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Abstract

Background: Magnetophosphenes are among the most reliably reported effects resulting
from magnetic induction. The frequency dependence of the perception threshold is crucial,
as guideline agencies use this information to set exposure limits whose purpose is to protect
public and workers.

Objective: Establish the magnetophosphene perception thresholds throughout the
extremely low frequency range (0-300 Hz) and evaluate the use of EEG as a biomarker.
Hypothesis: Perception thresholds will be lowest at ~30 Hz. EEG occipital alpha power
will decrease upon perception.

Methods: 60 participants were exposed to homogenous magnetic fields up to 300 Hz, and
70 mT. EEG alpha power was calculated during each exposure.

Results: Magnetophosphene thresholds were found to be lowest (16.92 mTns) at 35 Hz.
Thresholds established at powerline frequencies. Magnetophosphene perception was not
accompanied by a change in EEG activity.

Conclusions: Magnetophosphenes frequency dependence is consistent with previous
studies involving magnetic stimuli. Occipital EEG alpha power is not an appropriate

biomarker of magnetophosphene perception.

Keywords

Magnetic Field, Magnetic Induction, Biophysical Mechanisms, Perception Threshold,
Neurophysiology, Electroencephalography
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Chapter 1

1 General Introduction

Magnetic fields (MFs) are present throughout our daily lives. Most are familiar with the
Earth’s MF, however, MFs are also produced by powerlines and household electrical
appliances. Throughout the following sections we will explore the human visual system,
through  evaluating a phenomenon called magnetophosphene perception.
Magnetophosphenes consists of a visual experience of flickering lights upon exposure to a
sufficiently strong MF; they occur in the absence of a visual stimulus. An overview of
previous magnetophosphene research will be presented, as well as an overview of the

visual system.

1.1 Magnetic Fields

We are exposed to manmade and natural MFs every day. The Earth’s MF is generated as a
consequence of electric currents within the Earth’s molten core. This very slowly changing
(essentially static) MF is rather weak at the earth’s surface but can be detected with a
compass. A static MF refers to the fact that the field does not vary over time. A common
household fridge magnet is, for example, also produces a static MF. Magnetic resonance

imaging (MRI) scanners produce the strongest common static MFs.

The concept of time-varying MFs refer to MFs having their intensity changing over time
(as opposed to static MFs). They are most commonly produced by alternating currents,
which are oscillating over time (i.e. they reverse their direction at a regular interval). MFs
produced through use of our everyday household appliances and electrical wires are
alternating. Alternating current flowing through a wire produces an alternating MF around
it (Figure 1). Alternating MFs are classified into the following categories: extremely low
frequency (ELF, 0-300 Hz), low frequency (300 Hz — 3 MHz), and high frequency (3 MHz
— 300 GHz). The remainder of this research study will focus on ELF MFs, such as those
we encounter in our daily lives. In Canada and the US, powerlines operate at 60 Hz,
whereas in Europe, powerlines operate at 50 Hz. Both 50 and 60 Hz are within the ELF
range, therefore, we are exposed to ELF MFs daily.



The intensity, H, of a MF is measured in amperes per meter (A/m), however, it is most
often reported in terms of its MF flux density, B, measured in Tesla (T), or milliTesla (mT).

The intensity and flux density of a MF are related by the equation:
B = pH (1)

where p is the permeability of the space. The MF flux density decreases with increasing
distance from the source and is proportional to the current intensity (I) and distance from

the source (1), such that for an isolated straight conductor carrying current:

g D 2)

- 2mr

Time-varying MFs such as those resulting from a current flowing through a wire induce
electric fields in a conductive object, such as the human body (Figure 1). This means that
the MFs we interact with in our everyday lives are inducing electric fields in our body.
Depending on magnitude, frequency and waveshape, induced electric fields may affect

biological processes.

AC
Current
Flowing
Time Varying Through a
Magnetic Wire
Field (B) Induced
Electric Field
in a Conductor
(Human)

Figure 1: Alternating current creates a time-varying MF, which ultimately creates

an induced electric field in a nearby conductor, such as the human body.



1.2 MF Interactions with the Human Body

Time-varying MF interactions with human biology and the central nervous system (CNS)
has been studied for many years. Numerous research topics have been explored, with
respect to ELF MF exposure including, but not limited to: cardiovascular function
(McNamee et al., 2009; Sastre, Cook, & Graham, 1998), postural control (Allen et al.,
2016; Glover, Cavin, Qian, Bowtell, & Gowland, 2007; Legros et al., 2012; Prato, Thomas,
& Cook, 2001; Thomas, Drost, & Prato, 2001; Van Nierop, Slottje, Kingma, & Kromhout,
2013), reproduction (Al-Akhras, 2008), cognitive function (Corbacio et al., 2011; Crasson
& Legros, 2005; Delhez, Legros, & Crasson, 2004; Nevelsteen, Legros, & Crasson, 2007;
Preece, Wesnes, & Iwi, 1998), EEG (Cook, Saucier, Thomas, & Prato, 2009; Cook,
Thomas, Keenliside, & Prato, 2005; Cook, Thomas, & Prato, 2002; Heusser, Tellschaft, &
Thoss, 1997; Legros et al., 2012; Lyskov et al., 1993) and visual perception (Barlow, Kohn,
& Walsh, 1947; D’ Arsonval, 1896; Legros et al., 2016; Lvsund, Oberg, & Nilsson, 1980a,
1980b). All the related scientific literature has been reviewed by the WHO (World Health
Organization, 2007) and the two main international guideline agencies (Institute of
Electrical and Electronics Engineers Inc. & IEEE, 2002; International Commission on
Non-Ionizing Radiation Protection, 2010), and it was concluded that the most reliable and
relevant biological effect, resulting from low levels of ELF MF exposure, relevant to serve
as a basis for setting exposure limits in the ELF range was phosphene perception.
International guideline agencies aim to protect the general public and workers from adverse
effects of exposure, which they define to be: “an effect detrimental to the health of an
individual” (Institute of Electrical and FElectronics Engineers Inc. & IEEE, 2002;
International Commission on Non-lonizing Radiation Protection, 2010). In addition to
establishing a reliable threshold of ELF MF effects, it is important to understand the
possible mechanisms of action involved in ELF MF interactions with biological processes
to confidently state if it is adverse or not, ultimately impacting exposure guidelines. These
guidelines (explained in further detail in section 1.3) are based on the most reliably reported

effect of ELF MF exposure, magnetophosphene perception.



1.3 Magnetophosphenes and Safety Guidelines

Appliances such as a hairdryer or electric shaver can produce ELF MF exposures of 2 mT
in their immediate proximity, however typical daily exposures usually remain below 1 uT
(Gandhi, Kang, Wu, & Lazzi, 2001; Zaffanella & Kalton, 1998). The “Thousand Person
Study” was designed to assess ELF MF exposures in Americans throughout a normal day.
Out of all 1 000 volunteers, the top 1% experienced exposures up to 1 puT (Zaffanella &
Kalton, 1998). Occupational powerline workers are often exposed to ELF MF flux
densities of 1 mT (World Health Organization, 2007).

To protect the public and workers from adverse effects resulting from MF exposures,
international agencies set exposure guidelines and recommendations. The two major
guideline organizations, the International Committee on Electromagnetic Safety of the
Institute for Electrical and Electronic Engineers (IEEE-ICES) and the International
Commission on Non-lonizing Radiation Protection (ICNIRP), publish guidelines for the
entire non-ionizing frequency range, however, this section focuses on ELF guidelines,
encompassing the powerline frequencies (50 and 60 Hz) (Institute of Electrical and
Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-lonizing
Radiation Protection, 2010). ELF exposures do not contain enough energy to damage cells,
that is, why they are referred to as non-ionizing, but as described previously (Section 1.1),
ELF MF exposures have the ability to induce electric fields and currents in a conductor
(i.e. the human body) and therefore to possibly affect cells and tissues, including those in

the CN'S (Attwell, 2003).

The current guidelines are based in part on a reliably reported effect of ELF MF exposure,
magnetophosphene perception (Institute of Electrical and Electronics Engineers Inc. &
IEEE, 2002; International Commission on Non-lonizing Radiation Protection, 2010).
Magnetophosphene perception is a consequence of magnetic induction, upon exposure to
a sufficiently strong MF. At power frequencies and their lower harmonics, guidelines are
currently based on experimental work that assessed thresholds from 10-45 Hz, and not
powerline frequencies (Lovsund et al., 1980a, 1980b). This is an important limitation to
note in the guidelines, since magnetophosphene perception is reported to be frequency

dependent (Legros et al., 2016; Lovsund et al., 1980b, 1980a; Silny, 1984). Both the IEEE-



ICES and ICNIRP guidelines which encompass the ELF range are presented in Table 1, at
20 Hz (the most sensitive frequency, reported by Lovsund), 50 Hz (European powerline

frequency) and 60 Hz (North American powerline frequency).

The current IEEE-ICES recommendations were developed with respect to short term
effects associated with electrostimulation. Exposure limits are designed to protect against
short term reactions, including: painful stimulation of sensory or motor neurons, muscle
excitation, alteration of synaptic activity in the brain, cardiac excitation, or adverse effects
associated with induced potentials (Institute of Electrical and Electronics Engineers Inc. &
IEEE, 2002). The restrictions for exposure of the head and torso, in terms of MF flux
density are frequency dependent and are separated into two categories: general public and
controlled environment. Below 0.153 Hz, the general public restriction is 118 mTims,
whereas the controlled environment restriction is 353 mTms (Institute of Electrical and
Electronics Engineers Inc. & IEEE, 2002). As frequency increases, the maximum
permissible exposure values decrease, such that above 20 Hz, the general public restriction
is 0.904 mTms and the controlled environment restriction is 2.71 mTms (Institute of
Electrical and Electronics Engineers Inc. & IEEE, 2002). Based on the work of Lovsund
in 1980, magnetophosphene thresholds were reported to be lowest at 20 Hz, and increase
until 45 Hz (Lovsund et al., 1980b). Electrophosphene thresholds have been assessed up to
75 Hz and have a similar frequency-response to magnetophosphenes. However, it is
assumed that magnetophosphene thresholds follow the frequency-proportional law above
20 Hz, up to at least 760 Hz, above which PNS is the defining effect (Institute of Electrical
and Electronics Engineers Inc. & IEEE, 2002). Experimental data are limited below 45 Hz,

however, IEEE-ICES uses extrapolation to generate ELF MF exposure recommendations.

ICNIRP ELF MF guidelines are also based on magnetophosphene perception, and state
that “avoiding retinal phosphenes should protect against any possible effects on brain
function”. ICNIRP notes that phosphene thresholds are a minimum around 20 Hz and rise
rapidly at higher and lower frequencies (International Commission on Non-Ionizing
Radiation Protection, 2010; Lovsund et al., 1980b). Magnetophosphenes thresholds are
thought to occur at an induced electric field of approximately 50-100 mV/m at 20 Hz in

the retina (Saunders & Jefferys, 2007). Therefore, the occupational restriction is 50 mV/m,



and the general public restriction is 10 mV/m, at 20 Hz. With respect to MF flux density,
the occupational and general public restrictions are 1.25 mTims and 0.25 mToms,
respectively, at 20 Hz (International Commission on Non-lonizing Radiation Protection,
2010). Extrapolating to powerline frequencies, the occupational restrictions are 1 mTms at
50 and 60 Hz, or the general public restrictions are 0.2 m Ty at 50 and 60 Hz (International

Commission on Non-Ionizing Radiation Protection, 2010).

Magnetophosphenes are the most robustly reported effect of electric and magnetic
stimulation below the threshold for direct muscle activation or CNS neurostimulation (i.e.
triggering of an action potential). Although guidelines are based in part on
magnetophosphenes, they are recognized to be the best existing model for CNS exposures
until more is known (International Commission on Non-lonizing Radiation Protection,

2010).

