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Abstract 
Background: Magnetophosphenes are among the most reliably reported effects resulting 

from magnetic induction. The frequency dependence of the perception threshold is crucial, 

as guideline agencies use this information to set exposure limits whose purpose is to protect 

public and workers.  

Objective: Establish the magnetophosphene perception thresholds throughout the 

extremely low frequency range (0-300 Hz) and evaluate the use of EEG as a biomarker.  

Hypothesis: Perception thresholds will be lowest at ~30 Hz. EEG occipital alpha power 

will decrease upon perception. 

Methods: 60 participants were exposed to homogenous magnetic fields up to 300 Hz, and 

70 mT. EEG alpha power was calculated during each exposure. 

Results: Magnetophosphene thresholds were found to be lowest (16.92 mTrms) at 35 Hz. 

Thresholds established at powerline frequencies. Magnetophosphene perception was not 

accompanied by a change in EEG activity.  

Conclusions: Magnetophosphenes frequency dependence is consistent with previous 

studies involving magnetic stimuli. Occipital EEG alpha power is not an appropriate 

biomarker of magnetophosphene perception.  
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Chapter 1  

1 General Introduction 
Magnetic fields (MFs) are present throughout our daily lives. Most are familiar with the 

Earth’s MF, however, MFs are also produced by powerlines and household electrical 

appliances. Throughout the following sections we will explore the human visual system, 

through evaluating a phenomenon called magnetophosphene perception. 

Magnetophosphenes consists of a visual experience of flickering lights upon exposure to a 

sufficiently strong MF; they occur in the absence of a visual stimulus. An overview of 

previous magnetophosphene research will be presented, as well as an overview of the 

visual system.  

1.1 Magnetic Fields 
We are exposed to manmade and natural MFs every day. The Earth’s MF is generated as a 

consequence of electric currents within the Earth’s molten core. This very slowly changing 

(essentially static) MF is rather weak at the earth’s surface but can be detected with a 

compass. A static MF refers to the fact that the field does not vary over time. A common 

household fridge magnet is, for example, also produces a static MF. Magnetic resonance 

imaging (MRI) scanners produce the strongest common static MFs. 

The concept of time-varying MFs refer to MFs having their intensity changing over time 

(as opposed to static MFs). They are most commonly produced by alternating currents, 

which are oscillating over time (i.e. they reverse their direction at a regular interval). MFs 

produced through use of our everyday household appliances and electrical wires are 

alternating. Alternating current flowing through a wire produces an alternating MF around 

it (Figure 1). Alternating MFs are classified into the following categories: extremely low 

frequency (ELF, 0-300 Hz), low frequency (300 Hz – 3 MHz), and high frequency (3 MHz 

– 300 GHz). The remainder of this research study will focus on ELF MFs, such as those 

we encounter in our daily lives. In Canada and the US, powerlines operate at 60 Hz, 

whereas in Europe, powerlines operate at 50 Hz. Both 50 and 60 Hz are within the ELF 

range, therefore, we are exposed to ELF MFs daily.  
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The intensity, H, of a MF is measured in amperes per meter (A/m), however, it is most 

often reported in terms of its MF flux density, B, measured in Tesla (T), or milliTesla (mT). 

The intensity and flux density of a MF are related by the equation:  

 ! = µH	 (1) 

where μ is the permeability of the space. The MF flux density decreases with increasing 

distance from the source and is proportional to the current intensity (I) and distance from 

the source (r), such that for an isolated straight conductor carrying current: 

 ! = 	 (µ. ()2+,  
(2) 

Time-varying MFs such as those resulting from a current flowing through a wire induce 

electric fields in a conductive object, such as the human body (Figure 1). This means that 

the MFs we interact with in our everyday lives are inducing electric fields in our body. 

Depending on magnitude, frequency and waveshape, induced electric fields may affect 

biological processes.  

 

Figure 1: Alternating current creates a time-varying MF, which ultimately creates 

an induced electric field in a nearby conductor, such as the human body. 

Time Varying 
Magnetic 
Field (B)

AC 
Current 
Flowing 

Through a 
Wire

Induced 
Electric Field 

in a Conductor 
(Human)
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1.2 MF Interactions with the Human Body 
Time-varying MF interactions with human biology and the central nervous system (CNS) 

has been studied for many years. Numerous research topics have been explored, with 

respect to ELF MF exposure including, but not limited to: cardiovascular function 

(McNamee et al., 2009; Sastre, Cook, & Graham, 1998), postural control (Allen et al., 

2016; Glover, Cavin, Qian, Bowtell, & Gowland, 2007; Legros et al., 2012; Prato, Thomas, 

& Cook, 2001; Thomas, Drost, & Prato, 2001; Van Nierop, Slottje, Kingma, & Kromhout, 

2013), reproduction (Al-Akhras, 2008), cognitive function (Corbacio et al., 2011; Crasson 

& Legros, 2005; Delhez, Legros, & Crasson, 2004; Nevelsteen, Legros, & Crasson, 2007; 

Preece, Wesnes, & Iwi, 1998), EEG (Cook, Saucier, Thomas, & Prato, 2009; Cook, 

Thomas, Keenliside, & Prato, 2005; Cook, Thomas, & Prato, 2002; Heusser, Tellschaft, & 

Thoss, 1997; Legros et al., 2012; Lyskov et al., 1993) and visual perception (Barlow, Kohn, 

& Walsh, 1947; D’Arsonval, 1896; Legros et al., 2016; Lövsund, Öberg, & Nilsson, 1980a, 

1980b). All the related scientific literature has been reviewed by the WHO (World Health 

Organization, 2007) and the two main international guideline agencies (Institute of 

Electrical and Electronics Engineers Inc. & IEEE, 2002; International Commission on 

Non-Ionizing Radiation Protection, 2010), and it was concluded that the most reliable and 

relevant biological effect, resulting from low levels of ELF MF exposure, relevant to serve 

as a basis for setting exposure limits in the ELF range was phosphene perception. 

International guideline agencies aim to protect the general public and workers from adverse 

effects of exposure, which they define to be: “an effect detrimental to the health of an 

individual” (Institute of Electrical and Electronics Engineers Inc. & IEEE, 2002; 

International Commission on Non-Ionizing Radiation Protection, 2010). In addition to 

establishing a reliable threshold of ELF MF effects, it is important to understand the 

possible mechanisms of action involved in ELF MF interactions with biological processes 

to confidently state if it is adverse or not, ultimately impacting exposure guidelines. These 

guidelines (explained in further detail in section 1.3) are based on the most reliably reported 

effect of ELF MF exposure, magnetophosphene perception.  
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1.3 Magnetophosphenes and Safety Guidelines 
Appliances such as a hairdryer or electric shaver can produce ELF MF exposures of 2 mT 

in their immediate proximity, however typical daily exposures usually remain below 1 μT 

(Gandhi, Kang, Wu, & Lazzi, 2001; Zaffanella & Kalton, 1998). The “Thousand Person 

Study” was designed to assess ELF MF exposures in Americans throughout a normal day. 

Out of all 1 000 volunteers, the top 1% experienced exposures up to 1 μT (Zaffanella & 

Kalton, 1998). Occupational powerline workers are often exposed to ELF MF flux 

densities of 1 mT (World Health Organization, 2007). 

To protect the public and workers from adverse effects resulting from MF exposures, 

international agencies set exposure guidelines and recommendations. The two major 

guideline organizations, the International Committee on Electromagnetic Safety of the 

Institute for Electrical and Electronic Engineers (IEEE-ICES) and the International 

Commission on Non-Ionizing Radiation Protection (ICNIRP), publish guidelines for the 

entire non-ionizing frequency range, however, this section focuses on ELF guidelines, 

encompassing the powerline frequencies (50 and 60 Hz) (Institute of Electrical and 

Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-Ionizing 

Radiation Protection, 2010). ELF exposures do not contain enough energy to damage cells, 

that is, why they are referred to as non-ionizing, but as described previously (Section 1.1), 

ELF MF exposures have the ability to induce electric fields and currents in a conductor 

(i.e. the human body) and therefore to possibly affect cells and tissues, including those in 

the CNS (Attwell, 2003).  

The current guidelines are based in part on a reliably reported effect of ELF MF exposure, 

magnetophosphene perception (Institute of Electrical and Electronics Engineers Inc. & 

IEEE, 2002; International Commission on Non-Ionizing Radiation Protection, 2010). 

Magnetophosphene perception is a consequence of magnetic induction, upon exposure to 

a sufficiently strong MF. At power frequencies and their lower harmonics, guidelines are 

currently based on experimental work that assessed thresholds from 10-45 Hz, and not 

powerline frequencies (Lövsund et al., 1980a, 1980b). This is an important limitation to 

note in the guidelines, since magnetophosphene perception is reported to be frequency 

dependent (Legros et al., 2016; Lövsund et al., 1980b, 1980a; Silny, 1984). Both the IEEE-
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ICES and ICNIRP guidelines which encompass the ELF range are presented in Table 1, at 

20 Hz (the most sensitive frequency, reported by Lövsund), 50 Hz (European powerline 

frequency) and 60 Hz (North American powerline frequency).   

The current IEEE-ICES recommendations were developed with respect to short term 

effects associated with electrostimulation. Exposure limits are designed to protect against 

short term reactions, including: painful stimulation of sensory or motor neurons, muscle 

excitation, alteration of synaptic activity in the brain, cardiac excitation, or adverse effects 

associated with induced potentials (Institute of Electrical and Electronics Engineers Inc. & 

IEEE, 2002). The restrictions for exposure of the head and torso, in terms of MF flux 

density are frequency dependent and are separated into two categories: general public and 

controlled environment. Below 0.153 Hz, the general public restriction is 118 mTrms, 

whereas the controlled environment restriction is 353 mTrms (Institute of Electrical and 

Electronics Engineers Inc. & IEEE, 2002). As frequency increases, the maximum 

permissible exposure values decrease, such that above 20 Hz, the general public restriction 

is 0.904 mTrms and the controlled environment restriction is 2.71 mTrms (Institute of 

Electrical and Electronics Engineers Inc. & IEEE, 2002). Based on the work of Lövsund 

in 1980, magnetophosphene thresholds were reported to be lowest at 20 Hz, and increase 

until 45 Hz (Lövsund et al., 1980b). Electrophosphene thresholds have been assessed up to 

75 Hz and have a similar frequency-response to magnetophosphenes. However, it is 

assumed that magnetophosphene thresholds follow the frequency-proportional law above 

20 Hz, up to at least 760 Hz, above which PNS is the defining effect (Institute of Electrical 

and Electronics Engineers Inc. & IEEE, 2002). Experimental data are limited below 45 Hz, 

however, IEEE-ICES uses extrapolation to generate ELF MF exposure recommendations.  

ICNIRP ELF MF guidelines are also based on magnetophosphene perception, and state 

that “avoiding retinal phosphenes should protect against any possible effects on brain 

function”. ICNIRP notes that phosphene thresholds are a minimum around 20 Hz and rise 

rapidly at higher and lower frequencies (International Commission on Non-Ionizing 

Radiation Protection, 2010; Lövsund et al., 1980b). Magnetophosphenes thresholds are 

thought to occur at an induced electric field of approximately 50-100 mV/m at 20 Hz in 

the retina (Saunders & Jefferys, 2007). Therefore, the occupational restriction is 50 mV/m, 
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and the general public restriction is 10 mV/m, at 20 Hz. With respect to MF flux density, 

the occupational and general public restrictions are 1.25 mTrms and 0.25 mTrms, 

respectively, at 20 Hz (International Commission on Non-Ionizing Radiation Protection, 

2010). Extrapolating to powerline frequencies, the occupational restrictions are 1 mTrms at 

50 and 60 Hz, or the general public restrictions are 0.2 mTrms at 50 and 60 Hz (International 

Commission on Non-Ionizing Radiation Protection, 2010).  

