) | score
are two commonly used metrics collected daily from ICU patients. Our objective is two-fold.
First, we predict patient outcomes (discharge or death) and ICU LOS using prediction models
based on NEMS and MODS scores that are assessed at the time of arrival at the ICU. Using data
from a large Canadian teaching hospital, we observe that NEMS and MODS behave differently
as predictors of LOS, depending on patient outcome (discharge or death). Second, we show how
several different techniques, including regressions, survival models and classification models,
perform in generating outcome and LOS predictions that can be used in short-term resource
planning. While logistic regression, random forest and super learner tended to dominate outcome

predictions, no model dominated in terms of LOS predictions.
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3.1 Introduction’

Intensive care beds are among the most expensive resources in a modern hospital, with costs
surpassing $3,500/day and accounting for a significant part of hospital operational costs ([76, 80,
50, 103]). ICU costs are strongly related to LOS ([109]), so it is natural that hospital
administrators look for cost savings in the ICU by better managing LLOS and discharge processes
([71, 10, 13, 52]). Many models have recently been proposed to help practitioners predict [CU
LOS (J[66, 109]). These rely predominantly on the Acute Physiology and Chronic Health
Evaluation (APACHE]) score, the Simplified Acute Physiology Score (SAPS]) and the
Sequential Organ Function Assessment (SOFA]) score ([76, 107, 108, 112]). In Ontario,
hospitals are required to collect MODS ([59]) and NEMS ([33]) data for reporting purposes, but
do not collect sufficient data to claculate APACHE, SAPS or SOFA. As a result, hospitals in
Ontario are compelled to rely on NEMS and MODS models for resource planning purposes
despite the fact that these are regression based and do not take advantage of modern machine
learning methods.

The two main goals of this study are, therefore:

1. To compare the predictive performance of conventional clinical ICU LOS prediction
models versus modern supervised machine learning models.
2. To develop ICU LOS and outcome models relevant to Canada using NEMS and MODS

metrics.

3.2 Literature Review

3.2.1 Common methodologies

The literature presents many different methodologies for ICU LOS prediction, such as simulation
([44]), Markov chains ([2, 45]), and multi-stage models ([46]); the most commonly used are OLS

multiple regression and GLM models ([108]). Only recently have machine learning models been

! This work was supported by: The Ontario Trillium Scholarship program (OTS); an Ivey International Centre for
Health Innovation (IICHI)/3M Canada MITACS grant; the Natural Sciences and Engineering Research Council of
Canada (NSERC), and the Universidade Federal do Parana (UFPR). These funding sources had no active role in the
study design, collection, analysis, or interpretation of data, the writing of the report or the decision to submit the
article for publication. This research is approved by Western University’s and LHSC’s Research Ethics Board under
the file # REB 105583.
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used in patient ICU LOS prediction ([16, 19, 32, 55, 93]). Different models have proven to be
useful in predicting ICU mortality and LOS ([110, 98, 109]). Regression models such as [110]
and [61] and, more recently, [57] have shown that most of the variation in LOS may be attributed
to patient characteristics, with hospital and intensive care unit characteristics playing a smaller
role ([57, 63, 110, 10, 13]).

An advantage of regression models is that they provide straightforward explanatory value
for the covariates, which is common in the ICU literature. However, there is no consensus as to
interaction terms, non-linear relationships and variable transformations, which makes it difficult
to interpret and compare such models ([108]). Machine learning models, on the other hand, have
their own strengths and weaknesses. Support vector machines, for instance, because of non-
linear kernels, can handle non-linear relationships with ease, but require careful calibration and
are prone to overfitting in larger data sets. Neural networks, meanwhile, have only performed
well with ICU data when trained in large data sets ([68, 99]). Classification and regression trees
tend to be more robust with regard to non-linear relationships and outliers, but are also prone to
overfitting ([17]). Ensemble methods, such as random forest and super learner, can alleviate
overfitting (often dominating regression models and classification trees), but lack explanatory

power ([84, 16]).
3.2.2 Challenge in prediction accuracy involves mortality

A common feature of ICU LOS prediction models is that covariates for acuity and morbidity
scores, such as APACHE, behave inversely with regard to patient outcome ([72, 61, 78, 82, 107,
108, 109, 1]). For example, ICU LOS increases amongst surviving patients and decreases
amongst deceased patients. Mortality is commonly found to decrease LOS prediction
performance ([76, 98, 107, 1, 112]), while survival is associated with a larger mean ICU LOS
([108]). Death in the ICU may be considered an endogenous omitted variable that may cause bias
in LOS prediction ([78]) and it has been suggested that prediction models need to account for
this phenomenon ([108, 1]). Moran and Solomon (2012) suggest using a treatment effects model
to account for the endogeneity of ICU mortality, while survival analysis models can handle
mortality as censored data.

Most regression models account for only 5-20% of the individual variation in ICU LOS
([9, 82, 108, 112]), although this is still statistically significant in predicting the likelihood of

long stay ([9]) and readmission ([11]). This is one reason why scholars are reticent to use such
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models to predict individual patient LOS ([66, 72, 73, 109, 1]) but confident to recommend them
for ICU benchmarking ([76, 75]).

3.2.3 Lack of uniformity in study design hinders model comparison

There is little uniformity with regard to study design ([62, 36]), particularly in terms of LOS
measurement and exclusion criteria; this makes study comparison somewhat difficult ([72, 62,
51]). Common exclusion criteria are age, minimum ICU LOS thresholds, burn patients, and
coronary artery bypass, cardiac valve or heart transplant patients ([71, 27]). Readmission is
treated differently depending on the study; it is included in some models and excluded from
others ([1, 51]).

Many independent variables have been proposed, with patient characteristics such as age,
sex, acuity and morbidity scores being the most common ([78]). Other variables include the type
of ventilation, surgery, diagnosis, organ function (e.g., respiratory, renal, hepatic, cardiovascular,
hematologic) and neurological dysfunction levels, all of which may be part of the most common
acuity scores ([87]). Newer versions of APACHE also include 116 detailed diagnosis groups, as
well as comorbidities such as cirrhosis, AIDS, and lymphoma. In some studies, minimum ICU
LOS is limited to 1 to 8 hours ([71, 78, 51]) while maximum LOS may be anywhere from 21 to
60 days (the latter equivalent to the 99th percentile) (e.g. [44, 10, 78, 73]). Minimum age
thresholds, meanwhile, vary from 14 to 18 years of age ([10, 98, 51]). Some studies also collect
race and geographical location ([10]), the hospital’s teaching status and size ([73]), LOS prior to

ICU time and Glasgow coma scores ([9]).
3.2.4 Mortality prediction

[98] developed a logistic regression model to predict mortality and stated that adding
measurements from day 2 to those from day 1 improved mortality prediction. [61, 78] built a
logistic regression model for mortality prediction with a data set of over 200,000 patients and
found APACHE, diagnosis, age, and surgical status and related interactions to be the most
important predictors. [82] also employed logistic regression for their mortality model using
80,000 ICU admissions in 23 Finnish ICUs. [87] is the only study we found that incorporates
MODS and NEMS. The researchers used a logistic regression model and found that MODS,

NEMS, age, diagnosis, and admission source were significant predictors of mortality for 8,800
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Canadian ICU admissions. [83, 84] show the dominance of the machine learning algorithm,
super learner, over other machine learning and logistic regression models as applied to a data set
of American and French ICU admissions. [83] and [93] found similar results using comparable
supervised machine learning algorithms. Superior prediction performance of machine learning
methods was also found within patient sub-categories such as cardiac surgery and trauma

patients ([4, 69]), an approach defended by [16].

3.2.5 LOS prediction

[112] developed a multiple regression model based on the APACHE classification system for
predicting ICU LOS with a cohort of over 130,000 patients from 45 U.S. hospitals. Their model
accounts for 21.5% of variation in ICU LOS across individual patients and 62% of variation
across [CUs. [107] compared APACHE IV, MPMO and SAPS 1II as predictors of ICU LOS in
11,000 Californian ICU admissions, finding APACHE to be the best LOS prediction model for
their patient cohort. [61] and [78] compared several regression models in a patient cohort of
230,00 and 111,000 Australian and New Zealand ICUs, finding that ICU mortality was
endogenous with respect to LOS prediction and that log-transformed LOS resulted in more
consistent LOS predictions. [108] performed similar comparisons with eight different regression
and survival models in a Dutch cohort of 32,000 patients. As in [61], they found significant
differences in LOS between survivors and non-survivors, suggesting endogeneity, and
recommended implementing log-transformed LOS to improve predictions. They also suggest
that Cox-PH and GLM log-link regression models yield the best performance ([108]). [42] used
logistic regression techniques in a cohort of 9 million Portuguese inpatients to predict long stays
(defined as 2 standard deviations from the mean). Their findings suggest that emergency
surgeries, comorbidities and hospital types significantly increase the chance of long stays.

[55] found support vector machines to be the best performing models for long-stay
predictions in their cohort of of approximately 14,000 patients. Their model used SOFA scores
data from the first 5 days of the ICU stay and had an AUC of 0.82 for long stays. Using a subset
of surviving non-prolonged stay patients, they suggest that support vector machines also
outperform other machine learning methods, such as CART and random forests ([55]). [68]
implemented automatic linear modeling and neural networks to predict cardiac surgery ICU LOS
in a small cohort of 185 patients. Neural networks explained 53-73% of training variation,

suggesting that Neural networks are better candidates for LOS prediction than conventional
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linear regression models. [104] develop survival regression trees to predict ICU LOS as they
tend to be easier for health practitioners to understand and interpret. Using data from the
Veterans Health Administration of approximately 20,000 admissions for congestive heart failure,
they show that regression trees, support vector machines and neural networks are able to account

for 58-68% of the variation in LOS.

3.3 Materials and Methods

3.3.1 Study design and patient population

Our research is a retrospective study of two ICUs at the London Health Science Centre (LHSC)),
a teaching hospital located in London, Ontario, Canada. The two ICUs are the Medical-Surgical
Intensive Care Unit (MSICU|) at the University Hospital campus and the Critical Care Trauma
Centre| (CCTC) at the Victoria Hospital campus. Both are adult intensive-care facilities with 25
and 30 beds, respectively, and they care for general medical, surgical, trauma, oncological,
neurosurgical, cardiovascular surgery and transplant patients.

Data was gathered from the Critical Care Information System (CCIS|) of Ontario’s
Ministry of Health from the period of January 1* 2015 to December 31* 2016. During that time,
a total of N = 4,758 patients were admitted to and dischraged from the two ICUs. Total LOS
ranged from 4 hours to 276 days (Table 4.1]). We define Total ICU LOS as the period of time
between the patient’s admission to and exit from the ICU (as the result of discharge or death).
We define Clinical LOS as the period between the patient’s admission to the ICU and the
physician’s disposition decision (i.e., readiness to transfer/discharge); this ranged from 4 hours to
190 days.

As is common in the literature (e.g. [78, 109]) for LOS prediction models, we excluded
cases in which total LOS was > 60 days; we also excluded patients transferred to external
ICUs. These exclusions resulted in N = 4,696 patients with a lower average of 5.1 days (sd = 7.1
days), as indicated in Figures 4.1 and 3.3|.

Based on the literature review of ICU LOS and patient outcome, predictor variables

collected upon patient admission to ICU were (see also Table 4.4):
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« MODS and its components as created by [59] (see full list in Appendix Table 8.1)),
which we categorized as suggested by [87], resulting in five distinct categories based on
scores of: 0; 1 to 4; 5to 8; 9to 12; 13 and above.

« NEMS and its components as created by [33] (see Appendix Table 8.2]), which we
sorted according to scores of: 0 to 22; 23 to 29; 30 and above, as suggested by [87].

« Patient characteristics: Sex, Age (less than 39; 40 to 79; 80 and above) as suggested by
[87].

» Admission characteristics: Campus, admission source, diagnosis group, patient category
(medical/surgical), emergency surgery, ward stay prior to admission, readmission to ICU

(same stay), and readmission to ICU (different stay).

For the mortality probability models, the binary variable "IsDeceased" accounts for
26.7% of the population. Following the suggestion of LHSC practitioners, long stays were
transformed into two separate binary variables, "IslongStay7" for stays longer than 7 days, and
"IsLongStay21" for stays longer than 21 days, which is the long-stay threshold used by LHSC.
Because long stays are the focus of these models, we decided to use the complete data set, i.e.
keeping the patients with stays > 60 days, thus N = 4,758. To avoid imbalance, we attempted to
calibrate the models to maximize the sum of sensitivity and specificity.

We also created a variable "Outcome3", as a categorical variable that includes three
distinct outcomes: discharged in less than 21 days; deceased in less than 21 days; and unknown
outcome with stay above 21 days (see Table 4.4]). ICU outcome was modeled based on patient
type (death, discharge) and type of LOS (> 7 days; or > 21 days). We modeled these as binary
variables “IsDeceased”, “IsLong-stay7”, “IsLong-stay21”, and also as a categorical variable

called “outcome 3" with three possible outcomes: discharge before 21 days; death before 21

days; and unknown outcome with LOS longer than 21 days.
3.3.2 Statistical analysis

ICU LOS was modeled both in raw format and log scaled (base 10). We used the statistical
analysis software R ([85]) to implement the following estimators, with parameters as specified in

Table 7.2 and 3.3]:

1. Generalized linear regression models:
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1. GLM | (generalized linear models).
2. RLM | (linear model by robust regression).
3. TEM [(treatment effects model).
2. Survival analysis models:
1. Parametric survival regression models, in both exponential and Weibull
distributions .
2. Cox-PH [(proportional hazards regression model).
3. CR-PH | (competing risks proportional hazard model).
3. Supervised learning models:
1. CART | (classification and regression tree model).
2. RF | (random forest classification and regression algorithm).
3. NN | (neural network model) and MULTINOM (multinomial regression).
4. SVM | (support vector machine model).
5. SL | (super learner).

4. Two-stage models, in which the first stage is patient outcome (death, discharge)
prediction model as the dependent variable. The outcome probability is then weighted
into the second stage, which is composed of two separate LOS prediction models: one fit
for the discharged patient and another for the deceased patient. The weighted sum of the
LOS is the final prediction in the model. The first stage is a logistic regression modeled
as a GLM with binomial family, while the second stage was modeled as a GLM with

Gaussian family and, alternatively, Cox-PH models.
3.3.3 Model Validation

Each model was run on a training set composed of the first 18 months of patient arrivals (January
1 2015 to June 30™ 2016) and validated on a test set composed of patient arrivals during the
following six months (July 1* 2016 to December 31% 2016). For the Clinical LOS models,
performance was assessed by R”, calculated as the squared correlation between predicted LOS
and observed LOS; MAE]| (mean absolute error), NRMSE| (normalized root mean squared
error), rSD (ratio of predicted and observed standard deviations) and PBias (prediction bias), as
implemented by [74]. Mortality, long stays and outcome prediction performance were calculated

by:
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* Accuracy, defined as: (number of true positive + number of true negative)/total
population,

» Sensitivity, or true positive rate (TPR): number of true positive/number of condition
positive,

» Specificity, or true negative rate (TNR): number of true negative/number of condition
negative,

« PPV|, or positive prediction value: number of true positive/number of predicted
condition positive,

« NPV|, or negative prediction value: number of true negative/number of predicted
condition negative,

* AUC|, or area under the curve: probability that a classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative instance.

