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Abstract 

 

TBX3 is a transcriptional regulator involved in embryonic development and in 

tumorigenesis of several cancer types. There are two isoforms of TBX3 (TBX3iso1 and 

TBX3iso2) with different DNA binding domains. The large-scale functional roles of TBX3iso1 

and TBX3iso2 were characterized in a breast cancer context. Both TBX3 isoforms induced 

invasiveness and an epithelial-to-mesenchymal (EMT) phenotype. Coupling data from 

genome-wide ChIP-array and RNA-Seq studies provided a novel list of genes regulated by 

each isoform. Both TBX3 isoforms regulate expression of several EMT-related genes, 

including SLUG and TWIST1. Importantly, TBX3 is a direct regulator of SLUG, and SLUG 

expression is required for TBX3-induced migration and invasion. 

Assessing TBX3 expression in early stage breast cancers by immunohistochemistry 

(IHC) revealed high expression in low-grade lesions. Within a second non-high-grade cohort, 

there was an association between TBX3 expression in the pre-invasive ductal carcinoma in 

situ (DCIS) and size of the invasive focus. Additionally, there was a positive correlation 

between TBX3/SLUG, and TBX3/TWIST1 expression by IHC in the invasive carcinoma. 

Pathway analysis of transcriptomics data revealed altered expression of several proteases 

and their inhibitors, consistent with the ability of tumor cells to degrade basement membrane. 

These findings strongly suggest the involvement of TBX3 in the promotion of invasiveness 

and progression of early stage pre-invasive DCIS to invasive carcinoma through the low-

grade molecular pathway. 

Interestingly, only TBX3iso1 overexpressing cells exhibited increased tumorigenic 

potential in mouse xenograft experiments. Transcriptomics data and functional studies 

revealed that TBX3iso1 overexpression promotes angiogenesis and secretion of cancer-

associated cytokines (including osteopontin) which is able to induce tubule formation by 

endothelial cells in vitro. Tumorigenic TBX3iso1 overexpressing cells also had elevated 

hyaluronan synthase 2 (HAS2) levels and high levels of hyaluronan retention. These factors 

may contribute to the survival of cells and promote angiogenesis, allowing the formation of 

primary tumors in vivo. 



 

ii 

 

In conclusion, I have found evidence for a role of TBX3iso1 and TBX3iso2 in direct 

modulation of EMT and invasiveness, and a role for TBX3iso1 in inducing angiogenesis. 

Together these, along with previous work showing anti-senescence and pro-proliferative 

activities of TBX3, suggest multiple potential activities for promotion of malignancy of breast 

cancer.  
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Chapter 1 

 

Introduction 



 

1 

1 

1.1 Breast Cancer 

Recent statistics from the Canadian Cancer Society has revealed that 1 in 2 

Canadians will develop cancer in their lifetime, and 1 in 4 Canadians will die of cancer 

(Canadian Cancer Society, 2017). Leading the list of cancer prevalence for Canadian women 

is breast cancer, with 1 in 8 women expected to develop breast cancer in their lifetime 

(Canadian Cancer Society, 2017). This accounted for 10,100 diagnoses of breast cancer in 

2017, of which 1,900 succumbed to the disease (Canadian Cancer Society, 2017). While 

breast cancer incidence rates rose in the 1990s (likely due to increased opportunistic 

mammography screenings), mortality rates have been declining at a rate of approximately 

2.3% per year between 1992 and 2012 (Canadian Cancer Society, 2017). This decline is 

likely due to a combination of screening mammograms and more effective adjuvant systemic 

therapies (Canadian Cancer Society, 2017). Similar reductions in mortality rates have been 

observed in the United States, United Kingdom, and Australia (Bray et al., 2004). 

The current public health strategy for breast cancer is one of early detection; at this 

early stage, treatment generally has a high success rate compared to metastatic diagnosis. 

In addition to surgical management, treatment for patients with early-stage breast cancer can 

include systemic therapy, such as chemotherapy (i.e. taxanes, anthracyclines) and/or 

hormone therapy (i.e. tamoxifen, aromatase inhibitors), which are tailored to the 

characteristics of the tumour (Esteva and Hortobagyi, 2004). Once the cancer has spread to 

distant organs, however, survival is greatly reduced.  

Molecular profiling of breast cancers has revealed the presence of distinct breast 

cancer subtypes with different clinical outcomes, including luminal A, luminal B, basal-like 

and human epidermal growth factor receptor 2 (HER2)-enriched (Perou et al., 2000). In 

general, age-standardized survival rates for breast cancers are 97% (1-year), 91% (3-year), 

86% (5-year) and 82% (10-year) for the specified number of years post-diagnosis (Canadian 

Cancer Society, 2017), although basal-like and HER2-enriched breast cancers are 

associated with lower survival rates (Sørlie et al., 2001).  Additional prognostic factors that 

may help predict patient outcome include tumor size, lymph node status, and nuclear and 

histologic grade of the tumor (Esteva and Hortobagyi, 2004).  
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 Histopathology of breast cancer progression 

 

Figure 1.1.1 – Histology of normal breast epithelium.  

Obtained from breast histology slides in The Human Protein Atlas, available at 

www.proteinatlas.org/learn/dictionary/normal/breast 

Normal breast histology (depicted in Figure 1.1.1) must be appreciated in order to 

diagnose pathological conditions. Histologically, the breast is made up of several ductal-

lobular structures. The lactiferous duct is located beneath the nipple, and branches out into 

several progressively smaller ductal structures, eventually terminating at the terminal 

ductules and lobules (Mills, 2007). The epithelium within these ductal-lobular structures 

consists of two distinct cell layers. The inner (luminal) layer is composed of cuboidal to 

columnar epithelial cells, with an outer (basal) layer composed of flattened myoepithelial cells 

(Mills, 2007). The terminal ducts and their corresponding lobules are collectively referred to 

as the terminal duct lobular unit (TDLU), and represents the structural and functional unit of 

the breast (Mills, 2007). A layer of type IV collagen and laminin surrounds the ductal-lobular 

structures, separating them from the surrounding stroma (Mills, 2007). The stroma 

immediately adjacent to the mammary glands is composed of loose fibrovascular tissue, with 

dense interlobular stroma composed of collagen, fibroblasts, and adipose tissue surrounding 

the aforementioned structures (Mills, 2007). 

Most breast pathologies, including atypical ductal hyperplasia (ADH), ductal 

carcinoma in situ (DCIS), and invasive breast carcinoma, originate in the TDLUs (Mills, 2007). 
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The two most common histological subtypes of invasive breast cancer include infiltrating 

ductal carcinoma (IDC) and infiltrating lobular carcinoma (ILC). While both arise from the 

TDLUs, they present quite different histologically (Wellings and Jensen, 1973, Wellings et 

al., 1975). A majority of breast cancers have the morphology of ductal epithelial cells (DCIS, 

IDC), representing approximately 80% of diagnoses (Kumar et al., 2013). Lobular 

morphologies, including atypical lobular hyperplasia (ALH), lobular carcinoma in situ (LCIS), 

and invasive lobular carcinoma (ILC), are less common than their ductal counterparts (Kumar 

et al., 2013). The more common pathways, related to IDC, are discussed below. 

The IDC breast cancer progression model is often simplified into a series of phenotypic 

histological stages, beginning with benign epithelial cells and sometimes transitioning to 

columnar cell lesions including flat epithelial atypia (FEA), atypical ductal hyperplasia (ADH), 

ductal carcinoma in situ (DCIS), and ultimately invasive and metastatic breast carcinoma 

(Burstein et al., 2004, Bombonati and Sgroi, 2011). FEA, ADH and DCIS are considered to 

be non-obligate precursors for the development of invasive breast cancer, meaning that not 

all cases exhibiting the aforementioned precursor lesions will progress to invasive carcinoma 

(Bombonati and Sgroi, 2011). Epidemiological, histological, immunohistochemical, loss of 

heterozygosity (LOH), comparative genomic hybridization (CGH), and later high-throughput 

mutational studies have shed light on the intricacies of this process, and highlighted the 

presence of divergent low-grade and high-grade pathways (Thorat et al., 2007, Formenti et 

al., 2011, Bombonati and Sgroi, 2011, Sagara et al., 2015).  

Low-grade (LG) breast lesions usually contain near-diploid chromosomal content, with 

frequent loss of 16q and gain of 1q (Bombonati and Sgroi, 2011). High-grade (HG) breast 

lesions are typically aneuploid and associated with a collection of more complex mutational 

alterations including recurrent loss of 8p, 11q, 13q, 1p and 18q, and recurrent gain of 8q, 

17q, 20q and 16p (Buerger et al., 1999, Roylance et al., 1999, Bombonati and Sgroi, 2011). 

Intermediate grade (IG) breast lesions possess a combination of LG and HG genetic 

alterations (Buerger et al., 2001). When loss of 16q is observed in HG lesions, the remaining 

underlying genetic alterations are distinct; while LG lesions demonstrate physical loss of 16q, 

HG lesions are missing small regions of 16q and undergo mitotic recombination, leading to 

shuffling of these genetic components (Cleton-Jansen et al., 2004, Abdel-Fatah et al., 2008). 
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These findings suggest that high-grade breast cancers (basal-like and HER2-enriched) do 

not arise from low-grade breast cancers (Bombonati and Sgroi, 2011). 

Immunohistochemical studies of FEA, ADH and LG DCIS has revealed high 

expression levels of estrogen receptor (ER) and progesterone receptor (PR), along with lack 

of HER2 expression (Buerger et al., 2001). Additionally, these precursor lesions frequently 

express high levels of the proliferation marker Ki67, luminal cytokeratins CK8/18/19, B-cell 

lymphoma 2 (Bcl2), cyclin D1, and are negative for basal cytokeratins CK5/6 (Schnitt, 2003, 

Abdel-Fatah et al., 2008, Ahmad, 2013). Genetic analysis of FEA, ADH and LG DCIS has 

revealed comparable loss of 16q, which is an early hallmark genetic change in LG lesions; 

the degree of genomic instability, however, increases with further progression (O'Connell et 

al., 1998, Moinfar et al., 2000, Simpson et al., 2005, Larson et al., 2006, Gao et al., 2009). 

Genes which may function as tumor suppressors that are subsequently lost with 16q 

deletions have been assessed, and include E-cadherin (CDH1) and CCCTC-binding factor 

(CTCF), with reduced expression reported in LG lesions, as assayed by PCR and 

immunohistochemistry (Bürger et al., 2013). The detailed breast cancer progression 

pathways of the LG and HG molecular pathways is depicted in Figure 1.1.2. 

 
Figure 1.1.2 – Detailed breast cancer progression pathway of LG and HG breast cancers. 

Adapted from Bombonati & Sgroi, 2011. 
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 Columnar cell lesions (CCLs) 

 

Figure 1.1.3 – Columnar cell lesions (CCLs) of the breast. 

Columnar cell change (CCC), columnar cell hyperplasia (CCH), and flat epithelial atypia 

(FEA) of the breast (left to right). 

Columnar cell lesions (CCLs) are among the most common abnormalities observed 

in breast biopsies (Turashvili et al., 2008). CCLs are generally divided into columnar cell 

change (CCC) and columnar cell hyperplasia (CCH), consisting of one or several layers of 

pseudostratified ductal epithelial cells, respectively, which have taken on a columnar 

phenotype (depicted in Figure 1.1.3) (Dabbs et al., 2006). CCLs present with frequent 

exaggerated apical blebs or snouts, often resulting in intraluminal secretions that can calcify, 

and are thus often detected as abnormalities on mammographic screening (Lerwill, 2008). 

CCC and CCH with the aforementioned histological patterns can be further subdivided, 

depending on the presence or absence of atypia (Turashvili et al., 2008, Go et al., 2012). 

Genetic analysis of CCLs without atypia has revealed infrequent mutations relative to 

the background of normal ductal epithelial cells (Dabbs et al., 2006), although more recently, 

phosphatidylinositol-3-kinase catalytic subunit alpha (PIK3CA) mutations have been 

documented in CCLs with or without atypia (Troxell et al., 2012). The atypical CCL variant 

FEA is often considered to be the earliest neoplastic lesion within the breast (Dabbs et al., 

2006, Turashvili et al., 2008). FEA lesions show slightly enlarged columnar epithelial cells, 

frequently consisting of several layers, and low-grade cytologic atypia (Turashvili et al., 
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2008). Interestingly, CCLs with HG atypia tend to progress to comedo DCIS (associated with 

necrosis and higher rates of invasive recurrence), whereas FEA with LG cytologic atypia is 

thought to progress to LG DCIS (Azzopardi et al., 1979), further providing evidence for the 

divergent LG and HG progression pathways. Additionally, CCLs were reported to coexist in 

76% of LG and 10% of HG breast cancers (Abdel-Fatah et al., 2008). Coexisting CCLs, ADH 

and DCIS lesions often exhibit near identical cytological morphologies, with the differences 

typically being size and architecture-related (Go et al., 2012).  

Little is known regarding the clinical significance of the presence of CCLs and FEA in 

a biopsy. The risk of invasive recurrence for patients with FEA is unclear – some studies 

suggest that the associated risk is slightly increased relative to that of the general population, 

up to a risk similar to ADH (4-5 fold) (Schnitt, 2003, Kunju and Kleer, 2007, Martel et al., 

2007, Lerwill, 2008, Ahmad, 2013). Longitudinal studies examining rates of invasive 

recurrence revealed that 7.4% of patients with CCLs without atypia, and 18.3% of patients 

with CCLs with atypia (diagnosed as FEA) developed invasive breast cancer over a period 

of 5 years (Guerra-Wallace et al., 2004). Upon analysis of 1,000 FEA lesions, it was reported 

that 7% and 26% of cases had coexisting invasive carcinoma and lobular neoplasia, 

respectively (Bratthauer and Tavassoli, 2004). The presence of FEA in a biopsy should 

therefore prompt for potential identification of coexisting precursor lesions and invasive 

carcinoma (Lerwill, 2008). Although these studies demonstrate that the risk of progression to 

invasive carcinoma after FEA diagnosis by biopsy is higher than the general population, the 

relative risk of invasive recurrence is quite low. Clinical management of patients with FEA on 

biopsy usually consists of close follow-up with repeat mammograms to detect cases of occult 

carcinoma within the vicinity that were missed by biopsy (Turashvili et al., 2008), or surgical 

excision if there is any residual abnormality (i.e. indeterminate calcifications) (Calhoun et al., 

2015). Larger studies with extended follow-up times are required for critical evaluation of 

long-term risk of progression to invasive cancer for these patients, as well as time course for 

progression (Lerwill, 2008). A more thorough understanding of clinicopathologic 

characteristics would allow for optimal management of patients with CCL lesions, including 

the FEA variant. 
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 Atypical ductal hyperplasia (ADH) 

  

Figure 1.1.4 – Atypical ductal hyperplasia (ADH) of the breast. 

Normal breast ductal epithelial cells are lined by two layers of cells consisting of a 

luminal and myoepithelial cell layer (Kumar et al., 2013). The presence of hyperplasia 

signifies an excess of two layers of epithelial cells, and can range from mild to florid ductal 

epithelial hyperplasia without atypia, to atypical ductal hyperplasia (ADH) (Kumar et al., 

2013). The pattern observed in ADH is consistent with the presence of two different cell 

populations: a low-grade neoplastic cell population and a benign ductal epithelial cell 

population, observed within the same duct cross-section (Kumar et al., 2013). The non-

neoplastic cell population contains cells showing random placement and streaming patterns, 

with nuclei of varying shape and size (Pinder and Ellis, 2003). Conversely, the atypical (LG 

neoplastic) cells contain enlarged, hyperchromatic nuclei, with uniformity in shape and size 

and even cell placement, suggestive of a clonal population (Pinder and Ellis, 2003).  

The atypical cells are often arranged in various architectural patterns, including solid, 

cribriform, papillary or micropapillary (Kader et al., 2018). Cribriform pattern ADH is shown in 

Figure 1.1.4. 

ADH is frequently described as having some but not all features of DCIS (Fitzgibbons 

et al., 1998). ADH and DCIS are distinguished from each other by the degree of atypia and 

the extent of atypical epithelial proliferation (Tavassoli and Norris, 1990, Page and Rogers, 
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1992, Ahmad, 2013). Additionally, ADH is usually small and focal, measuring less than 2 

mm; if larger and more extensive, a diagnosis of DCIS is typically made (Pinder and Ellis, 

2003). LOH and CGH-based studies of ADH have revealed frequent loss of the 16q 

chromosomal region (Lakhani et al., 1995, O'Connell et al., 1998, Amari et al., 1999). 

Additionally, microsatellite analysis has revealed that 60% of IDC and DCIS showed 

concurrent ADH that was clonal in origin (Larson et al., 2006), with copy number alterations 

and documented at early stages of ADH (Crissman et al., 1990, Eriksson et al., 1992, 

Stomper et al., 1992, Ruiz et al., 1999, Niu et al., 2013, Kader et al., 2018).  

Marked transcriptional changes have been identified at the ADH stage relative to 

adjacent benign ductal epithelium (Ma et al., 2003), including up-regulation of several 

oncogenes such as FOXA1 and GATA3 (Brunner et al., 2014). Several studies have 

therefore proposed that alteration in expression of genes at the early stages of progression, 

including ADH and DCIS, may be critical for progression to invasive breast cancer, as 

expression of several transcripts is maintained throughout progression (van de Vijver et al., 

2002, Paik et al., 2004). In fact, transcriptional studies have shown that ADH and LG DCIS 

possess near-identical gene expression profiles (Bombonati and Sgroi, 2011).  

Epidemiological studies estimate that an ADH diagnosis is associated with a 4-5 fold 

increased risk of developing invasive breast cancer relative to the general population (Page 

et al., 1985, Page and Dupont, 1993, Fitzgibbons et al., 1998). If an immediate family member 

has previously been diagnosed with breast cancer, the risk of upgrade from an ADH 

diagnosis becomes about 10-fold (Page et al., 1985, Tavassoli and Norris, 1990, Page and 

Dupont, 1992, Pinder and Ellis, 2003). A recent study showed that approximately 20% 

(142/698) of women with ADH lesions had an upgrade in diagnosis (typically to DCIS) without 

surgical intervention (Hartmann et al., 2015). Clinical management of patients with ADH upon 

needle core biopsy thus includes surgical excision to rule out concomitant malignancy 

(Morrow et al., 2015, Rageth et al., 2016).  
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 Ductal carcinoma in situ (DCIS) 

  
 

Figure 1.1.5 – Ductal carcinoma in situ (DCIS) of the breast. 

Low-grade DCIS, intermediate-grade DCIS, and high-grade DCIS (left to right); all neoplastic 

cells of the DCIS are confined to the duct and possess an intact basement membrane. 

 

1.1.4.1 Histopathology of DCIS  

The presence of pure ductal carcinoma in situ (DCIS) is observed in approximately 

15-20% of breast biopsies, compared to 5% before the introduction of mammography 

screening (van Dongen et al., 1989, Lagios, 1990, Faverly et al., 1994). DCIS is referred to 

as “Stage 0” breast cancer, with the cancer cells located within the confines of the basement 

membrane. Relative to ADH, DCIS contains further expansion of tumor volume through the 

ductal system, along with elevated histological and biological diversity (Allred et al., 2008). 

Clinically significant parameters which are reported for DCIS include nuclear grade, size, 

architecture, positive margins, and presence or absence of comedo necrosis (presence of 

necrosis is an independent prognostic indicator for invasive recurrence) (Lester et al., 2009). 

The expanded volume of cells within DCIS can exhibit a wide spectrum of histological 

patterns (Allred et al., 2001). LG DCIS is composed of small uniform cells, with nuclei subtly 
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larger than those of adjacent normal epithelial cells (Figure 1.1.5, left panel) (Pinder and 

Ellis, 2003). HG DCIS is associated with an increase in the nuclei to cytoplasm ratio, coarse 

chromatin, prominent nucleoli, loss of polarization, frequent mitoses, and pleomorphism from 

cell to cell (Figure 1.1.5, right panel) (Lester et al., 2009). The architecture is variable (i.e. 

solid, cribriform, micropapillary, and/or papillary), although solid is frequently observed, often 

with central zone necrosis which may undergo calcification (Pinder and Ellis, 2003). The 

diagnosis of IG DCIS is quite subjective, and is made if nuclear pleomorphism exhibits an 

intermediate between LG and HG DCIS with some degree of polarization (Pinder and Ellis, 

2003). On this note, a recent study using integrative bioinformatic analysis of the Cancer 

Genome Atlas (TCGA) breast cancer cohort reported that patients with IG IDC could be re-

classified into LG-like and HG-like IDC based on a 22 gene tumor aggressiveness classifier 

(Aswad et al., 2015), suggesting that this subgroup consists of both LG and HG lesions 

(Bombonati and Sgroi, 2011). 

The distinguishing factor between DCIS and IDC is the dissolution of the myoepithelial 

cell layer in IDC, with neoplastic cells invading beyond the basement membrane and into the 

adjacent stroma. Previous studies have shown that myoepithelial cells possess tumor-

suppressor functions through their secretion of protease inhibitors and continuous synthesis 

and maintenance of the basement membrane (Barsky and Karlin, 2005, Polyak and Hu, 

2005, Hu et al., 2008). During progression of DCIS to IDC, the myoepithelial cell layer 

gradually disappears, and their associated tumor suppressive function is thus lost (Hu et al., 

2008). This can be tracked immunohistochemically using molecular markers such as smooth 

muscle myosin heavy chain (cytoplasmic) and/or p63 (nuclear), which are characteristically 

expressed by myoepithelial cells. Staining for these markers is lost with dissolution of the 

myoepithelial layer. This event results in loss of organization and polarity of breast epithelial 

cells, paving the way for tumor progression to invasion (Hu et al., 2008).  
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1.1.4.2 Clinical Management of DCIS 

It is estimated that 25-50% of DCIS (depending on the DCIS characteristics) will 

progress to invasive carcinoma during the lifetime of the patient, generating potentially life-

threatening disease (Page and Dupont, 1993, Fitzgibbons et al., 1998, Sanders et al., 2005, 

Ahmad, 2013, Sagara et al., 2015). Local recurrence rates for patients with DCIS are 5-25% 

with lumpectomy (Fisher et al., 1993, Warneke et al., 1995, Ernster et al., 1996, Fowble et 

al., 1997, Habel et al., 1998, Boyages et al., 1999, Hetelekidis et al., 1999), and 1-2% for 

mastectomy in the absence of radiation therapy (Silverstein et al., 1995a, Warneke et al., 

1995, Boyages et al., 1999). This risk of non-invasive or invasive recurrence further depends 

on characteristics of the DCIS, including the nuclear grade, extent and presence or absence 

of necrosis.  

The natural history of DCIS is for the most part unknown since routine treatment 

includes surgical excision (Bartlett et al., 2014). Prior to the 1980s, most patients with DCIS 

underwent a mastectomy (Waldman et al., 2000). Such radical surgical practices have been 

replaced by breast-conserving surgery (lumpectomy), often combined with radiation therapy, 

regardless of grade (Waldman et al., 2000, Mokbel and Cutuli, 2006). The higher rates of 

local recurrence for DCIS patients treated with lumpectomy suggest that the recurrent DCIS 

arises from residual tumor cells missed by surgery (Waldman et al., 2000). Work by Waldman 

et al. reported that recurrent DCIS lesions exhibited the same histologic architecture as the 

initial DCIS, and CGH analysis revealed that the initial and recurrent DCIS were clonally 

related (Waldman et al., 2000). 

In a retrospective longitudinal cohort study examining 57,222 patients with 

documented DCIS and surgery status, Sagara et al. reported a significant survival benefit 

when comparing the surgery vs. non-surgery arm of patients with IG and HG DCIS (Sagara 

et al., 2015). In contrast, there was no survival benefit for patients with LG DCIS that 

underwent surgical excision (Sagara et al., 2015). In the only existing study assessing the 

natural history of LG DCIS, however, Sanders et al. identified 28 women in which DCIS was 

not initially diagnosed upon biopsy, but was detected upon examination of archival samples 

(Sanders et al., 2005). In their median follow-up time of 31 years, 11/29 (39.3%) women 

developed IDC, and 5/28 (17.9%) died of metastatic breast cancer (Sanders et al., 2005). 
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They noted that the risk of invasive recurrence is greatest within the first fifteen years after 

diagnosis (Sanders et al., 2005). Omission of surgical excision for patients with LG DCIS 

therefore leaves a percentage of women at risk for recurrence. 

Randomized control trials have concluded that the addition of radiation therapy to 

lumpectomy reduces recurrence rates for early breast cancers by approximately 50%, similar 

to that of mastectomy (Fisher et al., 1998, Bijker et al., 2001, Fisher et al., 2001, Fisher et 

al., 2002, Bijker et al., 2006, Holmberg et al., 2008, Correa et al., 2010, Cuzick et al., 2011, 

Wapnir et al., 2011). Clinical records, however, show that only half of women treated by 

lumpectomy receive radiation therapy (Baxter et al., 2004, Jackson et al., 2008, Hughes et 

al., 2009). Several studies have also reported that approximately 30% of patients do not 

receive any significant benefit from radiation therapy (Lagios et al., 1989, Schwartz et al., 

1992, Zafrani et al., 1994, Silverstein et al., 1995b, Silverstein et al., 1996).  

DCIS represents a heterogeneous spectrum of lesions with several treatment 

approaches. Some DCIS may require local surgical excision, while others require radiation 

therapy or mastectomy. While the benefit of lumpectomy and radiation therapy results in 

great survival benefits to early breast cancer patients as a whole, we are unable to identify 

which patients are over-treated and do not benefit from these interventions (Bartlett et al., 

2014). Paradoxically, we are uncertain of which DCIS lesions have an intrinsically higher 

propensity to progress to invasive cancer, such that some patients may be under-treated 

(Bartlett et al., 2014). Most patients therefore receive identical treatment, even though the 

risk, particularly of over-diagnosis and treatment, is well-recognized (Miller et al., 2014). The 

exception to this is patients with small, localized, non-high grade DCIS, for whom surgery 

without radiation is sometimes considered (Hetelekidis et al., 1999, Wong et al., 2014). Due 

to this important clinical problem, the 2009 National Institutes of Health State-of-the-Science 

Conference recommended that a focus on development and validation of risk stratification 

models and/or biomarkers is vital in order to optimize treatment strategies based on the 

underlying biology of each patient’s DCIS (Allegra et al., 2010).  
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 Biomarkers for progression to invasive carcinoma 

Breast cancers are now being diagnosed earlier, but this lead-time has not resulted in 

significant reductions in diagnosis of invasive carcinoma after DCIS (Kerlikowske, 2010, 

Miller et al., 2014). While up to 50% of DCIS lesions are expected to progress to IDC in the 

lifetime of the patient (Sagara et al., 2015), there is a high degree of variability in terms of 

latency (Muggerud et al., 2010). Indeed, some patients with DCIS progress to invasion 

quickly, while others remains relatively unchanged over 20 years (Porter et al., 2003, Schuetz 

et al., 2006). Previous studies have reported that traditional clinical and pathologic criteria 

are not sufficient to consistently and accurately define DCIS risk groups (Porter et al., 2003, 

Solin et al., 2013, Rakovitch et al., 2015). Conventional markers which are routinely assessed 

by immunohistochemistry in invasive breast cancers (ER, PR) are also of limited value in 

DCIS (Bartlett et al., 2014). The lack of reliable markers for risk stratification of patients 

diagnosed with DCIS results in identical treatment for almost all patients (Bartlett et al., 2014). 

There is therefore a pressing need for the development of novel diagnostic approaches for 

risk stratifications of patients with DCIS in order to optimize treatment strategies.  

The majority of examined IDCs possess non-invasive DCIS components; histological 

analysis of both lesion types in these instances has revealed near identical histological and 

biological features (Allred et al., 2008). A more thorough understanding of molecular 

alterations within precursor lesions has been made possible through the use of tissue 

microdissection technologies and high throughput genomic analyses. Diversity has been 

shown to emerge at the DCIS stage, with very similar histology and transcriptional profiles in 

the IDC portions within the same patient (Perou et al., 2000, Ma et al., 2003, Porter et al., 

2003, Schuetz et al., 2006, Allred et al., 2008). Analysis of pure DCIS, IDC, and mixed DCIS 

and IDC has revealed that by conducting hierarchical clustering based on the most variably 

expressed genes, DCIS cluster by “intrinsic subtype” and not by diagnosis (DCIS vs. IDC) 

(Muggerud et al., 2010). This suggests that genes that confer the ability to invade are active 

in some pre-invasive lesions (Muggerud et al., 2010). Additionally, they showed that not all 

HG DCIS exhibit the potential for invasion (Muggerud et al., 2010). Importantly, several 

studies have demonstrated that most gene expression changes characteristic of invasive 

breast cancers, including genes which confer invasive growth, are already present at the pre-

invasive stage (ADH, DCIS, and persist in IDC) (Ma et al., 2003, Porter et al., 2003, Abba et 
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al., 2015). These findings are consistent with early LOH and CGH-based studies showing 

that similar genetic abnormalities associated with DCIS and IDC are already present at the 

ADH stage (Zhuang et al., 1995, Deng et al., 1996, O'Connell et al., 1998, Allred et al., 2001). 

Van’t Veer et al. established a poor-prognosis signature associated with a 28-fold 

increased risk for the development of metastasis over a 5-year period (van 't Veer et al., 

2002). Based on their 70-gene approach, they concluded that even small primary tumors 

displaying a poor prognosis signature are already programmed for a metastatic phenotype 

(van 't Veer et al., 2002). Taken together, these studies suggest that since DCIS and IDC 

possess very similar transcriptional profiles, and a poor prognosis signature can be 

established from the primary IDC, the same may hold true for DCIS. 

The assessment of biomarkers for DCIS is still in its infancy. As highlighted by Bartlett 

et al., 60 DCIS biomarker studies were published during the 2004-2014 period, with 90% of 

the published studies regarded as statistically under-powered (Bartlett et al., 2014). 

Additionally, several of these studies remain un-validated (Bartlett et al., 2014). 

One DCIS biomarker that has been validated by several groups, however, is HER2 

expression (as assessed by immunohistochemistry (IHC) and fluorescence in situ 

hybridization (FISH)). High HER2 expression in DCIS is associated with non-invasive 

recurrence (Provenzano et al., 2003, Kepple et al., 2006, Nofech-Mozes et al., 2008, Holmes 

et al., 2011, Ringberg et al., 2001, Han et al., 2012). Additionally, joint assessment of HER2 

and Ki67 expression in DCIS was associated with a 3.22-fold increased risk of non-invasive 

recurrence (Rakovitch et al., 2012). Kerlikowske et al. reported that patients with DCIS which 

are ER- and HER2+ with high expression of Ki67 possess the greatest risk (Kerlikowske et 

al., 2010). The conclusions regarding HER2 expression and invasive recurrence post-

lumpectomy are variable. This discrepancy was discussed by Kerlikowske et al. and 

Rakovitch et al., where they suggested this outcome was dependent on subtype (Kerlikowske 

et al., 2010, Rakovitch et al., 2012, Bartlett et al., 2014). 

 Biomarkers which have been assessed by immunohistochemistry include HER2, ER, 

PR, Ki67, cyclooxygenase 2 (COX2), p16 and p53 (Kerlikowske et al., 2010, Rakovitch et al., 

2012, Bartlett et al., 2014). Noteworthy examples include studies examining the co-

expression of p16, COX2 and Ki67. High expression of p16 and COX2 in the absence of the 
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proliferation marker Ki67 is indicative of a normal stress response, and protective against 

progression of DCIS (Gauthier et al., 2007). High p16, and COX2 with elevated Ki67 

expression, however, is associated with a 2-fold higher rate of invasive recurrence (Gauthier 

et al., 2007, Kerlikowske et al., 2010). 

The usage of one biomarker for risk stratification will likely result in limited predictive 

power, so multiple markers are likely needed (van 't Veer et al., 2002). Multi-parameter gene 

expression approaches for risk stratification of patients with DCIS has also been reported in 

the literature. Oncotype Dx, a qRT-PCR based assay consisting of a panel of 16 breast-

cancer related genes and 5 housekeeping genes, possesses significant prognostic value in 

predicting recurrence of patients with early-stage, node-negative invasive breast cancers 

treated with adjuvant tamoxifen (Paik et al., 2004). The Oncotype Dx assay was adapted for 

assessment of DCIS recurrence risk after treatment by surgical excision without radiation 

therapy, and referred to as the DCIS Score (Solin et al., 2013). The DCIS Score is calculated 

through assessment of a 12-gene panel (including the previously-used 5 housekeeping 

genes), with an emphasis on genes involved in proliferation (Solin et al., 2013). The DCIS 

score of low, intermediate, and high-risk was associated with a 10.6% (3.7%), 26.7% 

(12.3%), and 25.9% (19.2%) risk of non-invasive (and invasive) recurrence over 10-years in 

the absence of radiation therapy (Solin et al., 2013). Interestingly, the DCIS Score was not 

associated with existing clinical or pathologic factors (Solin et al., 2013). These findings have 

been validated in an independent cohort of 718 patients, with 12.7% (low-risk), 33.0% 

(intermediate-risk), 27.8% (high-risk) local recurrence rates for the specified risk group over 

a 10-year follow-up period (Rakovitch et al., 2015). These findings may therefore be used to 

provide predictive information in order to determine which patients may be spared radiation 

therapy due to their low intrinsic risk of developing invasive breast cancer.  
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 Experimental Models of Breast Cancer Progression 

The development of breast cancer is a multi-step process, and our understanding of 

the underlying molecular events has been hindered due to a lack of suitable models of 

progression (Liu et al., 1994). Previous studies have demonstrated that mouse-derived pre-

malignant lesions are histologically different from those of humans, particularly in transgenic 

mouse models where the cellular origin of hyperplastic lesions is more often associated with 

the promoter rather than the transgenes used (Cardiff et al., 2000). The standard method 

used to determine malignant potential of cells within precursor lesions is transplantation 

(Cardiff et al., 2000). As described by Cardiff et al., this is similar to “Koch’s Postulates” of 

tumor biology, including “identification [of cells representing the precursor stage], isolation, 

transplantation and characterization” (Cardiff et al., 2000). Most human cells lines 

representing pre-malignant stages do not form any discernible histologic lesions in nude 

mice, and the majority of existing cell lines used for xenograft assays are of metastatic origin 

(Band et al., 1990, Miller, 2000). Importantly, only the 21T, HMT-3522, and MCF10AT breast 

epithelial cell line series have been reported to recapitulate the various histological 

characteristics of human breast carcinoma within a xenograft model (Santner et al., 2001, 

Rizki et al., 2008, Souter et al., 2010).  

The 21T series cell lines were isolated from a single patient with invasive ductal 

carcinoma through selective trypsinization and expanding of polygonal tumor-like cells from 

spindle-shaped epithelial cells and fibroblasts (Band et al., 1989, Band et al., 1990). The 

21PT and 21NT cells were isolated from the primary tumor, and 21MT-1 cells were isolated 

from a pleural effusion (Band and Sager, 1989, Band et al., 1989, Souter et al., 2010). 

Importantly, the isolated cell lines represent distinct stages of progression: 21PT cells mimic 

ADH (non-tumorigenic), 21NT cells mimic DCIS (tumorigenic, non-metastatic), and 21MT-1 

mimic IDC (tumorigenic, metastatic) when injected into the mammary fat pad of nude mice 

(Band et al., 1990, Souter et al., 2010). Karyotyping of the 21T series cell lines has previously 

been conducted by our laboratory (Xu et al., 2008), indicating that all three cell lines have 

common chromosomal aberrations, potentially reflecting a common origin within the same 

tumor (Xu et al., 2008). Additionally, these cells are weakly ER and PR positive, HER2 

amplified, and possess a mutated form of p53 (Band et al., 1990, Liu et al., 1994, Biswas et 

al., 1998, Biswas et al., 2001).  
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The HMT-3522 human breast epithelial cell lines were derived from a reduction 

mammoplasty, with the S1 cells isolated from a sample with fibrocystic breast disease 

(Madsen et al., 1992, Rizki et al., 2008). The S2, S3(A-B) and T4-2 cell lines were established 

through sub-culturing of cells (in 2D or 3D Matrigel), isolation of colonies with distinct 

phenotypes characteristic of aggressiveness, along with inoculation of cells into mice and 

passaging of xenograft cells for T4-2 cells (Madsen et al., 1992, Rizki et al., 2008). The cells 

represent a model of spontaneous transition and exhibit differential growth patterns and 

phenotypes in 3D Matrigel, along with varying tumorigenicity in nude mouse xenograft assays 

(Rizki et al., 2008). The S3 cell lines represent the pre-invasive stage of the human breast 

cancer progression series, but give rise to a metaplastic phenotype (Rizki et al., 2008). 

Human metaplastic breast cancers are rare, but also extremely aggressive, sharing similar 

clinical behavior and markers with basal-like breast carcinomas (Kenny et al., 2007, Rizki et 

al., 2008).  

There are several variants of the MCF10A cell line, all previously isolated from a 

sample consisting of fibrocystic breast disease, most notably the pre-malignant MCF10AT 

and malignant MCF10CA variants both of which are Ras transformed (Miller, 2000, Miller et 

al., 2000). In mouse xenograft assays, MCF10AT cells initially form simple ducts and lead to 

a wide spectrum of pre-malignant lesions, including ADH and DCIS, with approximately 25% 

of mice developing invasive carcinoma (Miller, 2000). Lesions formed by MCF10AT cells are 

highly heterogeneous, giving rise to several different and distinct histological subtypes as 

well as differential immunoreactivity (Strickland et al., 2000, Santner et al., 2001). 

Additionally, these cells are able to give rise to a myoepithelial cell layer (Tait et al., 1996), 

indicating the presence of precursor stem cells and likely explaining the unstable and 

heterogeneous phenotype (Miller, 2000). The MCF10DCIS.com cell variants were isolated 

from a xenograft lesion formed by MCF10AT cells (Miller et al., 2000). The MCF10DCIS.com 

cells are highly proliferative and form comedo DCIS (high nuclear grade with zonal necrosis) 

in vivo (Miller, 2000). These cells have high rates of spontaneous progression to invasive 

carcinoma, although the DCIS component is retained (Miller et al., 2000). The MCF10CA cell 

line was isolated through serial transplantation of spontaneous tumors formed by MCF10AT 

cells, and is malignant and highly metastatic (Miller, 2000, Santner et al., 2001). The 
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tumorigenic MCF10AT cell line variants are ER and PR positive, and possess wildtype p53 

(Shekhar et al., 1998, Miller, 2000, Hevir et al., 2011). 

A major advantage of utilizing a series of cell lines derived from a single patient to 

study progression is the minimal genetic variability. This allows for the mining of biologically 

relevant driver mutations and gene expression changes directly related to a subset of genetic 

alterations, independent of individual variability. Genetic manipulation of cell lines 

representing various stages of progression can be used to examine the relative functional 

impacts of genes on transitions between distinct stages (ADH, DCIS, IDC) (Souter et al., 

2010). This can often be done through the use of in vitro techniques, which can be modified 

for high-throughput screens for identification of genes important in functional and phenotypic 

transitions, or for identification of therapeutically effective chemical agents in preclinical 

screens (Miller, 2000). Souter et al. described a 3D in vitro Matrigel culture in which cells 

were seeded on Matrigel and the resultant colonies were phenotypically assessed (Souter et 

al., 2010). Through the use of this 3D culture system, the 21PT, 21NT and 21MT-1 cells were 

shown to exhibit differential phenotypes and display features of distinct stages of the breast 

cancer progression pathway (Souter et al., 2010). Less aggressive cell lines (including the 

21PT cells) typically show more polarized cells and higher rates of lumen formation, along 

with more spherical colonies and a lower frequency of single, dispersed cells (Souter et al., 

2010) (depicted in Figure 1.1.6). 
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Figure 1.1.6 – Characteristic growth patterns of 21T cell lines in 2D, 3D, and in mouse 

xenografts.  

H&E images were obtained from Souter et al., 2010.  
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1.2 TBX3 

TBX3 is a member of the highly conserved family of T-box transcription factors. The 

18 T-box genes within mammals are believed to have evolved from tandem duplication of a 

primordial gene, followed by cluster dispersion (Agulnik et al., 1996, DeBenedittis and Jiao, 

2011). Several of the T-box genes are expressed throughout development, with tight 

temporal and spatial regulation (DeBenedittis and Jiao, 2011). The identification of T-box 

family members generally occurred through experiments designed to identify genes involved 

in embryonic development, with lack of expression resulting in developmental defects (Bollag 

et al., 1994, Bamshad et al., 1999).  

The first T-box transcription factor identified was the Brachyury (TBXT) gene 

(Gruneberg, 1958). In mice, homozygous mutations in Brachyury are embryonic lethal due 

to insufficient formation of mesodermal cells in the developing embryo, while heterozygous 

mutations result in a variable short tail phenotype (Gluecksohn-Schoenheimer, 1938, 

Gruneberg, 1958, Yanagisawa et al., 1981, Stott et al., 1993). Several decades later, TBX3 

was discovered by Bollag et al., who postulated its role in development after observing highly 

specific patterns of expression in the developing mouse embryo (Bollag et al., 1994). It was 

later discovered that TBX3 plays an important role in limb, heart, and mammary gland 

development (Wilson and Conlon, 2002). In mice, homozygous TBX3 mutations are 

embryonic lethal, and most embryos die by E12.5 due to yolk sac defects (Davenport et al., 

2003). Limb defects, along with lack of mammary glands was also documented (Davenport 

et al., 2003), similar to the conditions observed in human patients. In humans, mutations or 

haploinsufficiency of TBX3 results in Ulnar-Mammary Syndrome (UMS, OMIM 181450). UMS 

is fully penetrant although it presents with highly variable clinical characteristics, mainly 

consisting of mammary gland hypoplasia, apocrine gland, dental, and genital defects 

(Bamshad et al., 1997, Bamshad et al., 1999, Davenport et al., 2003). These observed 

phenotypes are consistent with the broad expression profile of TBX3 (Figure 1.2.2). 

Complete loss of TBX3 expression is predicted to be fatal, as patients lacking both copies of 

TBX3 have not been identified (Rowley et al., 2004). 
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Figure 1.2.1 – Full-length TBX3 protein structure. Adapted from Willmer et al., 2017. 

The full-length TBX3 protein is 743 residues in length, containing the T-box domain 

(residues 105-305), nuclear localization sequence (NLS; residues 312-317), activation 

domain (residues 443-520) and repression domains (residues 123-200, 587-643) (Smith, 

1999, Carlson et al., 2001, Papaioannou, 2001, Willmer et al., 2017) (Figure 1.2.1). Two 

TBX3 isoforms exist through alternative splicing: TBX3iso1 and TBX3iso2 (which contains 

the 2a exon). TBX3 isoforms are described in Section 2.3.1. 

All T-box transcription factors possess the highly conserved DNA binding domain 

known as the T-box domain which shares no sequence similarity to other known DNA binding 

motifs (Wilson and Conlon, 2002). Most of the described T-box domains are approximately 

180 amino acids in length (Coll et al., 2002). T-box transcription factors bind to DNA 

sequences containing the T-box element (TBE) (Wilson and Conlon, 2002). To date, all T-

box transcription factors examined are able to bind to the TBE consisting of bases 

TCACACCT (Wilson and Conlon, 2002). Coll et al. have proposed a less stringent consensus 

sequence (5’-xTxxCACxx’-3’; x signifies a less conserved base) for identification of new T-

box binding sites (Coll et al., 2002).  

T-box proteins function as transcriptional activators or repressors depending on the 

promoter context (Wilson and Conlon, 2002, Lu et al., 2010). TBX2 is the most closely related 

T-box gene to TBX3, sharing ~95% sequence homology in the T-box domain and ~70% 

homology in the repression domain (Bamshad et al., 1999). Interestingly, TBX2 and TBX3 

are the only T-box transcription factors that function as transcriptional repressors (Carlson et 

al., 2001, Lu et al., 2010). Sequence analysis of the repression domain of TBX2 and TBX3 

revealed no conserved sequence or motifs shared with other known repression domains (Lu 
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et al., 2010). While TBX2 and TBX3 exhibit overlapping and complementary expression 

patterns in the developing mouse embryo, they were found to have non-redundant roles in 

developmental processes (Rowley et al., 2004).  

TBX3 possesses both activation and repression domains. Most of the existing cancer-

related literature focuses on transcriptional repression of target genes by TBX3, while 

transcriptional activation of target genes has been further characterized in heart development 

(Boogerd et al., 2011, Lu et al., 2011). The effect of TBX3 on transcription likely depends on 

interacting partners and target genes (Willmer et al., 2017). Several domains which facilitate 

protein-protein interaction likely reside outside of the T-box domain, since this area has 

undergone rapid diversification between T-box genes (Bamshad et al., 1999, Coll et al., 

2002). The effect of TBX3 on transcription of downstream target genes as they relate to the 

process of tumorigenesis is discussed in the next section. 

 

Figure 1.2.2 – TBX3 mRNA expression by tissue type.  

Graphical representation of TBX3 mRNA expression across tissue types was obtained from 

Jensen TISSUES database (tissues.jensenlab.org), depicting Genotype Tissue Expression 

(GTEx) dataset (histogram plot on upper right). TBX3 mRNA expression in normal tissue is also 

shown from the Human Protein Atlas (HPA) dataset. 
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 Mechanisms of transcriptional regulation by TBX3 

TBX3 is able to bind several target genes through recognition of the conserved TBE 

sequence by the DNA binding domain (Wilson and Conlon, 2002). X-ray crystallography 

studies of TBX3 and Brachyury indicate that there are only two specific contacts within the 

DNA binding domain per TBE (Müller and Herrmann, 1997, Coll et al., 2002). The binding of 

TBX3 to the phosphatase and tensin homolog (PTEN) promoter, however, occurs in the 

absence of a TBE sequence (Burgucu et al., 2012), thereby suggesting that the binding of 

TBX3 to target sites is likely dependent on: i) DNA specificity and binding to a conserved 

TBE, ii) interaction with specific DNA binding proteins, iii) interaction with chromatin 

determinants (Lingbeek et al., 2002, Rodriguez et al., 2008). TBX3 is able to interact with 

chromatin, and directly binds to histone H2A (Kumar P et al., 2014b), histone deacetylases 

(HDACs), and DNA methyltransferases (DNMTs) (Yarosh et al., 2008, Dan et al., 2013), 

leading to transcriptional up-regulation or down-regulation of target genes. Additionally, 

TBX2, TBX4, TBX5 and TBX6 are able to bind to histone H3 N-terminal tails (Demay et al., 

2007), the primary location of histone post-translational modifications (Mersfelder and 

Parthun, 2006). 

Acetylation of histones is associated with active chromatin (Lewin et al., 2011). 

Histone deacetylases (HDACs) are involved in the removal of acetyl groups from histones, 

which results in tighter histone-DNA interactions and reduced levels of transcription (Yarosh 

et al., 2008). As HDACs do not contain a DNA binding domain, they are recruited by DNA-

binding transcription factors (Cress and Seto, 2000). TBX3 is able to recruit and directly 

interact with histone deacetylases (HDACs) in order to epigenetically silence gene promoters 

(Willmer et al., 2017). This includes direct interaction with HDAC1, HDAC2, HDAC3, and 

HDAC5 to transcriptionally repress p14ARF in MCF7 cells (Yarosh et al., 2008). HDACs are 

often overexpressed in breast cancers (Zhang et al., 2005, Glozak and Seto, 2007), and it is 

suggested that each HDAC plays a specific role in the process of breast tumorigenesis (Puri 

et al., 2001, Dokmanovic and Marks, 2005, Glozak et al., 2005). The association between 

TBX3 and HDACs may therefore play an important role in breast cancer progression (Yarosh 

et al., 2008). Additionally, in a recent study in hepatocellular carcinoma (HCC), TBX3 was 

found to directly interact with HDAC5, resulting in down-regulation of E-cadherin; 
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administration of HDAC inhibitor was able to block TBX3-induced repression of E-cadherin 

and TBX3-induced migration in HCC cell lines (Dong et al., 2018). 

DNA methylation is associated with transcriptionally inactive DNA (Lewin et al., 2011). 

ChIP-Seq analysis revealed that TBX3 binds upstream of the DNA methyltransferases 

DNMT3A and DNMT3B genes, leading to their transcriptional repression (Han et al., 2010). 

TBX3 overexpression results in a reduction in the global DNA methylation levels, likely 

through down-regulation of DNMT3B (involved in DNA methylation) and up-regulation of 

TET2 (involved in DNA de-methylation) (Dan et al., 2013).  

Not only is TBX3 able to modify epigenetic profile of target genes, the physical 

interaction of TBX3 with several RNA-binding proteins and splice factors has revealed that 

TBX3 is also able to bind to TBEs within mRNA transcripts and directly regulate splicing 

(Kumar P et al., 2014b). These studies show that not only does TBX3 regulate gene 

expression through activation/repression of genes through various means including 

alterations of histone modifications, but is also able to modulate splicing of target mRNA 

sequences. In fact, there is an over-representation of TBEs in sequences flanking alternative 

exons (Kumar P et al., 2014b). Alternative splicing is an important post-transcriptional 

mechanism of gene regulation, and changes in alternative splicing profiles has been 

observed in several cancers (Venables, 2004, Pajares et al., 2007, Venables et al., 2008, 

Shapiro et al., 2011, Oltean and Bates, 2014). The study by Kumar et al. sheds light on other 

potential mechanisms in which TBX3 overexpression in several cancer types may lead to 

tumorigenesis (Kumar P et al., 2014b). 
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 TBX3 in Cancer 

TBX3 levels are up-regulated in several cancers, including breast (Fan et al., 2004, 

Lomnytska et al., 2006, Yarosh et al., 2008, Souter et al., 2010), melanoma (Rodriguez et 

al., 2008), pancreatic (Hansel et al., 2004, Cavard et al., 2009, Begum and Papaioannou, 

2011), cervical (Lyng et al., 2006), ovarian (Lomnytska et al., 2006), gastric (Miao et al., 

2016), and prostate cancers (Gudmundsson et al., 2010, Witte, 2010). TBX3 expression 

levels in normal tissues, tumor tissues, and plasma samples have been assessed in several 

studies described below, using methods ranging from IHC, microarray analysis, qRT-PCR, 

western blot, and 2D gel electrophoresis coupled to mass spectrometry. 

TBX3 PROTEIN IN CANCERS – Assessment of TBX3 expression in pancreatic cancer by 

IHC revealed that elevated TBX3 expression within tumor samples was an independent 

prognostic factor for reduced overall survival (Wang et al., 2015). In gastric cancers, elevated 

TBX3 expression by IHC was significantly associated with advanced TNM (tumor, node, 

metastasis) stage and higher incidence of relapse (Miao et al., 2016). In colorectal cancer, 

elevated TBX3 expression by IHC was an independent predictor of poor outcome, and was 

correlated with tumor size, differentiation, TNM stage and lymph node metastasis (Shan et 

al., 2015).  

Lomnytska et al. assessed differential protein expression within plasma samples of 

breast and ovarian cancer patients through the use of 2D gel electrophoresis coupled to 

matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-

MS) (Lomnytska et al., 2006). This study revealed significantly higher levels of TBX3 in 

plasma of both early stage and advanced stage breast cancer and ovarian cancer patients 

relative to healthy control patients (Lomnytska et al., 2006).  

Examination of TBX3 expression by western blot in a diverse subset of cell lines 

representing normal human fibroblasts, transformed fibroblasts, and several soft tissue and 

bone sarcoma cell lines reported high levels of TBX3 in transformed fibroblasts and sarcoma 

cell lines relative to normal human fibroblast controls (Willmer et al., 2016a). Willmer et al. 

suggested clinical assessment of TBX3 expression to differentiate benign soft tissue masses 

from sarcomas (Willmer et al., 2016a).  



 

26 

26 

TBX3 mRNA IN CANCERS – TBX3 is overexpressed in a variety of different cancer types 

(Figure 1.2.3). Microarray analysis revealed that elevated TBX3 mRNA expression was 

associated with advanced tumor stage, chemo-resistance and an unfavorable prognosis in 

patients with hepatoblastoma (Renard et al., 2007). Assessment of TBX3 expression by qRT-

PCR and western blot in non-small cell lung cancer (NSCLC) patient samples revealed that 

overexpression of TBX3 was associated with tumor size, TNM stage, differentiation, and 

recurrence, and was an independent prognostic marker for overall survival (Wu et al., 2017). 