Magnetophosphenes are the most robustly reported effect of electric and magnetic 

stimulation below the threshold for direct muscle activation or CNS neurostimulation (i.e. 

triggering of an action potential). Although guidelines are based in part on 

magnetophosphenes, they are recognized to be the best existing model for CNS exposures 

until more is known (International Commission on Non-Ionizing Radiation Protection, 

2010).  

Table 1: ICNIRP and IEEE-ICES ICES reference levels for ELF MF exposures at 

20 Hz, 50 Hz and 60 Hz. 

 ICNIRP Guidelines 
(mTrms) 

IEEE-ICES 
Guidelines (mTrms) 

20 Hz 50 Hz 60 Hz 20 – 759 Hz 

Occupational/Controlled 
Environment Guidelines 

1.25 1 1 2.71 

General Public Guidelines 0.25 0.2 0.2 0.904 

Guidelines use magnetophosphene perception as a model for evaluating the interactions 

between an ELF MF and the CNS. Magnetophosphenes are experienced as a visual 

phenomenon believed to be transduced in the retinal photoreceptors, however, the exact 

location of origin remains uncertain. To better understand the possible origins of 

magnetophosphene perception, the following section provides an outline of the visual 

system. 
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1.4 The Visual System 
The human visual system is a component of the CNS. Light entering the eye passes through 

the cornea and then the pupil. The amount of light passing through the pupil is controlled 

through constriction and dilation of the iris. The lens refracts the light, projecting an 

inverted image onto the retina. The retina is illustrated in Figure 2. 

 

Figure 2: Representation of the retina. As light hits the eye it travels to the back of 

the retina, where the photoreceptors begin the process of phototransduction. Image 

acquired, and permission granted from Philpot Education. 

The photoreceptors are the site of phototransduction of the visual signal. The 

photoreceptors are at the back of the retina, meaning that light must travel through the other 

retinal layers before arriving at the photoreceptors. To protect the quality of the light 

stimulus, the neuron layers in front of the photoreceptors are unmyelinated, so that these 

layers of neurons are relatively transparent. Movement of the eye also allows light to be 

projected onto the fovea: a region of the retina where the neural axons are pushed to the 

side, allowing photoreceptors to receive the least distorted light (Kandel, Schwartz, & 

Jessell, 2000).  
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Information received by the photoreceptor cells is sent to retinal bipolar cells. Rods and 

cones respond to light with graded changes in membrane potentials. Horizontal and 

amacrine cells combine signals from several photoreceptors while maintaining the 

temporal patterns of the stimulus. Using graded membrane potentials, the bipolar cells then 

synapse with ganglion cells. For the first time in the visual pathway, the ganglion cells then 

transmit stimuli information using action potentials. The axons of the retinal ganglion cells 

converge into a bundle that comprises the optic nerve, which transmits visual signals for 

processing in the brain. 

Rods and cones are the retinal photoreceptor cells, which differ structurally and 

functionally. Rods are achromatic and are distributed throughout the retina, including the 

periphery. Cones are trichromatic and are found in the center of the retina. Rods are larger 

and much more sensitive to a visual stimulus than cones. In fact, rods are so sensitive that 

they can detect and perceive a single photon of light (Tinsley et al., 2016). Several rods 

converge onto a single bipolar cell, ultimately amplifying the signal, whereas cones are 

connected in a one-to-one manner with bipolar cells. Photoreceptors detect a flickering 

visual stimulus, however, it depends on both the flicker frequency and the intensity of the 

light stimulus. The critical flicker frequency, the highest frequency of flickering perceived, 

has been reported up to 80 Hz (Perz, 2010). Rods and cones have different frequency 

sensitivities, that depend on the light level. Light adapted rods can detect a flickering light 

up to 28 Hz (Conner & MacLeod, 1977). Differences between rods are cones are outlined 

in Table 2.  

Table 2: Differences between rod and cone photoreceptors. 

Rods Cones 

Very sensitive, high amplification Less sensitive, low amplification 

Specialized for night vision Specialized for day vision 

Low acuity High acuity 

Achromatic Chromatic 

Periphery of retina Central retina 
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As one of the twelve cranial nerves, the optic nerve is a part of the CNS and carries visual 

information to the brain. The optic nerve travels to the optic chiasm where the visual 

information from both eyes is crossed. Most optic nerve fibers terminate in the lateral 

geniculate nucleus; however, the remaining fibers terminate in the pretectal nucleus or the 

suprachiasmatic nucleus. From the lateral geniculate nucleus, visual information is sent to 

the occipital cortex, specifically, the primary visual cortex (V1). Visual information treated 

by V1 will modulate EEG signals collected from the occipital electrodes (O1, O2, and Oz 

– further EEG specifics to be found in Section 1.7). The visual centers of the brain contain 

a retinotopic map, or a neural map of the retina, such that spatial relationships from the 

retina are maintained throughout visual processing. 

After visual information is sent to V1, it is processed in one of two distinct pathways 

(Figure 3). The dorsal pathway runs from V1 through the middle temporal area to the 

posterior parietal cortex (Kandel et al., 2000). The dorsal stream is known as the “where” 

or “how” pathway and is involved in spatial awareness and guidance of actions. The ventral 

stream runs from V1 to the inferior temporal cortex (Kandel et al., 2000).  The ventral 

stream is also known as the “what” stream and is responsible for object recognition.   

 

Figure 3: Outline of the dorsal and ventral streams of visual processing. Image is 

open access from (visionhelp.wordpress.com). 

Guideline agencies use the retina as a model for the CNS for a few reasons. First, the retina 

is part of the CNS. Second, the retina functions to amplify small signals, and perceptually 

detect a stimulus, in this case the stimulus being the effects of ELF MF exposures (Attwell, 

2003). Although a good model, the retina also differs from the CNS, making this a 

conservative model. Retinal photoreceptor cells detect very weak stimuli because of the 
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amplification process involved in perception. These cells are graded potential neurons that 

are fairly unique to the retina, and not found throughout the entirety of the CNS. Although 

graded potential cells are not found in all areas on the CNS, they are also found in the hair 

cells of the vestibular system. Although the retina differs from the CNS, 

magnetophosphene perception remains the most reliable measure of ELF MF exposure 

below peripheral nerve stimulation.  

1.5 Origin of Phosphene Perception 
Phosphenes are a visual perception occurring without a visible stimulus (Lövsund et al., 

1980a). They are described as a flickering light perceived in the periphery of one’s visual 

field and can be a result from mechanical pressure, chemical agents, electric currents and 

MFs (Lövsund et al., 1980b). Phosphenes perceived as a result of MFs are referred to as 

magnetophosphenes and were first explored in the late 1800s. In 1896 d’Arsonval 

concluded that phosphenes were perceived upon exposure to a MF at 42 Hz (D’Arsonval, 

1896; Geddes, 2008).  

Later on, an experiment conducted by Thompson (1910) revealed a faint visual perception 

when his head was in close proximity to an alternating electromagnet. Notably, this visual 

effect was brighter in the periphery of the visual field (Thompson, 1910). Following 

Thompson’s experiment, Magnusson and Stevens (1911) looked to confirm this visual 

phenomenon caused by exposure to a MF. Unlike previous studies, their experimental 

design allowed for vertical movement of the coils generating the MF (Magnusson & 

Stevens, 1911). The maximum effect was obtained when the participants head was centred 

in the coil such that the middle of the coil passed through the upper edge of the eyes. By 

raising and lowering the coils, relative to the position of the participants head, the visual 

effect diminished. Magnusson and Stevens also found that phosphene perception was 

frequency dependent, noting that the effect of MF exposure was greatest between 20 and 

30 Hz, and that perception was strongest in the periphery of the visual field. 

Similar to magnetophosphenes, electrophosphenes are a flickering perception occurring as 

a result of electric stimulation. Barlow et al. (1947) were the first to compare perceptual 

responses between electrophosphenes and magnetophosphenes. Phosphene perception was 
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investigated up to 90 Hz and similarities were noted between electro- and 

magnetophosphenes. Both electro- and magnetophosphenes were found to be strongest in 

the periphery of the visual field. They appeared colourless, were abolished by pressure on 

the eyeball and perception was prolonged by eye movements. This lead to the hypothesis 

that electro- and magnetophosphenes are a product of the same neural pathway, and 

suggested to be a result of retinal activity (Barlow et al., 1947). In this experiment, 

phosphene perception was evaluated with different positions of the MF exposure device; 

magnetophosphenes were perceived when the exposure device was placed near the 

participants temples, but not perceived when placed near the occipital cortex (Barlow et 

al., 1947). This suggests retinal involvement, as opposed to occipital cortex involvement 

in phosphene perception.  

Based on the thought that phosphene perception is a result of retinal activity, Abe (1951) 

quantitatively measured electrophosphene perception thresholds up to 120 Hz under 

different experimental conditions, differentiating between rod and cone photoreceptor 

characteristics. The results showed two different frequency-response curves; one curve 

representing electrophosphene perception for a light-adapted retina, and a second curve for 

a dark-adapted retina. Light-adapted thresholds were measured after 90 seconds of pre-

illumination at 24 000 lux. Light-adapted eyes have the lowest electrophosphene threshold 

at 20 Hz (Abe, 1951). After 30 minutes of dark adaptation, 7 Hz and 37 Hz were the most 

sensitive frequencies, eliciting the lowest electrophosphene thresholds. Different 

frequency-response curves between light and dark adaptation highlight the unique 

characteristics of the retinal cells, such as the photoreceptors. 

To further establish the differences in rod and cone photoreceptors, phosphene thresholds 

were analyzed in various regions of the visual field. Thresholds were dependent on the 

location within the visual field in which phosphenes were perceived (Gebhard, 1952). A 

lower threshold in the periphery than in the centre of the visual field provides support 

towards rod involvement in phosphene perception (Attwell, 2003). Although the threshold 

was found to be lowest using a 20 Hz exposure in both the central visual field and the 

periphery, the thresholds were higher in the centre (Gebhard, 1952).   
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Lövsund compared electrophosphenes to magnetophosphenes under varying background 

lighting conditions to further understand the mechanisms involved. Confirming that both 

types of phosphenes are a result of activation of the same pathways in the visual system, it 

was found that both electro- and magnetophosphenes require the lowest stimulus to elicit 

perception at 20 Hz. Both electric and magnetic stimulations follow a similar frequency-

response curve when frequency is considered (Lövsund et al., 1980a). Following the 

previous experiments (Abe, 1951; Gebhard, 1952) showing that phosphene generation is a 

result of retinal stimulation, Lövsund et al. (1980) further explored the frequency-response 

of magnetophosphenes under several conditions designed to target different retinal 

characteristics. Magnetophosphene frequency-response curves were established in 

darkness after 10 minutes of adaptation, as well as three different background lighting 

conditions. In darkness, the perception threshold was lowest at 30 Hz, whereas in the other 

three lighting conditions the lowest threshold was found from 20-25 Hz (Lövsund et al., 

1980b). This study was the first to document the frequency-response of 

magnetophosphenes, however, it is limited between 10 and 45 Hz, and only involved 11 

participants. Lövsund also evaluated magnetophosphene thresholds as a function of time 

spent in the dark, to assess the involvement of retinal adaptation in phosphene perception. 