3.4 Results

3.4.1 Clinical LOS vs Actual LOS; MODS and NEMS as predictors of ICU
LOS

LHSC’s total ICU LOS is, on average, 0.9 days longer than Clinical ICU LOS?. At a rate of
$3,500/bed-day and 2.400 patients/year, this represents approximately 2,100 bed-days and $7.5
million/year in unnecessary stays, as indicated in Table 3.4|. Subsequetly deceased patients stay
longer in the ICU (on average 5.72 days, but with larger variance (sd = 7.98) while discharged
patients stay, on average 4.98 days (sd = 6.90) (Welch t-test, p<0.007536), as indicated in
Figures 4.1] and 3.3].

Figure 3.4| presents the distribution of Clinical LOS by MODS and NEMS, and by
patient groups (discharged and deceased) with their respective linear regression plots. For those
discharged, the higher the MODS and NEMS, the longer the stay, while the opposite holds true
for the deceased. Table 4.2 also suggests lower average values for both MODS and NEMS in
surviving patients, which can be confirmed (p< 0.00000) for both measures. Multicollinearity

was tested via generalized collinearity diagnostics ([60]), with no major conflicts found (Table

7.1)).

2 At the rate of $3,500/bed-days and,2 400 patients/year, this represents approximately 2,100 bed-days and $7.5
million/year in unnecessary stays.
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Figure 4.2| shows ICU stay probabilities ("survival") and Figure 3.6 shows cumulative
incidence LOS in days by MODS and NEMS for the two groups (discharged and deceased). The
Kaplan-Meier curves in Figure 4.2| show the higher probability of longer stays for high-scoring
MODS and NEMS patients. However, we can observe censoring (death, marked as circles within
the lines) as more prevalent in earlier periods of ICU stay, particularly for “High MODS”. As,
Figure 3.6] indicates, when MODS is high (bottom 3 dashed lines), the probability of being
"deceased" is higher than being "discharged" at the beginning of the patient stay. For “High
MODS” plus “Medium” or “Low NEMS” patients, the probabilities meet at around 5 days; for
High MODS/High NEMS patients they meet at 15-16 days. This corroborates with the intuition
that High MODS/High NEMS patients are at greater risk of mortality at the beginning of their
stay.

3.4.2 Outcome prediction models

3.4.2.1 Mortality prediction

We developed mortality prediction models using “IsDeceased” as a binary dependent variable in
logistic regression, CART, RF, SVM, NN and SL (Table 3.6 and Figures 7.1| and 7.2]). With
the exception of the logistic regression, most models experienced significant loss in performance
in terms of AUC (Figures 7.1] and 7.2]) with logistic regression, RF and SL performing best
overall. All models have a probability rate of accurately predicting death above 70% in the test
data sets, with SL, RF and SVM doing so more than 75% of the time. NN is the best performer
in specificity (95.6%) but degrades sharply in testing. RF performs best in testing (77%). NN is
the best performer in PPV (training at 83%). CART tests better but degrades to 42.9%. All
models perform well in NPV, with test results ranging from 87%-91%. While AUC values in the
training data sets range from 0.767-0.988, there is a degradation to 0.63-0.76 in the test data sets.
The logistic regression model had the smallest degradation in AUC (1.5% loss); this model,
together with RF and SL, are the best performers with an AUC of approximately 0.75-0.76.

3.4.2.2 Long stay prediction

For these models, the independent variables are “IsLongstay7”, and “IsLongstay21” (Tables
3.71, 3.8]) . Out of the total patient population of 4,758, 1,020 patients spent more than 7 days in
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the ICU (21.44% of the total patient population), while only 229 spent more than 21 days in
(4.81%).

First, we compare the models in which the binary variable "IsLongStay7" is the
independent variable (Table 3.7]). Average sensitivity ranged from 65-99.9% in the training data
sets, while dropping to 55-82% in the testing set. CART, RF and SL were the best performing
models for this criterion in both data sets, while logistic regression was the model that had the
most stable performance (for the logistic regression model parameters and variable outputs, see
Table 7.7]). NN and RF also performed well in specificity, however SVM achieved the best
performance in specificity testing. PPV presents a challenge to all models, with test values not
surpassing 38%. NPV, on the other hand, maintains very high performance in all data sets, with a
lower bound of approximately 83%; SL, meanwhile, maintains 91%. As a result of higher
sensitivity and specificity, logistic regression, RF and SL outperform the other models in AUC
for LOS >7 days, with test values of 70%, 67.7%, and 69.5% respectively.

Similar to the >7 day prediction, the models for LOS > 21 days present mixed results
(Table 3.8)). In this case, RF, SL and SVM have the highest sensitivity (91-100%) in training,
but testing performance drops significantly. Specificity trains well, with the exception of logistic
regression (60%) and CART (74%). The best performer is SL, with 81.1% specificity in the
testing data set. On average, all models have low positive predictive value but truly excel in
negative predictive value, with performance rates above 93% in both training and testing sets. As
a consequence of good training metrics, AUC is high but testing performance drops significantly

to 60%. Thus, the best performers overall are SL, RF and logistic regression.
3.4.3 Clinical LOS prediction models

The comparative performance of Clinical LOS models is seen in Table 4.10] and 3.10]. These

models had 31 fixed variables (for the list of variables, see Table 4.4 for a list of model tuning
parameters, see Table 7.2]), while the treatment effects model accounted for the variable
“IsDeceased” as endogenous to the model (corresponding to an effect of 1.8 days’ increase in
LOS, p<0.001). Two-stage models had the variable “IsDeceased” as the weighted factor for LOS
predictions.

There was no dominant raw-scale Clinical LOS model across all performance measures.
While NN, RF and SI achieved high average R? in the training data sets, they failed to replicate

the same performance in the test data sets. For example, the random forest algorithm had a
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degradation of R*=0.86 to R*=0.08. Super learner retained more of its prediction power, with an
average training R*=0.61 and test R=0.10. Regression and survival models were more stable in
terms of R*, with performances ranging from R*=0.10 to R*=0.07 . Two-stage GLM and Cox-PH
models did not show significant improvement over their single-stage counterparts, with an
equivalent testing R’=0.10. For detailed parameters and variable outputs of each individual
model, see the CART model in Figure 7.11|, the Cox-PH model in Table 7.8|, the GLM model
in Table 7.9, the neural network model in Table 7.10| and the random forest model in Table
7.11].

In terms of MAE, performance ranged from 2.28-5.37 days in the training data set to
3.84-5.8 days in the test data set. SVM, RLM, SL, Cox-PH and Survival (Weibull) tend to err the
least, with the SVM performing best at 3.84 days in the test data set. NRMSE tends to penalize
models with higher rates of error, with regression and survival models performing best at the
range of 92-95%. SVM, RLM and SL tend to underestimate the predictions as measured in terms
of percentage bias (PBIAS). On the other hand, the competing risks model overestimates the
predictions (~46% bias) with the treatment effects, random forest and neural networks models
doing so moderately. In terms of the ratio of standard deviations, the rSD measure shows that
only the survival models are able to generate the variance observed in the Clinical ICU LOS,
with few models achieving more than a 0.8 ratio of the observed standard deviation.

Log transforming the Clinical LOS showed improvements over the raw LOS, in the form

of higher R* values in testing (see standardized residual plots in Figures 7.3|, 7.4|, 7.5 and

7.6]). Here, machine learning models train significantly better than other models, with RF
(R*=0.80), NN (R*=0.58), and SL (R’=0.60) as the best performers. But, again, performance
dropped significantly in the test data sets, in which these models fail to reach values higher than
R?=0.11, the best performer being the treatment effects model at R’=0.12. Regression and
survival models are more consistent in terms of R’ with smaller performance losses from
training to testing (compared to machine learning models).

In terms of MAE performance, the log scaling yielded results ranging from 2.38-4.64
days (RF offered the best best training performance, followed by NN and SL)’. R*>, MAE and
NRMSE were computed on the back-transformed “day” scale using Duan’s smearing estimator .
The testing of MAE performance was fairly uniform across all models, with regression and

machine learning models erring the least (4.01-4.13 days). The supervised machine learning

? R, MAE and NRMSE were computed on the back-transformed “day” scale using Duan’s smearing estimator
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models train better in terms of NRMSE (particularly NN and RF, with 65%), but test similarly to

the regression and survival models, which range from 95-163%.
3.4.4 Patient outcome prediction

As an alternative to predicting death/discharge and short/long stay separately, we also developed
the categorical variable "Outcome 3", in which we have either discharge in under 21 days, death
in under 21 days or a long stay > 21 days (with no prediction of death/discharge). The
performance of these models is indicated in Table 3.11]. Again, RF seems to perform best with
an accuracy rate of approximately 99% (in training) and 75.5% (in testing), followed closely by

multinomial regression and CART.

3.5 Discussion

In this paper we developed NEMS- and MODS-based ICU outcome and LOS prediction models
using several different methodologies, including well known statistical models and supervised
machine learning techniques. Our first finding was that, on average, deceased LHSC ICU
patients had longer LOS than discharged patients. This difference is significant and unexpected.
It contradicts most of the literature on ICU LOS prediction, in which deceased patients are
estimated to have shorter stays ([35, 13, 72, 27, 112, 61, 108, 109]). Overall, our models suggest
that MODS and NEMS measures provide reasonable predictions in terms of mortality as
suggested by [87], with random forest and super learner performing significantly better in
training sets and at least as accurately as logistic regression. Similar performance can be seen for
long stays >7 days, but not for longstays >21 days or individual clinical LOS.

Long stay prediction models are the least explored in the literature, and represent the
category of patient stay that logistic regression models are least able to predict ([16]). Despite
predicting long stay LOS thresholds (> 7 days; or > 21 days), the models diverge in terms of
significant predictors. Most notably, in the logistic regression model, neither MODS nor the ICU
admission source is applied to the 21 day model. The absence of MODS seems counter-intuitive
as severity scores ([55]) and admission source ([32]) are commonly present and extremely
influential in the generation of such predictions.

Our results show no clear dominant LOS prediction model, with different metrics

privileging different models. Log transformation of the Clinical ICU LOS seems to improve
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MAE and NRMSE in general, while mortality in the ICU may be considered an omitted
endogenous variable affecting LOS [78], and limiting the interpretation of traditional regression
models. The supervised machine learning models perform very well in training sets but do not
differ from traditional models in testing set performance. As noted in [108, 109], due to
differences in covariates and exclusion criteria, comparison between different studies is often
inappropriate and, when such comparisons are made, it is often by way of R* measures. Common
R? values range anywhere from 0.05-0.25, which is consistent with our findings. Careful analysis
of the models based on the latter scores reveals the significant weight of detailed diagnostics and
comorbidity variables ([42, 78, 84, 107, 108, 112]), which our models carry only in the form of a
simplified diagnostics group. We expect prediction performance improvements if such variables
become available in Canadian ICUs. Nevertheless, our models incorporating MODS and NEMS
measures are already suitable replacements for APACHE, SAPS and SOFA scores for prediction
purposes.

We have also noted that no LOS prediction model is able to reach the entire range of the
observed clinical LOS and that there is a gradual increase in residuals for long-stay patients (as
seen by the low overall rSD measures and residual plots). The difficulty in predicting the long
tail is one drawback of the regression models ([108]), but its impact on supervised machine
learning models has not been sufficiently explored.

Our research presents shortcomings and indicates that further challenges need to be
addressed. MODS and NEMS collected upon patient arrival in the ICU may provide masked
information about the patient’s true health status. For the sake of improved performance, it may
be better to include 24-hour or 72-hour measurements that may be carried out after the
administration of the first intensive treatments, as suggested by [98]. We expect that such added
measurements would provide a more reliable source of information about the patient’s actual
health status, which may be unclear upon admission to the ICU. Finally, our data set is relatively
small with less than 5,000 patients, while other cohorts include 100,000-200,000 patients ([61,
78]). Our intention is to run the same analysis in a province-wide data set, which may help with

degradation issues.

3.6 Conclusion



This research aimed to provide managerial decision support prediction models that utilize
metrics common to Canadian hospitals such as MODS and NEMS, which are not commonly
available in the literature. We did so by incorporating other methods than the most commonly
adopted linear regressions, such as survival models and supervised machine learning models.

We have shown that MODS and NEMS can be used as clinical ICU LOS and outcome
predictors and that there is much to be gained by adding the survival and supervised learning

models to ICU LOS prediction literature and practice.
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Table 3.1 ICU LOS Descriptive statistics

Variable N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Total ICU LOS 475864 11.1 02 1.7 34 7.1 276.8

Clinical ICU LOS (before4,75855 9.2 02 1.1 25 59 1909

exclusions) o
Clinical ICU LOS (after4.6965.1 7.1 02 1.1 25
exclusions)

(9)1
=]

59.0
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Table 3.2 List of variables

Nature Description

(units)

continuous  clinical length of stay in days

binary death in ICU

binary LOS > 7 days

binary LOS > 21 days

categorical discharged <21 days,
deceased <21 days, long stay (above
21 days)

categorical Glasgow Coma Scale score, (None,

categorical

categorical

Minimal, Mild, Moderate, Severe)

Platelet count, (None, Minimal,
Mild, Moderate, Severe)

Serum _ bilirubin _ level, (None,

Minimal, Mild, Moderate, Severe)

Pressure-adjusted heart rate,

categorical

(None, Minimal, Mild, Moderate,
Severe)

Serum creatinine level, (None,

categorical

Minimal, Mild, Moderate, Severe)

PaO2/FIO2 ratio, (None, Minimal,
Mild, Moderate, Severe)

Variable Subcategory Variable
type
Outcomes LOS ICU_LOS_Clinical
Death IsDeceased
Long stay IsLongStay7
Long stay IsLongStay21
disposition outcome_3
Covariates MODS MODSGlasgowComaScoreCat
MODSHaematologicCat
MODSHepaticCat
MODSPressureAdjustedHeartRateCat categorical
MODSRenalCat
MODSRespiratoryRatioCat
MODSScoreCategory
NEMS IsArterialLine
IsbasicMonitoring
IsCentralVenous

IsDialysis

IsDischarged
IsExtraCorporealMembrane

IsInterventionOutside

IsIntraAorticBalloonPump

IsIntracranial
IsIntravenous

IsOtherIntervention

IsOtherIntravenous

IsVentilation
NEMSScoreCategory

49

categorical a-0 score, b-1 to 4, ¢c-5 to 8, d-9 to
12, e-13 and above

binary introduction of arterial lines

binary monitoring of basic vital signs

binary central venous medication

binary any dialysis techniques

binary discharged from ICU

binary extra-corporeal  membrane life
support

binary Specific _interventions outside the
ICU: such as surgical intervention
or diagnostic procedure;

binary Intra-aortic balloon pump

binary Intracranial pressure monitorin

binary intravenous medication

binary other  interventions such  as:
endotracheal intubation, pacemaker,
cardioversion, endoscopy,
emergency operation in the past 24
h, gastric lavage; X-rays,
echocardiography,
electrocardiography, dressings

binary other types of intravenous
medication

binary mechanical ventilation

categorical a-0 to 22, b-23 to 29, ¢-30 and




Patient
characteristics

Admission

Age category

Sex
IsEmergencySurgery

characteristics

IsLOS_before

ReadmissionDifferentStay

ReadmissionWithinSingleStay

Campus

ICUAdmissionDiagnosis_group

ICUAdmissionSource

PatientCategory
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above

categorical 18-39,40-80, 80 and above

binary male (0), female (1)

binary emergency surgery

binary hospital admission to other prior to
ICU

binary readmission to ICU from previous
hospital admission into ICU

binary readmission to ICU in the same
hospital stay

categorical MSICU, CCTC ((CU’s from
different hospital sites)

categorical \strikeout
Cardiovascular/Cardiac/Vascular,
Gastrointestinal, Neurological,
Other, Respiratory, Trauma

categorical Emergency Dept., OR, Other
Hospital, Stepdown Unit, Ward

categorical Medical, Surgical




Table 3.3 Model References

Generalized linear regression models

GLM (generalized linear models), with log link and both Gaussian and Gamma families, and
step-wise backward selection as implemented in R Stats package [85] .