Additionally, up-regulation of TBX3 has been documented with chronic exposure to 

carcinogens, including a positive correlation with tobacco smoking status (Wu et al., 2017) 

and exposure to the environmental toxin DE-71 and liver tumorigenesis (Shimbo et al., 2017). 

 

 

Figure 1.2.3 – TBX3 mRNA expression by cancer type.  

Graphic obtained from CCLE (Cancer Cell Line Encyclopedia).  
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The single published transgenic TBX3-inducible mouse model used a doxycycline-

inducible TBX3iso2 expression system under the control of the mouse mammary tumor virus 

(MMTV) promoter (Liu et al., 2011). Their results showed that overexpression of TBX3iso2 

in murine mammary glands resulted in mild focal hyperplasia and importantly no tumor 

formation (Liu et al., 2011). The effect of inducible overexpression of TBX3iso1 was not 

examined. Few xenograft studies have been conducted overexpressing either TBX3iso1 or 

TBX3iso2 (or knockdown of total TBX3 levels) in various cell line backgrounds in order to 

assess resultant tumorigenicity. TBX3iso1 was overexpressed in SWI1353 chondrosarcoma 

cells and exhibited enhanced tumor growth (Willmer et al., 2016a). Injection of TBX3-

overexpressing non-tumorigenic WM1650 melanoma cells into the flank of nude mice 

resulted in 6/6 of mice forming tumors compared to 0/6 in the parental control cells (Peres 

and Prince, 2013). Overexpression of TBX3 in pancreatic cancer cell lines resulted in 

significantly larger tumors than controls (Perkhofer et al., 2016). The latter two examples did 

not state which TBX3 isoform was overexpressed. The shRNA-mediated knockdown of TBX3 

in tumorigenic ME1402 melanoma cells abolished their ability to form tumors when injected 

into the flank of nude mice (Peres et al., 2010).  

The use of TBX3 as a potential biomarker in various cancer subtypes has been 

examined through the use of several methodologies, as has its role in chemically-induced 

carcinogenesis. In all documented cancer cases aside from fibrosarcoma, overexpression of 

TBX3 has led to increased migration and invasion (Rodriguez et al., 2008, Peres et al., 2010, 

Krstic et al., 2016, Willmer et al., 2016a). Although the contribution of TBX3 in tumorigenesis 

is not fully understood, accumulating evidence suggests that several pathways may be 

involved (summarized in Figure 1.2.4). More research is needed for further identification of 

upstream activators of TBX3 signaling, its target genes, along with co-factors required for its 

proper functioning (Willmer et al., 2017). Some of the cancer-associated pathways in which 

TBX3 is involved are described in the next sections.  
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Figure 1.2.4 – Cancer-related TBX3 signaling pathways.  

Green lines represent direct transcriptional interactions, while red lines represent direct  

post-translational interactions. 
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 TBX3 and Cellular Senescence – p14ARF / p53 / p21CIP1 Pathway 

The cyclin-dependent kinase inhibitor 2A (CDKN2A) gene encodes the p16INK4A and 

p14ARF proteins in humans, with differential promoters and partially overlapping reading 

frames (Ruas and Peters, 1998). Both proteins act as tumor suppressors and are important 

regulators of cellular senescence (Ruas and Peters, 1998). While p14ARF is primarily involved 

in stabilization of p53, p16INK4A inhibits the enzymatic activity of cyclin-dependent kinases 4 

and 6 (CDK4/6) (Rayess et al., 2012). CDK4/6 binds cyclin D, which then phosphorylates the 

Retinoblastoma (Rb) protein, resulting in dissociation of Rb and the E2F transcription factor, 

thereby promoting the G1 to S phase transition (Rayess et al., 2012). 

Cellular senescence is a protective mechanism of irreversible growth-arrest resulting 

in permanent exit from the cell cycle. Senescence can be induced by cellular stresses 

(accelerated senescence) or telomere shortening (replicative senescence) (Lu et al., 2010). 

One of the most well described pathways of accelerated senescence is through activation of 

p14ARF, whereby p14ARF binds to and sequesters mouse double minute 2 (MDM2), preventing 

MDM2 from targeting p53 for destruction (Tao and Levine, 1999). High expression of p14ARF 

thus stabilizes p53, leading to expression of p53 target genes (Lu et al., 2010). Early studies 

reported that TBX3 overexpression leads to impaired functioning of the p53-pathway, 

suppression of apoptosis and facilitation of cell transformation (Carlson et al., 2002). TBX3 

was later identified in a senescence screen and described as a potent inhibitor of senescence 

through inhibition of p14ARF (and p19ARF mouse ortholog), explaining the previously reported 

effect on p53 (Brummelkamp et al., 2002). After this initial identification of the powerful anti-

senescence effect of TBX3, both TBX3 and TBX2 have been shown to bind to a variant TBE 

in the human p14ARF promoter matching 13 of 20 nucleotides within the consensus TBE 

(Lingbeek et al., 2002). Specifically, TBX3 is able to interact with HDACs 1, 2, 3 and 5, leading 

to local changes in histone acetylation and subsequent down-regulation of p14ARF expression 

in breast cancer cell lines (Yarosh et al., 2008).  

Overexpression of several oncogenes and activation of mitogenic signaling pathways 

induces p14ARF expression, and subsequent p53-dependent cell cycle arrest (Rowley et al., 

2004). Overexpression of MYC or oncogenic H-RasVal17 with TBX3 (but not by themselves), 

however, protects cells from apoptosis through inhibition of p14ARF (Carlson et al., 2002). On 

a similar note, knockdown of TBX3 was shown to sensitize cells to doxorubicin in rat bladder 
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carcinoma and human colorectal cancer, later attributed to activation of the p14ARF / p53 

pathway (Renard et al., 2007, Zhang et al., 2011a).  

The cyclin-dependent kinase inhibitor p21CIP1 is essential for p53-induced cellular 

senescence (Waldman et al., 1995). TBX3 was shown to directly bind to the p21CIP1 promoter 

and repress gene transcription in a dose-dependent manner in melanoma cell lines 

(Hoogaars et al., 2008, Willmer et al., 2016b). This was shown by electromobility shift assays 

(EMSA), luciferase assays, and ChIP qRT-PCR validation (Hoogaars et al., 2008, Willmer et 

al., 2016b). Repression of both p14ARF and p21CIP1 by TBX3 produces a powerful synergistic 

effect, leading to a strong inhibition of senescence (Lu et al., 2010).  

Lastly, TBX3 is also able to bypass senescence through down-regulation of p16INK4A 

through formation of a co-repressor complex, leading to destabilization of p16INK4A and 

inhibition of the Rb pathway (Kumar P et al., 2014a). 

 

 TBX3 and the TGF-ß Pathway 

The transforming growth factor beta (TGF-ß) signaling pathway is involved in 

development, along with the processes of homeostasis, proliferation and differentiation in 

adult tissues (Massagué, 2012). TGF-ß proteins bind their cognate receptors, and the signal 

is mediated through the canonical suppressor of mothers against decapentaplegic (SMAD) 

proteins that control the expression of hundreds of genes (Massagué, 2012). The TGF-ß 

signaling pathway is constitutively activated in several breast cancers, leading to a promotion 

of migration but inhibition of proliferation of cancer cells (Tian et al., 2003, Moses and 

Barcellos-Hoff, 2011). Treatment of epithelial cell lines with TGF-ß results in up-regulation of 

TBX3 (Kang et al., 2003). Later it was discovered that TGF-ß1 is able to up-regulate TBX3 

through cooperative binding of Smad3/4 and JunB in the TBX3 promoter, with subsequent 

TBX3-dependent repression of the pro-proliferative family member TBX2 in melanoma cell 

lines (Li et al., 2013, Li et al., 2014). While overexpression of TBX3 results in an increased 

proliferation rate in several cell lines, TBX3 has an anti-proliferative effect in melanoma cell 

lines while still maintaining its pro-tumorigenic properties (Peres et al., 2010). TBX3 was 

therefore proposed to mediate the anti-proliferative, pro-migratory effect associated with 

TGF-ß signaling in melanoma cells (Li et al., 2013, Li et al., 2014).  
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 TBX3 and the FGF Pathway 

The fibroblast growth factor (FGF) signaling pathway is comprised of a group of 

developmentally-important secreted signaling proteins. Binding of FGF ligands to their 

signaling receptors (FGFRs) results in activation of their intracellular tyrosine kinase domain, 

which can activate several intracellular signaling pathways involved in maintenance, repair, 

regeneration and metabolism of adult tissues (Ornitz and Itoh, 2015).  

During development in the mouse, TBX3 is initially expressed in the mammary lineage 

prior to mammary bud formation at E10.25, which is followed by the first signs of the 

mammary gland at E10.5 to E11, and expression of several Wnts and FGF ligands (Eblaghie 

et al., 2004). Eblaghie et al. soaked beads in various FGF proteins, and implanted them into 

the flank of mice in order to assess expression of downstream genes of interest (Eblaghie et 

al., 2004). They reported that FGF8 induces expression of TBX3 in an FGFR1-dependent 

manner (Eblaghie et al., 2004). These early studies showed that TBX3 and FGF ligands are 

able to interact and influence expression of one another within a developmental context 

(Eblaghie et al., 2004). Several other studies have reported autoregulation of expression 

between T-box and FGF family members (Isaacs et al., 1994, Schulte-Merker and Smith, 

1995, Casey et al., 1998, Eblaghie et al., 2004). 

In a breast cancer context, Fillmore et al. reported that estrogen leads to an expansion 

of breast cancer stem cells (CSCs) through the FGF and TBX3-mediated signaling pathways 

(Fillmore et al., 2010). The binding of estrogen to the estrogen receptor results in 

transcriptional up-regulation of FGF proteins (Fillmore et al., 2010). Specifically, FGF9 binds 

to FGFR3, which induces TBX3 expression (Fillmore et al., 2010). Elevated TBX3 expression 

is important for further production of FGF proteins and signal propagation, eventually 

resulting in an increase in an expansion of the breast CSC population (Fillmore et al., 2010). 

It was therefore shown that due to this TBX3-mediated expansion of CSCs in MCF7 cells 

treated with estrogen, TBX3 overexpression resulted in a 100-fold increase in tumor initiation 

rates in ovariectomized NOD/SCID mice (Fillmore et al., 2010). 
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 TBX3 and the Wnt / ß-Catenin Pathway 

The Wingless (Wnt) signaling pathway is involved in cellular proliferation and 

differentiation, and plays a crucial role in development and tissue homeostasis (Giles et al., 

2003). Several Wnt proteins are overexpressed in breast cancer cell lines, leading to 

activation of the canonical Wnt/ß-catenin signaling pathway (Howard and Ashworth, 2006). 

ß-catenin directly binds to the TBX3 promoter through a T-cell specific (TCF)-binding site, 

leading to increased proliferation and survival of liver cancer cells (Renard et al., 2007).  

TBX3 and Wnt signaling have been extensively studied in the processes of 

development. Within the developing mammary gland, TBX3 is required for the induction of 

Wnt signaling, as homozygous TBX3 mutant transgenic mice showed an inability to initiate 

mammary gland development and lack expression of the earliest markers of this 

developmental process (Lef1 and Wnt10b) (Davenport et al., 2003, Rowley et al., 2004). 

Additionally, induction of TBX3 expression in the developing mammary gland requires Wnt 

signaling (Eblaghie et al., 2004, Douglas and Papaioannou, 2013), suggesting the presence 

of a feedback loop (Davenport et al., 2003, Eblaghie et al., 2004, Cho et al., 2012). TBX3 

overexpression in mammary epithelial cells was additionally reported to coordinate 

expansion of progenitor cells through induction of Wnt signaling (Arendt et al., 2014). 

 
 TBX3 and the PTEN / PI3K / AKT Pathway  

The phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway 

has been described as an upstream mediator of TBX3 expression in mouse embryonic stem 

cells (Niwa et al., 2009), melanoma, and head and neck squamous cell carcinoma (HNSCC) 

(Burgucu et al., 2012, Boyd et al., 2013, Peres et al., 2015). The PI3K/AKT pathway promotes 

proliferation and cell survival in response to binding of growth factors, cytokines and/or 

hormone ligands to receptor tyrosine kinases (RTKs) (Cantley and Neel, 1999).  

AKT3, the predominant AKT isoform expressed in melanomas, was shown to 

phosphorylate TBX3 at residue Ser-720 in vitro, leading to increased protein stability and 

nuclear localization (Peres et al., 2015). This phosphorylation event resulted in enhanced 
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repression of E-cadherin by TBX3, and increased migration and invasion of melanoma cell 

lines (Peres et al., 2015).  

There is also evidence that TBX3 may function upstream of the PI3K/AKT pathway 

through repression of the tumor suppressor PTEN. PTEN is the main negative regulator of 

PI3K, thus functioning as a tumor suppressor through its PI3K-dependent inhibition of AKT 

(Cantley and Neel, 1999). There is an inverse correlation between TBX3 and PTEN 

expression in HNSCC (Burgucu et al., 2012). TBX3 is able to repress both basal and induced 

expression of PTEN in HNSCC cell lines, through binding a non-canonical TBX3 binding site 

in the PTEN promoter (Burgucu et al., 2012). TBX3 was not able to repress PTEN in muscle 

cells, however, suggesting context-dependent repressive functions (Zhu et al., 2016). 

 
 Regulation of TBX3 by miRNAs 

MicroRNAs (miRNAs) are non-coding RNAs which are able to modulate gene 

expression by binding to complementary nucleotides in the 3’ untranslated region (UTR) of 

target genes (Bartel, 2004). The 3’ UTR of TBX3 extends 1,587 bp beyond the termination 

codon (Bamshad et al., 1999). Binding sites for several microRNAs have been found in the 

3’ UTR of TBX3, including miR-25, miR-32, miR-92, miR-93 (validated), miR-137 (validated), 

miR-206 (validated), miR-363, and miR-367 (Zhang et al., 2011b, Humtsoe et al., 2012, Jiang 

et al., 2013, Cioffi et al., 2015, Amir et al., 2016).  

Most of the in vitro studies assessing miRNA regulation of TBX3 have been conducted 

with miR-137 (Jiang et al., 2013, Peres et al., 2017). The miR-137 is an important regulator 

of differentiation in embryonic stem cells (Szulwach et al., 2010, Sun et al., 2011, Jiang et 

al., 2013), and inhibits anchorage-independent growth and migration of malignant melanoma 

cells (Peres et al., 2017). Expression of miR-137 is down-regulated in several cancers, with 

epigenetic silencing of miR-137 representing an early event in colorectal cancer (Silber et al., 

2008, Balaguer et al., 2010, Chen et al., 2010, Jiang et al., 2013, Peres et al., 2017).  
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1.3 Alternative Splicing in normal and neoplastic cells 

Gene expression changes, on their own, cannot fully account for changes in gene 

functions and cellular phenotype (Venables, 2004). It is estimated that over 90% of human 

genes are alternatively spliced, adding an enhanced layer of complexity and diversification 

to genes encoded in the genome (Matlin et al., 2005, DeBenedittis and Jiao, 2011). Cancer 

cells are able to exploit the process of alternative splicing to produce isoform switches, 

resulting in enhanced survival, proliferation and invasiveness (Oltean and Bates, 2014, Shen 

et al., 2016). 

Genes are transcribed into pre-mRNA, containing long intervening segments called 

introns, and protein-coding segments called exons. Alternative splicing refers to the “cutting” 

of intron-exon boundaries in pre-mRNA and joining the exons together in highly specific 

arrangements, producing structurally and functionally distinct mRNA and protein variants 

(Blencowe, 2006). The majority of alternative splicing events occur simultaneously with 

transcription, with the emergence of pre-mRNA from RNA polymerase II (Bentley, 2005, 

Blencowe, 2006). Additionally, modifiers of chromatin structure, including histone 

modifications and nucleosome positioning, affect transcription kinetics and thus alternative 

splicing decisions (Kornblihtt et al., 2013). This global post-transcriptional mechanism thus 

allows for cell-specific, stage-specific and stimuli-specific responses (Pajares et al., 2007). 

After transcription and pre-RNA processing is completed, mature mRNA is exported 

from the nucleus to the cytoplasm where it is translated into protein. As a precautionary 

quality control mechanism, the nonsense-mediated mRNA decay (NMD) pathway leads to 

cytoplasmic degradation of inappropriately expressed transcripts (Pajares et al., 2007). 

Sometimes an aberrant transcript is not detected by the NMD pathway and is translated into 

protein; this is observed in several diseases including cancers (Pajares et al., 2007). 

Each hallmark of cancer has been associated with changes in alternative splicing 

(Oltean and Bates, 2014). Mutations in cis-regulatory elements (i.e. splicing enhancers and 

silencers), near intron-exon junctions (i.e. creating or disrupting splice sites), or trans-acting 

splicing factors (i.e. involved in assembly of spliceosome) can lead to aberrant splicing 

(Pajares et al., 2007). Additionally, changes in concentration, localization, activity, and/or 
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composition of trans-acting splice factors (even in the absence of mutations) has also been 

documented to alter splicing patterns (Pajares et al., 2007). The documented splicing 

machinery changes during oncogenesis result in cancer-specific patterns of alternative 

splicing, leading to the emergence of previously non-existent transcripts and/or aberrant 

isoform ratios expressed within tumors relative to normal tissues (Pino et al., 2003, Venables, 

2004, Ladomery et al., 2007, Pajares et al., 2007). 

There are numerous examples of alternatively spliced transcripts having diverse and 

antagonistic functions (Pajares et al., 2007). A prominent example includes alternative 

splicing of vascular endothelial growth factor (VEGF); most splice variants are actively pro-

angiogenic (Ladomery et al., 2007). Interestingly, the VEGFb splice variant is actively anti-

angiogenic, and contains only 6 different amino acids relative to its most similar isoform 

(Ladomery et al., 2007). A splicing switch from the anti-angiogenic to pro-angiogenic variant 

is observed both in cancer progression, as well as in diseases such as proliferative diabetic 

retinopathy (Blencowe, 2006, Ladomery et al., 2007, Pajares et al., 2007). As such, 

differential expression of VEGF isoforms is associated with significant differences in survival 

for patients with node-positive breast cancer (Konecny et al., 2004).  

Recent studies have shown that alternative-splicing based analyses consistently 

outperform gene expression-based survival predictors (Shen et al., 2016, Klinck et al., 2008). 

Shen et al. have reported distinct cancer-associated alternative splicing patterns across 6 

different cancer types in the TCGA datasets (Shen et al., 2016). Various strategies are 

currently being employed in an attempt to exploit alternative splicing in diagnosis, prognosis 

and treatment of cancer (Yamaguchi et al., 1998, Venables, 2004). The large number of 

genes encoded in the human genome, along with the many subtypes of cancer in which 

alternative splicing changes have been documented suggests that the current knowledge is 

only the beginning in our understanding of the cause and effect of alternative splicing events 

in cancer, as well as how this knowledge may be used clinically.  
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 Alternative Splicing of T-box genes 

Most of the T-box family members encode a single transcript and few examples of 

alternative splicing have been documented (Wilson and Conlon, 2002, DeBenedittis and 

Jiao, 2011). While TBX3, TBX5 and TBX21 undergo alternative splicing, only TBX3 and 

TBX21 contain an insertion in their T-box domain (DeBenedittis and Jiao, 2011). Alternative 

splicing of TBX3 leads to two distinct transcripts; TBX3iso2 contains an additional 20 amino 

acid sequence in the DNA binding region attributed to the 2a exon, while TBX3iso1 does not 

(Bamshad et al., 1999). Alternative splicing of TBX21 leads to a three amino acid insertion in 

the DNA binding domain corresponding to the exon 2a insertion site in TBX3 (DeBenedittis 

and Jiao, 2011). While alternative splicing of TBX3 in particular is highly conserved within 

mammals (Hoogaars et al., 2008), the functional significance of the 2a exon remains unclear. 

These alternative splicing events may therefore provide a potentially critical differential role 

for TBX3 isoforms in development and tumorigenesis (DeBenedittis and Jiao, 2011). 

Previous studies have reported that isoforms of T-box proteins can differ in subcellular 

localization, expression, protein-protein interaction, and functionality (Wilson and Conlon, 

2002, DeBenedittis and Jiao, 2011). For example, alternative splicing of TBX5 leads to two 

protein products, TBX5a and TBX5b (DeBenedittis and Jiao, 2011). While only TBX5a can 

bind to the natriuretic peptide A (Nppa) promoter, both TBX5a and TBX5b can interact with 

GATA4 (Georges et al., 2008, DeBenedittis and Jiao, 2011). Additionally, TBX5a and TBX5b 

have differential cellular localization, with TBX5a being strictly nuclear localized while TBX5b 

is localized within the cytoplasm and nucleus (Georges et al., 2008). These studies indicate 

that relative levels, along with transcriptional targets and protein-protein interactions of each 

isoform must be examined in order to understand the resultant functions of alternatively 

spliced transcripts. 

The TBX3 isoform ratios were found to be tissue and species specific (Stennard et al., 

1999, Fan et al., 2004). Differing levels of TBX3 isoforms have also been reported in several 

breast cancer cell lines (Bamshad et al., 1999, Fan et al., 2004). Additionally, the ratio of 

TBX3iso2 to TBX3iso1 increased during osteogenic differentiation in human adipose stromal 

cells (Lee et al., 2007), thereby suggesting that isoform ratios are important in differentiation. 

Based on preliminary studies assessing functional differences between TBX3 isoforms, along 
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with details regarding differential properties of alternatively spliced T-box transcription 

factors, DeBenedittis et al. proposed that assessment of TBX3 isoform expression levels is 

of importance for future studies (DeBenedittis and Jiao, 2011).  

Residues Ser224 and Met225 within the DNA binding domain of human TBX3iso1 

have been shown to interact with target DNA sequences with the TBE through polar and 

hydrophobic interactions, respectively (see Figure 1.3.1) (Coll et al., 2002). The transcribed 

2a exon within TBX3iso2 is located at residues 220-240; this alternative splicing event shifts 

the residues that interact with target DNA, while the effect on transcriptional regulation 

remains unclear.  

Conflicting results have been published regarding functionality of the TBX3 isoforms. 

Fan et al. reported that TBX3iso2 did not bind to a sequence containing a previously-

identified TBE in their in vitro oligonucleotide binding assays (Fan et al., 2004), proposing 

that the 20-amino acid addition in the DNA binding domain of TBX3iso2 alters the protein’s 

binding to target sequences (Fan et al., 2004). Other studies have assessed TBX3iso1 and 

TBX3iso2 in various assays and found both isoforms to have similar functions in vitro, 

reporting that both TBX3 isoforms were able to bind to the TBE in the Nppa and p21CIP1 

promoters (Hoogaars et al., 2008). Hoogaars et al. proposed that since the 20-amino acid 

insertion does not make contact with DNA, it may not alter binding (Hoogaars et al., 2008). 

The function of T-box proteins is regulated by protein-protein interactions with other 

transcription factors (Lu et al., 2010), several of which are mediated through the T-box 

domain. Some groups have therefore speculated that there may be differential protein-

protein interactions between TBX3 isoforms. Through glutathione S-transferase (GST) pull 

down assays to examine TBX3iso1 and TBX3iso2 interacting proteins, it was revealed that 

both TBX3 isoforms physically interact with a known T-box interacting protein, NK2 

homeobox 5 (Nkx2-5), via the T-box binding domain (Hoogaars et al., 2008). Additionally, 

while both TBX3 isoforms were able to inhibit transcription of Nanog in luciferase assays, 

only TBX3iso2 was able to directly bind to Nanog in co-immunoprecipitation experiments 

(Zhao et al., 2014). More work is therefore needed in order to evaluate which proteins TBX3 

physically interacts with, and whether differences exist between isoforms. 
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Figure 1.3.1 – TBX3 Protein Sequence Secondary Structure.  

Protein structure of TBX3iso1 (with absence of 2a exon at residue 220-240) is shown above. 

Image was obtained from Protein Data Bank (PDB), available at https://www.rcsb.org.  

 
  

https://www.rcsb.org/
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1.4 Epithelial-Mesenchymal Transition (EMT) 

Over 90% of cancer-related deaths are due to the process of metastasis (Luzzi et al., 

1998, Kumar et al., 2013). Incredible phenotypic plasticity is required for malignant cells of 

epithelial origin to leave the primary tumor, intravasate into the blood or lymphatic vessels, 

and then extravasate at a distant secondary site and establish growth (Oltean and Bates, 

2014). The acquisition of an epithelial-mesenchymal transition (EMT) phenotype plays an 

important role in systemic dissemination of cancer cells through the process of metastasis 

(Chaffer and Weinberg, 2011). In breast cancer specifically, the phenomenon of EMT has 

been associated with highly aggressive tumors and therapeutic resistance (Blick et al., 2008, 

Sarrió et al., 2008, Creighton et al., 2009, Polyak and Weinberg, 2009).  

EMT is the process whereby epithelial cells lose apical-basal polarity, tight cell-to-cell 

contacts, and undergo remodelling of the actin cytoskeleton, with the acquisition of a more 

migratory mesenchymal phenotype. The process of EMT is critical in normal processes such 

as embryogenesis and wound healing, and is reactivated in invasive and metastatic tumors 

(Polyak and Weinberg, 2009, Thiery et al., 2009). The most studied transcription factors in 

the promotion of EMT include TWIST1, SNAIL (SNAI1), and SLUG (SNAI2) (Shapiro et al., 

2011). SNAIL, SLUG and TWIST1 are frequently overexpressed in IDC and have been 

associated with histological grade, lymph node metastasis, and reduced survival (Blanco et 

al., 2002, Elloul et al., 2005, Martin et al., 2005, Mironchik et al., 2005, Côme et al., 2006, 

Palena et al., 2014, Alix-Panabières et al., 2017).  

Several studies have shown that expression of EMT markers is associated with poor 

clinical outcome in several epithelial cancers, including breast cancer (Abba et al., 2004, 

Thompson et al., 2005, Sabbah et al., 2008, Shapiro et al., 2011, Sørlie et al., 2001). The 

induction of EMT is associated with alterations in canonical EMT markers, including up-

regulation of the mesenchymal proteins vimentin (VIM) and N-cadherin (CDH2), as well as 

down-regulation of the epithelial protein E-cadherin (CDH1). Both E-cadherin and N-cadherin 

are members of the cadherin superfamily of cell adhesion molecules involved in homophilic 

cell-to-cell interactions. E-cadherin is an integral epithelial membrane protein that mediates 

cell-to-cell adhesion and is widely regarded as a major suppressor of motility and 

invasiveness of cancer cells (Le Bras et al., 2012). Several EMT transcription factors (SNAIL, 
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SLUG, ZEB1, ZEB2, Brachyury) are able to directly down-regulate E-cadherin expression 

(De Craene and Berx, 2013). Combined repression of other junctional proteins, along with 

E-cadherin, facilitates the de-differentiation program and induction of EMT (De Craene et al., 

2005, Vandewalle et al., 2005, Moreno-Bueno et al., 2006, De Craene and Berx, 2013). The 

switch from E-cadherin to N-cadherin expression is associated with malignant progression 

and poor clinical outcome in several cancer types (Gravdal et al., 2007, Polyak and 

Weinberg, 2009). Up-regulation of N-cadherin enhances interaction between cancer cells 

and endothelial/stromal cells, thereby providing a mechanism for endothelial transmigration 

(Tran et al., 1999, Hazan et al., 2000). 

EMT is also associated with suppression of apoptosis, cellular senescence, and 

chemo-resistance (Polyak and Weinberg, 2009, De Craene and Berx, 2013, Nieto et al., 

2016). Additionally, several correlations have been documented relating expression of EMT 

markers and a stem-like phenotype, and response to breast cancer therapy (Mani et al., 

2008, Morel et al., 2008, Aktas et al., 2009, Creighton et al., 2009). This is likely due to an 

enrichment of CSCs after standard breast cancer treatments including letrozole or docetaxel 

(Mani et al., 2008, Creighton et al., 2009). 

Direct in vivo evidence for EMT has been challenging due to its dynamic and transient 

nature, as well as the reverse process, mesenchymal-epithelial transition (MET). The 

process of MET is believed to play a fundamental role once cells have extravasated from the 

vasculature into distant organs, allowing for clonal outgrowth (Alix-Panabières et al., 2017). 

While the process of EMT has been documented in mouse models (Oltean et al., 2008), 

many invasive tumors and metastatic lesions exhibit epithelial morphology and are positive 

for epithelial markers (Christiansen and Rajasekaran, 2006). This is likely attributed to partial 

induction of EMT, a restriction of the occurrence of this process to a small number of cells, 

and the reverse process of MET (Shapiro et al., 2011). The assessment of EMT markers 

would therefore only measure levels at one point in time, and has mostly been reported at 

the invasive front of primary tumors of epithelial origin (Scheel et al., 2007, Brabletz, 2012, 

Puisieux et al., 2014). Interestingly, studies assessing the importance of MET in metastatic 

colonization have reported that tumor cells that have undergone partial EMT possess the 

most malignant features (Nieto et al., 2016, Alix-Panabières et al., 2017). 
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 TBX3 and EMT 

An EMT phenotype is characterized by a cadherin switch, with reduced expression of 

the epithelial marker E-cadherin, and increased expression of the mesenchymal marker  

N-cadherin (Polyak and Weinberg, 2009). Importantly, TBX3 is able to directly repress  

E-cadherin expression levels, which has been documented in HCC and melanoma cell lines 

(Rodriguez et al., 2008, Dong et al., 2018). 

High throughput analyses have linked elevated TBX3 expression with an EMT 

phenotype (Humtsoe et al., 2012). In this study, Humtsoe et al. conducted microarray 

analysis to examine gene expression differences between a panel of squamous cell 

carcinoma (SCC) cell lines displaying either a non-EMT or an EMT-like phenotype (Humtsoe 

et al., 2012). They revealed strong up-regulation of TBX3 in EMT-like SCC cells, as well as 

in a model of Snail-induced EMT (Humtsoe et al., 2012). Additionally, they reported a close 

association between high TBX3 and N-cadherin expression, and low E-cadherin expression 

across twelve SCC cell lines (Humtsoe et al., 2012), which has been recapitulated in 

colorectal cancer samples (Shan et al., 2015), and gastric cancer cell lines (Miao et al., 2016). 

Elevated TBX3 expression is also associated with increased vimentin expression (Krstic et 

al., 2016, Miao et al., 2016). Lastly, TBX3 was shown to drive a pro-EMT phenotype in B-

RAF mutant melanomas (Boyd et al., 2013). These examples show that there is an 

abundance of preliminary studies showing a link between TBX3 and an EMT profile, although 

the molecular mechanisms remain elusive.  

Other T-box transcription factors, including Brachyury and TBX2, are also able to 

induce EMT (Fernando et al., 2010, Wang et al., 2012). Brachyury directly represses  

E-cadherin by binding to a TBE in the transcription start site (De Craene and Berx, 2013, 

Fernando et al., 2010). This binding site in the E-cadherin transcription start site reported for 

Brachyury (Fernando et al., 2010) overlaps with the identified binding site for TBX3 

(Rodriguez et al., 2008). 
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 SLUG 

SLUG (encoded by the SNAI2 gene) is a member of the SNAIL family of zinc-finger 

transcriptional repressors which mediate sequence-specific interactions with DNA (Phillips 

and Kuperwasser, 2014). SLUG contains a conserved SNAG domain in the N-terminus 

region, which is required for protein-protein interactions, transcriptional repression, and 

nuclear localization (Shirley et al., 2010, Chiang and Ayyanathan, 2013, Phillips and 

Kuperwasser, 2014). The zinc finger domain is located in the C-terminus of the protein, which 

facilitates binding to E-box motifs (Nieto, 2002, Phillips and Kuperwasser, 2014).  

The role of SLUG is well characterized in both embryonic development and 

tumorigenesis, with most of the literature focusing on its promotion of EMT (Barrallo-Gimeno 

and Nieto, 2005, Phillips and Kuperwasser, 2014). Physiologically, SLUG has been 

described as an important regulator of mammary epithelial cell differentiation, where it 

maintains cells in a basal-like state and repress luminal lineage differentiation (Proia et al., 

2011, Phillips et al., 2014, Phillips and Kuperwasser, 2014). Additionally, SLUG plays a 

critical role in multiple stages of cancer development (Phillips and Kuperwasser, 2014), and 

has been described as an important early initiator of EMT (Slabáková et al., 2011). 

Within breast cancers, elevated SLUG expression is often associated with basal-like 

tumors and mutations in the breast cancer associated 1 (BRCA1) gene (Foulkes et al., 2004, 

Arnes et al., 2005, Proia et al., 2011). While ER is able to directly repress transcription of 

SLUG (Ye et al., 2008, Ye et al., 2010), elevated estrogen levels are also able to induce 

SLUG expression through ERα; the effects mediated by ER on SLUG expression are 

therefore context-dependent. Elevated expression of SLUG, however, is associated with 

poor prognosis in both ER positive (Chimge et al., 2011), and ER negative breast cancers 

(Storci et al., 2008, Liu et al., 2013), as well as lymph node metastasis and therapy resistance 

(Côme et al., 2006, Alves et al., 2018). Interestingly, elevated SLUG expression in IDC has 

been associated with the presence of tubule structures, which is one of three criteria for the 

Scarff-Bloom-Richardson (SBR) grading system (Côme et al., 2006). This study by Côme et 

al., along with other experimental studies of partial induction of EMT (Dang et al., 2015), 

suggest the involvement of SLUG in collective cell migration. 
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1.5 Angiogenesis 

Solid cancers must form a blood supply through the process of angiogenesis if they 

are to grow beyond 1-2 mm in size (Knowles and Selby, 2005). This value represents the 

distance that oxygen, nutrients, and wastes can diffuse freely between a tumor and adjacent 

blood vessels (Kumar et al., 2013). Angiogenesis is a hallmark of cancer, and the newly-

formed blood vessels allow increased delivery of oxygen and nutrients, further providing a 

growth advantage for the tumor (Hanahan and Weinberg, 2000). Angiogenesis occurs 

through the formation of new micro-vessels from pre-existing vessels. This process also 

allows for systemic spread of cancer cells in the process of metastasis. Early studies 

assessing tumor angiogenesis in breast cancers showed that higher micro-vessel density 

corresponded to increased rates of distant metastasis (Weidner et al., 1991).  

The process of angiogenesis is triggered by tissue hypoxia and/or injury. Angiogenic 

factors are then released in the microenvironment, which diffuse in the extracellular millieu 

and are then able to activate endothelial cells (Nishida et al., 2006). Endothelial cells then 

migrate to the hypoxic area, proliferate, and form vessel structures (Nishida et al., 2006). The 

process may continue to be influenced through the balance of pro- and anti-angiogenic 

signaling molecules present within the microenvironment, which dictate the degree of 

angiogenesis (Knowles and Selby, 2005). 

 The use of anti-angiogenic therapies for cancer treatment was first proposed by 

Folkman in 1971 (Folkman, 1971), and this initial proposal has paved the way to a large body 

of work investigating the role of angiogenesis in tumor growth, along with the effect of its 

inhibition (Knowles and Selby, 2005). The emerging conclusion from several studies was that 

anti-angiogenics would be given as an adjuvant therapy in combination with cytotoxic drugs 

(Knowles and Selby, 2005). To date, the best characterized pro-angiogenic factor has been 

VEGF. Other notable pro-angiogenic regulators include FGF, the transforming growth factor 

(TGF) superfamily, hypoxia inducible factor alpha (HIF1α) and osteopontin (OPN; described 

in Section 1.5.1). 
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 Osteopontin and Angiogenesis  

OPN is a secreted phosphoprotein that is involved in both cell attachment to the 

extracellular matrix (ECM) through interaction with integrins and CD44, and induction of cell 

signaling pathways (Rittling and Chambers, 2004). Following binding and receptor activation, 

a series of signaling pathways are initiated, ultimately resulting in gene expression changes 

which modulate tumor cell behaviour. Elevated OPN expression has been associated with 

all six initially-described hallmarks of cancer in several different cancer subtypes (Cook et al., 

2005). For breast cancer specifically, elevated OPN expression is associated with early 

metastasis and poor outcome (Bellahcène and Castronovo, 1995, Rudland et al., 2002, 

Bramwell et al., 2006, El-Tanani et al., 2006, Tuck et al., 1998, Singhal et al., 1997).  

OPN modulates cell migration, invasion, and survival; this is mainly accomplished 

through interaction with integrins through its arginine-glycine-aspartate (RGD) integrin 

binding domain (Denhardt and Chambers, 1994, Tuck et al., 1999, Sodek et al., 2000, Lin 

and Yang-Yen, 2001, Geissinger et al., 2002). Integrins are transmembrane molecules 

comprised of a heterodimeric α and ß subunits that function by mediating adhesion between 

cells and interactions with the ECM (Knowles and Selby, 2005). OPN binds to the integrin 

heterodimers αvß1, αvß3, αvß5, α4ß1, α5ß1, α8ß1, and α9ß1 (Wai and Kuo, 2004, El-Tanani et 

al., 2006). Several of the aforementioned integrins are associated with metastasis and poor 

outcome, with much of the literature focusing on αvß3 (El-Tanani et al., 2006). In breast 

cancers, up-regulation of αvß3 is correlated with extent of disease and presence of bone 

metastasis (Liapis et al., 1996, Gasparini et al., 1998). OPN binds to the transmembrane 

protein CD44 in an RGD-independent manner (Sodek et al., 2000), resulting in up-regulation 

of CD44 and increased migration of breast cancer cell lines (Khan et al., 2005). A schematic 

of OPN protein structure and interactions is shown in Figure 1.5.1. 

Several studies have also reported crucial roles for tumor-derived OPN on 

angiogenesis (Pröls et al., 1998, Shijubo et al., 1999, Takano et al., 2000, Asou et al., 2001, 

Takahashi et al., 2002, Hirama et al., 2003, Leali et al., 2003, Cook et al., 2005, Chakraborty 

et al., 2006, Chakraborty et al., 2008). While integrins are minimally expressed on the surface 

of endothelial cells, their expression is significantly up-regulated during angiogenesis 

(Knowles and Selby, 2005). Binding of OPN within the tumor microenvironment to integrin 
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receptors (and/or CD44) on endothelial cells promotes angiogenesis through stimulation of 

endothelial cell migration, survival and lumen formation (Brooks et al., 1994, Senger et al., 

1996, Arap et al., 1998, Scatena et al., 1998, Bayless et al., 2000). OPN-induction of VEGF 

has also been reported (Chakraborty et al., 2008), as well as the reciprocal instance of VEGF-

induced OPN expression (Senger et al., 1996). Moreover, OPN, in cooperation with VEGF, 

has been shown to mediate αv integrin endothelial cell migration (Senger et al., 1996).  

Microarray analysis of transcripts altered upon constitutive OPN overexpression in 

breast cancer cells detected up-regulation of several genes, including hyaluronan synthase 

2 (HAS2) and increased production of hyaluronan (HA), which also mediates the process of 

angiogenesis (discussed in the Section 1.5.2) (Cook et al., 2005).  

 

 
 
Figure 1.5.1 – OPN protein structure and interactions. 

OPN contains many protein domains which facilitate interactions with receptor proteins, 

including the integrin binding domains (amino acid sequence for the domains is shown), 

along with the heparin binding domains which facilitates binding to CD44. OPN can be 

cleaved by two classes of proteases, including thrombin and MMPs, with the cleavage 

exposing new active domains. Adapted from (Musso et al., 2013). 
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 Hyaluronan and Angiogenesis 

The ECM plays a critical role in tumor development, providing cells with a scaffold 

which can be used for attachment, migration, and growth. An important ECM component that 

is up-regulated by OPN is HA, via up-regulation of HAS2 (Cook et al., 2006). HA is an 

unbranched polysaccharide consisting of repeating disaccharide subunits and constitutes a 

major portion of the ECM, particularly in tissues undergoing high rates of proliferation (West 

and Kumar, 1989). HA regulates the processes of adhesion, migration, proliferation, and 

differentiation (Itano et al., 1999, Tammi et al., 2002, Toole, 2004, Cook et al., 2006). HA is 

also able to up-regulate expression of OPN (Kim et al., 2005). Interestingly, both HA and 

OPN mediate several overlapping functions, and are frequently co-expressed across cancer 

subtypes (Kim et al., 2005, Lee et al., 2007).  

HA is produced at the intracellular face of the plasma membrane by hyaluronan 

synthase enzymes (HAS1-3) (Weigel and DeAngelis, 2007). The HAS enzymes are distinct 

in their stability, elongation rate, and size of HA synthesized, along with distinct expression 

patterns (Itano et al., 1999). Once synthesized by HAS enzymes, HA is then extruded from 

the cell and either released into the microenvironment, or retained in pericellular coats 

through interaction with cell surface receptors (Tammi et al., 1998, Evanko et al., 2007, 

Weigel and DeAngelis, 2007). High levels of synthesis and retention of HA in pericellular 

coats has an important role in malignant progression (Cook et al., 2006) and is an indicator 

of poor prognosis in epithelial cancers (Auvinen et al., 2000, Misra et al., 2006, Tammi et al., 

2008, Auvinen et al., 2014). HAS2 is the highest expressed among the HAS enzymes in 

breast cancer tissues and cell lines (Udabage et al., 2005b, Auvinen et al., 2014). Elevated 

HAS2 expression in breast cancer is associated with invasiveness (Udabage et al., 2005b, 

Udabage et al., 2005a), induction of EMT (Zoltan-Jones et al., 2003, Porsch et al., 2013), 

induction of angiogenesis (Koyama et al., 2007), and promotion of metastasis through 

increased interaction with stromal cells (Cook et al., 2006, Okuda et al., 2012).  

The effect of HA on angiogenesis is dependent on its molecular weight, which imparts 

unique biochemical properties; high molecular weight HA suppresses angiogenesis, while 

low molecular weight HA (4-20 disaccharides) stimulates endothelial cell migration, 

proliferation and angiogenesis (West et al., 1985, West and Kumar, 1989). The effect of HA 

within a tumor is thought to be dynamic; the leading edge of a tumor possesses large 
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amounts of high molecular weight HA, which aids in invasion via hydration of tissues and 

expansion of areas through which cancer cells can migrate (Iozzo and Müller-Glauser, 1985, 

Knudson et al., 1989, Rooney et al., 1995). As the tumor cells invade adjacent tissues, new 

HA is synthesized, while the remaining HA is degraded by hyaluronidase (HAse) enzymes, 

creating pro-angiogenic low molecular weight fragments (Rooney et al., 1995).  

CD44 is a transmembrane glycoprotein and the principal receptor for HA (Toole, 2009, 

Auvinen et al., 2013). CD44 is also able to bind several other ligands including OPN, 

collagens, and MMPs (Goodison et al., 1999, Senbanjo and Chellaiah, 2017). CD44 is 

ubiquitously expressed in adult and fetal tissues, with elevated expression levels in several 

cancers (Basakran, 2015). In breast cancer, elevated expression of standard CD44 as well 

as its splice variants is associated with disease progression and metastasis (McFarlane et 

al., 2015). Interaction between HA and CD44 results in activation of several signaling 

pathways (Misra et al., 2006, Toole, 2009). Additionally, HA is able to regulate the activity of 

several RTKs (most notably HER2) through stabilization of oncogenic CD44/RTK cell surface 

complexes (Bourguignon et al., 2001, Turley et al., 2002, Ghatak et al., 2005, Misra et al., 

2005, Bourguignon et al., 2006, Misra et al., 2006, Slomiany et al., 2009).  

The tumor stroma of breast cancer patients is associated with high HA expression 

near carcinoma cells, which is associated with several clinicopathological features including 

tumor size, lymph node positivity, and poor differentiation (Auvinen et al., 2013). CD44 is 

expressed on endothelial cells (Liesveld et al., 1994, Xu et al., 1994), and binding of HA to 

CD44 on endothelial cells promotes their migration (Trochon et al., 1996, Griffioen et al., 

1997, Savani et al., 2001). This provides a mechanism for HA- as well as OPN-induced 

angiogenesis, as OPN is able to promote elevated HA levels and itself bind CD44 on 

endothelial cells (Trochon et al., 1996, Griffioen et al., 1997, Savani et al., 2001, Kim et al., 

2005, Cook et al., 2006, Lee et al., 2007). 
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1.6 Summary of Objectives 

I hypothesized that the transcriptional regulatory proteins TBX3iso1 and TBX3iso2 

have distinct roles in breast cancer progression. This activity is mediated by their 

downstream transcriptional targets.  

To address my hypothesis, I had four main aims which are described over three chapters of 

my thesis: 

 

Aim 1: Examination of functional and phenotypic changes associated with modulation 

of TBX3 levels at various stages of breast cancer progression (Chapter 2). 

While TBX3 is overexpressed in several cancer types, the full scope of TBX3-associated 

functional changes in breast cancer was unclear due to the focus on melanoma cell lines 

within several prominent studies. Initial studies were therefore important in order to 

characterize the functional and phenotypic changes associated with modulation of TBX3 

levels at various stages of breast cancer progression, in an isoform-specific context. The 

majority of my work has focused on non-invasive DCIS-like 21NT cells and invasive IDC-

like 21MT-1 cells, in which increased TBX3 expression was identified in the DCIS to IDC 

transition (Souter et al., 2010). These findings have been corroborated through functional 

overexpression studies in 21PT, MCF7, T-47D, SKBR3, and MDA-MB-468 cells. Several 

prominent TBX3iso1 and TBX3iso2-dependent changes were observed, including 

alterations in growth, survival, invasiveness, and prominently, the acquisition of an EMT 

phenotype. 

 

Aims 2 & 3: Elucidation of the molecular mechanism of TBX3-induced EMT, and 

assessment of identified downstream targets (SLUG, TWIST1) in clinical samples of 

DCIS and early invasive breast cancer (Chapter 3). 

As a follow-up to Aim 1, the molecular mechanism of TBX3-induced EMT was investigated 

in Aim 2. High throughput studies, including ChIP-array and RNA-Seq, were conducted in 

order to gain a thorough understanding of both direct and indirect transcriptional changes 
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mediated by TBX3 isoform overexpression, with a focus on genes similarly altered with 

both TBX3 isoforms. SLUG was identified as a direct target up-regulated by both TBX3iso1 

and TBX3iso2, and an important downstream mediator of TBX3-induced migration and 

invasion. Another important regulator of EMT indirectly up-regulated by both TBX3 

isoforms was TWIST1. For Aim 3, the expression of TBX3 by IHC was assessed in two 

independent cohorts consisting of early stage breast cancers. Within the second cohort, 

expression of downstream targets identified in the high-throughput screens (SLUG and 

TWIST1) was also assessed by IHC. My findings from Aims 2 and 3 are reported together 

in Chapter 3, with a working schematic on the mechanism whereby TBX3 promotes 

progression by inducing EMT in low-grade, pre-invasive lesions, which is representative 

of luminal A breast cancers. 

 

Aim 4: Examination of the effects of TBX3 isoforms in vivo in nude mice (Chapter 4). 

As overexpression of TBX3 was previously identified in the DCIS to IDC transition, the 

effect of altered TBX3 expression on in vivo tumorigenesis was assessed in nude mice via 

mammary fat pad xenograft assays. Surprisingly, TBX3iso1 and TBX3iso2 differentially 

altered tumorigenicity, with overexpression of TBX3iso1 (but not TBX3iso2) in 21NT cells 

associated with high rates of invasive carcinoma. The mechanism of TBX3iso1-induced 

tumorigenicity was assessed through further mining and enrichment analysis of RNA-Seq 

data obtained in Aim 2. Interestingly, TBX3iso1 overexpression was associated with a pro-

angiogenic gene signature, with elevated expression of OPN and HAS2, increased 

hyaluronan retention, and thus increased rates of angiogenesis through in vitro assays. 

These changes likely explain the differential tumorigenicity between TBX3 isoforms in vivo.  

  



 

50 

50 

1.7 References 

Abba, M. C., Drake, J. A., Hawkins, K. A., Hu, Y., Sun, H., Notcovich, C., Gaddis, S., Sahin, A., Baggerly, K. 
and Aldaz, C. M. (2004) 'Transcriptomic changes in human breast cancer progression as determined 
by serial analysis of gene expression', Breast Cancer Res, 6(5), pp. R499-513. 

Abba, M. C., Gong, T., Lu, Y., Lee, J., Zhong, Y., Lacunza, E., Butti, M., Takata, Y., Gaddis, S., Shen, J., 
Estecio, M. R., Sahin, A. A. and Aldaz, C. M. (2015) 'A Molecular Portrait of High-Grade Ductal 
Carcinoma In Situ', Cancer Res, 75(18), pp. 3980-90. 

Abdel-Fatah, T. M., Powe, D. G., Hodi, Z., Reis-Filho, J. S., Lee, A. H. and Ellis, I. O. (2008) 'Morphologic and 
molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative 
precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia 
family', Am J Surg Pathol, 32(4), pp. 513-23. 

Agulnik, S. I., Garvey, N., Hancock, S., Ruvinsky, I., Chapman, D. L., Agulnik, I., Bollag, R., Papaioannou, V. 
and Silver, L. M. (1996) 'Evolution of mouse T-box genes by tandem duplication and cluster 
dispersion', Genetics, 144(1), pp. 249-54. 

Ahmad, A. (2013) Breast cancer metastasis and drug resistance : progress and prospects. New York: 
Springer. 

Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R. and Kasimir-Bauer, S. (2009) 'Stem cell and epithelial-
mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic 
breast cancer patients', Breast Cancer Res, 11(4), pp. R46. 

Alix-Panabières, C., Mader, S. and Pantel, K. (2017) 'Epithelial-mesenchymal plasticity in circulating tumor 
cells', J Mol Med (Berl), 95(2), pp. 133-142. 

Allegra, C. J., Aberle, D. R., Ganschow, P., Hahn, S. M., Lee, C. N., Millon-Underwood, S., Pike, M. C., Reed, 
S. D., Saftlas, A. F., Scarvalone, S. A., Schwartz, A. M., Slomski, C., Yothers, G. and Zon, R. (2010) 
'National Institutes of Health State-of-the-Science Conference statement: Diagnosis and Management 
of Ductal Carcinoma In Situ September 22-24, 2009', J Natl Cancer Inst, 102(3), pp. 161-9. 

Allred, D. C., Mohsin, S. K. and Fuqua, S. A. (2001) 'Histological and biological evolution of human 
premalignant breast disease', Endocr Relat Cancer, 8(1), pp. 47-61. 

Allred, D. C., Wu, Y., Mao, S., Nagtegaal, I. D., Lee, S., Perou, C. M., Mohsin, S. K., O'Connell, P., 
Tsimelzon, A. and Medina, D. (2008) 'Ductal carcinoma in situ and the emergence of diversity during 
breast cancer evolution', Clin Cancer Res, 14(2), pp. 370-8. 

Alves, C. L., Elias, D., Lyng, M. B., Bak, M. and Ditzel, H. J. (2018) 'SNAI2 upregulation is associated with an 
aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response 
to endocrine therapy in estrogen receptor-positive metastatic breast cancer', Breast Cancer Res, 
20(1), pp. 60. 

Amari, M., Suzuki, A., Moriya, T., Yoshinaga, K., Amano, G., Sasano, H., Ohuchi, N., Satomi, S. and Horii, A. 
(1999) 'LOH analyses of premalignant and malignant lesions of human breast: frequent LOH in 8p, 
16q, and 17q in atypical ductal hyperplasia', Oncol Rep, 6(6), pp. 1277-80. 

Amir, S., Simion, C., Umeh-Garcia, M., Krig, S., Moss, T., Carraway, K. L. and Sweeney, C. (2016) 
'Regulation of the T-box transcription factor Tbx3 by the tumour suppressor microRNA-206 in breast 
cancer', Br J Cancer, 114(10), pp. 1125-34. 



 

51 

51 

Arap, W., Pasqualini, R. and Ruoslahti, E. (1998) 'Cancer treatment by targeted drug delivery to tumor 
vasculature in a mouse model', Science, 279(5349), pp. 377-80. 

Arendt, L. M., St Laurent, J., Wronski, A., Caballero, S., Lyle, S. R., Naber, S. P. and Kuperwasser, C. (2014) 
'Human breast progenitor cell numbers are regulated by WNT and TBX3', PLoS One, 9(10), pp. 
e111442. 

Arnes, J. B., Brunet, J. S., Stefansson, I., Bégin, L. R., Wong, N., Chappuis, P. O., Akslen, L. A. and Foulkes, 
W. D. (2005) 'Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer', 
Clin Cancer Res, 11(11), pp. 4003-11. 