This experiment tested eight volunteers at 20, 30 and 35 Hz, however, the results are an 

average of threshold values across all three frequencies. Lövsund found the 

magnetophosphene threshold to change as a function of time spent in the dark, which he 

reports to follow a similar dynamic to photic stimuli thresholds during dark-adaptation 

(Lövsund et al., 1980b). 

In an improvement from Lövsund’s (1980) experimental set up, Silny (1984) established 

magnetophosphene thresholds using a Helmholtz coil, generating a homogenous MF 

around the participants’ head. The physiological response to magnetophosphene perception 

appeared to have a hysteresis effect when using the classical psychophysics method of 

limits to determine threshold (Silny, 1984). In an attempt to objectively measure 

magnetophosphene thresholds and the effect of a MF on humans, the visually evoked 

potential was measured in the occipital region. This study found no change in occipital 

activity, although it began the search for an objective biomarker of perception in the visual 

cortex (Silny, 1986).  
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Furthering the search for an objective measurement of phosphene perception, Morimoto et 

al. (2006) attempted to supplement electrophosphene subjective results by evaluating the 

electrically evoked pupillary response, since the pupillary response is more than a 

subjective yes/no participant report. Three types of thresholds were found in this 

experiment for both healthy patients and those with retinal disease: initial phosphene 

thresholds (peripheral threhsolds), central vision phosphene thresholds as well as the 

threshold for a relative pupillary constriction (Morimoto et al., 2006). Transcorneal 

electrical stimulation was given to participants at 20 Hz, while current intensity was 

increased to determine the perception threshold. Pupillary responses were measured using 

an infrared pupillometer and thresholds were considered to be the electrical current 

necessary to increase the pupillary response by 3%. All thresholds were found to be higher 

for healthy patients. Electrically evoked pupillary response thresholds were twice that of 

the peripheral thresholds and were successfully measured objectively. This is the first 

indication of finding an objective measurement associated with electric stimulation, and 

potentially translated to MF stimulation (Morimoto et al., 2006). A second experiment took 

place evaluating the frequency-response of electrophosphene perception, where 

phosphenes were strongest at 20 Hz, as well as the electrically evoked pupillary responses 

(Fujikado et al., 2007). These experiments were completed with the hope that electric 

stimulation and associated electrophosphene thresholds would provide insight into the 

qualification for retinal prosthesis.  

Opposing the popular retinal hypothesis of phosphene generation, Kanai et al. (2008) 

elicited phosphenes in a light and dark environment using electrical stimulation on the scalp 

by the occipital cortex (Kanai et al., 2008). Phosphene perception was reported using a 

subjective rating, as opposed to a yes/no response. Supporting the frequency dependency 

of phosphene perception, phosphenes were found to be strongest in the light from 14-20 

Hz, whereas phosphenes in the dark were reported to be the strongest from 10-12 Hz (Kanai 

et al., 2008). Overall, phosphenes were stronger in the dark condition than the light 

condition. Using only four participants, the electrophosphene threshold was lowest at 20 

Hz in the light, while it was 10 Hz in darkness (Kanai et al., 2008). It was hypothesized 

that the occipital stimulation interacts with the ongoing cortical activity of the brain. 

However, the results that are attributing to the occipital cortex are the cause of retinal 
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activation, where computational modelling further interprets these results and indicates that 

a significant portion of the occipital stimulation current goes through the eye, ultimately 

stimulating the retina (Laakso & Hirata, 2013).  

To experimentally dispute the occipital origin hypothesis of the previously mentioned 

study (Kanai et al., 2008), Kar and Krekelberg established electrophosphene thresholds 

using three different electrode placements. Thresholds were found to be lowest when the 

electrodes were placed closest to the retina and furthest from the occipital lobe, thus 

providing support to the retinal origin of phosphene generation (Kar & Krekelberg, 2012).  

Lastly, in our group, we started tackling the question of magnetophosphene perception 

thresholds as a function of frequency. Participants were exposed to 20/50/60/100 Hz MFs, 

using three different experimental set-ups: retinal exposure, occipital exposure, and 

homogenous global whole head exposure, up to 50 mTrms (Legros et al., 2016). Phosphene 

perception reported using the retinal and global exposure, the results of this experiment 

indicate that phosphene perception is frequency dependent, as the proportion of exposures 

eliciting magnetophosphene perception increased with an increasing dB/dt (proportional to 

the induced electric field in the retina) (Legros et al., 2016). The occipital exposure device 

failed to elicit phosphene perception. Although still subjective, this evaluation confirms the 

retinal origin of magnetophosphenes.  

1.6 Perceptual Thresholds 
Guidelines are based on a sensory threshold termed the magnetophosphene perception 

threshold. A sensory threshold is considered to be the lowest stimulus strength one can 

detect (Kandel et al., 2000). Based on Gustav Fechner’s (1860) classical psychophysics 

methods, there are three ways to determine a threshold: method of constant stimuli, method 

of limits, and the method of self-adjustment.  

The method of constant stimuli uses the same set of stimuli throughout an experiment, 

presented randomly, and requires each stimulus to be presented many times. A participant 

self-reports perception after each stimulus trial. The overall threshold is typically 

considered the stimulus intensity that elicits a perception 50% of the time (Gescheider, 
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1997). The method of constant stimuli is effective in determining a threshold, however, it 

poses a few problems experimentally. First, each intensity of stimuli must be repeated 

many times, making the experiment very long and perhaps causing a participant to fatigue. 

In fact, it has been recommended that each stimulus is presented over 100 times 

(Gescheider, 1997). Legros et al. (2016) used the method of constant stimuli to determine 

magnetophosphene thresholds, however, only four frequency conditions were tested. Each 

participant was assigned to one of four frequency groups (20, 50, 60 or 100 Hz), and MF 

flux densities were randomly presented from 0 to 50 mTrms, each repeated 5 times (Legros 

et al., 2016). From this, it was confirmed that magnetophosphene thresholds are frequency 

dependent, but with only four frequency conditions examined, a precise frequency-

response is unknown. Magnetophosphene thresholds were determined successfully for four 

frequencies but using the method of constant stimuli creates a major challenge in testing a 

wide range of frequencies and flux densities, all within a reasonable experimental 

timeframe.  

An efficient alternative to the method of constant stimuli is the method of limits. Although 

the method of limits is not as reliable as the method of constant stimuli, it is much less time 

consuming. When using the method of limits to determine a threshold, a stimulus is 

presented below the threshold and increased until perception occurs. Then, the stimulus is 

presented above the threshold and decreased until no longer perceived. The average 

between the increasing and decreasing thresholds is considered the overall threshold. This 

procedure is often repeated multiple times, both increasing and decreasing (Gescheider, 

1997). Limitations exist in determining thresholds using the method of limits, since 

participants may begin to anticipate perception. This leads to higher than normal thresholds 

in descending trials, and lower than normal thresholds in ascending trials. However, by 

averaging thresholds from both ascending and descending experiments may minimize the 

effects of anticipation and habituation (Haggard, 2010).  

The method of limits has been used in many electro- and magnetophosphene experiments 

(Ambrosini et al., 2015; Aurora, Welch, & Al-Sayed, 2003; Elkin-Frankston, Fried, 

Pascual-Leone, Rushmore, & Valero-Cabr, 2010; Morimoto et al., 2006; Mulleners, 

Chronicle, Palmer, Koehler, & Vredeveld, 2001), and was used in the experiments from 
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1980 (Lövsund et al., 1980a, 1980b). As described previously (Section 1.5), MF exposures 

were presented from 10-45 Hz, in steps of 5 Hz. The magnetic flux density was increased 

until magnetophosphene perception occurred and then decreased until perception 

disappeared, averaging these two values to establish an overall threshold for that frequency 

condition. Using method of limits enabled data collection from a wide range of frequencies, 

however the accuracy is questionable. Frequencies were presented in a consecutive 

manner, which allows for habituation and expectation, and using the method of limits 

accentuates these problems. Randomizing the MF frequency conditions would have at least 

addressed a portion of this issue; however, the method of limits still proves to enable 

habituation and anticipation.  

Upon adapting the method of limits, the staircase method of determining thresholds arose. 

The level of stimulus is changed on a trial-by-trial bases, in response to the participants 

ability to perceive stimuli. The stimulus is lowered each time perception occurs, until the 

stimulus is no longer noticed. Then, the stimulus is increased trial-by-trial until perception 

returns. This process is repeated consecutively until the researcher is able to specify where 

the threshold occurs. Although this staircase adapted method of limits is more accurate and 

addresses the problem of habituation, it is very time consuming, and can elicit participant 

fatigue during a long experimental session (Gescheider, 1997). The staircase method was 

found to be useful and accurate; it was also faster than the method of constant stimuli, but 

more time consuming than the traditional method of limits (Abrahamyan et al., 2011).  

The method of self-adjustment is the third and final classical psychophysics method to 

determine a sensory threshold. For this type of experiment, a participant is asked to self-

control the magnitude of a stimulus until the point where perception is noticed. It is 

assumed that the initial stimulus is presented far (above or below) from the expected 

threshold. To date, no magnetophosphene threshold studies have used the method of self-

adjustment, however, the first experiment of its kind has been completed in this research 

study.  
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1.7 Electroencephalography (EEG) 
Discovered in the 1920s, Electroencephalography (EEG) is a non-invasive measurement 

of brain electrical activity (Berger, 1929). Action potentials and post-synaptic potentials 

occurring in the brain elicit a current flow, which is in turn picked up through EEG 

electrodes. Electrical activity is measured on the scalp surface of the head, therefore 

making it non-invasive and suitable for all populations. 

EEG assesses neuronal electrical activity by measuring current flow during synaptic 

activation of the cerebral cortex. Current flow is generated through sodium, potassium, 

calcium, and chlorine ions being pumped through membrane channels, changing the 

membrane potential of neurons. To detect the current flow and alternating electrical activity 

at the scalp it must first travel through several layers, including the skull and skin. Once 

electrical signals are detected, they are largely amplified for interpretation. 

Brain activity are reflected in fluctuating patterns within defined frequency bands and are 

measured in terms of peak to peak spectral power. The frequency associated with the 

sinusoidal brain activity is analyzed and can be separated into four main frequency bands 

(beta, alpha, theta and delta). Using a frequency spectrum analysis, the extent of each 

frequency band is be determined. The alpha band (8-12 Hz) is the most robustly studied 

frequency band. Awake with the eyes closed, regular oscillations in the occipital cortex are 

classified as “alpha waves”. Alpha activity decreases upon eye opening, or other alerting 

stimuli. While alpha activity decreases upon visual perception, beta activity (>13 Hz) 

increases. Alpha activity decreases upon falling asleep; theta (4-8 Hz) and delta (<4 Hz) 

activity increase (Teplan, 2002).  

There are many applications of EEG use to date, including but certainly not limited to: 

evaluating effectiveness of drugs (Saletu, Anderer, & Saletu-Zyhlarz, 2006), diagnosing 

neurological abnormalities (Smith, 2005) and consciousness (Gajraj, Doi, Mantzaridis, & 

Kenny, 1998). Due to the non-invasive nature of EEG, it is suitable for patients, healthy 

individuals, infants and all other demographic groups.  
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The method of limits and the method of constant stimuli have both been used for 

documenting magnetophosphene thresholds within a narrow range of frequencies. In order 

to establish magnetophosphene thresholds across a wide range of frequencies, the method 

of self-adjustment is suitable.  