Table 1: ICNIRP and IEEE-ICES ICES reference levels for ELF MF exposures at

20 Hz, 50 Hz and 60 Hz.
ICNIRP Guidelines IEEE-ICES
(MTrms) Guidelines (mTms)
20Hz | 50 Hz | 60 Hz 20 — 759 Hz
Occupational/Controlled 1.25 1 1 2.71
Environment Guidelines
General Public Guidelines 0.25 0.2 0.2 0.904

Guidelines use magnetophosphene perception as a model for evaluating the interactions
between an ELF MF and the CNS. Magnetophosphenes are experienced as a visual
phenomenon believed to be transduced in the retinal photoreceptors, however, the exact
location of origin remains uncertain. To better understand the possible origins of
magnetophosphene perception, the following section provides an outline of the visual

system.



1.4 The Visual System

The human visual system is a component of the CNS. Light entering the eye passes through
the cornea and then the pupil. The amount of light passing through the pupil is controlled
through constriction and dilation of the iris. The lens refracts the light, projecting an

inverted image onto the retina. The retina is illustrated in Figure 2.

ganglion bipolar photoreceptor
cell layer cell layer layer

"} optic nerve fibers
. (to brain)

Figure 2: Representation of the retina. As light hits the eye it travels to the back of
the retina, where the photoreceptors begin the process of phototransduction. Image

acquired, and permission granted from Philpot Education.

The photoreceptors are the site of phototransduction of the visual signal. The
photoreceptors are at the back of the retina, meaning that light must travel through the other
retinal layers before arriving at the photoreceptors. To protect the quality of the light
stimulus, the neuron layers in front of the photoreceptors are unmyelinated, so that these
layers of neurons are relatively transparent. Movement of the eye also allows light to be
projected onto the fovea: a region of the retina where the neural axons are pushed to the
side, allowing photoreceptors to receive the least distorted light (Kandel, Schwartz, &
Jessell, 2000).



Information received by the photoreceptor cells is sent to retinal bipolar cells. Rods and
cones respond to light with graded changes in membrane potentials. Horizontal and
amacrine cells combine signals from several photoreceptors while maintaining the
temporal patterns of the stimulus. Using graded membrane potentials, the bipolar cells then
synapse with ganglion cells. For the first time in the visual pathway, the ganglion cells then
transmit stimuli information using action potentials. The axons of the retinal ganglion cells
converge into a bundle that comprises the optic nerve, which transmits visual signals for

processing in the brain.

Rods and cones are the retinal photoreceptor cells, which differ structurally and
functionally. Rods are achromatic and are distributed throughout the retina, including the
periphery. Cones are trichromatic and are found in the center of the retina. Rods are larger
and much more sensitive to a visual stimulus than cones. In fact, rods are so sensitive that
they can detect and perceive a single photon of light (Tinsley et al., 2016). Several rods
converge onto a single bipolar cell, ultimately amplifying the signal, whereas cones are
connected in a one-to-one manner with bipolar cells. Photoreceptors detect a flickering
visual stimulus, however, it depends on both the flicker frequency and the intensity of the
light stimulus. The critical flicker frequency, the highest frequency of flickering perceived,
has been reported up to 80 Hz (Perz, 2010). Rods and cones have different frequency
sensitivities, that depend on the light level. Light adapted rods can detect a flickering light
up to 28 Hz (Conner & MacLeod, 1977). Differences between rods are cones are outlined

in Table 2.

Table 2: Differences between rod and cone photoreceptors.

Rods Cones

Very sensitive, high amplification | Less sensitive, low amplification

Specialized for night vision Specialized for day vision
Low acuity High acuity
Achromatic Chromatic

Periphery of retina Central retina




As one of the twelve cranial nerves, the optic nerve is a part of the CNS and carries visual
information to the brain. The optic nerve travels to the optic chiasm where the visual
information from both eyes is crossed. Most optic nerve fibers terminate in the lateral
geniculate nucleus; however, the remaining fibers terminate in the pretectal nucleus or the
suprachiasmatic nucleus. From the lateral geniculate nucleus, visual information is sent to
the occipital cortex, specifically, the primary visual cortex (V1). Visual information treated
by V1 will modulate EEG signals collected from the occipital electrodes (O1, O2, and Oz
— further EEG specifics to be found in Section 1.7). The visual centers of the brain contain
a retinotopic map, or a neural map of the retina, such that spatial relationships from the

retina are maintained throughout visual processing.

After visual information is sent to V1, it is processed in one of two distinct pathways
(Figure 3). The dorsal pathway runs from V1 through the middle temporal area to the
posterior parietal cortex (Kandel et al., 2000). The dorsal stream is known as the “where”
or “how” pathway and is involved in spatial awareness and guidance of actions. The ventral
stream runs from V1 to the inferior temporal cortex (Kandel et al., 2000). The ventral

stream is also known as the “what” stream and is responsible for object recognition.

Dorsal
stream

Ventral
stream

Figure 3: Outline of the dorsal and ventral streams of visual processing. Image is

open access from (visionhelp.wordpress.com).

Guideline agencies use the retina as a model for the CNS for a few reasons. First, the retina
is part of the CNS. Second, the retina functions to amplify small signals, and perceptually
detect a stimulus, in this case the stimulus being the effects of ELF MF exposures (Attwell,
2003). Although a good model, the retina also differs from the CNS, making this a

conservative model. Retinal photoreceptor cells detect very weak stimuli because of the
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amplification process involved in perception. These cells are graded potential neurons that
are fairly unique to the retina, and not found throughout the entirety of the CNS. Although
graded potential cells are not found in all areas on the CNS, they are also found in the hair
cells of the vestibular system. Although the retina differs from the CNS,
magnetophosphene perception remains the most reliable measure of ELF MF exposure

below peripheral nerve stimulation.

1.5 Origin of Phosphene Perception

Phosphenes are a visual perception occurring without a visible stimulus (Lovsund et al.,
1980a). They are described as a flickering light perceived in the periphery of one’s visual
field and can be a result from mechanical pressure, chemical agents, electric currents and
MFs (Lovsund et al., 1980b). Phosphenes perceived as a result of MFs are referred to as
magnetophosphenes and were first explored in the late 1800s. In 1896 d’Arsonval
concluded that phosphenes were perceived upon exposure to a MF at 42 Hz (D’ Arsonval,

1896; Geddes, 2008).

Later on, an experiment conducted by Thompson (1910) revealed a faint visual perception
when his head was in close proximity to an alternating electromagnet. Notably, this visual
effect was brighter in the periphery of the visual field (Thompson, 1910). Following
Thompson’s experiment, Magnusson and Stevens (1911) looked to confirm this visual
phenomenon caused by exposure to a MF. Unlike previous studies, their experimental
design allowed for vertical movement of the coils generating the MF (Magnusson &
Stevens, 1911). The maximum effect was obtained when the participants head was centred
in the coil such that the middle of the coil passed through the upper edge of the eyes. By
raising and lowering the coils, relative to the position of the participants head, the visual
effect diminished. Magnusson and Stevens also found that phosphene perception was
frequency dependent, noting that the effect of MF exposure was greatest between 20 and

30 Hz, and that perception was strongest in the periphery of the visual field.

Similar to magnetophosphenes, electrophosphenes are a flickering perception occurring as
a result of electric stimulation. Barlow et al. (1947) were the first to compare perceptual

responses between electrophosphenes and magnetophosphenes. Phosphene perception was
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investigated up to 90 Hz and similarities were noted between electro- and
magnetophosphenes. Both electro- and magnetophosphenes were found to be strongest in
the periphery of the visual field. They appeared colourless, were abolished by pressure on
the eyeball and perception was prolonged by eye movements. This lead to the hypothesis
that electro- and magnetophosphenes are a product of the same neural pathway, and
suggested to be a result of retinal activity (Barlow et al., 1947). In this experiment,
phosphene perception was evaluated with different positions of the MF exposure device;
magnetophosphenes were perceived when the exposure device was placed near the
participants temples, but not perceived when placed near the occipital cortex (Barlow et
al., 1947). This suggests retinal involvement, as opposed to occipital cortex involvement

in phosphene perception.

Based on the thought that phosphene perception is a result of retinal activity, Abe (1951)
quantitatively measured electrophosphene perception thresholds up to 120 Hz under
different experimental conditions, differentiating between rod and cone photoreceptor
characteristics. The results showed two different frequency-response curves; one curve
representing electrophosphene perception for a light-adapted retina, and a second curve for
a dark-adapted retina. Light-adapted thresholds were measured after 90 seconds of pre-
illumination at 24 000 lux. Light-adapted eyes have the lowest electrophosphene threshold
at 20 Hz (Abe, 1951). After 30 minutes of dark adaptation, 7 Hz and 37 Hz were the most
sensitive frequencies, eliciting the lowest electrophosphene thresholds. Different
frequency-response curves between light and dark adaptation highlight the unique

characteristics of the retinal cells, such as the photoreceptors.

To further establish the differences in rod and cone photoreceptors, phosphene thresholds
were analyzed in various regions of the visual field. Thresholds were dependent on the
location within the visual field in which phosphenes were perceived (Gebhard, 1952). A
lower threshold in the periphery than in the centre of the visual field provides support
towards rod involvement in phosphene perception (Attwell, 2003). Although the threshold
was found to be lowest using a 20 Hz exposure in both the central visual field and the

periphery, the thresholds were higher in the centre (Gebhard, 1952).
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Lovsund compared electrophosphenes to magnetophosphenes under varying background
lighting conditions to further understand the mechanisms involved. Confirming that both
types of phosphenes are a result of activation of the same pathways in the visual system, it
was found that both electro- and magnetophosphenes require the lowest stimulus to elicit
perception at 20 Hz. Both electric and magnetic stimulations follow a similar frequency-
response curve when frequency is considered (Lovsund et al., 1980a). Following the
previous experiments (Abe, 1951; Gebhard, 1952) showing that phosphene generation is a
result of retinal stimulation, Lovsund et al. (1980) further explored the frequency-response
of magnetophosphenes under several conditions designed to target different retinal
characteristics. Magnetophosphene frequency-response curves were established in
darkness after 10 minutes of adaptation, as well as three different background lighting
conditions. In darkness, the perception threshold was lowest at 30 Hz, whereas in the other
three lighting conditions the lowest threshold was found from 20-25 Hz (Ldvsund et al.,
1980b). This study was the first to document the frequency-response of
magnetophosphenes, however, it is limited between 10 and 45 Hz, and only involved 11
participants. Lovsund also evaluated magnetophosphene thresholds as a function of time
spent in the dark, to assess the involvement of retinal adaptation in phosphene perception.
This experiment tested eight volunteers at 20, 30 and 35 Hz, however, the results are an
average of threshold values across all three frequencies. Lovsund found the
magnetophosphene threshold to change as a function of time spent in the dark, which he
reports to follow a similar dynamic to photic stimuli thresholds during dark-adaptation

(Lovsund et al., 1980b).

In an improvement from Lovsund’s (1980) experimental set up, Silny (1984) established
magnetophosphene thresholds using a Helmholtz coil, generating a homogenous MF
around the participants’ head. The physiological response to magnetophosphene perception
appeared to have a hysteresis effect when using the classical psychophysics method of
limits to determine threshold (Silny, 1984). In an attempt to objectively measure
magnetophosphene thresholds and the effect of a MF on humans, the visually evoked
potential was measured in the occipital region. This study found no change in occipital
activity, although it began the search for an objective biomarker of perception in the visual

cortex (Silny, 1986).
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Furthering the search for an objective measurement of phosphene perception, Morimoto et
al. (2006) attempted to supplement electrophosphene subjective results by evaluating the
electrically evoked pupillary response, since the pupillary response is more than a
subjective yes/no participant report. Three types of thresholds were found in this
experiment for both healthy patients and those with retinal disease: initial phosphene
thresholds (peripheral threhsolds), central vision phosphene thresholds as well as the
threshold for a relative pupillary constriction (Morimoto et al., 2006). Transcorneal
electrical stimulation was given to participants at 20 Hz, while current intensity was
increased to determine the perception threshold. Pupillary responses were measured using
an infrared pupillometer and thresholds were considered to be the electrical current
necessary to increase the pupillary response by 3%. All thresholds were found to be higher
for healthy patients. Electrically evoked pupillary response thresholds were twice that of
the peripheral thresholds and were successfully measured objectively. This is the first
indication of finding an objective measurement associated with electric stimulation, and
potentially translated to MF stimulation (Morimoto et al., 2006). A second experiment took
place evaluating the frequency-response of electrophosphene perception, where
phosphenes were strongest at 20 Hz, as well as the electrically evoked pupillary responses
(Fujikado et al., 2007). These experiments were completed with the hope that electric
stimulation and associated electrophosphene thresholds would provide insight into the

qualification for retinal prosthesis.