RLM (linear model by robust regression) using an M estimator fitted via iterated re-weighted
least squares as described by Huber [56] and implemented in the R MASS package [111].

TEM (treatment effects model), to estimate linear regression parameters and treatment effects
(“deceased-in-ICU”) in the presence of endogeneity.

This model is based on Heckman [54] and implemented by Spieker in the R Endogenous

package [12].

Survival analysis models

Parametric survival regression models, in both exponential and weibull distributions as described
and implemented by Therneau & Grambsch in the R Survival package [101, 100].

Cox-PH (proportional hazards regression model), as formulated by Andersen & Gill [6]
and implemented by Therneau & Grambsch in the R Survival package [101, 100].

CR-PH (competing risks proportional hazard model), as described by Gray [47] and Fine & Gray
1401,

and implemented in the R Cmprsk package by Gray [23] and Scrucca et al. [96].

Supervised learning models

CART (classification and regression tree model), a regression tree model fit by binary recursive
partitioning

as implemented in the R Rpart package by Ripley [28] and Therneau, Atkinson & Ripley [102].
RF (random forest classification and regression algorithm) as described by Breiman [25]

and implemented in the R RandomForest package by Liaw & Wiener [14].

NN (neural network model) and MULTINOM (multinomial regression), as implemented in the R
NN package by Venables & Ripley [111].

SVM (support vector machine model), as implemented in the R E1071 package by Meyer et al
[34].

SL (super learner), as implemented in the Super Learner package by Polley et al [38] (for
continuous and binary variables), we used the same GLM, CART, RF, SVM algorithms as
above, which should guarantee performance improvements as shown in [106].
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Table 3.4 Clinical LOS by outcome

Outcome N Mean SD Min. 1st Qu. Median 3rd Qu 95th pctl 99th pctl Max
Deceased 992 5.72 7980.17 081 237 7.12 2339 3536 5898
Discharged 3.704498 6900.17 123 256 556 18.83 3431 58.67
Welch Two Sample t-test t = -2.676,df = 1412.9, p-value = 0.007536
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Table 3.5: MODS and NEMS by outcome

N Mean MODS SD Min Pctl(25) Median Pctl(75) Max
Deceased 992 6.7 310 4 6 9 19
Discharged 3.704 4.6 280 3 4 6 16
Welch Two Sample t-test t = 19.14, df = 1445.2, p-value <2.2e-16
NEMS

N Mean NEMS SD Min Pctl(25) Median Pctl(75) Max
Deceased 992 36.8 8515 32 385 44 56
Discharged 3,704 31.6 850 27 32 38 56

Welch Two Sample t-testt = 17.168, df = 1561.9, p-value < 2.2e-16
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Table 3.6 Mortality prediction average performance

Model Threshold* Sensitivity Specificity PPV NPV AUC
train test train test train test train test train test
Logistic Regression  0.210 0.7390.718 0.680 0.715 0.378 0.408 0.909 0.892 0.779 0.767

CART 0.263 0.695 0.650 0.670 0.704 0.403 0.429 0.903 0.889 0.767 0.742
Neural Network 0.386 0.806 0.707 0.956 0.531 0.831 0.284 0.947 0.877 0.954 0.638
Random Forest 0.224 0.843 0.665 0.741 0.774 0.468 0.412 0.945 0.889 0.877 0.751
Super Learner 0.316 0.970 0.767 0.931 0.325 0.792 0.345 0.991 0.912 0.988 0.759
Support Vector 0.042 0.864 0.671 0.816 0.663 0.549 0.365 0.957 0.887 0.882 0.708
Machine

* Threshold corresponding to the best sum of sensitivity and specificity
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Table 3.7 Long-stay prediction average performance (>7 days)

IsLongStay > 7 days Threshold* Sensitivity Specificity PPV NPV AUC
train test train test train test train test train test
Logistic Regression  0.229 0.653 0.689 0.694 0.658 0.359 0.381 0.884 0.874 0.723 0.701

CART 0.192 0.770 0.725 0.555 0.563 0.313 0.336 0.902 0.870 0.699 0.646
Neural Network 0415 0.827 0.696 0.936 0.506 0.772 0.301 0.954 0.845 0.946 0.606
Random Forest 0.362 0.997 0.637 0.999 0.647 0.996 0.355 0.999 0.854 1.000 0.677
Super Learner 0.246 0.975 0.824 0.847 0.485 0.627 0.305 0.992 0.910 0.968 0.695
Support Vector 0.041 0.862 0.557 0.856 0.678 0.611 0.345 0.959 0.834 0.888 0.628
Machine

* Threshold corresponding to the best sum of sensitivity and specificity
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Table 3.8 Long-stay prediction average performance ( >21 days)

IsLongStay > 21 days Threshold* Sensitivity Specificity PPV NPV AUC

Logistic Regression  0.037

CART 0.042
Neural Network 0.368
Random Forest 0.237
Super Learner 0.144
Support Vector 0.020
Machine

train test train test train test train test train test

0.813 0.574 0.606 0.704 0.088 0.100 0.987 0.951 0.773 0.635
0.661 0.450 0.747 0.691 0.174 0.094 1.007 0.978 0.805 0.612
0.76 0.474 0.996 0.649 0.898 0.072 0.989 0.955 0.884 0.526
0.998 0.508 1.000 0.738 0.996 0.093 0.999 0.938 1.000 0.622
1.000 0.410 1.000 0.811 1.000 0.111 1.000 0.960 1.000 0.630
0.913 0.517 0.957 0.667 0.542 0.086 1.002 0.943 0.974 0.575

* Threshold corresponding to the best sum of sensitivity and specificity
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Table 3.9 Clinical ICU LOS (days) performance comparisons for different models

Model R2 MAE NRMSE (%) PBIAS (%) 1SD
train test train test train test  train  test train test
CART 0.12 0.06 4.16 449 94.00% 97.30% 0.0% -1.5% 0.34 0.37
Cox-Ph 0.09 0.10 4.07 4.28 95.30% 9520% -29% -5.1% 0.33 0.35
CR-ph 0.07 0.08 537 5.5 111.20% 109.80% 44.3% 41.7% 0.71 0.73
GLM (Gmma) 0.09 0.09 4.144.37 9520% 95.30% 0.3% -2.1% 0.33 0.34
GLM (Gaussian) 0.100.094.17 44 9520% 95.30% 0.0% -3.3% 0.310.32
Neural Network 049 0.033445.84 71.20% 12030% 10% 1.7% 0.72 0.85
Random Forest 0.86 0.08 2.28 443 52.70% 9620% 2.8% -1.1% 0.56 0.34
RILM 0.090.11 3.69 391 98.60% 98.50% -31.7% -33.9% 0.19 0.19
Super Learner 0.610.10 3.1 421 77.00% 95.00% -7.8% 9.5% 0.330.27
Support Vector Machine 0.12 0.10 3.49 3.84 100.30% 100.90% -43.8% -45.6% 0.18 0.18
Survival (Exponential) 0.09 0.10 4.14 4.36 95.30% 95.10% 0.5% -19% 0.34 0.35
Survival (Weibull) 0.10 0.104.07 4.28 95.30% 95.10% -29% -5.1% 0.43 044
Treatment Effects 0.100.15 43 447 520% 9250% 6.6% 11.4% 0.33 044

Two-stage Model (Cox-PH) 0.09 0.11 4.1 4.28 95.20%

94.20%

-14%

-42% 0.32 0.32

Two-stage Model (GLM)
0.09

0.104.18 4.37 95.40%

94.80%

20.0%

-35% 0.3 031
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Table 3.10 Clinical ICU (days) performance comparisons for different log-transformed models

Model* R** MAE NRMSE (%)*  PBIAS (%) rSD
(days)*

train test train test train  test train  test train test
CART 0.10 0.12 4.10 4.15 992% 944% -269% 10.6% 022 0.27
Cox-Ph 0.07 009 425 434 974% 95.1% -163% -272% 0.27 0.30
CR-ph 0.09 0.10 4.14 464 97.6% 93.1% -30.3% -164% 0.30 0.33
GLM (Gmma) 0.06 0.08 4.15 4.13 100.1% 96.0% -28.3% -29.8% 0.25 0.26
GLM (Gaussian) 0.08 0.11 409 4.10 997% 951% -29.0% -257% 0.20 0.22
Neural Network 0.58 006 2.82 659 650% 163.1% -14.6% -24.1% 0.88 1.42
Random Forest 0.80 0.11 238 401 652% 95.1% -129% 3.3% 044 0.21
RLM 0.08 0.10 407 4.09 995% 96.7% -314% 188% 0.21 0.23
Super Learner 0.60 0.10 3.16 4.07 83.6% 959% -28.0% 224% 0.26 0.20
Support Vector Machine 0.16 0.05 337 434 94.1% 1109% -30.7% -345% 0.28 0.32
Survival (Exponential) 0.07 0.09 4.13 4.14 98.1% 964% -139% -519% 0.34 0.35
Survival (Weibull) 0.08 009 425 434 974% 950% -15.5% -28.7% 043 044
Treatment Effects 0.09 0.12 395 415 53% 96.1% -239% -219% 033 044
Two-stage Model (Cox-0.07 0.11 424 428 973% 935% -165% 79.8% 0.32 0.32
PH)
Two-stage Model (GLM) 0.07 0.10 390 430 99.5% 101.1% -33.4% -151.6% 0.30 0.31

R*>, MAE and RMSE were computed on the

back-transformed “day” scale using Duan’s

smearing estimator
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Kaplan-Meier Curves for MSICU LOS, Kaplan-Meier Curves for MSICU LOS,

by MODS by NEMS
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Figure 3 4: Kaplan-Meier Curves for Survival Models, by MODS and NEMS
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Table 3.11 Patient outcome prediction average performance

Model Accuracy
train test
CART 0.8315 0.740
Multinomial regression 0.769 0.754
Random Forest 0.989 0.755
Neural Network 0.881 0.662

Support Vector Machine 0.938 0.701
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Cumulative Incidence by MODS and NEMS
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Figure 3.5: Competing risks for Clinical LOS prediction
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Chapter 4

ICU Length of Stay: Individual predictions and short term capacity

planning using a Parametric Accelerated Failure Time Model

Abstract
Prediction of a patient’s length of stay (LOS|) may help Intensive Care Units (ICU]) to plan

future bed allocations and staffing levels and to schedule surgeries. Present-day ICUs collect a
number of patient data and aggregate it in the form of severity scores such as APACHE and
SOFA, which have been used in the literature for individual patient LOS predictions and LOS
benchmarking. In Canada, however, patient severity is often measured by the “Multi-Organ
Dysfunction Syndrome” (MODS) | score and nursing workloads by the "Nine Equivalents of
Nursing Manpower Use Score" (NEMS)|. To the best of our knowledge, these have yet to be
used for LOS prediction and capacity planning. Using MODS and NEMS as covariates, we
developed a parametric Accelerated Failure Time model (Weibull AFT survival model) serving
two purposes. First we assess LOS prediction performance considering ICU arrival (day 1)
measures, and compare it to an updated prediction for patients whose ICU stay reaches day 3.
Second, we use each patient’s individual survival function to generate individual survival
probabilities and pool the patient cohort probabilities to form expected short-term bed needs.
Using data from a large Canadian university hospital, we show that, although individual LOS
prediction is prone to significant error, aggregate bed occupancy is more predictable and can be

used reliably for short-term resource capacity planning purposes.
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4.1 Introduction'

ICU beds are usually the most expensive beds in any hospital and congestion in capacity-
constrianed ICUs has been linked to increased mortality ([18, 31]). This likelihood prompts
hospitals to plan ICU patient discharge as efficiently as possible ([278, 22, 50, 281]). The
University Hospital (UH) campus of the London Health Sciences Centre (LHSC) | is no
different, with ICU beds costing as much as $3,500/day and being highly utilized ([67]). UH is a
400-bed Canadian teaching hospital with roughly 17,000 admissions per year, of which 1,000-
1,200 are medical-surgical intensive care unit (MSICU) | patients ([283]).

Several models have been proposed in the literature to predict ICU LOS, such as [108,
109]. Most are based on the Acute Physiology and Chronic Health Evaluation (APACHE))
score, the Simplified Acute Physiology Score (SAPS]) and the Sequential Organ Function
Assessment (SOFA]) score, as noted in [76, 93, 107, 108, 112]. None of these are useful to
LHSC or other hospitals in Ontario, which are required by the provincial government to collect
for reporting purposes, upon patient ICU admission, the Multiple Organ Dysfunction Syndrome
(MODS) score ([59]), and, daily, the Nine Equivalents of Nursing Manpower Use Score (NEMS)
([33])- This essay addresses the following questions:

1. Can NEMS and MODS be used in a parametric survival model for individual patient ICU
LOS prediction?

2. Does updating ICU patient metrics after ICU arrival improve ICU LOS prediction?

3. Can the individual predictions based on NEMS and MODS be used for short-term bed

capacity planning?

In order to answer these three questions, we have developed a parametric Accelerated
Failure Time (AFT|) model using MODS and NEMS. Our model not only estimates an
individual patient’s ICU LOS and daily expected survival probability, but also pools thesse

probabilities to predict short-term ICU bed capacity requirements.

' This work was supported by: The Ontario Trillium Scholarship program (OTS); an Ivey International Centre for
Health Innovation (IICHI)/3M Canada MITACS grant; the Natural Sciences and Engineering Research Council of
Canada (NSERC), and the Universidade Federal do Parana (UFPR). These funding sources had no active role in the
study design, collection, analysis, interpretation of data, writing of the report or decision to submit the article for
publication. This research is approved by Western University’s and LHSC’s Research Ethics Board under the file #
REB 105583.
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4.2 Literature Review

4.2.1 ICU Bed Capacity Management

The ICU bed capacity management literature focuses on queuing models, as in [15, 49], queuing
networks, as developed by [26, 30], dynamic programming (e.g. [31]) and discrete-event
simulation models ([39]), as seen in recent extensive surveys by [24, 300, 301]. [26] developed a
heuristic for an ICU/step-down queuing network with blocking and found optimal capacity
allocations based on blocking probability minimization. [31] on the other hand, study the impact
of congestion on discharge decisions in capacity-constrained ICUs, and provide optimal
discharge policies based on risk of readmission. [21] focus on bed specialization and develop a
bed capacity optimization model based on hospital wing partitioning. They find that, under
certain conditions, wing formation may lead to increased specialization and shorter LOS. [15]
use queuing to optimize distribution of ICU and step-down beds and to find optimal allocations
depending on patient step-down readiness and nurse-patient ratios. [18] and [65] observe that
ICU congestion influences patient admission and outcomes originating in the Emergency
department (ED) |. Thus, they developed optimal ICU admission policies based on severity
scores to reduce readmission and LOS. [39] use nursing workload scores (NEMS) to simulate
individual patients’ ICU LOS under congestion. They find that simulating daily NEMS
transitions accurately captures patient readiness to step down and can be used for long-term bed
capacity planning purposes. [43] and [97] and [89] have also successfully built models based on

different severity scores for capacity planning and patient flow management.