1.8 Conclusion 
In conclusion, MFs are known to interact with the human body in several ways, however, 

the visual system and magnetophosphene perception appears to be a reliable outcome of 

ELF MF exposure. Magnetophosphenes, the associated frequency response and the 

variance in threhsolds will help guideline organizations protect the public and workers 

from adverse effects of ELF MF exposure. The current ELF MF exposure guidelines are 

limited in data, do not span the entire ELF range, and are entirely subjective. EEG is a 

potential tool for assessing ELF MF exposures and evaluating the effect on the CNS.   
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Chapter 2  

2 Research Article 

2.1 Introduction 
Everything on Earth is continually exposed to both natural and manmade Magnetic Fields 

(MFs). These exposures can result from the natural Earth’s geomagnetic field or the static 

MF from magnetic resonance imaging (MRI) devices. They are also generated by the 

alternating current flowing through everyday household appliances and electrical wires and 

in these cases, they are called time-varying or alternating MFs.  In North America, 

alternating MF exposures in daily life are generally under 1 µT (Zaffanella & Kalton, 

1998).  However, these exposures can exceed 1 mT in close proximately to appliances or 

powerlines (World Health Organization, 2007). An interesting feature of time-varying MFs 

is that they have the ability to interact with biological tissues through magnetic induction 

(Attwell, 2003), i.e. they induce electric fields and current within exposed tissues. Since 

MFs have the potential to interact with biological processes, it is important to make sure 

that humans are not exposed to harmful levels. Hence, in order to avoid exposures leading 

to possible adverse biological interactions, exposure guidelines set by international 

agencies, are established to protect the public and workers (Institute of Electrical and 

Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-Ionizing 

Radiation Protection, 2010). The guidelines for Extremely Low Frequency (ELF, < 300 

Hz) MFs, are mostly based on the most reliably reported acute effect of low levels of ELF 

MF exposure: magnetophosphene perception. Magnetophosphenes are described as white 

flickering lights, perceived with the eyes closed in the dark upon exposure to a sufficiently 

strong ELF MF. Magnetophosphenes are thought to be a consequence of magnetic 

induction in the retina (refer to Section 1.5), where the induced electric fields affect 

signaling in the chain of cells between the photoreceptors and the retinal ganglion cells, by 

which the visual signals are transmitted in graded potentials (rather than action potentials) 

via ribbon synapses to the ganglion cells (Attwell, 2003).  

Magnetophosphene phenomena were first reported by D’Arsonval in 1896. Since then 

laboratory studies with human subjects have reported magnetophosphene perception for 
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more than a century (Barlow et al., 1947; D’Arsonval, 1896; Legros et al., 2016; Lövsund 

et al., 1980a, 1980b; Magnusson & Stevens, 1911; Silny, 1984). The magnetophosphene 

threshold corresponds to the lowest stimulus intensity that elicits visual perception and is 

used as the basis to specify exposure guidelines to protect the general public and workers 

against adverse effects. (Institute of Electrical and Electronics Engineers Inc. & IEEE, 

2002; International Commission on Non-Ionizing Radiation Protection, 2010).  

To understand the mechanism of magnetophosphene perception, electro- and 

magnetophosphene threshold curves were compared. Barlow et al. (1947) were the first to 

compare perceptual responses. With a 60 Hz stimulation, the duration of perception was 

assessed while varying the stimulus strength. Both electro- and magnetophosphene 

perception duration were increased with stimulus strength, leading to the hypothesis that 

they are a product of the same neural pathway (Barlow et al., 1947). Furthering the 

comparison, Lövsund established frequency response curves for both magneto- and 

electrophosphenes. Establishing magneto- and electrophosphene thresholds identified that 

both stimulations were most sensitive at 20 Hz. Yet, the frequency response curves for 

Electro- and magnetophosphene thresholds followed similar trends only between 17 and 

25 Hz. Based on the law of induction, that is, induced current density is directly 

proportional to the frequency and intensity of the MF, theoretical thresholds were 

calculated in order to accurately compare magneto- and electrophosphene thresholds 

(Lövsund et al., 1980a). The theoretical threshold curve fits the magnetophosphene 

threshold curve, indicating that the pathway involved in phosphene perception is sensitive 

to not only the magnetic flux density but more accurately to the induced electric field 

(Lövsund et al., 1980a). Therefore, in addition to reporting magetnophosphene threshold 

values in terms of flux density, it is important to report threshold values in dB/dt (T/s), 

which is linearly proportional to the induced electric field.  

Yet the mechanism of magnetophosphene perception remains unclear since many 

discrepancies can be identify. Magnetophosphene perception thresholds were reported to 

be lowest (~10 mTrms) from 20-30 Hz (Lövsund et al., 1980a, 1980b), but the exact 

frequency eliciting the lowest perception has not been confirmed and conditions such 

lighting, source of phosphene generation (electric or magnetic) or duration spent in the 
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darkness are known to modulate the perception threshold. For instance, in complete 

darkness, the lowest magnetophosphene threshold was reported at 30 Hz, but the lowest 

threshold was found to be between 20 and 25 Hz when the lights were on (Lövsund et al., 

1980b). Similarly, electrophosphenes (phosphenes perceived as a result of electric 

stimulation) are frequency dependent as well, and have been reported to be lowest for a 

wide range of frequencies ranging from 7-37 Hz (Abe, 1951; Adrian, 1977; Kanai et al., 

2008; Lövsund et al., 1980a). Using transcranial alternating current stimulation (tACS), 

phosphenes were strongest from 10-12 Hz (Kanai et al., 2008). Moreover, phosphenes have 

overwhelmingly been described as white flickering lights; however, using electrical 

stimulation, coloured phosphenes have been reported in one study, and were the most 

prominent at 30 Hz, however requiring ~20 times more stimulus (Adrian, 1977). 

Magnetophosphene threshold studies require an improved understanding of the 

mechanisms involved and replications of Lovsund’s (1980) previous experiments. 

Furthermore, previous magnetophosphene threshold reports were also limited to very few 

participants, and a larger sample size would strengthen and improve precision of the overall 

findings. 

Although a larger sample size will increase the precision of magnetophosphene thresholds, 

results remain entirely based on subjective reports of perception. An objective 

measurement of neuronal activity would greatly improve the investigation of 

magnetophosphene thresholds. In that regard, electroencephalography (EEG) appears as a 

relevant option. EEG is a non-invasive objective measurement of brain electrical activity 

resulting from action potentials in the cerebral cortex. Brain activity patterns can be broken 

into various frequency bands. The alpha frequency band (8-12 Hz) has been recognized as 

the most prominent component of occipital brain oscillations while awake with the eyes 

closed. Known as the “Berger effect”, alpha power decreases upon visual perception 

(Berger, 1930; Teplan, 2002). An increase in ambient lighting decreases alpha activity 

(Min, Jung, Kim, & Park, 2013). Occipital alpha activity preceding phosphene perception 

has been used as a predictor of perception. This suggests that EEG alpha activity has the 

potential of being an objective biomarker of ELF MF exposure and magnetophosphene 

perception. Determining an effective objective biomarker has the potential to address the 
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inconsistencies between frequency response experiments, both electric and magnetic, as it 

overcomes the subjective component in threshold analysis. 

Finally, significant knowledge gaps still remain, since only frequencies in the range of 10-

45 Hz were studied, and as such, powerline frequencies (50 and 60 Hz) were not 

experimentally evaluated in humans (Lövsund et al., 1980a, 1980b). Currently, ELF MF 

exposure guidelines extrapolate previous findings acquired at lower frequencies when 

establishing guidelines to protect the general public and powerline workers at power 

frequencies (50 and 60 Hz). Therefore, an experimental study considering an expanded 

frequency range throughout the entire ELF range is needed.        

The primary objective of this study is to generate the frequency-response curve in the ELF 

range (<300 Hz) for magnetophosphene perception in humans, and specifically the first 

experimental threshold values at powerline frequencies (50 and 60 Hz). The secondary 

objective is to determine if magnetophosphene perception can be captured using EEG as 

an objective biomarker. 

Based on the work from Lövsund, the threshold for magnetophosphene perception in 

darkness is expected to be the lowest at 30 Hz (Lövsund et al., 1980b). Additionally, if 

treated like a visual stimulus, magnetophosphene perception should be associated with a 

decreased EEG power in the alpha frequency band in occipital electrodes. These threshold 

values and their variance will allow guidelines to evaluate the probability of perception for 

a given population. 

2.2 Materials and Methods 

 Participants 

Sixty healthy participants (mean age: 24.31 ± 3.69) were tested in this experiment. All 

testing took place in the Human Threshold Research Facility at Lawson Health Research 

Institute (St. Joseph’s Hospital, London, Ontario, Canada). Participants were between the 

ages of 18 and 33 years old. Exclusion criteria for the experiment include participants who 

are claustrophobic, have limited movement, who have experienced an epileptic seizure, 

those who suffer from chronic illness (e.g. diabetes, cardiovascular problems, psychiatric 
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problems, etc.), and those who have an implanted electrical device. Participants were 

instructed to refrain from exercise, caffeine, alcohol and nicotine intake for 12 hours prior 

to the study. Volunteers had the opportunity to ask questions regarding the experimental 

procedure before providing written consent to participate. The volunteers did not have 

pathological visual dysfunctions. This protocol was approved by the Western University 

Health Sciences Research Ethics Board (HSREB #108934).  

 Materials 

A custom global head exposure system was used throughout this experiment. This device 

was designed and built at the Lawson Health Research Institute (St. Joseph’s Hospital, 

London, Ontario, Canada). The global exposure system consists of two 99-turn coils, 11 

turns of 9 layers, made with square copper wire, and cooled with circulating water (Figure 

4). Enclosed in PVC plastic, the coils have a 356 mm inner diameter and a 501 mm outer 

diameter and are arranged in a Helmholtz-like manner, enabling the generation of a 

homogenous MF over the participant’s head. Each of the two coils is independently driven 

by an MTS MRI gradient amplifier (MTS Automation 0105870, Horsham, PA, USA). The 

amplifiers were driven by a command by of a customized LabVIEW script and a 16-bit 

National Instruments A/D Card (National Instrument, Austin, Texas). The coil system 

generates a homogenous MF (± 5%) around the head of the participant (Figure 5). MF flux 

density (mTrms) was confirmed using a single axis MF Hall transducer probe (± 200 mTrms 

range with 0.1% accuracy, SenisTM 0YA05F-C.2T2K5J; Senis, Baar, Switzerland). A 

motorized non-magnetic lift enabled vertical movement of the coil system such that it could 

raise and lower centering the participants eyes between the coils.  
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Figure 4: Depiction of the global exposure device. A participant is shown sitting in 

the global MF exposure device, holding a handheld potentiometer used to control 

the MF flux density (left). Handheld potentiometer (right). 