Opposing the popular retinal hypothesis of phosphene generation, Kanai et al. (2008)
elicited phosphenes in a light and dark environment using electrical stimulation on the scalp
by the occipital cortex (Kanai et al., 2008). Phosphene perception was reported using a
subjective rating, as opposed to a yes/no response. Supporting the frequency dependency
of phosphene perception, phosphenes were found to be strongest in the light from 14-20
Hz, whereas phosphenes in the dark were reported to be the strongest from 10-12 Hz (Kanai
et al., 2008). Overall, phosphenes were stronger in the dark condition than the light
condition. Using only four participants, the electrophosphene threshold was lowest at 20
Hz in the light, while it was 10 Hz in darkness (Kanai et al., 2008). It was hypothesized
that the occipital stimulation interacts with the ongoing cortical activity of the brain.

However, the results that are attributing to the occipital cortex are the cause of retinal
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activation, where computational modelling further interprets these results and indicates that
a significant portion of the occipital stimulation current goes through the eye, ultimately

stimulating the retina (Laakso & Hirata, 2013).

To experimentally dispute the occipital origin hypothesis of the previously mentioned
study (Kanai et al., 2008), Kar and Krekelberg established electrophosphene thresholds
using three different electrode placements. Thresholds were found to be lowest when the
electrodes were placed closest to the retina and furthest from the occipital lobe, thus

providing support to the retinal origin of phosphene generation (Kar & Krekelberg, 2012).

Lastly, in our group, we started tackling the question of magnetophosphene perception
thresholds as a function of frequency. Participants were exposed to 20/50/60/100 Hz MFs,
using three different experimental set-ups: retinal exposure, occipital exposure, and
homogenous global whole head exposure, up to 50 mT.ms (Legros et al., 2016). Phosphene
perception reported using the retinal and global exposure, the results of this experiment
indicate that phosphene perception is frequency dependent, as the proportion of exposures
eliciting magnetophosphene perception increased with an increasing dB/dt (proportional to
the induced electric field in the retina) (Legros et al., 2016). The occipital exposure device
failed to elicit phosphene perception. Although still subjective, this evaluation confirms the

retinal origin of magnetophosphenes.

1.6 Perceptual Thresholds

Guidelines are based on a sensory threshold termed the magnetophosphene perception
threshold. A sensory threshold is considered to be the lowest stimulus strength one can
detect (Kandel et al., 2000). Based on Gustav Fechner’s (1860) classical psychophysics
methods, there are three ways to determine a threshold: method of constant stimuli, method

of limits, and the method of self-adjustment.

The method of constant stimuli uses the same set of stimuli throughout an experiment,
presented randomly, and requires each stimulus to be presented many times. A participant
self-reports perception after each stimulus trial. The overall threshold is typically

considered the stimulus intensity that elicits a perception 50% of the time (Gescheider,
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1997). The method of constant stimuli is effective in determining a threshold, however, it
poses a few problems experimentally. First, each intensity of stimuli must be repeated
many times, making the experiment very long and perhaps causing a participant to fatigue.
In fact, it has been recommended that each stimulus is presented over 100 times
(Gescheider, 1997). Legros et al. (2016) used the method of constant stimuli to determine
magnetophosphene thresholds, however, only four frequency conditions were tested. Each
participant was assigned to one of four frequency groups (20, 50, 60 or 100 Hz), and MF
flux densities were randomly presented from 0 to 50 mTms, each repeated 5 times (Legros
et al., 2016). From this, it was confirmed that magnetophosphene thresholds are frequency
dependent, but with only four frequency conditions examined, a precise frequency-
response is unknown. Magnetophosphene thresholds were determined successfully for four
frequencies but using the method of constant stimuli creates a major challenge in testing a
wide range of frequencies and flux densities, all within a reasonable experimental

timeframe.

An efficient alternative to the method of constant stimuli is the method of limits. Although
the method of limits is not as reliable as the method of constant stimuli, it is much less time
consuming. When using the method of limits to determine a threshold, a stimulus is
presented below the threshold and increased until perception occurs. Then, the stimulus is
presented above the threshold and decreased until no longer perceived. The average
between the increasing and decreasing thresholds is considered the overall threshold. This
procedure is often repeated multiple times, both increasing and decreasing (Gescheider,
1997). Limitations exist in determining thresholds using the method of limits, since
participants may begin to anticipate perception. This leads to higher than normal thresholds
in descending trials, and lower than normal thresholds in ascending trials. However, by
averaging thresholds from both ascending and descending experiments may minimize the

effects of anticipation and habituation (Haggard, 2010).

The method of limits has been used in many electro- and magnetophosphene experiments
(Ambrosini et al., 2015; Aurora, Welch, & Al-Sayed, 2003; Elkin-Frankston, Fried,
Pascual-Leone, Rushmore, & Valero-Cabr, 2010; Morimoto et al., 2006; Mulleners,

Chronicle, Palmer, Koehler, & Vredeveld, 2001), and was used in the experiments from
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1980 (Lovsund et al., 1980a, 1980b). As described previously (Section 1.5), MF exposures
were presented from 10-45 Hz, in steps of 5 Hz. The magnetic flux density was increased
until magnetophosphene perception occurred and then decreased until perception
disappeared, averaging these two values to establish an overall threshold for that frequency
condition. Using method of limits enabled data collection from a wide range of frequencies,
however the accuracy is questionable. Frequencies were presented in a consecutive
manner, which allows for habituation and expectation, and using the method of limits
accentuates these problems. Randomizing the MF frequency conditions would have at least
addressed a portion of this issue; however, the method of limits still proves to enable

habituation and anticipation.

Upon adapting the method of limits, the staircase method of determining thresholds arose.
The level of stimulus is changed on a trial-by-trial bases, in response to the participants
ability to perceive stimuli. The stimulus is lowered each time perception occurs, until the
stimulus is no longer noticed. Then, the stimulus is increased trial-by-trial until perception
returns. This process is repeated consecutively until the researcher is able to specify where
the threshold occurs. Although this staircase adapted method of limits is more accurate and
addresses the problem of habituation, it is very time consuming, and can elicit participant
fatigue during a long experimental session (Gescheider, 1997). The staircase method was
found to be useful and accurate; it was also faster than the method of constant stimuli, but

more time consuming than the traditional method of limits (Abrahamyan et al., 2011).

The method of self-adjustment is the third and final classical psychophysics method to
determine a sensory threshold. For this type of experiment, a participant is asked to self-
control the magnitude of a stimulus until the point where perception is noticed. It is
assumed that the initial stimulus is presented far (above or below) from the expected
threshold. To date, no magnetophosphene threshold studies have used the method of self-
adjustment, however, the first experiment of its kind has been completed in this research

study.
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1.7 Electroencephalography (EEG)

Discovered in the 1920s, Electroencephalography (EEG) is a non-invasive measurement
of brain electrical activity (Berger, 1929). Action potentials and post-synaptic potentials
occurring in the brain elicit a current flow, which is in turn picked up through EEG
electrodes. Electrical activity is measured on the scalp surface of the head, therefore

making it non-invasive and suitable for all populations.

EEG assesses neuronal electrical activity by measuring current flow during synaptic
activation of the cerebral cortex. Current flow is generated through sodium, potassium,
calcium, and chlorine ions being pumped through membrane channels, changing the
membrane potential of neurons. To detect the current flow and alternating electrical activity
at the scalp it must first travel through several layers, including the skull and skin. Once

electrical signals are detected, they are largely amplified for interpretation.

Brain activity are reflected in fluctuating patterns within defined frequency bands and are
measured in terms of peak to peak spectral power. The frequency associated with the
sinusoidal brain activity is analyzed and can be separated into four main frequency bands
(beta, alpha, theta and delta). Using a frequency spectrum analysis, the extent of each
frequency band is be determined. The alpha band (8-12 Hz) is the most robustly studied
frequency band. Awake with the eyes closed, regular oscillations in the occipital cortex are
classified as “alpha waves”. Alpha activity decreases upon eye opening, or other alerting
stimuli. While alpha activity decreases upon visual perception, beta activity (>13 Hz)
increases. Alpha activity decreases upon falling asleep; theta (4-8 Hz) and delta (<4 Hz)
activity increase (Teplan, 2002).

There are many applications of EEG use to date, including but certainly not limited to:
evaluating effectiveness of drugs (Saletu, Anderer, & Saletu-Zyhlarz, 2006), diagnosing
neurological abnormalities (Smith, 2005) and consciousness (Gajraj, Doi, Mantzaridis, &
Kenny, 1998). Due to the non-invasive nature of EEG, it is suitable for patients, healthy

individuals, infants and all other demographic groups.
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The method of limits and the method of constant stimuli have both been used for
documenting magnetophosphene thresholds within a narrow range of frequencies. In order
to establish magnetophosphene thresholds across a wide range of frequencies, the method

of self-adjustment is suitable.

1.8 Conclusion

In conclusion, MFs are known to interact with the human body in several ways, however,
the visual system and magnetophosphene perception appears to be a reliable outcome of
ELF MF exposure. Magnetophosphenes, the associated frequency response and the
variance in threhsolds will help guideline organizations protect the public and workers
from adverse effects of ELF MF exposure. The current ELF MF exposure guidelines are
limited in data, do not span the entire ELF range, and are entirely subjective. EEG is a

potential tool for assessing ELF MF exposures and evaluating the effect on the CNS.
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Chapter 2
2 Research Article

2.1 Introduction

Everything on Earth is continually exposed to both natural and manmade Magnetic Fields
(MFs). These exposures can result from the natural Earth’s geomagnetic field or the static
MF from magnetic resonance imaging (MRI) devices. They are also generated by the
alternating current flowing through everyday household appliances and electrical wires and
in these cases, they are called time-varying or alternating MFs. In North America,
alternating MF exposures in daily life are generally under 1 puT (Zaffanella & Kalton,
1998). However, these exposures can exceed 1 mT in close proximately to appliances or
powerlines (World Health Organization, 2007). An interesting feature of time-varying MFs
is that they have the ability to interact with biological tissues through magnetic induction
(Attwell, 2003), i.e. they induce electric fields and current within exposed tissues. Since
MFs have the potential to interact with biological processes, it is important to make sure
that humans are not exposed to harmful levels. Hence, in order to avoid exposures leading
to possible adverse biological interactions, exposure guidelines set by international
agencies, are established to protect the public and workers (Institute of Electrical and
Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-lonizing
Radiation Protection, 2010). The guidelines for Extremely Low Frequency (ELF, < 300
Hz) MFs, are mostly based on the most reliably reported acute effect of low levels of ELF
MF exposure: magnetophosphene perception. Magnetophosphenes are described as white
flickering lights, perceived with the eyes closed in the dark upon exposure to a sufficiently
strong ELF MF. Magnetophosphenes are thought to be a consequence of magnetic
induction in the retina (refer to Section 1.5), where the induced electric fields affect
signaling in the chain of cells between the photoreceptors and the retinal ganglion cells, by
which the visual signals are transmitted in graded potentials (rather than action potentials)

via ribbon synapses to the ganglion cells (Attwell, 2003).

Magnetophosphene phenomena were first reported by D’Arsonval in 1896. Since then

laboratory studies with human subjects have reported magnetophosphene perception for
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more than a century (Barlow et al., 1947; D’ Arsonval, 1896; Legros et al., 2016; Lovsund
et al., 1980a, 1980b; Magnusson & Stevens, 1911; Silny, 1984). The magnetophosphene
threshold corresponds to the lowest stimulus intensity that elicits visual perception and is
used as the basis to specify exposure guidelines to protect the general public and workers
against adverse effects. (Institute of Electrical and Electronics Engineers Inc. & IEEE,

2002; International Commission on Non-Ionizing Radiation Protection, 2010).