Asou, Y., Rittling, S. R., Yoshitake, H., Tsuji, K., Shinomiya, K., Nifuji, A., Denhardt, D. T. and Noda, M. 
(2001) 'Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic 
bone', Endocrinology, 142(3), pp. 1325-32. 

Aswad, L., Yenamandra, S. P., Ow, G. S., Grinchuk, O., Ivshina, A. V. and Kuznetsov, V. A. (2015) 'Genome 
and transcriptome delineation of two major oncogenic pathways governing invasive ductal breast 
cancer development', Oncotarget, 6(34), pp. 36652-74. 

Auvinen, P., Rilla, K., Tumelius, R., Tammi, M., Sironen, R., Soini, Y., Kosma, V. M., Mannermaa, A., Viikari, 
J. and Tammi, R. (2014) 'Hyaluronan synthases (HAS1-3) in stromal and malignant cells correlate 
with breast cancer grade and predict patient survival', Breast Cancer Res Treat, 143(2), pp. 277-86. 

Auvinen, P., Tammi, R., Kosma, V. M., Sironen, R., Soini, Y., Mannermaa, A., Tumelius, R., Uljas, E. and 
Tammi, M. (2013) 'Increased hyaluronan content and stromal cell CD44 associate with HER2 
positivity and poor prognosis in human breast cancer', Int J Cancer, 132(3), pp. 531-9. 

Auvinen, P., Tammi, R., Parkkinen, J., Tammi, M., Agren, U., Johansson, R., Hirvikoski, P., Eskelinen, M. and 
Kosma, V. M. (2000) 'Hyaluronan in peritumoral stroma and malignant cells associates with breast 
cancer spreading and predicts survival', Am J Pathol, 156(2), pp. 529-36. 

Azzopardi, J. G., Ahmed, A. and Millis, R. R. (1979) 'Problems in breast pathology', Major Probl Pathol, 11, 
pp. i-xvi, 1-466. 

Balaguer, F., Link, A., Lozano, J. J., Cuatrecasas, M., Nagasaka, T., Boland, C. R. and Goel, A. (2010) 
'Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis', Cancer Res, 70(16), 
pp. 6609-18. 

Bamshad, M., Le, T., Watkins, W. S., Dixon, M. E., Kramer, B. E., Roeder, A. D., Carey, J. C., Root, S., 
Schinzel, A., Van Maldergem, L., Gardner, R. J., Lin, R. C., Seidman, C. E., Seidman, J. G., 
Wallerstein, R., Moran, E., Sutphen, R., Campbell, C. E. and Jorde, L. B. (1999) 'The spectrum of 
mutations in TBX3: Genotype/Phenotype relationship in ulnar-mammary syndrome', Am J Hum 
Genet, 64(6), pp. 1550-62. 

Bamshad, M., Lin, R. C., Law, D. J., Watkins, W. C., Krakowiak, P. A., Moore, M. E., Franceschini, P., Lala, 
R., Holmes, L. B., Gebuhr, T. C., Bruneau, B. G., Schinzel, A., Seidman, J. G., Seidman, C. E. and 
Jorde, L. B. (1997) 'Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-
mammary syndrome', Nat Genet, 16(3), pp. 311-5. 

Band, V. and Sager, R. (1989) 'Distinctive traits of normal and tumor-derived human mammary epithelial cells 
expressed in a medium that supports long-term growth of both cell types', Proc Natl Acad Sci U S A, 
86(4), pp. 1249-53. 

Band, V., Zajchowski, D., Stenman, G., Morton, C. C., Kulesa, V., Connolly, J. and Sager, R. (1989) 'A newly 
established metastatic breast tumor cell line with integrated amplified copies of ERBB2 and double 
minute chromosomes', Genes Chromosomes Cancer, 1(1), pp. 48-58. 



 

52 

52 

Band, V., Zajchowski, D., Swisshelm, K., Trask, D., Kulesa, V., Cohen, C., Connolly, J. and Sager, R. (1990) 
'Tumor progression in four mammary epithelial cell lines derived from the same patient', Cancer Res, 
50(22), pp. 7351-7. 

Barrallo-Gimeno, A. and Nieto, M. A. (2005) 'The Snail genes as inducers of cell movement and survival: 
implications in development and cancer', Development, 132(14), pp. 3151-61. 

Barsky, S. H. and Karlin, N. J. (2005) 'Myoepithelial cells: autocrine and paracrine suppressors of breast 
cancer progression', J Mammary Gland Biol Neoplasia, 10(3), pp. 249-60. 

Bartel, D. P. (2004) 'MicroRNAs: genomics, biogenesis, mechanism, and function', Cell, 116(2), pp. 281-97. 

Bartlett, J. M., Nofech-Moses, S. and Rakovitch, E. (2014) 'Ductal carcinoma in situ of the breast: can 
biomarkers improve current management?', Clin Chem, 60(1), pp. 60-7. 

Basakran, N. S. (2015) 'CD44 as a potential diagnostic tumor marker', Saudi Med J, 36(3), pp. 273-9. 

Baxter, N. N., Virnig, B. A., Durham, S. B. and Tuttle, T. M. (2004) 'Trends in the treatment of ductal 
carcinoma in situ of the breast', J Natl Cancer Inst, 96(6), pp. 443-8. 

Bayless, K. J., Salazar, R. and Davis, G. E. (2000) 'RGD-dependent vacuolation and lumen formation 
observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the 
alpha(v)beta(3) and alpha(5)beta(1) integrins', Am J Pathol, 156(5), pp. 1673-83. 

Begum, S. and Papaioannou, V. E. (2011) 'Dynamic expression of Tbx2 and Tbx3 in developing mouse 
pancreas', Gene Expr Patterns, 11(8), pp. 476-83. 

Bellahcène, A. and Castronovo, V. (1995) 'Increased expression of osteonectin and osteopontin, two bone 
matrix proteins, in human breast cancer', Am J Pathol, 146(1), pp. 95-100. 

Bentley, D. L. (2005) 'Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors', 
Curr Opin Cell Biol, 17(3), pp. 251-6. 

Bijker, N., Meijnen, P., Peterse, J. L., Bogaerts, J., Van Hoorebeeck, I., Julien, J. P., Gennaro, M., Rouanet, 
P., Avril, A., Fentiman, I. S., Bartelink, H., Rutgers, E. J., Group, E. B. C. C. and Group, E. R. (2006) 
'Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results 
of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853--a 
study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group', J Clin 
Oncol, 24(21), pp. 3381-7. 

Bijker, N., Peterse, J. L., Duchateau, L., Julien, J. P., Fentiman, I. S., Duval, C., Di Palma, S., Simony-
Lafontaine, J., de Mascarel, I. and van de Vijver, M. J. (2001) 'Risk factors for recurrence and 
metastasis after breast-conserving therapy for ductal carcinoma-in-situ: analysis of European 
Organization for Research and Treatment of Cancer Trial 10853', J Clin Oncol, 19(8), pp. 2263-71. 

Biswas, D. K., Averboukh, L., Sheng, S., Martin, K., Ewaniuk, D. S., Jawde, T. F., Wang, F. and Pardee, A. B. 
(1998) 'Classification of breast cancer cells on the basis of a functional assay for estrogen receptor', 
Mol Med, 4(7), pp. 454-67. 

Biswas, D. K., Cruz, A., Pettit, N., Mutter, G. L. and Pardee, A. B. (2001) 'A therapeutic target for hormone-
independent estrogen receptor-positive breast cancers', Mol Med, 7(1), pp. 59-67. 

Blanco, M. J., Moreno-Bueno, G., Sarrio, D., Locascio, A., Cano, A., Palacios, J. and Nieto, M. A. (2002) 
'Correlation of Snail expression with histological grade and lymph node status in breast carcinomas', 
Oncogene, 21(20), pp. 3241-6. 

Blencowe, B. J. (2006) 'Alternative splicing: new insights from global analyses', Cell, 126(1), pp. 37-47. 



 

53 

53 

Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M. and Thompson, E. W. (2008) 
'Epithelial mesenchymal transition traits in human breast cancer cell lines', Clin Exp Metastasis, 25(6), 
pp. 629-42. 

Bollag, R. J., Siegfried, Z., Cebra-Thomas, J. A., Garvey, N., Davison, E. M. and Silver, L. M. (1994) 'An 
ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T 
locus', Nat Genet, 7(3), pp. 383-9. 

Bombonati, A. and Sgroi, D. C. (2011) 'The molecular pathology of breast cancer progression', J Pathol, 
223(2), pp. 307-17. 

Boogerd, C. J., Wong, L. Y., van den Boogaard, M., Bakker, M. L., Tessadori, F., Bakkers, J., 't Hoen, P. A., 
Moorman, A. F., Christoffels, V. M. and Barnett, P. (2011) 'Sox4 mediates Tbx3 transcriptional 
regulation of the gap junction protein Cx43', Cell Mol Life Sci, 68(23), pp. 3949-61. 

Bourguignon, L. Y., Gilad, E., Brightman, A., Diedrich, F. and Singleton, P. (2006) 'Hyaluronan-CD44 
interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes 
Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in 
head and neck squamous cell carcinoma cells', J Biol Chem, 281(20), pp. 14026-40. 

Bourguignon, L. Y., Zhu, H., Zhou, B., Diedrich, F., Singleton, P. A. and Hung, M. C. (2001) 'Hyaluronan 
promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling 
during ovarian tumor cell migration and growth', J Biol Chem, 276(52), pp. 48679-92. 

Boyages, J., Delaney, G. and Taylor, R. (1999) 'Predictors of local recurrence after treatment of ductal 
carcinoma in situ: a meta-analysis', Cancer, 85(3), pp. 616-28. 

Boyd, S. C., Mijatov, B., Pupo, G. M., Tran, S. L., Gowrishankar, K., Shaw, H. M., Goding, C. R., Scolyer, R. 
A., Mann, G. J., Kefford, R. F., Rizos, H. and Becker, T. M. (2013) 'Oncogenic B-RAF(V600E) 
signaling induces the T-Box3 transcriptional repressor to repress E-cadherin and enhance melanoma 
cell invasion', J Invest Dermatol, 133(5), pp. 1269-77. 

Brabletz, T. (2012) 'To differentiate or not--routes towards metastasis', Nat Rev Cancer, 12(6), pp. 425-36. 

Bramwell, V. H., Doig, G. S., Tuck, A. B., Wilson, S. M., Tonkin, K. S., Tomiak, A., Perera, F., Vandenberg, T. 
A. and Chambers, A. F. (2006) 'Serial plasma osteopontin levels have prognostic value in metastatic 
breast cancer', Clin Cancer Res, 12(11 Pt 1), pp. 3337-43. 

Bratthauer, G. L. and Tavassoli, F. A. (2004) 'Assessment of lesions coexisting with various grades of ductal 
intraepithelial neoplasia of the breast', Virchows Arch, 444(4), pp. 340-4. 

Bray, F., McCarron, P. and Parkin, D. M. (2004) 'The changing global patterns of female breast cancer 
incidence and mortality', Breast Cancer Res, 6(6), pp. 229-39. 

Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G. and Cheresh, D. A. (1994) 
'Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic 
blood vessels', Cell, 79(7), pp. 1157-64. 

Brummelkamp, T. R., Kortlever, R. M., Lingbeek, M., Trettel, F., MacDonald, M. E., van Lohuizen, M. and 
Bernards, R. (2002) 'TBX-3, the gene mutated in Ulnar-Mammary Syndrome, is a negative regulator 
of p19ARF and inhibits senescence', J Biol Chem, 277(8), pp. 6567-72. 

Brunner, A. L., Li, J., Guo, X., Sweeney, R. T., Varma, S., Zhu, S. X., Li, R., Tibshirani, R. and West, R. B. 
(2014) 'A shared transcriptional program in early breast neoplasias despite genetic and clinical 
distinctions', Genome Biol, 15(5), pp. R71. 



 

54 

54 

Buerger, H., Mommers, E. C., Littmann, R., Simon, R., Diallo, R., Poremba, C., Dockhorn-Dworniczak, B., van 
Diest, P. J. and Boecker, W. (2001) 'Ductal invasive G2 and G3 carcinomas of the breast are the end 
stages of at least two different lines of genetic evolution', J Pathol, 194(2), pp. 165-70. 

Buerger, H., Otterbach, F., Simon, R., Poremba, C., Diallo, R., Decker, T., Riethdorf, L., Brinkschmidt, C., 
Dockhorn-Dworniczak, B. and Boecker, W. (1999) 'Comparative genomic hybridization of ductal 
carcinoma in situ of the breast-evidence of multiple genetic pathways', J Pathol, 187(4), pp. 396-402. 

Bürger, H., de Boer, M., van Diest, P. J. and Korsching, E. (2013) 'Chromosome 16q loss--a genetic key to 
the understanding of breast carcinogenesis', Histol Histopathol, 28(3), pp. 311-20. 

Burgucu, D., Guney, K., Sahinturk, D., Ozbudak, I. H., Ozel, D., Ozbilim, G. and Yavuzer, U. (2012) 'Tbx3 
represses PTEN and is over-expressed in head and neck squamous cell carcinoma', BMC Cancer, 
12, pp. 481. 

Burstein, H. J., Polyak, K., Wong, J. S., Lester, S. C. and Kaelin, C. M. (2004) 'Ductal carcinoma in situ of the 
breast', N Engl J Med, 350(14), pp. 1430-41. 

Calhoun, B. C., Sobel, A., White, R. L., Gromet, M., Flippo, T., Sarantou, T. and Livasy, C. A. (2015) 
'Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation 
with imaging studies', Mod Pathol, 28(5), pp. 670-6. 

Canadian Cancer Society, N. C. I. o. C., Advisory Committee on Records and Registries 2017. Canadian 
cancer statistics. Toronto: Canadian Cancer Society. 

Cantley, L. C. and Neel, B. G. (1999) 'New insights into tumor suppression: PTEN suppresses tumor 
formation by restraining the phosphoinositide 3-kinase/AKT pathway', Proc Natl Acad Sci U S A, 
96(8), pp. 4240-5. 

Cardiff, R. D., Moghanaki, D. and Jensen, R. A. (2000) 'Genetically engineered mouse models of mammary 
intraepithelial neoplasia', J Mammary Gland Biol Neoplasia, 5(4), pp. 421-37. 

Carlson, H., Ota, S., Campbell, C. E. and Hurlin, P. J. (2001) 'A dominant repression domain in Tbx3 
mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that 
cause ulnar-mammary syndrome', Hum Mol Genet, 10(21), pp. 2403-13. 

Carlson, H., Ota, S., Song, Y., Chen, Y. and Hurlin, P. J. (2002) 'Tbx3 impinges on the p53 pathway to 
suppress apoptosis, facilitate cell transformation and block myogenic differentiation', Oncogene, 
21(24), pp. 3827-35. 

Casey, E. S., O'Reilly, M. A., Conlon, F. L. and Smith, J. C. (1998) 'The T-box transcription factor Brachyury 
regulates expression of eFGF through binding to a non-palindromic response element', Development, 
125(19), pp. 3887-94. 

Cavard, C., Audebourg, A., Letourneur, F., Audard, V., Beuvon, F., Cagnard, N., Radenen, B., Varlet, P., 
Vacher-Lavenu, M. C., Perret, C. and Terris, B. (2009) 'Gene expression profiling provides insights 
into the pathways involved in solid pseudopapillary neoplasm of the pancreas', J Pathol, 218(2), pp. 
201-9. 

Chaffer, C. L. and Weinberg, R. A. (2011) 'A perspective on cancer cell metastasis', Science, 331(6024), pp. 
1559-64. 

Chakraborty, G., Jain, S., Behera, R., Ahmed, M., Sharma, P., Kumar, V. and Kundu, G. C. (2006) 'The 
multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis', Curr Mol 
Med, 6(8), pp. 819-30. 



 

55 

55 

Chakraborty, G., Jain, S. and Kundu, G. C. (2008) 'Osteopontin promotes vascular endothelial growth factor-
dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms', Cancer 
Res, 68(1), pp. 152-61. 

Chen, H., Shalom-Feuerstein, R., Riley, J., Zhang, S. D., Tucci, P., Agostini, M., Aberdam, D., Knight, R. A., 
Genchi, G., Nicotera, P., Melino, G. and Vasa-Nicotera, M. (2010) 'miR-7 and miR-214 are 
specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem 
cells differentiation, and control neurite outgrowth in vitro', Biochem Biophys Res Commun, 394(4), 
pp. 921-7. 

Chiang, C. and Ayyanathan, K. (2013) 'Snail/Gfi-1 (SNAG) family zinc finger proteins in transcription 
regulation, chromatin dynamics, cell signaling, development, and disease', Cytokine Growth Factor 
Rev, 24(2), pp. 123-31. 

Chimge, N. O., Baniwal, S. K., Little, G. H., Chen, Y. B., Kahn, M., Tripathy, D., Borok, Z. and Frenkel, B. 
(2011) 'Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2', 
Breast Cancer Res, 13(6), pp. R127. 

Cho, K. W., Kwon, H. J., Shin, J. O., Lee, J. M., Cho, S. W., Tickle, C. and Jung, H. S. (2012) 'Retinoic acid 
signaling and the initiation of mammary gland development', Dev Biol, 365(1), pp. 259-66. 

Christiansen, J. J. and Rajasekaran, A. K. (2006) 'Reassessing epithelial to mesenchymal transition as a 
prerequisite for carcinoma invasion and metastasis', Cancer Res, 66(17), pp. 8319-26. 

Cioffi, M., Vallespinos-Serrano, M., Trabulo, S. M., Fernandez-Marcos, P. J., Firment, A. N., Vazquez, B. N., 
Vieira, C. R., Mulero, F., Camara, J. A., Cronin, U. P., Perez, M., Soriano, J., G Galvez, B., Castells-
Garcia, A., Haage, V., Raj, D., Megias, D., Hahn, S., Serrano, L., Moon, A., Aicher, A. and Heeschen, 
C. (2015) 'MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3', Cell Rep, 12(10), pp. 1594-605. 

Cleton-Jansen, A. M., Buerger, H., Haar, N., Philippo, K., van de Vijver, M. J., Boecker, W., Smit, V. T. and 
Cornelisse, C. J. (2004) 'Different mechanisms of chromosome 16 loss of heterozygosity in well- 
versus poorly differentiated ductal breast cancer', Genes Chromosomes Cancer, 41(2), pp. 109-16. 

Coll, M., Seidman, J. G. and Müller, C. W. (2002) 'Structure of the DNA-bound T-box domain of human TBX3, 
a transcription factor responsible for ulnar-mammary syndrome', Structure, 10(3), pp. 343-56. 

Côme, C., Magnino, F., Bibeau, F., De Santa Barbara, P., Becker, K. F., Theillet, C. and Savagner, P. (2006) 
'Snail and slug play distinct roles during breast carcinoma progression', Clin Cancer Res, 12(18), pp. 
5395-402. 

Cook, A. C., Chambers, A. F., Turley, E. A. and Tuck, A. B. (2006) 'Osteopontin induction of hyaluronan 
synthase 2 expression promotes breast cancer malignancy', J Biol Chem, 281(34), pp. 24381-9. 

Cook, A. C., Tuck, A. B., McCarthy, S., Turner, J. G., Irby, R. B., Bloom, G. C., Yeatman, T. J. and Chambers, 
A. F. (2005) 'Osteopontin induces multiple changes in gene expression that reflect the six "hallmarks 
of cancer" in a model of breast cancer progression', Mol Carcinog, 43(4), pp. 225-36. 

Correa, C., McGale, P., Taylor, C., Wang, Y., Clarke, M., Davies, C., Peto, R., Bijker, N., Solin, L., Darby, S. 
and (EBCTCG), E. B. C. T. C. G. (2010) 'Overview of the randomized trials of radiotherapy in ductal 
carcinoma in situ of the breast', J Natl Cancer Inst Monogr, 2010(41), pp. 162-77. 

Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., Rimm, D. L., Wong, H., 
Rodriguez, A., Herschkowitz, J. I., Fan, C., Zhang, X., He, X., Pavlick, A., Gutierrez, M. C., Renshaw, 
L., Larionov, A. A., Faratian, D., Hilsenbeck, S. G., Perou, C. M., Lewis, M. T., Rosen, J. M. and 
Chang, J. C. (2009) 'Residual breast cancers after conventional therapy display mesenchymal as well 
as tumor-initiating features', Proc Natl Acad Sci U S A, 106(33), pp. 13820-5. 



 

56 

56 

Cress, W. D. and Seto, E. (2000) 'Histone deacetylases, transcriptional control, and cancer', J Cell Physiol, 
184(1), pp. 1-16. 

Crissman, J. D., Visscher, D. W. and Kubus, J. (1990) 'Image cytophotometric DNA analysis of atypical 
hyperplasias and intraductal carcinomas of the breast', Arch Pathol Lab Med, 114(12), pp. 1249-53. 

Cuzick, J., Sestak, I., Pinder, S. E., Ellis, I. O., Forsyth, S., Bundred, N. J., Forbes, J. F., Bishop, H., 
Fentiman, I. S. and George, W. D. (2011) 'Effect of tamoxifen and radiotherapy in women with locally 
excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial', Lancet Oncol, 12(1), 
pp. 21-9. 

Dabbs, D. J., Carter, G., Fudge, M., Peng, Y., Swalsky, P. and Finkelstein, S. (2006) 'Molecular alterations in 
columnar cell lesions of the breast', Mod Pathol, 19(3), pp. 344-9. 

Dan, J., Li, M., Yang, J., Li, J., Okuka, M., Ye, X. and Liu, L. (2013) 'Roles for Tbx3 in regulation of two-cell 
state and telomere elongation in mouse ES cells', Sci Rep, 3, pp. 3492. 

Dang, T. T., Esparza, M. A., Maine, E. A., Westcott, J. M. and Pearson, G. W. (2015) 'ΔNp63α Promotes 
Breast Cancer Cell Motility through the Selective Activation of Components of the Epithelial-to-
Mesenchymal Transition Program', Cancer Res, 75(18), pp. 3925-35. 

Davenport, T. G., Jerome-Majewska, L. A. and Papaioannou, V. E. (2003) 'Mammary gland, limb and yolk sac 
defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome', Development, 
130(10), pp. 2263-73. 

De Craene, B. and Berx, G. (2013) 'Regulatory networks defining EMT during cancer initiation and 
progression', Nat Rev Cancer, 13(2), pp. 97-110. 

De Craene, B., Gilbert, B., Stove, C., Bruyneel, E., van Roy, F. and Berx, G. (2005) 'The transcription factor 
snail induces tumor cell invasion through modulation of the epithelial cell differentiation program', 
Cancer Res, 65(14), pp. 6237-44. 

DeBenedittis, P. and Jiao, K. (2011) 'Alternative splicing of T-box transcription factor genes', Biochem 
Biophys Res Commun, 412(4), pp. 513-7. 

Demay, F., Bilican, B., Rodriguez, M., Carreira, S., Pontecorvi, M., Ling, Y. and Goding, C. R. (2007) 'T-box 
factors: targeting to chromatin and interaction with the histone H3 N-terminal tail', Pigment Cell Res, 
20(4), pp. 279-87. 

Deng, G., Lu, Y., Zlotnikov, G., Thor, A. D. and Smith, H. S. (1996) 'Loss of heterozygosity in normal tissue 
adjacent to breast carcinomas', Science, 274(5295), pp. 2057-9. 

Denhardt, D. T. and Chambers, A. F. (1994) 'Overcoming obstacles to metastasis--defenses against host 
defenses: osteopontin (OPN) as a shield against attack by cytotoxic host cells', J Cell Biochem, 56(1), 
pp. 48-51. 

Dokmanovic, M. and Marks, P. A. (2005) 'Prospects: histone deacetylase inhibitors', J Cell Biochem, 96(2), 
pp. 293-304. 

Dong, L., Dong, Q., Chen, Y., Li, Y., Zhang, B., Zhou, F., Lyu, X., Chen, G. G., Lai, P., Kung, H. F. and He, M. 
L. (2018) 'Novel HDAC5-interacting motifs of Tbx3 are essential for the suppression of E-cadherin 
expression and for the promotion of metastasis in hepatocellular carcinoma', Signal Transduct Target 
Ther, 3, pp. 22. 

Douglas, N. C. and Papaioannou, V. E. (2013) 'The T-box transcription factors TBX2 and TBX3 in mammary 
gland development and breast cancer', J Mammary Gland Biol Neoplasia, 18(2), pp. 143-7. 



 

57 

57 

Eblaghie, M. C., Song, S. J., Kim, J. Y., Akita, K., Tickle, C. and Jung, H. S. (2004) 'Interactions between FGF 
and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos', J Anat, 
205(1), pp. 1-13. 

El-Tanani, M. K., Campbell, F. C., Kurisetty, V., Jin, D., McCann, M. and Rudland, P. S. (2006) 'The 
regulation and role of osteopontin in malignant transformation and cancer', Cytokine Growth Factor 
Rev, 17(6), pp. 463-74. 

Elloul, S., Elstrand, M. B., Nesland, J. M., Tropé, C. G., Kvalheim, G., Goldberg, I., Reich, R. and Davidson, 
B. (2005) 'Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness 
in metastatic ovarian and breast carcinoma', Cancer, 103(8), pp. 1631-43. 

Eriksson, E., Schimmelpenning, H., Silfverswärd, C. and Auer, G. (1992) 'Immunoreactivity with monoclonal 
antibody A-80 and nuclear DNA content in benign and malignant human breast disease', Hum Pathol, 
23(12), pp. 1366-72. 

Ernster, V. L., Barclay, J., Kerlikowske, K., Grady, D. and Henderson, C. (1996) 'Incidence of and treatment 
for ductal carcinoma in situ of the breast', JAMA, 275(12), pp. 913-8. 

Esteva, F. J. and Hortobagyi, G. N. (2004) 'Prognostic molecular markers in early breast cancer', Breast 
Cancer Res, 6(3), pp. 109-18. 

Evanko, S. P., Tammi, M. I., Tammi, R. H. and Wight, T. N. (2007) 'Hyaluronan-dependent pericellular matrix', 
Adv Drug Deliv Rev, 59(13), pp. 1351-65. 

Fan, W., Huang, X., Chen, C., Gray, J. and Huang, T. (2004) 'TBX3 and its isoform TBX3+2a are functionally 
distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines', 
Cancer Res, 64(15), pp. 5132-9. 

Faverly, D. R., Burgers, L., Bult, P. and Holland, R. (1994) 'Three dimensional imaging of mammary ductal 
carcinoma in situ: clinical implications', Semin Diagn Pathol, 11(3), pp. 193-8. 

Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J. and Palena, C. (2010) 'The T-box 
transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells', J 
Clin Invest, 120(2), pp. 533-44. 

Fillmore, C. M., Gupta, P. B., Rudnick, J. A., Caballero, S., Keller, P. J., Lander, E. S. and Kuperwasser, C. 
(2010) 'Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling', Proc 
Natl Acad Sci U S A, 107(50), pp. 21737-42. 

Fisher, B., Anderson, S., Bryant, J., Margolese, R. G., Deutsch, M., Fisher, E. R., Jeong, J. H. and Wolmark, 
N. (2002) 'Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and 
lumpectomy plus irradiation for the treatment of invasive breast cancer', N Engl J Med, 347(16), pp. 
1233-41. 

Fisher, B., Costantino, J., Redmond, C., Fisher, E., Margolese, R., Dimitrov, N., Wolmark, N., Wickerham, D. 
L., Deutsch, M. and Ore, L. (1993) 'Lumpectomy compared with lumpectomy and radiation therapy for 
the treatment of intraductal breast cancer', N Engl J Med, 328(22), pp. 1581-6. 

Fisher, B., Dignam, J., Wolmark, N., Mamounas, E., Costantino, J., Poller, W., Fisher, E. R., Wickerham, D. 
L., Deutsch, M., Margolese, R., Dimitrov, N. and Kavanah, M. (1998) 'Lumpectomy and radiation 
therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast 
and Bowel Project B-17', J Clin Oncol, 16(2), pp. 441-52. 

Fisher, B., Land, S., Mamounas, E., Dignam, J., Fisher, E. R. and Wolmark, N. (2001) 'Prevention of invasive 
breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant 
Breast and Bowel Project experience', Semin Oncol, 28(4), pp. 400-18. 



 

58 

58 

Fitzgibbons, P. L., Henson, D. E. and Hutter, R. V. (1998) 'Benign breast changes and the risk for subsequent 
breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of 
American Pathologists', Arch Pathol Lab Med, 122(12), pp. 1053-5. 

Folkman, J. (1971) 'Tumor angiogenesis: therapeutic implications', N Engl J Med, 285(21), pp. 1182-6. 

Formenti, S. C., Arslan, A. A. and Pike, M. C. (2011) 'Re: Long-term outcomes of invasive ipsilateral breast 
tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS', J 
Natl Cancer Inst, 103(22), pp. 1723. 

Foulkes, W. D., Brunet, J. S., Stefansson, I. M., Straume, O., Chappuis, P. O., Bégin, L. R., Hamel, N., Goffin, 
J. R., Wong, N., Trudel, M., Kapusta, L., Porter, P. and Akslen, L. A. (2004) 'The prognostic 
implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) 
phenotype of BRCA1-related breast cancer', Cancer Res, 64(3), pp. 830-5. 

Fowble, B., Hanlon, A. L., Fein, D. A., Hoffman, J. P., Sigurdson, E. R., Patchefsky, A. and Kessler, H. (1997) 
'Results of conservative surgery and radiation for mammographically detected ductal carcinoma in 
situ (DCIS)', Int J Radiat Oncol Biol Phys, 38(5), pp. 949-57. 

Gao, Y., Niu, Y., Wang, X., Wei, L. and Lu, S. (2009) 'Genetic changes at specific stages of breast cancer 
progression detected by comparative genomic hybridization', J Mol Med (Berl), 87(2), pp. 145-52. 

Gasparini, G., Brooks, P. C., Biganzoli, E., Vermeulen, P. B., Bonoldi, E., Dirix, L. Y., Ranieri, G., Miceli, R. 
and Cheresh, D. A. (1998) 'Vascular integrin alpha(v)beta3: a new prognostic indicator in breast 
cancer', Clin Cancer Res, 4(11), pp. 2625-34. 

Gauthier, M. L., Berman, H. K., Miller, C., Kozakeiwicz, K., Chew, K., Moore, D., Rabban, J., Chen, Y. Y., 
Kerlikowske, K. and Tlsty, T. D. (2007) 'Abrogated response to cellular stress identifies DCIS 
associated with subsequent tumor events and defines basal-like breast tumors', Cancer Cell, 12(5), 
pp. 479-91. 

Geissinger, E., Weisser, C., Fischer, P., Schartl, M. and Wellbrock, C. (2002) 'Autocrine stimulation by 
osteopontin contributes to antiapoptotic signalling of melanocytes in dermal collagen', Cancer Res, 
62(16), pp. 4820-8. 

Georges, R., Nemer, G., Morin, M., Lefebvre, C. and Nemer, M. (2008) 'Distinct expression and function of 
alternatively spliced Tbx5 isoforms in cell growth and differentiation', Mol Cell Biol, 28(12), pp. 4052-
67. 

Ghatak, S., Misra, S. and Toole, B. P. (2005) 'Hyaluronan constitutively regulates ErbB2 phosphorylation and 
signaling complex formation in carcinoma cells', J Biol Chem, 280(10), pp. 8875-83. 

Giles, R. H., van Es, J. H. and Clevers, H. (2003) 'Caught up in a Wnt storm: Wnt signaling in cancer', 
Biochim Biophys Acta, 1653(1), pp. 1-24. 

Glozak, M. A., Sengupta, N., Zhang, X. and Seto, E. (2005) 'Acetylation and deacetylation of non-histone 
proteins', Gene, 363, pp. 15-23. 

Glozak, M. A. and Seto, E. (2007) 'Histone deacetylases and cancer', Oncogene, 26(37), pp. 5420-32. 

Gluecksohn-Schoenheimer, S. (1938) 'The Development of Two Tailless Mutants in the House Mouse', 
Genetics, 23(6), pp. 573-84. 

Go, E. M., Tsang, J. Y., Ni, Y. B., Yu, A. M., Mendoza, P., Chan, S. K., Lam, C. C., Lui, P. C., Tan, P. H. and 
Tse, G. M. (2012) 'Relationship between columnar cell changes and low-grade carcinoma in situ of 
the breast--a cytogenetic study', Hum Pathol, 43(11), pp. 1924-31. 



 

59 

59 

Goodison, S., Urquidi, V. and Tarin, D. (1999) 'CD44 cell adhesion molecules', Mol Pathol, 52(4), pp. 189-96. 

Gravdal, K., Halvorsen, O. J., Haukaas, S. A. and Akslen, L. A. (2007) 'A switch from E-cadherin to N-
cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent 
importance for the progress of prostate cancer', Clin Cancer Res, 13(23), pp. 7003-11. 

Griffioen, A. W., Coenen, M. J., Damen, C. A., Hellwig, S. M., van Weering, D. H., Vooys, W., Blijham, G. H. 
and Groenewegen, G. (1997) 'CD44 is involved in tumor angiogenesis; an activation antigen on 
human endothelial cells', Blood, 90(3), pp. 1150-9. 

Gruneberg, H. (1958) 'Genetical studies on the skeleton of the mouse. XXIII. The development of brachyury 
and anury', J Embryol Exp Morphol, 6(3), pp. 424-43. 

Gudmundsson, J., Besenbacher, S., Sulem, P., Gudbjartsson, D. F., Olafsson, I., Arinbjarnarson, S., 
Agnarsson, B. A., Benediktsdottir, K. R., Isaksson, H. J., Kostic, J. P., Gudjonsson, S. A., Stacey, S. 
N., Gylfason, A., Sigurdsson, A., Holm, H., Bjornsdottir, U. S., Eyjolfsson, G. I., Navarrete, S., 
Fuertes, F., Garcia-Prats, M. D., Polo, E., Checherita, I. A., Jinga, M., Badea, P., Aben, K. K., 
Schalken, J. A., van Oort, I. M., Sweep, F. C., Helfand, B. T., Davis, M., Donovan, J. L., Hamdy, F. 
C., Kristjansson, K., Gulcher, J. R., Masson, G., Kong, A., Catalona, W. J., Mayordomo, J. I., 
Geirsson, G., Einarsson, G. V., Barkardottir, R. B., Jonsson, E., Jinga, V., Mates, D., Kiemeney, L. A., 
Neal, D. E., Thorsteinsdottir, U., Rafnar, T. and Stefansson, K. (2010) 'Genetic correction of PSA 
values using sequence variants associated with PSA levels', Sci Transl Med, 2(62), pp. 62ra92. 

Guerra-Wallace, M. M., Christensen, W. N. and White, R. L. (2004) 'A retrospective study of columnar 
alteration with prominent apical snouts and secretions and the association with cancer', Am J Surg, 
188(4), pp. 395-8. 

Habel, L. A., Daling, J. R., Newcomb, P. A., Self, S. G., Porter, P. L., Stanford, J. L., Seidel, K. and Weiss, N. 
S. (1998) 'Risk of recurrence after ductal carcinoma in situ of the breast', Cancer Epidemiol 
Biomarkers Prev, 7(8), pp. 689-96. 

Han, J., Yuan, P., Yang, H., Zhang, J., Soh, B. S., Li, P., Lim, S. L., Cao, S., Tay, J., Orlov, Y. L., Lufkin, T., 
Ng, H. H., Tam, W. L. and Lim, B. (2010) 'Tbx3 improves the germ-line competency of induced 
pluripotent stem cells', Nature, 463(7284), pp. 1096-100. 

Han, K., Nofech-Mozes, S., Narod, S., Hanna, W., Vesprini, D., Saskin, R., Taylor, C., Kong, I., Paszat, L. and 
Rakovitch, E. (2012) 'Expression of HER2neu in ductal carcinoma in situ is associated with local 
recurrence', Clin Oncol (R Coll Radiol), 24(3), pp. 183-9. 

Hanahan, D. and Weinberg, R. A. (2000) 'The hallmarks of cancer', Cell, 100(1), pp. 57-70. 

Hansel, D. E., Rahman, A., House, M., Ashfaq, R., Berg, K., Yeo, C. J. and Maitra, A. (2004) 'Met proto-
oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic 
ability in well-differentiated pancreatic endocrine neoplasms', Clin Cancer Res, 10(18 Pt 1), pp. 6152-
8. 

Hartmann, L. C., Degnim, A. C., Santen, R. J., Dupont, W. D. and Ghosh, K. (2015) 'Atypical hyperplasia of 
the breast--risk assessment and management options', N Engl J Med, 372(1), pp. 78-89. 

Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L. and Aaronson, S. A. (2000) 'Exogenous expression of N-
cadherin in breast cancer cells induces cell migration, invasion, and metastasis', J Cell Biol, 148(4), 
pp. 779-90. 

Hetelekidis, S., Collins, L., Silver, B., Manola, J., Gelman, R., Cooper, A., Lester, S., Lyons, J. A., Harris, J. R. 
and Schnitt, S. J. (1999) 'Predictors of local recurrence following excision alone for ductal carcinoma 
in situ', Cancer, 85(2), pp. 427-31. 



 

60 

60 

Hevir, N., Trošt, N., Debeljak, N. and Rižner, T. L. (2011) 'Expression of estrogen and progesterone receptors 
and estrogen metabolizing enzymes in different breast cancer cell lines', Chem Biol Interact, 191(1-3), 
pp. 206-16. 

Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., Shimanuki, Y., Nishio, K. 
and Fukuchi, Y. (2003) 'Osteopontin overproduced by tumor cells acts as a potent angiogenic factor 
contributing to tumor growth', Cancer Lett, 198(1), pp. 107-17. 

Holmberg, L., Garmo, H., Granstrand, B., Ringberg, A., Arnesson, L. G., Sandelin, K., Karlsson, P., Anderson, 
H. and Emdin, S. (2008) 'Absolute risk reductions for local recurrence after postoperative 
radiotherapy after sector resection for ductal carcinoma in situ of the breast', J Clin Oncol, 26(8), pp. 
1247-52. 

Holmes, P., Lloyd, J., Chervoneva, I., Pequinot, E., Cornfield, D. B., Schwartz, G. F., Allen, K. G. and 
Palazzo, J. P. (2011) 'Prognostic markers and long-term outcomes in ductal carcinoma in situ of the 
breast treated with excision alone', Cancer, 117(16), pp. 3650-7. 

Hoogaars, W. M., Barnett, P., Rodriguez, M., Clout, D. E., Moorman, A. F., Goding, C. R. and Christoffels, V. 
M. (2008) 'TBX3 and its splice variant TBX3 + exon 2a are functionally similar', Pigment Cell 
Melanoma Res, 21(3), pp. 379-87. 

Howard, B. and Ashworth, A. (2006) 'Signalling pathways implicated in early mammary gland morphogenesis 
and breast cancer', PLoS Genet, 2(8), pp. e112. 

Hu, M., Yao, J., Carroll, D. K., Weremowicz, S., Chen, H., Carrasco, D., Richardson, A., Violette, S., 
Nikolskaya, T., Nikolsky, Y., Bauerlein, E. L., Hahn, W. C., Gelman, R. S., Allred, C., Bissell, M. J., 
Schnitt, S. and Polyak, K. (2008) 'Regulation of in situ to invasive breast carcinoma transition', Cancer 
Cell, 13(5), pp. 394-406. 

Hughes, L. L., Wang, M., Page, D. L., Gray, R., Solin, L. J., Davidson, N. E., Lowen, M. A., Ingle, J. N., Recht, 
A. and Wood, W. C. (2009) 'Local excision alone without irradiation for ductal carcinoma in situ of the 
breast: a trial of the Eastern Cooperative Oncology Group', J Clin Oncol, 27(32), pp. 5319-24. 

Humtsoe, J. O., Koya, E., Pham, E., Aramoto, T., Zuo, J., Ishikawa, T. and Kramer, R. H. (2012) 
'Transcriptional profiling identifies upregulated genes following induction of epithelial-mesenchymal 
transition in squamous carcinoma cells', Exp Cell Res, 318(4), pp. 379-90. 

Iozzo, R. V. and Müller-Glauser, W. (1985) 'Neoplastic modulation of extracellular matrix: proteoglycan 
changes in the rabbit mesentery induced by V2 carcinoma cells', Cancer Res, 45(11 Pt 2), pp. 5677-
87. 

Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1994) 'eFGF regulates Xbra expression during Xenopus 
gastrulation', EMBO J, 13(19), pp. 4469-81. 

Itano, N., Sawai, T., Yoshida, M., Lenas, P., Yamada, Y., Imagawa, M., Shinomura, T., Hamaguchi, M., 
Yoshida, Y., Ohnuki, Y., Miyauchi, S., Spicer, A. P., McDonald, J. A. and Kimata, K. (1999) 'Three 
isoforms of mammalian hyaluronan synthases have distinct enzymatic properties', J Biol Chem, 
274(35), pp. 25085-92. 

Jackson, L. C., Camacho, F., Levine, E. A., Anderson, R. T. and Stewart, J. H. (2008) 'Patterns of care 
analysis among women with ductal carcinoma in situ in North Carolina', Am J Surg, 195(2), pp. 164-9. 

Jiang, K., Ren, C. and Nair, V. D. (2013) 'MicroRNA-137 represses Klf4 and Tbx3 during differentiation of 
mouse embryonic stem cells', Stem Cell Res, 11(3), pp. 1299-313. 

Kader, T., Hill, P., Rakha, E. A., Campbell, I. G. and Gorringe, K. L. (2018) 'Atypical ductal hyperplasia: 
update on diagnosis, management, and molecular landscape', Breast Cancer Res, 20(1), pp. 39. 



 

61 

61 

Kang, Y., Chen, C. R. and Massagué, J. (2003) 'A self-enabling TGFbeta response coupled to stress 
signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells', Mol Cell, 
11(4), pp. 915-26. 

Kenny, P. A., Lee, G. Y., Myers, C. A., Neve, R. M., Semeiks, J. R., Spellman, P. T., Lorenz, K., Lee, E. H., 
Barcellos-Hoff, M. H., Petersen, O. W., Gray, J. W. and Bissell, M. J. (2007) 'The morphologies of 
breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression', 
Mol Oncol, 1(1), pp. 84-96. 

Kepple, J., Henry-Tillman, R. S., Klimberg, V. S., Layeeque, R., Siegel, E., Westbrook, K. and Korourian, S. 
(2006) 'The receptor expression pattern in ductal carcinoma in situ predicts recurrence', Am J Surg, 
192(1), pp. 68-71. 

Kerlikowske, K. (2010) 'Epidemiology of ductal carcinoma in situ', J Natl Cancer Inst Monogr, 2010(41), pp. 
139-41. 

Kerlikowske, K., Molinaro, A. M., Gauthier, M. L., Berman, H. K., Waldman, F., Bennington, J., Sanchez, H., 
Jimenez, C., Stewart, K., Chew, K., Ljung, B. M. and Tlsty, T. D. (2010) 'Biomarker expression and 
risk of subsequent tumors after initial ductal carcinoma in situ diagnosis', J Natl Cancer Inst, 102(9), 
pp. 627-37. 

Khan, S. A., Cook, A. C., Kappil, M., Günthert, U., Chambers, A. F., Tuck, A. B. and Denhardt, D. T. (2005) 
'Enhanced cell surface CD44 variant (v6, v9) expression by osteopontin in breast cancer epithelial 
cells facilitates tumor cell migration: novel post-transcriptional, post-translational regulation', Clin Exp 
Metastasis, 22(8), pp. 663-73. 

Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., Shin, S. H., Song, E. S. and Lee, S. H. 
(2005) 'Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to 
enhance the motility of human glioma cells', Cancer Res, 65(3), pp. 686-91. 

Klinck, R., Bramard, A., Inkel, L., Dufresne-Martin, G., Gervais-Bird, J., Madden, R., Paquet, E. R., Koh, C., 
Venables, J. P., Prinos, P., Jilaveanu-Pelmus, M., Wellinger, R., Rancourt, C., Chabot, B. and Abou 
Elela, S. (2008) 'Multiple alternative splicing markers for ovarian cancer', Cancer Res, 68(3), pp. 657-
63. 

Knowles, M. A. and Selby, P. (2005) Introduction to the cellular and molecular biology of cancer. New York: 
Oxford University Press. 

Knudson, W., Biswas, C., Li, X. Q., Nemec, R. E. and Toole, B. P. (1989) 'The role and regulation of tumour-
associated hyaluronan', Ciba Found Symp, 143, pp. 150-9; discussion 159-69, 281-5. 

Konecny, G. E., Meng, Y. G., Untch, M., Wang, H. J., Bauerfeind, I., Epstein, M., Stieber, P., Vernes, J. M., 
Gutierrez, J., Hong, K., Beryt, M., Hepp, H., Slamon, D. J. and Pegram, M. D. (2004) 'Association 
between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in 
primary breast cancer patients', Clin Cancer Res, 10(5), pp. 1706-16. 

Kornblihtt, A. R., Schor, I. E., Alló, M., Dujardin, G., Petrillo, E. and Muñoz, M. J. (2013) 'Alternative splicing: a 
pivotal step between eukaryotic transcription and translation', Nat Rev Mol Cell Biol, 14(3), pp. 153-
65. 

Koyama, H., Hibi, T., Isogai, Z., Yoneda, M., Fujimori, M., Amano, J., Kawakubo, M., Kannagi, R., Kimata, K., 
Taniguchi, S. and Itano, N. (2007) 'Hyperproduction of hyaluronan in neu-induced mammary tumor 
accelerates angiogenesis through stromal cell recruitment: possible involvement of versican/PG-M', 
Am J Pathol, 170(3), pp. 1086-99. 



 

62 

62 

Krstic, M., Macmillan, C. D., Leong, H. S., Clifford, A. G., Souter, L. H., Dales, D. W., Postenka, C. O., 
Chambers, A. F. and Tuck, A. B. (2016) 'The transcriptional regulator TBX3 promotes progression 
from non-invasive to invasive breast cancer', BMC Cancer, 16(1), pp. 671. 

Kumar P, P., Emechebe, U., Smith, R., Franklin, S., Moore, B., Yandell, M., Lessnick, S. L. and Moon, A. M. 
(2014a) 'Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex', 
Elife, 3. 

Kumar P, P., Franklin, S., Emechebe, U., Hu, H., Moore, B., Lehman, C., Yandell, M. and Moon, A. M. 
(2014b) 'TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary 
syndrome', PLoS Genet, 10(3), pp. e1004247. 

Kumar, V., Abbas, A. K., Aster, J. C. and Robbins, S. L. (2013) Robbins basic pathology. 9th edn. 
Philadelphia, PA: Elsevier/Saunders. 

Kunju, L. P. and Kleer, C. G. (2007) 'Significance of flat epithelial atypia on mammotome core needle biopsy: 
Should it be excised?', Hum Pathol, 38(1), pp. 35-41. 

Ladomery, M. R., Harper, S. J. and Bates, D. O. (2007) 'Alternative splicing in angiogenesis: the vascular 
endothelial growth factor paradigm', Cancer Lett, 249(2), pp. 133-42. 

Lagios, M. D. (1990) 'Duct carcinoma in situ. Pathology and treatment', Surg Clin North Am, 70(4), pp. 853-
71. 

Lagios, M. D., Margolin, F. R., Westdahl, P. R. and Rose, M. R. (1989) 'Mammographically detected duct 
carcinoma in situ. Frequency of local recurrence following tylectomy and prognostic effect of nuclear 
grade on local recurrence', Cancer, 63(4), pp. 618-24. 

Lakhani, S. R., Collins, N., Stratton, M. R. and Sloane, J. P. (1995) 'Atypical ductal hyperplasia of the breast: 
clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p', J Clin Pathol, 48(7), 
pp. 611-5. 

Larson, P. S., de las Morenas, A., Cerda, S. R., Bennett, S. R., Cupples, L. A. and Rosenberg, C. L. (2006) 
'Quantitative analysis of allele imbalance supports atypical ductal hyperplasia lesions as direct breast 
cancer precursors', J Pathol, 209(3), pp. 307-16. 

Le Bras, G. F., Taubenslag, K. J. and Andl, C. D. (2012) 'The regulation of cell-cell adhesion during epithelial-
mesenchymal transition, motility and tumor progression', Cell Adh Migr, 6(4), pp. 365-73. 

Leali, D., Dell'Era, P., Stabile, H., Sennino, B., Chambers, A. F., Naldini, A., Sozzani, S., Nico, B., Ribatti, D. 
and Presta, M. (2003) 'Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis', 
J Immunol, 171(2), pp. 1085-93. 

Lee, H. S., Cho, H. H., Kim, H. K., Bae, Y. C., Baik, H. S. and Jung, J. S. (2007) 'Tbx3, a transcriptional factor, 
involves in proliferation and osteogenic differentiation of human adipose stromal cells', Mol Cell 
Biochem, 296(1-2), pp. 129-36. 

Lerwill, M. F. (2008) 'Flat epithelial atypia of the breast', Arch Pathol Lab Med, 132(4), pp. 615-21. 

Lester, S. C., Bose, S., Chen, Y. Y., Connolly, J. L., de Baca, M. E., Fitzgibbons, P. L., Hayes, D. F., Kleer, 
C., O'Malley, F. P., Page, D. L., Smith, B. L., Weaver, D. L., Winer, E. and Members of the Cancer 
Committee, C. l. o. A. P. (2009) 'Protocol for the examination of specimens from patients with ductal 
carcinoma in situ of the breast', Arch Pathol Lab Med, 133(1), pp. 15-25. 

Lewin, B., Krebs, J. E., Kilpatrick, S. T. and Goldstein, E. S. (2011) Lewin's genes X. 10th edn. Sudbury, 
Mass.: Jones and Bartlett. 



 

63 

63 

Li, J., Ballim, D., Rodriguez, M., Cui, R., Goding, C. R., Teng, H. and Prince, S. (2014) 'The anti-proliferative 
function of the TGF-β1 signaling pathway involves the repression of the oncogenic TBX2 by its 
homologue TBX3', J Biol Chem, 289(51), pp. 35633-43. 

Li, J., Weinberg, M. S., Zerbini, L. and Prince, S. (2013) 'The oncogenic TBX3 is a downstream target and 
mediator of the TGF-β1 signaling pathway', Mol Biol Cell, 24(22), pp. 3569-76. 

Liapis, H., Flath, A. and Kitazawa, S. (1996) 'Integrin alpha V beta 3 expression by bone-residing breast 
cancer metastases', Diagn Mol Pathol, 5(2), pp. 127-35. 

Liesveld, J. L., Frediani, K. E., Harbol, A. W., DiPersio, J. F. and Abboud, C. N. (1994) 'Characterization of the 
adherence of normal and leukemic CD34+ cells to endothelial monolayers', Leukemia, 8(12), pp. 
2111-7. 

Lin, Y. H. and Yang-Yen, H. F. (2001) 'The osteopontin-CD44 survival signal involves activation of the 
phosphatidylinositol 3-kinase/Akt signaling pathway', J Biol Chem, 276(49), pp. 46024-30. 

Lingbeek, M. E., Jacobs, J. J. and van Lohuizen, M. (2002) 'The T-box repressors TBX2 and TBX3 
specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator', J Biol 
Chem, 277(29), pp. 26120-7. 

Liu, J., Esmailpour, T., Shang, X., Gulsen, G., Liu, A. and Huang, T. (2011) 'TBX3 over-expression causes 
mammary gland hyperplasia and increases mammary stem-like cells in an inducible transgenic 
mouse model', BMC Dev Biol, 11, pp. 65. 

Liu, T., Zhang, X., Shang, M., Zhang, Y., Xia, B., Niu, M., Liu, Y. and Pang, D. (2013) 'Dysregulated 
expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with 
basal-like breast cancer', J Surg Oncol, 107(2), pp. 188-94. 

Liu, X. L., Band, H., Gao, Q., Wazer, D. E., Chu, Q. and Band, V. (1994) 'Tumor cell-specific loss of p53 
protein in a unique in vitro model of human breast tumor progression', Carcinogenesis, 15(9), pp. 
1969-73. 

Lomnytska, M., Dubrovska, A., Hellman, U., Volodko, N. and Souchelnytskyi, S. (2006) 'Increased expression 
of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients', Int J Cancer, 118(2), 
pp. 412-21. 

Lu, J., Li, X. P., Dong, Q., Kung, H. F. and He, M. L. (2010) 'TBX2 and TBX3: the special value for anticancer 
drug targets', Biochim Biophys Acta, 1806(2), pp. 268-74. 

