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Abstract 

Suberin is a heteropolymer comprising a cell wall-bound poly(phenolic) domain (SPPD) 

covalently linked to a poly(aliphatic) domain (SPAD) that is deposited between the cell 

wall and plasma membrane. Potato tuber skin contains suberin to protect against water 

loss and microbial infection. Wounding triggers suberin biosynthesis in usually non-

suberized tuber parenchyma, providing a model system to study suberin production. 

Spatial and temporal coordination of SPPD and SPAD-related metabolism are required 

for suberization, as the former is produced soon after wounding, and the latter is 

synthesized later into wound-healing. Many steps involved in suberin biosynthesis 

remain uncharacterized, and the mechanism(s) that regulate and coordinate SPPD and 

SPAD production and assembly are not understood. To explore the role of abscisic acid 

(ABA) in the differential regulation of SPPD and SPAD biosynthesis, I subjected 

wounded tubers to exogenous treatments including additional ABA, or the ABA 

biosynthesis inhibitor fluridone. Quantitative reverse transcription polymerase chain 

reaction (RT-qPCR) expression analysis of SPPD and SPAD biosynthetic genes, coupled 

with metabolite analyses, revealed that ABA positively influenced SPAD-, but not SPPD-

associated, transcript and metabolite accumulation, indicating a role for ABA in the 

differential induction of wound-induced phenolic and aliphatic metabolism. I took an 

RNA-seq approach to study broader transcriptional changes that occur during wound-

healing. The wound-healing transcriptome time-course illustrated that wounding leads to 

a substantial reconfiguration of transcription, followed by fine-tuning of responses 

dominated by suberization. Transcriptome analysis revealed that primary metabolic 

pathways demonstrate similar temporal expression patterns during wound-healing, but 

suberin-specific steps display distinct patterns at entire pathway and sub-branch levels. 

The observed transcriptional changes support a model in which wounding initially alters 

primary metabolism required to fuel SPPD, and subsequent SPAD, production. This 

investigation also provided support for uncharacterized biosynthetic steps, and 

highlighted putative transcription factors and suberin polymer assembly genes 

(Casparian strip membrane domain proteins and GDSL lipase/esterases) that may play 
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key roles in the regulation and coordination of SPPD and SPAD monomer biosynthesis, 

polymer assembly and deposition. Overall, my findings offer further insight into the 

coordination and timing of metabolic and regulatory events involved in wound-healing 

and associated suberization.  

Keywords 

Solanum tuberosum, wound-induced suberization, plant stress response, suberin 

poly(aliphatic) domain, suberin poly(phenolic) domain, abscisic acid, transcription 

factors, gene expression, RT-qPCR, RNA-seq, differential expression analysis, gene 

ontology, gene set analysis 
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Chapter 1  

1 General introduction 

1.1 The plant-environment interface 

Plants have evolved various morphological and chemical mechanisms for protection 

against biotic and abiotic stresses. While different plants synthesize a range of specialized 

chemical defenses that are toxic or deterrent to microbial and insect pests, they can also 

produce defensive molecules that can be used to construct physical barriers. This 

integration of physical and chemical protection yields physicochemical barriers at plant-

environment interfaces that occur across the extant plant kingdom, from bryophytes to 

angiosperms (reviewed by Yeats and Rose, 2013).  

When plants transitioned from aquatic to terrestrial environments, they underwent 

important evolutionary adaptations to mitigate water loss: the formation of the cuticle, a 

cutin-based waxy coating of aerial plant organs including stems, leaves and fruits (e.g. 

reviewed by Waters, 2003; Samuels et al., 2008; Yeats and Rose, 2013), and the 

deposition of suberin, a phenolic- and fatty acid-derived polymer found in dermal tissues 

that do not form a cuticle (Esau, 1977; Matzke and Riederer, 1991). For example, suberin 

is deposited in the root epidermis and the entire perimeter of root endodermal and 

exodermal cells in association with the Casparian strip, a band of cell wall material 

comprising lignin-like phenolics and aliphatic suberin that is deposited in a ring around 

these inner cell layers (e.g. Schreiber et al., 1999; Thomas et al., 2007). These polymers 

act together as an apoplastic diffusion barrier to regulate water and ion transport through 

cell walls and act as a defense against pathogens (Schreiber, 2010; Nawrath et al., 2013).  

Some plant defenses are innate, being produced during development, while others are 

induced in response to various stresses. Suberin is an especially interesting plant defense, 

as it is both deposited as part of normal growth and development, (e.g. roots and potato 

periderm) and its synthesis can also be induced by stresses such as wounding, drought 

and infection in tissues that usually produce suberin such as roots, as well as those that do 
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not, like potato tuber parenchyma (e.g. Kolattukudy and Soliday, 1985; Lulai, 2005; 

Vandeleur et al., 2009; Andreetta et al., 2013). 