To wunderstand the mechanism of magnetophosphene perception, electro- and
magnetophosphene threshold curves were compared. Barlow et al. (1947) were the first to
compare perceptual responses. With a 60 Hz stimulation, the duration of perception was
assessed while varying the stimulus strength. Both electro- and magnetophosphene
perception duration were increased with stimulus strength, leading to the hypothesis that
they are a product of the same neural pathway (Barlow et al., 1947). Furthering the
comparison, Lovsund established frequency response curves for both magneto- and
electrophosphenes. Establishing magneto- and electrophosphene thresholds identified that
both stimulations were most sensitive at 20 Hz. Yet, the frequency response curves for
Electro- and magnetophosphene thresholds followed similar trends only between 17 and
25 Hz. Based on the law of induction, that is, induced current density is directly
proportional to the frequency and intensity of the MF, theoretical thresholds were
calculated in order to accurately compare magneto- and electrophosphene thresholds
(Lovsund et al., 1980a). The theoretical threshold curve fits the magnetophosphene
threshold curve, indicating that the pathway involved in phosphene perception is sensitive
to not only the magnetic flux density but more accurately to the induced electric field
(Lovsund et al., 1980a). Therefore, in addition to reporting magetnophosphene threshold
values in terms of flux density, it is important to report threshold values in dB/dt (T/s),

which is linearly proportional to the induced electric field.

Yet the mechanism of magnetophosphene perception remains unclear since many
discrepancies can be identify. Magnetophosphene perception thresholds were reported to
be lowest (~10 mTms) from 20-30 Hz (Lovsund et al., 1980a, 1980b), but the exact
frequency eliciting the lowest perception has not been confirmed and conditions such

lighting, source of phosphene generation (electric or magnetic) or duration spent in the
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darkness are known to modulate the perception threshold. For instance, in complete
darkness, the lowest magnetophosphene threshold was reported at 30 Hz, but the lowest
threshold was found to be between 20 and 25 Hz when the lights were on (Lovsund et al.,
1980b). Similarly, electrophosphenes (phosphenes perceived as a result of electric
stimulation) are frequency dependent as well, and have been reported to be lowest for a
wide range of frequencies ranging from 7-37 Hz (Abe, 1951; Adrian, 1977; Kanai et al.,
2008; Lovsund et al., 1980a). Using transcranial alternating current stimulation (tACS),
phosphenes were strongest from 10-12 Hz (Kanai et al., 2008). Moreover, phosphenes have
overwhelmingly been described as white flickering lights; however, using electrical
stimulation, coloured phosphenes have been reported in one study, and were the most
prominent at 30 Hz, however requiring ~20 times more stimulus (Adrian, 1977).
Magnetophosphene threshold studies require an improved understanding of the
mechanisms involved and replications of Lovsund’s (1980) previous experiments.
Furthermore, previous magnetophosphene threshold reports were also limited to very few
participants, and a larger sample size would strengthen and improve precision of the overall

findings.

Although a larger sample size will increase the precision of magnetophosphene thresholds,
results remain entirely based on subjective reports of perception. An objective
measurement of neuronal activity would greatly improve the investigation of
magnetophosphene thresholds. In that regard, electroencephalography (EEG) appears as a
relevant option. EEG is a non-invasive objective measurement of brain electrical activity
resulting from action potentials in the cerebral cortex. Brain activity patterns can be broken
into various frequency bands. The alpha frequency band (8-12 Hz) has been recognized as
the most prominent component of occipital brain oscillations while awake with the eyes
closed. Known as the “Berger effect”, alpha power decreases upon visual perception
(Berger, 1930; Teplan, 2002). An increase in ambient lighting decreases alpha activity
(Min, Jung, Kim, & Park, 2013). Occipital alpha activity preceding phosphene perception
has been used as a predictor of perception. This suggests that EEG alpha activity has the
potential of being an objective biomarker of ELF MF exposure and magnetophosphene

perception. Determining an effective objective biomarker has the potential to address the
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inconsistencies between frequency response experiments, both electric and magnetic, as it

overcomes the subjective component in threshold analysis.

Finally, significant knowledge gaps still remain, since only frequencies in the range of 10-
45 Hz were studied, and as such, powerline frequencies (50 and 60 Hz) were not
experimentally evaluated in humans (L&vsund et al., 1980a, 1980b). Currently, ELF MF
exposure guidelines extrapolate previous findings acquired at lower frequencies when
establishing guidelines to protect the general public and powerline workers at power
frequencies (50 and 60 Hz). Therefore, an experimental study considering an expanded

frequency range throughout the entire ELF range is needed.

The primary objective of this study is to generate the frequency-response curve in the ELF
range (<300 Hz) for magnetophosphene perception in humans, and specifically the first
experimental threshold values at powerline frequencies (50 and 60 Hz). The secondary
objective is to determine if magnetophosphene perception can be captured using EEG as

an objective biomarker.

Based on the work from Lovsund, the threshold for magnetophosphene perception in
darkness is expected to be the lowest at 30 Hz (Lovsund et al., 1980b). Additionally, if
treated like a visual stimulus, magnetophosphene perception should be associated with a
decreased EEG power in the alpha frequency band in occipital electrodes. These threshold
values and their variance will allow guidelines to evaluate the probability of perception for

a given population.

2.2 Materials and Methods
2.2.1 Participants

Sixty healthy participants (mean age: 24.31 + 3.69) were tested in this experiment. All
testing took place in the Human Threshold Research Facility at Lawson Health Research
Institute (St. Joseph’s Hospital, London, Ontario, Canada). Participants were between the
ages of 18 and 33 years old. Exclusion criteria for the experiment include participants who
are claustrophobic, have limited movement, who have experienced an epileptic seizure,

those who suffer from chronic illness (e.g. diabetes, cardiovascular problems, psychiatric
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problems, etc.), and those who have an implanted electrical device. Participants were
instructed to refrain from exercise, caffeine, alcohol and nicotine intake for 12 hours prior
to the study. Volunteers had the opportunity to ask questions regarding the experimental
procedure before providing written consent to participate. The volunteers did not have
pathological visual dysfunctions. This protocol was approved by the Western University

Health Sciences Research Ethics Board (HSREB #108934).

22.2 Materials

A custom global head exposure system was used throughout this experiment. This device
was designed and built at the Lawson Health Research Institute (St. Joseph’s Hospital,
London, Ontario, Canada). The global exposure system consists of two 99-turn coils, 11
turns of 9 layers, made with square copper wire, and cooled with circulating water (Figure
4). Enclosed in PVC plastic, the coils have a 356 mm inner diameter and a 501 mm outer
diameter and are arranged in a Helmholtz-like manner, enabling the generation of a
homogenous MF over the participant’s head. Each of the two coils is independently driven
by an MTS MRI gradient amplifier (MTS Automation 0105870, Horsham, PA, USA). The
amplifiers were driven by a command by of a customized LabVIEW script and a 16-bit
National Instruments A/D Card (National Instrument, Austin, Texas). The coil system
generates a homogenous MF (+ 5%) around the head of the participant (Figure 5). MF flux
density (mT:ms) was confirmed using a single axis MF Hall transducer probe (+ 200 mTms
range with 0.1% accuracy, SenisTM 0YAOSF-C.2T2K5J; Senis, Baar, Switzerland). A
motorized non-magnetic lift enabled vertical movement of the coil system such that it could

raise and lower centering the participants eyes between the coils.
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Figure 4: Depiction of the global exposure device. A participant is shown sitting in
the global MF exposure device, holding a handheld potentiometer used to control

the MF flux density (left). Handheld potentiometer (right).
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Figure 5: Left: MF flux density calculated (red) and measured (blue) along the
vertical axis in the center of the coils. The flux density decreases with distance from
the center of the exposure device. Right: Magnetic field produced by our exposure
system calculated using the Biot—Savart law. The MF flux density is homogenous
about the head of the participant (5% variation). This diagram depicts the flux
density when the participant is exposed to a 50 mT,ns MF. The central orange
region is the homogenous region, where the participants head is positioned (frontal

view depicted). Contour lines represent a S mTrms change in MF flux density.
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EEG was measured throughout this experiment using a 64-channel MRI compatible EEG
cap and a SynAmps2 amplifier (Compumedics Neuroscan Inc., Charlotte, NC, USA). Data
collected through a cap of EEG electrodes, placed according to the 10/20 system, and
referenced to a point half-way between the Cz electrode and the CPz electrode. The ground
electrode was placed half-way between the Fz and FPz electrodes. A conductive gel was
used to improve conductance (Compumedics Quik-Gel™; Compumedics Neuroscan Inc.,
Charlotte, NC, USA) and electrode impedances were kept below 10 kQ. Based on the brain
region of interest O1, O2 and Oz electrodes were analyzed, as they correspond with the

occipital lobe and V1.

Highpass and lowpass filters (3-17 Hz) were used to isolate the EEG activity from the ELF
MF after a Hanning window was applied to 5 seconds of stationary MF exposure. The
Hanning window was applied to prevent edge effects when filtering, while maintaining the
integrity of the signal frequency. The frequency spectrum analysis, using the Welch’s
power spectral density estimate over 2.5 s Hamming windows with 1.5 s overlaps.
MATLAB function, was performed on the filtered signal to quantify the alpha activity
(Figure 6).
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Figure 6: Example of EEG activity during ELF MF exposure. Top: Raw data
collected from an electrode (blue), hanning window (red) and windowed data

(green). Middle: Filtered signal with (green) and without (blue) the hanning
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window. Bottom: Frequency spectrum analysis on filtered signal, with (green) and

without (blue) the use of the hanning window.

Previously, a phantom (watermelon) was used to confirm the post-processing signals
were successful in removing possible MF-induced artifacts from EEG data. There was no
detectible difference in the EEG spectral power between MF exposure and sham

exposure (Davarpanah Jazi, Modolo, Baker, Villard, & Legros, 2017).

2.2.3 Experimental Procedure

This experiment consisted of a single session lasting about 2 hours. The initial 15 minutes
was allotted to explaining the experiment to the participant and gaining written consent.
The following 30 minutes was devoted to attaching the EEG apparatus to the subject’s
head. After setting the participant up, 15 minutes were spent familiarizing the participant
with the experiment while they were set up inside the exposure system, allowing them to
practice the required tasks before data collection began. To familiarize, participants were
exposed to a 5 second MF exposure at 20 Hz, 50 mTms, and asked to confirm
magnetophosphene perception. They were then instructed to practice the required task of
selecting the magnetophosphene threshold. Instructions were as follows: “When you hear
‘begin’ please use the dial to increase the MF until you clearly perceive a visual
phenomenon. Slowly decrease the MF until the visual perception has disappeared, and then
slowly move in a step-wise manner to find the point where you just barely perceive
something. There will be 25 seconds to adjust the MF until the point where you just barely
perceive something. You will hear a beep, indicating that you have 5 seconds left to find
your threshold. You will hear the word “End” when the trial is over. If there is a condition
when you turn the dial to its’ maximum and still don’t see anything, please leave the dial
at max and tell me over the intercom — at this point I will turn the MF off from my control”.
Once trained on the experiment, data collection began and lasted 50 minutes. After
completion of the experiment, participants responded to a standardized Field Status

Questionnaire (Cook, Graham, Cohen, & Gerkovich, 1992).

The experiment consisted of 25 frequency conditions between 0 and 300 Hz were tested:

every 5 Hz from 0 (sham) to 100 Hz (5 Hz, 10 Hz, 15 Hz, etc.), and then every 50 Hz from
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100 to 300 Hz (150 Hz, 200 Hz, 250 Hz, 300 Hz). MF frequency conditions were randomly
given in a blinded counterbalanced order via a LabVIEW program delivering exposure
conditions. Each frequency condition was presented twice, making a total of 50 exposures.
Thresholds were averaged between the two trials at each frequency. Ten participants were
also exposed to six additional trials at 20 Hz, totaling 8 exposures at 20 Hz, to determine

the test-retest reliability of the threshold estimation method.