Lu, R., Yang, A. and Jin, Y. (2011) 'Dual functions of T-box 3 (Tbx3) in the control of self-renewal and 
extraembryonic endoderm differentiation in mouse embryonic stem cells', J Biol Chem, 286(10), pp. 
8425-36. 

Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F. and Groom, A. C. 
(1998) 'Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful 
extravasation and limited survival of early micrometastases', Am J Pathol, 153(3), pp. 865-73. 

Lyng, H., Brovig, R. S., Svendsrud, D. H., Holm, R., Kaalhus, O., Knutstad, K., Oksefjell, H., Sundfor, K., 
Kristensen, G. B. and Stokke, T. (2006) 'Gene expressions and copy numbers associated with 
metastatic phenotypes of uterine cervical cancer', BMC Genomics, 7, pp. 268. 

Ma, X. J., Salunga, R., Tuggle, J. T., Gaudet, J., Enright, E., McQuary, P., Payette, T., Pistone, M., Stecker, 
K., Zhang, B. M., Zhou, Y. X., Varnholt, H., Smith, B., Gadd, M., Chatfield, E., Kessler, J., Baer, T. M., 
Erlander, M. G. and Sgroi, D. C. (2003) 'Gene expression profiles of human breast cancer 
progression', Proc Natl Acad Sci U S A, 100(10), pp. 5974-9. 



 

64 

64 

Madsen, M. W., Lykkesfeldt, A. E., Laursen, I., Nielsen, K. V. and Briand, P. (1992) 'Altered gene expression 
of c-myc, epidermal growth factor receptor, transforming growth factor-alpha, and c-erb-B2 in an 
immortalized human breast epithelial cell line, HMT-3522, is associated with decreased growth factor 
requirements', Cancer Res, 52(5), pp. 1210-7. 

Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. 
C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R. A. (2008) 'The 
epithelial-mesenchymal transition generates cells with properties of stem cells', Cell, 133(4), pp. 704-
15. 

Martel, M., Barron-Rodriguez, P., Tolgay Ocal, I., Dotto, J. and Tavassoli, F. A. (2007) 'Flat DIN 1 (flat 
epithelial atypia) on core needle biopsy: 63 cases identified retrospectively among 1,751 core 
biopsies performed over an 8-year period (1992-1999)', Virchows Arch, 451(5), pp. 883-91. 

Martin, T. A., Goyal, A., Watkins, G. and Jiang, W. G. (2005) 'Expression of the transcription factors snail, 
slug, and twist and their clinical significance in human breast cancer', Ann Surg Oncol, 12(6), pp. 488-
96. 

Massagué, J. (2012) 'TGFβ signalling in context', Nat Rev Mol Cell Biol, 13(10), pp. 616-30. 

Matlin, A. J., Clark, F. and Smith, C. W. (2005) 'Understanding alternative splicing: towards a cellular code', 
Nat Rev Mol Cell Biol, 6(5), pp. 386-98. 

McFarlane, S., Coulter, J. A., Tibbits, P., O'Grady, A., McFarlane, C., Montgomery, N., Hill, A., McCarthy, H. 
O., Young, L. S., Kay, E. W., Isacke, C. M. and Waugh, D. J. (2015) 'CD44 increases the efficiency of 
distant metastasis of breast cancer', Oncotarget, 6(13), pp. 11465-76. 

Mersfelder, E. L. and Parthun, M. R. (2006) 'The tale beyond the tail: histone core domain modifications and 
the regulation of chromatin structure', Nucleic Acids Res, 34(9), pp. 2653-62. 

Miao, Z. F., Liu, X. Y., Xu, H. M., Wang, Z. N., Zhao, T. T., Song, Y. X., Xing, Y. N., Huang, J. Y., Zhang, J. 
Y., Xu, H. and Xu, Y. Y. (2016) 'Tbx3 overexpression in human gastric cancer is correlated with 
advanced tumor stage and nodal status and promotes cancer cell growth and invasion', Virchows 
Arch, 469(5), pp. 505-513. 

Miller, A. B., Wall, C., Baines, C. J., Sun, P., To, T. and Narod, S. A. (2014) 'Twenty five year follow-up for 
breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised 
screening trial', BMJ, 348, pp. g366. 

Miller, F. R. (2000) 'Xenograft models of premalignant breast disease', J Mammary Gland Biol Neoplasia, 
5(4), pp. 379-91. 

Miller, F. R., Santner, S. J., Tait, L. and Dawson, P. J. (2000) 'MCF10DCIS.com xenograft model of human 
comedo ductal carcinoma in situ', J Natl Cancer Inst, 92(14), pp. 1185-6. 

Mills, S. E. (2007) Histology for pathologists. 3rd edn. Philadelphia: Lippincott Williams & Wilkins. 

Mironchik, Y., Winnard, P. T., Vesuna, F., Kato, Y., Wildes, F., Pathak, A. P., Kominsky, S., Artemov, D., 
Bhujwalla, Z., Van Diest, P., Burger, H., Glackin, C. and Raman, V. (2005) 'Twist overexpression 
induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer', Cancer 
Res, 65(23), pp. 10801-9. 

Misra, S., Ghatak, S. and Toole, B. P. (2005) 'Regulation of MDR1 expression and drug resistance by a 
positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2', J Biol Chem, 
280(21), pp. 20310-5. 



 

65 

65 

Misra, S., Toole, B. P. and Ghatak, S. (2006) 'Hyaluronan constitutively regulates activation of multiple 
receptor tyrosine kinases in epithelial and carcinoma cells', J Biol Chem, 281(46), pp. 34936-41. 

Moinfar, F., Man, Y. G., Bratthauer, G. L., Ratschek, M. and Tavassoli, F. A. (2000) 'Genetic abnormalities in 
mammary ductal intraepithelial neoplasia-flat type ("clinging ductal carcinoma in situ"): a simulator of 
normal mammary epithelium', Cancer, 88(9), pp. 2072-81. 

Mokbel, K. and Cutuli, B. (2006) 'Heterogeneity of ductal carcinoma in situ and its effects on management', 
Lancet Oncol, 7(9), pp. 756-65. 

Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S. and Puisieux, A. (2008) 'Generation of breast 
cancer stem cells through epithelial-mesenchymal transition', PLoS One, 3(8), pp. e2888. 

Moreno-Bueno, G., Cubillo, E., Sarrió, D., Peinado, H., Rodríguez-Pinilla, S. M., Villa, S., Bolós, V., Jordá, M., 
Fabra, A., Portillo, F., Palacios, J. and Cano, A. (2006) 'Genetic profiling of epithelial cells expressing 
E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-
mesenchymal transition', Cancer Res, 66(19), pp. 9543-56. 

Morrow, M., Schnitt, S. J. and Norton, L. (2015) 'Current management of lesions associated with an increased 
risk of breast cancer', Nat Rev Clin Oncol, 12(4), pp. 227-38. 

Moses, H. and Barcellos-Hoff, M. H. (2011) 'TGF-beta biology in mammary development and breast cancer', 
Cold Spring Harb Perspect Biol, 3(1), pp. a003277. 

Muggerud, A. A., Hallett, M., Johnsen, H., Kleivi, K., Zhou, W., Tahmasebpoor, S., Amini, R. M., Botling, J., 
Borresen-Dale, A. L., Sorlie, T. and Warnberg, F. (2010) 'Molecular diversity in ductal carcinoma in 
situ (DCIS) and early invasive breast cancer', Mol Oncol, 4(4), pp. 357-68. 

Müller, C. W. and Herrmann, B. G. (1997) 'Crystallographic structure of the T domain-DNA complex of the 
Brachyury transcription factor', Nature, 389(6653), pp. 884-8. 

Musso, G., Paschetta, E., Gambino, R., Cassader, M. and Molinaro, F. (2013) 'Interactions among bone, liver, 
and adipose tissue predisposing to diabesity and fatty liver', Trends Mol Med, 19(9), pp. 522-35. 

Nieto, M. A. (2002) 'The snail superfamily of zinc-finger transcription factors', Nat Rev Mol Cell Biol, 3(3), pp. 
155-66. 

Nieto, M. A., Huang, R. Y., Jackson, R. A. and Thiery, J. P. (2016) 'EMT: 2016', Cell, 166(1), pp. 21-45. 

Nishida, N., Yano, H., Nishida, T., Kamura, T. and Kojiro, M. (2006) 'Angiogenesis in cancer', Vasc Health 
Risk Manag, 2(3), pp. 213-9. 

Niu, Y., Wang, S., Liu, T., Zhang, T., Wei, X., Wang, Y. and Jiang, L. (2013) 'Expression of centrosomal 
tubulins associated with DNA ploidy in breast premalignant lesions and carcinoma', Pathol Res Pract, 
209(4), pp. 221-7. 

Niwa, H., Ogawa, K., Shimosato, D. and Adachi, K. (2009) 'A parallel circuit of LIF signalling pathways 
maintains pluripotency of mouse ES cells', Nature, 460(7251), pp. 118-22. 

Nofech-Mozes, S., Spayne, J., Rakovitch, E., Kahn, H. J., Seth, A., Pignol, J. P., Lickley, L., Paszat, L. and 
Hanna, W. (2008) 'Biological Markers Predictive of Invasive Recurrence in DCIS', Clin Med Oncol, 2, 
pp. 7-18. 

O'Connell, P., Pekkel, V., Fuqua, S. A., Osborne, C. K., Clark, G. M. and Allred, D. C. (1998) 'Analysis of loss 
of heterozygosity in 399 premalignant breast lesions at 15 genetic loci', J Natl Cancer Inst, 90(9), pp. 
697-703. 



 

66 

66 

Okuda, H., Kobayashi, A., Xia, B., Watabe, M., Pai, S. K., Hirota, S., Xing, F., Liu, W., Pandey, P. R., Fukuda, 
K., Modur, V., Ghosh, A., Wilber, A. and Watabe, K. (2012) 'Hyaluronan synthase HAS2 promotes 
tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with 
macrophages and stromal cells', Cancer Res, 72(2), pp. 537-47. 

Oltean, S. and Bates, D. O. (2014) 'Hallmarks of alternative splicing in cancer', Oncogene, 33(46), pp. 5311-8. 

Oltean, S., Febbo, P. G. and Garcia-Blanco, M. A. (2008) 'Dunning rat prostate adenocarcinomas and 
alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo', 
Clin Exp Metastasis, 25(6), pp. 611-9. 

Ornitz, D. M. and Itoh, N. (2015) 'The Fibroblast Growth Factor signaling pathway', Wiley Interdiscip Rev Dev 
Biol, 4(3), pp. 215-66. 

Page, D. L. and Dupont, W. D. (1992) 'Indicators of increased breast cancer risk in humans', J Cell Biochem 
Suppl, 16G, pp. 175-82. 

Page, D. L. and Dupont, W. D. (1993) 'Anatomic indicators (histologic and cytologic) of increased breast 
cancer risk', Breast Cancer Res Treat, 28(2), pp. 157-66. 

Page, D. L., Dupont, W. D., Rogers, L. W. and Rados, M. S. (1985) 'Atypical hyperplastic lesions of the 
female breast. A long-term follow-up study', Cancer, 55(11), pp. 2698-708. 

Page, D. L. and Rogers, L. W. (1992) 'Combined histologic and cytologic criteria for the diagnosis of 
mammary atypical ductal hyperplasia', Hum Pathol, 23(10), pp. 1095-7. 

Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F. L., Walker, M. G., Watson, D., Park, 
T., Hiller, W., Fisher, E. R., Wickerham, D. L., Bryant, J. and Wolmark, N. (2004) 'A multigene assay 
to predict recurrence of tamoxifen-treated, node-negative breast cancer', N Engl J Med, 351(27), pp. 
2817-26. 

Pajares, M. J., Ezponda, T., Catena, R., Calvo, A., Pio, R. and Montuenga, L. M. (2007) 'Alternative splicing: 
an emerging topic in molecular and clinical oncology', Lancet Oncol, 8(4), pp. 349-57. 

Palena, C., Roselli, M., Litzinger, M. T., Ferroni, P., Costarelli, L., Spila, A., Cavaliere, F., Huang, B., 
Fernando, R. I., Hamilton, D. H., Jochems, C., Tsang, K. Y., Cheng, Q., Lyerly, H. K., Schlom, J. and 
Guadagni, F. (2014) 'Overexpression of the EMT driver brachyury in breast carcinomas: association 
with poor prognosis', J Natl Cancer Inst, 106(5). 

Papaioannou, V. E. (2001) 'T-box genes in development: from hydra to humans', Int Rev Cytol, 207, pp. 1-70. 

Peres, J., Davis, E., Mowla, S., Bennett, D. C., Li, J. A., Wansleben, S. and Prince, S. (2010) 'The Highly 
Homologous T-Box Transcription Factors, TBX2 and TBX3, Have Distinct Roles in the Oncogenic 
Process', Genes Cancer, 1(3), pp. 272-82. 

Peres, J., Kwesi-Maliepaard, E. M., Rambow, F., Larue, L. and Prince, S. (2017) 'The tumour suppressor, 
miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor', Cancer 
Lett, 405, pp. 111-119. 

Peres, J., Mowla, S. and Prince, S. (2015) 'The T-box transcription factor, TBX3, is a key substrate of AKT3 in 
melanomagenesis', Oncotarget, 6(3), pp. 1821-33. 

Peres, J. and Prince, S. (2013) 'The T-box transcription factor, TBX3, is sufficient to promote melanoma 
formation and invasion', Mol Cancer, 12(1), pp. 117. 

Perkhofer, L., Walter, K., Costa, I. G., Carrasco, M. C., Eiseler, T., Hafner, S., Genze, F., Zenke, M., 
Bergmann, W., Illing, A., Hohwieler, M., Köhntop, R., Lin, Q., Holzmann, K. H., Seufferlein, T., 



 

67 

67 

Wagner, M., Liebau, S., Hermann, P. C., Kleger, A. and Müller, M. (2016) 'Tbx3 fosters pancreatic 
cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness', Stem 
Cell Res, 17(2), pp. 367-378. 

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., 
Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lønning, P. E., 
Børresen-Dale, A. L., Brown, P. O. and Botstein, D. (2000) 'Molecular portraits of human breast 
tumours', Nature, 406(6797), pp. 747-52. 

Phillips, S. and Kuperwasser, C. (2014) 'SLUG: Critical regulator of epithelial cell identity in breast 
development and cancer', Cell Adh Migr, 8(6), pp. 578-87. 

Phillips, S., Prat, A., Sedic, M., Proia, T., Wronski, A., Mazumdar, S., Skibinski, A., Shirley, S. H., Perou, C. 
M., Gill, G., Gupta, P. B. and Kuperwasser, C. (2014) 'Cell-state transitions regulated by SLUG are 
critical for tissue regeneration and tumor initiation', Stem Cell Reports, 2(5), pp. 633-47. 

Pinder, S. E. and Ellis, I. O. (2003) 'The diagnosis and management of pre-invasive breast disease: ductal 
carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH)--current definitions and classification', 
Breast Cancer Res, 5(5), pp. 254-7. 

Pino, I., Pío, R., Toledo, G., Zabalegui, N., Vicent, S., Rey, N., Lozano, M. D., Torre, W., García-Foncillas, J. 
and Montuenga, L. M. (2003) 'Altered patterns of expression of members of the heterogeneous 
nuclear ribonucleoprotein (hnRNP) family in lung cancer', Lung Cancer, 41(2), pp. 131-43. 

Polyak, K. and Hu, M. (2005) 'Do myoepithelial cells hold the key for breast tumor progression?', J Mammary 
Gland Biol Neoplasia, 10(3), pp. 231-47. 

Polyak, K. and Weinberg, R. A. (2009) 'Transitions between epithelial and mesenchymal states: acquisition of 
malignant and stem cell traits', Nat Rev Cancer, 9(4), pp. 265-73. 

Porsch, H., Bernert, B., Mehić, M., Theocharis, A. D., Heldin, C. H. and Heldin, P. (2013) 'Efficient TGFβ-
induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2', Oncogene, 
32(37), pp. 4355-65. 

Porter, D., Lahti-Domenici, J., Keshaviah, A., Bae, Y. K., Argani, P., Marks, J., Richardson, A., Cooper, A., 
Strausberg, R., Riggins, G. J., Schnitt, S., Gabrielson, E., Gelman, R. and Polyak, K. (2003) 
'Molecular markers in ductal carcinoma in situ of the breast', Mol Cancer Res, 1(5), pp. 362-75. 

Proia, T. A., Keller, P. J., Gupta, P. B., Klebba, I., Jones, A. D., Sedic, M., Gilmore, H., Tung, N., Naber, S. P., 
Schnitt, S., Lander, E. S. and Kuperwasser, C. (2011) 'Genetic predisposition directs breast cancer 
phenotype by dictating progenitor cell fate', Cell Stem Cell, 8(2), pp. 149-63. 

Pröls, F., Loser, B. and Marx, M. (1998) 'Differential expression of osteopontin, PC4, and CEC5, a novel 
mRNA species, during in vitro angiogenesis', Exp Cell Res, 239(1), pp. 1-10. 

Provenzano, E., Hopper, J. L., Giles, G. G., Marr, G., Venter, D. J. and Armes, J. E. (2003) 'Biological 
markers that predict clinical recurrence in ductal carcinoma in situ of the breast', Eur J Cancer, 39(5), 
pp. 622-30. 

Puisieux, A., Brabletz, T. and Caramel, J. (2014) 'Oncogenic roles of EMT-inducing transcription factors', Nat 
Cell Biol, 16(6), pp. 488-94. 

Puri, P. L., Iezzi, S., Stiegler, P., Chen, T. T., Schiltz, R. L., Muscat, G. E., Giordano, A., Kedes, L., Wang, J. 
Y. and Sartorelli, V. (2001) 'Class I histone deacetylases sequentially interact with MyoD and pRb 
during skeletal myogenesis', Mol Cell, 8(4), pp. 885-97. 



 

68 

68 

Rageth, C. J., O'Flynn, E. A., Comstock, C., Kurtz, C., Kubik, R., Madjar, H., Lepori, D., Kampmann, G., 
Mundinger, A., Baege, A., Decker, T., Hosch, S., Tausch, C., Delaloye, J. F., Morris, E. and Varga, Z. 
(2016) 'First International Consensus Conference on lesions of uncertain malignant potential in the 
breast (B3 lesions)', Breast Cancer Res Treat, 159(2), pp. 203-13. 

Rakovitch, E., Nofech-Mozes, S., Hanna, W., Baehner, F. L., Saskin, R., Butler, S. M., Tuck, A., Sengupta, S., 
Elavathil, L., Jani, P. A., Bonin, M., Chang, M. C., Robertson, S. J., Slodkowska, E., Fong, C., 
Anderson, J. M., Jamshidian, F., Miller, D. P., Cherbavaz, D. B., Shak, S. and Paszat, L. (2015) 'A 
population-based validation study of the DCIS Score predicting recurrence risk in individuals treated 
by breast-conserving surgery alone', Breast Cancer Res Treat, 152(2), pp. 389-98. 

Rakovitch, E., Nofech-Mozes, S., Hanna, W., Narod, S., Thiruchelvam, D., Saskin, R., Spayne, J., Taylor, C. 
and Paszat, L. (2012) 'HER2/neu and Ki-67 expression predict non-invasive recurrence following 
breast-conserving therapy for ductal carcinoma in situ', Br J Cancer, 106(6), pp. 1160-5. 

Rayess, H., Wang, M. B. and Srivatsan, E. S. (2012) 'Cellular senescence and tumor suppressor gene p16', 
Int J Cancer, 130(8), pp. 1715-25. 

Renard, C. A., Labalette, C., Armengol, C., Cougot, D., Wei, Y., Cairo, S., Pineau, P., Neuveut, C., de 
Reynies, A., Dejean, A., Perret, C. and Buendia, M. A. (2007) 'Tbx3 is a downstream target of the 
Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer', 
Cancer Res, 67(3), pp. 901-10. 

Ringberg, A., Anagnostaki, L., Anderson, H., Idvall, I., Fernö, M. and Group, S. S. B. C. (2001) 'Cell biological 
factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and 
histopathological characteristics', Eur J Cancer, 37(12), pp. 1514-22. 

Rittling, S. R. and Chambers, A. F. (2004) 'Role of osteopontin in tumour progression', Br J Cancer, 90(10), 
pp. 1877-81. 

Rizki, A., Weaver, V. M., Lee, S. Y., Rozenberg, G. I., Chin, K., Myers, C. A., Bascom, J. L., Mott, J. D., 
Semeiks, J. R., Grate, L. R., Mian, I. S., Borowsky, A. D., Jensen, R. A., Idowu, M. O., Chen, F., 
Chen, D. J., Petersen, O. W., Gray, J. W. and Bissell, M. J. (2008) 'A human breast cell model of 
preinvasive to invasive transition', Cancer Res, 68(5), pp. 1378-87. 

Rodriguez, M., Aladowicz, E., Lanfrancone, L. and Goding, C. R. (2008) 'Tbx3 represses E-cadherin 
expression and enhances melanoma invasiveness', Cancer Res, 68(19), pp. 7872-81. 

Rooney, P., Kumar, S., Ponting, J. and Wang, M. (1995) 'The role of hyaluronan in tumour neovascularization 
(review)', Int J Cancer, 60(5), pp. 632-6. 

Rowley, M., Grothey, E. and Couch, F. J. (2004) 'The role of Tbx2 and Tbx3 in mammary development and 
tumorigenesis', J Mammary Gland Biol Neoplasia, 9(2), pp. 109-18. 

Roylance, R., Gorman, P., Harris, W., Liebmann, R., Barnes, D., Hanby, A. and Sheer, D. (1999) 
'Comparative genomic hybridization of breast tumors stratified by histological grade reveals new 
insights into the biological progression of breast cancer', Cancer Res, 59(7), pp. 1433-6. 

Ruas, M. and Peters, G. (1998) 'The p16INK4a/CDKN2A tumor suppressor and its relatives', Biochim Biophys 
Acta, 1378(2), pp. F115-77. 

Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., 
Howitt, R. and West, C. R. (2002) 'Prognostic significance of the metastasis-associated protein 
osteopontin in human breast cancer', Cancer Res, 62(12), pp. 3417-27. 



 

69 

69 

Ruiz, A., Almenar, S., Callaghan, R. C. and Llombart-Bosch, A. (1999) 'Benign, preinvasive and invasive 
ductal breast lesions. A comparative study with quantitative techniques: morphometry, image- and 
flow cytometry', Pathol Res Pract, 195(11), pp. 741-6. 

Sabbah, M., Emami, S., Redeuilh, G., Julien, S., Prévost, G., Zimber, A., Ouelaa, R., Bracke, M., De Wever, 
O. and Gespach, C. (2008) 'Molecular signature and therapeutic perspective of the epithelial-to-
mesenchymal transitions in epithelial cancers', Drug Resist Updat, 11(4-5), pp. 123-51. 

Sagara, Y., Mallory, M. A., Wong, S., Aydogan, F., DeSantis, S., Barry, W. T. and Golshan, M. (2015) 
'Survival Benefit of Breast Surgery for Low-Grade Ductal Carcinoma In Situ: A Population-Based 
Cohort Study', JAMA Surg, 150(8), pp. 739-45. 

Sanders, M. E., Schuyler, P. A., Dupont, W. D. and Page, D. L. (2005) 'The natural history of low-grade ductal 
carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term 
follow-up', Cancer, 103(12), pp. 2481-4. 

Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. 
H. and Miller, F. R. (2001) 'Malignant MCF10CA1 cell lines derived from premalignant human breast 
epithelial MCF10AT cells', Breast Cancer Res Treat, 65(2), pp. 101-10. 

Sarrió, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G. and Palacios, J. (2008) 
'Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype', Cancer Res, 
68(4), pp. 989-97. 

Savani, R. C., Cao, G., Pooler, P. M., Zaman, A., Zhou, Z. and DeLisser, H. M. (2001) 'Differential 
involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in 
endothelial cell function and angiogenesis', J Biol Chem, 276(39), pp. 36770-8. 

Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F. and Giachelli, C. M. (1998) 'NF-kappaB 
mediates alphavbeta3 integrin-induced endothelial cell survival', J Cell Biol, 141(4), pp. 1083-93. 

Scheel, C., Onder, T., Karnoub, A. and Weinberg, R. A. (2007) 'Adaptation versus selection: the origins of 
metastatic behavior', Cancer Res, 67(24), pp. 11476-9; discussion 11479-80. 

Schnitt, S. J. (2003) 'The diagnosis and management of pre-invasive breast disease: flat epithelial atypia--
classification, pathologic features and clinical significance', Breast Cancer Res, 5(5), pp. 263-8. 

Schuetz, C. S., Bonin, M., Clare, S. E., Nieselt, K., Sotlar, K., Walter, M., Fehm, T., Solomayer, E., Riess, O., 
Wallwiener, D., Kurek, R. and Neubauer, H. J. (2006) 'Progression-specific genes identified by 
expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser 
capture microdissection and oligonucleotide microarray analysis', Cancer Res, 66(10), pp. 5278-86. 

Schulte-Merker, S. and Smith, J. C. (1995) 'Mesoderm formation in response to Brachyury requires FGF 
signalling', Curr Biol, 5(1), pp. 62-7. 

Schwartz, G. F., Finkel, G. C., Garcia, J. C. and Patchefsky, A. S. (1992) 'Subclinical ductal carcinoma in situ 
of the breast. Treatment by local excision and surveillance alone', Cancer, 70(10), pp. 2468-74. 

Senbanjo, L. T. and Chellaiah, M. A. (2017) 'CD44: A Multifunctional Cell Surface Adhesion Receptor Is a 
Regulator of Progression and Metastasis of Cancer Cells', Front Cell Dev Biol, 5, pp. 18. 

Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A. and Detmar, M. 
(1996) 'Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial 
growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and 
thrombin', Am J Pathol, 149(1), pp. 293-305. 



 

70 

70 

Shan, Z. Z., Yan, X. B., Yan, L. L., Tian, Y., Meng, Q. C., Qiu, W. W., Zhang, Z. and Jin, Z. M. (2015) 
'Overexpression of Tbx3 is correlated with Epithelial-Mesenchymal Transition phenotype and predicts 
poor prognosis of colorectal cancer', Am J Cancer Res, 5(1), pp. 344-53. 

Shapiro, I. M., Cheng, A. W., Flytzanis, N. C., Balsamo, M., Condeelis, J. S., Oktay, M. H., Burge, C. B. and 
Gertler, F. B. (2011) 'An EMT-driven alternative splicing program occurs in human breast cancer and 
modulates cellular phenotype', PLoS Genet, 7(8), pp. e1002218. 

Shekhar, P. V., Chen, M. L., Werdell, J., Heppner, G. H., Miller, F. R. and Christman, J. K. (1998) 
'Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT 
cells: a model for early breast cancer', Int J Oncol, 13(5), pp. 907-15. 

Shen, S., Wang, Y., Wang, C., Wu, Y. N. and Xing, Y. (2016) 'SURVIV for survival analysis of mRNA isoform 
variation', Nat Commun, 7, pp. 11548. 

Shijubo, N., Uede, T., Kon, S., Maeda, M., Segawa, T., Imada, A., Hirasawa, M. and Abe, S. (1999) 'Vascular 
endothelial growth factor and osteopontin in stage I lung adenocarcinoma', Am J Respir Crit Care 
Med, 160(4), pp. 1269-73. 

Shimbo, T., Dunnick, J. K., Brix, A., Mav, D., Shah, R., Roberts, J. D. and Wade, P. A. (2017) 'DNA 
Methylation Changes in Tbx3 in a Mouse Model Exposed to Polybrominated Diphenyl Ethers', Int J 
Toxicol, 36(3), pp. 229-238. 

Shirley, S. H., Hudson, L. G., He, J. and Kusewitt, D. F. (2010) 'The skinny on Slug', Mol Carcinog, 49(10), 
pp. 851-61. 

Silber, J., Lim, D. A., Petritsch, C., Persson, A. I., Maunakea, A. K., Yu, M., Vandenberg, S. R., Ginzinger, D. 
G., James, C. D., Costello, J. F., Bergers, G., Weiss, W. A., Alvarez-Buylla, A. and Hodgson, J. G. 
(2008) 'miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce 
differentiation of brain tumor stem cells', BMC Med, 6, pp. 14. 

Silverstein, M. J., Barth, A., Poller, D. N., Gierson, E. D., Colburn, W. J., Waisman, J. R. and Gamagami, P. 
(1995a) 'Ten-year results comparing mastectomy to excision and radiation therapy for ductal 
carcinoma in situ of the breast', Eur J Cancer, 31A(9), pp. 1425-7. 

Silverstein, M. J., Lagios, M. D., Craig, P. H., Waisman, J. R., Lewinsky, B. S., Colburn, W. J. and Poller, D. 
N. (1996) 'A prognostic index for ductal carcinoma in situ of the breast', Cancer, 77(11), pp. 2267-74. 

Silverstein, M. J., Poller, D. N., Waisman, J. R., Colburn, W. J., Barth, A., Gierson, E. D., Lewinsky, B., 
Gamagami, P. and Slamon, D. J. (1995b) 'Prognostic classification of breast ductal carcinoma-in-situ', 
Lancet, 345(8958), pp. 1154-7. 

Simpson, P. T., Gale, T., Reis-Filho, J. S., Jones, C., Parry, S., Sloane, J. P., Hanby, A., Pinder, S. E., Lee, A. 
H., Humphreys, S., Ellis, I. O. and Lakhani, S. R. (2005) 'Columnar cell lesions of the breast: the 
missing link in breast cancer progression? A morphological and molecular analysis', Am J Surg 
Pathol, 29(6), pp. 734-46. 

Singhal, H., Bautista, D. S., Tonkin, K. S., O'Malley, F. P., Tuck, A. B., Chambers, A. F. and Harris, J. F. 
(1997) 'Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor 
burden and decreased survival', Clin Cancer Res, 3(4), pp. 605-11. 

Slabáková, E., Pernicová, Z., Slavíčková, E., Staršíchová, A., Kozubík, A. and Souček, K. (2011) 'TGF-β1-
induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of 
SNAI2/Slug', Prostate, 71(12), pp. 1332-43. 



 

71 

71 

Slomiany, M. G., Dai, L., Tolliver, L. B., Grass, G. D., Zeng, Y. and Toole, B. P. (2009) 'Inhibition of Functional 
Hyaluronan-CD44 Interactions in CD133-positive Primary Human Ovarian Carcinoma Cells by Small 
Hyaluronan Oligosaccharides', Clin Cancer Res, 15(24), pp. 7593-7601. 

Smith, J. (1999) 'T-box genes: what they do and how they do it', Trends Genet, 15(4), pp. 154-8. 

Sodek, J., Ganss, B. and McKee, M. D. (2000) 'Osteopontin', Crit Rev Oral Biol Med, 11(3), pp. 279-303. 

Solin, L. J., Gray, R., Baehner, F. L., Butler, S. M., Hughes, L. L., Yoshizawa, C., Cherbavaz, D. B., Shak, S., 
Page, D. L., Sledge, G. W., Jr., Davidson, N. E., Ingle, J. N., Perez, E. A., Wood, W. C., Sparano, J. 
A. and Badve, S. (2013) 'A multigene expression assay to predict local recurrence risk for ductal 
carcinoma in situ of the breast', J Natl Cancer Inst, 105(10), pp. 701-10. 

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, 
M., Jeffrey, S. S., Thorsen, T., Quist, H., Matese, J. C., Brown, P. O., Botstein, D., Lønning, P. E. and 
Børresen-Dale, A. L. (2001) 'Gene expression patterns of breast carcinomas distinguish tumor 
subclasses with clinical implications', Proc Natl Acad Sci U S A, 98(19), pp. 10869-74. 

Souter, L. H., Andrews, J. D., Zhang, G., Cook, A. C., Postenka, C. O., Al-Katib, W., Leong, H. S., 
Rodenhiser, D. I., Chambers, A. F. and Tuck, A. B. (2010) 'Human 21T breast epithelial cell lines 
mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression 
patterns', Lab Invest, 90(8), pp. 1247-58. 

Stennard, F., Zorn, A. M., Ryan, K., Garrett, N. and Gurdon, J. B. (1999) 'Differential expression of VegT and 
Antipodean protein isoforms in Xenopus', Mech Dev, 86(1-2), pp. 87-98. 

Stomper, P. C., Stewart, C. C., Penetrante, R. B., Nava, M. E. and Tsangaris, T. N. (1992) 'Flow cytometric 
DNA analysis of excised breast lesions: use of fresh tissue needle aspirates obtained under guidance 
with mammography of the specimen', Radiology, 185(2), pp. 415-22. 

Storci, G., Sansone, P., Trere, D., Tavolari, S., Taffurelli, M., Ceccarelli, C., Guarnieri, T., Paterini, P., Pariali, 
M., Montanaro, L., Santini, D., Chieco, P. and Bonafé, M. (2008) 'The basal-like breast carcinoma 
phenotype is regulated by SLUG gene expression', J Pathol, 214(1), pp. 25-37. 

Stott, D., Kispert, A. and Herrmann, B. G. (1993) 'Rescue of the tail defect of Brachyury mice', Genes Dev, 
7(2), pp. 197-203. 

Strickland, L. B., Dawson, P. J., Santner, S. J. and Miller, F. R. (2000) 'Progression of premalignant 
MCF10AT generates heterogeneous malignant variants with characteristic histologic types and 
immunohistochemical markers', Breast Cancer Res Treat, 64(3), pp. 235-40. 

Sun, S. G., Zheng, B., Han, M., Fang, X. M., Li, H. X., Miao, S. B., Su, M., Han, Y., Shi, H. J. and Wen, J. K. 
(2011) 'miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth 
muscle cell proliferation', EMBO Rep, 12(1), pp. 56-62. 

Szulwach, K. E., Li, X., Smrt, R. D., Li, Y., Luo, Y., Lin, L., Santistevan, N. J., Li, W., Zhao, X. and Jin, P. 
(2010) 'Cross talk between microRNA and epigenetic regulation in adult neurogenesis', J Cell Biol, 
189(1), pp. 127-41. 

Tait, L., Dawson, P., Wolman, S., Galea, K. and Miller, F. (1996) 'Multipotent human breast stem cell line 
MCF1OAT', Int J Oncol, 9(2), pp. 263-7. 

Takahashi, F., Akutagawa, S., Fukumoto, H., Tsukiyama, S., Ohe, Y., Takahashi, K., Fukuchi, Y., Saijo, N. 
and Nishio, K. (2002) 'Osteopontin induces angiogenesis of murine neuroblastoma cells in mice', Int J 
Cancer, 98(5), pp. 707-12. 



 

72 

72 

Takano, S., Tsuboi, K., Tomono, Y., Mitsui, Y. and Nose, T. (2000) 'Tissue factor, osteopontin, alphavbeta3 
integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor 
expression', Br J Cancer, 82(12), pp. 1967-73. 

Tammi, M. I., Day, A. J. and Turley, E. A. (2002) 'Hyaluronan and homeostasis: a balancing act', J Biol Chem, 
277(7), pp. 4581-4. 

Tammi, R., MacCallum, D., Hascall, V. C., Pienimäki, J. P., Hyttinen, M. and Tammi, M. (1998) 'Hyaluronan 
bound to CD44 on keratinocytes is displaced by hyaluronan decasaccharides and not 
hexasaccharides', J Biol Chem, 273(44), pp. 28878-88. 

Tammi, R. H., Kultti, A., Kosma, V. M., Pirinen, R., Auvinen, P. and Tammi, M. I. (2008) 'Hyaluronan in human 
tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan', 
Semin Cancer Biol, 18(4), pp. 288-95. 

Tao, W. and Levine, A. J. (1999) 'P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2', 
Proc Natl Acad Sci U S A, 96(12), pp. 6937-41. 

Tavassoli, F. A. and Norris, H. J. (1990) 'A comparison of the results of long-term follow-up for atypical 
intraductal hyperplasia and intraductal hyperplasia of the breast', Cancer, 65(3), pp. 518-29. 

Thiery, J. P., Acloque, H., Huang, R. Y. and Nieto, M. A. (2009) 'Epithelial-mesenchymal transitions in 
development and disease', Cell, 139(5), pp. 871-90. 

Thompson, E. W., Newgreen, D. F. and Tarin, D. (2005) 'Carcinoma invasion and metastasis: a role for 
epithelial-mesenchymal transition?', Cancer Res, 65(14), pp. 5991-5; discussion 5995. 

Thorat, M. A., Parmar, V., Nadkarni, M. S. and Badwe, R. A. (2007) 'Radiation therapy for ductal carcinoma in 
situ: is it really worth it?', J Clin Oncol, 25(4), pp. 461-2; author reply 462. 

Tian, F., DaCosta Byfield, S., Parks, W. T., Yoo, S., Felici, A., Tang, B., Piek, E., Wakefield, L. M. and 
Roberts, A. B. (2003) 'Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses 
metastasis of breast cancer cell lines', Cancer Res, 63(23), pp. 8284-92. 

Toole, B. P. (2004) 'Hyaluronan: from extracellular glue to pericellular cue', Nat Rev Cancer, 4(7), pp. 528-39. 

Toole, B. P. (2009) 'Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities', Clin Cancer Res, 
15(24), pp. 7462-7468. 

Tran, N. L., Nagle, R. B., Cress, A. E. and Heimark, R. L. (1999) 'N-Cadherin expression in human prostate 
carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion withStromal 
cells', Am J Pathol, 155(3), pp. 787-98. 

Trochon, V., Mabilat, C., Bertrand, P., Legrand, Y., Smadja-Joffe, F., Soria, C., Delpech, B. and Lu, H. (1996) 
'Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro', 
Int J Cancer, 66(5), pp. 664-8. 

Troxell, M. L., Brunner, A. L., Neff, T., Warrick, A., Beadling, C., Montgomery, K., Zhu, S., Corless, C. L. and 
West, R. B. (2012) 'Phosphatidylinositol-3-kinase pathway mutations are common in breast columnar 
cell lesions', Mod Pathol, 25(7), pp. 930-7. 

Tuck, A. B., Arsenault, D. M., O'Malley, F. P., Hota, C., Ling, M. C., Wilson, S. M. and Chambers, A. F. (1999) 
'Osteopontin induces increased invasiveness and plasminogen activator expression of human 
mammary epithelial cells', Oncogene, 18(29), pp. 4237-46. 



 

73 

73 

Tuck, A. B., O'Malley, F. P., Singhal, H., Harris, J. F., Tonkin, K. S., Kerkvliet, N., Saad, Z., Doig, G. S. and 
Chambers, A. F. (1998) 'Osteopontin expression in a group of lymph node negative breast cancer 
patients', Int J Cancer, 79(5), pp. 502-8. 

Turashvili, G., Hayes, M., Gilks, B., Watson, P. and Aparicio, S. (2008) 'Are columnar cell lesions the earliest 
histologically detectable non-obligate precursor of breast cancer?', Virchows Arch, 452(6), pp. 589-
98. 

Turley, E. A., Noble, P. W. and Bourguignon, L. Y. (2002) 'Signaling properties of hyaluronan receptors', J 
Biol Chem, 277(7), pp. 4589-92. 

Udabage, L., Brownlee, G. R., Nilsson, S. K. and Brown, T. J. (2005a) 'The over-expression of HAS2, Hyal-2 
and CD44 is implicated in the invasiveness of breast cancer', Exp Cell Res, 310(1), pp. 205-17. 

Udabage, L., Brownlee, G. R., Waltham, M., Blick, T., Walker, E. C., Heldin, P., Nilsson, S. K., Thompson, E. 
W. and Brown, T. J. (2005b) 'Antisense-mediated suppression of hyaluronan synthase 2 inhibits the 
tumorigenesis and progression of breast cancer', Cancer Res, 65(14), pp. 6139-50. 

van 't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, 
K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., 
Bernards, R. and Friend, S. H. (2002) 'Gene expression profiling predicts clinical outcome of breast 
cancer', Nature, 415(6871), pp. 530-6. 

van de Vijver, M. J., He, Y. D., van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., Schreiber, G. J., Peterse, 
J. L., Roberts, C., Marton, M. J., Parrish, M., Atsma, D., Witteveen, A., Glas, A., Delahaye, L., van der 
Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E. T., Friend, S. H. and Bernards, R. (2002) 'A gene-
expression signature as a predictor of survival in breast cancer', N Engl J Med, 347(25), pp. 1999-
2009. 

van Dongen, J. A., Fentiman, I. S., Harris, J. R., Holland, R., Peterse, J. L., Salvadori, B. and Stewart, H. J. 
(1989) 'In-situ breast cancer: the EORTC consensus meeting', Lancet, 2(8653), pp. 25-7. 

Vandewalle, C., Comijn, J., De Craene, B., Vermassen, P., Bruyneel, E., Andersen, H., Tulchinsky, E., Van 
Roy, F. and Berx, G. (2005) 'SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-
cell junctions', Nucleic Acids Res, 33(20), pp. 6566-78. 

Venables, J. P. (2004) 'Aberrant and alternative splicing in cancer', Cancer Res, 64(21), pp. 7647-54. 

Venables, J. P., Klinck, R., Bramard, A., Inkel, L., Dufresne-Martin, G., Koh, C., Gervais-Bird, J., Lapointe, E., 
Froehlich, U., Durand, M., Gendron, D., Brosseau, J. P., Thibault, P., Lucier, J. F., Tremblay, K., 
Prinos, P., Wellinger, R. J., Chabot, B., Rancourt, C. and Elela, S. A. (2008) 'Identification of 
alternative splicing markers for breast cancer', Cancer Res, 68(22), pp. 9525-31. 

Wai, P. Y. and Kuo, P. C. (2004) 'The role of Osteopontin in tumor metastasis', J Surg Res, 121(2), pp. 228-
41. 

Waldman, F. M., DeVries, S., Chew, K. L., Moore, D. H., Kerlikowske, K. and Ljung, B. M. (2000) 
'Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences', J Natl Cancer 
Inst, 92(4), pp. 313-20. 

Waldman, T., Kinzler, K. W. and Vogelstein, B. (1995) 'p21 is necessary for the p53-mediated G1 arrest in 
human cancer cells', Cancer Res, 55(22), pp. 5187-90. 

Wang, B., Lindley, L. E., Fernandez-Vega, V., Rieger, M. E., Sims, A. H. and Briegel, K. J. (2012) 'The T box 
transcription factor TBX2 promotes epithelial-mesenchymal transition and invasion of normal and 
malignant breast epithelial cells', PLoS One, 7(7), pp. e41355. 



 

74 

74 

Wang, H. C., Meng, Q. C., Shan, Z. Z., Yuan, Z. and Huang, X. Y. (2015) 'Overexpression of Tbx3 predicts 
poor prognosis of patients with resectable pancreatic carcinoma', Asian Pac J Cancer Prev, 16(4), pp. 
1397-401. 

Wapnir, I. L., Dignam, J. J., Fisher, B., Mamounas, E. P., Anderson, S. J., Julian, T. B., Land, S. R., 
Margolese, R. G., Swain, S. M., Costantino, J. P. and Wolmark, N. (2011) 'Long-term outcomes of 
invasive ipsilateral breast tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized 
clinical trials for DCIS', J Natl Cancer Inst, 103(6), pp. 478-88. 

Warneke, J., Grossklaus, D., Davis, J., Stea, B., Bebb, G., Taylor, C., Hastings, R. and Villar, H. (1995) 
'Influence of local treatment on the recurrence rate of ductal carcinoma in situ', J Am Coll Surg, 
180(6), pp. 683-8. 

Weidner, N., Semple, J. P., Welch, W. R. and Folkman, J. (1991) 'Tumor angiogenesis and metastasis--
correlation in invasive breast carcinoma', N Engl J Med, 324(1), pp. 1-8. 

Weigel, P. H. and DeAngelis, P. L. (2007) 'Hyaluronan synthases: a decade-plus of novel 
glycosyltransferases', J Biol Chem, 282(51), pp. 36777-81. 

Wellings, S. R. and Jensen, H. M. (1973) 'On the origin and progression of ductal carcinoma in the human 
breast', J Natl Cancer Inst, 50(5), pp. 1111-8. 

Wellings, S. R., Jensen, H. M. and Marcum, R. G. (1975) 'An atlas of subgross pathology of the human breast 
with special reference to possible precancerous lesions', J Natl Cancer Inst, 55(2), pp. 231-73. 

West, D. C., Hampson, I. N., Arnold, F. and Kumar, S. (1985) 'Angiogenesis induced by degradation products 
of hyaluronic acid', Science, 228(4705), pp. 1324-6. 

West, D. C. and Kumar, S. (1989) 'Hyaluronan and angiogenesis', Ciba Found Symp, 143, pp. 187-201; 
discussion 201-7, 281-5. 

Willmer, T., Cooper, A., Peres, J., Omar, R. and Prince, S. (2017) 'The T-Box transcription factor 3 in 
development and cancer', Biosci Trends, 11(3), pp. 254-266. 

Willmer, T., Cooper, A., Sims, D., Govender, D. and Prince, S. (2016a) 'The T-box transcription factor 3 is a 
promising biomarker and a key regulator of the oncogenic phenotype of a diverse range of sarcoma 
subtypes', Oncogenesis, 5, pp. e199. 

Willmer, T., Hare, S., Peres, J. and Prince, S. (2016b) 'The T-box transcription factor TBX3 drives proliferation 
by direct repression of the p21(WAF1) cyclin-dependent kinase inhibitor', Cell Div, 11, pp. 6. 

Wilson, V. and Conlon, F. L. (2002) 'The T-box family', Genome Biol, 3(6), pp. REVIEWS3008. 

Witte, J. S. (2010) 'Personalized prostate cancer screening: improving PSA tests with genomic information', 
Sci Transl Med, 2(62), pp. 62ps55. 

Wong, J. S., Chen, Y. H., Gadd, M. A., Gelman, R., Lester, S. C., Schnitt, S. J., Sgroi, D. C., Silver, B. J., 
Smith, B. L., Troyan, S. L. and Harris, J. R. (2014) 'Eight-year update of a prospective study of wide 
excision alone for small low- or intermediate-grade ductal carcinoma in situ (DCIS)', Breast Cancer 
Res Treat, 143(2), pp. 343-50. 

Wu, Y., Feng, J., Hu, W. and Zhang, Y. (2017) 'T-box 3 overexpression is associated with poor prognosis of 
non-small cell lung cancer', Oncol Lett, 13(5), pp. 3335-3341. 

Xu, J., Souter, L. H., Chambers, A. F., Rodenhiser, D. I. and Tuck, A. B. (2008) 'Distinct karyotypes in three 
breast cancer cell lines --21PTCi, 21NTCi, and 21MT-1 --derived from the same patient and 
representing different stages of tumor progression', Cancer Genet Cytogenet, 186(1), pp. 33-40. 



 

75 

75 

Xu, Y., Swerlick, R. A., Sepp, N., Bosse, D., Ades, E. W. and Lawley, T. J. (1994) 'Characterization of 
expression and modulation of cell adhesion molecules on an immortalized human dermal 
microvascular endothelial cell line (HMEC-1)', J Invest Dermatol, 102(6), pp. 833-7. 

Yamaguchi, A., Goi, T., Taguchi, S., Ohtaki, N., Seki, K., Hirose, K., Nakagawara, G., Urano, T. and 
Furukawa, K. (1998) 'Clinical significance of serum levels of CD44 variant exons 8-10 protein in 
colorectal cancer', J Gastroenterol, 33(3), pp. 349-53. 

Yanagisawa, K. O., Fujimoto, H. and Urushihara, H. (1981) 'Effects of the brachyury (T) mutation on 
morphogenetic movement in the mouse embryo', Dev Biol, 87(2), pp. 242-8. 

Yarosh, W., Barrientos, T., Esmailpour, T., Lin, L., Carpenter, P. M., Osann, K., Anton-Culver, H. and Huang, 
T. (2008) 'TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone 
deacetylases', Cancer Res, 68(3), pp. 693-9. 

Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X. and Barsky, S. H. (2008) 'ERalpha suppresses slug 
expression directly by transcriptional repression', Biochem J, 416(2), pp. 179-87. 

Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B. and Barsky, S. H. (2010) 'ERalpha signaling 
through slug regulates E-cadherin and EMT', Oncogene, 29(10), pp. 1451-62. 

Zafrani, B., Leroyer, A., Fourquet, A., Laurent, M., Trophilme, D., Validire, P. and Sastre-Garau, X. (1994) 
'Mammographically-detected ductal in situ carcinoma of the breast analyzed with a new classification. 
A study of 127 cases: correlation with estrogen and progesterone receptors, p53 and c-erbB-2 
proteins, and proliferative activity', Semin Diagn Pathol, 11(3), pp. 208-14. 

Zhang, J. F., He, M. L., Qi Dong, Xie, W. D., Chen, Y. C., Lin, M. C., Leung, P. C., Zhang, Y. O. and Kung, H. 
F. (2011a) 'Aqueous extracts of Fructus Ligustri Lucidi enhance the sensitivity of human colorectal 
carcinoma DLD-1 cells to doxorubicin-induced apoptosis via Tbx3 suppression', Integr Cancer Ther, 
10(1), pp. 85-91. 

Zhang, Z., O'Rourke, J. R., McManus, M. T., Lewandoski, M., Harfe, B. D. and Sun, X. (2011b) 'The 
microRNA-processing enzyme Dicer is dispensable for somite segmentation but essential for limb 
bud positioning', Dev Biol, 351(2), pp. 254-65. 

Zhang, Z., Yamashita, H., Toyama, T., Sugiura, H., Ando, Y., Mita, K., Hamaguchi, M., Hara, Y., Kobayashi, 
S. and Iwase, H. (2005) 'Quantitation of HDAC1 mRNA expression in invasive carcinoma of the 
breast*', Breast Cancer Res Treat, 94(1), pp. 11-6. 

Zhao, D., Wu, Y. and Chen, K. (2014) 'Tbx3 isoforms are involved in pluripotency maintaining through distinct 
regulation of Nanog transcriptional activity', Biochem Biophys Res Commun, 444(3), pp. 411-4. 

Zhu, B., Zhang, M., Williams, E. M., Keller, C., Mansoor, A. and Davie, J. K. (2016) 'TBX2 represses PTEN in 
rhabdomyosarcoma and skeletal muscle', Oncogene, 35(32), pp. 4212-24. 

Zhuang, Z., Merino, M. J., Chuaqui, R., Liotta, L. A. and Emmert-Buck, M. R. (1995) 'Identical allelic loss on 
chromosome 11q13 in microdissected in situ and invasive human breast cancer', Cancer Res, 55(3), 
pp. 467-71. 

Zoltan-Jones, A., Huang, L., Ghatak, S. and Toole, B. P. (2003) 'Elevated hyaluronan production induces 
mesenchymal and transformed properties in epithelial cells', J Biol Chem, 278(46), pp. 45801-10. 

 



 

 

  

Chapter 2 

Examination of functional and  
phenotypic changes associated  
with modulation of TBX3 levels  

at various stages of breast  
cancer progression 

 



 

77 

77 

 Examination of functional and phenotypic changes associated 
with modulation of TBX3 levels at various stages of breast 
cancer progression 

 

 

 

 

SUMMARY OF FINDINGS 

 

TBX3 is abundant in the invasive 21MT-1 cell line, while being minimally expressed in the 

non-invasive 21NT and 21PT cell lines. Overexpression of either TBX3iso1 or TBX3iso2 in 

21NT cells resulted in increased cell survival/colony forming ability, growth vs. apoptosis and 

invasion in Matrigel. In contrast, short hairpin RNA-mediated knockdown of TBX3 in the 

21MT-1 cells resulted in smaller colonies, with a more regular, less dispersed (less infiltrative) 

morphology. Array profiling of the 21NT TBX3iso1 and TBX3iso2 transfectants showed that 

there are common alterations in expression of several genes involved in signal transduction, 

cell cycle control/cell survival, epithelial-mesenchymal transition (EMT) and invasiveness. 

Overall, these results indicate that TBX3 expression can promote progression in a model of 

early breast cancer by altering cell properties involved in cell survival/colony formation and 

invasiveness, as well as key regulatory and EMT/invasiveness-related gene expressions. 

 

 

 

 

 

 

 

Chapter 2 in this dissertation has been published (Krstic et al. 2016, BMC Cancer).   
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2.1 Introduction 

Arguably the most critical stage of early breast cancer progression is the transition 

from DCIS to invasive mammary carcinoma (IMC). Although a number of molecular changes 

have been identified that accompany invasive breast cancer (Page et al., 1985, Page and 

Dupont, 1993, Lakhani et al., 1995, Allred et al., 2001, Arpino et al., 2005, Allred et al., 2008), 

those which may directly control the transition from DCIS to IMC remain elusive.  