 

Figure 5: Left: MF flux density calculated (red) and measured (blue) along the 

vertical axis in the center of the coils. The flux density decreases with distance from 

the center of the exposure device. Right: Magnetic field produced by our exposure 

system calculated using the Biot–Savart law. The MF flux density is homogenous 

about the head of the participant (5% variation). This diagram depicts the flux 

density when the participant is exposed to a 50 mTrms MF. The central orange 

region is the homogenous region, where the participants head is positioned (frontal 

view depicted). Contour lines represent a 5 mTrms change in MF flux density. 
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EEG was measured throughout this experiment using a 64-channel MRI compatible EEG 

cap and a SynAmps2 amplifier (Compumedics Neuroscan Inc., Charlotte, NC, USA). Data 

collected through a cap of EEG electrodes, placed according to the 10/20 system, and 

referenced to a point half-way between the Cz electrode and the CPz electrode. The ground 

electrode was placed half-way between the Fz and FPz electrodes. A conductive gel was 

used to improve conductance (Compumedics Quik-GelTM; Compumedics Neuroscan Inc., 

Charlotte, NC, USA) and electrode impedances were kept below 10 kΩ. Based on the brain 

region of interest O1, O2 and Oz electrodes were analyzed, as they correspond with the 

occipital lobe and V1.  

Highpass and lowpass filters (3-17 Hz) were used to isolate the EEG activity from the ELF 

MF after a Hanning window was applied to 5 seconds of stationary MF exposure. The 

Hanning window was applied to prevent edge effects when filtering, while maintaining the 

integrity of the signal frequency. The frequency spectrum analysis, using the Welch’s 

power spectral density estimate over 2.5 s Hamming windows with 1.5 s overlaps. 

MATLAB function, was performed on the filtered signal to quantify the alpha activity 

(Figure 6).  

 

Figure 6: Example of EEG activity during ELF MF exposure. Top: Raw data 

collected from an electrode (blue), hanning window (red) and windowed data 

(green). Middle: Filtered signal with (green) and without (blue) the hanning 
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window. Bottom: Frequency spectrum analysis on filtered signal, with (green) and 

without (blue) the use of the hanning window. 

Previously, a phantom (watermelon) was used to confirm the post-processing signals 

were successful in removing possible MF-induced artifacts from EEG data. There was no 

detectible difference in the EEG spectral power between MF exposure and sham 

exposure (Davarpanah Jazi, Modolo, Baker, Villard, & Legros, 2017).  

 Experimental Procedure 

This experiment consisted of a single session lasting about 2 hours. The initial 15 minutes 

was allotted to explaining the experiment to the participant and gaining written consent. 

The following 30 minutes was devoted to attaching the EEG apparatus to the subject’s 

head. After setting the participant up, 15 minutes were spent familiarizing the participant 

with the experiment while they were set up inside the exposure system, allowing them to 

practice the required tasks before data collection began. To familiarize, participants were 

exposed to a 5 second MF exposure at 20 Hz, 50 mTrms, and asked to confirm 

magnetophosphene perception. They were then instructed to practice the required task of 

selecting the magnetophosphene threshold. Instructions were as follows: “When you hear 

‘begin’ please use the dial to increase the MF until you clearly perceive a visual 

phenomenon. Slowly decrease the MF until the visual perception has disappeared, and then 

slowly move in a step-wise manner to find the point where you just barely perceive 

something. There will be 25 seconds to adjust the MF until the point where you just barely 

perceive something. You will hear a beep, indicating that you have 5 seconds left to find 

your threshold. You will hear the word “End” when the trial is over. If there is a condition 

when you turn the dial to its’ maximum and still don’t see anything, please leave the dial 

at max and tell me over the intercom – at this point I will turn the MF off from my control”. 

Once trained on the experiment, data collection began and lasted 50 minutes. After 

completion of the experiment, participants responded to a standardized Field Status 

Questionnaire (Cook, Graham, Cohen, & Gerkovich, 1992). 

The experiment consisted of 25 frequency conditions between 0 and 300 Hz were tested: 

every 5 Hz from 0 (sham) to 100 Hz (5 Hz, 10 Hz, 15 Hz, etc.), and then every 50 Hz from 
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100 to 300 Hz (150 Hz, 200 Hz, 250 Hz, 300 Hz). MF frequency conditions were randomly 

given in a blinded counterbalanced order via a LabVIEW program delivering exposure 

conditions. Each frequency condition was presented twice, making a total of 50 exposures. 

Thresholds were averaged between the two trials at each frequency. Ten participants were 

also exposed to six additional trials at 20 Hz, totaling 8 exposures at 20 Hz, to determine 

the test-retest reliability of the threshold estimation method. 

Each exposure was presented immediately after the lights were extinguished and lasted 30 

seconds. During this time, the participant was required to self-adjust the MF flux density 

using a handheld potentiometer, as explained in the practice trials. Turning a dial on the 

potentiometer controlled the flux density of the MF, such that the maximum position of the 

dial corresponded to the maximum flux density of that frequency condition. Due to 

hardware limitation, from 5 to 60 Hz the maximum flux density was 70 mTrms, from 65 to 

90 Hz the maximum flux density was 60 mTrms. Above 90 Hz, the dB/dt value equivalent 

to the maximum possible at 90 Hz was maintained and converted to flux density for each 

frequency condition (Figure 7). The initial 25 seconds of each exposure allowed 

participants to self-determine their magnetophosphene threshold.  The last 5 seconds of 

each exposure was a constant MF flux density, given at the self-determined 

magnetophosphene threshold (Figure 8). Upon completion of the trial, a 30 second rest 

period occurred, with the lights on to avoid adaptation to the darkness.  
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Figure 7: Maximum exposure in all frequency conditions expressed in terms of flux 

density (blue) and dB/dt (red). The maximum flux density was 70mTrms from 5 to 60 

Hz, 60 mTrms from 65 to 90 Hz, and decreased above 90 Hz (blue). The maximum 

flux density above 90 Hz decreased such that maximum dB/dt remained consistent 

(orange). 

 

Figure 8: Schematic depiction of the timeline of events. The dark line starting at 0 

represent the rms field flux density as a function of time while it is self-driven by the 

participant using the potentiometer.  Initial 25 seconds are allocated to determining 

the magnetophosphene threshold. Participants receive warning via an audible 

“beep” that 20 seconds have passed, and that threshold determination must be 

completed within the remaining 5 seconds. A second audible “beep”, at 25 seconds, 

indicates that the self-adjustment period is complete. The final 5 seconds are 
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constant MF flux density at the self-reported magnetophosphene threshold (shaded 

grey). The instant that the participant identified the magnetophosphene threshold is 

indicated by a grey circle. 

2.3 Results 

 Percentage of Participants Perceiving Phosphenes 

It is important to notice that participants did not perceive magnetophosphenes at every 

frequency. Indeed, while the participants reported phosphene perceptions 95 to 100% of 

the time for frequencies between 10 and 70 Hz, their perception rate was lower at 5 Hz and 

at/above 75 Hz (Figure 9). Interestingly, above 75 Hz the perception rate decreased as the 

frequency increased, until stabilizing below 10% from 150-300 Hz. Since it appeared from 

participants’ subjective reports that these higher frequencies involved a higher sound made 

by the coils, biasing the threshold data, further statistics were run on frequencies eliciting 

over a 50% perception rate. This will limit biased artificial data in the statistical analysis. 

The sound produced by the coils may have been a confounding factor in establishing the 

threshold and in order to avoid conducting statistical analyzes based on a small number of 

subjects, the threshold analysis was limited to the frequency range between 5 and 8h Hz. 

 

Figure 9: Percentage of participants perceiving magnetophosphenes through the 

entire ELF range (n=60). The 50% cutoff region is indicated by a red line. 
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 Threshold Determination Repeatability 

In order to evaluate the test/re-test reliability of the threshold detection method selected for 

this experiment, four repetitions of the same frequency condition (20 Hz – each given 

twice) were given to a set of ten participants. A one-way ANOVA for repeated measures 

(4 conditions – 20 Hz repeated 4 times) was conducted to test our test-retest reliability 

(Figure 10 (left)). This analysis showed no significant main effect (F(3,27)=0.917, p>0.05). 

The method of self-adjustment is valid for determining magnetophosphene thresholds, as 

participants were able to reliably and repeatedly select the same threshold at a given (20 

Hz) frequency.  

 Frequency-Response 

Thresholds were found to change as a function of frequency (Figure 10). A one-way 

ANOVA with repeated measures (17 conditions –from 5 to 85 Hz) showed a main effect 

in mean thresholds as a function of frequency (F(16,813)=53.12, p<0.0001, h2=0.51, 

power= 1). Post hoc comparisons (Tukey adjusted for multiple comparisons) showed that 

the magnetophosphene threshold is lowest at 35 Hz (16.92 mTrms ± 6.87 mTrms; Figure 10 

(top)), while the threshold increases both above and below this frequency. Although the 

threshold decreases above 85 Hz, these frequencies were omitted from analysis, due to the 

low percentage of perception. All significant differences in mean thresholds from 5 to 85 

Hz are reported in Table 3. Magnetophosphene thresholds are also reported in dB/dt 

(Figure 10 (bottom)), as this is proportional to both the intensity and the frequency of the 

MF, and a direct relationship to the induced electric field seen in the retina. When 

increasing the frequency, the induced electric field at the retina increases. By representing 

the frequency-response in terms of dB/dt, the true frequency-response is evaluated, since 

it is a direct correlate of the induced electric field (Figure 11). Different correlation 

strategies were explored in order to evaluate the best fit to describe the dynamics of the 

data. The linear relationship (p<0.001, R2 = 0.94) is explained by the equation: 

 -	 = 	0.2030	– 	1.8671										5 ≤ 0 ≤ 85		 (3) 

where 8 represents the threshold value in terms of mTrms and 9 represents the stimulation 

frequency in Hz.  
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Upon further analysis of the magnetophosphene threshold data, with respect to dB/dt, was 

more accurately explained (p < 0.001, R2 = 0.99) by a polynomial function: 

 -	 = 	0.00220: + 0.0020 + 1.3082								5 ≤ 0 ≤ 85		 (4) 

where 8 represents the threshold value in terms of mTrms and 9 represents the stimulation 

frequency in Hz.  

Or explained by two linear equations, with a breaking point at 40 Hz (p < 0.001, R2 = 0.98 

and p < 0.001, R2 = 0.99):  

 -	 = 	0.08970 + 0.6928										5 ≤ 0 ≤ 40		 (5) 

 -	 = 	0.202120	– 	6.9362								40 ≤ 0 ≤ 85 (6) 

where 8 represents the threshold value in terms of mTrms and 9 represents the stimulation 

frequency in Hz.  

 

 

Figure 10: Left: Test-retest reliability at 20 Hz in mTrms (top) and dB/dt (bottom). 

Middle: Frequency-response reported in mTrms (top) and dB/dt (bottom) from 0-85 
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Hz. Right: Frequency-response reported in mTrms (top) and dB/dt (bottom) from 90-

300 Hz. Error bars represent the standard error of the mean (n=60). 

Table 3: Post hoc (Tukey) comparisons from 5-85 Hz establish many differences in 

threshold values (mT). Significant differences in mean threshold values across 

frequencies (5-85 Hz).  Representing significance, p<0.05 is *, p<0.01 is **, and 

p<0.001 is ***. 