4.2.2 LOS prediction

LOS prediction models can be traced back to the development of the APACHE model for
hospital mortality risk prediction [312, 313, 110]. [112] later used APACHE scores in a multiple
linear regression model for predicting ICU LOS. APACHE (in its current iterations APACHE III
and IV) has outperformed other scores such as SAPS II in LOS prediction, in part, due to the
inclusion of an extensive list of diagnostics and comorbidities ([107]). Multiple linear regression
APACHE-based models have also been used by [61, 78], who have noted significant differences
in performance between discharged and deceased patients. They claim ICU death increases ICU

LOS variance, thereby reducing the accuracy of LOS prediction models.
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[108, 109] were among the first scholars to challenge the use and adequacy of multiple linear
regression models for ICU LOS prediction. They compared those models with other techniques
such as log-link generalized linear models and non-parametric survival models and found the
latter to be dominant over OLS multiple regressions.

Later, [9] and [31] recognized the benefit of updating measures for prediction of
prolonged stays, claiming that LOS predictions may require better information than the one
available upon patient arrival in the ICU. Their model updates severity score measurements at
day 5 of the ICU stay, significantly improving prediction accuracy.

More recent methodologies, such as logistic regression as developed by [42], support
vector machines as described by [55], neural networks ([99, 68, 93]), classification trees ([104]),
random forests ([89]) and super learner ([84, 93]), have also been used for ICU LOS prediction
([93]), particularly to identify mortality and long-stay patients.

4.2.3 ICU survival analysis and AFT models

Survival analysis models applied to ICUs tend to focus on hazard ratios, as opposed to LOS

prediction ([333, 334, 335, 336, 337, 338, 339]). [340] find age, Glasgow Coma Scores and

Abbreviated Injury Scores to be significant predictors of ICU discharge and mortality, with
variable effects during prolonged ICU stays. [341] build on Clark and Ryans® work and suggest
the use of competing risks models if patients have multiple discharge destinations. [342]
compare Cox and AFT models and advocate for the inclusion of time-varying covariates in ICU
survival analysis as they show that hazard ratios vary over time. [343] developed a Cox
proportional hazards model to estimate the impact of ventilation and renal replacement therapy
on ICU survival and found APACHE II scores and ventilation to be inversely related to ICU
survival. [344] observed the significance of severity scores in I[CU mortality but failed to find an
association between the SOFA score and post-hospital mortality. Finally, [345] use a multi-state
proportional hazards model and found age, comorbidities, and ICU LOS to be associated with

higher rates of post-ICU mortality, long-term care and readmission.
4.2.4 Contributions of this paper

Our Weibull Accelerated Failure Time (AFT) model contributes to the ICU capacity

management literature and practice in a number of important ways. To our knowledge, we are
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the first to use NEMS and MODS as covariates in an AFT model for ICU LOS prediction.
Second, we use the Weibull AFT model not with the intention of finding a variable impact on
hazard rates, but to provide conditional daily survival estimates and expected time to event (LOS
discharge) for each patient upon arrival in the ICU. Third, we show that covariate updating
performed on prolonged-stay patients provides a better prediction of LOS. Finally, we show how
the survival probabilities of the AFT model can be pooled to estimate future bed occupancy. This
novel approach to the AFT model can, in turn, be used to improve short-term bed capacity

management.
4.3 Materials and Methods

4.3.1 Study design and patient population

Our research is a retrospective study of the Medical-Surgical Intensive Care Unit (MSICU)) at
the London Health Science Centre’s (LHSC|) University Hospital (UH) campus. UH is a
teaching hospital located in London, Ontario, Canada. The MSICU is an adult intensive-care
facility with 25 beds, caring for general medical, surgical, trauma, oncological, neurosurgical,
cardiovascular surgery and transplant patients.

Data was gathered from the Critical Care Information System (CCIS|) of Ontario’s
Ministry of Health from the period of January 1% 2015 to December 31% 2016. There were a total
of N = 2,195 patients admitted into the ICU with a total LOS ranging from 0 to 276 days (Table
4.17). We define total ICU LOS as the period of time between patient admission to the ICU and
patient exit from the ICU (due to discharge or death). We define Clinical LOS as the period
between admission to the ICU and the physician’s disposition decision (i.e., readiness to
transfer/discharge/death), which ranges from 0 hours to 190 days, averaging 5.63 days (sd =
10.14 days).

As is common in the literature (e.g. [78, 109]), we excluded cases in which total LOS

> 60 days. These exclusions resulted in N = 2,176 patients with a lower LOS average of 5.05
days (sd = 7.40 days), as seen in Table 4.11 and Figure 4.171.
MODS and NEMS are distributed differently according to patient outcome (Table 4.21),

with deceased patients scoring higher than their discharged counterparts in both measures
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(p<000). Similarly, medical patients tend to have higher MODS and NEMS measures than
surgical patients (see Table 4.3 |) and apparently experience longer stays (see Figure 4.11).

Based on the literature, we used the following predictor variables available upon patient
admission to ICU (day 1) and after completion of median time (3 days of ICU stay) (see also
Table 4.41):

«  MODS and its components, including: platelet count, serum bilirubin, serum creatinine,
pressure adjusted heart rate, Glasgow coma score, respiratory ratio. These variables were
categorized (see Table 8.1|) according to the scale created by [59]. The total MODS is
based on a 24-point scale (see Table 8.1]) which we sorted, as suggested by [87], into
five distinct categories based on the following scores; 0; 1 to 4; 5 to 8; 9 to 12; 13 and
above.

« NEMS and its components, collected upon admission (Day 1) and after 3 complete days
(Day 3), including: arterial line, intravenous medication, intracranial membrane, dialysis,
intervention inside the ICU, intervention outside the ICU, central venous line, mechanical
ventilation. All of these variables are treated as binary variables and become components
of NEMS, which is based on a 56-point scale developed by [33] (Table 8.2]). We also
sorted NEMS into three categories based on the following scores: 0 to 22; 23 to 29; 30
and above, as suggested by [87].

» Patient characteristics: sex, age (less than 39; 40 to 79; 80 and above) as suggested by
[87].

e Admission characteristics: admission source, diagnosis group, patient category
(medical/surgical), emergency surgery, ward stay prior to admission, readmission to ICU

(same stay), readmission to ICU (different stay).
4.3.2 Statistical analysis

4.3.2.1 Weibull AFT model

We used the statistical analysis software R ([85]) to implement a Weibull AFT model
(parametric survival regression) as described and implemented by Therneau & Grambsch in the
R Survival package ([101, 100]). The Weibull AFT model has a distribution of time to event 7" as

a function of covariates written as in Equation 5.1, where f is the intercept, /3, is the coefficient
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of the covariates x;; for patient i and time j, ¢ is the shape parameter for ¢ which follows the

extreme minimum value distribution G(0, o).

S.)In(T) = o + pixa + Poxn... + Puxy + o¢
The Weibull regression model allows for the description of the covariates in terms of
Hazard rates |[(HR), i.e., the instantaneous risk of ICU exit given survival up to time #, per
Equation 5.2 |:
(52) h(t, xy B 2) = iyt " e T HE = ho(t) X
The model also allows for and Event time ratios [(ETR), i.e., relative change in survival
time, per Equation 5.3 :

Y ) S

(5.3) h(t, xj, Bin A)
Where y = el ﬁo)/(”) = ego, 6, = — (B)/(o) and the baseline hazard function is

ho(t) = Jyr* ~ ', and scale parameterd = 1 / o.

Model development and variable selection was made via an ANOVA test (Figure 4.3]),
step-wise backward elimination using Harrell’s RMS package ([356]) fastw() function with p-
value as the elimination criterion, and, most importantly, with the final input from the MSICU
clinical staff. The final model was built converting the Weibull distribution parameters to Hazard
rates and Event time ratios and were extracted via Hubeaux and Rufibach’s SurvRegCensCov
package (see [357]). Diagnostic and predictive plots were made with Brostrom’s EHA package
([358]) and Lesaffre et al.’s smoothSurv package ([37]).

Following the need to investigate the impact of variable updating in LOS predictions, the
time threshold for the model update was chosen based on consultation with LHSC’s clinical
staff. The threshold decided upon was 3 complete days, which is the empirical median LOS in
the MSICU. The updated model includes only patients that survived to have measurements taken
on day 3 and is comprised of the original covariates collected upon ICU admission with the

addition of the updated NEMS and its components at day 3.

4.3.2.2 Short-term capacity planning model.
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To predict the expected occupancy of the ICU, each individual patient who arrives in the ICU
must have her own survival function calculated and pooled with her current patient cohort as

follows:

e Apatienti = [1, ..n] who arrives at the ICU on day 7, (where d is the date of arrival),

has a Weibull survival function given by Equation 5.4 | (probability of survival):
(5.4) Sta) = e~

« Equivalently, for any subsequent day £ = [1, ...m] of patient i, the Weibull survival

function is:

(5.5) Sita) = e ="'

Where the Si(ts1) = 1 and Sif4) = 0 and is monotonically decreasing.

e Therefore, the expected total number of current patient cohort at time 74 + | that will

remain in the ICU in any given day 7" > f4 is:
(5.6) E[ICU occupancy at day TIT > t4] = Y= {"P[SADIT > t4]
4.3.3 Model Validation

The Weibull AFT (day 1) model was fitted on a training set (first 18 months of the data set) and
validated on the following 6 months. For the updated (day 3) model, we followed the same
procedure, but included only patients that survived three complete days in the ICU.

Model accuracy was assessed by R’, calculated as the squared correlation between
predicted LOS (extracted from Equation 5.21) and observed LOS; MAE| (mean absolute error),
NRMSE| (normalized root mean squared error), rSD (ratio of predicted and observed standard
deviations), RSR (ratio of the RMSE between simulated and observed values to the standard
deviation of the observations) and PBias (prediction bias), as implemented by [74].

The short-term capacity planning model was tested on the last 6 months of the data set,
discarding the first and last 14 days to avoid underestimation of observed LOS. Model accuracy

was assessed by ICU occupancy MAE, NRMSE, rSD, RSR,PBias and comparative means t-test.
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4.4 Results

4.4.1 Weibull AFT model (day 1)

Figure 4.21 shows ICU stay probabilities ("Survival") by MODS, NEMS, patient category and
ventilation. The Kaplan-Meier curves in Figure 4.21 show the higher probability of longer stays
for high scoring MODS and NEMS patients, as well as medical, emergency, and ventilated
younger patients.

The list of variables can be found in Table 4.47) while the resulting model can be found
in Table 4.5|. Converted Weibull parameters and variable coefficients can be found in Table
4.6], hazard rates in Table 4.7] and event time ratios in Table 4.8 .

As seen in Table 4.7, the higher the Glasgow Coma Score, the higher the risk of a
shorter ICU LOS. The same behaviour can be found for age: patients 80+ have a 144% higher
risk of a shorter I[CU LOS than their 18-39 year-old counterparts. Similarly, surgical patients are
129% more likely to have a shorter LOS than medical patients. Higher MODS patients are 64%
(HR of 0.36) more likely to have a longer stay than Lower MODS patients. Likewise, higher
NEMS patients are more likely to have a longer stay (HR of 0.93 - although not statistically
significant at the p = 0.05 level), as are ventilated patients (HR 0.62) and Level 3 patients
(those who originated from other ICU units - HR of 0.32).

Perhaps more intuitive is the interpretation of event time ratios (Table 4.8]). For
example, a 13+ MODS is linked to an increase in LOS of 200%, while advanced age (e.g., 80+)
tends to reduce LOS by 33% (ETR of 0.67). Similarly, we find that Level 3 patients have a 240%
longer LOS than emergency patients and that ventilated patients can expect to have an ICU LOS
66% longer than that of non-ventilated patients. Notice that the score 30+ in NEMS yields only a
7% increase in LOS.

Next, we compared the cumulative hazards functions for the non-parametric Cox
proportional hazards model with our Weibull AFT model (see Figure 4.4|-a) and an Exponential
AFT model distribution (see Figure 4.4|-b). The Cox proportional hazards model (dashed lines)
fits closer to the observed data as no distribution function is assumed for the baseline hazard

function. However, the proportionality of the hazards cannot be assumed

()(,2 = 79.3217, p < 0.000); therefore, the Weibull AFT model provides the closest fit.
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4.4.2 Weibull AFT model (day 3)

In a manner similar to that described in the preceding section, we fit a Weibull AFT model for
patients that have remained in the ICU for three complete days. This model considered not only
the variables collected at day 1 (e.g., MODS, NEMS), but also updated values collected at day 3
of the ICU stay, namely NEMS and its components. For example, a patient might be under
mechanical ventilation upon arrival at the ICU, but after three days no longer needs mechanical
ventilation, resulting in a change of the variable “IsVentilation”, and, consequently, of the
NEMS at day 3.

We performed an ANOVA test, step-wise variable selection and clinical validation for
the Day 3 model as well. Variable impact in LOS variance is shown in Figure 4.3, and the
resulting model can be seen in the ETR Table 4.5].

The updated Day 3 model adds the following variables to the previous model:
haematologic and renal scores, sex, NEMS (day 3 score).

We will limit our discussion to a few significant ETR values for the Weibull AFT model
(day 3). For example, males have an estimated reduction in LOS in of 22% compared to females,
a relationship that was absent from the previous model. Higher MODS values maintain their
increasing effect in ETR, ranging from 35% to 96% longer LOS than the baseline MODS. Notice
though, that the day 1 model had the higher MODS scores increasing LOS from 70% to 200%
(ETR from 1.7 to 3.0) compared to the baseline MODS. Age has a similar impact on LOS to that
observed in the previous model (e.g., an ETR of 0.89 for the age group 40-80 and 0.65 for those
aged 80 and above). Level 3 patients are expected to have a 90% longer LOS than emergency
patients (ETR of 1.907) and patients that remain ventilated at day 3 can expect an ICU LOS 30%
longer than that of non-ventilated patients (ETR of 1.309). Notice that both NEMS (day 1) and
NEMS (day 3) are now part of the model. NEMS (day 1) scores have a diminishing effect on
LOS (around 60%), compared to NEMS (day 3) scores (between 76 and 100% of the LOS of
baseline NEMYS).

4.4.3 Weibull AFT model prediction performance

Table 4.107 presents the prediction performance of both Day 1 and Day 3 models. Figure 4.6
shows the standardized residual plots of the fitted models. The Day 1 model, as fitted

considering all the patients in our data set, represents measures and individual characteristics
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collected upon arrival in the ICU. Predicted average LOS was 5.7 days compared to 5.04 days in
the training data set. We can observe that there is a consistent loss in performance in R* (from
0.09 to 0.07), in MAE (4.68 days to 4.76 days), and in NRMSE (96% to 98.6%) from the
training to test data sets. The Day 1 model tends to overestimate predictions from 13-19.6% and
and only reaches 39-42% of the standard deviation of the observed data.