Using microarray analysis, we previously identified TBX3 as a potential regulator of 

progression from DCIS to IMC, using the 21T cell lines which represent distinct stages of 

breast cancer progression (Souter et al., 2010). Specifically, we found that invasive and 

metastatic 21MT-1 cells expressed higher levels of TBX3 than non-invasive DCIS-like 21NT 

cells and non-invasive ADH-like 21PT cells (Souter et al., 2010). TBX3 is a member of the 

T-box family of transcription factors that play an important role in development of many 

animal species. In mouse embryo development, a model has emerged in which TBX3 

expression is both induced and maintained in early mammary gland initiation by Wnt and 

fibroblast growth factor (FGF) (Eblaghie et al., 2004). In humans, Ulnar-mammary syndrome, 

a congenital autosomal dominant disorder, is caused by mutations that result in 

haploinsufficiency of TBX3 and is characterized by upper-limb anomalies and mammary 

gland hypoplasia (Bamshad et al., 1999). 

TBX3 has been linked to tumorigenesis and is involved in cell cycle control and 

inhibition of cell senescence, through both p53-dependent and independent pathways 

(Brummelkamp et al., 2002, Carlson et al., 2002). The p53-dependent pathway signals 

through p14ARF, a tumor suppressor and cell cycle control protein that is a product of the 

cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, along with p16INK4A. TBX3 directly 

represses transcription of p14ARF (Brummelkamp et al., 2002, Rowley et al., 2004). Down-

regulation or inhibition of p14ARF leads to increased proliferation and immortalization, as well 

as failure of apoptosis (Rowley et al., 2004). Aside from its role in the cell cycle, TBX3 is a 

known repressor of E-cadherin expression in melanoma, leading to enhanced invasiveness 

(Rodriguez et al., 2008, Boyd et al., 2013). TBX3 expression has also been found to be 

associated with cell survival in hepatocellular carcinoma, where it is induced by Wnt/β-

catenin signalling (Renard et al., 2007).  
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Two different isoforms of TBX3 have been identified, TBX3iso1 and TBX3iso2. The 

TBX3iso2 variant has an extra 20 amino acids, encoded by exon 2a, inserted into the T-box 

domain (Bamshad et al., 1999). As the 2a insertion is within the T-box domain, which is 

required for DNA-binding and protein-protein interactions, it was initially proposed that this 

variant may have altered DNA-binding properties, and that it may in fact interfere with the 

senescence-inhibiting properties (Fan et al., 2004). However, it has been found that 

TBX3iso2 can indeed bind to TBEs and act as an anti-senescence factor (Hoogaars et al., 

2008).  

Here we examined whether either or both isoforms of TBX3 can influence breast 

cancer progression, in particular the transition from non-invasive to invasive disease. We 

show that both isoforms of TBX3 have a similar functional effect in promoting breast cancer 

progression to a more malignant phenotype, and identify TBX3-induced changes in 

expression of genes involved in signal transduction, cell cycle control, cell survival and 

epithelial-mesenchymal transition (EMT)/invasiveness that may play a role in this 

progression.  
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2.2 Methods 

 

Cell lines and culture conditions 

The 21T parental cell lines (21PT, 21NT, and 21MT-1) were a kind gift from Dr. Vimla Band 

(Dana Farber Cancer Institute, Boston, MA) (Band et al., 1990) and were cultured in alpha 

modification of Eagle’s medium supplemented with 2.8μM hydrocortisone, 12.5ng/ml 

epidermal growth factor, 2mM L-glutamine, 1μg/ml insulin, 10mM HEPES, 1mM sodium 

pyruvate, 0.1mM non-essential amino acids and 50μg/ml gentamycin reagent (called αHE – 

all supplements from Wisent Bioproducts). For regular culture conditions, the αHE media was 

further supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich) and named 

αHE10F. Stably transfected cells were cultured in αHE10F containing either 500μg/ml G418 

(Wisent Bioproducts) or 0.8μg/ml puromycin (Sigma-Aldrich). 

 

Generation of TBX3 expression vectors 

Expression vectors were constructed for each TBX3 isoform (TBX3iso1and TBX3iso2). To 

obtain TBX3iso2, PCR amplification of the whole transcript was performed from a pOTB7 

expression vector containing TBX3iso2 [Genbank:BC025258] (Open Biosystems Thermo 

Scientific) as the cDNA template using Phusion High-Fidelity DNA Taq polymerase (New 

England BioLabs). Primers used to amplify TBX3iso2 were: forward: 5’-GCC ACC ATG AGC 

CTC TCC ATG AGA-3’ and reverse: 5’-TTC GGG ACC GCC TGC GGG ACC TGT CCG GC-

3’. To produce TBX3iso1, two PCR product fragments, representing the transcript before 

(fragment 1) and after (fragment 2) the 60bp TBX3iso2 addition, were PCR amplified. Primers 

used for fragment 1 of TBX3iso1 were: forward: 5’-GCC ACC ATG AGC CTC TCC ATG 

AGA-3’ and reverse: 5’-CAT GGA GTT CAA TAT AGT AAA TCC ATG TTT GAC-3’. Primers 

used for fragment 2 of TBX3iso1 were: forward: 5’-TGG ATT TAC TAT ATT GAA CTC CAT 

GCA CAA AT-3’ and reverse: 5’-TTC GGG ACC GCC TGC GGG ACC TGT CCG GC-3’. All 

primers used for generation of the TBX3 expression vectors were purchased from Sigma-

Aldrich. Products were separated on 1% agarose gel and bands representing TBX3iso2 at 

~2000kb were extracted and pooled. For TBX3iso1, a band at ~660kb for fragment 1 and a 

band at ~1380kb for fragment 2 were gel extracted and pooled. When designing the PCR 

primers for the two fragments of TBX3iso1, the reverse primer of the upstream amplicon 

(fragment 1) and the forward primer for the downstream amplicon (fragment 2) had a 20bp 
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overlap to ensure that the ends of these amplicons would anneal in a subsequent PCR 

reaction to melt the fragments together. This annealed TBX3iso1 PCR product was purified 

and amplified again. After running this PCR product on a 1% agarose gel and extracting at 

~2000bp, both TBX3iso1 and TBX3iso2 PCR products were incubated with T4 

polynucleotide kinase (New England BioLabs), and purified. Both products were inserted 

separately into pZsGreen1-N1 plasmids (Clonetech Laboratories), such that the ZsGreen 

was fused to the C-terminus of TBX3. To prepare the pZsGreen1-N1 plasmid, it was digested 

with Afe1 (New England BioLabs) and incubated with calf intestinal alkaline phosphatase 

(New England BioLabs) to dephosphorylate the cut ends. The digested plasmid was 

electrophoresed and gel extracted. The plasmid and TBX3 PCR products were incubated 

overnight with ATP and T4 DNA Ligase (New England BioLabs) at 16°C to complete ligation. 

Competent bacteria (DH5α) were transformed with the ligated plasmid and kanamycin 

resistant clones were expanded to isolate DNA. Clones were digested with the following 

enzyme pairs to check for proper size and orientation: AgeI/KpnI, MfeI/XhoI, and NheI/HndIII. 

Suitable clones were sequenced (DNA Sequencing Facility at Robarts Research Institute, 

London, ON).  

The use of untagged TBX3 was required so the TBX3 expression vectors underwent 

site directed mutagenesis in order to introduce a stop codon at the end of full length TBX3iso1 

and TBX3iso2 using QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies) 

according to the manufacturer’s protocol. Clones were sent to the DNA Sequencing Facility 

at Robarts Research Institute for sequencing. Clones with the proper sequence were used 

for stable transfections. 

 

Transfections 

Purified TBX3iso1 and TBX3iso2 plasmid DNA was transfected using PolyJet DNA In Vitro 

Transfection Reagent (SignaGen Laboratories) following the manufacturer’s protocol. Empty 

vector (EV) plasmids were transfected as a control. Stable transfectants were selected in 

αHE10F containing 500μg/ml G418 (Wisent Bioproducts). Approximately two weeks post-

transfection, resistant clones were pooled, expanded, and frozen for later use. 

 

 

 



 

82 

82 

Generation of lentiviral particles and transduction 

Generation of short hairpin (sh) RNA containing lentivirus particles and knockdown of target 

genes were described previously (Moffat et al., 2006, MacMillan et al., 2014). The shRNA 

target sequence for TBX3 was GCA TAC CAG AAT GAT AAG ATA which targeted the coding 

sequence of both TBX3iso1 and TBX3iso2. The shRNA target sequence for Luciferase (off-

target knockdown control) was ACG CTG AGT ACT TCG AAA TGT. The TBX3 shRNA 

lentivirus particles generated were used to knockdown TBX3 in the 21MT-1 cell line and 

Luciferase shRNA was used a negative control. One week post-transduction, stable clones 

were selected in αHE10F containing 0.8μg/ml puromycin (Sigma-Aldrich) and resistant 

clones were pooled, expanded, and frozen for later use.  

 

Isolation of RNA and quantitative real-time polymerase chain reaction (qRT-PCR) 

Cells were harvested with trypsin and RNA was isolated using the RNeasy Mini Kit (Qiagen). 

Samples were treated with 30U DNase I (Qiagen), and 500ng of RNA was converted into 

cDNA with the Superscript III First-Strand Synthesis System (Invitrogen) using Oligo(dT) 12-

18 primers (Invitrogen). qRT-PCR was performed using RT2 SYBR Green ROX qPCR 

Mastermix (Qiagen) on an Mx3000P QPCR system. Primers used for total TBX3 were: 

forward: 5’-CGC TGT GAC TGC ATA CCA GA-3’ and reverse: 5’-GTG TCC CGG AAA CCT 

TTT GC-3’. Primers used for TBX3iso1 were: forward: 5’-AGT GGA TGT CCA AAG TCG 

TCA C-3’ and reverse: 5’-CAT GGA GTT CAA TAT AGT AAA TCC ATG TTT GTC TG-3’. 

Primers used for TBX3iso2 were: forward: 5’-AGT GGA TGT CCA AAG TCG TCA C-3’ and 

reverse: 5’-CAC TTG GGA AGG CCA AAG TAA ATC CAT G-3’. Primers used for GAPDH 

were: forward: 5’-AGG CTG GGG CTC ATT TGC AG-3’ and reverse: 5-‘CCA TCC ACA GTC 

TTC TGG GTG-3’. All primers were purchased from Sigma-Aldrich. Output values were 

reported relative to GAPDH as fold expression normalized to control cell lines. 

 

Preparation of 21T cell lysates 

Radioimmunoprecipitation (RIPA) buffer (10nM Tris-HCl pH 7.5, 1mM EDTA, 0.5mM EGTA, 

150nM NaCl, 1% Triton-X 100, 0.5% DOC, and 1% SDS) containing one protease inhibitor 

tablet per 10mL (Complete, Mini, EDTA-free Protease Inhibitor Cocktail, Roche) was used to 

lyse cells grown as subconfluent monolayers in 10cm dishes. The cells were removed with a 

cell scraper, collected in a clean microcentrifuge tube, and placed on a rotator for 20 minutes 
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at 4°C. Tubes were spun at 13,000 RPM for 10 minutes at 4°C and the resulting supernatant 

was collected. 

 

Electrophoresis and Western blotting 

Proteins were electrophoresed on 10% polyacrylamide gels and subsequently analyzed after 

transfer by Western blot with anti-TBX3 antibody (Abcam, ab58264; 1:2,000), anti-Vimentin 

(Dako, clone 3B4; 1/1,000), anti-Twist (Abcam, ab50887; 1:1,000), anti-Src (Cell Signaling, 

2108; 1:1,000), and anti-β-actin antibody (Abcam, ab49900; 1:150,000). After incubation with 

the appropriate horseradish peroxidase-conjugated secondary antibody (anti-mouse, 

Amersham GE Healthcare; anti-rabbit, Sigma) diluted 1:10,000, protein bands were detected 

using ECL Plus Western Blotting Detection Reagents (Amersham GE Healthcare) and then 

exposed to film in a dark room. Densitometric quantification was performed using ImageJ 

(Open source software, National Institutes of Health, USA).  

 

Immunohistochemistry of 21T cell pellets 

Trypsinized cells were washed twice in phosphate buffered saline (PBS), and pelleted in 

15mL conical tubes. Pellets were re-suspended in 10% neutral buffered formalin (NBF) and 

stored at 4°C overnight. Formalin was removed, and pellets re-suspended in 1mL of 1% 

agarose cooled to 35°C. The hardened pellets were wrapped in lens paper, cassetted, and 

processed to paraffin. For histology, 4μm sections were deparaffinized, pre-treated with 

10mM citrate buffer pH 6 and blocked for endogenous peroxidises in 3% H2O2/methanol. 

Sections were immunostained with rabbit anti-TBX3 antibody (Abcam, ab99302) diluted 

1:300 at 4°C overnight. Signal detection was accomplished using ThermoScientific 

UltraVision LP Detection System (TL-060-HD). 

 

Three-dimensional Matrigel culture and immunofluorescence 

Three-dimensional Matrigel culture was described previously (Debnath et al., 2003, Lee et 

al., 2007a, MacMillan et al., 2014). Following a 9 day growth period, images were taken at 

both 4X and 10X objective using an inverted microscope. ImageJ (Open source software) 

was used to determine colony formation rates by quantifying the percentage of the population 

that formed colonies greater than 50μm in diameter. ImageJ was also used to determine the 
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proportion of circular colonies; a binary quantification method was utilized, with a circular 

colony having a circularity index above 0.75. 

For immunofluorescence of Matrigel cultures, after 9 days of growth, the Matrigel 

plugs were fixed (10% NBF) and permeabilized (0.5% Triton X-100 in PBS). After blocking 

with normal goat serum (Invitrogen), rabbit anti-Ki67 (Abcam, ab833) and anti-cleaved 

caspase 3 (Cell Signaling, 9661) antibodies were incubated at 1:150 dilution in 10% normal 

goat serum overnight at 4ºC. Cells were incubated with Alexa Fluor 488 Goat Anti-Rabbit 

secondary antibody (Invitrogen, A11034) and counterstained with Hoechst 33342 (Invitrogen, 

H1399) and Alexa Fluor 546 Phalloidin (Invitrogen, A22238). Coverslips were mounted over 

the stained Matrigel plugs with ProLong Gold Antifade Reagent (Invitrogen). Imaging was 

done using an Olympus Confocal Imaging System (FluoView FV1000 coupled to the IX81 

Motorized Inverted System Microscope). Nuclei per colony were manually counted after 

acquiring 3D colony images. 

 

Transwell migration and invasion assays 

To assess the migratory potential of 21NT cells overexpressing TBX3 isoforms, transwell 

inserts with 8.0μm pores (Corning, 3422; 24-well plate) were coated with a thin layer of gelatin 

(6μg) to serve as a substrate for migration without obstructing movement through the pores. 

A 100μL cell suspension (5x105 cells/mL in αHE with 0.1% bovine serum albumin (BSA)) 

was added to the upper chambers and 0.75mL αHE10F media was added to the bottom 

wells. After incubation at 37°C and 5% CO2 for 22 hours, migrated cells were fixed with 1% 

glutaraldehyde for 20 minutes and stained with full-strength Hematoxylin for 15 minutes. 

Cells that remained on top of the membrane were removed using a cotton swab. Images of 

5 non-overlapping fields of view were acquired using Image-Pro Analysis Software (Media 

Cybernetics) coupled to an inverted microscope at 10X objective. Cells were counted from 

the acquired images using ImageJ (Open source software). Similarly, to assess the invasive 

potential, transwell inserts with 8.0μm pores precoated with Matrigel (Corning, 354480) were 

used and incubation lasted 22 hours. Means derived from 4 replicates were used during 

analysis.  
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RT2 PCR arrays 

RNA was isolated from TBX3iso1 and TBX3iso2 transfectants, as well as vector controls, 

using the RNeasy Mini Kit (Qiagen). 1μg RNA was converted into cDNA using the RT2 First 

Strand Kit (Qiagen). RT2 SYBR Green Mastermix was combined with the cDNA and dH2O 

as per the manufacturer’s protocol. Expression of 84 key genes commonly dysregulated in 

breast cancer were assessed using Human Breast Cancer RT2 PCR arrays (Qiagen, PAHS-

131ZA-2). Data analysis was conducted by SA Biosciences PCR Array Data Analysis Web 

portal using the ΔΔCt method normalized to acidic ribosomal phosphoprotein P0 (RPLP0) 

expression. Heat map showing absolute expression of mRNA was generated using the SA 

Biosciences RT2 profiler PCR Array Data Analysis Web Portal. 

 

Statistical analysis 

Statistical analyses were done using GraphPad Prism 5.0 software (La Jolla, CA). Colony 

morphology experiments, stain quantification, migration and invasion assays, and mRNA and 

protein levels were analyzed using one-way ANOVAs followed by Tukey’s post hoc test (for 

comparison between more than two groups) or Student’s t-test (for comparison between two 

groups). Proportions were analyzed via Fisher’s exact test. For all analyses, p<0.05 was 

considered statistically significant. 
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2.3 Results 

 TBX3iso1 and TBX3iso2 are differentially expressed in the 21T cell 

lines. 

We have previously reported that TBX3 is expressed in the 21T cell lines, with low levels in 

the ADH-like 21PT and DCIS-like 21NT cells, and increased expression in the IMC-like 

21MT-1 cells (Souter et al., 2010). This finding is consistent with previous reports that TBX3 

is up-regulated in invasive stages of cancer. Expression of TBX3 was examined in the 

parental 21T cell lines at the mRNA and protein level. Total TBX3 expression was higher in 

invasive 21MT-1 cells relative to the non-invasive (21PT and 21NT) cell lines (Figure 2.3.1 

A,D,E). Similarly, both TBX3iso1 and TBX3iso2 were up-regulated in 21MT-1 relative to 

21PT and 21NT cells (Figure 2.3.1 B,C). In contrast, no difference in either total TBX3 

expression, or expression of either isoform, was observed between the ADH-like 21PT cells 

and DCIS-like 21NT cells (Figure 2.3.1 A-E). 
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Figure 2.3.1 – TBX3iso1 and TBX3iso2 are differentially expressed in the 21T cell lines. 

(A-C) Primers specific for either total TBX3, TBX3iso1, or TBX3iso2 were used to assess 

relative abundance of each transcript in 21T parental cell lines by qRT-PCR. (D-E) Total 

TBX3 protein is differentially expressed in the parental 21T cell lines. An antibody recognizing 

both isoforms of TBX3 was used to assess the relative abundance of TBX3 within the 21T 

cell lines. Means were analyzed using one-way ANOVA followed by Tukey’s post hoc test 

and p<0.05 was considered statistically significant; ** p<0.01. Error bars indicate standard 

deviation. Results are representative of at least 3 independent experiments.  
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 TBX3 expression is increased in DCIS-like 21NT cells after stable 

transfection. 

In order to assess the effect of TBX3 on breast cancer progression, TBX3iso1 or TBX3iso2 

were overexpressed in the DCIS-like 21NT cell line and results were compared to an empty 

vector (EV) control containing the same antibiotic resistant gene (neomycin). The relative 

mRNA expression level of total TBX3, TBX3iso1 and TBX3iso2 was assessed by qRT-PCR 

in the stably transfected cells. Total TBX3 mRNA was significantly up-regulated in both 

TBX3iso1 and TBX3iso2 transfectants (Figure 2.3.2 A), and the overexpression of TBX3 was 

isoform specific (Figure 2.3.2 B,C). Likewise, western blot analysis shows an increase in total 

TBX3 protein levels in the TBX3 transfectant cells compared to the empty vector control 

(Figure 2.3.2 D,E). Cell pellets of TBX3 transfectants were assessed by 

immunohistochemistry (Figure 2.3.2 F,G). TBX3 protein was localized to the nucleus, and 

nuclear expression was significantly higher in TBX3 transfectants. Nuclear localization, as 

observed by immunohistochemistry, is consistent with the known function of TBX3 as a 

transcriptional regulator. 
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Figure 2.3.2 – TBX3 expression is increased in 21NT cell transfectants. 

21NT cell lines were stably transfected with either a TBX3iso1 or TBX3iso2 containing 

plasmid, or an empty vector control. (A-C) Assessment of relative transcript levels of total 

TBX3, TBX3iso1, and TBX3iso2 by qRT-PCR in stably transfected 21NT cells. (D-E) 

Assessment of total TBX3 protein levels by western blot in stably transfected 21NT cells. (F-

G) Assessment of percentage of nuclei staining positive for TBX3 by IHC in stably transfected 

21NT cell pellets. Cell pellets were stained using an anti-human TBX3 antibody and counter 

stained with Harris’s Hematoxylin (Hx). Means were analyzed using one-way ANOVA 

followed by Tukey’s post hoc test and p<0.05 was considered statistically significant; * 

p<0.05, ** p<0.01, ***p<0.001. Error bars indicate standard deviation. Results are 

representative of at least 3 independent experiments. 
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 TBX3 overexpression promotes progression of 21NT (DCIS) cells. 

To assess the role of TBX3 in the progression of DCIS to a more malignant phenotype, the 

3D morphology of the 21NT transfectants was assessed using a 3D Matrigel assay (Figure 

2.3.3 A-B). TBX3 isoform overexpression resulted in an increase in colony formation rates 

(Figure 2.3.3 C). As an index of the infiltrative vs. non-infiltrative nature of the colonies 

forming, we used a circularity index to determine the proportion of colonies that were circular 

(non-infiltrative) vs. non-circular (infiltrative). TBX3 isoform overexpression resulted in 

significantly less rounded, more infiltrative colonies (Figure 2.3.3 D). Immunofluorescence 

staining of colonies after 9 days of growth in Matrigel revealed significantly more nuclei per 

colony with TBX3 isoform overexpression (Figure 2.3.3 E). Additionally, immunofluorescence 

assessment of Ki67 and cleaved caspase 3 showed a significant increase in Ki67 (Figure 

2.3.3 F) and decrease in cleaved caspase 3 (Figure 2.3.3 G) expression in TBX3 isoform 

transfectants. This resulted in an increase in the proliferation to apoptosis (Ki67 / cleaved 

caspase 3) ratio for both TBX3 isoform transfectants (Figure 2.3.3 H). 

To further assess the migratory and invasive ability of TBX3-transfected 21NT cells, 

transwell assays were used. Cells were placed in the upper chamber of transwells (8.0μm 

pores coated with either a thin layer of gelatin for migration assays, or Matrigel for invasion 

assays) and allowed to migrate/invade through the pores towards a chemoattractant in the 

lower chamber. TBX3 isoform overexpression increased the ability of the cells to both migrate 

over gelatin (Figure 2.3.4 A-B) and invade through Matrigel (Figure 2.3.4 4C-D).  
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Figure 2.3.3 – TBX3 overexpression in DCIS-like 21NT cells results in a more 

aggressive phenotype in 3D Matrigel. 

TBX3 transfectants were seeded in 3D Matrigel at 3,000 cells per well and incubated at 37ºC 

and 5% CO2 for 9 days. (A) Immunofluorescence images depicting colony size of 21NT 

transfectants. Cells were grown in Matrigel for 9 days, then stained with Hoechst and 

Phalloidin and imaged using 60X objective. Scale bars represent 20μm. (B) Brightfield and 

phase contrast images showing growth of colonies after 9 days in 3D Matrigel. Brightfield 

images were taken using 4X objective, with the scale bar representing 100μm. Phase 

contrast images (inset) were taken using 40X objective, with the scale bar representing 

20μm. (C) TBX3 overexpression increases colony formation rates. A colony was considered 

to be successfully formed when larger than 50μm in diameter. Analysis was conducted using 

ImageJ. (D) TBX3 overexpression decreased the proportion of round colonies. Analysis was 

conducted using ImageJ. A binary quantification method was utilized; a circularity index 

above 0.75 was considered circular. (E) TBX3 overexpression increases the number of nuclei 

per cell colony. (F) TBX3 overexpression resulted in an increase in the percentage of Ki-67 

positive cells within colonies. (G) TBX3 overexpression resulted in a decrease in the 

percentage of cleaved caspase 3 positive cells within colonies. (H) The 

proliferation/apoptosis ratio, defined as the percentage of positive Ki67 cells divided by the 

percentage of positive cleaved caspase 3 cells, increased with overexpression of both TBX3 

isoforms. Means were analyzed using one-way ANOVA followed by Tukey’s post hoc test. 

The proportion of circular colonies was analyzed using Fisher’s exact test. A value of p<0.05 

was considered statistically significant; *p<0.05, **p<0.01, ***p<0.001. Error bars indicate 

Standard Deviation. Results are representative of at least 3 independent experiments.  
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Figure 2.3.4 – TBX3 overexpression increases migration and invasion of 21NT cells. 

(A-B) TBX3 overexpression increases migration using a transwell migration assay. 21NT cell 

transfectants were placed in the upper chamber of a transwell migration system with media 

containing 1% BSA and allowed to migrate towards αHE10F chemoattractant in the bottom 

chamber for 22 hours at 37ºC. Stable transfectants of both TBX3 isoforms showed an 

increase in migration using the transwell system. Scale bars represent 100μm. Results are 

quantified in panel b. (C-D) TBX3 overexpression increases invasion using a transwell 

invasion system. 21NT cell transfectants were placed in the upper chamber of a transwell 

invasion system with media containing 1% BSA and allowed to invade towards αHE10F 

chemoattractant in the bottom chamber for 22 hours at 37ºC. Stable transfectants of both 

TBX3 isoforms showed an increase in invasion using the transwell system. Scale bars 

represent 100μm. Results are quantified in panel D. Means were analyzed using one-way 

ANOVA followed by Tukey’s post hoc test. A value of p<0.05 was considered statistically 

significant; *p<0.05, **p<0.01, ***p<0.001. Error bars indicate Standard Deviation. Results 

are representative of 4 independent experiments. 
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 TBX3 knockdown reduces some characteristics of an aggressive 

phenotype in 21MT-1 (IMC) cells. 

To examine whether reduction of TBX3 expression has an effect at a later stage of 

progression, TBX3 was knocked down in the invasive 21MT-1 cell line, using shRNA 

targeting both isoforms. TBX3 expression in the knockdown with the greatest reduction in 

both TBX3iso1 and TBX3iso2 mRNA expression is shown, with shLUC representing the off-

target luciferase control (Figure 2.3.5 A-C). Quantitative RT-PCR analysis showed a five-fold 

reduction in total TBX3, TBX3iso1, and TBX3iso2 mRNA expression (Figure 2.3.5 A-C). 

There was also a corresponding reduction in total TBX3 at the protein level (Figure 2.3.5 

D,E). While the TBX3 knockdown cells were still able to form colonies at a rate comparable 

with the shLUC control cells in the 9-day Matrigel assay (Figure 2.3.5 F,G), TBX3 knockdown 

resulted in an increased proportion of round/circular colonies (i.e. less dispersed/infiltrative; 

Figure 2.3.5 H) and fewer nuclei per colony (Figure 2.3.5 I), suggesting a reduction in 

invasiveness and impaired growth in 3D.  
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Figure 2.3.5 – TBX3 knockdown results in a less aggressive phenotype of IMC-like 

21MT-1 cells in 3D Matrigel. 

(A) Total TBX3 mRNA is decreased in 21MT-1 shTBX3 cells after TBX3 knockdown. (B) 

TBX3iso1 mRNA is decreased in 21MT-1 shTBX3 after TBX3 knockdown. (C) TBX3iso2 

mRNA is decreased in 21MT-1 after TBX3 knockdown. (D) Western blot showing total TBX3 

protein is decreased in 21MT-1 shTBX3 cells after TBX3 knockdown. (E) Densitometry 

quantification of western blot shows a significant decrease in total TBX3 protein expression 

in the 21MT-1 shTBX3 cells. (F) Brightfield images showing colonies after 9 days in 3D 

Matrigel. Images were taken at 4X objective. Scale bars represent 100μm. (G-I) Cells were 

seeded in Matrigel and grown for 9 days. All of the cell lines were able to form colonies (G), 

but shTBX3 colonies were rounder (i.e. less dispersed, less invasive) (H) and smaller (I). 

Means were analyzed using one-way ANOVA followed by Tukey’s post hoc test. The 

proportion of circular colonies was analyzed using Fisher’s exact test. A value of p<0.05 was 

considered statistically significant; *p<0.05, **p<0.01, ***p<0.001. Error bars indicate 

Standard Deviation. Results are representative of at least 3 independent experiments. 
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 Up-regulation of TBX3 in 21NT (DCIS) cells results in alterations in 

expression of key regulatory and EMT/invasion associated genes. 

We assessed the mRNA expression patterns of TBX3iso1 and TBX3iso2 transfected 21NT 

cells by RT2 PCR arrays, and found a number of alterations in expression of key regulatory 

and EMT/invasion-associated genes. As 21NT cells transfected with either TBX3iso1 or 

TBX3iso2 had shown a similar more aggressive phenotype, we focused our interest on genes 

whose expression changed in common in both TBX3iso1 and TBX3iso2 transfected cells. 

We identified altered expression of a number of genes involved in signal transduction, cell 

cycle control, cell survival and EMT/invasiveness (Figure 2.3.6). In reference to pathways 

potentially involved in control of cell cycle, proliferation, apoptosis and cell survival, we 

observed significant down-regulation of CDKN2A (previously shown to be a key gene directly 

regulated by TBX3 in blocking cell senescence (Rowley et al., 2004, Yarosh et al., 2008)) 

with up-regulation of marker of proliferation Ki67 (MKI67); Jun proto-oncogene (JUN); 

nuclear receptor subfamily 3, group C, member 1 glucocorticoid receptor (NR3C1); epidermal 

growth factor receptor (EGFR); androgen receptor (AR); interleukin-6 (IL6); SRC proto-

oncogene (SRC); and V-Akt murine thymoma viral oncogene homolog 1 (AKT1). Although 

the observed increase in retinoblastoma 1 (RB1), stratifin (SFN), breast cancer 1, early onset 

(BRCA1) and breast cancer 2, early onset (BRCA2) may seem counter-intuitive when the 

TBX3 up-regulated cells are found to be actively cycling and faster-growing, it is likely that 

these are attempted adaptation responses to the more direct effect of CDKN2A down-

regulation by TBX3, the expected result of which would be release of cell-cycle checkpoint 

control, inhibition of senescence and apoptosis and promotion of progression through the cell 

cycle and cell proliferation. 

 Several genes potentially associated with EMT and cellular invasiveness were also 

altered in TBX3 isoform transfectants. Transcriptional regulators twist family BHLH 

transcription factor 1 (TWIST1) and snail family zinc finger 2 (SNAI2) were both up-regulated, 

as was SRC, and there was also altered expression of several proteases and protease 

inhibitors (including up-regulation of plasminogen activator, urokinase (PLAU), serpin 

peptidase inhibitor, clade E, member 1 (SERPINE1), and matrix metallopeptidase 9 (MMP9); 

and down-regulation of cystatin E/M (CST6)). Up-regulation of mesenchymal marker 

vimentin, as well as EMT-markers Twist and Src were confirmed at the protein level as well 
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(Figure 2.3.6 E). Whether directly or indirectly, up-regulation of either isoform of TBX3 in 

21NT cells thus induced alterations in gene expression in pathways potentially involving cell 

cycle, cell survival, cell growth control and EMT/invasiveness, with the resulting in vitro 

phenotypes of more efficient and larger colony formation, increased proliferation/apoptosis 

ratio and increased motility and invasiveness through Matrigel. 
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Figure 2.3.6 – TBX3 overexpression in DCIS-like 21NT cells alters expression of key 

regulatory and EMT/invasion-associated genes. 

(A) Heat map (84 genes commonly dysregulated in breast cancer) showing absolute mRNA 

expression of 84 breast-cancer related genes within the 21NT transfectant cells. (B) Fold 

changes (mRNA) of genes significantly altered in expression in a similar fashion with 

overexpression of both TBX3iso1 and TBX3iso2 in 21NT cells. Data analysis was conducted 

by SA Biosciences PCR Array Data Analysis Web portal using the ΔΔCt method normalized 

to acidic ribosomal phosphoprotein P0 (RPLP0) expression. Fold changes are compared to 

21NT+EV control and are organized based on increasing fold change of TBX3iso1. The 24 

genes shown had similar alterations in gene expression with statistically significant fold 

changes for both isoforms (* p<0.05, ** p<0.01, ***p<0.001). Genes in green had reduced 

expression, and genes in red had increased expression at the mRNA level with TBX3 isoform 

overexpression. Results are representative of 3 RT2 PCR arrays per cell line. (C) Graphical 

representation of fold changes in panel (A). Dotted line represents normalized expression of 

transcript levels of empty vector control cells (fold change = 1). (D) Gene expression changes 

with TBX3 isoform overexpression organized based on gene function groupings. Genes in 

green had reduced expression, and genes in red had increased expression at the mRNA 

level with TBX3 isoform overexpression. (e) Western blot showing increased expression of 

Vimentin, Twist and Src protein levels with TBX3 overexpression. 
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2.4 Discussion 

By using the 21T cell line series to model the effects of putative drivers of the transition from 

pre-invasive to invasive breast cancer progression, we are able to demonstrate that 

overexpression of TBX3 can promote the transition of DCIS to IMC as assessed by in vitro 

3D Matrigel growth assays. In particular, 21NT (DCIS-like) cells overexpressing TBX3iso1 or 

TBX3iso2 showed increased colony-forming ability, with increased numbers of cells per 

colony and a more dispersed (less “rounded”) colony morphology. Increased cell 

invasiveness was also observed, both in terms of more dispersed colonies in 3D Matrigel 

and increased invasion through Matrigel. In parallel, down-regulation of TBX3 in 21MT-1 cells 

resulted in a less aggressive phenotype in 3D Matrigel, with smaller and less dispersed (less 

invasive) colony morphology. 

 No significant difference in functional activity in any of these in vitro measures of 

malignancy was observed between the TBX3 isoforms. Interestingly, RT2 PCR array analysis 

did show several differences in gene expression profiles induced by TBX3iso1 and 

TBX3iso2, as well as a number of commonalities (Figure 2.3.6 A). As we saw no difference 

in functional effect, our analysis was focused on gene expression alterations occurring in 

common between the two isoforms, which could potentially explain characteristics of the 

more aggressive phenotype observed in both TBX3iso1 and TBX3iso2 transfectants. 

 Firstly, the increased colony-forming ability in 3D Matrigel, with larger colony size and 

increased proliferation vs. apoptosis ratio observed with both TBX3iso1 and TBX3iso2 21NT 

transfectants indicated an increased cell survival and predisposition for proliferation vs. 

apoptosis (or senescence), effects that have been previously ascribed to TBX3 in other 

systems (Brummelkamp et al., 2002, Carlson et al., 2002, Rowley et al., 2004, Yarosh et al., 

2008). Gene expression profiling of the TBX3 transfectants in our study showed altered 

expression of several genes potentially involved in these processes in both TBX3iso1 and 

TBX3iso2 transfected cells (i.e. down-regulation of CDKN2A (p14ARF, p16INK4A), with up-

regulation of MKI67, JUN, NR3C1, EGFR, AR, IL6, SRC and AKT1). Perhaps most 

interesting of these is the down regulation of CDKN2A (p14ARF, p16INK4A) by both TBX3 

isoforms, as previous studies have indicated p14ARF in particular to be a direct transcriptional 

target of TBX3 in other systems (Yarosh et al., 2008), and that isolated down-regulation of 
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p14ARF can accomplish the same effect of increasing cell proliferation, decreasing cell 

senescence and apoptosis (Rowley et al., 2004). Further work is required to determine 

whether p14ARF or others of the candidate genes identified are responsible for the cell 

survival/proliferation vs. apoptosis/senescence aspects of the TBX3 phenotype in these cells.  

Another prominent aspect of the altered phenotype observed with both TBX3iso1 and 

TBX3iso2 21NT transfectants was a more irregular/dispersed colony morphology in 3D 

Matrigel, with increased cellular invasiveness in transwell assays, suggestive of an EMT 

effect. In keeping with this, both TBX3iso1 and TBX3iso2 transfectants showed alteration in 

expression of a number of EMT and invasion-related genes that are consistent with an EMT 

phenomenon, including up-regulation of TWIST1, SRC, SNAI2, PLAU, SERPINE1, and 

MMP9, with down-regulation of CST6. Western blot analysis showed up-regulation of Twist 

and Src, along with mesenchymal marker Vimentin at the protein level as well.  

Our work is in agreement with that of previous studies with other mammary epithelial 

cells (MCF7, MDA-MB-435, HC11) (Platonova et al., 2007, Peres et al., 2010) in which TBX3 

was shown to have functional effects including inhibition of senescence and promotion of cell 

survival, proliferation and migration. We present the added novel finding, using a progression 

series of mammary epithelial cells, that overexpression of TBX3 can trigger non-invasive 

(DCIS-like, 21NT) cells to become invasive, possibly through an EMT-like process. In 

addition, knockdown of TBX3 in invasive (21MT-1) cells can revert them to a less aggressive 

phenotype, with less potential for 3D growth and a less infiltrative phenotype. Furthermore, 

we have shown that these effects are not isoform specific, as both TBX3iso1 and TBX3iso2 

were able to induce the same phenotypes in transfected 21NT cells. Finally, examination of 

TBX3-induced changes in gene expression of 21NT cells has revealed specific cell 

survival/anti-senescence/proliferation and EMT/invasiveness category alterations, which 

may be involved in the functional changes observed. Future work will be necessary to 

establish which of these changes may be key players in the TBX3-induced phenotypes.  

We have demonstrated a role for both TBX3iso1 and TBX3iso2 in promoting the 

transition from non-invasive to invasive breast cancer. We have shown that overexpression 

of TBX3 can alter cell properties involved in cell survival/colony formation and invasiveness, 

as well as regulate EMT/invasiveness-related genes. The identification of TBX3 as a potential 
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regulator of early breast cancer progression from DCIS to IMC is of potential clinical utility 

not only in identifying which DCIS lesions may be more likely to progress to invasion, but 

along with a better understanding of the role of specific TBX3-induced gene expression 

changes, in providing other potential molecular targets to block breast cancer progression at 

this early, pre-invasive stage. The recent finding that TBX3 alterations may be key driver 

mutations in breast cancer, and the suggestion that altered (probably increased) TBX3 

function may be associated with at least some cases of familial breast cancer (Stephens et 

al., 2012a), adds particular significance to the potential of TBX3 as an important regulator of 

breast cancer progression, and added urgency to a better understanding of its role in the 

malignancy of breast cancer. 
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 TBX3 promotes progression of pre-invasive breast cancer cells 
by inducing EMT and directly up-regulating SLUG 

 

 

SUMMARY OF FINDINGS 

 

The acquisition of cellular invasiveness by breast epithelial cells and subsequent transition 

from ductal carcinoma in situ (DCIS) to invasive breast cancer is a critical step in breast 

cancer progression. Little is known about the molecular dynamics governing this transition. 

We have previously shown that overexpression of the transcriptional regulator TBX3 in DCIS-

like cells increases survival, growth, and invasiveness. To explore this mechanism further 

and assess direct transcriptional targets of TBX3 in a high-resolution, isoform-specific 

context, we conducted genome-wide ChIP-arrays coupled with transcriptomic analysis. We 

show that TBX3 regulates expression of several epithelial-mesenchymal transition (EMT) 

related genes, including SLUG and TWIST1. Importantly, we demonstrate that TBX3 is a 

direct regulator of SLUG, and SLUG expression is required for TBX3-induced migration and 

invasion. Assessing TBX3 expression by immunohistochemistry in early stage (Stage 0 and 

Stage I) breast cancers revealed high expression in low-grade lesions. Within a second 

independent, early stage (Stage 0 and Stage I), non-high-grade cohort, we observed an 

association between TBX3 expression in the DCIS and size of the invasive focus. 

Additionally, there was a positive correlation between TBX3 and SLUG expression, and 

TBX3 and TWIST1 expression in the invasive carcinoma. Pathway analysis revealed altered 

expression of several proteases and their inhibitors, consistent with the ability to degrade 

basement membrane in vivo. These findings strongly suggest the involvement of TBX3 in the 

promotion of invasiveness and progression of early stage pre-invasive breast cancer to 

invasive carcinoma through the low-grade molecular pathway. 

 

 

 

Chapter 3 in this dissertation has been submitted, and is currently under peer-review.  
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3.1 Introduction 

Tumorigenesis within the breast is thought to involve advancement through distinct stages, 

from benign ductal epithelial hyperplasia, to atypical ductal hyperplasia (ADH), ductal 

carcinoma in situ (DCIS), and ultimately invasive and metastatic carcinoma (Burstein et al., 

2004). A very critical stage of this progression pathway is the acquisition of cellular 

invasiveness. It is estimated that approximately 25-50% of DCIS will progress to invasive 

carcinoma during the lifetime of the patient, a process generating potentially life-threatening 

disease (Sagara et al., 2015). Clinical management of patients with DCIS usually consists of 

surgical resection with additional radiation therapy for most patients (Fisher et al., 1999, 

Mokbel and Cutuli, 2006). Several recent studies, however, have suggested that a subset of 

patients with early-stage (non-high-grade) DCIS do not benefit from either surgery alone or 

combined surgery and radiation, raising concern regarding over-treatment of this 

subpopulation (Thorat et al., 2007, Formenti et al., 2011, Sagara et al., 2015). Paradoxically, 

we are currently limited in our ability to identify patients with DCIS that have an intrinsically 

higher risk of local and invasive recurrence, such that there is also a risk of under-treatment 

if excision is incomplete or radiation therapy is omitted.  

The 21T series cell lines have been proposed as a unique experimental model of 

breast cancer progression (Band et al., 1990). Three cell lines were isolated from a single 

patient and stably represent distinct stages of progression: 21PT cells mimic ADH (non-

tumorigenic), 21NT cells mimic DCIS (tumorigenic and non-metastatic), and 21MT-1 cells 

depict characteristics of invasive mammary carcinoma (tumorigenic and metastatic) when 

injected orthotopically into nude mice (Band et al., 1990, Souter et al., 2010). We have 

previously conducted extensive characterization of these cell lines, including examination of 

global gene-expression levels coupled with assessment of clinical literature on progression 

(Souter et al., 2010). Importantly, we found that during the transition from the clonally-related 

DCIS-like 21NT cells to invasive 21MT-1 cells, TBX3 was within the list of clinically-relevant 

up-regulated transcripts (Souter et al., 2010). 

TBX3 is a member of T-box family of transcription factors implicated in skeletal, 

cardiac and mammary gland development (Willmer et al., 2017). TBX3 levels are up-

regulated in several cancers, with most of the literature focusing on breast cancer (Fan et al., 
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2004, Lomnytska et al., 2006, Yarosh et al., 2008, Souter et al., 2010) and melanoma 

(Rodriguez et al., 2008, Peres and Prince, 2013). Due to alternative splicing, two TBX3 

isoforms exist: TBX3iso1 and TBX3iso2. TBX3iso2 contains an additional 20-amino acid 

sequence in the DNA binding domain attributed to the 2a exon, which TBX3iso1 lacks. 

Differing expression levels of these isoforms has been reported in several breast cancer cell 

lines (Fan et al., 2004). While the role of TBX3 in tumorigenesis is currently unclear, 

accumulating evidence suggests that the TBX3-mediated transcriptional repression of p14ARF 

(Lingbeek et al., 2002, Yarosh et al., 2008) and/or p21CIP1 (Hoogaars et al., 2008) plays a 

role in bypassing cellular senescence and driving cancer progression. Recent work has 

begun to identify a link between TBX3 expression levels and epithelial-mesenchymal 

transition (EMT), with direct down-regulation of E-cadherin (Rodriguez et al., 2008). These 

findings are important, as the switch from an epithelial to a mesenchymal phenotype has 

been implicated in the acquisition of migratory and invasive properties, suppression of 

senescence and apoptosis, as well as therapeutic resistance (De Craene and Berx, 2013). 

SLUG (encoded by the SNAI2 gene) is a member of the SNAIL family of transcription factors 

and a key mediator in the promotion of EMT (De Craene and Berx, 2013, Phillips and 

Kuperwasser, 2014). Specifically, SLUG has been shown to trigger the initial phases of the 

EMT process (Savagner et al., 1997).  

In this study we explore the role of TBX3 in breast cancer progression pathways, 

focusing specifically on its involvement in the induction of EMT and the transition from DCIS 

to invasive mammary carcinoma. Immunohistochemical analysis has revealed that TBX3 

levels are elevated in low-grade, pre-invasive DCIS lesions with an associated invasive 

component, and significantly correlated with the size of the invasive focus. Using genome-

wide bioinformatic approaches in conjunction with more conventional in vitro studies, we 

have identified SLUG and TWIST1 as downstream targets of TBX3 and have assessed their 

expression by immunohistochemistry in two different patient cohorts. Our findings suggest 

that TBX3 facilitates the process of early invasion in DCIS, by promoting the induction of 

EMT and tumor progression through the low-grade pathway, as described by Bombonati and 

Sgroi (Bombonati and Sgroi, 2011). Finally, we propose a progression model in which SLUG 

is an important and necessary effector downstream of TBX3, leading to increased motility, 

invasiveness, and induction of key invasiveness-associated genes. 
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3.2 Methods 

Cell lines and culture conditions 

The 21T series cell lines (21NT and 21MT-1) were obtained as a gift from Dr. Vimla Band 

(Dana Farber Cancer Institute) (Band et al., 1990). 21T series cell lines underwent 

authentication testing by Idexx Radil (Case No. 20250-2013). Cells were maintained in 

αMEM media supplemented with 2mM L-glutamine, 1µg/mL insulin, 12.5ng/mL EGF, 2.8µM 

hydrocortisone, 10mM HEPES, 1mM sodium pyruvate, 0.1mM non-essential amino acids, 

and 50µg/mL gentamycin sulfate and further supplemented with 10% FBS (αHE10F). All 

reagents were obtained from Wisent Inc. Stable 21NT transfectants previously generated 

(Krstic et al., 2016) were maintained in αHE10F medium supplemented with 500µg/mL G418 

as a selection marker. Stable lentiviral transductants were maintained in αHE10F medium 

supplemented with either 0.8µg/mL puromycin (TBX3 knockdown lines) or 500M 

hygromycin (SLUG knockdown lines) as a selection marker.  

Cell lines representing other molecular breast cancer subtypes were purchased from 

ATCC. Cell lines were maintained in their respective media: T47D (RPMI), SKBR3 (McCoy’s 

5A), and MDA-MB-468 (αMEM) supplemented with 10% FBS. All cell lines were regularly 

tested and negative for Mycoplasma contamination using the Mycoplasma PCR Primer Set 

(Agilent Technologies, 302008). 

 

Stable Transfection 

21NT parental cell lines were seeded into 6-well plates at 350,000 cells per well, and 

transfected the following day at 3g of DNA plasmid per well using the Lipofectamine 3000 

Transfection Kit (Invitrogen, L3000). Plasmid DNA constructs were previously described 

(Krstic et al., 2016) and consist of an empty vector (EV), TBX3iso1, and TBX3iso2 construct 

within a pcDNA3.1 (Invitrogen, V79020) vector. Selection was performed using αHE medium 

supplemented with 500g/mL G418. Resistant clones were pooled, expanded, and frozen 

for later use. 

 

Transient Transfection 

For assessment of E-cadherin expression and localization, 21NT parental cell lines were 

seeded into 6-well plates at 350,000 cells per well, and transfected the following day with 



 

112 

112 

3g of DNA plasmid per well using the Lipofectamine 3000 Transfection Kit (Invitrogen, 

L3000). Plasmid DNA constructs consisted of an empty vector (EV), TBX3iso1, and 

TBX3iso2 construct within pZsGreen1-N1 vector containing the ZsGreen reporter gene. For 

immunofluorescence studies, transfected cells were grown under normal conditions for 72 

hours and then underwent immunofluorescent staining.  

For invasion assay studies, cells (T-47D, SKBR3, MDA-MB-468) were incubated with 

transfection reagent and the appropriate plasmid for 24 hours, then harvested and assays 

were performed. Plasmid DNA constructs consist of an empty vector (EV), TBX3iso1, and 

TBX3iso2 construct within pZsGreen1-N1 vector containing the ZsGreen reporter gene. 

 

Lentiviral Transduction 

The generation of shRNA-encoding lentivirus particles for TBX3 knockdown was conducted 

as previously described (Krstic et al., 2016). The shRNA target sequence for TBX3 was 

GCATACCAGAATGATAAGATA, which targeted the coding sequence of both TBX3iso1 and 

TBX3iso2. The shRNA target sequence for Luciferase (representing an off-target control) 

was ACGCTGAGTACTTCGAAATGT. The lentivirus particles were used to generate 21MT-

1 shLUC and 21MT-1 shTBX3 cell lines. Selection was performed using αHE medium 

supplemented with 0.8g/mL puromycin. Resistant clones were pooled, expanded, and 

frozen for later use. 

Down-regulation of SLUG (SNAI2) was performed using lentivirus-mediated shRNA 

transduction. 293T packaging cells were seeded at 80% confluence in 6-well plates with low-

antibiotic growth media (DMEM with 10% FBS and 0.1x Penicillin/Streptomycin). The 

following day the packaging cells were transfected with the packaging plasmid (Addgene, 

pCMV-dR8.91, 900ng), envelope plasmid (Addgene, VSV-G/pDM2.G, 100ng), and psi-

LVRU6H vector encoding one of 4 shRNAs specific to SNAI2 (Genecopoeia, HSH017502-

LVRU6H, 1g) or an empty vector control (Genecopoeia, CSHCTR001-LVRU6H, 1g) 

(quantities reported per well). The FuGENE transfection reagent (Promega, E2311) was 

mixed with the 3-plasmid mix as per the manufacturer’s protocol. The transfection mix was 

incubated for 30 minutes at room temperature, and 200L was added to the packaging cells. 

Viral harvesting was done three times, spaced out by 12-24 hours by replacing media with 

6mL of high-BSA growth media (20g BSA per 100mL DMEM). The three viral harvests were 

pooled and the viral supernatant was frozen.  
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21NT transfectants (21NT+EV, 21NT+TBX3iso1, 21NT+TBX3iso2) were seeded at 

200,000 cells per well in 6-well plates. The following day 300L of the shRNA-encoding 

lentiviral particles were added to the cells along with 2g polybrene (Sigma, TR-1003-G) per 

2mL media. The cells were incubated at 37ºC overnight and transduced cells were selected 

for by including 500M hygromycin (Invitrogen, 10687-010) in the media (aHE10F with 

500M hygromycin, 500ug/mL G418). Media was replaced again the following day, and cells 

were trypsinized and expanded into T25 flasks on the third day.  

 

Preparation of 21T protein lysates 

Protein lysates were prepared by adding 1mL of RIPA buffer (150mM NaCl, 1% Triton-X, 

0.5% deoxycholic acid, 0.1% SDS, 50mM Tris-base; pH 8.0) with Halt Protease Inhibitor 

Cocktail (Thermo Scientific, 78429) to confluent 10cm plates. Cells were scraped, collected 

in a microcentrifuge tube, and incubated on ice for 10 minutes. Lysates were then centrifuged 

at 13,000 RPM for 10 minutes at 4ºC. The supernatant was collected and protein 

concentrations were determined using a Bradford Protein Assay kit (BioRad, 5000002) by 

comparing to BSA standards.  

 

Preparation of Conditioned Media and Western Blotting 

For assessment of secreted protein expression (MMP9), conditioned media was prepared by 

seeding 1.0x106 cells into T75 flasks, and cells were maintained in low serum media (αMEM 

with 0.1% FBS) for 48 hours. Media was collected and concentrated 25X using centrifugal 

filters (Amicon Ultra-4, UFC803024). Protein was resolved (40g) on a 10% SDS-PAGE gel. 

Immediately after transferring proteins to a PVDF membrane, total protein was visualized by 

Ponceau Stain using the BioRad ChemiDoc imaging system, and an image of the membrane 

was acquired for subsequent normalization. The membrane was then de-stained and MMP9 

protein levels were assessed by western blot (specifications can be found in ‘Electrophoresis 

and Western Blotting’ section). 