Each exposure was presented immediately after the lights were extinguished and lasted 30
seconds. During this time, the participant was required to self-adjust the MF flux density
using a handheld potentiometer, as explained in the practice trials. Turning a dial on the
potentiometer controlled the flux density of the MF, such that the maximum position of the
dial corresponded to the maximum flux density of that frequency condition. Due to
hardware limitation, from 5 to 60 Hz the maximum flux density was 70 mTms, from 65 to
90 Hz the maximum flux density was 60 mTms. Above 90 Hz, the dB/dt value equivalent
to the maximum possible at 90 Hz was maintained and converted to flux density for each
frequency condition (Figure 7). The initial 25 seconds of each exposure allowed
participants to self-determine their magnetophosphene threshold. The last 5 seconds of
each exposure was a constant MF flux density, given at the self-determined
magnetophosphene threshold (Figure 8). Upon completion of the trial, a 30 second rest

period occurred, with the lights on to avoid adaptation to the darkness.
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Figure 8: Schematic depiction of the timeline of events. The dark line starting at 0
represent the rms field flux density as a function of time while it is self-driven by the
participant using the potentiometer. Initial 25 seconds are allocated to determining

the magnetophosphene threshold. Participants receive warning via an audible
“beep” that 20 seconds have passed, and that threshold determination must be
completed within the remaining 5 seconds. A second audible “beep”, at 25 seconds,

indicates that the self-adjustment period is complete. The final 5 seconds are
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constant MF flux density at the self-reported magnetophosphene threshold (shaded
grey). The instant that the participant identified the magnetophosphene threshold is

indicated by a grey circle.

2.3 Results

2.3.1 Percentage of Participants Perceiving Phosphenes

It is important to notice that participants did not perceive magnetophosphenes at every
frequency. Indeed, while the participants reported phosphene perceptions 95 to 100% of
the time for frequencies between 10 and 70 Hz, their perception rate was lower at 5 Hz and
at/above 75 Hz (Figure 9). Interestingly, above 75 Hz the perception rate decreased as the
frequency increased, until stabilizing below 10% from 150-300 Hz. Since it appeared from
participants’ subjective reports that these higher frequencies involved a higher sound made
by the coils, biasing the threshold data, further statistics were run on frequencies eliciting
over a 50% perception rate. This will limit biased artificial data in the statistical analysis.
The sound produced by the coils may have been a confounding factor in establishing the
threshold and in order to avoid conducting statistical analyzes based on a small number of

subjects, the threshold analysis was limited to the frequency range between 5 and 8h Hz.
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Figure 9: Percentage of participants perceiving magnetophosphenes through the

entire ELF range (n=60). The 50% cutoff region is indicated by a red line.
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2.3.2  Threshold Determination Repeatability

In order to evaluate the test/re-test reliability of the threshold detection method selected for
this experiment, four repetitions of the same frequency condition (20 Hz — each given
twice) were given to a set of ten participants. A one-way ANOVA for repeated measures
(4 conditions — 20 Hz repeated 4 times) was conducted to test our test-retest reliability
(Figure 10 (left)). This analysis showed no significant main effect (F(3,27)=0.917, p>0.05).
The method of self-adjustment is valid for determining magnetophosphene thresholds, as
participants were able to reliably and repeatedly select the same threshold at a given (20

Hz) frequency.

2.3.3 Frequency-Response

Thresholds were found to change as a function of frequency (Figure 10). A one-way
ANOVA with repeated measures (17 conditions —from 5 to 85 Hz) showed a main effect
in mean thresholds as a function of frequency (F(16,813)=53.12, p<0.0001, n>=0.51,
power= 1). Post hoc comparisons (Tukey adjusted for multiple comparisons) showed that
the magnetophosphene threshold is lowest at 35 Hz (16.92 mTims £+ 6.87 mTims; Figure 10
(top)), while the threshold increases both above and below this frequency. Although the
threshold decreases above 85 Hz, these frequencies were omitted from analysis, due to the
low percentage of perception. All significant differences in mean thresholds from 5 to 85
Hz are reported in Table 3. Magnetophosphene thresholds are also reported in dB/dt
(Figure 10 (bottom)), as this is proportional to both the intensity and the frequency of the
MF, and a direct relationship to the induced electric field seen in the retina. When
increasing the frequency, the induced electric field at the retina increases. By representing
the frequency-response in terms of dB/dt, the true frequency-response is evaluated, since
it is a direct correlate of the induced electric field (Figure 11). Different correlation
strategies were explored in order to evaluate the best fit to describe the dynamics of the

data. The linear relationship (p<0.001, R? = 0.94) is explained by the equation:
y = 0.203x - 1.8671 5<x<85 3)

where y represents the threshold value in terms of mTms and x represents the stimulation

frequency in Hz.
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Upon further analysis of the magnetophosphene threshold data, with respect to dB/dt, was
more accurately explained (p < 0.001, R?>= 0.99) by a polynomial function:

y = 0.0022x% + 0.002x + 1.3082 5<5x<85 4)

where y represents the threshold value in terms of mTms and x represents the stimulation

frequency in Hz.

Or explained by two linear equations, with a breaking point at 40 Hz (p < 0.001, R?=0.98
and p <0.001, R?=0.99):

y = 0.0897x + 0.6928  5<x <40 (5)
y = 0.20212x - 69362 40 < x < 85 (6)

where y represents the threshold value in terms of mTms and x represents the stimulation

frequency in Hz.

Test-retest > 50% Responses <50% Responses
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Figure 10: Left: Test-retest reliability at 20 Hz in mTns (top) and dB/dt (bottom).
Middle: Frequency-response reported in mT s (top) and dB/dt (bottom) from 0-85
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Hz. Right: Frequency-response reported in mT:ms (top) and dB/dt (bottom) from 90-

300 Hz. Error bars represent the standard error of the mean (n=60).

Table 3: Post hoc (Tukey) comparisons from 5-85 Hz establish many differences in

threshold values (mT). Significant differences in mean threshold values across

frequencies (5-85 Hz). Representing significance, p<0.05 is *, p<0.01 is **, and

p<0.001 is ***,
Frequency (Hz)
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
5 Sk | kkk | dokk | kdok | dokk | kdok | k| dokk | kdok | ok | dokk | kdok | dkkk | dokk | kdok | ok
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=
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Figure 11: Magnetophosphene thresholds and frequency-response in dB/dt (T/s)

explained by various regressions. Data is explained by a single linear equation (blue;
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p < 0.001, R?=0.94), two linear equations (black from 5-40 Hz and yellow from 40 to
85 Hz; respectively, p < 0.001, R>=0.98 and p < 0.001, R?>=0.99), and a polynomial
equation (red; p < 0.001, R?>=0.99).

2.3.4 EEG Alpha Power

To evaluate the use of EEG as an objective biomarker, alpha power from occipital
electrodes was calculated during each 5 second stationary MF exposure. Comparing the
alpha power between conditions eliciting and conditions not eliciting magnetophosphene
perception allows us to evaluate the use of occipital EEG alpha power as an objective
biomarker of magnetophosphene perception (Figure 12). A paired t-test was used to
compare alpha power throughout the ELF range in Oz for trials with (mean: 6.68x107
uV2/Hz) and without (mean: 7.14x10-°> uV2/Hz) magnetophosphene perception; O1 in trials
with (mean: 1.95x10'® uV?/Hz) and without (mean: 1.86x10°'° uV?/Hz)
magnetophosphene perception; and O2 in trials with (mean: 2.54x10°'° wV?/Hz) and
without (mean: 2.23x10°'° pV2/Hz) magnetophosphene perception. Alpha power was not
different upon perception for Oz, (t(928) = 0.63, p = 0.53), O1 (t(1221) = 0.56, p = 0.58)
or O2 (t(1757)=1.44, p=0.15).

2:5

O1 Alpha Power (uV%/Hz)

0.5

NO YES
Phosphene Perception
Figure 12: Occipital EEG alpha activity with and without magnetophosphene
perception. This figure is a depiction of the O1 electrode (representative of the 3

occipital electrodes). Error bars represent standard error of the mean.
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Additionally, a one-way ANOVA with repeated measures (15 conditions — 0, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 Hz) showed no main effect in mean alpha power
as a function of frequency in Oz (F(21,819) = 1.15, p>0.05), O1 (F(21,819)=0.94 , p>0.05)
or 02 (F(21, 819) = 0.93, p>0.05) during magnetophosphene perception (Figure 13). EEG
signals from three frequencies (5, 10 and 15 Hz) could not be analyzed due to bandpass

filtering near the alpha range.
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Figure 13: Alpha power calculated from occipital electrode (Oz) during
magnetophosphene perception. Error bars represent the standard error of the

mean.

2.3.5 Field Status Questionnaire (FSQ)

Using a standardized FSQ, all participants reported the presence of the MF during testing.
The mean certainty score of the MF presence was 4.70 £ 0.57 (scored out of 5). This
confirms the extent to which participants were able to determine when the MF exposure
was happening. Most participants based their certainty of MF presence on
magnetophosphene perception (often reported as “flickering lights”) or sound from the
exposure device. There were 56 trials with reported discomfort, such as: tooth pain,
pressure, or annoying sound. On a continuum between stressful (1) and relaxing (10), the
mean stress rating of the experiment was 6.62 + 1.92. Similarly, the mean comfort rating

(comfortable = 1, uncomfortable =10) was 4.35 + 2.24.
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2.4 Discussion

This study tested the highest number of participants over the widest range of frequencies
using the highest available maximum flux density, and it first confirms that
magnetophosphene perception changes as a function of frequency. Nearly all participants
(>95%) perceived magnetophosphenes from 10 Hz to 70 Hz. No perception was reported
during the sham exposure. A decreased percentage of perception occurred at 5 Hz, and
above 70 Hz. Given that less than 50% of participants perceived magnetophosphenes above
85 Hz, statistical analysis was restricted from 5 to 85 Hz. A potential bias was identified in
the threshold reports above 85 Hz since participants self-reported that the exposure device
was loud, an audible high frequency noise could be heard, and reported vibrations from the
exposure device. Yet, no over-reporting of magnetophosphene perception seem to have

been caused over 85 Hz.

The use of the standardized FSQ proved that participants were successfully able to
determine when the MF exposure occurred, regardless of whether or not phosphene
perception occurred. All participants self-reported that they could detect the presence of
the MF and on average stated that they were 94% confident in their answer. Most based
their answer on the presence of magnetophosphenes or alternatively on the noise and
vibrations generated by the exposure device. To address this limitation, modifications to
the exposure device would be required. In contrast, experiments using lower flux densities
reported that participants were unable to judge whether exposure occurred (M. R. Cook et
al., 1992; Legros et al., 2012). For example, an experiment with exposures up to 1.8 mTims
reported that participants were unable to detect the presence of a MF, as they indicated

incorrectly on the FSQ in 76% of trials (Legros et al., 2012).

With respect to the MF flux density, from 5 to 85 Hz, the lowest threshold was found at 17
MTms at 35 Hz. This compares to the study of Lovsund, who found the threshold (~10
mTms) to be lowest at 30 Hz, in darkness (L&vsund et al., 1980b). Magnetophosphene
perception is known to evolve as a function of time spent in the dark, such that the threshold
increases over time and stabilizes after approximately 16 minutes (L6vsund et al., 1980b).
Lovsunds’ experiment involved a 30-minute dark adaptation period before determining

thresholds, therefore allowing sufficient time for the retina to adapt to the darkness.
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Exposures in the present study were presented immediately after extinguishing the room
lighting, therefore, by turning the lights on between each frequency condition, adaptation
to the darkness was avoided (Lovsund et al., 1980b). A direct comparison therefore cannot
be made between the threshold values of Lovsund’s experiment and the present study, due
to the different adapted state of the retina, however a dark adaptation period preceding

threshold determination should result in higher thresholds.

However, the lowest thresholds reported in the current study are ~7 mTwms higher than the
lowest threshold previously reported in darkness (Lovsund et al., 1980b). This difference
likely results from methodological differences. For example, the MF used in this study is
homogenous in the head region, whereas it was heterogeneous in Lovsund’s study
(Lovsund et al., 1980b). Lovsund et al. (Lovsund et al., 1980b) presented the
magnetophosphene threshold values according to the approximate position of the center of
the eye, however within the eye region there was a 20% difference in MF flux density.
Therefore, the heterogeneous MF was such that the medial aspect of the eye was exposed
to a MF 10% lower than the center of the eye, and that the lateral aspect of the eye was
exposed to a MF 10% higher than the center of the eye, perhaps underestimating the
maximum exposure and the perception thresholds. For example, in complete darkness at
30 Hz, a 10 mTms magnetophosphene threshold is reported at the center of the eye,
meaning that the lateral aspect of the eye is exposed to a flux density of 11 mTms, and the
medial aspect of the eye is exposed to a flux density of 9 mTms. Also, the perception
threshold in Lovsund’s study was evaluated using the psychophysics method of limits, as
opposed to the method of self-adjustment, creating variability. A differing method of
threshold determination has the potential to account for differing results, thus requiring the

test-retest reliability protocol of the current experiment.