When using the fitted Day 1 model to predict the remaining L.OS of the patients who had
already reached LOS > 3 days, we can see that Rz, MAE and NRMSE worsen, with NRMSE
reaching 106% of observed values (compared to 96-98% of the complete data set). Additionally,
this model greatly underestimates LOS. The predicted average remaining LOS is 6.68 days,
compared to 10.27 days of the observed LOS, a bias of -34.9%.

Comparatively, the Day 3 model seems to be more accurate in terms of training R”.
Although MAE sees a similar increase (reaching 6.44-6.73 days), NRMSE ranging from 95.5%
to 101.6% is better than the 106% found in the Day 1 model. Note that the model is positively
biased at 13.1-14.8% (contrasting with the negative bias of -34.9% in the previous model), while
reaching a slightly larger variance, as evidenced by the rSD values of 0.46 (training) and 0.43
(testing).

The residual plots show an improvement in prediction accuracy of the Day 3 model

compared to the Day 1 model (fitted with LOS > 3 days patients). The Day 3 model is notably

less dispersed than the Day 1 model for both the complete data set as well as the LOS > 3 days
data set (see Figure 4.6).

4.4.4 Short-term capacity planning model

As seen in the previously described models, individual predictions tend to err approximately as
much as the average observed LOS (NRMSE ranging from 95.5-106%) for most models. By
pooling individual survival probabilities on a given day, one can focus on the short-term bed
needs of the ICU as a whole. Therefore, our model reduces overall error while providing a
reliable means of ICU capacity planning. As stated previously (Section 4.3.37), the short-term
capacity planning model was tested on data from July 15™ 2016 to December 17", 2016. Table
4.11| provides a depiction of observed and expected LOS generated by our model. Observed and
expected occupancy average \thickapprox19 beds, or roughly 76% utilization. Observed

occupancy has a larger variance, ranging from 7 to 25 beds, while expected occupancy ranges
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from \thickapprox12 to 24 beds. Table 4.12| summarizes the performance metrics. First and
foremost, we can see that the aggregation of individual survival probabilities into overall ICU
occupancy greatly reduces prediction error, with NRMSE of only 15.1% and R*=0.51 (recall that
individual prediction NRMSE approximates 100% error, and R*\thickapprox0.10).

Table 4.13| provides an example of a typical day in the ICU (October 1%, 2016). The
model required 40 patients to estimate the occupancy of October 1%, of whom only 14 were
observed to be in the ICU. Curiously, one observed patient had a 0.1% survival probability to be
in the ICU on that particular date.

Figure 4.7] shows density plots of observed and expected occupancy; both curves are
right-skewed and the observed occupancy has a higher density at the extremes. The two-sample
t-test shows no significant difference between the two distributions (p=value = 0.6995). Figure
4.8] shows a time series chart comparing observed occupancy and expected occupancy (+/- 1

standard deviation), confirming good prediction fit.

4.5 Discussion

In this paper we have developed individual ICU LOS and aggregate occupancy predictions based
on a Weibull AFT model. First and foremost, the use of an AFT model for LOS predictions
provides good fit and avoids the strong assumption of normality or errors (as suggested by [108,
109]) required by the multiple regression models developed earlier by [61, 78, 112], as well as
the proportionality of hazards (Cox models) as in [108]. Overall, our models suggest that MODS
and NEMS measures provide reasonable predictions in terms of ICU LOS, with R* values similar
to those found in other models described in the literature by [108, 109]. Interestingly, patient
diagnosis was not relevant to our AFT model, despite being the main strength of current
APACHE models (see [42, 78, 84, 107, 108, 112]). This may be due to the simpler nature of our
model’s diagnosis, which contains only 6 categories: cardiovascular/cardiac/vascular,
gastrointestinal, neurological, other, respiratory, trauma. High MODS, NEMS, Glasgow coma
scores, and mechanical ventilation have increasing HR and, thus, increasing LOS (contradicting,
in part [375, 376]), while age and surgical origin are linked to shorter stays (perhaps due to
mortality as suggested by [377, 378, 87, 110, 98, 61, 107]).

Severity scores collected upon patient arrival in the ICU may provide masked

information about the patient’s true health status. We also note that individual LOS predictions
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tend to improve when taken at a later time (i.e, after ICU arrival and with score updating, as
suggested by [31, 9]). Although the choice of update time is unclear in the literature (e.g. [44,
387, 98]), NEMS and Ventilation updating at day 3 provided a more accurate model, both in
terms of NRMSE and residuals (see Figure 4.6]). We expect that MODS updating, if it had been
available, may have provided an even better fit. Our model may also benefit from a larger data
set since other cohorts can reach 100,000-200,000 patients, as in [61, 78, 93].

Although we did not address congestion and readmission (see [15, 26, 394, 65, 396, 30]),
our short-term capacity planning model provided precise occupancy estimations. While
individual LOS predictions err considerably (NRMSE of 100% or more), the survival
probabilities of a daily cohort of patients creates a pooling effect, which reduces the overall

NRMSE to 15%, representing, in our example, no more than 2 or 3 beds per day.

4.6 Conclusion

This research has successfully addressed several shortcomings in the ICU prediction model
literature, including the implementation of MODS and NEMS as worthy replacements for
APACHE and other metrics in the modeling of ICU LOS. The Weibull AFT model solves the
problem of assumption violation (e.g., normality of errors, time-dependent variable effects, lack
of hazard proportionality, residual trends) of traditional regression models as well as the lack of
interpretability of the currently proposed machine learning models.

The Weibull AFT model achieves such objectives not only by providing comparably
accurate LOS estimates, but also by generating helpful survival probabilities, meaningful hazard
rates and intuitive event time ratios. Provided that the prediction is not needed upon the arrival of
the patient in the ICU, updating patient information may help reduce the problem of individual
LOS prediction error.

It is precisely this individual prediction error that has prevented practitioners from
adopting ICU LOS predictions for capacity planning purposes. Therefore, with a simple
mathematical formulation and novel use of the Weibull AFT model, we have demonstrated that
pooling the future survival probabilities of an ICU patient cohort may provide a reliable
estimation of short-term bed needs. Our model allows practitioners to finally implement ICU
LOS predictions to start using patient information in order to better manage staff, downstream

beds, and elective surgeries.
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Table 4.1: ICU LOS Descriptive Statistics

Variable N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Total ICU L.OS 2,1956.66 1357 0.01153 307 7.06 276.78
Clinical ICU LOS (before exclusions) 2,195 5.63 10.14 0.01 0.99 232  6.01 190.86
Clinical ICU LOS (after exclusions) 2,176 5.05 7.40 0.03 0.98 228 591 58.98

Table 42 MODS and NEMS By Outcome

MODS

N Mean MODS SD Min Pctl(25) Median Pctl(75) Max
Deceased 475 641 3030 4 6 8 19
Discharged 1,701 443 2800 2 4 6 17

Welch Two Sample t =-12.78, df = 715.1, p-value <2.2e-16
NEMS

N Mean NEMS SD Min Pctl(25) Median Pctl(75) Max

Deceased 475 37.39 4615 32 39 44 56

Discharged 1,701 31.61 8750 27 32 39 56
Welch Two Sample t =-13.081, df = 780.1, p-value < 2.2e-16
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Table 4.3 MODS and NEMS by Patient Category

MODS
N Mean MODS SD Min Pctl(25) Median Pctl(75) Max
Medical 1459 5.10 302 0 3 S 7 19
Surgical 717 4.39 278 0 2 4 6 14
Welch Two Sample t = 5.4517, df = 1532.7, p-value = 5.805e-08
NEMS

N Mean NEMS SD Min Pctl(25) Median Pctl(75) Max
Medical 1.459 33.25 9.13 0 27 32 39 56
Surgical 717 3209 8.69 12 27 32 39 5l
Welch Two Sample t =2.8719, df = 1488.1, p-value = 0.004138
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Variable Subcategory

Table 4.4 List of Variables

Variable

type
Outcomes LOS

Covariates MODS

NEMS

ICU_LOS_Clinical

MODSGlasgowComaScoreCat

MODSHaematologicCat

MODSHepaticCat

MODSPressureAdjustedHeartRateCat

Nature (units) Description

continuous

clinical length of stay in days

categorical

Glasgow Coma Scale score,

categorical

categorical

(None, Minimal, Mild, Moderate,
Severe)

Platelet count, (None, Minimal,
Mild, Moderate, Severe)

Serum _ bilirubin level, (None,

categorical

Minimal, Mild, Moderate, Severe)

Pressure-adjusted heart rate,

MODSRenalCat

MODSRespiratoryRatioCat

MODSScoreCategory

IsArterialLine

(at day 1 and IsbasicMonitoring

day 3)

Patient
characteristics

IsCentralVenous

IsDialysis

IsDischarged
IsExtraCorporealMembrane

IsInterventionOutside

IsIntraAorticBalloonPump

IsIntracranial
IsIntravenous

IsOtherIntervention

IsOtherIntravenous

IsVentilation
NEMSScoreCategory

Age_category

Sex
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categorical

(None, Minimal, Mild, Moderate,
Severe)

Serum creatinine level, (None,

categorical

Minimal, Mild, Moderate, Severe)

PaO2/FIO2 ratio, (None, Minimal,
Mild, Moderate, Severe)

categorical a-0 score,b-1to4,¢c-5t08,d-9to
12, e-13 and above

binary introduction of arterial lines

binary monitoring of basic vital signs

binary central venous medication

binary any dialysis techniques

binary discharged from ICU

binary extra-corporeal membrane life
support

binary Specific interventions outside the
ICU: such as surgical intervention
or diagnostic procedure;

binary Intra-aortic balloon pump

binary Intracranial pressure monitoring

binary intravenous medication

binary other interventions such as:
endotracheal intubation,
pacemaker, cardioversion,
endoscopy, emergency operation
in the past 24 h, gastric lavage; X-
rays, echocardiography,
electrocardiography, dressings

binary other types of intravenous
medication

binary mechanical ventilation

categorical a-0 to 22, b-23 to 29, ¢-30 and
above

categorical 18-39,40-80, 80 and above

binary male (0), female (1)




Admission

IsEmergencySurgery

characteristics

IsLOS_before

ReadmissionDifferentStay

ReadmissionWithinSingleStay

Campus

ICUAdmissionDiagnosis_group

ICUAdmissionSource

\strikeout off\uuline

binary emergency surgery

binary hospital admission to other prior
to ICU

binary readmission to ICU from previous
hospital admission into ICU

binary readmission to ICU in the same
hospital stay

categorical MSICU, CCTC (ICU’s from
different hospital sites)

categorical Cardiovascular/Cardiac/Vascular,
Gastrointestinal, Neurological,
Other, Respiratory, Trauma

categorical Emergency Dept., OR, Other

off\uwave \strikeout

Hospital, Stepdown Unit, Ward
Medical, Surgical

offPatientCategory

off\uuline
off\uwave

offcategorical



Table 4.5 Weibull AFT Model (Day 1)

Variable

(Intercept)

Glasgow Coma Score (1)

Glasgow Coma Score (2)

Glasgow Coma Score (3)

Glasgow Coma Score (4)
MODS (1 to 4)
MODS (5 to 8)
MODS (9 to 12)

MODS (13 and above)
NEMS (23 to 29)
NEMS (30 and above)
Is Intervention Outside

Is Ventilation
Age (40 to 80)
Age (80 and above)
ICU Admission Source (Level 3 Unit)
ICU Admission Source (OR)

ICU Admission Source (Other Hospital)
ICU Admission Source (Other Source)
ICU Admission Source (Unit/Ward)
Patient Category (Surgical)
Log(scale)

Scale=1.09
Weibull distribution
Loglik(model)=-3773.8
"Chisq=243.22 on 20 degrees of freedom"

Loglik(intercept only)=-3895 4

Number of Newton-Raphson Iterations: 5

p=2.7E-40
n=1648
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Std.Error  z p
0.181 4.820 0.000
0.120 1.300 0.195
0.097 2.520 0.012
0.108 -0.270 0.786
0.087 -1.870 0.062
0.148  3.620 0.000
0.155 4.680 0.000
0.179 4.220 0.000
0.275 4.020 0.000
0.119 -0.980 0.330
0.126  0.570 0.570
0.077 1480 0.138
0.086 5.890 0.000
0.102 f-1.460 0.144
0.121 £-3.290 0.001
0.285 4.300 0.000
0.117 -2.730 0.006
0.090 1.180 0.240
0310 1.250 0.213
0.084 2490 0.013
0.083 -3.400 0.001
0.019 4.510 0.000




Table 4.6 Converted Weibull Parameters and Variable Coefficients - Weibull AFT Model (Day 1)

Variable Estimate SE
0.450
lambda 0.075
amma 0917 0.018
Glasgow Coma Score (1) -0.143 0.110
0.089
Glasgow Coma Score (2) -0.224
Glasgow Coma Score (3) 0.027 0.099
Glasgow Coma Score (4) 0.148 0.079
MODS (1 to 4) -0.490 0.136
MODS (5 to 8)
-0.662 0.143
MODS (9 to 12) -0.695 0.166
MODS (13 and above) -1.012 0.253
NEMS (23 to 29) 0.106 0.109
NEMS (30 and above) -0.066 0.115
Is Intervention Outside -0.105 0.071
-0.467
Is Ventilation 0.080
0.136
Age (40 to 80) 0.093
Age (80 and above) 0.367 0.111

“U Admission Source (Level 3 Unit) -1.124 0.262

ICU Admission Source (OR) 0.294 0.108

U Admission Source (Other Hospital) -0.097 0.083

‘U Admission Source (Other Source) -0.355 0.285

0.077
CU Admission Source (Unit/Ward) -0.192

Patient Category (Surgical) 0.260 0.076
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Table 4.7 Hazard Rates - Weibull AFT Model (Day 1)

Variable Hazard Rate Confidence Interval (95%)

Lower Bound Upper Bound

Glasgow Coma Score (1) 0.867 0.699 1.076
Glasgow Coma Score (2) 0.799 0.672 0.952
Glasgow Coma Score (3) 1.027 0.846 1.247
Glasgow Coma Score (4) 1.160 0.993 1.355
0.800

MODS (1 to 4) 0.612 0.469
MODS (5 to 8) 0.516 0.390 0.682
MODS (9 to 12) 0.499 0.361 0.691
MODS (13 and above) 0.364 0.221 0.597
NEMS (23 to 29) 1.112 0.898 1.377
NEMS (30 and above) 0.936 0.747 1.174
Is Intervention Outside 0.901 0.784 1.034
0.733

Is Ventilation 0.627 0.537
Age (40 to 80) 1.146 0.955 1.376

1.160
Age (80 and above) 1.443 1.795
ICU Admission Source (Level 3 Unit) 0.325 0.194 0.544

1.341

ICU Admission Source (OR) 1.086 1.657
ICU Admission Source (Other Hospital) 0.907 0.772 1.067
ICU Admission Source (Other Source) 0.701 0402 1.225
0.960

ICU Admission Source (Unit/Ward) 0.825 0.710
Patient Category (Surgical) 1.296 1.116 1.506
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Table 4.8 Event Time Ratio - Weibull AFT Model (Day 1)