 

Electrophoresis and Western Blotting 

Protein (10-50µg) was resolved on a 10% SDS-PAGE gel. The membrane was blocked with 

5% milk for one hour (or 5% BSA where specified), then incubated with primary antibody 

overnight at 4ºC; anti-TBX3 (Invitrogen, 424800; 1:1,000), anti-SLUG (Abcam, ab27568; 
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1:1,000 in BSA), anti-Vimentin (Abcam, ab92547; 1:1,000), anti-Fibronectin (Abcam, 

ab2413; 1:1,000), anti-uPa (Abcam, ab133563; 1:250), anti-MMP9 (Abcam, ab38898, 

1:1,000), anti-MMP14 (Abcam, ab51074; 1:500), anti-Src (Cell Signaling, 2110; 1:1,000), 

anti-pSrc (Y416) (Cell Signaling, 2101; 1:1,000 in BSA), anti-pSrc (Y527) (Cell Signaling, 

2105; 1:1,000 in BSA), anti-TWIST1 (Abcam, ab50887; 1:100 in BSA), anti-CST6 (Sigma, 

WH0001474M1; 1:1,000), anti-N-Cadherin (Abcam, 18203, 1:1,000), anti-Vinculin (Sigma, 

V9264; 1:20,000). The membrane was incubated with secondary antibody conjugated to 

HRP, either anti-rabbit (Sigma, A0545; 1:1,000) or anti-mouse (GE Healthcare, NXA931; 

1:1,000) as appropriate, for 1 hour at room temperature. The western blots were visualized 

using Luminata Crescendo (EDM Millipore, WBLUR0500) and images were taken using the 

BioRad ChemiDoc imaging system. Densitometric quantification was performed using 

ImageLab (BioRad), and quantities were normalized to vinculin expression. Where 

quantifications of western blots is shown, data was acquired through densitometric 

quantifications across three biological replicates.  

 

Immunofluorescence 

ZsGreen vector transiently transfected cells (described above) were fixed with 10% neutral 

buffered formalin for 10 minutes, and permeabilized with 0.5% Triton X-100 in PBS for 10 

minutes. Blocking was conducted with normal goat serum (Invitrogen, 50-0627) at room 

temperature for 1 hour. Rabbit anti-E-cadherin antibody (BD Biosciences, 610181) was 

added at a dilution of 1:150 in 10% normal goat serum and was incubated overnight at 4ºC. 

The following day, cells were washed three times with PBS, and secondary antibody 

Alexa647 Goat Anti-Rabbit IgG (Invitrogen, A21245) was added at a dilution of 1:1,000 in 

10% normal goat serum and incubated for 1 hour at room temperature. Cells were washed 

5 times with PBS. Hoechst 33342 (Invitrogen, H1399) diluted to 1:5,000 in PBS was 

incubated for 30 minutes at room temperature. Cells were washed once with PBS. Coverslips 

were mounted with ProLong Gold Antifade Reagent (Invitrogen, P36930). Images were 

captured at 40X magnification using an Olympus Confocal Imaging System (FluoView 

FV1000 coupled to the IX81 Motorized Inverted System Microscope). Images were converted 

to 8-bit images by separating channels. Mean grey area was quantified within the red channel 

across ZsGreen positive (transfected) cells. E-cadherin expression across the cell lines was 

normalized to the empty vector control. 
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Scratch Wound (Migration) Assay 

Cells were cultured to near confluence in 6-well plates and starved in low serum media 

(αMEM with 0.1% FBS) for 16 hours. A 2 mm wide scratch was then made in the confluent 

monolayer. The cells were rinsed with PBS and fresh media (αMEM media with 10% FBS) 

was added. Cell migration was visualized and phase contrast images were taken at 10X 

using the Olympus IX70 inverted microscope after 6h, 12h and 24h. Cell migration was 

calculated by comparing the wound area at the specified time points using ImageJ (Open 

source, https://imagej.nih.gov/ij/). Means derived from four biological replicates were used 

during analysis. 

 

Transwell Invasion Assay 

Transwell invasion assays were conducted to examine the invasive potential of the 

transfected cell lines. Stably transfected 21NT cells (representing luminal B subtype) were 

used for initial studies. For stable 21NT transfectant cells, 50,000 cells per 100L of media 

were added to the upper chamber of a 8.0m pore transwell insert (Corning, 3422; 24-well 

plate) coated with 10g of Matrigel (Corning, 354480). After incubation at 37ºC and 5% CO2 

for 18 hours, the membranes were fixed with 1% glutaraldehyde for 20 min and stained with 

full-strength Hematoxylin for 15 minutes. Cells which did not migrate and remained on the 

upper surface of the membrane were removed using a cotton swab. Images of 5 non-

overlapping fields of view were acquired using an Olympus IX70 inverted microscope at 10X 

objective. Cells were counted from the acquired images using ImageJ. Means derived from 

4 replicates were used during analysis.  

Invasiveness of transiently transfected cells was also assessed, including T-47D 

(luminal A), SKBR3 (HER2-enriched), and MDA-MB-468 (basal-like) cells transfected with 

either an empty vector (EV), TBX3iso1, or TBX3iso2 construct within the pZsGreen1-N1 

vector containing a ZsGreen reporter gene. Twenty-four hours post-transfection, cells were 

trypsinized, harvested, and suspended in their respective media in the absence of FBS and 

addition of 0.1% BSA. Cells were then added to the upper layer of a 8.0M transwell insert 

coated with 10g of Matrigel at 50,000 cells per 100L of media. After incubation at 37ºC 

and 5% CO2 for 18 hours, the membranes were fixed with 1% glutaraldehyde for 20 min. 

Cells which did not migrate and remained on the upper surface of the membrane were 
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removed using a cotton swab. Green fluorescent images and brightfield images of 3 non-

overlapping fields of view were acquired and superimposed using an EVOS FL Auto 

microscope at 10X objective. The number of green cells was determined using ImageJ 

software. Means derived from four biological replicates were used during analysis. 

 

Cell-Cell Adhesion Assay 

The cell-cell adhesion assay was done as described (Rodriguez et al., 2008). Briefly, T75 

plates were rinsed twice with PBS and cells were dissociated using 3mM EDTA. Cells were 

resuspended in HE10F media and passed through a cell strainer to dissociate cell clusters. 

Cells (200,000) were added to the appropriate media (HE10F with 3mM EDTA, or HE10F 

with 1mM CaCl2) in a 6 cm petri dish. Plates were incubated at 37ºC on a shaking platform 

for 30 minutes. After this incubation period, 10 non-overlapping fields of view per dish were 

captured using the Olympus IX70 inverted microscope at 10X objective. Clusters containing 

more than 4 cells were counted, and counts from 10 fields of view were added together for 

each plate. Means derived from four biological replicates were used during analysis. 

 

Gelatin Zymography 

Cells (1.5x106) were seeded onto 10cm plates. The following day, media was replaced by 

10mL of serum-free αHE media with 500µg/mL G418, and cells were serum-starved for 24 

hours. Media was collected and concentrated 25X using centrifugal filters (Amicon Ultra-4, 

UFC803024). Equal volumes (normalized to 1.5x106 cells) of the conditioned media was 

loaded into a 10% Criterion Zymogram gel (BioRad, 3450080) without boiling/reducing and 

resolved at 4ºC. To remove SDS from the gel, the gel was washed with renaturation buffer 

(2.5% Triton X-100) twice for 30 minutes each, followed by two 20 minute washes with 

distilled water. The gel was then incubated in development buffer (50mM Tris, 200mM NaCl, 

5mM CaCl2 (anhydrous), 0.02% Brij-35, pH 7.5) at 37ºC for 16 hours. The gel was then 

stained (40% methanol, 10% acetic acid, 0.5% Coomassie Blue R-250) for 1 hour at room 

temperature with gentle agitation, followed by de-staining (40% methanol, 10% acetic acid) 

until clear bands appeared. Images were taken using the BioRad ChemiDoc imaging system. 

Reverse images were used for quantification. Means derived from three biological replicates 

were used during analysis. 
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Chick Chorioallantoic Membrane (CAM) Extravasation Assays 

Cells were pre-labeled with 1µM CellTracker conjugated to Green CMFDA Dye (Thermo 

Fischer Scientific, C7025) and washed once with PBS. Using the chorioallantoic membrane 

(CAM) of the chicken embryo, embryonic day 12 embryos were intravenously (IV) injected 

with 50,000 cells (50µL of 1×106 cells/mL cell suspension). 

For the extravasation assays, rhodamine-labelled lectin (75µL of 0.1mg/mL, Vector 

Laboratories Inc, RLK-2200) was intravenously injected 10 minutes after injection of 

fluorescently-labelled cells in order to visualize the luminal surface of endothelial cells in the 

CAM. Immediately following IV injection of lectin-rhodamine, a 1cm×1cm field of the CAM 

marked by foil markers at the corners was made for each animal and the number of cells that 

were intravascular, in the process of extravasation and extravasated into the CAM stroma 

were counted at T=10 min and T=24 hours. A resonance scanner confocal microscope 

(Olympus FluoView FV1000 coupled to the IX81 Motorized Inverted System Microscope) 

was used to determine each cell's location within the CAM with respect to lectin-rhodamine 

signal in real time. All quantifications were conducted blinded. Values reported represent the 

percentage of cells that successfully extravasated in the 1cm×1cm field across 30 biological 

replicates. All quantifications were conducted blinded. 

For in vivo invadopodia assays, the chick embryos were returned to their incubators 

after injection of labelled cells, and at the 6-hour time-point were intravenously injected with 

rhodamine-labelled lectin (75µL of 0.1 mg/mL, Vector Laboratories Inc.) in order to visualize 

the luminal surface of the endothelial cells in the CAM. A resonance scanner confocal 

microscope was used to determine each cell's location within the CAM with respect to lectin-

rhodamine signal in real time. By scanning across the Z-axis, green fluorescently labeled 

cells were assessed for the presence of functional invadopodia protruding between the 

intravascular/extravascular boundary. Values reported represent the percentage of cells 

displaying functional invadopodia in vivo across 6 biological replicates consisting of 

approximately 30 scanned cells each. All quantifications were conducted blinded. 

 

Invadopodia Formation Assay 

The in vitro invadopodia formation assay was conducted as described (Artym et al., 2009). 

Briefly, cover slips were coated with 1mL of cold poly-L–lysine (Sigma, P7405; 50µg/mL in 

PBS) and aspirated after 20 minutes, followed by a 15 minute incubation with 0.5% 
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glutaraldehyde. Coverslips were then inverted on an 80µl drop of 0.2% gelatin in PBS 

labelled with Alexa594 (Thermo Fischer Scientific, G13187), and incubated for 10 minutes. 

Coverslips were lifted, then incubated with 5mg/mL sodium borohydride for 15 minutes to 

quench reactive groups in the gelatin matrix, followed by extensive washing with PBS. Cells 

were trypsinized and plated on coverslips for 12-24 hours (as optimized) followed by fixation 

with 4% paraformaldehyde and permeabilization with 0.1% Triton X-100 in PBS. Samples 

were blocked with 5% skim milk powder, followed by staining with Alexa488-labelled 

phalloidin (Thermo Fischer Scientific, A12379) to label F-actin. Cells were imaged using the 

Nikon Fast A1R Upright Microscope. Cells with actin cores overlaying spots of degradation 

were counted as invadopodia forming cells. Percentage of cells forming invadopodia was 

quantified from 4 biological replicates, assessing invadopodia formation in 10-20 random, 

non-overlapping fields. 

 

RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) 

RNA was isolated using the RNeasy Mini Kit (Qiagen, 74104). RNA (500ng) was transcribed 

into cDNA using the qScript cDNA SuperMix (Quanta Biosciences, 84034). The RT2 SYBR 

Green ROX qPCR Mastermix (Qiagen, 330521) was utilized for quantitative PCR with the 

primer sequences as listed in Table 3.1. The output Ct values were normalized to GAPDH 

and RPLP0 expression for 21NT transfected and transduced cells, respectively, using the 

∆∆Ct method. Means derived from a minimum of three biological replicates were used during 

analysis. 
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Table 3.1 – Primer sequences utilized for qRT-PCR in mRNA studies. 

 
 

mRNA Probe 
 
(F) Forward and (R) Reverse Primer Sequences, 5’ to 3’ 

Total TBX3 
F: CGCTGTGACTGCATACCAGA 
R: GTGTCCCGGAAACCTTTTGC 

TBX3iso1 
F: AGTGGATGTCCAAAGTCGTCAC 
R: CATGGAGTTCAATATAGTAAATCCATGTTTGTCTG 

TBX3iso2 
F: AGTGGATGTCCAAAGTCGTCAC 
R: CACTTGGGAAGGCCAAAGTAAATCCATG 

CDH2 (N-cadherin) 
F: GACGATCCCAATGCCCTCAA 
R: ACATGTTGGGTGAAGGGGTG 

CST6 
F: TGAGGTCCTTGTGGTTCCCT 
R: CCCTCGGGGACTTATCACATC 

FN1 (Fibronectin) 
F: AGGAGAATGGACCTGCAAGC 
R: GAAGTGCAAGTGATGCGTCC 

GAPDH 
F: AGGCTGGGGCTCATTTGAAG 
R: CCATCCACAGTCTTCTGGGTG 

MMP14 
F: CCAGCAACTTTATGGGGGTG 
R: GGCCCATAGGTGGGGTTTTT 

MMP9 
F: CTTTGAGTCCGGTGGACGAT 
R: TCGCCAGTACTTCCCATCCT 

TWIST1 
F: GCAAGAAGTCGAGCGAAGAT 
R: GCTCTGCAGCTCCTCGAA 

RPLP0 
F: CCTCATATCCGGGGGAATGTG 
R: GCAGCAGCTGGCACCTTATTG 

SLUG 
F: GCCAAACTACAGCGAACTGG 
R: GATGGGGCTGTATGCTCCTG 

SRC 
F: GCACAGGACAGACAGGCTAC 
R: TCTGACTCCCGTCTGGTGAT 

uPa 
F: TCCAAAGGCAGCAATGAACT 
R: GTGCTGCCCTCCGAATTTCT 

VIM (Vimentin) 
F: GGACCAGCTAACCAACGA 
R: AAGGTCAAGACGTGCCAGAG 

 

Chromatin Immunoprecipitation 

Twenty million cells (per replicate) were grown to confluence for each cell line. The cells were 

washed twice with cold PBS, and then cross-linked with 10mL of PBS with 1% formaldehyde 

solution for 15 minutes at room temperature on a rocking platform. The reaction was 

quenched with 1mL of 2.625M glycine. The cells were then scraped into the supernatant and 

washed twice with cold PBS.  

Pellets were resuspended in 1mL nuclei isolation buffer (50mM Tris pH 8.0, 60mM 

KCl, 0.5% NP-40) with protease inhibitors (Thermo Scientific, 78429) and incubated on ice 
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for 10 minutes, then spun at 3,000 RPM for 3 minutes at 4ºC for nuclei isolation. Nuclei were 

resuspended in 1mL of Lysis Buffer (0.5% SDS, 10mM EDTA, 0.5mM EGTA, 50mM Tris 

HCl, pH 8.0) with protease inhibitors. Chromatin was sonicated for 40 minutes at 2ºC (using 

Diagenode Bioruptor Pico; 30 seconds on, 30 seconds off). The sonicated samples were 

centrifuged at 13,000 RPM for 10 minutes at 4ºC to remove cell debris. Sonicated chromatin 

was then pre-cleared with 200L Protein-A Dynabeads (Life Technologies, 10002D) for 1 

hour at 4ºC on a rocking platform. Simultaneously, 50L of Protein-A Dynabeads were 

washed with 0.5% BSA-PBS and incubated with 5g of normal rabbit IgG antibody 

(Invitrogen, 10500C) or 5g of rabbit anti-TBX3 antibody (Invitrogen, 424800) in 100L of 

dilution buffer (PBS with 0.2% Tween20 and 1% BSA) for 2 hours at room temperature on a 

rocking platform (quantities listed per biological replicate). The bead-antibody complex was 

then washed twice with 0.5% BSA-PBS, resuspended in dilution buffer and then added to 

the sample. Immunoprecipitation was conducted overnight (16 hours) at 4ºC on a rocking 

platform. 

Bound chromatin was eluted the following day. Each wash step was performed at 4ºC 

for 5 minutes on a rocking platform. Chromatin was washed with Wash Buffer I (20mM Tris 

HCl, 150mM NaCl, 2mM EDTA, 1% Triton X-100, 0.1% SDS) twice, Wash Buffer II (20mM 

Tris HCl, 500mM NaCl, 2mM EDTA, 1% Triton X-100, 0.1% SDS) once, and TE buffer (10mM 

Tris HCl, 1mM EDTA, pH 8.0) twice. Bound chromatin was eluted using 200L of Elution 

Buffer (100mM NaHCO3, 1% SDS) at 65ºC for 20 minutes. NaCl was added to a final 

concentration of 200mM and incubated with the chromatin overnight at 65ºC for de-

crosslinking. Proteinase K (Thermo Scientific, AM2546) was added and incubated for 2 hours 

at 50ºC, followed by RNase A (Thermo Scientific, 12091039) treatment for 60 minutes at 

37ºC for protein and RNA degradation, respectively. The DNA was purified using the 

QIAquick PCR Purification Kit (Qiagen, 28106) and eluted with 20L elution buffer.  

For ChIP array purposes, the eluted DNA was amplified using the Whole Genome 

Amplification Kit (Sigma, WGA2) as per the manufacturer’s protocol, with the omission of the 

fragmentation step. In order to obtain sufficient DNA for ChIP-array hybridization, the 

amplified DNA was re-amplified using the GenomePlex Complete Whole Genome 

Reamplification kit (Sigma, WGA3) with the incorporation of dUTP (Jena Bioscience, NU-

1021S) at a final concentration of 2mM, and dTTP was reduced to 8mM. The DNA was once 

again purified using the QIAquick PCR Purification Kit. 
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For validation of select ChIP targets, 5uL of the eluate was used for qPCR. The % 

input method was utilized for quantification of enrichment. An input of 5% was saved prior to 

immunoprecipitation and was de-crosslinked and purified as described above. The Ct values 

for the input was subtracted from the Ct values of the immunoprecipitated samples. A fold 

change was then calculated consisting of TBX3 IP over IgG control (signal over noise) to 

allow for easy comparison between primer sets. The primers used for ChIP-qPCR 

experiments are listed in Table 3.2. The CDH1 transcription start site (TSS) and coding 

region served as the positive and negative control, respectively. The CDH1 control primer 

sequences were obtained from a previously published study reporting the TBX3 binding site 

within E-cadherin in melanoma cell lines (Rodriguez et al., 2008).  

Table 3.2 – Primer sequences utilized for ChIP-qPCR validation studies. 

 
DNA Probe 

 
(F) Forward and (R) Reverse Primer Sequences, 5’ to 3’ 

CDH1 TSS 
F: TCACAGGTGCTTTGCAGTTC 
R: GTGAACCCTCAGCCAATCAG 

CDH1 coding region 
F: AACAGCTGCTTGGTGACGTT 
R: CAAGCCTGGGAGTTAGGTG 

SNAI2 
F: AATGGGGCTTTCTGAGCCAC 
R: TCCACGCCCAGCTACCCAA 

 

RNA-Seq 

Cells were grown to 80% confluence and RNA was isolated using the RNeasy Mini Kit 

(Qiagen, 74104) incorporating DNase I digestion (Qiagen, 79254). Samples were sent to the 

Donnelly Sequencing Centre (Toronto, Canada) and assessed for RNA integrity using an 

Agilent bioanalyzer. For each sample, stranded mRNA libraries were prepared and 

sequenced on an Illumina HiSeq 2500 sequencer using V4 chemistry. Paired-end read 

length was 51 base pairs. Raw reads were then uploaded to Basespace 

(https://basespace.illumina.com/) and imported into Galaxy software (https://usegalaxy.org). 

The FastqGroomer tool within Galaxy was used to prepare the files for alignment, and the 

TopHat tool within Galaxy was used to align the FASTQ files to the reference genome (Hg19) 

using the default parameters, except that the maximum number of alignments was capped 

at 10. Aligned sequences were imported as .bam files into Partek Genomics Suite (PGS; 

http://www.partek.com/pgs) software and analyzed using the RNA-Seq analysis 

workflow. Gene reads were normalized for transcript length using the RPKM normalization 
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algorithm, and differentially expressed genes between TBX3iso1 or TBX3iso2 compared to 

empty vector were determined using ANOVA statistical tests. For each comparison, final 

gene lists were created using a minimum fold change cut-off of 1.5-fold, and a maximum 

False Discovery Rate (FDR) of 0.05 (step-up FDR algorithm of Benjamini and Hochberg). 

 

ChIP Promoter Arrays 

Chromatin was immunoprecipitated as described above. The amplified product (7.5g) was 

fragmented, labeled, and hybridized to the GeneChip Human Promoter 1.0R Array 

(Affymetrix, 900776), and the hybridized array was scanned as per manufacturer’s 

instructions. All microarray work was done at the London Regional Genomics Centre 

(Robarts Research Institute, London, Canada). Resultant .cel files were then imported into 

Partek Genomic Suites (PGS) and analyzed using the Chromatin Immunoprecipitation 

workflow. Differential probe intensities between TBX3iso1 or TBX3iso2 vs. empty vector 

were determined by ANOVA and enriched regions of significance were determined using the 

MAT algorithm. To be further considered, an enriched region had to have a minimum MAT 

score of 5 at p<0.05. 

 

Bioinformatics Analysis 

To compare RNA-Seq and ChIP-array datasets, gene lists were constructed using Venny 2.1 

(Spanish National Biotechnology Centre; http://bioinfogp.cnb.csic.es/tools/venny/). Genes of 

interest include those significantly altered with overexpression of both TBX3 isoforms by 

RNA-Seq (fold change >1.5 relative to the empty vector, p<0.05), and genes which both 

TBX3 isoforms directly bound in ChIP-array datasets (MAT score >5, p<0.05). Altered 

biological functions with TBX3 isoform overexpression were examined using Ingenuity 

Pathway Analysis (IPA) (Qiagen) by examining RNA-Seq data. Gene reads and ChIP binding 

locations were visualized using Interactive Gene Viewer (IGV) software (Broad Institute). 

Consensus binding motifs of highly conserved T-box proteins (TBX1, TBX2, TBX4, TBX5, 

TBX15, TBX20, TBX21) within the JASPAR database (University of Copenhagen Centre for 

Molecular Medicine and Therapeutics; http://jaspar.genereg.net) were assessed, and 

coordinates that had overlap for all aforementioned related T-box transcription factors were 

imported into IGV. DNase I hypersensitivity and RNA polymerase II ChIP tracks were also 

imported into IGV. A cutoff threshold of >40 for each coordinate occurring in the RNA pol II 
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(POLR2A) ChIA-PET combined dataset in various cell lines was introduced to assess 

consistent binding sites. The aforementioned ENCODE tracks are listed in Table 3.3. 

The TCGA BRCA, Farmer Breast and Desmedt Breast datasets were interrogated 

and data was exported using XenaBrowser (University of California, Santa Cruz; 

https://xenabrowser.net/datapages/). The aforementioned datasets are listed in Table 3.3. 

The PANTHER database (University of Southern California; http://pantherdb.org) was 

used to conduct over-representation analysis using Fischer’s exact test with FDR multiple 

test correction and focusing on protein class and Gene Ontology (GO) biological pathways. 

Enrichr pathway analysis (Icahn School of Medicine, Mount Sinai; 

http://amp.pharm.mssm.edu/Enrichr/) was conducted with the input list consisting of 194 

genes significantly altered (fold change >1.5, p<0.05) for cells overexpressing either 

TBX3iso1 or TBX3iso2 relative to the empty vector control from the normalized RNA-Seq 

data. Results assessing Jensen TISSUES expression data are reported.  

 

Table 3.3 – Publicly-available datasets utilized for analysis. 

 

 

 

 

 

 

FILE SOURCE REFERENCE (or LINK) 

POLR2A ChIA-
PET 

ENCODE: 
ENCSR000CAA 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode
DCC/wgEncodeGisChiaPet/ 

DNase I 
hypersensitivity 
(master list) 

ENCODE: 
wgEncodeAwgDna
seMasterSites 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encode
DCC/wgEncodeAwgDnaseMasterSites/  

TCGA Breast 
Cancer (BRCA) 

GDC Project ID: 
TCGA-BRCA 

https://portal.gdc.cancer.gov/projects/TCGA-BRCA  

Farmer Breast 
GEO: 
GSE1561 

• Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M et 
al. Identification of molecular apocrine breast tumours by 
microarray analysis. Oncogene 2005 Jul 7;24(29):4660-
71. PMID: 15897907 

Desmedt Breast 
GEO: 
GSE7390 

Desmedt C, Piette F, Loi S, Want Y et al. Strong time 
dependence of the 76-gene prognostic signature for node-
negative breast cancer patients in the TRANSBIG 
multicenter independent validation series. Clin Cancer 
Res 2007 Jun 1;13(11)3207-14. PMID: 17545524 
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Patient Characteristics in Immunohistochemistry Study 

Patients with early-stage breast cancer were identified from the London Breast Cancer 

Database on the basis of having either DCIS only (Stage 0), or DCIS with an associated 

invasive component (Stage I; 2cm, and either pN0 or pN0mi). Cohort 1 consisted of 186 

patients with low, intermediate, or high grade DCIS with the aforementioned characteristics 

of no invasion or early invasion (Stage 0 or Stage I). Cohort 2 consisted of 118 patients with 

non-high grade DCIS with the aforementioned characteristics, with either no invasion or early 

invasion (Stage 0 or Stage I). Clinicopathological variables for cohort 1 and cohort 2 patients 

entered into this study are listed in Table 3.4, left and right panel, respectively. There was no 

overlap between patients in cohort 1 and cohort 2. The study was conducted under a protocol 

approved by the Western University Health Sciences Research Ethics Board and the Clinical 

Research Impact Committee of Lawson Health Research Institute.  

 

Immunohistochemistry 

Formalin-fixed, paraffin embedded tissues were sectioned at 4.0µm and added to a charged 

glass slide. Sections were de-paraffinized, rehydrated, and incubated in TBS-Tween or TBS-

Triton (Tris buffered saline (TBS) + 0.5% Tween-20 for TBX3 and SLUG stains, and TBS + 

0.1% Triton-X for TWIST1 stain) for 20 minutes for membrane permeabilization. Heat 

induced antigen retrieval was conducted with citrate buffer (pH 6.0) for 20 minutes. The 

UltraVision LP Detection System (Thermo Fischer Scientific, TL-015-HD) was used with 

optimization of incubation length. Endogenous peroxidase activity was blocked for 10 

minutes for all samples. For the TBX3 stain, slides were blocked for 5 minutes, incubated in 

TBX3 primary antibody (Abcam, ab99302) at 1/200 dilution for 15 minutes at room 

temperature, and 11 minutes in the HRP polymer. For the SLUG stain, slides were blocked 

for 6 minutes using the UltraVision protein block and an additional 30 minutes using the Dako 

protein block (Dako, CD310081) in order to reduce non-specific background staining. Slides 

were incubated in SLUG primary antibody (Abcam, ab27568) at 1/750 dilution for 70 minutes 

at room temperature, and 15 minutes in the HRP polymer. For the TWIST1 stain, slides were 

blocked for 6 minutes, incubated in TWIST1 primary antibody (Abcam, ab50887) at 1/200 

dilution for 1 hour at room temperature, 10 minutes in primary antibody enhancer, and 15 

minutes in the HRP polymer. Signal for all markers was developed using DAB and slides 

were counter-stained in Harris’s Hematoxylin.  
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Quantification of Immunohistochemistry 

Slides were stained and scanned using an Aperio AT2 slide scanner (Leica Biosystems). Full 

scanned digital slides were analyzed by an anatomical pathologist (blinded as to the 

diagnosis) and representative images were captured at 20x magnification using the Aperio 

ImageScope slide viewing software. Each image represented one of four tissue 

compartments including benign non-columnar cells, benign columnar cell lesions (CCLs; 

includes columnar cell change, columnar cell hyperplasia or flat epithelial atypia), ductal 

carcinoma in situ (DCIS), and invasive cancer. The expression of each molecular marker 

was assessed using the ImmunoRatio plugin (University of Tampere, Finland) for ImageJ to 

assess percentage of positive cells. For each image, the cell type of interest was solely 

analyzed and the remaining cells (i.e. stromal cells) were cropped out. A control slide 

representing serial sections was run for each batch of slides (with quantification and 

statistical analysis) to ensure identical and reproducible staining for each run.  

 

Statistical Analysis 

Statistical analyses were conducted using GraphPad Prism 5. One-way ANOVAs were used 

for experiments containing three or more groups, with either a Tukey or Dunnett’s post-hoc 

test. T-tests were used for experiments containing two groups. Error bars represent standard 

deviation. P-values less than 0.05 were considered statistically significant. 
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3.3 Results 

 TBX3 overexpression is associated with an invasive and EMT 

phenotype. 

To examine the role of TBX3 in breast cancer, non-invasive 21NT cells (which endogenously 

express low levels of TBX3) were stably transfected with either an empty vector, TBX3iso1 

or TBX3iso2. Isoform specific up-regulation was confirmed at the mRNA level using isoform 

specific primers, in addition to up-regulation of total TBX3 protein levels (Figures 3.3.1 A-B 

and Appendix 1A). Functionally, up-regulation of either TBX3 isoform in DCIS-like 21NT cells 

led to an increase in migration using the wound scratch assay (Appendix 2A). TBX3 

overexpressing 21NT cells also exhibited reduced cell-to-cell adhesion in vitro (Appendix 

2B). In the presence of calcium ions (+CaCl2), or after adding increasing doses of EDTA to 

chelate free calcium, there were reduced levels of cell-to-cell adhesion, implying that several 

cell-adhesion molecules may be involved (not solely Ca2+ dependent cadherins). As TBX3 

has previously been shown to directly down-regulate E-cadherin (CDH1) in melanoma lines 

(Rodriguez et al., 2008), and as loss of E-cadherin has been associated with the switch to 

an EMT phenotype, we assessed E-cadherin expression by immunofluorescence. We 

confirmed a down-regulation of E-cadherin protein levels as well as decreased membrane 

localization with TBX3 overexpression (Appendix 2C).  
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Figure 3.3.1 – TBX3 overexpression is associated with an invasive and EMT 

phenotype. 

(A) Total TBX3 protein levels were assessed by western blot in 21NT transfectant cells. (B) 

Total TBX3, TBX3iso1, and TBX3iso2 transcript levels were assessed by qRT-PCR in 21NT 

transfectant cells, normalized to GAPDH expression levels, and depicted as fold change 

relative to the empty vector control. Means derived from three biological replicates were used 

during analysis. (C-D) Assessment of cell extravasation and functional invadopodia formation 

in vivo in the chick chorioallantoic membrane (CAM) model. Green (CMFDA) fluorescently 

labeled cells were injected into the vasculature of the CAM (50,000 cells each), and the 

vasculature was labeled red with lectin-rhodamine at T=0. For cell extravasation, cells were 

counted 24 hours post injection in a 1cm2 area across 30 biological replicates. For functional 

invadopodia formation, a binary quantification of in vivo invadopodia formation was 

conducted 6 hours post cell injection. Cells were deemed positive for invadopodia formation 

when they possessed protrusions from the vasculature into the stroma. Values reported 

represent the percentage of cells displaying functional invadopodia in vivo across 6 biological 

replicates consisting of approximately 30 scanned cells each. (E) In vitro invadopodia 

formation assay for assessment of local cell invasion. Cells were added to red fluorescently 

labeled gelatin and incubated for 12-24 hours (as optimized) to allow for substrate 

degradation. Cells were visualized using labelled phalloidin for identification of cellular F-

actin cores at sites of local matrix degradation, signifying the presence of invadopodia. 

Percentage of cells forming invadopodia was quantified from 4 biological replicates, 

assessing invadopodia formation in 10-20 random, non-overlapping fields. (F-G) Protein 

expression of EMT markers was assessed by western blot. Protein samples were separated 

by 10% SDS-PAGE and quantified by densitometry. Protein levels were normalized to 

Vinculin, which served as the loading control for all proteins aside from MMP9 (* secreted 

protein); in the latter case, MMP9 levels in the conditioned media samples were normalized 

to total protein per lane based on Ponceau staining of the membrane. Where quantification 

of western blots are shown, data was acquired through densitometric quantifications across 

three biological replicates. 

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison 

between three groups, and Student’s t-test for comparison between two groups. Error bars 

represent standard deviation. 
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In order to assess the aggressiveness of the cell lines in an in vivo system, we made 

use of the chick embryo chorioallantoic membrane (CAM) model. Fluorescently labeled cells 

were injected into the vasculature of chicks at embryonic day 12 and cell extravasation was 

assessed as previously described (Kim et al., 2016) (Figure 3.3.1 C). Stable overexpression 

of either isoform in 21NT cells resulted in an increase in extravasation within the CAM model. 

Extravasation levels were reduced drastically with shRNA-mediated knockdown of TBX3 in 

invasive 21MT-1 cells, which natively express TBX3 at high levels (protein levels shown in 

Appendix 1B-C). In order to confirm that the cells are indeed better able to exit the 

vasculature (and are not simply better able to survive at T=24h), we performed live functional 

invadopodia assays within the CAM using confocal microscopy. Six hours after the injection 

of fluorescently labeled cells into the vasculature of chick embryos, rhodamine-labelled lectin 

was injected to visualize the vessel lumen and a binary quantification of invadopodia 

formation was conducted (Figure 3.3.1 D). An increase in functional invadopodia was 

observed with overexpression of either TBX3 isoform in 21NT cells. Furthermore, the 

presence of functional invadopodia was reduced with TBX3 knockdown in 21MT-1 cells. 

Changes to rates of invadopodia formation were also verified using a standard in vitro 

invadopodia formation assay (Figure 1E), which mirrored the in vivo CAM data obtained. 

More invasive phenotypes were also observed using transient transfections of 

TBX3iso1 or TBX3iso2 into T47D (luminal A; ER+/PR+/HER2-), SKBR3 (HER2-enriched; 

ER-/PR-/HER2+), and MDA-MB-468 (basal-like; ER-/PR-/HER2-) breast cancer cell lines, 

representing different molecular subtypes (Appendix 3A-C). Collectively, this suggests that 

these findings have broad applicability and are not cell-type specific. 

The functional alterations associated with TBX3 isoform overexpression here suggest 

a more invasive, epithelial-mesenchymal transition (EMT) phenotype. We examined the 

expression of several EMT markers and observed alterations in multiple proteolytic enzymes 

and their inhibitors (MMP9, MMP14, uPA up-regulated; CST6, down-regulated), as well as 

EMT-associated transcription factors (TWIST1, SLUG up-regulated) with stable 

overexpression of either TBX3 isoform. These were confirmed at both the mRNA and protein 

levels (Figure 3.3.1 F-G and Appendix 4A). We observed an increase in levels of active 

MMP2, as assayed by gelatin zymography (Appendix 4B), indicating functional activation of 

pathways involved in substrate degradation and invasiveness 
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 TBX3 overexpression leads to an alteration of mesenchymal transcript 

levels and direct up-regulation of SLUG. 

To examine transcriptional changes associated with TBX3 isoform overexpression and 

elucidate mechanisms involved, RNA-Seq was conducted for TBX3iso1 and TBX3iso2 

overexpressing cell lines. Ingenuity Pathway Analysis (IPA) indicated that the top predicted 

functional changes associated with the unique transcriptional profiles obtained for the TBX3 

transfectants include alterations in cellular movement, cellular growth and proliferation, cell 

death, cell survival and cancer-associated processes (Figure 3.3.2 A). Enrichment analysis 

(Enrichr) was conducted, with the input list consisting of genes significantly altered (>1.5 fold 

up or down, FDR<0.05) for cells overexpressing either TBX3iso1 or TBX3iso2 relative to the 

empty vector control. Comparison to the Jensen TISSUES expression database of large-

scale tissue expression profiles revealed mesenchymal genes as most enriched (Figure 3.3.2 

B). The dbEMT database (Zhao et al., 2015) was used to compile a list of 377 EMT-related 

genes for analysis of RNA-Seq data. Relative to the empty vector, alterations in abundance 

of a large proportion of EMT-related genes were detected with TBX3 isoform overexpression 

(Figure 3.3.2 C).  

To determine whether the TBX3-dependent changes in gene expression are direct, 

chromatin immunoprecipitation (ChIP) experiments were conducted using either an anti-

TBX3 antibody or rabbit IgG antibody as a non-specific control for background, and 

immunoprecipitated DNA was hybridized to Affymetrix Promoter 1.0R arrays. Using this 

approach we identified 5652 and 5512 specific binding sites for TBX3iso1 and TBX3iso2, 

respectively. Further comparison of TBX3 binding sites with our expression analysis 

identified 194 genes that were directly regulated by both TBX3 isoforms (>1.5 fold up or 

down, FDR<0.05) (Figure 3.3.2 D). These 194 genes were analyzed using the PANTHER 

database by conducting over-representation analysis and focusing on protein class 

(Appendix 5). The lowest p-value and corrected FDR statistic corresponded to the protease 

inhibitor protein class. Several other protein classes related to EMT were also altered, 

including extracellular matrix proteins, metalloproteases, and serine protease inhibitors. 

Importantly, within this list of 194 genes directly induced by TBX3 was SLUG (encoded by 

the SNAI2 gene), a transcriptional regulator and potent inducer of EMT, that may provide a 
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mechanism for the previously described EMT and invasion-associated functional changes in 

the TBX3-transfected cells.  

Both TBX3 isoforms were shown to bind near an intron/exon junction of the SNAI2 

(SLUG) gene based on the ChIP-array data (Figure 3.3.2 E). TBX3 has previously been 

shown to bind to the consensus T-box binding element (TBE) in several different contexts 

(Coll et al., 2002b). Consensus TBEs were investigated using the JASPAR database of 

transcription factor binding sites by assessing predicted binding coordinates of highly 

conserved T-box proteins (Figure 3.3.2 E). A highly conserved TBE was found within the 

SNAI2 (SLUG) gene region that coincides with binding of both TBX3 isoforms in the ChIP-

array dataset. We conducted ChIP qRT-PCR validation, using ChIP primers spanning this 

identified TBE. Published primer sequences were used for the transcription start site (CDH1 

TSS) and coding region (CDH1 coding) of E-cadherin (Rodriguez et al., 2008), representing 

positive and negative controls, respectively (Figure 3.3.2 F). With TBX3 overexpression, 

there was a 3-4-fold enrichment of TBX3 protein bound to the conserved TBE of the SNAI2 

(SLUG) gene. Interestingly, this binding region overlaps with a DNase I hypersensitive region 

and RNA polymerase II binding region, which is suggestive of open and transcriptionally 

active chromatin (Figure 3.3.2 E).  
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Figure 3.3.2 – TBX3 overexpression leads to an alteration of mesenchymal transcript 

levels and direct up-regulation of SLUG. 

Total mRNA was isolated from 21NT+EV, 21NT+TBX3iso1 and 21NT+TBX3iso2 cells in 

duplicate and examined by RNA-Seq. (A) Pathway Analysis was conducted using all output 

RNA-Seq data for TBX3iso1 and TBX3iso2 overexpressing cells and compared to the empty 

vector control. (B) Enrichment analysis was conducted with the input list consisting of genes 

significantly altered (fold change >1.5, FDR<0.05) for cells overexpressing either TBX3iso1 

or TBX3iso2 relative to the empty vector control. Results comparing resultant RNA-Seq 

profiles with the Jensen tissue dataset and lowest p-value tissue sites are shown. (C) Heat 

map of EMT genes. The dbEMT database was used to compile a list of 377 EMT genes and 

hierarchial clustering was conducted of RNA-Seq data. Duplicate samples are shown for 

each cell line. (D) Chromatin Immunoprecipitation (ChIP) experiments were conducted with 

either specific anti-TBX3 antibody or a nonspecific rabbit IgG control antibody. 

Immunoprecipitated DNA was hybridized to an Affymetrix Promoter Array. Datasets from 

RNA-Seq and ChIP-array experiments were integrated in order to examine the effects of 

TBX3 isoform binding on gene transcript levels (all fold change >1.5, FDR<0.05). (E) RNA-

Seq reads across the SNAI2 (SLUG) gene for 21NT+EV, 21NT+TBX3iso1 and 

21NT+TBX3iso2 cell lines are shown in the top three lines, followed by the identified TBX3 

ChIP array binding site. Binding sites for highly conserved T-box proteins within the SNAI2 

(SLUG) gene were assessed using the Jaspar database of transcription factor binding sites. 

Highly conserved T-box binding elements (TBEs) are shown. DNAse I hypersensitivity and 

RNA polymerase II binding sites are shown in the bottom two lines. (F) TBX3 binds directly 

to the SNAI2 (SLUG) gene. ChIP experiments were conducted with either a specific anti-

TBX3 antibody or a nonspecific rabbit IgG control antibody. Relative amounts of 

immunoprecipitated DNA were assessed by qRT-PCR, using published sequences of the E-

cadherin (CDH1) coding region and transcription start site (TSS) as negative and positive 

controls, respectively. The SLUG primers used spanned both the predicted overlapping TBE 

site identified in silico and the identified binding site from ChIP-array experiments. Values 

shown represent input-adjusted, IgG control subtracted values for the specific TBX3 IP 

normalized to the empty vector control. Means derived from four biological replicates were 

used during analysis. *p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-

hoc for comparison between three groups. Error bars represent standard deviation. 
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 SLUG up-regulation by TBX3 is essential for increased migration and 

invasion. 

We have shown that TBX3iso1 and TBX3iso2 directly bind to a consensus TBE within the 

SNAI2 (SLUG) gene and leads to its transcriptional up-regulation. Given the strong evidence 

within existing literature of SLUG involvement in the induction of EMT (De Craene and Berx, 

2013, Phillips and Kuperwasser, 2014), we proceeded to investigate whether SLUG was 

essential for the phenotypes observed with TBX3 overexpression. SLUG levels were 

efficiently knocked down in 21NT control and TBX3 transfectant cell lines using stable 

shRNA-mediated lentiviral transduction (Figure 3.3.3 A-B). In the scramble control (SCR), 

cells overexpressing either TBX3iso1 or TBX3iso2 had higher rates of migration and invasion 

relative to the empty vector control, similar to levels we previously reported in these cell lines 

(Krstic et al., 2016). With SLUG knockdown, the rates of migration and invasion of TBX3 

isoform transfectants were reduced to baseline levels, despite expressing high levels of 

TBX3 (Figure 3.3.3 C-D). 

A large proportion (7/10) of our previous list of EMT and invasion-associated genes 

were still significantly altered with high TBX3 isoform expression in cells with SLUG 

knockdown (Figure 3.3.3 E-F). However, the induction of several key invasiveness-

associated genes up-regulated by TBX3 was significantly impaired in the absence of SLUG, 

including MMP14, vimentin and fibronectin (Figure 3.3.3 E-F). Importantly, these findings 

suggest that there are TBX3-induced changes in expression of EMT-related genes that are 

both SLUG-dependent and SLUG-independent, and that the SLUG-dependent changes are 

required (although not necessarily sufficient) for TBX3-induced migration and invasion. 
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Figure 3.3.3 – SLUG up-regulation by TBX3 is essential for increased migration and 

invasion. 

(A) Western blot analysis showing knockdown of SLUG protein expression in shRNA 

transductants. Protein levels were normalized to Vinculin, which served as the loading 

control. (B) SLUG transcript levels were assessed by qRT-PCR, normalized to RPLP0 

expression levels, and depicted as fold change relative to the empty vector control. (C-D) 

Migration and invasion assays were conducted using 8.0µm pore transwells coated with 

either gelatin (migration) or Matrigel (invasion). Cells were allowed to migrate or invade for 

22 hours. The number of cells that migrated or invaded per high power field are shown. 

Means derived from four biological replicates were used during analysis. (E) Protein 

expression levels of EMT and invasion-associated genes were assessed by western blot. 

Protein samples were separated by 10% SDS-PAGE and normalized to Vinculin, which 

served as the loading control for all proteins. (F) The mRNA expression of several EMT and 

invasion-associated genes was evaluated by qRT-PCR. Expression was normalized to 

RPLP0 transcript levels and is depicted as fold change relative to the empty vector 

shScramble control (+EV+SCR). Means derived from three biological replicates were used 

during analysis. *p<0.05, **p<0.01, ***p<0.001 by either one-way ANOVA with Tukey post-

hoc or two-way ANOVA with Tukey post-hoc for comparison within and between sub-groups, 

respectively. Error bars represent standard deviation. 
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 TBX3 expression is elevated in low-grade, hormone-receptor positive 

invasive breast cancers and associated precursor lesions. 

Based on the association between TBX3 and an invasive and EMT phenotype in vitro and in 

vivo in chick embryo assays, along with a direct link to SLUG signaling, we extended our 

studies to human patient samples. To first assess the expression levels of TBX3, we focused 

on nuclear TBX3 expression by immunohistochemistry in 186 pre-invasive (Stage 0, DCIS 

only) and early invasive breast cancer (Stage I, invasion ≤2.0 cm) patient samples from the 

London Breast Cancer Database. Clinicopathologic variables for cohort 1 patients entered 

into this study are listed in Table 3.4 (left panel). We examined 4 sub-populations of cells 

including 1) benign non-columnar, 2) benign columnar, 3) DCIS, and 4) invasive cancer, after 

observing high expression of TBX3 in benign columnar cells (Figure 3.3.4 A). Earlier studies, 

based on genome sequencing data and mutational association, suggest that columnar cell 

lesions (CCL; includes columnar cell change, columnar cell hyperplasia, flat epithelial atypia 

(FEA)) may be an early morphologic indicator of propensity for, or non-obligate precursor to 

the development of breast cancer (Dabbs et al., 2006, Turashvili et al., 2008). We did not 

see a significant association between level of TBX3 in the DCIS and the presence vs. 

absence of invasion in cohort 1. We confirmed an association between TBX3 and estrogen 

receptor (ER) and progesterone receptor (PR) expression in invasive breast cancers (Figure 

3.3.4 B-C), which has been suggested by previous studies (Fillmore et al., 2010). TBX3 

positivity was highest in low and intermediate grade DCIS and significantly lower in high-

grade DCIS (Figure 3.3.4 D). We then examined a second independent patient cohort of 118 

patients with non-high-grade (low and intermediate grade) DCIS, with or without associated 

early invasive cancer (Stage 0 and Stage I) for increased power in evaluation of TBX3 

association with invasiveness of low-grade breast cancers. Clinicopathologic variables for 

cohort 2 patients entered into this study are listed in Table 3.4 (right panel). Based on results 

from our second cohort assessing patient samples with early invasion, we found that nuclear 

TBX3 expression by immunohistochemistry in the DCIS was associated with the size of the 

invasive focus (p<0.001) (Figure 3.3.4 E).  

Possible downstream effectors of TBX3 were identified in our ChIP-array and RNA-

Seq studies. We conducted immunohistochemical staining for EMT transcription factors 

SLUG and TWIST1 (which were shown to be directly and indirectly up-regulated by TBX3, 
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respectively) in our second patient cohort (staining patterns shown in Figure 3.3.4 A). 

Expression of each marker was assessed in all four cell populations in the same manner as 

for TBX3. We identified a positive correlation between TBX3 expression and both SLUG 

(p<0.05) and TWIST1 (p<0.001) expression in the invasive component (Figure 3.3.4 F-G). 

Additionally, both SLUG and TWIST1 protein levels were up-regulated in CCLs, and SLUG 

levels were significantly higher in low grade (Grade 1) DCIS lesions relative to both Grade 

1+2 (mixed) and Grade 2 DCIS lesions (Figure 3.3.4 H), exhibiting staining patterns similar 

to TBX3. Collectively, these results suggest that TBX3 may be facilitating the process of early 

invasion even at the earliest stages of progression (i.e. CCLs, DCIS), and offer potential roles 

for downstream EMT-related proteins such as SLUG and TWIST1 in invasiveness of early 

stage breast cancer.  
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Table 3.4 – Clinicopathologic variables for patients entered into this study. 

 COHORT 1 COHORT 2 

Characteristic No. of patients (%) No. of patients (%) 

Total 186 (100) 118 (100) 
Age (yr) 
     ≤50 
     >50 

 
17 (9.1) 
169 (90.9) 

 
14 (11.9) 
104 (88.1) 

Associated invasion 
     No invasion  
     Micro-invasion 
     Invasion 

 
100 (53.8) 
12 (6.5) 
74 (39.8) 

 
84 (71.2) 
2 (1.7) 
32 (27.1) 

Histological type of invasive cancer 
     Total cases with invasion 
     NST 
     NST with lobular features 
     NST with tubular features 
     NST with mucinous features 
     NST with micropapillary features 
     Invasive lobular carcinoma 
     Invasive tubular carcinoma 
     Invasive mucinous carcinoma 

 
74 (100) 
55 (74.3) 
9 (12.2) 
3 (4.1) 
3 (4.1) 
1 (1.4) 
1 (1.4) 
1 (1.4) 
1 (1.4) 

      
34 (100) 
26 (76.5) 
3 (8.8) 
3 (8.8) 
0 (0.0) 
0 (0.0) 
0 (0.0) 
1 (2.9) 
1 (2.9) 
 

IMC histologic grade 
     Total cases with invasion 
     Low 
     Intermediate 
     High 

  
74 (100) 
26 (35.1) 
36 (48.6) 
12 (16.2) 

 
34 (100) 
16 (47.1) 
18 (52.9) 
0 (0.0) 

DCIS nuclear grade 
     Total cases with DCIS 
     Low 
     Low + Intermediate 
     Intermediate 
     High 

 
100 (100) 
10 (10.0) 
0 (0.0) 
41 (41.0) 
49 (49.0) 

 
118 (100) 
16 (13.6) 
44 (37.3) 
58 (49.2) 
0 (0.0) 

Hormone receptor status * 
     ER positive 
     PR positive 
     HER2 positive 

 
66/82 (80.5) 
52/71 (73.2) 
16/57 (28.1) 

 
33/34 (97.1) 
29/34 (85.3) 
3/34 (8.8) 

Recurrence 
     No recurrence 
     Yes recurrence 
            Invasive recurrence 
            Non-invasive recurrence 
     Unknown 

 
162 (87.1) 
13 (7.0) 
10 (76.9) 
3 (23.1) 
11 (5.9) 

 
0 (0.0) 

Micro-metastasis 8 (4.3) 0 (0.0) 

 

Table 3.4. Clinicopathologic variables for patients entered into Cohort 1 and 2. 

NST, no special type; IMC, invasive mammary carcinoma; DCIS, ductal carcinoma in situ;  

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 

2; *only available for patients with IMC 
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Figure 3.3.4 – TBX3 expression is elevated in low-grade, hormone-receptor positive 

invasive breast cancers and associated precursor lesions. 

Patient samples representing Cohort 1 were immunohistochemically stained and assessed 

for nuclear TBX3 expression, and Cohort 2 samples were stained and assessed for nuclear 

TBX3, SLUG and TWIST1 expression. (A) Representative expression and staining patterns 

of Cohort 2 samples (TBX3 expression and staining patterns were similar in Cohort 1; not 

shown). (B-D) Nuclear TBX3 expression was assessed by immunohistochemistry in Cohort 

1, consisting of 186 patients with early-stage breast cancer (all nuclear grades) identified 

from the London Breast Cancer Database on the basis of having either DCIS only (Stage 0), 

or DCIS with an associated early invasive component (Stage I; 2cm, and either pN0 or 

pN0mi). Nuclear TBX3 expression was compared across ductal epithelial cell types (benign 

non-columnar, benign columnar, DCIS and invasive mammary carcinoma). The association 

between TBX3 expression and (B) estrogen receptor (ER), (C) progesterone receptor (PR), 

and (D) DCIS nuclear grade is shown. (E-H) Nuclear TBX3, SLUG and TWIST1 expression 

was assessed by immunohistochemistry in Cohort 2, consisting of 118 patients with non-

high-grade (nuclear grade 1 or 2) DCIS lesions, with or without associated early invasive 

cancer (Stage 0 or Stage I). Expression levels were compared across ductal epithelial cell 

types and clinical data. (E) Correlation analysis for nuclear TBX3 expression and size of the 

invasive focus in patients with Stage I breast cancer. (F-G) Correlation analysis of 

TBX3/SLUG expression and TBX3/TWIST1 expression in the invasive carcinoma. (H) 

Association between nuclear SLUG expression and DCIS nuclear grade.  

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison 

between three groups, and Student’s t-test for comparison between two groups. Correlation 

and p-values were calculated using the Pearson correlation statistic. Error bars represent 

standard deviation. 
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 Elevated TBX3 levels are associated with poor prognosis of breast 

cancer and are highly correlated with SLUG expression. 