To confirm that the method of self-adjustment is viable in determining magnetophosphene
thresholds, ten participants completed a test-retest protocol. Four thresholds at 20 Hz were
compared and found to be not significantly different, confirming the reliability of our
threshold estimation method. The 20 Hz exposures were randomized amongst all other
exposures, ensuring that participants were blinded to this component of the experiment.

The means of all four thresholds at 20 Hz were found to be not significantly different;
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participants are able to repeatedly select the same threshold for a given frequency
condition. Since the same threshold could be repeatedly selected, the method of self-
adjustment appears to be valid, accurate and reliable when selecting magnetophosphene
thresholds. Determining a reliable method to determine thresholds is important, as other
studies vary in the method to determine threshold (Legros et al., 2016; Lovsund et al.,
1980a, 1980b). An alternative to the method of self-adjustment is the method of constant
stimuli, which is regarded to be reliable but is very time consuming. The method of
constant stimuli is effective when evaluating only a few frequency conditions, however,
establishing a frequency response throughout the entire ELF range would require a long
duration experiment, and potential participant fatigue. By using the method of self-
adjustment this study was able to explore the entire ELF range, while maintaining accuracy
and a reasonable experiment duration. However, the method of self-adjustment required
the threshold to be considered as the lowest intensity eliciting perception, as opposed to an
average of an increasing and decreasing threshold used in the method of limits (Lovsund
et al., 1980a, 1980b), or a 50% perception rate in the method of constant stimuli (Legros et
al., 2016). Additionally, frequencies were randomized in this experiment; an improvement
from previous work where frequencies were presented in consecutive order (Lovsund et

al., 1980a, 1980b).

Magnetophosphene thresholds are also represented in dB/dt. This is a direct correlate of
the induced electric field sensed by the retina and is proportional to both the intensity and
the frequency of the MF (Chapter 1.1). Since magnetophosphene perception is a result of
magnetic induction, it implies that the retina is sensitive to the induced electric field, and
not simply the flux density of the MF. From previous comparison of electro- and
magnetophosphene threshold reports, it is not enough to simply represent
magnetophosphene thresholds in terms of the flux density, but should rather be represented
in dB/dt (Lovsund et al., 1980a). By representing the perception thresholds in terms of
dB/dt, it shows that perception requires an increase in induced electric field as frequency
increases. The extent of the increase in induced electric field with respect to increasing
frequency is still debated, as the contributions of retinal cells is unknown. An exploratory
attempt is made in this study to characterize the dynamics of the frequency response

reported in dB/dt. The objective is to evaluate if different mechanisms of action might be
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involved (i.e. possible recruitment of different retinal cell populations) depending on the
frequency. Interestingly, the linear regression did not show the best fit to the
magnetophosphene frequency-response and the threshold reports where best described
using 2 different linear regressions with a breaking point at 40 Hz, suggesting that
perception may not be limited to a single mechanism but that slightly different mechanisms
were involved below and above this frequency. Note that this is a speculative and empirical
observation at this point, but it deserves to be further explored. Interestingly, a two-order
polynomial is also an excellent model of the perception reports, which suggests a possible
combination of sources explaining the dynamics. Hence, the mechanism may not be linked
to a single aspect of the visual system (see Section 1.4) and could in fact involve multiple
components of the retina (i.e. Photoreceptors, bipolar cells, amacrine cells, or horizontal
cells). To establish the contribution of various cells involved in magnetophosphene

perception, we first must know the frequency sensitivities of these cells.

The threshold values presented in dB/dt differ from previous electro- and
magnetophosphene studies. Lovsund reports magnetophosphene thresholds in terms of flux
density; converting those values into dB/dt, we notice a similar increasing trend to the
results of the current study. However, consistent with the flux density, it is apparent that
the current study reports higher thresholds in dB/dt. In comparison to electrophosphene
thresholds, studies report a non-linear trend in electrophosphene thresholds, such that the
lowest threshold has been reported at ~10 Hz, increasing above and below 10 Hz (Kanai et
al., 2008; Kar & Krekelberg, 2012). Magnetophosphenes are thought to arise from the same
mechanism eliciting electrophosphene perception, however frequency-response dynamics
are different. This difference is potentially accounted for when considering that an electric
stimulation must travel through several layers of tissue (i.e. skin, skull) before arriving at
the retina and modulating the visual signals (Logothetis, Kayser, & Oeltermann, 2007).
Travelling through each of these tissue layers adds resistance to the signal and, which we
speculate to modulate the properties of the electrical signal reaching the retina.
Computational models indicate that current density originating from occipital electrode
stimulation travel through the cortical layers of the brain, ultimately eliciting retinal
phosphene perception (Laakso & Hirata, 2013). Contrary to this, the MF penetrates through

these layers, meaning that the induced electric field at the retina is unaltered.
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Although the MF was detected through conscious perception, and threshold determination
was apparently accurate and reproducible, the results are entirely limited to participant
subjectivity. These findings would be best supported by an objective measurement.
Occipital EEG alpha activity showed no effect when comparing trials with and without
perception of magnetophosphenes. Perception of magnetophosphenes was expected to
create a visual stimulus that would be comparable to visual perception known to modulate
EEG alpha power (Berger, 1929). Based on the “Berger effect” alpha power was expected
to decrease upon magnetophosphene perception (Berger, 1929). Since the present study
evaluated EEG alpha power at phosphene thresholds, future studies should evaluate EEG
alpha activity during exposures significantly above threshold values to determine if the
strength of visual perception affects the alpha activity. Additionally, other EEG analyses
techniques such as source reconstruction could turn out to be more appropriate for
discriminating magnetophosphene perception. Source reconstruction is different from
alpha activity, since it evaluates temporal relationships in neural activity at a millisecond
scale. Evaluation of source reconstruction has shown preliminary success in determining
an objective biomarker for ELF MF exposure, as magnetophosphene perception was
regarded to modulate the ventral pathway of visual processing (See section 1.5.1 for
additional information regarding the ventral pathway) (Modolo, Hassan, & Legros, 2018).
Although the present study showed no main effect in occipital alpha power, the use of EEG

in determining an objective biomarker of ELF MF exposure remains promising.

Determining a method of EEG analysis that proves to be an effective biomarker of ELF
MF exposure is necessary as the retina (and magnetophosphene perception) is merely a
conservative model of CNS function (Attwell, 2003). Retinal photoreceptors are unique
cells that are very sensitive and respond to stimuli with graded changes in membrane
potential, unlike the CNS. Rod photoreceptor cells are 100 times more sensitive than cones
and respond to the summation of stimuli. Several rods are connected to a single bipolar
cell, ultimately amplifying the signal and enabling the detection of very weak stimuli

(Conner & MacLeod, 1977; Kandel et al., 2000).

Magnetophosphene perception is the current basis for defining ELF MF exposure

guidelines to protect the public and occupational workers from adverse effects of ELF MF
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exposure. We report for the first time perception thresholds resulting from MF exposures
at powerline frequencies (23 mTmsat 50 Hz and 26 mTms at 60 Hz), that could be applied
to further document the existing guidelines and recommendations (Institute of Electrical
and Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-Ionizing
Radiation Protection, 2010). We have also improved the precision of magnetophosphene
thresholds, as the current study involved 60 participants, whereas the previous
magnetophosphene reports by Lovsund were limited to the involvement of only 11
participants. Currently, IEEE-ICES recommends that exposure in controlled environments
from 20-759 Hz (encompassing powerline frequencies of 50 and 60 Hz) is limited below
2.71 mTms general public and the below 0.904 mT s (Institute of Electrical and Electronics
Engineers Inc. & IEEE, 2002). ICNIRP recommends that occupational exposure at 50 and
60 Hz is below 1 mTms, and the general public exposure is below 0.2 mTms (International
Commission on Non-lonizing Radiation Protection, 2010). The magnetophosphene
thresholdsat powerline frequencies reported in this study are more than 20 times higher
than ICNIRP occupational guidelines, and 8 times higher than IEEE-ICES MPEs in
controlled environments, thereby protecting the general public and workers from adverse

effects of ELF MF exposure.

In conclusion, the present research study has documented the frequency-response of
magnetophosphene perception across a significant portion of the ELF range. Perception
thresholds measured in terms of flux density, which is the metric used in the guidelines as
reference levels (ICNIRP 2010), were lowest at 35 Hz and increased at higher and lower
frequencies. This study also documents perception thresholds at power frequencies (where
most ELF exposure occurs) which aim to prevent adverse effects. Adverse effects are
defined as “an effect detrimental to the health of an individual” (Institute of Electrical and
Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-lonizing
Radiation Protection, 2010). ELF MF was not associated with any change in the alpha
power of EEG occipital electrodes even when magnetophosphenes were perceived.
Alternative methods of EEG analysis should be considered as we further the need for an

objective biomarker.
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3  General Conclusion

This research project evaluated magnetophosphene thresholds across the ELF range in a
large sample of subjects. This study is the first follow up study of experimental work
conducted in the early 1980’s. However, several improvements have since been made,
including: improvements to the exposure device, additional frequencies tested, and a large
sample size. The exposure device used in the present experiment created a homogenous
MF, enabling a precise measurement of the magnetophosphene thresholds. This is the first
study to quantify magnetophosphene thresholds throughout the entire ELF range, including
power frequencies of 50 and 60 Hz. Additionally, the current research project enrolled 60

volunteers; a large sample size further supports the findings of this study.

Although it is relying on a reliable psychophysics evaluation, magnetophosphene
thresholds remain limited to subjective reports of perception, therefore this study aimed to
determine a quantitative biomarker of ELF MF exposures through the use of EEG.
Although this study showed no main effect in EEG alpha activity during ELF MF exposure,
alternative analysis techniques such as EEG source reconstruction are possible, and EEG
persists as a potential tool for determining an objective biomarker. Another biomarker with
a potential promising outcome is related to the quantification of pupil dilation associated

with phosphene perception.

3.1 Future Developments

While the search for an objective biomarker continues, other experiments are planned to
further evaluate the mechanisms involved in magnetophosphene perception. To
discriminate between photoreceptor involvement, magnetophosphene thresholds will be
determined throughout time spent in complete darkness. Rods and cones vary in their
response to time spent in the dark and each have a unique adaption to the darkness trend.
Assessing thresholds throughout time in the dark will contribute to show the extent of each

photoreceptor’s involvement in magnetophosphene perception.

Another method of evaluating photoreceptor involvement would be to test a patient

population with various retinal diseases. Evaluating patients with abnormalities in their rod
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and/or cone function will assist to determine the exact mechanism of action involved in
phosphene perception. Current phosphenes are reported to be achromatic, pointing towards
rod modulation in perception. Evaluating thresholds in patients with rod dysfunction will

highlight the extent of which rods are involved.

Phosphenes have been previously proposed as a clinical tool, as clinicians want to use
phosphene thresholds as a means to assess the electrical excitability of the eye. Furthering
this, clinicians hope to discriminate between those who are suitable for a visual prosthesis
and those who are not. This research was previously evaluated with electrophosphenes, but
the findings in the current research study have produced reliable magnetophosphene

threshold data, which could also be used to assess visual prosthetic candidates.

3.2 Limitations

One limitation in this study is the capabilities in the exposure device. Although we state
that the exposure device was an improvement from that used in the 1980’s, it still has
limitations in the maximum exposures generated. Below 85 Hz, magnetophosphene
thresholds were well within the operational range of the exposure device, however the
decreasing percentage of participants perceiving phosphenes at higher frequencies may be
the consequence of the exposure device limitation, and the possibility of perceiving
phosphenes at frequencies above 85 Hz could only be properly tested with higher
stimulation capabilities. Addressing this limitation has the potential to improve the validity
of threshold reports above 85 Hz. Also, an exposure device capable of creating an increased
maximum flux density could potentially elicit coloured phosphenes. Phosphenes are
hypothesized to be a result of rod stimulation. However, increasing the flux density
substantially may enable coloured perception and cone mediated phosphenes, which would

provide a strong validation of the rods’ hypothesis.