Variable Event Time Ratio Confidence Interval (95%)

Lower Bound Upper Bound

Glasgow Coma Score (1)

1.168 0.923 1.478
Glasgow Coma Score (2) 1.276 1.056 1.543
0971
Glasgow Coma Score (3) 0.786 1.200
Glasgow Coma Score (4) 0.851 0.718 1.008
MODS (1 to 4) 1.707 1.278 2.279
2.059
MODS (5 to 8) 1.521 2.787
MODS (9 to 12) 2.133 1.501 3.031
1.759
MODS (13 and above) 3.013 5.161
0.891
NEMS (23 to 29) 0.706 1.124
NEMS (30 and above) 1.074 0.839 1.375
0.964
Is Intervention Outside 1.121 1.303
Is Ventilation 1.663 1.404 1.970
1.052
Age (40 to 80) 0.862 0.706
0.529
Age (80 and above) 0.670 0.850
ICU Admission Source (Level 3 Unit) 3.405 1.948 5.952
0914
ICU Admission Source (OR) 0.726 0.577
ICU Admission Source (Other Hospital) 1.112 0.932 1.327
ICU Admission Source (Other Source) 1472 0.801 2.704
ICU Admission Source (Unit/Ward) 1.233 1.045 1.453
Patient Category (Surgical) 0.754 0.640 0.887
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Table 4.9 Event Time Ratio - Weibull AFT Model (Day 3)

Variable Event Time Ratio Confidence Interval
Lower Bound
Upper Bound

Haematologic Score (1) 0.850 0.718 1.006
0.716

Haematologic Score (2) 0.568 0450

0.511
Haematologic Score (3) 0.701 0.961
Haematologic Score (4) 0.480 0.310 0.745
0.998

Renal Score (1) 0.874 0.765
Renal Score (2) 0.843 0.688 1.032
Renal Score (3) 0.621 0467 0.825
1.262

Renal Score (4) 0.862 0.590
Glasgow Coma Score (1) 1.223 0975 1.535
Glasgow Coma Score (2) 1.207 1.009 1.444
Glasgow Coma Score (3) 0.822 0.682 0.991
Glasgow Coma Score (4) 0.741 0.629 0.872
MODS (1 to 4) 1.350 0.870 2.095
MODS (5 to 8) 1.623 1.034 2.548
MODS (9 to 12) 1.960 1.198 3.207
MODS (13 and above) 3.068 1.673 5.625
NEMS day 1 (23 to 29) 0.627 0477 0.825
NEMS day 1 (30 and above) 0.621 0476 0.810
NEMS day 3 (0 to22) 0.769 0.571 1.036
NEMS day 3 (23 to 29) 0.844 0.742 0.960

NEMS day 3 (30 and above)

1.000 1.000 1.000
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Is Ventilation (day 3) 1.309
Age (40 to 80) 0.893
Age (80 and above) 0.658
Sex (Male) 0.873
ICU Admission Source (Level 3 Unit) 1.907
ICU Admission Source (OR) 0.944
ICU Admission Source (Other Hospital)
1.181
ICU Admission Source (Other Source) 1.282
1.165
ICU Admission Source (Unit/Ward)
Patient Category (Surgical)
0.872

0.742



Table 4.10 Clinical ICU LOS (Days) Performance Comparisons For Different Models

Model R MAE (days) NRMSE (%) PBIAS (%) 1SD

test train
train train test train  test test rain test

Day 1 (full data set) 0.09 0.07 4.68 4.76 96.0% 98.6% 132% 19.6% 0.39 042

Day 1 (LOS = 3 days) 0.05 6.93 106.0% -34.9% 0.39

Day 3 (LOS > 3 days) 0.12 0.04 644 6.73 95.5% 101.6% 13.1% 14.8% 0.46 0.43

Table 4.11 Short Term Capacity Planning Model - Descriptive Statistics

Descriptive Statistics (beds) ICU Occupancy
Observed Expected

Minimum 7.00 1197
Average 19.28 19.08
Median 20 19.28
Maximum 25.00 24.02
SD 4.04 249
Variance 16.31 6.20

Welch Two Sample t-test t = 0.38644, df = 271.22, p-value = 0.6995
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Table 4.12 Short Term Capacity Planning Model - Performance Prediction Statistics

Performance Measure Value
MAE 2.37 beds
MAPE 12.6%
2.88 beds
RMSE
NRMSE 15.1%
PBias -0.80%
rSD 0.62
ISR 0.71
R’ 0.51

Table 4.13 Example of Short Term Capacity Planning Model - Predicction Date: October 1st, 2016

Patient index ICU Admission Date Date of Stay Survival Probability
1 2016-08-27 2016/10/01 0.1%

2 2016-09-17 2016/10/01 21%

3 2016-09-24 2016/10/01 7.0%

4 2016-09-24 2016/10/01 50.1%

5 2016-09-25 2016/10/01 18.8%

6 2016-09-27 2016/10/01 32.5%

7 2016-09-28 2016/10/01 44.4%

8 2016-09-29 2016/10/01 73.5%

9 2016-09-29 2016/10/01 59.6%

10 2016-09-29 2016/10/01 56.1%

11 2016-09-29 2016/10/01 69.3%

12 2016-09-30 2016/10/01 71.8%

13 2016-09-30 2016/10/01 86.5%

14 2016-09-30 2016/10/01 83.10%

+ 26 patients with survival probabilities ranging from 0.01% to 71.8% 9.59 (estimated days)

Observed occupancy (not included arrivals from 2016/10/01) 14
Expected occupancy (not included arrivals from 2016/10/01) 16.33
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Chapter 5

Conclusions and Future Directions

In this thesis, I have examined the ICU capacity management problem and explored ways in
which to incorporate Canadian metrics such as the Multi-Organ Dysfunction Syndrome (MODS)
score and the Nine Equivalents of Nursing Manpower Score (NEMS) into models designed to
aid in long- and short term capacity planning. I have extended the ICU capacity management
literature by incorporating patient-specific daily stochastic changes in NEMS to trigger patient
step down from the ICU.

In Chapter 2, I developed a discrete-event simulation model to study the application of
daily NEMS scoring processes as a means to trigger patient step down and examined the impact
of step-down units on ICU patient flow. In Chapter 3, I examined the use of MODS and NEMS
data as a means of predicting individual patients’ LOS and outcome. I first assessed the
suitability of MODS and NEMS scores and then compared the performance of multiple
statistical and supervised machine learning methodologies in terms of LOS and outcome (e.g.,
death, long stay) prediction. In Chapter 4, I examined how MODS and NEMS can be used to
predict a patient’s ICU LOS at two different times: upon arrival and after three complete days in
the ICU. I also introduced the use of the AFT model as means of estimating future aggregated

ICU occupancy via pooled daily survival probabilities.
5.1 Managerial Insights

The findings in Chapter 2 provide valuable insights for hospital decision makers facing
congested ICUs. I have shown that capturing daily NEMS scores and using them as a proxy for
step-down readiness is a useful approach to estimating step-down time. NEMS is measured and
collected daily on all ICU patients in Ontario, so managers can track patient progression via
NEMS and respond with appropriate downstream resource allocation decisions. My findings
suggest that, under certain conditions, a step-down unit can be beneficial to patient flow. First, its
2:1 patient/nurse ratio may reduce operational costs, while still providing the appropriate level of
care. Second, and perhaps counter-intuitively, ICU beds can be converted into step-down beds,

while maintaining overall capacity and patient throughput. Finally, provided that both ICU and
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step-down beds are properly allocated, a step-down unit can work as a buffer that reduces ICU
overstay and off-service, ultimately improving patient care.

Chapter 3 provided evidence that NEMS and MODS can be used to predict ICU LOS and
patient outcome as reliably as more popular metrics, such as APACHE, SAPS and SOFA.
Combining MODS (a severity score) with NEMS (a nursing workload score) is a useful practice,
and given that both measures are already being collected for provincial reporting purposes, it is a
logical next step to assess LOS and outcome estimates amongst patients arriving in the ICU. |
evaluated several types of models. Given that no model was dominant in LOS prediction, this
would indicate that decision makers may choose from a host of plausible models that do not
require the limiting assumptions that are common in APACHE-based multiple linear regression
models. For example, survival analysis models and CART provide both LOS predictions and
variable explanatory power, while a random forest model may be more promising in terms of
prediction but lacks explanatory value. Regarding patient outcomes, our results suggest that
supervised machine learning models such as super learner and random forest seem to yield more
accurate predictions but lack explanatory power

In Chapter 4 that the Accelerated Failure Time (AFT) parametric survival model
provided hazard rates that are useful in explaining the instantaneous impact of each covariate in
the patient’s likelihood of leaving the ICU; it also provided event time ratios that indicate the
impact of each covariate in total estimated LOS vis-a-vis the baseline case. By analyzing these
relationships, decision makers will be better suited to plan patient care from the moment the
patient arrives in the ICU. The survival probability pooling made possible by the AFT model can
also be useful for short-term capacity planning. Decision makers can look at their current patient
cohort and make a reliable estimate of short-term bed needs and staffing requirements as well as
availability for elective surgery. This may provide hospitals with the flexibility needed to

accommodate patient surges and calculate bed needs downstream.

5.2 Future Research

The studies in this thesis are based on models that rely on limiting assumptions. The long-range
capacity planning discrete simulation model in Chapter 2 was developed to fit LHSC’s needs; a
natural extension of this would be to try to find generalizations and/or analytical models

describing the relationship between the ICU and step-down units given the stochastic nature of
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patient NEMS. Different methodologies can be explored, such as the Markov decision process,
queuing networks with accumulating priority queues and game theory, to name a few.

LOS prediction models may be further explored through the inclusion of more detailed
variables such as diagnostics, comorbidities and frailty scores. Larger data sets may also help in
finding location-specific characteristics such as clinical practices that may play a role in ICU
LOS, as well as in further refining the supervised machine-learning models.

The short-term capacity planning model may be extended in different directions. Another
methodology that generates survival probabilities is the survival tree, which may be usefully
compared to our current model. Future patient arrivals may also be simulated so the model can
be extended to longer planning horizons. MODS and NEMS can also be updated on a daily basis,

which may also serve to improve individual predictions .
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Chapter 6

Simulation Model design details

6.1 Overview

The Appendix contains a detailed explanation of the DES model (see screenshot in Figure 6.1])

and its input parameters.

6.2 ER and OR arrivals

We modeled seasonality in emergency department (ED) and operating room (OR) arrivals. The
OR performs both scheduled and emergency/unscheduled surgeries. These unscheduled surgeries
are performed upon patients admitted to the ED or those in other wards who require a surgical
procedure and transfer to the OR. After surgery they are transferred to other units in the hospital,
including the MSICU. Unscheduled surgeries happen at any time of the day and any day of the
week. Because unscheduled surgeries are performed on patients already in the hospital, we
modeled the unscheduled surgeries as part of the inpatient flow matrix so they are not part of the
external inpatient arrival pattern of the OR.

Scheduled surgeries are performed on patients not already in hospital and have a separate
arrival pattern. These surgeries are typically scheduled between 5Sam and 1lam on weekdays.
There was no significant difference between the months or days of the week, but there was

variation throughout the day (Table 6.1]).
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Table 6.1 Average number of scheduled surgery arrivals per working day
Hour Patients/ hour

Sam. 2.8
6am. 6.1
7am. 1.3
8am. 1.6
9am. 2.3
10 am. 1.9
11 am. 0.9

ED arrivals varied according to the day of the week and the hour of the day. Our
simulation of the ED is simplified by not capturing ED waiting room congestion. Instead, the
process starts with the "ready for disposition" time, which is when the first assessment has been
completed and the patient is ready to be admitted to one of the units of the hospital (Figure 6.3]).
In our data set there were 8,793 ED inpatients with average daily arrivals ranging from 21 on
Sundays to 26 on Tuesdays. To avoid the possibility of not simulating any patients in a given
hour, we divided the day into 4 parts: late night/early morning (12am to 6am), morning (6am to
12pm), afternoon (12pm to 6pm) and evening (6pm to 12am). ED inpatients are then simulated

via the Poisson process, as indicated in Table 6.2 .

6.3 UH structure and service time parameters

Ward capacities and service time parameters can be found in Table 6.4,

6.4 Detailed MSICU simulation

The simulation model of the MSICU starts with patient arrival from another unit (Figure 6.5]).
Upon arrival, the patient receives a "Level 3" NEMS that will represent her current status as a
MSICU patient (Table 6.5]). We then use a fork-join model and divide the patient into
"physical" and "procedural" entities. The "physical" entity occupies a bed in the MSICU to

ensure that MSICU capacity is not exceeded and that the appropriate queues form when capacity
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Table 6.2 ED inpatient arrivals per day of the week and time of the day

Average arrivals per 6 hour block

Time Monday Tuesday Wednesday Thursday Friday Saturday Sunday
00:00 to 06:00 5.9615 8.3461 6.9038 7.0385 7.0576 6.8845 6.077
06:00 to 12:00 3.25 3.0192 3.2308 3.1923 2.5384 3.6732 2.8462
12:00 to 18:00 5.7884 6.3269 6.2116 6.2307 6.1347 5.077 5.6344
18:00 to 00:00 9.2307 8.7307 7.4232 8.8462 8.6346 7.6538 7.1539
total 24.2306 264229 23.7694 253077 24.3653 23.2885 21.7115

Table 6.3 Entry points inter-arrival time distributions

Unit Inter-arrival distribution type Parameter (s), in hours

Clinic Exponential 22.17

OneConsult Exponential 8.2694

ADT Exponential 4.454

Victoria Gamma a= 039314 ; 6= 24.142
(u=9491 ; 0=15.137)

ED varies by day of the week and hour of the day (Table 6.27)

OR varies by hour of the day (Table 6.17)
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Table 6.4 Ward capacities and service time parameters

Number of Service time

Parameters (8)

Mean, standard

Units Type

Clinic entry point
OneConsult entry point

ADT entry point

Victoria Hospital entry point

Emergency Department (ED)
ED

Operating Room (OR)

entry point / 40 stations

entry point/ 16 rooms

OR
Emergency department Decant ward
General Medicine (4th GM) ward
Cardiac Ward (5th Cardiac) ward
Acute Care ward
Cardiac/Cardiovascular Surgery (6th ward
CVS)
Clinical Neurosciences (7th Neuro) ward
Hyper Acute stroke (7th Stroke) ward
General Surgery, Plastic, Uro and ward
Gyn (8th GS)

High Acuity Surgery (8th HAS) ward
Sub Acute Medical (8th SAM) ward
Palliative Care (9th PC) ward
Epilepsy (10th EP) ward

Multi-Organ Transplant (MOTP)  Intermediary
unit

Coronary Care (CCU) Intermediary
unit

Neurology Observation (NOBS)  Intermediary
unit

Cardiovascular Surgery Recovery Intensive
(CSRU) Care
Medical Surgery Intensive Care Intensive
(MSICU) Care
Total Beds

104

Beds Distribution deviation (hours)
Type
Weibull 1.402 ;3.539 3225;2.331
Lognormal 0.032;0.022 0.032;0.022
Lognormal 0.040 ; 0.032 0.040 ; 0.032
Gamma 0.430:393.13 169.13 ;:257.86
Exponential 11.694 11.694 ; 11.694
Gamma 3.351:2483 8.325 ;4.547
6 Lognormal  13.095;11.069 13.095; 11.069
72 Gamma 1.143 ;10747 12291 ;11493
20 Gamma 1.131;11049 125.02;117.53
12 Gamma 1.383 ;85375 118.09 ;10041
39 Gamma 1.374 ; 84.163 115.68 ; 98.67
44 Lognormal  152.97 ;28442 15297 ;28442
5 Gamma 1.754 ; 31.506 5528 ;41.73
41 Weibull 0967 ;11088 112.39;115.90
4 Weibull 1.281 ; 74.959 69.43 ;54.59
15 Gamma 1.136 ;372.69 42341 ;39724
60 Lognormal  117.09;178.76 117.09 ; 178.76
11 Gamma 2.744 :70987 194.80:117.59
12 Gamma 0.801 ;19026 152.52;170.35
14 Weibull 1.331;79.456 73.04 ;55.38
6 Lognormal 62.806:95.381 62.806 ;95.381
15 Lognormal  57.325;71.966  57.33;71.97
25 *simulated via Death/NEMS stochastic routine
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is reached. The "procedural" entity goes to the death/stay/step down process to model changes in
health status and disposition from MSICU.