To assess the applicability of our findings in a broader breast cancer and pan-cancer context 

we compared our findings with that of available transcriptomic datasets. Using the ICGC US 

donor cohort, we found that TBX3 mRNA levels are elevated in tumor cells of several cancer 

subtypes, including breast cancer (data not shown). By further profiling transcriptomic data 

from the TCGA BRCA and the Farmer Breast study (Farmer et al., 2005), we identified an 

association of higher TBX3 levels in luminal subtypes of breast cancer, and estrogen receptor 

(ER) and progesterone receptor (PR) positive cancers (Figure 3.3.5 A-B). Survival analysis 

of luminal A patients in the TCGA BRCA dataset showed a statistically significant difference 

in survival (p<0.001) between patients with high and low TBX3 expression relative to the 

median (Figure 3.3.5 C).  

Our immunohistochemical biomarker analysis revealed a significant positive 

correlation between TBX3, SLUG and TWIST1 expression within invasive breast cancer 

lesions. To further examine the association between TBX3 and our identified downstream 

targets SLUG and TWIST1 and relate it to histopathological grade, we interrogated 

transcriptomics datasets with relevant grade information: TCGA BRCA (n=680 with grade 

information) and Desmedt (n=196, node-negative breast cancers, all with grade information 

(Desmedt et al., 2007)). TBX3 and SLUG mRNA levels were significantly lower in high-grade 

breast cancers relative to low and intermediate-grade breast cancers (Figure 3.3.5 D) 

(p<0.001), consistent with our immunohistochemical data. The Desmedt dataset also 

showed reduced TWIST1 levels in high-grade breast cancers. There was a high degree of 

overlap between TBX3 and SLUG in terms of patient characteristics and lesion types 

identified in our immunohistochemical staining and within the transcriptomics datasets. 

Additionally, upon examination of the TCGA TARGET GTEx dataset, we observed high co-

expression of SLUG and TBX3 in 19,120 normal and tumor samples represented, and tight 

association with MMP14 with high expression of both transcription factors (Figure 3.3.5 E). 

Collectively, analysis of publicly available data further supports the association and likely 

involvement of TBX3, along with downstream EMT transcription factors SLUG and TWIST1 

in aggressiveness of low-grade breast cancers.  



 

142 

142 

 

 

 

 

  



 

143 

143 

Figure 3.3.5 – Elevated TBX3 levels are associated with poor prognosis of breast 

cancer, and are highly correlated with SLUG expression. 

(A-B) TBX3 expression was assessed across tumor characteristics in deposited 

transcriptomics data consisting of the Farmer Breast and TCGA BRCA cohorts. TBX3 mRNA 

expression by molecular subtype was further investigated in the TCGA BRCA dataset. (C) 

Kaplan Meier survival curves for luminal A patients (ER+ PR+ HER2-) from the TCGA BRCA 

dataset, separated into high (above median) vs. low (below median) TBX3 expression. 

Number of events (breast cancer related deaths) are shown in the associated table. (D) 

Expression of TBX3, SLUG and TWIST1 was assessed in the TCGA BRCA and Desmedt 

datasets to compare expression levels across grades. Data shown represent median-

centered, z-score normalized values. (E) Correlation of SLUG, TBX3 and MMP14 expression 

was assessed in the TCGA Target GTEx dataset, consisting of 19,120 normal and tumor 

patient samples.  

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison 

between three groups. Survival analysis for Kaplan-Meier curve was calculated using the log-

rank test statistic. Correlation and p-values were calculated using the Pearson correlation 

statistic. Error bars represent standard deviation. 
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Figure 3.3.6 – TBX3 promotes progression of pre-invasive breast cancer cells by 

inducing EMT and directly up-regulating SLUG.  

Proposed model through which TBX3 promotes progression of pre-invasive ductal carcinoma 

in situ (DCIS) lesions. TBX3 levels are low in benign non-columnar ductal breast epithelial 

cells. In columnar cell lesions (CCLs), expression of TBX3 levels are up-regulated, with a 

concomitant increase in SLUG and TWIST1 expression levels. This is predicted to promote 

proliferation and plasticity of early, pre-invasive lesions. In a subset of low-grade DCIS, TBX3 

expression is particularly high. Overexpression of TBX3 induces altered expression of 

several proteases and protease inhibitors, leading to degradation of the basement membrane 

and priming for early invasion of DCIS into adjacent stroma. These events are facilitated by 

TBX3-induced and SLUG-dependent expression of pro-migratory molecules such as MMP14 

(membrane-bound), fibronectin (extracellular matrix), and vimentin (intracellular). 
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3.4 Discussion 

The use of screening mammography over the past four decades has drastically increased 

our ability to detect DCIS (Kerlikowske, 2010), but has been criticized as causing an over-

diagnosis of breast cancer (Miller et al., 2014). Gene expression profiling has allowed for the 

successful stratification of node-negative invasive breast cancer patients into low-risk and 

high-risk groups, providing information useful in clinical decision-making for this population 

(van 't Veer et al., 2002). These techniques have been extended to DCIS with some success 

(Solin et al., 2013, Bartlett et al., 2014, Rakovitch et al., 2015). Additionally, panels of selected 

markers, including p16, COX2 and Ki67 have shown some utility in their ability to predict 

behaviour of DCIS in specific subsets of patients (Kerlikowske et al., 2010). Despite these 

efforts, there are few validated diagnostic tests or biomarkers to aid in optimization of 

treatment strategies for women with DCIS, and none that reliably predict risk for invasion, 

leading to the possibility of both over-treatment and under-treatment of this subpopulation.  

We have previously established a role for the transcriptional regulatory protein TBX3 

in invasiveness of breast cancer (Krstic et al., 2016). In this current study we further explored 

the mechanism of this activity, particularly as associated with the phenomenon of EMT. We 

sought to take a high-resolution approach to identifying downstream targets of TBX3, 

beginning with identification of transcriptomic changes with TBX3 overexpression and 

assessment of direct TBX3 binding sites. From these initial genomic studies, we identified 

SLUG and TWIST1 as potential downstream effectors up-regulated with TBX3 

overexpression, and SLUG as a direct downstream mediator of TBX3-induced migration and 

invasion. Importantly, we have discerned expression differences in these proteins between 

benign non-columnar ductal epithelial cells, columnar cell lesions (CCLs), DCIS, and within 

the invasive carcinoma. Our examination of TBX3 expression by immunohistochemistry in 

two independent patient cohorts revealed that expression is highest in hormone receptor 

positive, low-grade DCIS (and co-existing columnar cell lesions) and is associated with the 

extent of invasion in early-stage breast cancers. These findings, coupled with our in vitro data 

of an EMT-link, are consistent with a role for the TBX3 transcription factor in early invasion 

events, likely working in conjunction with other EMT-related factors such as SLUG and 

TWIST1, to facilitate a phenotype conducive to invasion. 
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The prevailing breast cancer progression model supported by numerous genomic and 

transcriptomic studies includes two divergent molecular pathways of progression – the low-

grade (ER+/PR+) and high-grade (ER-/PR-) pathway (Bombonati and Sgroi, 2011). Only a 

subset of DCIS within each pathway will progress to invasive cancer. Interestingly, 

sequencing and hierarchical clustering of DCIS and invasive samples has shown that 

samples do not cluster by diagnosis, but rather by intrinsic molecular subtype (Muggerud et 

al., 2010). This suggests that factors associated with invasiveness are distinct from histologic 

grade and stage, and may indeed be present within the pre-invasive DCIS (Muggerud et al., 

2010). 

Our proposed model of the stage-specific role of TBX3 in early breast cancer 

progression is depicted in Figure 3.3.6. As observed in our immunohistochemical studies, 

expression of EMT-related transcription factors (including TBX3) is low in benign non-

columnar breast epithelium. We have identified that TBX3 levels are significantly elevated in 

CCLs. This is in accordance with existing studies examining patterns of gene expression 

changes through breast cancer progression showing up-regulation of several malignancy-

associated genes at the pre-invasive stage (Ma et al., 2003). This pro-EMT phenotype in 

CCLs, with concomitant up-regulation of SLUG and TWIST1, is predicted to promote 

proliferation and plasticity of the breast epithelial cells (De Craene and Berx, 2013). There is 

accumulating evidence that CCLs, and in particular the CCL variant termed ‘flat epithelial 

atypia’ (FEA), may be non-obligate precursors to the development of breast cancer (Dabbs 

et al., 2006, Turashvili et al., 2008). Only some columnar cell lesions progress, even though 

TBX3 and EMT transcription factors SLUG and TWIST1 are expressed in most (at least when 

observed in association with DCIS). This suggests that there are likely other changes that 

act in concert to allow for progression to occur.  

In our present study, the significant level of enrichment of proteases, protease 

inhibitors and enzyme modulators in RNA-Seq and ChIP-array datasets of DCIS-like 21NT 

cells overexpressing TBX3 is consistent with the propensity to break down basement 

membrane and invade. Previous studies have suggested that the gradual loss of basement 

membrane, leading to changes in cell organization and polarity (rather than the acquisition 

of additional mutations) is the main driver in the transition from an in situ to invasive 

phenotype (Hu et al., 2008). We have confirmed up-regulation of MMP14 and urokinase-type 
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plasminogen activator (uPA), and down-regulation of CST6 by qRT-PCR and western blot 

analysis. Consistent with this, uPA and MMP14 overexpression have been shown to be 

strong and independent predictors of breast cancer survival (Look et al., 2002, Têtu et al., 

2006). Furthermore, CST6 has been shown to be down-regulated in breast cancer 

progression, with promoter hypermethylation documented at the DCIS stage (Ai et al., 2006). 

We have shown that induction of MMP14 with TBX3 overexpression is a SLUG-dependent 

process, and this signaling cascade may be important for TBX3-induced migration and 

invasion. In keeping with this, it has been previously reported that MMP14 is among the main 

regulators of the basement membrane transmigration process in vivo (Hotary et al., 2006), 

likely due to MMP14 dependent activation of the main type IV collagenase MMP2 (Duffy et 

al., 2000). Importantly, we have shown increased activity of MMP2 with TBX3 

overexpression. Additionally, increased expression of several proteases has been shown to 

indirectly enhance the activity of EMT transcription factors, leading to a positive feedback 

loop (De Craene and Berx, 2013), potentially resulting in high expression levels of EMT 

transcription factors and proteases as we have observed both in vitro and in our two patient 

cohorts. 

In conclusion, we propose a unique pathway in which TBX3 promotes progression 

through advancement of low-grade DCIS to invasive carcinoma (Figure 3.3.6). Our proposed 

model is particularly relevant in the non-high grade, ER-positive pathway of progression. 

Overexpression of TBX3 at early pre-invasive stages (CCL, DCIS) of breast cancer 

progression, inducing other molecular regulators of EMT (including SLUG and TWIST1), acts 

as an enabler to set the stage for basement membrane breakdown and invasion into adjacent 

stroma. Further validation of our findings in an independent cohort of Stage 0 and Stage I 

breast cancer patients and comparison with follow-up data should be conducted in order to 

assess whether TBX3 expression may provide reliable risk stratification for patients 

diagnosed with DCIS, possibly in concert with multiple biomarkers such as Ki67, p16, COX2, 

and/or multi-parameter gene expression assays (Kerlikowske et al., 2010, Bartlett et al., 

2014). As T-box proteins such as TBX3 have been shown to have detrimental effects with 

respect to cancer progression and survival, a thorough understanding of the underlying 

mechanisms involved is crucial. 
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 Isoform-specific promotion of breast cancer tumorigenicity by 
TBX3 involves induction of angiogenesis 

 

SUMMARY OF FINDINGS 

 

TBX3 is a member of the highly conserved family of T-box transcription factors involved in 

embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in 

tumorigenesis has been widely studied, less is known about the specific functions of the 

different TBX3 isoforms. Through alternative splicing and exon skipping events, TBX3 

encodes two isoforms – TBX3iso1 and TBX3iso2. TBX3iso2 contains an additional 20 amino 

acid sequence inserted into the DNA binding domain which TBX3iso1 lacks. We report, for 

the first time, that TBX3 isoforms have differential tumorigenic potential in nude mouse 

xenograft experiments when transfected into non-tumorigenic DCIS-like 21NT cells, with 

overexpression of TBX3iso1 more commonly associated with invasive carcinoma. Histologic 

examination showed high vascularity of tumors that arise from TBX3iso1 overexpressing 

cells. Through transcriptomic analysis of signaling pathways altered with TBX3iso1 and 

TBX3iso2 overexpression, we reveal that there are significant differences in angiogenesis-

related genes. Importantly, osteopontin (OPN), a cancer-associated secreted 

phosphoprotein, was shown to be significantly up-regulated with TBX3iso1 overexpression. 

This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines 

(21PT, 21NT, MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells resulted in 

induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan 

in pericellular matrices. The described changes involving TBX3iso1-dependent promotion of 

angiogenesis may explain the differences in tumor formation rates between TBX3 isoforms 

in vivo. Within the TCGA breast cancer cohort, there was an 8.1-fold higher 

TBX3iso1/TBX3iso2 ratio in tumors relative to control, and this ratio was positively associated 

with tumor grade. This shift of an increased TBX3iso1/TBX3iso2 ratio in tumors relative to 

control tissue is observed across several TCGA tumor subtypes that overexpress TBX3. 
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4.1 Introduction 

TBX3 is a member of the highly conserved family of T-box transcription factors involved in 

embryogenesis and organogenesis. Germline mutations or haploinsufficiency of TBX3 

results in ulnar-mammary syndrome (UMS, OMIM 181450), characterized by mammary 

gland hypoplasia, apocrine gland, dental, and genital defects, emphasizing its broad 

expression profile (Bamshad et al., 1999, Bamshad et al., 1997). TBX3 levels are up-

regulated in several cancer types, including breast (Fan et al., 2004, Lomnytska et al., 2006, 

Yarosh et al., 2008, Souter et al., 2010), melanoma (Rodriguez et al., 2008), colorectal (Shan 

et al., 2015), pancreatic (Cavard et al., 2009), cervical (Lyng et al., 2006), ovarian (Lomnytska 

et al., 2006), gastric (Miao et al., 2016), and prostate cancers (Gudmundsson et al., 2010), 

suggesting its potential role as an oncogenic driver in multiple cancer types. 

TBX3 is alternatively spliced, leading to two predominant isoforms: TBX3iso1 and 

TBX3iso2. TBX3iso2 contains a unique 20 amino acid sequence inserted into the DNA 

binding domain attributed to the 2a exon. Addition of the 2a exon within TBX3iso2 shifts 

residues critical for TBX3 interaction with DNA (particularly Ser224 and Met225) (Coll et al., 

2002), however, the effect on transcriptional regulation and its functional relevance remains 

unclear.  

TBX3 isoform ratios have been found to be tissue and species specific (Fan et al., 

2004), with differing relative levels of TBX3iso1/TBX3iso2 reported in several breast cancer 

cell lines (Bamshad et al., 1999, Fan et al., 2004). Additionally, the T-box binding domain 

which differs between the two TBX3 isoforms has been shown to be important for protein-

protein interactions, facilitating interactions with core histones and chromatin-interacting 

proteins such as methyltransferases (Demay et al., 2007, DeBenedittis and Jiao, 2011, Miller 

et al., 2008).  

Conflicting results have been published regarding functionality of the TBX3 isoforms. 

Fan et al. reported that the 20-amino acid addition in TBX3iso2 hinders its binding to a 

previously identified T-box element (TBE) through in vitro oligonucleotide binding assays, 

suggesting that the protein’s DNA binding is altered (Fan et al., 2004). In a study by Hoogaars 

et al., both TBX3 isoforms were able to bind to the TBE in the Nppa and p21CIP1 promoters, 

suggesting that they have similar functions in vitro (Hoogaars et al., 2008). Due to the growing 

amount of literature implicating TBX3 in the promotion of tumorigenesis in several cancer 
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types (Fan et al., 2004, Lomnytska et al., 2006, Yarosh et al., 2008, Souter et al., 2010, 

Rodriguez et al., 2008, Cavard et al., 2009, Lyng et al., 2006, Gudmundsson et al., 2010, 

Krstic et al., 2016), it is essential to address the functional relevance of TBX3 isoforms and 

their altered expression in cancer.  

In this study, we provide evidence for differential tumorigenicity of TBX3 isoforms 

through in vivo nude mouse xenograft experiments. Importantly, by conducting high 

throughput RNA sequencing, we have shown that TBX3iso1-induced tumorigenicity is 

associated with selective up-regulation of angiogenesis-promoting genes, including 

osteopontin (OPN), and subsequent induction of hyaluronan synthase 2 (HAS2) expression. 

This is accompanied by induction of endothelial cell tubule formation by conditioned media 

from TBX3iso1 overexpressing cells in vitro. Increased expression of OPN has been 

associated with advanced tumor stage and poor prognosis of breast cancer (Rudland et al., 

2002, Tuck et al., 1998), and both OPN and hyaluronan promote the process of angiogenesis 

(Chakraborty et al., 2008, Chakraborty et al., 2006, Takahashi et al., 2002, Cook et al., 2005, 

Hirama et al., 2003, Takano et al., 2000, Shijubo et al., 1999, Asou et al., 2001, Pröls et al., 

1998, Koyama et al., 2007, Rooney et al., 1995). Lastly, we utilized the TCGA breast cancer 

dataset to determine differential expression of TBX3 isoforms. We found an 8.1-fold higher 

TBX3iso1/TBX3iso2 ratio in tumor tissues relative to control. This pattern of an increased 

TBX3iso1/TBX3iso2 ratio for tumor tissues relative to control was observed across several 

different tumor types which overexpress TBX3. This study is the first of its kind to report 

significant functional differences between the two TBX3 isoforms, both in vivo and in vitro. 
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4.2 Methods 

Cell lines and culture conditions 

The 21T series cell lines (21PT, 21NT) were obtained as a gift from Dr. Vimla Band (Dana 

Farber Cancer Institute) (Band et al., 1990). The 21PT and 21NT cell lines and transfectants 

underwent cell line authentication by Idexx Radil (Case No. 20250-2013). The 21PT and 

21NT cell lines were maintained in αMEM media supplemented with 2mM L-glutamine, 

1µg/mL insulin, 12.5ng/mL EGF, 2.8µM hydrocortisone, 10mM HEPES, 1mM sodium 

pyruvate, 0.1mM non-essential amino acids, 50µg/mL gentamycin sulfate, and 10% FBS. 

MCF7 cells were maintained in DMEM media supplemented with 10% FBS. Stable 21PT, 

21NT and MCF7 transfectants were maintained in their respective media supplemented with 

500µg/mL G418 as a selection marker. All reagents for culture of breast cancer cell lines 

were obtained from Wisent Inc. Human neonatal dermal microvascular endothelial cells 

(HDMECs) were obtained from Lonza (CC2516; Walkersville, MD). Cells were expanded in 

Endothelial Basal Media-2 (EBM-2; Lonza, 00190860) supplemented with 20% FBS and 

SingleQuots (Lonza, CC-4176) growth factors. The minimum density for sub-culturing was 

maintained at 2500 cells/cm2. Only HDMECs under passage 10 were used for experiments. 

 

Generation of stable transfectant cell lines 

Stable transfectants were generated using plasmid constructs previously described (Krstic et 

al., 2016), consisting of either an empty vector (EV), TBX3iso1, or TBX3iso2 construct within 

a pcDNA3.1 vector (Invitrogen, V79020). Briefly, cells (21PT, 21NT, MCF7) were seeded into 

6-well plates at 350,000 cells per well. The following day, cells were transfected using the 

Lipofectamine 3000 Transfection Kit (Invitrogen, L3000; 3g of plasmid DNA per well) as per 

the manufacturer’s protocol. Selection was performed using the aforementioned media for 

each cell line, further supplemented with 500µg/mL G418. Resistant clones were pooled, 

expanded, and frozen for later use. 

 

RNA isolation and qRT-PCR 

RNA was isolated using the RNeasy Mini Kit (Qiagen, 74104) and converted into cDNA using 

the qScript cDNA SuperMix (Quanta Biosciences, 84034). The RT2 SYBR Green ROX qPCR 

Mastermix (Qiagen, 330521) was utilized for quantitative PCR with the primer sequences 
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listed in Table 4.1. The output values were normalized to GAPDH expression and are shown 

as fold changes relative to the empty vector control. 

 

Table 4.1 – Primer sequences utilized for qRT-PCR in mRNA studies. 

mRNA Probe Primer Sequences (Forward and Reverse, 5’ to 3’) 

Total TBX3 
F: CGCTGTGACTGCATACCAGA 
R: GTGTCCCGGAAACCTTTTGC 

TBX3iso1 
F: AGTGGATGTCCAAAGTCGTCAC 
R: CATGGAGTTCAATATAGTAAATCCATGTTTGTCTG 

TBX3iso2 
F: AGTGGATGTCCAAAGTCGTCAC 
R: CACTTGGGAAGGCCAAAGTAAATCCATG 

GAPDH 
F: AGGCTGGGGCTCATTTGAAG 
R: CCATCCACAGTCTTCTGGGTG 

COX1 
F: CGCCAGTGAATCCCTGTTGT 
R: GTCACACTGGTAGCGGTCAA 

HAS2 
F: GTTGGGGGAGATGTCCAGATTT 
R: CGGTTCGTGAGATGCCTGT 

IL1RN 
F: AGCAAGATGCAAGCCTTCAG 
R: CCTTGCAAGTATCCAGCAACTA 

OPN 
F: TTGCAGTGATTTGCTTTTGC 
R: TCAATGGAGTCCTGGCTGTC 

VEGFR2 
F: CCCAGATGACAACCAGACGG 
R: GCCTTCAGATGCCACAGACT 

 

Nude mouse xenografts 

Cells were grown to confluence on 150mm tissue culture dishes. Cells were harvested, 

washed twice with ice cold PBS, and resuspended in serum-free αHE media. The cell 

suspension (100µL containing 1.0x107 cells) was injected into the second thoracic mammary 

fat pad of 8 to 9 week old female nude mice at 10 mice per group. Mice were monitored 

regularly for tumor growth up to 1 year post-injection and euthanized either when tumors 

reached a volume of 2,500mm3 or one year post-injection, whichever occurred first. The 

primary tumor and/or mammary fat pad, brain, liver, spleen, kidneys, lungs, along with left 

and right axillary, brachial, and inguinal lymph nodes were collected. All tissues were 

formalin-fixed, paraffin-embedded, sectioned and H&E stained. Tissues were examined by 

an anatomic pathologist, and where indicated, sections were stained using anti-human 

mitochondrial antibody to confirm metastasis of xenograft cells. Animal care and surgical 
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procedures were conducted in accordance with the recommendations of the Canadian 

Council on Animal Care, under a protocol approved by Western University’s Council on 

Animal Care. 

 

Immunohistochemistry of mouse xenograft tissues 

Formalin-fixed, paraffin embedded tissues were sectioned at 4.0µm thickness onto charged 

glass slides. Sections were de-paraffinized and rehydrated. Antigen retrieval was conducted 

with 10mM citrate buffer (pH 6.0) for 20 minutes, maintaining sub-boiling conditions. The 

UltraVision LP Detection System (Thermo Fischer Scientific, TL-015-HD) was used as per 

the manufacturer’s protocol. Suspect tissues and lymph nodes were stained using an anti-

human mitochondrial antibody (Thermo Fischer Scientific, MS-1372-P0; 1/100 for 20 minutes 

at room temperature) to confirm metastases. The degree of angiogenesis was assessed 

across primary tumors using an anti-mouse CD31 antibody (BD Pharmingen, 550274; 1/50 

at 4ºC overnight). OPN expression was assessed across primary tumors using an anti-

human OPN antibody (AssayDesigns mAb53, 905-629; 1/750 for 90 minutes at room 

temperature). Signal for all stains was developed using DAB, and slides were counter-stained 

in Harris’s Hematoxylin. Expression of human mitochondria was classified as either positive 

or negative. For quantification of CD31 expression by immunohistochemistry, images of 10 

non-overlapping areas exhibiting high vessel density were acquired using the Olympus IX70 

inverted microscope at 10X objective, and the number of vessels per high power field was 

assessed using ImageJ. For quantification of OPN expression by immunohistochemistry, 

images of 10 random, non-overlapping areas were acquired using the Olympus IX70 inverted 

microscope at 10X objective across. Images were imported to ImageJ, and colour 

deconvolution using the H DAB setting was conducted. DAB images representing positive 

OPN signal were kept, thresholded, and the percentage of positive signal within the image 

area was quantified. 

 

In vitro endothelial tubule formation assay 

In vitro endothelial tubule formation assays were conducted as previously described 

(Arnaoutova and Kleinman, 2010). Briefly, human neonatal dermal microvascular endothelial 

cells (HDMECs) were grown to 80% confluency. Growth factor reduced Matrigel (Thermo 

Fischer Scientific, CB356239) was added to 96 well plates (50µL/well). HDMECs were 
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trypsinized, washed twice with PBS, and re-suspended at 200,000 cells/mL in media (1:1 

mixture of conditioned media and basal EBM-2 media with 20% FBS and no SingleQuots 

growth factors). Conditioned media was prepared by seeding 1.0x106 cells into T75 flasks, 

and cells were maintained in low serum media (αMEM with 0.1% FBS) for 48 hours. The 

endothelial cells suspended in conditioned media were added to the 96 well plate on top of 

the Matrigel (100µL, 20,000 cells per well) and incubated at 37ºC for 16 hours. For all studies, 

tubule formation was observed after 16 hours and phase contrast images were taken of 3 

non-overlapping fields of view per well using the Olympus IX70 inverted microscope at 10X 

objective. The number of endothelial cell tubules formed per well were counted using ImageJ 

(represented as branch points per 3 high power fields). All experiments were done with 

HDMECs under 10 passages.  

 

Analysis of secreted OPN by ELISA 

Cells were seeded at a density of 1.0x106 into T75 flasks (with 10mL media) and grown in 

serum-free αMEM media (with the aforementioned supplements) for 48 hours. Conditioned 

media (100µL) were subject to ELISA using a Dual Mono ELISA kit (Enzo Life Sciences, ADI-

900-142) following the manufacturer’s instructions. Human recombinant OPN provided within 

the kit was used to create a standard curve. OPN levels were normalized to equal amounts 

of cells. 

 

Particle exclusion assay 

Particle exclusion assays were conducted to visualize pericellular matrices, as previously 

described (Cook et al., 2006). Briefly, 1.5x104 cells were plated in 6-well plates in triplicate 

and allowed to adhere overnight. The following day, cells were pre-treated in the presence 

or absence of hyaluronidase (Sigma, H1136) (16 units/mL in αHE media with 0.1% BSA) for 

20 minutes at 37ºC. The media was then removed, and fixed sheep erythrocytes (Innovative 

Research, IC100-0210) were added in PBS with 0.1% BSA and allowed to settle for 10 

minutes. Plates were imaged using the phase contrast setting on an Olympus IX70 inverted 

microscope at 10X objective. Pericellular matrices appeared as halos surrounding cell 

surfaces from which fixed red blood cells were excluded. In order to quantify matrix 

production, a ratio of the pericellular matrix area over the cell area was calculated by tracing 
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around the cell coats (matrices) and cell areas of 30 randomly selected cells using ImageJ. 

A ratio of 1.0 indicated the absence of a pericellular matrix for a particular cell. 

 

Bioinformatics analyses 

RNA-Seq data from 21NT+EV, 21NT+TBX3iso1 and 21NT+TBX3iso2 cell lines was 

analyzed in order to examine differences in resultant transcriptional profiles with 

overexpression of TBX3iso1 and TBX3iso2. Enrichment analysis (Enrichr; Icahn School of 

Medicine, Mount Sinai) was conducted for cells overexpressing either TBX3iso1 or TBX3iso2 

relative to the empty vector control, focusing on genes altered >1.5 fold up or down for only 

one isoform, or >1.5 fold in opposite directions for both isoforms, and all with corrected 

FDR<0.05 (http://amp.pharm.mssm.edu/Enrichr/). Results from WikiPathways analysis are 

reported. 

An angiogenesis gene signature consisting of 222 genes was compiled by integration 

of genes with the Ingenuity Pathway Analysis (IPA; Qiagen) gene ontology term 

‘angiogenesis of tumor’, along with the angiogenesis gene lists from the databases in Table 

2 (top datasets, white). 

The ICGC (US donors) data was exported using XenaBrowser (University of 

California, Santa Cruz; https://xenabrowser.net/datapages/), and TBX3 mRNA expression 

was assessed across all cancer subtypes. Transcript levels of TBX3 isoforms were acquired 

from the TCGA portal, and examined in the breast cancer (BRCA) dataset. A ratio of total 

transcript reads for TBX3iso1 (uc001tvu) over total transcript reads for TBX3iso2 (uc001tvt) 

was compared against clinical data and tumor characteristics. Grade information for patients 

within the TCGA BRCA was obtained from Budczies et al. (Budczies et al., 2015). The TCGA 

and GTEx datasets were compared simultaneously through the use of the ‘transcripts’ 

function in XenaBrowser. The aforementioned datasets are listed in Table 4.2 (bottom 

datasets, black).  
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Table 4.2 – Publicly-available datasets utilized for analysis. 

 

Statistical Analysis 

Statistical analyses were conducted using GraphPad Prism 5. One-way ANOVA with Tukey 

post-hoc tests were conducted for the majority of analyses unless otherwise specified. Error 

bars are representative of standard deviation measurements. P-values less than 0.05 were 

considered statistically significant.  

 

  

Project Dataset REFERENCE (or LINK) 
 

MsigDB (Broad Institute) http://software.broadinstitute.org/gsea/index.jsp 

PubAngioGen 
(East China Normal University) 

http://www.megabionet.org/aspd 
Li et al, 2015 (Li et al., 2015) 

AngioDB 
(Pusan National University) 

Sohn et al, 2002 (Sohn et al., 2002) 

dbANGIO 
(Memorial University of 
Newfoundland) 

http://www.med.mun.ca/angio/ 
Savas et al, 2012 (Savas, 2012) 

 
ICGC (US Donors) https://xenabrowser.net/datapages/ 

TCGA breast cancer (BRCA) https://portal.gdc.cancer.gov/projects/TCGA-BRCA 

TCGA BRCA grade information Budczies et al, 2015 (Budczies et al., 2015) 

GTEx (Genotype Tissue 
Expression) 

https://xenabrowser.net/transcripts/ 
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4.3 Results 

 TBX3iso1 possesses enhanced tumorigenic potential in nude mice. 

In order to examine tumorigenicity of TBX3 isoforms, we overexpressed either TBX3iso1 or 

TBX3iso2 in non-tumorigenic, DCIS-like 21NT breast cancer cell lines (Figure 4.3.1 A). Cells 

were injected into the mammary fat pad of nude mice. Mice were monitored for up to a year, 

or until primary tumors reached a volume of 2,500 mm3, whichever occurred first. A majority 

(6/10) of mice injected with cells overexpressing TBX3iso1 developed invasive carcinoma 

and reached the end-point tumor volume, a significantly higher rate than mice injected with 

cells overexpressing TBX3iso2 (1/9; p<0.05 relative to TBX3iso1) or the empty vector control 

(0/10; p<0.01 relative to TBX3iso1) (Figure 4.3.1 B-D). Additionally, the TBX3iso1 tumors 

exhibited a shorter lag period of in vivo growth, all forming before the TBX3iso2 tumor (Figure 

4.3.1 C). All primary tumors (or mammary fat pad injection site) were assessed histologically 

by an anatomical pathologist, and the presence of precursor lesions (atypical ductal 

hyperplasia, ADH; ductal carcinoma in situ, DCIS) was documented (Figure 4.3.1 D). 

Representative images of histological lesions observed are shown in Figure 1E, representing 

DCIS, invasive mammary carcinoma (IMC) invading into skeletal muscle, and a metastatic 

lesion within the brachial lymph node (Figure 4.3.1 E). All collected organs were assessed 

for metastases, and suspect tissues were stained using anti-human mitochondrial antibody 

for confirmation (Figure 4.3.1 E, bottom right panel). One of the mice in the TBX3iso2 group 

developed lymphoma and was removed from the study. 
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Figure 4.3.1 – TBX3iso1 possess enhanced tumorigenic potential in nude mice. 

(A) Total TBX3, TBX3iso1 and TBX3iso2 expression was assessed by qRT-PCR, normalized 

to GAPDH expression levels, and depicted as fold change relative to the empty vector 

control. (B) Cells (1x107) were injected into the mammary fat pad of nude mice. Mice were 

sacrificed when the tumor volume reached 2,500mm3, or one-year post injection, whichever 

occurred first. The Kaplan-Meier plot shows disease-free survival over 365 days post-

injection. An event was defined as tumor volume reaching the 2,500mm3 end-point. (C) 

Tumor volume showing growth kinetics over time. TBX3iso1 tumors are shown in different 

colours, while the TBX3iso2 tumor is shown in black. (D) Histological analysis of H&E stained 

slides was conducted by an anatomical pathologist for all mammary fat pads and primary 

tumors. Cases with atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS), 

invasive mammary carcinoma (IMC) and metastasis were documented. All tissues and lymph 

nodes collected were examined for metastases in mice with IMC. Metastases were confirmed 

through positive immunohistochemical staining for anti-human mitochondria. (E) 

Representative images of cases of DCIS, IMC showing invasion into skeletal muscle, and 

metastasis into right brachial lymph node. Suspect metastases from H&E slides were 

confirmed through immunohistochemistry with anti-human mitochondrial antibody.  

*p<0.05, **p<0.01, ***p<0.001 by one way ANOVA with Tukey post-hoc for comparison 

between three groups. Survival analysis for Kaplan-Meier curve was calculated using the log-

rank test statistic. Error bars represent standard deviation. 
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 TBX3iso1 promotes angiogenesis in vivo and in vitro. 

Differential tumorigenicity between TBX3 isoform transfectants was a striking and novel 

finding. We re-examined our previous RNA-Seq dataset of 21NT transfectant cell lines 

(21NT+EV, 21NT+TBX3iso1, 21NT+TBX3iso2) to specifically assess for differences in 

expression profiles between the two TBX3 isoform transfectants. Interestingly, all of the cell 

lines had distinct expression signatures and clustering patterns (Figure 4.3.2 A), suggesting 

differential transcriptional function of the TBX3 isoforms. We observed 470 differentially 

expressed genes between TBX3iso1 and TBX3iso2. Pathway analysis of up-regulated genes 

with TBX3iso1 overexpression identified its potential role in osteopontin signaling, 

glycolysis/gluconeogenesis, and angiogenesis (Figure 4.3.2 B). Alternatively, pathway 

analysis of the up-regulated genes with TBX3iso2 overexpression identified alterations in the 

cytokines and inflammatory responses (Figure 4.3.2 C). Notably, TBX3iso2 overexpression 

resulted in down-regulation of genes involved in glycolysis/gluconeogenesis, showing 

inverse patterns from TBX3iso1 overexpressing cells. 

Gross examinations of xenograft tumors revealed high vascularity of tumors formed 

by TBX3iso1 overexpressing cells. Given this observation, and our finding of an enrichment 

of angiogenesis-related genes upon TBX3iso1 overexpression, we examined tumor 

vascularity through CD31 immunohistochemistry and quantification of microvascular density 

(Figure 4.3.2 D). Microvascular density within the TBX3iso1 tumors was significantly higher 

than the TBX3iso2 tumor for the majority (4/6) of tumors tested. In order to functionally 

examine for angiogenic properties, we isolated conditioned media from 21NT transfectant 

cells and incubated them with human dermal microvascular endothelial cells (HDMECs) on 

Matrigel for 16 hours to allow for endothelial cell migration and formation of tubule structures, 

mimicking angiogenesis in vitro (Figure 4.3.2 E). We observed marked differences in the 

promotion of angiogenesis in vitro between conditioned media from cells overexpressing 

TBX3iso1, which resulted in significantly higher rates of tubule formation by endothelial cells, 

relative to conditioned media from TBX3iso2 overexpressing cells or the empty vector 

control. 
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Figure 4.3.2 – TBX3iso1 promotes angiogenesis in vitro and in vivo.  

(A) Heat map showing large-scale transcriptional changes by RNA-Seq across 21NT+EV, 

21NT+TBX3iso1, and 21NT+TBX3iso2 cell lines. Principle component analysis (PCA) was 

conducted to assess the similarity in global transcriptional profiles between transfectant cell 

lines. (B) Enrichment analysis highlights pathways associated with transcripts up-regulated 

(red) and down-regulated (green) with TBX3iso1 overexpression relative to the empty vector 

control. (C) Enrichment analysis highlights pathways associated with transcripts up-regulated 

(red) and down-regulated (green) with TBX3iso2 overexpression relative to the empty vector 

control. (D) Assessment of blood vessel density within primary tumors by CD31 

immunohistochemistry. Primary tumors were stained for CD31 by immunohistochemistry and 

the number of vessels per non-overlapping high power field were quantified across 10 tumor 

hotspots. Averages across 10 hotspots for each mouse is shown. (E) Tubule formation assay 

to asses in vitro angiogenesis. Conditioned media was collected after 48h incubation with 

1x106 cells of each cell type. Conditioned media was incubated with human dermal 

microvascular endothelial cells (HDMEC) on growth factor reduced Matrigel for 16 hours at 

37ºC. Tubule branch points per 3 high power fields (one well) was quantified at the 16h mark.  

*p<0.05, **p<0.01, ***p<0.001 by one way ANOVA with Tukey post-hoc for comparison 

between three groups. Error bars represent standard deviation. 
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 Osteopontin is specifically up-regulated by TBX3iso1. 

In order to explore differences in transcriptional profiles between the two TBX3 isoforms on 

angiogenesis-related gene expression, we generated an angiogenesis gene signature 

consisting of 222 genes using publicly-available databases (as described in Bioinformatics 

Methods, Table 4.2) and conducted hierarchical clustering of RNA-Seq expression data for 

all cell lines (Figure 4.3.3 A). Investigation of the depicted cluster at a higher resolution 

revealed up-regulation of a subset of pro-angiogenic transcripts in TBX3iso1 overexpressing 

cells and down-regulation in TBX3iso2 overexpressing cells relative to the empty vector 

(Figure 4.3.3 B). Genes showing the most pronounced differences between TBX3iso1 and 

TBX3iso2 transfectants (OPN, COX1, IL1RN) were validated by qRT-PCR (Figure 4.3.3 C). 

The VEGF family is commonly referred to as the main pro-angiogenic factors across cancer 

subtypes (Oltean and Bates, 2014, Ladomery et al., 2007), with VEGFR2 acting as the key 

receptor responsible for mediating VEGF-induced angiogenic activity (Takahashi et al., 

2002). For this reason, expression of VEGFR2 was also validated by qRT-PCR and found to 

be down-regulated in TBX3iso2 overexpressing cells (as observed in RNA-Seq data) 

(Appendix 10).  

We focused our further studies on OPN since its mRNA levels displayed the greatest 

difference between TBX3iso1 and TBX3iso2 overexpressing cells, and OPN is known to be 

pro-angiogenic (Takahashi et al., 2002, Asou et al., 2001, Pröls et al., 1998, Takano et al., 

2000, Cook et al., 2005). OPN expression was then assessed in additional stable TBX3 

transfectant cell lines (TBX3 expression levels for 21PT and MCF7 transfectant cell lines are 

shown in Appendix 11 A-B). Overexpression of TBX3iso1 resulted in significant up-regulation 

of OPN mRNA levels in all three transfectant cell lines (Figure 4.3.3 C-D). Additionally, OPN 

mRNA levels were significantly down-regulated in all three cell lines overexpressing 

TBX3iso2. We then proceeded to evaluate the levels of OPN protein released into the 

conditioned media previously used for in vitro tubule formation assays. OPN protein levels 

were quantified by ELISA by comparing to recombinant human osteopontin standards 

(Figure 4.3.3 E). Relative to the empty vector control, there was a 49.0-fold and 3.9-fold 

increase in secreted OPN levels for TBX3iso1 and TBX3iso2 overexpressing cells, 

respectively. As another mode of confirmation, we conducted immunohistochemical staining 

for OPN in the xenograft primary tumors and observed a significantly higher proportion of 
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OPN positive tumor cells in TBX3iso1 tumors relative to the TBX3iso2 tumor (Figure 4.3.3 

F).  
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Figure 4.3.3 – Osteopontin is specifically up-regulated by TBX3iso1.  

(A) Heat map showing expression of 222 angiogenesis-related genes by RNA-Seq across 

21NT+EV, 21NT+TBX3iso1, and 21NT+TBX3iso2 cell lines. (B) Cluster showing up-

regulation of pro-angiogenic transcript with TBX3iso1 overexpression and down-regulation 

with TBX3iso2 overexpression. Osteopontin (OPN) mRNA expression is shown in red. (C) 

Expression of OPN mRNA levels in 21PT, 21NT and MCF7 transfectant cell lines was 

assessed by qRT-PCR, normalized to GAPDH expression levels, and depicted as fold 

change relative to the empty vector control. (D) OPN protein levels from conditioned media 

was assessed by ELISA and normalized to cell numbers. Human recombinant OPN (hrOPN) 

was used to generate a standard curve for determination of OPN protein concentration. (E) 

Primary tumors were stained for OPN by immunohistochemistry. Color deconvolution was 

conducted using ImageJ, followed by thresholding of brown signal to assess percentage of 

high power field positive for OPN expression across ten non-overlapping areas. Percentage 

of the high power field (HPF) positive for OPN is shown across 10 fields of view per tumor. 

*p<0.05, **p<0.01, ***p<0.001 by one way ANOVA with Tukey post-hoc for comparison 

between three groups, and Student’s t-test for comparison between two groups. Error bars 

represent standard deviation. 
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 TBX3iso1 overexpression leads to increased HAS2 levels and 

pericellular hyaluronan retention. 

We have previously shown that OPN induction of hyaluronan synthase 2 (HAS2) and hence 

hyaluronan (HA) production is associated with aggressiveness of 21NT cells (Cook et al., 

2006). Given that all three of the cell lines we tested (21PT, 21NT, MCF7) showed up-

regulation of OPN only with TBX3iso1 overexpression, we examined HAS2 mRNA levels. 

For all three cell line transfectants, overexpression of TBX3iso1 was associated with a 

significant up-regulation of HAS2 expression (Figure 4.3.4 A). Alternatively, overexpression 

of TBX3iso2 resulted in down-regulation of HAS2 mRNA expression in 21PT and MCF7 

transfectant cell lines, with no change in HAS2 expression in the 21NT transfectant cell line. 

Hyaluronan (HA) is produced by hyaluronan synthase enzymes (HAS1-3) at the intracellular 

face of the plasma membrane, and then extruded from the cell and either released into the 

microenvironment, or retained in pericellular coats (Weigel and DeAngelis, 2007, Tammi et 

al., 1998, Evanko et al., 2007). High levels of synthesis and retention of HA in pericellular 

coats has been shown to have an important role in malignant progression (Cook et al., 2006) 

and is an indicator of poor prognosis in epithelial cancers (Auvinen et al., 2014, Tammi et al., 

2008, Auvinen et al., 2000). In order to examine the phenomenon of HA retention, particle 

exclusion experiments were conducted using fixed sheep erythrocytes in order to visualize 

matrix production and retention (Figure 4.3.4 B-C). Due to the unique biochemical properties 

of HA, including its highly polar structure and large size, addition of partially negatively 

charged erythrocytes allows for visualization of matrices due to erythrocyte exclusion. Cells 

overexpressing TBX3iso1 had significantly larger pericellular coats relative to TBX3iso2 

overexpressing cells and the empty vector control, suggesting higher levels of hyaluronan 

production. Administration of hyaluronidase (HAse) completely abolished matrix assembly in 

TBX3iso1 overexpressing cells, confirming the presence of HA in the pericellular coats.  

 



 

172 

172 

 

Figure 4.3.4 – TBX3iso1 overexpression leads to increased HAS2 levels and 

pericellular hyaluronan retention.  

(A) Expression of HAS2 mRNA levels in 21PT, 21NT and MCF7 transfectant cell lines was 

assessed by qRT-PCR, normalized to GAPDH expression levels, and depicted as fold 

change relative to the empty vector control. (B-C) Particle exclusion experiment for 

visualization of pericellular matrices. Cells were pre-treated in the presence or absence of 

hyaluronidase for 20 minutes, followed by removal of media and addition of fixed sheep 

erythrocytes. Pericellular matrix area was calculated by tracing around cell coats (matrices) 

and cell areas across 30 randomly selected cells. A ratio of 1.0 indicated the absence of a 

pericellular matrix for a particular cell. 

*p<0.05, **p<0.01, ***p<0.001 by one way ANOVA with Tukey post-hoc for comparison 

between three or more groups. Error bars represent standard deviation. 
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 Cancer progression involves transcriptional changes resulting in an 

increase in the TBX3iso1/TBX3iso2 ratio. 

TBX3 is overexpressed in several different cancer types (Fan et al., 2004, Lomnytska et al., 

2006, Yarosh et al., 2008, Souter et al., 2010, Rodriguez et al., 2008, Cavard et al., 2009, 

Lyng et al., 2006b, Gudmundsson et al., 2010, Miao et al., 2016). Examination of ICGC data 

(US Donor-centric) revealed breast cancer as amongst the cancers with the highest 

expression of all tumor tissue sites (Figure 4.3.5 A). We then interrogated TBX3 isoform 

expression in the TCGA breast cancer cohort, assessing the ratio of transcript reads for 

TBX3iso1 over TBX3iso2 for each breast cancer patient and comparing to clinical 

characteristics (Summarized in Figure 4.3.5 B). The TBX3iso1/TBX3iso2 expression ratio 

was 8.1-fold higher in tumor samples relative to normal controls (Figure 4.3.5 C). Additionally, 

this ratio was positively associated with higher tumor grade (Figure 4.3.5 D) along with more 

aggressive breast cancer subtypes (Figure 4.3.5 E). Upon examination of isoform-specific 

expression in tumor types where TBX3 overexpression has been documented (breast 

cancer, melanoma, colon, and pancreatic cancer), we observed an upwards shift in 

TBX3iso1 expression and downwards shift in TBX3iso2 expression within tumor tissues 

(TCGA cohorts) relative to an expanded cohort of normal tissue controls (GTEx normal tissue 

dataset) (Appendix 12). 
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Figure 4.3.5 – Cancer progression involves transcriptional changes resulting in an 

increase in TBX3iso1 to TBX3iso2 ratio. 

(A) Assessment of ICGC data (US Donor-centric) data shows total TBX3 levels across tumor 

subtypes. Total TBX3 transcript expression in breast cancer is shown in orange. (B) TBX3 

isoform ratios were interrogated in the TCGA breast cancer cohort by calculating the total 

transcript reads for TBX3iso1 over the total transcript reads for TBX3iso2 for each patient. 

Ratios were compared between normal and tumor tissues. (C) The TBX3iso1/TBX3iso2 

across breast cancer grades.  

*p<0.05, **p<0.01, ***p<0.001 by the non-parametric Kruskal-Wallis statistic with Dunn’s 

multiple comparison post-hoc test due to non-Gaussian distribution of ratios. Error bars 

represent standard deviation. 



 

175 

175 

4.4 Discussion 

Alternative splicing is a post-transcriptional mechanism that adds an enhanced layer of 

complexity and diversification to genes encoded in the genome. Cancer cells are able to 

exploit the process of alternative splicing to produce isoform switches, resulting in enhanced 

survival, proliferation and invasiveness (Oltean and Bates, 2014, Shen et al., 2016). 

Interestingly, transcriptional analysis of alternative-splicing and assessment of exon inclusion 

events have been shown to outperform gene expression-based survival predictors across 6 

different cancer types, including breast cancer (Shen et al., 2016).  

 Existing literature examining TBX3-induced tumorigenicity through the use of 

xenograft models (Rodriguez et al., 2008, Peres and Prince, 2013, Willmer et al., 2016), 

along with the single published transgenic TBX3-inducible mouse model (Liu et al., 2011), 

have focused on only one isoform of TBX3 in different parental cell lines which makes 

comparison of results difficult. Liu et al. showed that inducible overexpression of TBX3iso2 

in murine mammary glands results in mild focal hyperplasia and importantly no tumor 

formation (Liu et al., 2011). For several other studies, which isoform was cloned and 

overexpressed is not stated (Peres and Prince, 2013, Perkhofer et al., 2016). Additionally, 

studies which employed knockdown of total TBX3 expression followed by 

xenotransplantation of cells into mice has revealed that TBX3 is associated with tumor 

formation, but not whether differences exist between isoforms (Peres et al., 2010). 

 We therefore sought to investigate the functional consequence of this highly 

conserved splice event as it relates to TBX3-induced tumorigenesis. We have conducted 

nude mouse xenograft experiments utilizing non-tumorigenic, DCIS-like 21NT cell lines, and 

have reported significant differences between TBX3 isoforms in the promotion of 

tumorigenesis, with TBX3iso1 overexpression more commonly associated with invasive 

carcinoma in vivo. This difference is likely associated with differing ability to induce 

angiogenesis, and is related to differential expression of a number of angiogenesis-

associated genes.  

 While angiogenesis has a limited role in normal physiology, it is a fundamental 

requirement in malignant progression (Hanahan and Weinberg, 2000). This requirement of 

angiogenesis is due to the inability of avascular tumors to access oxygen and nutrients 

through diffusion alone (Rooney et al., 1995, Hanahan and Weinberg, 2000, Ladomery et al., 
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2007). After cytokines are released from cells, they are able to diffuse into the extracellular 

milieu and act on nearby quiescent endothelial cells to induce proliferation and migration 

towards the tumor (Ladomery et al., 2007). As observed by in vitro tubule formation assays, 

pro-angiogenic factors are released from cells overexpressing TBX3iso1 that are functional 

in activating endothelial cells. We report that one key pro-angiogenic factor up-regulated by 

TBX3iso1 is OPN. OPN has previously been described to act as a cytokine in various 

contexts (Ashkar et al., 2000, Denhardt et al., 2001, Takahashi et al., 2002), with several 

studies ascribing it a pro-angiogenic function (Pröls et al., 1998, Takano et al., 2000, Asou 

et al., 2001, Takahashi et al., 2002). Importantly, elevated OPN expression is associated with 

several breast cancer-related prognostic factors, including early metastasis and poor 

outcome (Bellahcène and Castronovo, 1995, Rudland et al., 2002, El-Tanani et al., 2004, 

Bramwell et al., 2006, El-Tanani et al., 2006). A great deal of overlap has been reported on 

the cellular functions affected by OPN and HA (Kim et al., 2005). The two markers have both 

been correlated with cancer survival (Bellahcène and Castronovo, 1995, Auvinen et al., 2000, 

Rudland et al., 2002, El-Tanani et al., 2004, Bramwell et al., 2006, El-Tanani et al., 2006, 

Tammi et al., 2008, Veiseh et al., 2014) and are frequently co-expressed (Kim et al., 2005, 

Lee et al., 2007). We have previously reported OPN-induced up-regulation of HAS2 in 21NT 

breast cancer cell lines is necessary for both anchorage-independent growth and adhesion 

of tumor cells to bone marrow endothelial cells (Cook et al., 2006). Moreover, both HA and 

OPN are ligands for CD44 (in this case on endothelial cells) (Weber et al., 1996), and their 

binding promotes angiogenesis through stimulation of endothelial cell migration, survival and 

lumen formation (Brooks et al., 1994, Senger et al., 1996, Trochon et al., 1996, Griffioen et 

al., 1997, Arap et al., 1998, Scatena et al., 1998, Bayless et al., 2000, Cao et al., 2006). 

Our novel in vivo findings relating to differential tumorigenicity of TBX3 isoforms and 

downstream confirmation of associated pathways suggest that the assessment of relative 

levels of splice variants may be more important than the assessment of total transcript levels 

per gene (Blencowe, 2006, Li et al., 2006, Zhang et al., 2006). This focus on isoform ratios 

has been suggested by several studies (Venables, 2004, Blencowe, 2006, Ladomery et al., 

2007, Pajares et al., 2007). There are additional examples of alternatively spliced transcripts 

having diverse and even antagonistic functions (Pajares et al., 2007). A prominent example 

includes alternative splicing of VEGF; most splice variants are actively pro-angiogenic, while 

the VEGFb splice variant is only six amino acids different relative to its most similar isoform 
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but is actively anti-angiogenic (Ladomery et al., 2007). A splicing switch from the anti-

angiogenic to pro-angiogenic variant is observed both in cancer progression (Venables, 

2004, Pajares et al., 2007, Oltean and Bates, 2014), along with diseases such as proliferative 

diabetic retinopathy (Blencowe, 2006, Ladomery et al., 2007).  