3.3 Conclusion

Overall, this study reported magnetophosphene thresholds and the frequency-response
throughout the ELF range. This experiment provides important and relevant input to the

guideline/standard-setting process. The guidelines are designed to protect against
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potentially adverse effects of exposure to ELF MFs, including excitation of central or
peripheral neurons or modulation of brain synaptic activity. Magnetophosphene perception
originates with photoreceptor responses where visual stimuli are also received, suggesting
that the phosphene response as a biological response is perhaps not truly adverse.
Nonetheless, with regard to guideline/standard-setting, the magnetophosphene has been
adopted as a surrogate for potentially adverse synaptic excitation in the CNS g. Until such
time as an effect that better represents a potential adverse CNS interaction with magnetic
fields is known, it remains important to understand the exposure-response characteristics
of magnetophosphenes. The research in this report will also help advance our fundamental

understanding of signal transmission from the outer to inner retina and into the brain.
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Appendix B: Participant Characteristics.

Participant Age Sex Participant Age Sex

1 19 Female 32 27 Female

2 25 Male 33 25 Male

3 27 Female 34 26 Male

4 26 Female 35 21 Male

5 24 Male 36 25 Female

6 24 Female 37 21 Male

7 28 Male 38 20 Male

8 30 Female 39 22 Female

9 25 Male 40 26 Female
10 21 Male 41 20 Female
11 25 Male 42 23 Male
12 22 Female 43 22 Female
13 23 Female 44 22 Female
14 25 Female 45 27 Male
15 21 Female 46 22 Female
16 33 Male 47 20 Male
17 33 Female 48 22 Male
18 28 Male 49 26 Female
19 18 Female 50 22 Female
20 21 Male 51 29 Female
21 33 Male 52 25 Female
22 19 Female 53 30 Male
23 29 Female 54 27 Female
24 26 Male 55 25 Male
25 18 Female 56 27 Female
26 23 Female 57 20 Male
27 27 Female 58 21 Female
28 28 Male 59 23 Female
29 20 Female 60 24 Female
30 24 Female n =60 24.31+3.62 F =35

31 24 Male M =25




Appendix C: Magnetophosphene Letter of Information and Consent Form

LAWSON

HEALTH RESEARCH INSTITUTE

St Joseph’s Hospital

268 Grosvenor Street

London, Ontario N6A 4V2

CANADA
]
)
]
L]

LETTER OF INFORMATION
Yersion date: May 3 2018
Investigators: Dr. Alexandre Legros, Imaging, Lawson Health Research Institute

Place of Research:
Lawson Health Research Institute
St. Joseph’s Health Centre
268 Grosvenor Street
London, Ontario

Extremely Low Frequency Magnetic Field Threshold for Magnetophosphen
P - 1A iated EEG Modulati
Study Rationale

Electrical currents like those circulating in power-lines and domestic electrical
appliances produce magnetic fields in their surroundings. These domestic magnetic fields
oscillate, or change direction, from positive to negative values 60 times in a second in
North America and 50 times in Europe: they are said to have a frequency of 60 or 50
Hertz (60 Hz — 50 Hz), and are often referred to as power-line frequency magnetic fields.
The intensity of a magnetic field is measured in milliTesla (mT). For example, the
intensity of the magnetic field emitted by a clinical MRI is usually 1,500 or 3,000 mT,
but research MRI systems can go up to 11,000 mT.

Oscillating magnetic fields (magnetic fields with intensity changing over time)
have the ability to make electrical micro-currents in the human body. Stronger magnetic
fields make stronger electrical micro-currents. Everyone is exposed to power-line
frequency magnetic fields on a daily basis. This is the reason why potential effects of
magnetic fields on humans should be studied. This current study is aiming to use
magnetic fields from 5-300 Hz up to 100 mT. The strength of the exposure will be lower
than what you would experience in a Magnetic Resonance Imaging (MRI) scanner.
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Purposcof the Study,

You are invited to participate in a study looking at the possible effects of
magnetic field exposure on a flickering visual perception called magnetophosphenes and
on very weak electrical brain activity. This study will eventually test 80 volunteers.

Procedures

If you agree to participate in this study, you will take part in one experimental
session after signing the consent form. You will be asked on the consent form whether or
not you wish to be contacted about future research studies. This session will last
approximately 2 hours and will involve magnetic field exposure. During this session, the
first 30 minutes will be designated to collecting your participant information, and
informing you about the study. You will then be given the opportunity to have all your
questions about the study answered. After you have signed the consent form, formally
agreeing to take part in the study, we will set you up with an electroencephalography
(EEG) cap, in order to measure the electrical activity of your brain. The cap will cover
your entire scalp and contains 64 electrodes (see the picture on page 3).

You will then sit in a confortable armchair in which you will stay for the entire
experiment (it will last about 1 hour). The experiment will be conducted in a dark room
(lights off) and you will be asked to keep your eyes closed. You will sit in a whole head
MF exposure device, wearing a EEG cap. MF exposure will involve frequencies from 0-
300 Hz, for a total of 25 conditions each repeated twice. You will be instructed to self-
adjust the strength of the MF (between 0 and 70 mT over a 25 s period).

RN
\_/

Figure 2: Diagram of the position of the set of coils around your head.
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During this experiment, you will be given short periods during which a magnetic
field may or may not be delivered. When delivered, the magnetic field may or may not be
strong enough to produce visual perceptions while you have your eyes closed. The
beginning and the end of each short exposure period will be indicated by a “beep”, but
neither you nor the researcher will be aware if the magnetic field is actually generated or
how strong it could be. Your only action while sitting on the armchair will be to adjust
the level of the MF using a handheld dial to a point where you are perceiving a noticeable
change in what you “see™ (while you have your eyes closed) during the short exposure
periods. After this experiment, you will be asked to complete a magnetic field detection
survey.

During this session your EEG (electroencephalogram, i.e. the electrical activity of
your brain) will be recorded continuously.

When you will have completed this experiment, you will have been exposed to a
magnetic field for a total duration of 25 minutes. Then the staff will remove the EEG cap.

Figure 3: Illustration of an EEG cap similar to the one that will be fitted to your
head.

Reimbursement

Reimbursement for travelling and parking will be provided for this study. You
will receive a reimbursement of $50 for the experimental session. Even if you cannot
complete a session for any reason, you will receive a reimbursement for your
participation as a proportion of the time you spent toward the session.

Inclusion criteria
You must be healthy and be between 18 and 55 years old.
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Exclusion criteria

You should not take part if you are claustrophobic; have a limitation of
movement; if you have ever experienced epileptic seizure; if you suffer from chronic
illness (e.g., diabetes, a psychiatric condition or severe cardiovascular problems,
including susceptibility to arrhythmias) or neurological diseases; if you use illicit drugs
regularly; if you have a history of head or eye injury involving metal fragments; if you
have ever worked in a metal shop or been a soldier; if you have some type of implanted
electrical device (such as a cardiac or cerebral pacemaker, a cochlear implant, an insulin
pump etc.); if you have an aneurysm clip; if you are wearing a hearing aid system; if you
are wearing metal braces on your teeth; if you have permanent piercing, if you could be
pregnant; or if you have an intrauterine device. Moreover, you will be asked to not smoke
or have caffeinated or alcoholic beverages in the 12 hours preceding your participation to
the study.

Risks

Participant Frustration: This study requires you to be connected to various recording
devices. Although we are always improving our connection procedure, it still takes time.
You will also be required to keep calm, quiet and as immobile as possible. If you
experience difficulties to fulfil these criteria, you may withdraw from the study.

Electroencephalogram (EEG): There are no risks associated with EEG use, however,
you may find the cap slightly uncomfortable.

Power-line frequency magnetic fields: Although there are no known risks of exposure
to power-line frequency magnetic fields at the level and duration you will be exposed in
this study (up to 100 mT), there could be unknown risks as magnetic field exposure of 5
to 300 Hz MF above 5 and up to 100 mT have not yet been systematically investigated in
humans. However, both the International Commission on Non lonizing Radiation
Protection (ICNIRP, 2010) and the World Health Organization (WHO, 2007) have
conducted exhaustive review of the scientific literature on the topic and concluded the
absence of health effects to power-line frequency magnetic field exposure at those levels.

Participation in this study requires that you refrain from alcohol, caffeine or nicotine
consumption 12 hours prior to the experiment, and until the end of the experiment. If you
usually drink coffee on a regular basis, then this abstinence may eventually induce
headaches. Furthermore, if you are a regular or occasional smoker, you may experience,
anxiety, depressive feelings or impulsive behaviour caused by nicotine deprivation during
12 hours.
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Benefits

You will receive no direct benefits as a result of your participation in this study.
Withd \

Participation in this study is completely voluntary. You may refuse to participate,
refuse to answer questions or withdraw from the study at any time with no affect on your
employment or academic status. You may withdraw from the study at any point including
after the study is complete, and data will be deleted.

Confidentiality

The information collected from you will include your name, date of birth and
phone number, this enables us to validate your age and contact you. All information will
be kept strictly confidential. You will be given a code number so that no names will be
used in recorded data. The consent form with the name and the code number will be kept
in a locked file cabinet. All results from the study will be kept confidential and any
publication of this research study will be in grouped form with no reference to individual
names. Storage of the EEG data will be performed electronically. This electronic folder
will be stored on a computer with updated antivirus and firewalls of
a locking door) at Lawson Health Research Institute. Only staff have the key to the door
and only members of the research team have the password for the computer.
Representatives of The University of Western Ontario Health Sciences Research Ethics
Board or Lawson’s Quality Assurance Education Program (QAEP) may contact you or
require access to your study-related records to monitor the conduct of this research.

Further Information
You will be given a copy of this “Letter of Information™ to keep for your records.
You do not waive any legal rights by signing the consent form.

If you have any questions or you would like to further discuss any aspect of the study,
please do not hesitate to contact Alexandre Legros (Ph.D., Associate Professor,

Bioelectromﬁnetics Scientist, Principal Investigator, LHRI) at [ NG

If you have any questions/concerns about your rights as a research participant or the

conduct of this study. please contact: St. Joseph’s Health Care London Patient Relations
Consultant at
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Consent to participate in the study entitled:

cv Macpetic Field
Perception and Associated EEG Modulations

eShold 10

Identification Number:

I, , have read the Letter of Information, have had the

nature of the study explained to me, and I agree to participate.

All questions have been answered to my satisfaction.

PRINT NAME SIGNATURE DATE
PRINT NAME OF SIGNATURE DATE
TRANSLATOR

(IF APPLICABLE)

PRINT NAME OF SIGNATURE DATE

PERSON OBTAINING
CONSESNT



Appendix D: Advertisement for Study Participation

VOLUNTEERS NEEDED

Healthy volunteers needed to participate in a
study investigating the effects of a power-line
frequency magnetic field on human
neurophysiology

Those between the ages of 18 and 55 inclusive are eligible to participate.

You should not take part if you have a limitation of movement, if you have ever
experienced epileptic seizure, if you suffer from chronic illness (e.g., diabetes,
psychiatric or severe cardiovascular or neurological diseases), if you have a
history of head or eye injury involving metal fragments, if you have ever worked in
a metal shop or been a soldier, if you have some type of implanted electrical device
(such as a cardiac or cerebral pacemaker), if you use illicit drugs regularly, if you
are wearing metal braces on your teeth, if you have a permanent piercing, if you
could be pregnant, or if you have an intrauterine device.