Frequency (Hz) 

F
r
e
q

u
e
n

c
y
 (

H
z
)
 

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 

5  *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
10    ** *** *** *** *** **       *** *** 
15     ** * **     * ** *** *** *** *** 
20       *    ** *** *** *** *** *** *** 
25          *** *** *** *** *** *** *** *** 
30          *** *** *** *** *** *** *** *** 
35         * *** *** *** *** *** *** *** *** 
40          ** *** *** *** *** *** *** *** 
45           ** *** *** *** *** *** *** 
50              * *** *** *** 
55               * *** *** 
60                *** *** 
65                ** *** 
70                 *** 
75                 * 
80                  
85                  

 

Figure 11: Magnetophosphene thresholds and frequency-response in dB/dt (T/s) 

explained by various regressions. Data is explained by a single linear equation (blue; 
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p < 0.001, R
2
=0.94), two linear equations (black from 5-40 Hz and yellow from 40 to 

85 Hz; respectively, p < 0.001, R
2
=0.98 and p < 0.001, R

2
=0.99), and a polynomial 

equation (red; p < 0.001, R
2
=0.99). 

 EEG Alpha Power 

To evaluate the use of EEG as an objective biomarker, alpha power from occipital 

electrodes was calculated during each 5 second stationary MF exposure. Comparing the 

alpha power between conditions eliciting and conditions not eliciting magnetophosphene 

perception allows us to evaluate the use of occipital EEG alpha power as an objective 

biomarker of magnetophosphene perception (Figure 12). A paired t-test was used to 

compare alpha power throughout the ELF range in Oz for trials with (mean: 6.68x10-5 

µV2/Hz) and without (mean: 7.14x10-5 µV2/Hz) magnetophosphene perception; O1 in trials 

with (mean: 1.95x10-10 µV2/Hz) and without (mean: 1.86x10-10 µV2/Hz) 

magnetophosphene perception; and O2 in trials with (mean: 2.54x10-10 µV2/Hz) and 

without (mean: 2.23x10-10 µV2/Hz) magnetophosphene perception. Alpha power was not 

different upon perception for Oz, (t(928) = 0.63, p = 0.53), O1 (t(1221) = 0.56, p = 0.58) 

or O2 (t(1757) = 1.44, p = 0.15). 

 

Figure 12: Occipital EEG alpha activity with and without magnetophosphene 

perception. This figure is a depiction of the O1 electrode (representative of the 3 

occipital electrodes). Error bars represent standard error of the mean.  
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Additionally, a  one-way ANOVA with repeated measures (15 conditions – 0, 20, 25, 30, 

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 Hz) showed no main effect in mean alpha power 

as a function of frequency in Oz (F(21,819) = 1.15, p>0.05), O1 (F(21,819) = 0.94 , p>0.05) 

or O2 (F(21, 819) = 0.93, p>0.05) during magnetophosphene perception (Figure 13). EEG 

signals from three frequencies (5, 10 and 15 Hz) could not be analyzed due to bandpass 

filtering near the alpha range.  

 

Figure 13: Alpha power calculated from occipital electrode (Oz) during 

magnetophosphene perception. Error bars represent the standard error of the 

mean. 

 Field Status Questionnaire (FSQ) 

Using a standardized FSQ, all participants reported the presence of the MF during testing. 

The mean certainty score of the MF presence was 4.70 ± 0.57 (scored out of 5). This 

confirms the extent to which participants were able to determine when the MF exposure 

was happening. Most participants based their certainty of MF presence on 

magnetophosphene perception (often reported as “flickering lights”) or sound from the 

exposure device. There were 56 trials with reported discomfort, such as: tooth pain, 

pressure, or annoying sound. On a continuum between stressful (1) and relaxing (10), the 

mean stress rating of the experiment was 6.62 ± 1.92. Similarly, the mean comfort rating 

(comfortable = 1, uncomfortable =10) was 4.35 ± 2.24.  
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2.4 Discussion 
This study tested the highest number of participants over the widest range of frequencies 

using the highest available maximum flux density, and it first confirms that 

magnetophosphene perception changes as a function of frequency. Nearly all participants 

(>95%) perceived magnetophosphenes from 10 Hz to 70 Hz. No perception was reported 

during the sham exposure. A decreased percentage of perception occurred at 5 Hz, and 

above 70 Hz. Given that less than 50% of participants perceived magnetophosphenes above 

85 Hz, statistical analysis was restricted from 5 to 85 Hz. A potential bias was identified in 

the threshold reports above 85 Hz since participants self-reported that the exposure device 

was loud, an audible high frequency noise could be heard, and reported vibrations from the 

exposure device. Yet, no over-reporting of magnetophosphene perception seem to have 

been caused over 85 Hz. 

The use of the standardized FSQ proved that participants were successfully able to 

determine when the MF exposure occurred, regardless of whether or not phosphene 

perception occurred. All participants self-reported that they could detect the presence of 

the MF and on average stated that they were 94% confident in their answer. Most based 

their answer on the presence of magnetophosphenes or alternatively on the noise and 

vibrations generated by the exposure device. To address this limitation, modifications to 

the exposure device would be required. In contrast, experiments using lower flux densities 

reported that participants were unable to judge whether exposure occurred (M. R. Cook et 

al., 1992; Legros et al., 2012). For example, an experiment with exposures up to 1.8 mTrms 

reported that participants were unable to detect the presence of a MF, as they indicated 

incorrectly on the FSQ in 76% of trials (Legros et al., 2012). 

With respect to the MF flux density, from 5 to 85 Hz, the lowest threshold was found at 17 

mTrms at 35 Hz. This compares to the study of Lövsund, who found the threshold (~10 

mTrms) to be lowest at 30 Hz, in darkness (Lövsund et al., 1980b). Magnetophosphene 

perception is known to evolve as a function of time spent in the dark, such that the threshold 

increases over time and stabilizes after approximately 16 minutes (Lövsund et al., 1980b). 

Lövsunds’ experiment involved a 30-minute dark adaptation period before determining 

thresholds, therefore allowing sufficient time for the retina to adapt to the darkness. 
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Exposures in the present study were presented immediately after extinguishing the room 

lighting, therefore, by turning the lights on between each frequency condition, adaptation 

to the darkness was avoided (Lövsund et al., 1980b). A direct comparison therefore cannot 

be made between the threshold values of Lövsund’s experiment and the present study, due 

to the different adapted state of the retina, however a dark adaptation period preceding 

threshold determination should result in higher thresholds.  

However, the lowest thresholds reported in the current study are ~7 mTrms higher than the 

lowest threshold previously reported in darkness (Lövsund et al., 1980b). This difference 

likely results from methodological differences. For example, the MF used in this study is 

homogenous in the head region, whereas it was heterogeneous in Lövsund’s study 

(Lövsund et al., 1980b). Lövsund et al. (Lövsund et al., 1980b) presented the 

magnetophosphene threshold values according to the approximate position of the center of 

the eye, however within the eye region there was a 20% difference in MF flux density. 

Therefore, the heterogeneous MF was such that the medial aspect of the eye was exposed 

to a MF 10% lower than the center of the eye, and that the lateral aspect of the eye was 

exposed to a MF 10% higher than the center of the eye, perhaps underestimating the 

maximum exposure and the perception thresholds. For example, in complete darkness at 

30 Hz, a 10 mTrms magnetophosphene threshold is reported at the center of the eye, 

meaning that the lateral aspect of the eye is exposed to a flux density of 11 mTrms, and the 

medial aspect of the eye is exposed to a flux density of 9 mTrms. Also, the perception 

threshold in Lövsund’s study was evaluated using the psychophysics method of limits, as 

opposed to the method of self-adjustment, creating variability. A differing method of 

threshold determination has the potential to account for differing results, thus requiring the 

test-retest reliability protocol of the current experiment.  

To confirm that the method of self-adjustment is viable in determining magnetophosphene 

thresholds, ten participants completed a test-retest protocol. Four thresholds at 20 Hz were 

compared and found to be not significantly different, confirming the reliability of our 

threshold estimation method. The 20 Hz exposures were randomized amongst all other 

exposures, ensuring that participants were blinded to this component of the experiment. 

The means of all four thresholds at 20 Hz were found to be not significantly different; 
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participants are able to repeatedly select the same threshold for a given frequency 

condition. Since the same threshold could be repeatedly selected, the method of self-

adjustment appears to be valid, accurate and reliable when selecting magnetophosphene 

thresholds. Determining a reliable method to determine thresholds is important, as other 

studies vary in the method to determine threshold (Legros et al., 2016; Lövsund et al., 

1980a, 1980b). An alternative to the method of self-adjustment is the method of constant 

stimuli, which is regarded to be reliable but is very time consuming. The method of 

constant stimuli is effective when evaluating only a few frequency conditions, however, 

establishing a frequency response throughout the entire ELF range would require a long 

duration experiment, and potential participant fatigue. By using the method of self-

adjustment this study was able to explore the entire ELF range, while maintaining accuracy 

and a reasonable experiment duration. However, the method of self-adjustment required 

the threshold to be considered as the lowest intensity eliciting perception, as opposed to an 

average of an increasing and decreasing threshold used in the method of limits (Lövsund 

et al., 1980a, 1980b), or a 50% perception rate in the method of constant stimuli (Legros et 

al., 2016). Additionally, frequencies were randomized in this experiment; an improvement 

from previous work where frequencies were presented in consecutive order (Lövsund et 

al., 1980a, 1980b).  

Magnetophosphene thresholds are also represented in dB/dt. This is a direct correlate of 

the induced electric field sensed by the retina and is proportional to both the intensity and 

the frequency of the MF (Chapter 1.1). Since magnetophosphene perception is a result of 

magnetic induction, it implies that the retina is sensitive to the induced electric field, and 

not simply the flux density of the MF. From previous comparison of electro- and 

magnetophosphene threshold reports, it is not enough to simply represent 

magnetophosphene thresholds in terms of the flux density, but should rather be represented 

in dB/dt (Lövsund et al., 1980a).  By representing the perception thresholds in terms of 

dB/dt, it shows that perception requires an increase in induced electric field as frequency 

increases. The extent of the increase in induced electric field with respect to increasing 

frequency is still debated, as the contributions of retinal cells is unknown. An exploratory 

attempt is made in this study to characterize the dynamics of the frequency response 

reported in dB/dt. The objective is to evaluate if different mechanisms of action might be 
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involved (i.e. possible recruitment of different retinal cell populations) depending on the 

frequency. Interestingly, the linear regression did not show the best fit to the 

magnetophosphene frequency-response and the threshold reports where best described 

using 2 different linear regressions with a breaking point at 40 Hz, suggesting that 

perception may not be limited to a single mechanism but that slightly different mechanisms 

were involved below and above this frequency. Note that this is a speculative and empirical 

observation at this point, but it deserves to be further explored. Interestingly, a two-order 

polynomial is also an excellent model of the perception reports, which suggests a possible 

combination of sources explaining the dynamics. Hence, the mechanism may not be linked 

to a single aspect of the visual system (see Section 1.4) and could in fact involve multiple 

components of the retina (i.e. Photoreceptors, bipolar cells, amacrine cells, or horizontal 

cells). To establish the contribution of various cells involved in magnetophosphene 

perception, we first must know the frequency sensitivities of these cells.  

The threshold values presented in dB/dt differ from previous electro- and 

magnetophosphene studies. Lövsund reports magnetophosphene thresholds in terms of flux 

density; converting those values into dB/dt, we notice a similar increasing trend to the 

results of the current study. However, consistent with the flux density, it is apparent that 

the current study reports higher thresholds in dB/dt. In comparison to electrophosphene 

thresholds, studies report a non-linear trend in electrophosphene thresholds, such that the 

lowest threshold has been reported at ~10 Hz, increasing above and below 10 Hz (Kanai et 

al., 2008; Kar & Krekelberg, 2012). Magnetophosphenes are thought to arise from the same 

mechanism eliciting electrophosphene perception, however frequency-response dynamics 

are different. This difference is potentially accounted for when considering that an electric 

stimulation must travel through several layers of tissue (i.e. skin, skull) before arriving at 

the retina and modulating the visual signals (Logothetis, Kayser, & Oeltermann, 2007). 