The first part of the death/stay/step down process is a daily routine that culminates in
either death or survival. From our empirical data we built a logarithmic regression to estimate the
probability of death as a function of time in the MSICU (Figure 6.4]). We observed that no
deaths occurred after 45 days, so we truncated the function at that point. If the patient dies then
the two entities are joined and the patient exits both the MSICU and the simulation. Thus,
MSICU LOS is a consequence of the patient’s health progression over time, as opposed to an
exogenously generated parameter. If the patient survives, then the "procedural" entity enters a
NEMS scoring routine to sample a new NEMS.

The score either stays as at "Level 3", or changes to "Level 2" or "Level 1". In case of a
"Level 3" NEMS, the procedural entity returns to the death process to repeat the survival and
NEMS routine, with updated survival probability based on LOS (Figure 6.41). In case of a Level
2 score, in the baseline scenario, the patient still stays at the MSICU since there are no L2 beds
available. In the other scenarios, a "Level 2" NEMS will trigger the procedural entity to be joined
with its physical entity, exit the MSICU and move to a step-down unit. In the case of a Level 1
NEMS, in both scenarios the entities join and the patient is transferred to a ward.

Note that this captures the fact that a patient’s health fluctuates over time and may
improve or deteriorate. This model also allows for overstay patients to have their health change
due to congestion downstream and captures sudden deaths in ther MSICU with a more detailed

distribution than the one used elsewhere in the hospital, reflecting the high risk to the patient.
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Table 6.5 NEMS probability
NEMS Probability

Level 1 7%
Level 2 24%
Level 3 69%
Total 100%

6.5 Capital expenditures estimates

Hospital stay cost data was retrieved from the Canadian Institute for Health Information ([29]).
Operational cost and capital expenditures were obtained via consultation with LHSC Decision
Support Staff and publicly available financial statements ([67]). Capital expenditures were
linearly extrapolated from estimates of 8 and 15 beds ($3 million and $5 million respectively)

and linearly depreciated over 10 years per Canadian accounting practice (Table 6.6]).
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Table 6.6 Level 2 unit capital expenditure estimates

Number of beds Yearly capital expenditure Expenditure/bed
2 $128,571 $64.285.71
4 $185,714 $46.428.57
6 $242 857 $40,476.19
8 $300,000 $37,500.00
10 $357,143 $35,714.29
12 $414,286 $34,523.81
14 $471.429 $33,673.47
15 $500,000 $33,333.33
16 $528,571 $33,035.71
18 $585,714 $32,539.68
20 $642 857 $32,142.86
22 $700,000 $31,818.18
24 $757,143 $31,547.62

26 $814.286 $31.318.68

6.6 Model validation

In the one year period of the data set, there were in total N = 17,380 inpatient arrivals, while our

simulation averages 17,350, well within the 95% confidence interval (Table 6.7]).
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Simulation Object -95%
Emergency 8,760.48
Department

ADT 1,940.53
OneConsult 1,047.00
Clinic 266.05
Victoria Hospital 920.56
Operating Room 4.308.84
scheduled
surgeries
Total 17,243 47

Table 6.7 Inpatient arrival validation

Simulation Results

average

8,794.50

1,955.13
1,054.83
271.37
935.53

4.338.93

17.350.30

110

95%

8,828.52

1,969.73
1,062.66
276.68
950.50

4.369.03

17.457.13

Observed Error

data

8,793 0.02%
1,963 -0.40%
1,058 -0.30%
275 -1.32%
927 0.92%

4364

17,380 -0.17%




Chapter 7

ICU LOS and outcome model parameters

Table 7.1: Variance inflation factor table

LOS GVIF Df GVIFA(1/(2*Df))
MODSHaematologicCat 1.229363 3 1.035015
MODSHepaticCat 1241252 3 1.036677
MODSRenalCat 1.135293 4 1.015988
MODSPressureAdjustedHeartRateCat 1.112486 3 1.017925
MODSGlasgowComaScoreCat 1.094506 4 1.011352
MODSRespiratoryRatioCat 1.650848 4 1.064666
MODSScoreCategory 1.876844 4 1.081879
NEMSScoreCategory 385211 2 1.400957
IsArterialLine 1513073 1 1.23007
IsIntravenous 1917876 1 1.384874
IsOtherIntravenous 1.046339 1 1.022907
IsIntracranial 1.08734 1 1.042756
IsDialysis 1.133065 1 1.064455
IsOtherIntervention 1.549994 1 1.244987
IsInterventionOutside 1.205076 1 1.09776
IsCentral Venous 1.449068 1 1.203772
IsVentilation 1.978102 1 1.40645
Age_category 1.222517 2 1.051511
Gender 1.043497 1 1.021517
Campus 1.266087 1 1.125205
ICUAdmissionSource 5.555884 4 1.239065
ICUAdmissionDiagnosis_group  2.244249 5 1.084194
PatientCategory 2.030271 1 1424876
ISLOS_before 2.070508 1 1.438926
IsEmergencySurgery 1.590521 1 1.261159
ReadmissionWithinSingleStay 1.198276 1 1.094658
ReadmissionDifferentStay 1.050669 1 1.025021
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Table 7.2 Model parameters ICU LOS prediction

Model ackage R function parameters
CART Tree tree(y~x, ...) control = tree.control(5000, mincut = 5, minsize = 10,
mindev = 0.002)
Cox-PH survival survreg(coxph(surv(y~x)))
CR-PH survival, CumlIncidence(), comprisk = Status(deceased, discharged)
cmprisk, survfit(Surv(y,comprisk)~x)
Cumlncidence.R
GLM MASS glm(y~x) family = Gaussian (link = "log")
GLM MASS glm(y~x) family = Gamma (link = "log")
NN NN NN(y~xX, ... size = 10, maxit = 100, linout=T
RF randomForest  randomForest(y~x, ...) ntree = 500, nvar = 10, importance = TRUE
RLM MASS rim(y~x family = Gaussian (link = "log")
TEM endogenous hybrid(y~x , probit = z~x) treatment effect = probit
two-stage MASS glm(y~x,
GLM binomial)*glm(y deceassed~x)  +
(1-glm(y~x,
binomial))*glm(y deceassed~x)
two-stage MASS, survival glm(y~x, binomial) *
Cox survreg(coxph(surv(y deceased~x)))
J’_
(1-glm(y survivor~x, binomial)) *
survreg(coxph(surv(y survivor~x)))
SVM el071 svm(y~X, ... kernel = "radial", cost = 10, scale = FALSE
SL Superlearner SuperLearner(y,x,...) SL.library =

c¢("SL.glm","SL.ksvm","SL.rpart","SL.randomForest"),
family=gaussian(), verbose = TRUE)
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Table 7.3 Model parameters outcome prediction

Model package R function parameters
CART rpart rpart(y~x, ...) control = tree.control(5000, mincut = 5, minsize =
10, mindev = 0.005)

Logistic  MASS Im(y~x family = binomial

regression binomial)

Multinomi NN multinom(y~x, ...)

al

regression

NN NN NN(y~x, ...) size = 10, maxit = 100, linout=T

RF randomFore randomForest(y~xX, ntree = 500, nvar = 10, importance = TRUE

SVM el071 svim(y~Xx, ... kernel = "radial", cost = 10, scale = FALSE

SL Superlearner Superlearner(y x... SL library =
2 c¢("SL.glm","SL .ksvm","SL .rpart","SL.randomFore

st"), family=gaussian(), verbose = TRUE)
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Table 7.4 MODS Components adapted from Marshal et al 1995 [59]

Organ System Indicator of Degree of Dysfunction
Dysfunction

None Minimal Mild Moderate  Severe
Respiratory PaO2/FIO2 > 300 226-300 151-225 76—-150 <75
ratio
Renal Serum < 100 umol/L 101-200 201-350 351-500 > 500
creatinine umol/L umol/L wmol/L wmol/L
level
Hepatic Serum <20 umol/L 21-60 61-120 121240 > 240
bilirubin umol/L umol/L wmol/L wmol/L
level
Cardiovascular Pressure- < 10.0 10.1-15.0 15.1-20.0 20.1-30.0 >30.0
adjusted HR
Hematologic Platelet > 81.,000- 51.,000— 21.000- ff<
count 120,000/mm3 120,000/mm3 80,000/mm3 50,000/mm3 20,000/mm3
Neurologic Glasgow 15 13-14 10-12 7-9 <6
Coma Scale

Score
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Table 7.5 NEMS components (adapted from Miranda et al 1997 [33])

Item Points

1. Basic monitoring: hourly vital signs, regular record 9
and calculation of fluid balance

2. Intravenous medication: bolus or continuously, not 6
including vasoactive drugs

3. Mechanical ventilatory support: any form of 12
mechanical/assisted ventilation, with or without PEEP
(e. g., continuous positive airway pressure), with or
without muscle relaxants

4. Supplementary  ventilatory care: breathing 3
spontaneously through endotracheal tube;
supplementary oxygen any method, except if (3)
applies

5. Single vasoactive medication: any vasoactive drug 7

6. Multiple vasoactive medication: more than one 12
vasoactive drug, regardless of type and dose

7. Dialysis techniques: all 6

8. Specific interventions in the ICU: such as5
endotracheal intubation, introduction of pacemaker,
cardioversion, endoscopy, emergency operation in the
past 24 h, gastric lavage; routine interventions such as
X-rays, echocardiography, electrocardiography,
dressings, introduction of venous or arterial lines, are
not included

9. Specific interventions outside the ICU: such as6
surgical intervention or diagnostic procedure; the
intervention/procedure is related to the severity of
illness of the patient and makes an extra demand upon
manpower efforts in the ICU

Total 56
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Measure

RSR

rSD

PBIAS

Table 7.6 Performance Measures for LOS prediction models

Name
Ratio of the RMSE

Explanation

Ratio of the RMSE between simulated and
observed values to the standard deviation of
the observations

Ratio of  Standard Ratio of standard deviations between sim and

Deviations
Percent Bias

obs

Measures the average tendency of the
simulated values to be larger or smaller than
their observed ones. The optimal value of
PBIAS is 0.0, with low-magnitude values
indicating accurate model simulation. Positive
values indicate overestimation bias, whereas
negative values indicate model
underestimation bias
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Table 7.7 Long-stay prediction model comparison

Dependent variable

IsLongStay7 IsLongStay21
Long — stay7days Long — stay21days
@h) (2)
MODSHepaticCatb — Minimal 1.14"
(0.52)
MODSHepaticCatC — Mild 115"
(0.39)
MODSHepaticCatD — ModerateandE — Severe 1317
(0.48)
MODSRenalCatb — Minimal 0.24" 0.56™"
0.11) (0.20)
MODSRenalCatC — Mild 0.02 -0.80"
0.17) (0.48)
MODSRenalCatD — Moderate 0.62" -1.30
0.24) (1.02)
MODSRenalCatE — Severe 0.13 -0.36
(0.25) 0.61)
MODSRespiratoryRatioCatb — Minimal -0.07 -0.20
0.14) (0.34)
MODSRespiratoryRatioCatC — Mild 0.16 0.70™
0.14) (0.28)
MODSRespiratoryRatioCatD — Moderate 0.58"" 0.82""
0.14) (0.26)
MODSRespiratoryRatioCatE — Severe 0.32 1.02""
(0.20) (0.32)
MODSScoreCategoryb — 1to4 0.38
(0.31)
MODSScoreCategoryc — 5to8 042
(0.31)
MODSScoreCategoryd — 9to12 0.54
(0.34)
MODSScoreCategorye — 13andabove 1.18™
0.44)
NEMSScoreCategoryb — 23t029 -0.02 - 046
(0.25) (0.49)
NEMSScoreCategoryc — 30andabove 051" 0.14
0.25) (0.49)
IsIntracranial 0.64"
(0.32)
IsCentralVenous 057" 047"
0.12) (0.26)
IsVentilation 073" 0.51"
(0.15) (0.30)
Age_category40 — 80 0.38" -0.06
(0.15) (0.28)
Age_category80andabove 0.12 —-1.25"
(0.20) (0.48)
ICUAdmissionSourceOR -0.17
(0.20)
ICUAdmissionSourceOtherHospital 0.24"
(0.13)
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ICUAdmissionSourceStepdownUnitandOtherSource

061

(0.25)
ICUAdmissionSourceUnit/Ward 0.13)

0.17)
ICUAdmissionDiagnosis_groupGastrointestinal 0.28 -0.51

(0.20) (0.46)
ICUAdmissionDiagnosis_groupNeurological 0.17 0.002

(0.18) (0.37)
ICUAdmissionDiagnosis_groupOther 0.11 -024

(0.16) (0.32)
ICUAdmissionDiagnosis_groupRespiratory 0.36" 0.18

(0.15) (0.28)
ICUAdmissionDiagnosis_groupTrauma 1.00™ 0.93™

(0.22) (0.37)
PatientCategorySurgical -0.20

(0.13)
IsLOS_before 027" 0.36"

(0.15) 0.21)
IsEmergencySurgery -041 -2427

(0.23) (1.01)
ReadmissionWithinSingleStay 0417

(0.20)
Constant -3.99™ -438"

(0.39) (0.54)
Observations 3,270 3,270
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Table 7.8 Cox-PH model for ICU LOS prediction

Dependent variable:
ICU_LOS_Clinical
Cox — PH — LOSindays

MODSHaematologicCatb — Minimal
MODSHaematologicCatC — Mild
MODSHaematologicCatD — Moderatz and E — Severe
MODSHepaticCatb — Minimal
MODSHepaticCatC — Mild
MODSHepaticCatD — ModerateandE — Severe
MODSRenalCatb — Minimal