For more information please contact (e-mail preferred):
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Appendix E: Phone Questionnaire

Phone Questionnaire

To participate in this study, you must be between the ages of 18 and 55 inclusive. To determine whether or not you
are a potential candidate for this study, we would ask you to answer the following questions:

1. Do you suffer from limited movement of your hands or fingers? Yes No
If yes, Of What NAture? ............oouiiiiiii e

2. Do you currently suffer from a chronic illness that requires that you regularly
take medication(s)? If yes, Which one(s)? ..........cooeiiiiiiniiiiiiiiininiee, Yes No

3. Are you currently experiencing psychiatric illness or difficulties? (ex. Depression, anxiety) Yes No
4. Have you ever had an epileptic seizure? Yes No
5. Are you claustrophobic? Yes No

6. Do you wear an implanted electric device, or do you have a metal implant

in your head or chest? Yes No
7. Do you have any permanent piercing? Yes No
8. Are you wearing a hearing aid system? Yes No
9. Do you wear glasses or contacts? Is it possible for you to wear contacts Yes No

throughout the duration of the study?
10. Do you regularly use illicit drugs? Yes No
11. Do you smoke? Yes No
12. The experiment requires that you not be under the influence of tobacco, alcohol or coffee

during the test. Is it impossible for you to abstain from smoking, consuming alcohol or
drinking caffeinated beverages from midnight the night before the experiment until the next

afternoon (expected end time of the experiment)? Yes No
13. Is there a chance of pregnancy? Yes No
14. Dominant hand: 16. Weight:
15. Date of birth: 17. Height:

Identification number: ...............cooiiiiiiininns

NOTE: This information will be used to ensure you are meeting the study’s inclusion criteria, and to categorize the
data when analyzed. If you sign the consent form, the information you provide on this questionnaire will be kept,
locked and stored for seven years and then shredded and/or mulched using a standard hospital protocol for document
destruction (even in the event you withdraw from the study before having completed it). Should you discontinue

participation in this study prior to signing the consent for, the information you provide on this questionnaire will be
instantaneously discarded.

<

Last NameE: ... oot First Name:......oueuiiiiniiiee e
AAIesS: ..ot Gty Lt
Home phone number:..............oouviiiiiiiiiiiiiiieaeans WOTK: e

Ermail @ddress: ... oot e
IS PN Date of birth: ........oo.ooviiiiiii

Identification number: ...............coooiiiiiiiiiii (To be filled out by a member of the research team)

1
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Appendix F: Field Status Questionnaire (FSQ)

DETECTION SURVEY

Identification Number: ...........ccevveniiiininninnn.
In your opinion, was the magnetic field generated during this test, or not?
Yes (generated)

No (no field)

With what degree of certainty do you assert that opinion (from 1 to 5)?

Answer:

On what do you base your opinion?

Did you feel that this situation (sitting in the exposure coils) was:

Stressful L1111 1 1 ] Relaxing

Comfortable | | | | | | | | | | ] Uncomfortable

Did you feel/perceive anything specific during this experiment?

If yes, how would you describe it?

Other comments:
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Appendix G: Raw Data - Magnetophosphene Threshold Values, Reported in mT s

Frequency

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
P1 12.71 11.25 20.60 21.99 20.81 28.59 28.70 44.21 43.84 44.05 53.09
P2 2441 1647 1888 1391 14.54 20.20 20.16 23.09 23.96 2437 2625 34.50 37.79 46.19
P3 3342 2549 1932 22.19 2047 23.02 29.25 27.62 27.63 3323 31.24 43.53 33.54 4323
P4 22.59 12.60 24.73 16.58 15.80 24.58 20.92 22.92 29.88 30.87 30.94 35.59 47.52 55.40
P5 3931 446 802 11.93 1420 1385 19.93 23.07 23.87 23.65 21.81 27.82 23.75 37.72
P7 23.74 2146 6.69 1091 1331 15.00 17.51 20.13 22.79 21.35 17.87
P8 2038 23.22 13.54 14.15 21.12 29.10 2427 29.74 24.04 29.18 33.02 40.82 59.63 59.63
P9 43.54 30.13 40.72 2545 3025 3420 41.82 37.24 3929 36.62 42.77 36.47 56.51
P10 3429 1450 11.89 17.23 28.60 39.22 32.44 30.55 39.71 5593 51.97 32.18 59.64
P12 14.09 19.09 17.51 19.54 17.66 20.95 23.51 32.00 34.16 4291 37.51 4540 53.03 54.78
P13 31.69 5.77 17.16 6.35 17.89 1440 9.48 1233 1299 16.89 21.86 12.78 1541 11.98 14.60 14.27 20.39
P14 26.02 20.74 17.11 19.96 14.47 21.67 23.83 21.82 21.03 27.02 26.69 34.10 23.54 24.65 27.85 27.81 23.53
P15 3328 31.35 34.14 16.68 21.52 27.79 2345 3345 29.81 2133 3347 2790 35.04 36.92
P16 39.61 17.69 1226 11.67 1577 22.07 1320 15.59 1290 11.86 14.87 29.15 2596 24.12 2299 24.55 31.74
P17 43.03 1393 1693 24.85 3298 49.50 38.07 40.89 39.38 39.78 29.69
P18 38.06 24.22 21.63 18.09 13.96 20.65 10.10 13.43 18.52 19.11 22.10 21.57 17.19 21.45 2630 26.63 30.08
P19 4285 19.11 18.57 24.08 21.57 26.52 22.51 18.18 23.75 2741 4295 2891 36.93 2639 32.74 4231
P20 4548 3644 28.78 26.25 19.24 1241 1851 2545 27.84 2576 3595 2430 2320 29.26 22.53 23.22 31.34
P21 4538 31.42 2198 22.82 1699 13.63 1090 10.98 14.69 1843 2431 2790 27.41 3295 41.67 41.49 42.13
P22 4420 21.90 3830 16.26 16.61 13.66 19.37 20.83 26.91 21.64 40.02 32.12 34.52 30.23 39.72 40.83 20.55
P23 29.42 1948 1647 11.96 1565 17.14 12.01 1572 18.12 15.79 21.37 15.88 21.98 14.68 23.21
P24 29.40 25.63 22.84 31.56 20.82 18.67 16.26 2540 26.59 23.77 22.50 19.55 23.41 34.28 41.77 4243
P25 31.20 2644 26.74 1323 28.69 22.78 2391 30.69 29.51 41.02 46.41 28.76 31.92 4232
P26 49.50 29.75 37.56 42.19 19.43 19.14 2222 1890 33.82 24.51 34.00 28.54 31.43 35.39 24.37
P27 4549 10.75 588 7.56 10.80 11.20 12.38 1238 13.17 1598 16.66 21.71 21.58 27.52 28.90
P28 49.50 33.35 27.76 16.56 7.85 834 481 741 11.76 12.10 1420 12.28 20.41 10.58 21.55 11.80 5.15
P29 30.41 22.73 22.10 18.06 10.44 18.06 20.72 24.66 23.52 25.54 39.07 30.44 39.22 34.12 38.70
P30 4325 23.72 1079 14.68 13.42 17.53 1576 24.50 20.54 28.05 36.85 48.75 2549 29.92 2728 36.32 30.50
P31 46.25 30.85 10.23 16.74 16.65 25.08 11.55 9.41 11.13 2232 2723 26.69 19.68 17.52 22.63 26.64 28.72
P32 2621 17.97 21.17 2238 21.05 1740 2586 28.29 2741 43.43
P33 49.50 27.86 25.07 19.21 19.10 15.60 17.08 16.10 14.85 33.58 27.62 27.19 30.36 30.61 33.20 42.43
P34 16.48 11.72 11.21 15.82 13.24 12.08 17.88 14.94 19.53 24.06 21.81 2594 2841 23.89 20.96 42.43 32.93
P35 40.69 27.87 16.72 13.57 1093 11.21 1530 1630 1556 24.55 23.33 22.65 33.65 41.49
P36 47.48 40.13 29.16 31.02 2574 12.10 19.29 22.67 17.19 2242 17.32 27.66 38.43 36.89 3332 41.22 41.65
P37 46.07 31.30 1634 21.60 17.48 13.75 16.19 1548 18.96 25.55 34.47 23.06 30.86 27.96 37.97 4243
P38 49.50 43.79 22.65 19.93 1854 17.36 13.57 12.55 14.08 17.52 17.44 25.03 19.60 16.79 1498 16.49 21.95
P39 49.50 49.50 49.50 45.75 49.00 41.13 37.54 49.50 48.40 39.45 49.50 42.43 42.43
P40 21.25 13.77 17.22 23.77 20.61 1236 17.90 20.58 28.47 3547 30.87 4233 4243
P41 29.45 16.08 14.81 10.61 14.14 941 9.13 928 11.73 1197 1422 16.11 19.11 1647 22.07 1628 14.12
P42 47.14 28.02 20.17 1748 18.04 15.72 18.75 1639 18.41 19.04 29.71 32.51 2395 32.84 3046 37.55 39.17
P43 23.57 9.17 19.55 19.00 14.76 1542 1582 13.34 18.83 25.52 26.00 26.67 30.83 36.79
P44 2492 25.83 20.04 18.27 12.41 14.02 15.64 1997 1582 15.63 16.67 21.66 19.36 28.05 31.16
P45 9.82 1632 1421 952 1587 6.34 9.52 1495 18.69 7.12 1495 14.89 1509 22.83 18.76 25.59 31.32
P46 36.53 2348 2376 2191 1624 12.02 12.09 15.56 21.30 21.25 2431 21.16 23.94 3424 26.11
P47 4384 17.11 14.82 13.98 1320 14.29 1565 23.54 26.02 30.22 22.44 2527 30.53 29.90 18.68 26.34 31.39
P48 3048 2620 17.03 15.88 22.78 20.77 23.35 21.04 3221 2830 24.05 27.87 30.07 32.07
P49 49.50 2548 16.19 17.31 1628 31.22 20.81 1648 16.39 21.97 24.05 26.56 24.68 24.19 2291 30.28 34.68
P50 4340 354 221 350 210 323 805 11.57 1224 13.07 13.69 11.00 19.04 14.72 823 9.20
P51 4545 22.19 31.28 2220 21.09 11.52 13.72 16.25 13.62 1491 19.07 14.00 18.19 23.89 27.59 27.17 29.74
P52 19.24 2590 1724 1136 729 10.58 10.60 11.83 13.90 1746 1575 17.66 21.77 21.79 19.22 17.42
P53 31.71 2220 20.68 1596 19.99 22.18 2291 28.04 31.06 24.17 23.00 23.50 26.31 27.64 30.82 34.57
P54 21.04 1195 11.29 1295 6.69 7.73 9.41 7.76 11.78 15.84 18.10 15.52 15.68 15.50 9.86 13.45 14.24
P55 44.62 2193 1682 19.84 1820 7.34 14.17 1398 1180 1542 17.16 17.66 24.47 26.61 24.44 32.29
P56 39.56 28.25 3549 25.69 18.76 10.79 12.46 13.37 1557 13.24 17.90 13.40 1836 24.73 23.43 30.77
P57 41.79 10.85 19.03 15.61 1098 11.36 10.09 9.98 10.82 14.72 15.72 14.15 16.46 18.75 19.17 20.46 26.96
P58 43.52 4533 2545 29.81 33.06 34.70 31.61 31.32 4232 39.07 4494 3222 42.19 4243 4197
P59 3544 18.06 7.06 11.55 10.70 22.50 22.29 17.77 18.86 18.09 19.89 23.28 27.39 25.74 34.05 1691
P60 3262 1458 876 17.16 7.22 10.07 10.44 10.66 12.22 14.18 16.52 19.70 17.11 20.19 21.24 2545
ThI;Ieinld 39.98 24.94 21.14 20.87 17.36 17.43 16.92 18.05 20.87 22.80 25.20 26.45 26.25 28.06 28.63 31.47 33.33

resho!

(mTrms)
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Appendix H: LabVIEW Front Panel

File Path Current Input Iteration
% C:\Users\Exper...\Cadence\Test.txt i‘ Iteration Frequency (Hz) Duration (s)
Recording (Click to Record)
0 60 0
VIteration Control Max MF (mT) _
,0 101 A 2
MF Signal
Input Signal
Input Signal Input Amplitude
Amplitude Vrms in Volt
0 0

Amplitude

Sent input rms voltage

0246810o

STOP EXPOSURE STOP ALL
@ STOP
MF Control
0 05 1

Output Signal
Measured MF (mT - rms)

0 20 40 60 8 =
Probe MF -
MF (mT, std) (mT. std)
0.00 0.00 -
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