Travelling through each of these tissue layers adds resistance to the signal and, which we 

speculate to modulate the properties of the electrical signal reaching the retina. 

Computational models indicate that current density originating from occipital electrode 

stimulation travel through the cortical layers of the brain, ultimately eliciting retinal 

phosphene perception (Laakso & Hirata, 2013). Contrary to this, the MF penetrates through 

these layers, meaning that the induced electric field at the retina is unaltered.   
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Although the MF was detected through conscious perception, and threshold determination 

was apparently accurate and reproducible, the results are entirely limited to participant 

subjectivity. These findings would be best supported by an objective measurement. 

Occipital EEG alpha activity showed no effect when comparing trials with and without 

perception of magnetophosphenes. Perception of magnetophosphenes was expected to 

create a visual stimulus that would be comparable to visual perception known to modulate 

EEG alpha power (Berger, 1929). Based on the “Berger effect” alpha power was expected 

to decrease upon magnetophosphene perception (Berger, 1929). Since the present study 

evaluated EEG alpha power at phosphene thresholds, future studies should evaluate EEG 

alpha activity during exposures significantly above threshold values to determine if the 

strength of visual perception affects the alpha activity. Additionally, other EEG analyses 

techniques such as source reconstruction could turn out to be more appropriate for 

discriminating magnetophosphene perception. Source reconstruction is different from 

alpha activity, since it evaluates temporal relationships in neural activity at a millisecond 

scale. Evaluation of source reconstruction has shown preliminary success in determining 

an objective biomarker for ELF MF exposure, as magnetophosphene perception was 

regarded to modulate the ventral pathway of visual processing (See section 1.5.1 for 

additional information regarding the ventral pathway) (Modolo, Hassan, & Legros, 2018). 

Although the present study showed no main effect in occipital alpha power, the use of EEG 

in determining an objective biomarker of ELF MF exposure remains promising.  

Determining a method of EEG analysis that proves to be an effective biomarker of ELF 

MF exposure is necessary as the retina (and magnetophosphene perception) is merely a 

conservative model of CNS function (Attwell, 2003). Retinal photoreceptors are unique 

cells that are very sensitive and respond to stimuli with graded changes in membrane 

potential, unlike the CNS. Rod photoreceptor cells are 100 times more sensitive than cones 

and respond to the summation of stimuli. Several rods are connected to a single bipolar 

cell, ultimately amplifying the signal and enabling the detection of very weak stimuli 

(Conner & MacLeod, 1977; Kandel et al., 2000).  

Magnetophosphene perception is the current basis for defining ELF MF exposure 

guidelines to protect the public and occupational workers from adverse effects of ELF MF 
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exposure. We report for the first time perception thresholds resulting from MF exposures 

at powerline frequencies (23 mTrms at 50 Hz and 26 mTrms at 60 Hz), that could be applied 

to further document the existing guidelines and recommendations (Institute of Electrical 

and Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-Ionizing 

Radiation Protection, 2010). We have also improved the precision of magnetophosphene 

thresholds, as the current study involved 60 participants, whereas the previous 

magnetophosphene reports by Lovsund were limited to the involvement of only 11 

participants. Currently, IEEE-ICES recommends that exposure in controlled environments 

from 20-759 Hz (encompassing powerline frequencies of 50 and 60 Hz) is limited below 

2.71 mTrms general public and the below 0.904 mTrms (Institute of Electrical and Electronics 

Engineers Inc. & IEEE, 2002). ICNIRP recommends that occupational exposure at 50 and 

60 Hz is below 1 mTrms, and the general public exposure is below 0.2 mTrms (International 

Commission on Non-Ionizing Radiation Protection, 2010). The magnetophosphene 

thresholdsat powerline frequencies reported in this study are more than 20 times higher 

than ICNIRP occupational guidelines, and 8 times higher than IEEE-ICES MPEs in 

controlled environments, thereby protecting the general public and workers from adverse 

effects of ELF MF exposure.  

In conclusion, the present research study has documented the frequency-response of 

magnetophosphene perception across a significant portion of the ELF range. Perception 

thresholds measured in terms of flux density, which is the metric used in the guidelines as 

reference levels (ICNIRP 2010), were lowest at 35 Hz and increased at higher and lower 

frequencies. This study also documents perception thresholds at power frequencies (where 

most ELF exposure occurs) which aim to prevent adverse effects. Adverse effects are 

defined as “an effect detrimental to the health of an individual” (Institute of Electrical and 

Electronics Engineers Inc. & IEEE, 2002; International Commission on Non-Ionizing 

Radiation Protection, 2010). ELF MF was not associated with any change in the alpha 

power of EEG occipital electrodes even when magnetophosphenes were perceived. 

Alternative methods of EEG analysis should be considered as we further the need for an 

objective biomarker.  
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3 General Conclusion 
This research project evaluated magnetophosphene thresholds across the ELF range in a 

large sample of subjects. This study is the first follow up study of experimental work 

conducted in the early 1980’s. However, several improvements have since been made, 

including: improvements to the exposure device, additional frequencies tested, and a large 

sample size. The exposure device used in the present experiment created a homogenous 

MF, enabling a precise measurement of the magnetophosphene thresholds. This is the first 

study to quantify magnetophosphene thresholds throughout the entire ELF range, including 

power frequencies of 50 and 60 Hz. Additionally, the current research project enrolled 60 

volunteers; a large sample size further supports the findings of this study.  

Although it is relying on a reliable psychophysics evaluation, magnetophosphene 

thresholds remain limited to subjective reports of perception, therefore this study aimed to 

determine a quantitative biomarker of ELF MF exposures through the use of EEG. 

Although this study showed no main effect in EEG alpha activity during ELF MF exposure, 

alternative analysis techniques such as EEG source reconstruction are possible, and EEG 

persists as a potential tool for determining an objective biomarker. Another biomarker with 

a potential promising outcome is related to the quantification of pupil dilation associated 

with phosphene perception. 

3.1 Future Developments 
While the search for an objective biomarker continues, other experiments are planned to 

further evaluate the mechanisms involved in magnetophosphene perception. To 

discriminate between photoreceptor involvement, magnetophosphene thresholds will be 

determined throughout time spent in complete darkness. Rods and cones vary in their 

response to time spent in the dark and each have a unique adaption to the darkness trend. 

Assessing thresholds throughout time in the dark will contribute to show the extent of each 

photoreceptor’s involvement in magnetophosphene perception.   

Another method of evaluating photoreceptor involvement would be to test a patient 

population with various retinal diseases. Evaluating patients with abnormalities in their rod 
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and/or cone function will assist to determine the exact mechanism of action involved in 

phosphene perception. Current phosphenes are reported to be achromatic, pointing towards 

rod modulation in perception. Evaluating thresholds in patients with rod dysfunction will 

highlight the extent of which rods are involved.  

Phosphenes have been previously proposed as a clinical tool, as clinicians want to use 

phosphene thresholds as a means to assess the electrical excitability of the eye. Furthering 

this, clinicians hope to discriminate between those who are suitable for a visual prosthesis 

and those who are not. This research was previously evaluated with electrophosphenes, but 

the findings in the current research study have produced reliable magnetophosphene 

threshold data, which could also be used to assess visual prosthetic candidates.  

3.2 Limitations 
One limitation in this study is the capabilities in the exposure device. Although we state 

that the exposure device was an improvement from that used in the 1980’s, it still has 

limitations in the maximum exposures generated. Below 85 Hz, magnetophosphene 

thresholds were well within the operational range of the exposure device, however the 

decreasing percentage of participants perceiving phosphenes at higher frequencies may be 

the consequence of the exposure device limitation, and the possibility of perceiving 

phosphenes at frequencies above 85 Hz could only be properly tested with higher 

stimulation capabilities. Addressing this limitation has the potential to improve the validity 

of threshold reports above 85 Hz. Also, an exposure device capable of creating an increased 

maximum flux density could potentially elicit coloured phosphenes. Phosphenes are 

hypothesized to be a result of rod stimulation. However, increasing the flux density 

substantially may enable coloured perception and cone mediated phosphenes, which would 

provide a strong validation of the rods’ hypothesis.  

3.3 Conclusion 
Overall, this study reported magnetophosphene thresholds and the frequency-response 

throughout the ELF range. This experiment provides important and relevant input to the 

guideline/standard-setting process. The guidelines are designed to protect against 
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potentially adverse effects of exposure to ELF MFs, including excitation of central or 

peripheral neurons or modulation of brain synaptic activity. Magnetophosphene perception 

originates with photoreceptor responses where visual stimuli are also received, suggesting 

that the phosphene response as a biological response is perhaps not truly adverse. 

Nonetheless, with regard to guideline/standard-setting, the magnetophosphene has been 

adopted as a surrogate for potentially adverse synaptic excitation in the CNS g.  Until such 

time as an effect that better represents a potential adverse CNS interaction with magnetic 

fields is known, it remains important to understand the exposure-response characteristics 

of magnetophosphenes.  The research in this report will also help advance our fundamental 

understanding of signal transmission from the outer to inner retina and into the brain.  
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Appendix B: Participant Characteristics.  

  

Participant Age Sex Participant Age Sex
1 19 Female 32 27 Female
2 25 Male 33 25 Male
3 27 Female 34 26 Male
4 26 Female 35 21 Male
5 24 Male 36 25 Female
6 24 Female 37 21 Male
7 28 Male 38 20 Male
8 30 Female 39 22 Female
9 25 Male 40 26 Female

10 21 Male 41 20 Female
11 25 Male 42 23 Male
12 22 Female 43 22 Female
13 23 Female 44 22 Female
14 25 Female 45 27 Male
15 21 Female 46 22 Female
16 33 Male 47 20 Male
17 33 Female 48 22 Male
18 28 Male 49 26 Female
19 18 Female 50 22 Female
20 21 Male 51 29 Female
21 33 Male 52 25 Female
22 19 Female 53 30 Male
23 29 Female 54 27 Female
24 26 Male 55 25 Male
25 18 Female 56 27 Female
26 23 Female 57 20 Male
27 27 Female 58 21 Female
28 28 Male 59 23 Female
29 20 Female 60 24 Female
30 24 Female n = 60 24.31 ± 3.62 F = 35
31 24 Male M = 25
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Appendix C: Magnetophosphene Letter of Information and Consent Form 
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Appendix D: Advertisement for Study Participation 
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Appendix E: Phone Questionnaire 

 
  

 1 

Phone Questionnaire 
 
To participate in this study, you must be between the ages of 18 and 55 inclusive. To determine whether or not you 
are a potential candidate for this study, we would ask you to answer the following questions: 
 
1. Do you suffer from limited movement of your hands or fingers?    Yes No 

If yes, of what nature? ………………………………………………………………... 
 
2. Do you currently suffer from a chronic illness that requires that you regularly  

take medication(s)? If yes, which one(s)? ……………………………………………. Yes No 
 
3. Are you currently experiencing psychiatric illness or difficulties? (ex. Depression, anxiety) Yes No 
 
4. Have you ever had an epileptic seizure?      Yes No 
 
5. Are you claustrophobic?         Yes No 
 
6. Do you wear an implanted electric device, or do you have a metal implant  

in your head or chest?         Yes No 
 
7. Do you have any permanent piercing?       Yes No 
 
8. Are you wearing a hearing aid system?        Yes No 
 
9. Do you wear glasses or contacts?  Is it possible for you to wear contacts    Yes No 

throughout the duration of the study? 
 