It is unknown whether this increase of TBX3iso1 over TBX3iso2 expression is a cause 

or effect of the tumorigenic process; a splice shift phenomenon may be due to several factors, 

including potential epigenetic changes within the TBX3 gene, or due to changes in upstream 

splicing machinery (Cui et al., 2004, Ladomery et al., 2007). It is becoming quite clear that 

splice changes and isoform shifts in cancer are non-random and play a key role in cancer 

progression (Venables, 2004, Ladomery et al., 2007, Pajares et al., 2007). Various strategies 

are being employed in an attempt to exploit alternative splicing in diagnosis, prognosis and 

treatment of cancer (Yamaguchi et al., 1998, Venables, 2004, Ladomery et al., 2007). On 

this note, Venables et al. examined expression of breast cancer-associated genes and their 

alternatively spliced transcripts through assessment of isoform ratios (Venables et al., 2008). 

They reported cancer-specific exon loss for several transcripts as well as a significant overlap 

with previously identified ovarian cancer-specific splice changes (Klinck et al., 2008, 

Venables et al., 2008). This suggests that a subset of the alternative splicing events identified 

by high throughput transcriptomic analysis may be common across cancer subtypes. 

It is well established that TBX3 is aberrantly overexpressed in several cancer types 

(Fan et al., 2004, Lomnytska et al., 2006, Lyng et al., 2006, Rodriguez et al., 2008, Yarosh 

et al., 2008, Cavard et al., 2009, Souter et al., 2010, Shan et al., 2015, Miao et al., 2016, 

Gudmundsson et al., 2010). We have added to the existing literature and reported that in 

particular, an increased TBX3iso1/TBX3iso2 ratio is associated with several 

clinicopathological parameters in the TCGA breast cancer cohort. Additionally, TBX3iso1 

promotes a pro-angiogenic gene signature associated with elevated OPN and HAS2 

expression, as well as increased pericellular HA retention. These pro-angiogenic changes 

associated with elevated TBX3iso1 expression promote vascular channel formation by 

endothelial cells in vitro, and likely explain the high tumor formation rates and high vascularity 

of primary tumors formed in mouse xenograft assays. A thorough understanding of 

transcriptional control by TBX3, in an isoform-specific context, is therefore vital in order to 
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understand the effect of TBX3 in promotion of tumorigenicity in breast cancer as well as other 

cancer types. 
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 General Discussion 

Through the use of the 21T series breast cancer cell lines representing distinct stages of 

progression (ADH, DCIS, IDC) in the 3D Matrigel system, our lab employed array-based 

transcriptional profiling to identify clinically-relevant genes which may be implicated in the 

DCIS to IDC transition (Souter et al., 2010). TBX3 was identified as 2.8-fold up-regulated in 

this transition (Souter et al., 2010). Based on these preliminary findings, as well as 

accumulating literature implicating TBX3 in the promotion of malignancy, I focused on 

elucidating the role of TBX3 isoforms in breast cancer progression.  

I hypothesized that the transcriptional regulatory proteins TBX3iso1 and TBX3iso2 

have distinct roles in breast cancer progression, which is likely mediated by their 

downstream transcriptional targets. The follow-up work to address my hypothesis was 

organized into three main chapters, dealing with (1) functionality of TBX3 isoforms in vitro, 

(2) mechanism by which TBX3 isoforms promote EMT, and (3) in vivo differences between 

TBX3iso1 and TBX3iso2.  

(1) CHAPTER 2 – Examination of functional and phenotypic changes associated with 

modulation of TBX3 levels at various stages of breast cancer progression 

I have shown that overexpression of TBX3iso1 and TBX3iso2 promotes progression in an 

in vitro model of early stage breast cancer. This occurs through alteration of several 

cellular properties including growth, survival, invasiveness, and the acquisition of an EMT 

phenotype. Prominent functional and phenotypic changes initially identified with 

overexpression of TBX3iso1 and TBX3iso2 were identical. I therefore focused on the 

molecular mechanism by which TBX3 isoforms promote invasiveness and induction of 

EMT in the next chapter, since the acquisition of an EMT phenotype is associated with 

several clinical parameters including reduced survival and chemo-resistance (Polyak and 

Weinberg, 2009, De Craene and Berx, 2013, Nieto et al., 2016). 
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(2) CHAPTER 3 – TBX3 promotes progression of pre-invasive breast cancer cells by 

inducing EMT and directly up-regulating SLUG 

In order to assess the downstream mechanisms responsible for TBX3-induced EMT, I 

conducted ChIP-arrays and RNA-Seq to assess the direct transcriptional targets of 

TBX3iso1 and TBX3iso2, focusing on genes/pathways similarly regulated by both 

isoforms. I found that both TBX3 isoforms regulate expression of several EMT-related 

genes, including SLUG (directly) and TWIST1 (indirectly). Translating these in vitro 

molecular findings to clinical samples of early-stage breast cancers, I showed that TBX3 

levels are up-regulated in CCLs, with a concomitant increase in SLUG and TWIST1 

expression. This is predicted to promote proliferation and plasticity of early, pre-invasive 

lesions. TBX3 expression is maintained in a subset of low-grade DCIS, and was 

associated with the degree of invasiveness of Stage I breast cancers. Pathway analysis 

revealed that overexpression of both TBX3 isoforms induces altered expression of several 

proteases and protease inhibitors, which is consistent with the ability to degrade basement 

membrane and prime for early invasion. These events are facilitated by TBX3-induced 

and SLUG-dependent expression of pro-migratory molecules such as MMP14, fibronectin, 

and vimentin. My proposed model of TBX3-dependent advancement of low-grade DCIS 

to IDC is particularly relevant in the non-high grade, ER-positive pathway of progression. 

(3) CHAPTER 4 – Isoform-specific promotion of breast cancer tumorigenicity by TBX3 

involves induction of angiogenesis 

My last chapter deals with elucidation of relevant mechanisms responsible for increased 

tumorigenicity of TBX3iso1 in vivo in nude mouse xenograft assays. Tumors generated 

from non-tumorigenic cells overexpressing TBX3iso1 were invasive and highly vascular. 

Mining of transcriptional differences in RNA-Seq data revealed up-regulation of pro-

angiogenic transcripts with overexpression of TBX3iso1; this was not observed with 

overexpression of TBX3iso2. Importantly, overexpression of TBX3iso1 consistently 

resulted in up-regulation of OPN and HAS2 across three non-tumorigenic breast cancer 

cell lines, and increased hyaluronan retention in 21NT transfectants. Lastly, examination 

of the TCGA breast cancer cohort revealed a transcriptional shift during cancer 

progression, with an 8.1-fold higher TBX3iso1/TBX3iso2 ratio in tumors relative to control. 

This ratio was also associated with tumor grade and aggressive breast cancer subtypes.  
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5.1 Promotion of invasiveness by TBX3 

Transcriptional profiling of isogenic DCIS-like and IDC-like cells grown in 3D Matrigel was 

previously conducted by our laboratory, in which TBX3 was identified as significantly up-

regulated in the DCIS to IDC transition (Souter et al., 2010). At that time, the focus of TBX3-

related studies within the literature was characterization of functional and phenotypic 

changes associated with TBX3 (irrespective of isoform), along with identification of 

transcriptional targets and validation across cancer subtypes. Additionally, much of the 

existing literature focused on TBX3 in embryogenesis and development of organ systems. 

TBX3 transcriptional targets are likely context dependent, as studies have shown that 

conclusions regarding effects mediated by TBX3 are often not consistent across cancer 

subtypes, let alone in the process of embryogenesis vs. tumorigenesis (Willmer et al., 2016a, 

Zhu et al., 2016). 

My initial studies required characterization of TBX3-mediated effects in breast cancer, 

with validation across cell lines representing different molecular subtypes. I characterized the 

phenotypic and functional changes associated with overexpression of TBX3iso1 and 

TBX3iso2 in breast cancer cell lines. Changes associated with overexpression of TBX3 

isoforms included increased cell survival, proliferation and colony-forming ability, decreased 

apoptosis, and increased invasiveness. In contrast, shRNA-mediated knockdown of total 

TBX3 levels in invasive 21MT-1 cells resulted in decreased colony formation rates, along 

with decreased invasiveness. Throughout my studies, overexpression of either TBX3iso1 or 

TBX3iso2 resulted in increased invasiveness, as shown by transwell invasion assays, along 

with in vitro invadopodia formation, and in vivo extravasation and invadopodia formation 

assays within the CAM model. Use of the CAM model further aided in demonstrating changes 

in invasiveness between 21MT-1 transductant cells (shTBX3 21MT-1 and shLUC 21MT-1), 

as we were unable to use them in traditional in vitro migration and invasion assays due to 

the larger size of the cells. The inclusion of several layers of validation regarding in vivo 

invasiveness as well as several methods of detecting invadopodia formation are novel 

findings, further supporting the existing literature regarding TBX3-induced invasiveness 

across several cancer types (Rodriguez et al., 2008, Peres et al., 2010, Willmer et al., 2016a).  

Initiation of invadopodia formation commences through the binding of growth factor 

ligands to their cognate receptor, leading to activation of Src kinase required for induction of 
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invadopodia-specific proteins (Murphy and Courtneidge, 2011, Burger et al., 2014). Several 

growth factors (i.e. TGF-ß, FGF, Wnts) are able to induce expression of TBX3 (Renard et al., 

2007, Fillmore et al., 2010, Li et al., 2013). I have shown that overexpression of either 

TBX3iso1 or TBX3iso2 leads to up-regulation of Src at the mRNA and protein level. The 

activity of Src is modulated through phosphorylation at residues Y527 (inhibitory) and Y416 

(activating) (Irtegun et al., 2013). Overexpression of TBX3iso1 and TBX3iso2 resulted in 

reduced phosphorylation at the inhibitory Y527 site suggesting increased functionality 

(Irtegun et al., 2013), with no change in phosphorylation at Y416. Several proteases are also 

enriched within invadopodia structures, including MMP2, MMP9 and MMP14 (Weaver, 

2006). Importantly, both TBX3iso1 and TBX3iso2 up-regulate MMP9 and MMP14 

expression, and an increase in the active MMP2 was observed by gelatin zymography, 

further aiding in focal ECM degradation. I have also shown that the induction of the 

membrane-bound protease MMP14 by TBX3 is dependent on SLUG expression. My work 

has therefore added to the literature in terms of characterization of functionality of TBX3 

isoforms, including promotion of invadopodia formation and focal substrate degradation. 

TBX3 may be an important regulator of invasiveness through enhancing invadopodia 

formation, as TBX3 is induced by several upstream growth factors, and modulates 

expression of downstream effectors important for the proper functionality of invadopodia.  

5.2 Transcriptional targets of TBX3 – Cell Cycle Control 

While transcriptional regulation by TBX3 is not well understood and continues to focus on its 

repressive effects on transcription (with much of the literature focusing on direct repression 

of p14ARF by TBX3), there are a few studies in which TBX3 was shown to directly up-regulate 

gene transcription. This includes direct up-regulation and binding to the TBE in the promoter 

of jun dimerization protein 2 (JDP2), a histone chaperone with an important role in 

differentiation and senescence, along with Connexin 43 (GJA1) and GATA6, which are 

important regulators of heart development (Jin et al., 2002, Nakade et al., 2009, Boogerd et 

al., 2011, Lu et al., 2011, Yao et al., 2014).  

Through integrated analysis of coupled ChIP-array and RNA-Seq data for TBX3iso1 

and TBX3iso2 overexpressing cells, I observed that approximately 2/3 of TBX3iso1 and 

TBX3iso2-bound genes were down-regulated, and 1/3 of TBX3iso1 and TBX3iso2-bound 

genes were up-regulated at the mRNA level. Noteworthy genes which were bound in ChIP-
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arrays and transcriptionally up-regulated by both TBX3 isoforms include cyclin D (CCND1), 

cyclin E (CCNE1) and cell division cycle 25 homolog A (CDC25A), all of which are important 

cell cycle regulators, as well as SLUG (SNAI2), an EMT-inducing transcription factor. 

Importantly, the aforementioned cell cycle regulators are all involved in mediating the 

transition from G1 to S phase. The CDC25A phosphatase removes the inhibitory phosphate 

groups on the cyclin D-CDK4/6 and cyclin E-CDK2 complexes (Robert, 2015). Once 

activated, the major role of the cyclin D-CDK4/6 and cyclin E-CDK2 complexes is 

phosphorylation of the Rb protein (Robert, 2015). Rb is first phosphorylated by the cyclin D-

CDK4/6 complex, resulting in reduced affinity of Rb for E2F (Robert, 2015). The cyclin E-

CDK2 complex further phosphorylates Rb, ensuring maximal release of E2F (Robert, 2015). 

Upon release from Rb, E2F activates transcription of genes involved in DNA replication 

(Robert, 2015).  

The processes associated with G1/S phase transition are negatively regulated by 

inhibitors of CDKs previously described: p16INK4A (inhibitor of kinases; inhibits cyclin D-

CDK4/6 complex) and p21CIP1 (cyclin inhibitory protein; inhibits cyclin D-CDK4/6, cyclin E-

CDK2, cyclin A-CDK2 complexes). The well-described anti-senescence effect mediated by 

TBX3 through direct down-regulation of p14ARF (Brummelkamp et al., 2002, Lingbeek et al., 

2002, Yarosh et al., 2008), p16INK4A (Kumar P et al., 2014), and p21CIP1 (Hoogaars et al., 

2008, Willmer et al., 2016b) are therefore amplified through direct up-regulation of cyclin D1, 

cyclin E1, and CDC25A, all of which are required for progression from G1 to S phase. 

Interestingly, cyclin D is often up-regulated in breast cancer and is strongly expressed 

in ER+ breast cancers resistant to hormone therapy (Kenny et al., 1999, Hui et al., 2002, 

Hodges et al., 2003), displaying similar expression patterns with TBX3 (Fillmore et al., 2010). 

Additionally, up-regulation of cyclin E and CDC25A is associated with reduced survival in 

breast cancer (Cangi et al., 2000, Keyomarsi et al., 2002). 

The various direct mechanisms whereby TBX3 controls expression of important 

mediators of cell cycle progression is summarized in Figure 5.2.1. As highlighted above, up-

regulation of CDC25A is suggestive of increased activation of G1-phase cyclin-CDK 

complexes which are required for G1/S phase transition (Sandhu et al., 2000). Down-

regulation of p14ARF, p16INK4A, and p21CIP1 results in reduced inhibitory effects on G1-phase 

cyclin-CDK complexes. This increased expression and potentially increased activity of cyclin 
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D-CDK4/6 and cyclin E-CDK2 is expected to result in accelerated cell cycle progression and 

increased rates of proliferation (Masamha and Benbrook, 2009). TBX3 is also required for 

S/G2 phase transition, as depletion of TBX3 results in accumulation in S phase; the authors 

suggested that this may be mediated through TBX3-dependent down-regulation of p21CIP1 

(Willmer et al., 2015). TBX3 is therefore able to promote progression through both G1/S and 

S/G2 phase transitions, which is associated with increased proliferation rates. Indeed, these 

findings are in accordance with the widely-documented pro-proliferative effect associated 

with up-regulation of TBX3, as well as my findings of increased proliferation and growth rates 

in 3D Matrigel with overexpression of TBX3iso1 and TBX3iso2 reported in Chapter 1 (Lee et 

al., 2007a, Platonova et al., 2007, Miao et al., 2016, Willmer et al., 2016b, Wu et al., 2017).  

While binding events for CCND1, CCNE1 and CDC25A contain significant FDR-

corrected statistical values, and are transcriptionally up-regulated with overexpression of 

both TBX3 isoforms, further validation studies are needed to assess whether these binding 

events are direct and occur in breast cancer cell lines and various other cancer cell lines. 

Further elucidation of direct transcriptional targets of TBX3 is important in order to understand 

the functionality of TBX3 with regards to transcriptional regulation. This should be assessed 

in an isoform-specific context. 

 

Figure 5.2.1 – Proposed model of control of cell cycle progression by TBX3. 
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5.3 Transcriptional targets of TBX3 – EMT Regulation 

Through assessment of gene expression changes associated with overexpression of 

TBX3iso1 or TBX3iso2 relative to the control, there were prominent alterations in expression 

of EMT and invasion-associated genes. This was observed in the high-throughput RNA-Seq 

data, and recapitulated in the qRT-PCR arrays and through various functional assays. While 

the association between TBX3 and an EMT phenotype has been previously suggested 

through profiling of epithelial and mesenchymal markers (Humtsoe et al., 2012, Shan et al., 

2015, Miao et al., 2016) along with direct down-regulation of E-cadherin (Rodriguez et al., 

2008, Dong et al., 2018), direct modulation of transcription factors and inducers of EMT by 

TBX3 has not been reported and is therefore a novel finding. 

Although several genes involved in the cell cycle were both bound by and up-regulated 

by both TBX3 isoforms (according to ChIP-array and RNA-Seq data, respectively), I focused 

on TBX3-induced up-regulation of SLUG transcript levels due to its well-documented role in 

EMT (Barrallo-Gimeno and Nieto, 2005, Humtsoe et al., 2012, Phillips and Kuperwasser, 

2014). ChIP-array analysis showed that TBX3iso1 and TBX3iso2 bind near an intron-exon 

junction of the SLUG (SNAI2) gene. Through merging of ChIP-array data with Encyclopedia 

of DNA Elements (ENCODE) files, this binding site was revealed to possess a highly 

conserved TBE, located within the 5’ end of exon 2. This identified TBE overlaps with an 

RNA polymerase II (Pol II) binding site and a DNase I hypersensitivity (DHS) region. This 

binding has been validated by ChIP qRT-PCR, showing that overexpression of TBX3iso1 or 

TBX3iso2 leads to their enrichment at this genomic location. Since this binding is not located 

in an upstream promoter region and rather is located near an intron/exon boundary, my 

interpretation is that TBX3 promotes transcriptional elongation of the SLUG transcript and 

prevents stalling of Pol II transcriptional machinery. The effect of these proposed molecular 

events would lead to elevated SLUG transcript levels, as shown by RNA-Seq, and validated 

by qRT-PCR and western blot. 

High throughput experiments utilizing Pol II ChIP-Seq (Guenther et al., 2007, Muse et 

al., 2007, Zeitlinger et al., 2007) and global run-on sequencing (GRO)-Seq to assess sites of 

active transcription (Core et al., 2008, Larschan et al., 2011, Min et al., 2011) have revealed 

that Pol II pausing is a widespread and critical rate-limiting step governing gene transcription 

(Kwak and Lis, 2013). The prolonged binding of transcription factors, along with Pol II stalling 
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contributes to maintenance of an open chromatin structure, and is therefore a feature of 

active, highly-regulated genes (Fuda et al., 2009, Gilchrist et al., 2010, Jonkers and Lis, 

2015). Assessment of TBX3 binding sites across the genome has identified a significant 

overlap with Pol II binding sites from the ENCODE database; this may be inherent due to 

close associations with transcription factors and Pol II, and/or a byproduct of promoter array 

usage and enrichment of promoter binding sites which are also occupied by Pol II. 

This identified TBX3 binding site in the SNAI2 gene contains a DHS region, which is 

associated with open and transcriptionally active chromatin. DHS is often used as markers 

of cis-regulatory elements including promotors, enhancers, and silencers (Lewin et al., 2011). 

The ENCODE DNase-Seq datasets revealed a high degree of overlap of DHS regions for 

the TBX3 binding site across a panel of 125 diverse cell and tissue types (identified in 41/125 

cell lines) (Thurman et al., 2012). This region may therefore act as an enhancer and regulate 

transcription of the SNAI2 gene through binding of various co-activators and/or transcription 

factors such as TBX3. Enhancers are cis-regulatory elements that promote transcription of 

nearby gene(s) through binding of trans-activating transcription factors, and by interacting 

with proximal regulatory factors through chromatin looping mechanisms (Lewin et al., 2011). 

While enhancers play a modest role on transcriptional initiation, they are able to increase 

elongation efficiency (Krumm et al., 1993, Yankulov et al., 1994, Krumm et al., 1995). The 

process of enhanced transcriptional elongation may be mediated through 3D chromatin 

looping, which brings promoters and enhancers into close proximity, attracting transcription 

factors and promoting continuation of transcriptional elongation (Ghavi-Helm et al., 2014, 

Heinz et al., 2015, Jonkers and Lis, 2015). Some transcription factors (such as MYC and 

NFKB) are also able to increase Pol II efficiency through recruiting elongation factors 

(Yankulov et al., 1994, Rahl et al., 2010, Danko et al., 2013, Diamant and Dikstein, 2013, 

Kwak and Lis, 2013). TBX3 may therefore regulate expression of SLUG through the 

promotion of transcriptional elongation of SLUG transcripts, and prevention of Pol II stalling. 

Further studies are needed in order to substantiate this hypothesis, as association with 

enhancers and non-promoter binding of TBX3 have not been reported. 

TBX3 may also promote SLUG expression through indirect mechanisms as well. As 

degradation of SLUG is induced through binding of p53 and p21CIP1 (Kim et al., 2014), direct 

down-regulation of p21CIP1 by TBX3 may also result in reduced degradation of SLUG. 
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5.4 TBX3 in precursor lesions – CCLs and DCIS 

My findings from Chapter 3 represent the first study to assess TBX3 expression by 

immunohistochemistry separately in various cell compartments, and the first in-depth TBX3 

IHC study in breast cancer. Elevated expression of EMT-transcription factors, including 

TBX3, SLUG and TWIST1 in CCLs was an interesting and unexpected finding. CCLs, and 

particularly the FEA variant, are on a histological continuum with ADH, DCIS and IDC, 

representing the earliest morphological precursor in the LG breast cancer progression 

pathway (Wellings and Jensen, 1973, Wellings et al., 1975, Lee et al., 2006, Abdel-Fatah et 

al., 2008, Feeley and Quinn, 2008, Turashvili et al., 2008). As such, CCLs possess increased 

levels of genomic aberrations including low rates of allelic imbalances relative to 

morphologically normal breast epithelial cells (Simpson et al., 2005, Dabbs et al., 2006, 

Turashvili et al., 2008, Bürger et al., 2013, Bombonati and Sgroi, 2011), often coexist with 

both precursor lesions (ADH, DCIS) and IDC (Go et al., 2012), and are frequently detected 

as abnormalities on mammographically screening (Lerwill, 2008). It has been demonstrated 

that loss of 16q, an early mutational event associated with progression along the LG breast 

cancer pathway, occurs in similar rates across FEA, ADH and DCIS; the degree of genomic 

instability, however, increases with further progression (O'Connell et al., 1998, Moinfar et al., 

2000, Simpson et al., 2005, Larson et al., 2006, Gao et al., 2009).  

CCLs are typically ER+, PR+, HER2-, and prominently express increased levels of 

Ki67, Bcl2 and cyclin D, thereby promoting a proliferative and anti-apoptotic profile 

(Polosukhin, 1999, Vincent-Salomon, 2003, Tremblay et al., 2005, Simpson et al., 2005, 

Dabbs et al., 2006, Lee et al., 2006, Noel et al., 2006, Bombonati and Sgroi, 2011). 

Interestingly, previous studies have reported increased ER expression in CCLs relative to 

adjacent morphologically normal breast epithelial cells (Tremblay et al., 2005, Lee et al., 

2006, Lee et al., 2007b, Abdel-Fatah et al., 2008). Downstream targets of ER include several 

genes involved in proliferation and apoptosis (Gompel et al., 2000, Anderson and Clarke, 

2004), and it has therefore been suggested that the pro-proliferative and anti-apoptotic profile 

in CCLs may be stimulated by estrogen and mediated through ER (Wellings et al., 1975, Lee 

et al., 2007b). Overexpression of ER-α in breast epithelial cells of transgenic mice results in 

rapid development of hyperplasia and DCIS, with occasional progression to invasive 

carcinoma (Frech et al., 2005). These studies suggest that the effects mediated by estrogen 
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through ER may be partially responsible for the development of CCLs, as well as subsequent 

progression to more advanced lesions (Frech et al., 2005). 

Our group, and others, have shown that TBX3 expression is tightly correlated with ER 

expression (Fan et al., 2004, Fillmore et al., 2010). It is intriguing to speculate whether ER 

and TBX3 are coordinately expressed to similar degrees in precursor lesions of the breast. 

Indeed, the TBX3 promoter possesses multiple half-estrogen response elements (Fan et al., 

2004), and administration of endogenous estradiol induces expression of TBX3 (Fillmore et 

al., 2010). Additionally, TBX3 is required for the formation of ER+ mammary epithelial cells 

(Kunasegaran et al., 2014), showing reciprocal induction of gene expression between TBX3 

and ER. The reported benefits of anti-estrogen therapies such as tamoxifen for patients with 

precursor lesions (Fisher et al., 1999, Esteva and Hortobagyi, 2004, Allred et al., 2012, 

Coopey et al., 2012) may work, in part, through inhibition of TBX3 expression at this early, 

critical stage of tumorigenesis. While this is only speculative, more work is needed in order 

to fully establish this link, including examination of TBX3 expression in epithelial cell 

compartments (FEA, ADH and DCIS) in patients who have undergone treatment with 

tamoxifen.  

Aside from up-regulation of ER expression, there is currently limited knowledge 

regarding transcriptional profiles of CCLs. Through micro-dissection of histologically normal 

epithelial cells and CCLs, Lee et al. conducted microarray analysis in order to examine 

changes in gene expression profiles and associated molecular pathways altered in CCLs 

(Lee et al., 2007b). They reported that CCLs frequently reactivate pathways involved in 

embryonic development and suppress pathways involved in terminal differentiation (Lee et 

al., 2007b). My finding of elevated expression of EMT transcription factors, particularly the 

estrogen responsive transcription factor TBX3 with critical roles in development, is in 

agreement with the aforementioned studies. In addition to the high throughput transcriptional 

studies, my IHC studies have shed light on the elevated expression of EMT transcription 

factors in CCLs, including TBX3, SLUG and TWIST1. It is possible that TBX3 is inducing 

expression of SLUG and TWIST1 at this early stage of progression, as expressions of all 

aforementioned markers is coordinately elevated. Although associations in expression has 

been shown in vitro, this may not necessarily hold true in vivo. Sophisticated experiments 

involving temporal induction of TBX3 in mouse mammary glands, and assessment of induced 
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genes at various stages may be the best way to answer this experimental question. While 

one may obtain correlational data through assessment of expression of particular markers 

through IHC, one cannot conclude that direct transcriptional up-regulation of particular genes 

is occurring in a particular lesion in vivo. 

The prevailing view is that activation of a single oncogene is insufficient to drive cancer 

progression; cooperation with other oncogenes and/or mutational events is frequently 

employed by EMT transcription factors in the process of malignant transformation (Ansieau 

et al., 2008, Smit and Peeper, 2010, Morel et al., 2012, Tran et al., 2012, Puisieux et al., 

2014). For example, while TBX3 expression on its own is usually not enough to impart 

malignant properties to genomically stable cells, overexpression of MYC or oncogenic H-

RasVal17 with TBX3 (but not by themselves), protects cells from apoptosis through inhibition 

of p14ARF (Carlson et al., 2002). Additionally, up-regulation of EMT transcription factor 

reduces the number of genetic events required for malignant transformation of breast 

epithelial cells, allowing cells to overcome onco-suppressive mechanisms (Morel et al., 2012, 

De Craene and Berx, 2013, Puisieux et al., 2014). Increased ER expression and downstream 

signaling is also permissive for the accumulation of genetic alterations (Lee et al., 2007b). 

The aforementioned processes, acting together and regulated by TBX3, may lead to 

promotion of an EMT phenotype at early stages, and allow for full progression to IDC.  

Expression of TBX3, SLUG and TWIST1 is up-regulated in CCLs and maintained in 

some DCIS lesions, and may impart additional properties associated with induction of 

invasiveness. In my evaluation of DCIS lesions with and without associated invasion, there 

was no difference in TBX3 expression between Stage 0 and Stage I samples. I did, however, 

observe a strong positive correlation between TBX3 expression in the DCIS lesion and size 

of the invasive focus. Importantly, I showed that elevated TBX3 expression within LG DCIS 

was associated with larger invasive carcinomas across Stage I cancers. While TBX3 itself 

was not useful in predicting invasion, it may have an association with the degree of 

invasiveness, as observed in my IHC, functional and molecular studies. These findings 

suggests that there are potentially other co-factors that may be acting in concert with TBX3 

in the promotion of invasiveness.  
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Interestingly, pathway analysis of transcripts altered by both TBX3iso1 and TBX3iso2 

revealed significant enrichment of proteases and protease inhibitors. This transcriptional 

event is particularly important at the pre-invasive stage, as focal disruption of the basement 

membrane has been shown to coincide with the dissolution of the myoepithelial cell layer and 

progression of DCIS to IDC (Man et al., 2003, Hu et al., 2008). Proteases secreted by tumor 

cells are able to progressively destroy the basement membrane, which leads to dissolution 

of the myoepithelial cell layer (Hu et al., 2008). This is important, as additional mutations 

within tumor cells of DCIS are not required for progression; the loss of basement membrane, 

myoepithelial cell dissolution, and loss of epithelial cell organization and polarity is sufficient 

to promote this transition (Hu et al., 2008). Previous studies have reported that MMP14 is 

amongst the main regulators of the basement membrane transmigration process in vivo 

(Hotary et al., 2006), likely through activation of MMP2 (Duffy et al., 2000). Through my 

studies I have shown that overexpression of TBX3 isoforms results in increased MMP14 

expression, and induction of MMP14 is dependent on SLUG. Additionally, I have shown that 

overexpression of both TBX3 isoforms is associated with increased activity of MMP2.  

In conclusion, I have proposed a unique pathway in which TBX3 promotes progression 

through advancement of low-grade DCIS to invasive carcinoma, as depicted in Figure 3.3.6 

of Chapter 3. This model is particularly relevant in patients with ER+, non-high grade 

precursor lesions (CCL, DCIS), in which overexpression of TBX3 induces other molecular 

regulators of EMT (including SLUG and TWIST1). Additionally, TBX3 up-regulates 

expression of several proteases (i.e. MMP9, MMP14, uPa), and down-regulates expression 

of several protease inhibitors (i.e. CST6). These transcriptional changes mediated by TBX3 

set the stage for basement membrane breakdown and invasion into adjacent stroma. Further 

studies are needed in order to assess whether TBX3 expression may provide reliable risk 

stratification for patients diagnosed with DCIS. This may potentially be conducted in concert 

with multiple biomarkers and/or multi-parameter gene expression assays in order to increase 

predictive and/or prognostic value. 
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5.5 TBX3 in IDC 

I have demonstrated significant differences in tumorigenicity between the TBX3 

isoforms through nude mouse xenograft experiments, which was a surprising and novel 

finding. Although existing literature has focused solely only one isoform of TBX3 (often the 

clone used is not specified), a few existing studies have suggested that the two TBX3 

isoforms have differential functionality (Stennard et al., 1999, Fan et al., 2004, Lee et al., 

2007a, DeBenedittis and Jiao, 2011, Zhao et al., 2014). Through mining of differences in 

transcriptional profiles between TBX3iso1 and TBX3iso2 overexpressing cells and 

conducting pathway analysis, I have reported that overexpression of TBX3iso1 is associated 

with a pro-angiogenic gene signature.  

The effects mediated by TBX3 isoforms with regard to EMT and promotion of 

invasiveness were identical throughout my findings in Chapter 2 and Chapter 3. Due to these 

similarities, along with an absence of commercially available isoform-specific antibodies for 

TBX3, I focused on total TBX3 protein expression in my IHC study. While I have shown that 

expression of total TBX3 levels are up-regulated in early stages of breast cancer progression, 

the relative abundance of each isoform is unknown. As TBX3iso1 is associated with the 

promotion of angiogenesis, it may therefore be helpful at later stages of tumor development. 

The process of angiogenesis is vital for tumor growth, since solid cancers must form 

a blood supply if they are to grow beyond 1-2 mm in size; tumor vascularization thus allows 

for acquisition of nutrients, oxygen perfusion, and systemic spread (Hanahan and Weinberg, 

2000, Knowles and Selby, 2005). Indeed, the xenograft tumors formed by TBX3iso1 

overexpressing cells were highly vascular, as gauged by microvascular density counts. As 

observed by in vitro tubule formation assays, pro-angiogenic soluble factors are released 

from cells overexpressing TBX3iso1 that are functional in activating endothelial cells. On the 

contrary, conditioned media from cells overexpressing TBX3iso2 had similar effects on 

endothelial cells as the empty vector control. Importantly, TBX3iso1 (but not TBX3iso2) is 

able to up-regulate expression of OPN and HAS2, and lead to increased pericellular HA 

retention. The aforementioned transcriptional changes were robust and observed across 

three cell lines, with expression of OPN and HAS2 often down-regulated with overexpression 

of TBX3iso2. It is well documented that elevated levels of OPN and HA within the 

microenvironment are able to promote angiogenesis in vivo through binding of OPN (via 
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integrins, CD44) and HA (via CD44) on endothelial cells, thereby promoting their migration, 

proliferation, and vascular channel formation (Brooks et al., 1994, Senger et al., 1996, 

Trochon et al., 1996, Griffioen et al., 1997, Arap et al., 1998, Scatena et al., 1998, Bayless 

et al., 2000, Savani et al., 2001). These binding and downstream signaling events leading to 

vascularization are permissive to tumor growth, and likely allowed for the observed 

exponential growth of tumors. Based on the kinetics of tumor growth which I reported in 

Chapter 4, as well as well as my findings of the pro-angiogenic function of TBX3iso1, the 

enhanced growth and tumorigenicity is likely due to the process of angiogenesis. This is in 

agreement with the findings of Shirinifard et al., who conducted 3D simulations of tumor 

growth, reporting that exponential growth of tumor cells at late stages of tumor development 

occurs only in vascularized tumors, whereas tumor growth in avascular tumors did not 

exceed linear growth values (Shirinifard et al., 2009). Further studies are required for 

elucidation of differential targets of TBX3iso1 and TBX3iso2, and assessment and validation 

of which direct targets downstream of TBX3iso1 may be responsible for up-regulation of pro-

angiogenic factors and thus vascular channel formation by endothelial cells. 

My mining of the TCGA breast cancer dataset has revealed a transcriptional shift in breast 

cancer progression, with increased TBX3iso1/TBX3iso2 expression in cancer tissues relative to 

normal breast tissue. This shift of increased TBX3iso1 expression was associated with several 

clinicopathological parameters, including high grade and more aggressive breast cancer 

subtypes. Interestingly, these are the opposite characteristics identified for TBX3 expression in 

breast cancer. I believe that this splice shift is due to changes in upstream splicing machinery, 

as several splice regulatory proteins are up-regulated in breast cancers (Watermann et al., 2006, 

Huang et al., 2007, Skotheim and Nees, 2007, Venables et al., 2008). Differences in breast 

cancer specific alternative splicing events have been observed between grade 1 and grade 3 

breast tumors as well, with a distinct trend towards exon loss of several transcripts in ER- tumors 

(Venables et al., 2008). These splicing changes were not associated with differences in combined 

expression of alternatively spliced transcripts (and as such TBX3 expression is low in ER- tumors) 

(Venables et al., 2008). It has been strongly suggested that functional selection for oncogenic 

splice variants occurs within tumors (Venables et al., 2008), and enhanced expression of 

TBX3iso1 may be an adaptive oncogenic mechanism. While the splice factors which are 

associated with an elevated TBX3iso1/TBX3iso2 ratio are unknown, they appear to be 

associated with aggressive breast tumors. 



 

199 

199 

5.6 Future Studies 

To summarize, I have identified that the transcriptional regulator TBX3 is highly expressed in 

precursor lesions of the breast including CCLs and DCIS, in a manner similarly implicated in 

the context of other cancer types (Fan et al., 2004, Hansel et al., 2004, Lomnytska et al., 

2006, Lyng et al., 2006, Rodriguez et al., 2008, Yarosh et al., 2008, Cavard et al., 2009, 

Gudmundsson et al., 2010, Souter et al., 2010, Witte, 2010, Begum and Papaioannou, 2011, 

Miao et al., 2016). TBX3 expression is elevated in ER+, PR+, low-grade breast cancers, and 

is significantly associated with the degree of invasiveness in Stage I breast tumors. These 

studies have provided critical information regarding the stages in which expression of 

nuclear-localized TBX3 is up-regulated in cancer cells, and may be transcriptionally active in 

the promotion of tumorigenesis within the breast. Based on my IHC studies, TBX3 appears 

to be promoting progression of precursor lesions (CCLs, DCIS) through the low-grade 

molecular pathway.  

Further exploration of possible target genes that are regulated by and downstream of 

TBX3 isoforms should be conducted in order to identify and validate direct targets which are 

critical to cellular invasion. These gene products may themselves be potential targets for 

breast cancer therapy. This may include validation of identified cell-cycle proteins and/or 

mediators of EMT (such as SLUG) in other breast cancer cell lines, and further validation in 

cell lines representing other cancer subtypes. Initial validation in a breast cancer context is 

important, as functional effects mediated by TBX3, as well as direct transcriptional targets, 

are often described as context-dependent and may vary across cancer subtypes (Willmer et 

al., 2016a, Zhu et al., 2016, Willmer et al., 2017). 

An important follow-up experiment to my findings would be micro-dissection of the 

DCIS cross-sections (Stage 0 and Stage I) which express high vs. low TBX3 to assess for 

enrichment of transcripts associated with elevated TBX3 expression and invasiveness. 

Importantly, elevated TBX3 expression in DCIS of Stage I breast cancer samples is 

associated with the degree of invasiveness. Critical information may therefore be obtained 

through these transcriptional profiling experiments, which may link elevated and co-ordinate 

expression of TBX3 and another potential co-factor with invasiveness of breast cancers. 
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As I have reported significant differences between TBX3 isoforms in the promotion of 

angiogenesis and in vivo tumorigenesis, high-resolution analysis of differential transcriptional 

targets of TBX3iso1 and TBX3iso2 is required to elucidate which genes may be responsible 

for mediating this phenotype, with emphasis on genes involved in facilitating up-regulation of 

OPN (as TBX3iso1 does not directly bind the SPP1 gene). Additionally, as the T-box domain 

facilitates several protein-protein interactions (Hoogaars et al., 2008, Lu et al., 2010), there 

are likely differences in which proteins TBX3iso1 and TBX3iso2 interact with. This has been 

suggested by limited studies (Zhao et al., 2014), but would be interesting to explore further. 

While these studies likely do not possess immediate translatable findings, they would be 

important in fully understanding the functional differences between TBX3 isoforms.  

In conclusion, my thesis research has established that TBX3 is an important mediator 

of invasiveness in early-stage breast cancers. My proposed model is particularly relevant for 

luminal A breast cancers, which represents approximately 70% of all breast cancer 

diagnoses (Howlader et al., 2014). My findings will permit further understanding of expression 

profiles of precursor lesions, including CCLs and DCIS. An understanding of such molecular 

alterations and associated transcriptional profiles is essential in order to provide prognostic 

and predictive information regarding the propensity to progress to IDC, thereby avoiding 

progression to stages associated with reduced survival. Decisions regarding clinical 

management should be done on a per-patient basis based on the intrinsic characteristics of 

the tumor. Assessment of TBX3 expression, isoform ratios, and/or downstream signaling 

pathways in patients with low-grade DCIS may aid in this endeavor, although validation and 

follow-up studies are required. The validation cohort would be very important, as the single 

study which assessed the natural progression of LG DCIS across a median of 31 years 

highlighted that the risk of invasive recurrence is greatest within the first fifteen years after 

diagnosis (Sanders et al., 2005). Critical information may therefore be obtained through these 

profiling experiments, which may link elevated and co-ordinate expression of TBX3 and 

another potential co-factor with invasiveness of breast cancers. 
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 Appendices 

6.1 Chapter 3 – Supplementary Data 

 

 

 

 

 

Appendix 1 – TBX3 protein expression in 21NT transfectant and 21MT-1 transductant 

cell lines. 

 (A-C) Western blot analysis showing total TBX3 protein levels in generated stable cell lines. 21NT 

cells were transfected to overexpress TBX3iso1 or TBX3iso2, or transfected with an empty vector 

(EV) control. 21MT-1 cells were transduced with either shLUC (luciferase; off-target control) or 

shTBX3. Protein samples were separated by 10% SDS-PAGE and quantified by densitometry. 

Protein levels were normalized to Vinculin, which served as the loading control.  

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison between 

three groups, and Student’s t-test for comparison between two groups.  
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Appendix 2 – Phenotypic assessment of TBX3 overexpressing cell lines. 

(A) Assessment of migration in 2D in 21NT transfectant cell lines. A scratch was produced in a 

confluent monolayer of cells, and migration of cells into the scratch area was monitored at 0, 12 and 

24 hours post-scratch. Migration was quantified as ratio of wound area filled at 0 and 12 hours, and 

normalized to the empty vector control. (B) Cell-cell adhesion assay. Cells were harvested and re-

suspended in media containing either 3mM EDTA or 1mM CaCl2 and incubated in a petri dish at 37ºC 

for 30 minutes with gentle agitation. Clusters containing over 4 cells were counted across 10 fields of 

view. (C) 21NT cells were transiently transfected with either a TBX3iso1 or TBX3iso2 plasmid 

containing a ZsGreen reporter, or empty vector control expressing ZsGreen. CDH1 was visualized 

using a red-fluorescently labeled antibody. CDH1 signal was quantified by counting pixels within the 

red channel of ZsGreen positive transfected cells. 

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison between 

three groups. 
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Appendix 3 - Effect of TBX3 overexpression on invasiveness in cell lines representing 

other breast cancer molecular subtypes. 

The invasive ability of TBX3 transfectant lines was assessed using Matrigel-coated transwell inserts. 

(A-C) T-47D (luminal A), SKBR3 (HER2-enriched), and MDA-MB-468 (basal-like) cells were 

transfected with either an empty vector (EV), or TBX3iso1, or TBX3iso2 construct within the 

pZsGreen1-N1 vector containing a ZsGreen reporter. Twenty-four hours post-transfection, 50,000 

cells were added to the upper chamber of an 8.0µm pore transwell insert coated with Matrigel and 

allowed to invade for 18 hours. The number of green cells per field of view was used in the analysis. 

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison between 

three groups. 
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Appendix 4 – Assessment of EMT markers in TBX3 overexpressing cell lines. 

(A) The mRNA expression of several EMT markers was evaluated by qRT-PCR. Expression 

was normalized to GAPDH expression levels, and depicted as fold change relative to the 

empty vector control. (B) Conditioned media was concentrated and resolved on a 10% 

zymogram gelatin gel. The gel was renatured and developed, and size of the proteolyzed 

bands was quantified by densitometry using the reverse image (as shown). Active (82 kDa) 

vs. inactive (pro-) MMP9 (92 kDa), and active (63 kDa) vs. inactive (pro-) MMP2 (72 kDa) 

were identified by molecular weight. 

*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post-hoc for comparison 

between three groups. 
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Appendix 5 – Protein class analysis of direct transcriptional targets of TBX3. 

The 194 genes directly bound by both TBX3 isoforms in ChIP-array data and whose transcript 

levels were significantly altered in expression by RNA-Seq (>1.5 fold up or down, FDR<0.05) 

were analyzed using the PANTHER database, conducting over-representation analysis and 

focusing on protein class. Protein classes with the lowest p-values are shown. P-values were 

calculated by comparing expected numbers compared to input numbers in the gene list.  
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6.2 Chapter 3 – Immunohistochemistry Quality Control 

As shown in Appendix 6-9, stringent quality control measures were used for all IHC-based 

quantifications. For TBX3 expression specifically, I conducted cell fractionation experiments 

through isolation of cytoplasmic and nuclear fractions by ultracentrifugation, followed by 

immunoblotting cellular fractions of 21PT and 21NT transfectants, and 21MT-1 transductants 

(Appendix 6). Although these examples represent isogenic cell lines and cellular fractionation 

was not conducted on other cell lines representing different molecular subtypes from different 

patients, we observed exclusive nuclear localization of TBX3 in cell fractionation experiments 

as well as in IHC. While TBX3 is a transcription factor and is expected to be located to the 

nucleus, a few studies have reported cytoplasmic expression of TBX3 by IHC in colorectal 

cancer, pancreatic cancer, and HNSCC (Burgucu et al., 2012, Shan et al., 2015, Wang et 

al., 2015). Lomnytska et al. reported elevated levels of truncated TBX3 protein in the plasma 

of breast cancer and ovarian cancer patients, in which they suggested that TBX3 is mis-

localized in cancer tissues and leaks out of cells and into plasma (Lomnytska et al., 2006).  

One of the most important aspects of reliable IHC staining is antibody selection, 

requiring new optimization depending on each new batch or clone, and selecting conditions 

that offers the highest contrast of true positive signal over background (Yaziji and Barry, 

2006, Matos et al., 2010). We have conducted thorough optimization of TBX3 IHC protocols, 

utilizing several commercially-available antibodies (Abcam, ab99302, rabbit polyclonal (used 

for study); Abcam, 154828, rabbit monoclonal; Invitrogen, 42-4800, rabbit polyclonal; Sigma, 

HPA005799, rabbit polyclonal). Several parameters have been considered, including antigen 

retrieval time and buffer components, antibody and concentration, blocking steps, etc. until a 

clean staining pattern with minimal background was achieved. Unfortunately, IHC staining 

patterns observed are a direct result of the staining optimization process, and improper 

localization can be observed without thorough optimization and proper positive and negative 

controls (Matos et al., 2010). Several of the aforementioned conditions (and remaining 

antibodies) gave high levels of background staining along with a consistent brown ‘blush’ in 

carcinoma cells, the extent which I believe is artifactual. It is a common rule that when the 

subcellular and micro-anatomical location of the protein of interest is known, the 

immunoreactivity pattern obtained for IHC studies should follow this distribution (Seidal et al., 

2001). While I cannot exclude that cytoplasmic TBX3 expression is not associated with any 
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clinicopathological parameters, we focused exclusively on nuclear-localized TBX3 for 

quantification purposes, as this is where TBX3 is active in regulating transcription. SLUG and 

TWIST1 IHC optimization and quantification of expression was conducted in the same 

manner as TBX3. 

Expression of TBX3, SLUG and TWIST1 was assessed in the same area across serial 

sections in a control slide (Appendix 7, Appendix 8), and expression was assessed for each 

run to ensure reproducible results and therefore eliminate potential confounding variables 

(Appendix 9). For each of the markers, I quantified expression in benign non-columnar 

epithelial cells, CCLs, DCIS, and in the invasive carcinoma. This mode of assessment is 

particularly strong and enhances our understanding of distribution of markers in a cell-

specific context. Additionally, the use of full slides allows for observation of expression 

patterns along a larger area and therefore minimizes sampling bias associated with tumor 

heterogeneity which is inherent in the use of tissue microarrays (Rubin et al., 2002, 

Besusparis et al., 2016). Lastly, I used semi-automated computer-assisted image analysis 

for my quantification of biomarker expression due to the ease and efficiency of use, as well 

as its documented association with increased accuracy and reproducibility when compared 

to manual quantification methods (Cross, 2001, Lehr et al., 2001, Umemura et al., 2004, Diaz 

and Sneige, 2005, Matos et al., 2010).  
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Appendix 6 – TBX3 expression in nuclear and cytoplasmic fractions of 21T cells. 

Cellular fractionation and analysis of TBX3 expression in nuclear and cytoplasmic 

compartments of (A) 21PT, (B) 21NT, and (C) MT-1 cell lines. The 21PT and 21NT cell lines 

were stably transfected with either an empty vector (EV), TBX3iso1 or TBX3iso2 

overexpressing plasmid. Total TBX3 expression was knocked down in 21MT-1 

transductants; the shTBX3 clone with highest knockdown is shown. Nuclear fractions are 

shown by histone H4 expression, and cytoplasmic fractions are shown by vinculin. 
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Appendix 7 – ImmunoRatio analysis of TBX3 expression in benign and columnar 

breast epithelium. 

Scanned digital slides of TBX3, SLUG and TWIST1 immunohistochemically stained slides 

were quantified for nuclear expression of each marker using ImmunoRatio. TBX3 expression 

by IHC in benign and columnar breast epithelial cells, and the associated quantification 

process is shown. The process consisted of four major steps: (1) Images of tissue 

compartments were acquired, and included benign non-columnar cells, benign columnar cell 

lesions (CCLs; includes columnar cell change, columnar cell hyperplasia or flat epithelial 

atypia), DCIS and invasive cancer. (2) Stromal cells, necrotic areas, and cells outside of the 

compartment in question were cropped out using ImageJ in order to solely analyze 

expression of markers in the cell type of interest. (3) The faint background signal was 

removed using ImageJ in order to bring out blue hematoxylin stain of negative nuclei. (4) The 

ImmunoRatio plugin for ImageJ was used to quantify percentage of nuclei positive for each 

marker. A control slide representing serial sections was included for each run (with 

quantification and statistical analysis) to ensure identical and reproducible staining for each 

run. 
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Appendix 8 – ImmunoRatio analysis of TBX3 expression in DCIS and IDC. 

Scanned digital slides of TBX3, SLUG and TWIST1 immunohistochemically stained slides 

were quantified for nuclear expression of each marker using ImmunoRatio. TBX3 expression 

by IHC in DCIS and IDC, and the associated quantification process is shown. The process 

consisted of four major steps: (1) Images of tissue compartments were acquired, and 

included benign non-columnar cells, benign columnar cell lesions (CCLs; includes columnar 

cell change, columnar cell hyperplasia or flat epithelial atypia), DCIS and invasive cancer.  

(2) Stromal cells, necrotic areas, and cells outside of the compartment in question were 

cropped out using ImageJ in order to solely analyze expression of markers in the cell type of 

interest. (3) Faint background signal was removed using ImageJ in order to bring out blue 

hematoxylin stain of negative nuclei. (4) The ImmunoRatio plugin for ImageJ was used to 

quantify percentage of nuclei positive for each marker. A control slide representing serial 

sections was included for each run (with quantification and statistical analysis) to ensure 

identical and reproducible staining for each run. 
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Appendix 9 – Quality control of TBX3 staining by immunohistochemistry. 

A control slide representing serial sections was included for each IHC run. Images were 

acquired of the same DCIS across serial section, and quantification was conducted as 

described in Materials and Methods (Chapter 3) and shown in Appendix 8. Expression of 

markers was graphed, and statistical analysis were conducted in order to ensure identical 

and reproducible staining for each run. If expression of markers was statistically different in 

the control slide, quantification was not conducted, and the batch of slides was re-stained 

until a similar staining pattern was observed. 
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6.3 Chapter 4 – Supplementary Data 

 

 
 

Appendix 10 – Expression of VEGFR2 by qRT-PCR. 

The mRNA expression of VEGFR2 was assessed across 21NT transfectant cell lines by 

qRT-PCR, normalized to GAPDH expression levels, and depicted as fold change relative to 

the empty vector control. 

*p<0.05, **p<0.01, ***p<0.001 by one way ANOVA with Tukey post-hoc for comparison 

between three groups. Error bars represent standard deviation. 
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Appendix 11 – TBX3 expression in stable transfectant cell lines. 

(A) Total TBX3, TBX3iso1 and TBX3iso2 expression was assessed by qRT-PCR in 21PT 

stable transfectant cell lines, normalized to GAPDH expression levels, and depicted as fold 

change relative to the empty vector control. (B) Total TBX3, TBX3iso1 and TBX3iso2 

expression was assessed by qRT-PCR in MCF7 stable transfectant cell lines, normalized to 

GAPDH expression levels, and depicted as fold change relative to the empty vector control. 

*p<0.05, **p<0.01, ***p<0.001 by one way ANOVA with Tukey post-hoc for comparison 

between three groups. Error bars represent standard deviation. 
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Appendix 12 – Assessment of TBX3 isoform expression in TCGA and GTEx datasets. 

TBX3iso1 and TBX3iso2 expression levels were assessed across tumor types in which TBX3 

overexpression has been documented (breast cancer, melanoma, colon, and pancreatic 

cancer). Isoform percentage is shown along the top axis, with TBX3 isoform expression 

shown in tumors (The Cancer Genome Atlas, TCGA; purple hills) and normal tissues 

(Genotype Tissue Expression Project, GTEx; blue hills). Data was assessed using 

XenaBrowser (www.xenabrowser.net). 
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