MODSRenalCatC — Mild

MODSRenalCatD — Moderate
MODSRenalCatE — Severe
MODSPressureAdjustedHeartRateCatb — Minimal
MODSPressureAdjustedHeartRateCatC — Mild
MODSPressureAdjustedHeartRateCatD — Moderate and E — Severe
MODSGlasgowComaScoreCatb — Minimal
MODSGlasgowComaScoreCatC — Mild
MODSGlasgowComaScoreCatD — Moderate
MODSGlasgowComaScoreCatE — Severe
MODSRespiratoryRatioCatb — Minimal
MODSRespiratoryRatioCatC — Mild
MODSRespiratoryRatioCatD — Moderate
MODSRespiratoryRatioCatE — Severe
MODSScoreCategoryb — 1to4
MODSScoreCategoryc — 5t08
MODSScoreCategoryd — 9to12
MODSScoreCategorye — 13 and above
NEMSScoreCategoryb — 23t029
NEMSScoreCategoryc — 30 and above
IsArterialLine

IsIntravenous

IsOtherIntravenous

IsIntracranial

IsDialysis

IsOtherIntervention

IsInterventionOutside

IsCentralVenous

IsVentilation

Age_category40 — 80
Age_category80andabove

Genderb — Female

CampusMSICU

ICUAdmissionSourceOR
ICUAdmissionSourceOtherHospital
ICUAdmissionSourceStepdownUnitandOtherSource
ICUAdmissionSourceUnit/Ward
ICUAdmissionDiagnosis_groupGastrointestinal
ICUAdmissionDiagnosis_groupNeurological
ICUAdmissionDiagnosis_groupOther
ICUAdmissionDiagnosis_groupRespiratory
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-0.217(0.13)
—0.04(0.17)
0.02(0.20)
0.15(0.14)
—-0.20(0.23)
—-0.53"(0.29)
—-0.237(0.10)
—-0.11(0.15)
—0.04(0.23)
—0.08(0.24)
0.02(0.09)
0.17(0.16)
0.28(0.19)
—-0.003(0.14)
0.01(0.13)
0.003(0.14)
—-0.02(0.09)
-0.23%(0.12)
—0.35"(0.12)
—0.317(0.12)
—-0.357(0.15)
0.70%(0.39)
1.1777(0.40)
1.677°(0.41)
1.4677(0.45)
0.26(0.22)
0.35(0.25)
—-0.02(0.11)
0.33"7(0.11)
—-0.14(0.51)
0.28(0.27)
—-0.05(0.18)
—0.04(0.09)
—0.11(0.09)
—0.19(0.11)
—0.0002(0.12)
1.087(0.19)
1.807"(0.21)
0.06(0.08)
—0.2477(0.09)
—0.8477(0.20)
—0.16(0.11)
—-0.587(0.26)
0.16(0.14)
—-0.18(0.17)
0.06(0.14)
—0.4377(0.13)

EETd

-031 (0.11)



ICUAdmissionDiagnosis_groupTrauma -0.517(0.21)

PatientCategorySurgical —0.04(0.11)
IsLOS_before —0.04(0.13)
IsEmergencySurgery -0.497(0.30)
ReadmissionWithinSingleStay -0.417(0.18)
ReadmissionDifferentStay -04370.26)
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Table 7.9 Regression Model Comparison

Dependent variable:
ICU_LOS_Clinical

normal glm: Gamma robust
link = log linear
GLM GammaGLM SurvivorsGLM DeceasedGLM RLM
[€D)] (2) 3) ) (5)
MODSHaematologicCatb — Minimal 0.78" 0.13 0.45™
(038) (0.08) (0.18)
MODSHaematologicCatC — Mild 0.86 0.29" 034
(0.55) 0.11) (0.25)
MODSHaematologicCatD — ModerateandE 0.23 0.03 -0.01
(0.63) (0.13) (0.29)
MODSHepaticCatb — Minimal -0.95" -0.18" -1.15 -0.16
(0.44) (0.09) (0.90) (0.20)
MODSHepaticCatC — Mild 1.64™ 025 4.06™ 0.61°
(0.77) (0.16) (144) (036)
MODSHepaticCatD — ModerateandE — Severe 1.16 0.14 048 -0.06
(0.87) (0.18) (1.61) 041)
MODSRenalCatb — Minimal 1.04™ 0.15" 032"
(0.29) (0.06) 0.14)
MODSRenalCatC — Mild - 044 -0.12 0.003
(0.44) (0.09) 021
MODSRenalCatD — Moderate 0.08 0.01 032
(0.68) 0.14) (032)
MODSRenalCatE — Severe —-0.06 -0.01 0.13
(0.64) (0.13) (030)
MODSPressureAdjustedHeartRateCatb — Minimal -0.15
(0.13)
MODSPressureAdjustedHeartRateCatC — Mild -0.17
(0.25)
MODSPressureAdjustedHeartRateCatD — ModerateandE — Severe -025
(030)
MODSGlasgowComaScoreCatb — Minimal 035
0.22)
MODSGlasgowComaScoreCatC — Mild -0.13
(0.19)
MODSGlasgowComaScoreCatD — Moderate 0.18
021
MODSGlasgowComaScoreCatE — Severe -0.05
(0.13)
MODSRespiratoryRatioCatb — Minimal -0.09 —-0.002 -027 091 -0.01
(036) (0.07) (030) (0.80) (0.16)
MODSRespiratoryRatioCatC — Mild 0.78"™ 0.12 0.49 177" 034"
(038) (0.08) (033) (0.78) (0.18)
MODSRespiratoryRatioCatD — Moderate ~ 1.63™ 0.28™ 1.24™ 226" 0.90™
(038) (0.08) (034) 0.74) (0.18)
MODSRespiratoryRatioCatE — Severe 1.48™ 0.28"™ 1.56™ 1.90™ 0.56™
(0.57) (0.12) (0.55) (0.95) (0.26)
MODSScoreCategoryb — 1to4 0.76 0.28"™ 0.77° -0.86 0.26
(0.57) (0.12) (0.46) (229 0.27)
MODSScoreCategoryc — 5to8 0.84 037 117" -233 032
0.61) (0.13) (0.50) 231 (0.29)
MODSScoreCategoryd — 9to12 0.99 038" 239™ -344 0.25
(0.72) (0.15) (0.64) (238) (034)
MODSScoreCategorye — 13 and above 526™ 0.84™ 9.38™ -4.17 2.59™
(1.17) (0.25) (1.24) (2.66) (0.56)
NEMSScoreCategoryb — 23 to 29 -0.67 -0.13 -0.87" -038°
(0.48) (0.10) (0.40) (0.23)
NEMSScoreCategoryc — 30andabove 0.63 0.06 -0.69 0.03
(0.51) (0.13) (0.54) (030)
IsArterialLine 0.02 043 0.19
(0.06) 0.27) (0.15)
IsIntravenous 0.11 1.59™ -1.15" 037"
(0.07) (030) (0.53) (0.16)
IsOtherlIntravenous 0.26 032
(0.26) (0.58)
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IsIntracranial
IsDialysis
IsOtherIntervention

IsInterventionOutside

IsCentral Venous

IsVentilation

Age_category40 — 80

Age_category80andabove

Genderb — Female

CampusMSICU

ICUAdmissionSourceOR

ICUAdmissionSourceOtherHospital

ICUAdmissionSourceStepdownUnitandOtherSource.85***

ICUAdmissionSourceUnit/ Ward

ICUAdmissionDiagnosis_groupGastrointestinal — 0.05

ICUAdmissionDiagnosis_groupNeurological — 0.12

ICUAdmissionDiagnosis_groupOther

1.91°
(1.01)

1225w
(029)
161
(035)
043
(036)
-0.76
(047)

-0.54
0.44)
0.89%*
(0.36)

(0.71)
0.39
(0.44)

(0.51)

0.47)

0.11
(0.40)

ICUAdmissionDiagnosis_groupRespiratory 0.75*

ICUAdmissionDiagnosis_groupTrauma

PatientCategorySurgical

IsLOS_before

IsEmergencySurgery

(039)
2350
057)

0.68*
(0.37)
—1.10%*
(0.53)

030
0.21)
-0.02
(0.13)
0.01
(0.06)
0.08
(0.06)

0.23 5
(0.06)
032+
(0.08)
0.11
(0.07)
-0.14
(0.10)
0.07
(0.05)
0.04
(0.06)
-0.10
(0.10)
0.14%
(0.07)
0.35%*
(0.15)
0.08
(0.09)
-0.03
.11
0.03
(0.10)
-0.01
(0.08)
0.21%+
(0.08)
0435
(0.13)
~0.04
(0.07)
0.13
(0.08)
—0.25%*
0.11)
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2.10™
(0.99)

0.51°

(0.26)
0.57"
(0.27)

0.98
(026)
220w
031)

L7
(0.36)
040
(0.33)
1.27+*
(0.58)
0.63*
(0.32)
-0.16
(0.46)
0.27
(0.44)
—-0.10
(0.37)
0.81%*
(0.37)
233
(0.49)

-0.66
(042)

2.09

(1.48)
2.88"
(1.17)

-051
(1.09)
—3.60%%*
(1.19)
0.80
(0.51)

082
(1.02)
(0.86)
0.68
(0.78)
121%
(0.69)
-105
(121)

1.88™
(0.48)
0.08
(0.30)
031"
(0.14)
0.17
(0.14)

0,70+
(0.14)
1,20
(0.17)
027
(0.17)
~0.11
022)
0.01
(0.11)
0.001
(0.13)
-028
(0.24)

0 48
(0.17)
1,345
0.33)
0.36*
(021)
030
(0.24)
0.003
022)
0.33*
(0.19)
0.71 %%
(0.19)
1.35%
(0.28)
-0.19
(0.16)
0.29*
(0.17)
- 0.44%
(0.25)



ReadmissionWithinSingleStay

ReadmissionDifferentStay

Constant

1.17*
(0.60)

0.26
(0.75)

0.13
(0.12)
-0.003
(0.13)
0.10
(0.30)

144
(050)

045
(0.57)

279w
(1.04)

76755
(248)

1.00%%
(0.28)
0.17
(0.29)
-0.01
(0.68)



number

Table 7.10 Neural network top 20 Olden values

importance

BlelaltRaERERES e o me v -

item

-959.02899 MODSPressureAdjustedHeartRateCatD - Moderate and E

-757.24463 ICUAdmissionSourceStepdown Unit and Other Source
-730.22137 MODSHepaticCatb - Minimal
598.94907 NEMSScoreCategoryc-30 and above
598.54481 ReadmissionWithinSingleStay
540.60316 fMODSHepaticCatD - Moderate and E - Severe
498.69204 MODSHaematologicCatD - Moderate and E - Severe
491.00641 MODSRespiratoryRatioCatC - Mild
477.52319 ICUAdmissionDiagnosis_groupTrauma
416.72317 fMODSHaematologicCatb - Minimal
380.53848 IsVentilation

373.7844 MODSRenalCatb - Minimal
-356.33949 ReadmissionDifferentStay
-333.18309 fMODSRenalCatC - Mild
-332.97981 IsOtherlntravenous
-323.62798 MODSScoreCategorye-13 and above
-322.63755 MODSHepaticCatC - Mild
-321.94429 MODSPressureAdjustedHeartRateCatb - Minimal
-316.90555 IsArterialLine
-292.64483 Age_category40-80
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Table 7.11: Random Forest variable Importance

IsArterialLine

IsVentilation

IsCentralVenous
ICUAdmissionDiagnosis_group
IsSLOS_before

Isintravenous

PatientCategory
NEMSScoreCategory
MODSRespiratoryRatioCat
IsEmergencySurgery
ICUAdmissionSource
MODSScoreCategory
MODSRenalCat

Age_category

Campus

MODSHepaticCat
MODSPressureAdjustedHeartRateCat
Gender

IsDialysis
MODSGlasgowComaScoreCat
ReadmissionWithinSingleStay
IsOtherintervention
IsinterventionOutside
IsOtherintravenous
MODSHaematologicCat
ReadmissionDifferentStay
Isintracranial

forest_msicudatatrain
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o]
(o]
o]
[e]
o]
1e]
o
O
o
(o]
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(o]
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T T T T
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%IncMSE
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ICUAdmissionDiagnosis_group
MODSGlasgowComaScoreCat
MODSRespiratoryRatioCat
ICUAdmissionSource
MODSScoreCategory
MODSRenalCat
MODSPressureAdjustedHeartRateCat
MODSHaematologicCat
MODSHepaticCat
NEMSScoreCategory
Age_category

Gender

IsVentilation

IsArterialLine

Campus

IsCentralVenous
PatientCategory

IsSLOS_before
IsinterventionOutside
Isintravenous
IsOtherintervention
ReadmissionWithinSingleStay
IsDialysis

IsEmergencySurgery
ReadmissionDifferentStay
Isintracranial

IsOtherintravenous

© 0 0 o

0 0 0 0 o

T T T T 1
0 4000 8000
IncNodePurity




Chapter 8
MODS, NEMS components and Performance Metrics

Table 8.1 MODS Components (Adapted From Marshal et al 1995 [59])

Degree of Dysfunction

Organ System Indicator of

Dysfunction

None Minimal Mild Moderate Severe
Respiratory  PaO2/FIO2 ratio > 300 226-300 151-225 76-150 <75
Renal Serum creatinine < 100 umol/L 101-200 wmol/L 201-350 351-500 > 500
level umol/L wmol/L umol/L
Hepatic Serum bilirubin <20 umol/LL  21-60 umol/L  61-120 umol/L 121-240 > 240
level umol/L umol/L
Cardiovascular Pressure-adjusted <10.0 10.1-15.0 15.1-20.0 20.1-30.0 >30.0
HR
Hematologic Platelet count > 81.000— 51,000— 21,000— =<
120.000/mm3  120.000/mm3 80.,000/mm3 50,000/mm3  20,000/mm3
Neurologic Glasgow Coma 15 13-14 10-12 7-9 <6

Scale score



Table 8.2 NEMS components (Adapted From Miranda et al 1997 [33])

[tem

1. Basic monitoring: hourly vital signs, regular record and
calculation of fluid balance

2. Intravenous medication: bolus or continuously, not
including vasoactive drugs

3. Mechanical ventilatory support: any form of
mechanical/assisted ventilation, with or without PEEP (e.
g., continuous positive airway pressure), with or without

muscle relaxants

4. Supplementary ventilatory care: breathing
spontaneously through endotracheal tube; supplementary
oxygen any method, except if (3) applies

5. Single vasoactive medication: any vasoactive drug

6. Multiple vasoactive medication: more than one
vasoactive drug, regardless of type and dose

7. Dialysis techniques: all

8. Specific interventions in the ICU: such as endotracheal
intubation, introduction of pacemaker, cardioversion,
endoscopy, emergency operation in the past 24 h, gastric
lavage; routine interventions such as X-rays,
echocardiography, electrocardiography, dressings,
introduction of venous or arterial lines, are not included

9. Specific interventions outside the ICU: such as surgical
intervention or diagnostic procedure; the
intervention/procedure is related to the severity of illness
of the patient and makes an extra demand upon manpower
efforts in the ICU

Total

Points
9

6

12

56



Measure

RSR

PBIAS

Table 8.3 Performance Measures for LOS Prediction Models

Name
Ratio of the RMSE

Ratio of Standard Deviations

Percent Bias

Explanation

Ratio of the RMSE between simulated and
observed values to the standard deviation of
the observations

Ratio of standard deviations between sim and
obs

Measures the average tendency of the
simulated values to be larger or smaller than
their observed ones. The optimal value of
PBIAS is 0.0, with low-magnitude values
indicating accurate model simulation.
Positive values indicate overestimation bias,
whereas negative values indicate model
underestimation bias
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