10. Do you regularly use illicit drugs?       Yes No 
 
11. Do you smoke?         Yes No 
 
12. The experiment requires that you not be under the influence of tobacco, alcohol or coffee  

during the test.  Is it impossible for you to abstain from smoking, consuming alcohol or  
drinking caffeinated beverages from midnight the night before the experiment until the next 
afternoon (expected end time of the experiment)?     Yes No 

 
13. Is there a chance of pregnancy?        Yes No 
 
14. Dominant hand: 
 
15. Date of birth: 

 
16. Weight:  
 
17. Height:

 
Identification number: ……………………………  
 
NOTE: This information will be used to ensure you are meeting the study’s inclusion criteria, and to categorize the 
data when analyzed. If you sign the consent form, the information you provide on this questionnaire will be kept, 
locked and stored for seven years and then shredded and/or mulched using a standard hospital protocol for document 
destruction (even in the event you withdraw from the study before having completed it). Should you discontinue 
participation in this study prior to signing the consent for, the information you provide on this questionnaire will be 
instantaneously discarded. 
"------------------------------------------------------------------------------------------------------------------------------------ 
 
Last Name:……………………………………………..……… First Name:….………………………………………. 

Address:………………………………………………………... City:………………………………………………… 

Home phone number:.……………………………..……..……. Work:…………………………………………….…. 

E-mail address:………………………………………………………………………………………………………….. 

Sex:……………….………………………..…………………… Date of birth: …….………………………………… 

Identification number: ………………………………….............. (To be filled out by a member of the research team) 
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Appendix F: Field Status Questionnaire (FSQ) 
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Appendix G: Raw Data - Magnetophosphene Threshold Values, Reported in mTrms 

 

  

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
P1 12.71 11.25 20.60 21.99 20.81 28.59 28.70 44.21 43.84 44.05 53.09
P2 24.41 16.47 18.88 13.91 14.54 20.20 20.16 23.09 23.96 24.37 26.25 34.50 37.79 46.19
P3 33.42 25.49 19.32 22.19 20.47 23.02 29.25 27.62 27.63 33.23 31.24 43.53 33.54 43.23
P4 22.59 12.60 24.73 16.58 15.80 24.58 20.92 22.92 29.88 30.87 30.94 35.59 47.52 55.40
P5 39.31 4.46 8.02 11.93 14.20 13.85 19.93 23.07 23.87 23.65 21.81 27.82 23.75 37.72
P7 23.74 21.46 6.69 10.91 13.31 15.00 17.51 20.13 22.79 21.35 17.87
P8 20.38 23.22 13.54 14.15 21.12 29.10 24.27 29.74 24.04 29.18 33.02 40.82 59.63 59.63
P9 43.54 30.13 40.72 25.45 30.25 34.20 41.82 37.24 39.29 36.62 42.77 36.47 56.51
P10 34.29 14.50 11.89 17.23 28.60 39.22 32.44 30.55 39.71 55.93 51.97 32.18 59.64
P12 14.09 19.09 17.51 19.54 17.66 20.95 23.51 32.00 34.16 42.91 37.51 45.40 53.03 54.78
P13 31.69 5.77 17.16 6.35 17.89 14.40 9.48 12.33 12.99 16.89 21.86 12.78 15.41 11.98 14.60 14.27 20.39
P14 26.02 20.74 17.11 19.96 14.47 21.67 23.83 21.82 21.03 27.02 26.69 34.10 23.54 24.65 27.85 27.81 23.53
P15 33.28 31.35 34.14 16.68 21.52 27.79 23.45 33.45 29.81 21.33 33.47 27.90 35.04 36.92
P16 39.61 17.69 12.26 11.67 15.77 22.07 13.20 15.59 12.90 11.86 14.87 29.15 25.96 24.12 22.99 24.55 31.74
P17 43.03 13.93 16.93 24.85 32.98 49.50 38.07 40.89 39.38 39.78 29.69
P18 38.06 24.22 21.63 18.09 13.96 20.65 10.10 13.43 18.52 19.11 22.10 21.57 17.19 21.45 26.30 26.63 30.08
P19 42.85 19.11 18.57 24.08 21.57 26.52 22.51 18.18 23.75 27.41 42.95 28.91 36.93 26.39 32.74 42.31
P20 45.48 36.44 28.78 26.25 19.24 12.41 18.51 25.45 27.84 25.76 35.95 24.30 23.20 29.26 22.53 23.22 31.34
P21 45.38 31.42 21.98 22.82 16.99 13.63 10.90 10.98 14.69 18.43 24.31 27.90 27.41 32.95 41.67 41.49 42.13
P22 44.20 21.90 38.30 16.26 16.61 13.66 19.37 20.83 26.91 21.64 40.02 32.12 34.52 30.23 39.72 40.83 20.55
P23 29.42 19.48 16.47 11.96 15.65 17.14 12.01 15.72 18.12 15.79 21.37 15.88 21.98 14.68 23.21
P24 29.40 25.63 22.84 31.56 20.82 18.67 16.26 25.40 26.59 23.77 22.50 19.55 23.41 34.28 41.77 42.43
P25 31.20 26.44 26.74 13.23 28.69 22.78 23.91 30.69 29.51 41.02 46.41 28.76 31.92 42.32
P26 49.50 29.75 37.56 42.19 19.43 19.14 22.22 18.90 33.82 24.51 34.00 28.54 31.43 35.39 24.37
P27 45.49 10.75 5.88 7.56 10.80 11.20 12.38 12.38 13.17 15.98 16.66 21.71 21.58 27.52 28.90
P28 49.50 33.35 27.76 16.56 7.85 8.34 4.81 7.41 11.76 12.10 14.20 12.28 20.41 10.58 21.55 11.80 5.15
P29 30.41 22.73 22.10 18.06 10.44 18.06 20.72 24.66 23.52 25.54 39.07 30.44 39.22 34.12 38.70
P30 43.25 23.72 10.79 14.68 13.42 17.53 15.76 24.50 20.54 28.05 36.85 48.75 25.49 29.92 27.28 36.32 30.50
P31 46.25 30.85 10.23 16.74 16.65 25.08 11.55 9.41 11.13 22.32 27.23 26.69 19.68 17.52 22.63 26.64 28.72
P32 26.21 17.97 21.17 22.38 21.05 17.40 25.86 28.29 27.41 43.43
P33 49.50 27.86 25.07 19.21 19.10 15.60 17.08 16.10 14.85 33.58 27.62 27.19 30.36 30.61 33.20 42.43
P34 16.48 11.72 11.21 15.82 13.24 12.08 17.88 14.94 19.53 24.06 21.81 25.94 28.41 23.89 20.96 42.43 32.93
P35 40.69 27.87 16.72 13.57 10.93 11.21 15.30 16.30 15.56 24.55 23.33 22.65 33.65 41.49
P36 47.48 40.13 29.16 31.02 25.74 12.10 19.29 22.67 17.19 22.42 17.32 27.66 38.43 36.89 33.32 41.22 41.65
P37 46.07 31.30 16.34 21.60 17.48 13.75 16.19 15.48 18.96 25.55 34.47 23.06 30.86 27.96 37.97 42.43
P38 49.50 43.79 22.65 19.93 18.54 17.36 13.57 12.55 14.08 17.52 17.44 25.03 19.60 16.79 14.98 16.49 21.95
P39 49.50 49.50 49.50 45.75 49.00 41.13 37.54 49.50 48.40 39.45 49.50 42.43 42.43
P40 21.25 13.77 17.22 23.77 20.61 12.36 17.90 20.58 28.47 35.47 30.87 42.33 42.43
P41 29.45 16.08 14.81 10.61 14.14 9.41 9.13 9.28 11.73 11.97 14.22 16.11 19.11 16.47 22.07 16.28 14.12
P42 47.14 28.02 20.17 17.48 18.04 15.72 18.75 16.39 18.41 19.04 29.71 32.51 23.95 32.84 30.46 37.55 39.17
P43 23.57 9.17 19.55 19.00 14.76 15.42 15.82 13.34 18.83 25.52 26.00 26.67 30.83 36.79
P44 24.92 25.83 20.04 18.27 12.41 14.02 15.64 19.97 15.82 15.63 16.67 21.66 19.36 28.05 31.16
P45 9.82 16.32 14.21 9.52 15.87 6.34 9.52 14.95 18.69 7.12 14.95 14.89 15.09 22.83 18.76 25.59 31.32
P46 36.53 23.48 23.76 21.91 16.24 12.02 12.09 15.56 21.30 21.25 24.31 21.16 23.94 34.24 26.11
P47 43.84 17.11 14.82 13.98 13.20 14.29 15.65 23.54 26.02 30.22 22.44 25.27 30.53 29.90 18.68 26.34 31.39
P48 30.48 26.20 17.03 15.88 22.78 20.77 23.35 21.04 32.21 28.30 24.05 27.87 30.07 32.07
P49 49.50 25.48 16.19 17.31 16.28 31.22 20.81 16.48 16.39 21.97 24.05 26.56 24.68 24.19 22.91 30.28 34.68
P50 43.40 3.54 2.21 3.50 2.10 3.23 8.05 11.57 12.24 13.07 13.69 11.00 19.04 14.72 8.23 9.20
P51 45.45 22.19 31.28 22.20 21.09 11.52 13.72 16.25 13.62 14.91 19.07 14.00 18.19 23.89 27.59 27.17 29.74
P52 19.24 25.90 17.24 11.36 7.29 10.58 10.60 11.83 13.90 17.46 15.75 17.66 21.77 21.79 19.22 17.42
P53 31.71 22.20 20.68 15.96 19.99 22.18 22.91 28.04 31.06 24.17 23.00 23.50 26.31 27.64 30.82 34.57
P54 21.04 11.95 11.29 12.95 6.69 7.73 9.41 7.76 11.78 15.84 18.10 15.52 15.68 15.50 9.86 13.45 14.24
P55 44.62 21.93 16.82 19.84 18.20 7.34 14.17 13.98 11.80 15.42 17.16 17.66 24.47 26.61 24.44 32.29
P56 39.56 28.25 35.49 25.69 18.76 10.79 12.46 13.37 15.57 13.24 17.90 13.40 18.36 24.73 23.43 30.77
P57 41.79 10.85 19.03 15.61 10.98 11.36 10.09 9.98 10.82 14.72 15.72 14.15 16.46 18.75 19.17 20.46 26.96
P58 43.52 45.33 25.45 29.81 33.06 34.70 31.61 31.32 42.32 39.07 44.94 32.22 42.19 42.43 41.97
P59 35.44 18.06 7.06 11.55 10.70 22.50 22.29 17.77 18.86 18.09 19.89 23.28 27.39 25.74 34.05 16.91
P60 32.62 14.58 8.76 17.16 7.22 10.07 10.44 10.66 12.22 14.18 16.52 19.70 17.11 20.19 21.24 25.45

39.98 24.94 21.14 20.87 17.36 17.43 16.92 18.05 20.87 22.80 25.20 26.45 26.25 28.06 28.63 31.47 33.33Mean 
Threshold 
(mTrms)

Frequency
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Appendix H: LabVIEW Front Panel 
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