1.2 Structure, composition and spatial localization of the 
suberin macromolecule 

Suberin is a large macromolecule that comprises two distinct, but covalently linked 

domains (Bernards, 2002). One domain is anchored in the primary cell wall and consists 

of polymerized phenolic compounds, mainly hydroxycinnamic acids and their 

derivatives, tyramine-derived hydroxycinnamic acid amides, and a small proportion of 

hydroxycinnamic alcohols (monolignols), and is referred to as the suberin poly(phenolic) 

domain (SPPD) (reviewed in Bernards et al., 1995; Bernards and Lewis, 1998; Bernards 

and Razem, 2001). The suberin poly(aliphatic) domain (SPAD) spans the space between 

the cell wall and plasma membrane, and is made up of fatty acid-derived aliphatic 

constituents including very long chain (C24 to C32) 1-alkanols, bifunctional ω-

hydroxyalkanoic acids and α,ω-dioic acids, and mid-chain octodecanoates, as well as 

shorter C18 oxidized fatty acids, and non-polymerized (i.e. soluble) associated waxes that 

are largely alkyl hydroxycinnamate esters (Holloway, 1983; Graça and Pereira, 1997; 

Nawrath et al., 2013). Glycerol, ferulates and esterified hydroxycinnamic acids are also 

present in the SPAD (Riley and Kolattukudy, 1975; Cottle and Kolattukudy, 1982; Moire 

et al., 1999). The biopolymers suberin and cutin are similar, but can be differentiated by 

the characteristic presence of longer chain fatty acid derivatives (≥ C20) and the higher 

proportion of dicarboxylic acids found in suberin relative to cutin (Kolattukudy, 1981). 

The SPAD monomers are cross-linked by glycerol bridges to yield a three-dimensional 

polyester that is thought to promote its structural integrity. While monomers in the SPPD 

are also cross-linked, this is thought to be mediated via inter-unit C-C and ether linkages, 

rather than ester bonds (Bernards et al., 1995; Bernards, 2002). Glycerol also likely links 

the SPPD to the SPAD (Schmutz et al., 1994; Graça and Pereira 1999; Graça and Pereira, 

2000). A proposed model for the two-domain macromolecular structure of suberin is 

depicted in Figure 1.1 with its sub-cellular spatial localization shown in Figure 1.2. 
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Figure 1.1. Proposed two-domain model for the macromolecular structure of suberin. Adapted from Bernards (2002). Phenolic 

compounds are highlighted in red, and aliphatic constituents are shown in blue. 



4 

 

 

Figure 1.2. Spatial localization of the two-domain suberin macromolecule in periderm cells. The schematic is based on 

transmission electron microscopy imaging from suberized Arabidopsis secondary root cell periderm, in which the SPPD is anchored to 

the primary cell wall, and the SPAD can be seen as alternating light and dark bands that spans the space between the primary cell wall 

and the plasma membrane, around the entire cell. This figure has been adapted from figures by Molina (2010) and Bernards (2002).   
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1.3 Functional role of suberin as a physicochemical barrier 
to mitigate environmental stress 

Suberin is present in different plant tissues and organs, where its physiological role is 

somewhat specialized to its localization, and its exact pattern of deposition and 

composition varies by developmental stage and species (Wilson and Peterson, 1983; 

Schreiber et al., 1999; Zeier et al., 1999). Generally, the role of suberin is to protect 

against water loss and infection, which is likely a product of its heteropolymeric 

composition. 

1.3.1 Role of root-localized suberin 

Suberin is deposited species-dependently in endodermal and/or exodermal layers of root 

cells. Arabidopsis mutant studies have demonstrated the requirement of properly formed 

endodermal suberin to appropriately control the uptake and transport of water and 

minerals. The enhanced suberin 1 mutant has elevated endodermal root suberin content, 

and is connected to a reduction in transpiration and an increase in shoot solute 

accumulation (Baxter et al., 2009; Ranathunge and Schreiber, 2011). Additionally, loss of 

function horst/cyp86a1 mutants that produce ca. 33% less aliphatic suberin monomers in 

roots than wild type plants demonstrate increased permeability to water and ions at the 

root level (Höfer et al., 2008; Ranathunge and Schreiber, 2011). That said, in spite of the 

enhanced level of aliphatic monomers in enhanced suberin mutants, hydraulic 

conductivity studies revealed that permeability was no lower than in wild type plants 

(Ranathunge and Schreiber, 2011). Suberin deposition can also be activated in roots by 

salt stress, and conversely, down-regulated under nitrate starvation conditions to facilitate 

soil nutrient uptake (Schreiber et al., 2005a). Comparisons of soybean (Glycine max L. 

Merr.) genotypes with varying degrees of root epidermal and endodermal suberization 

revealed that increased levels of root aliphatic suberin deposition were strongly correlated 

with improved resistance to a known root rot disease causing oomycete, Phytophthora 

sojae (Thomas et al., 2007).  
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1.3.2 Suberin role in cork cells 

Bark is the protective layer outside of the vascular cambium of plant stems that undergo 

secondary thickening, and comprises different cell and tissue types that exhibit various 

functions. These physiological roles include protection against herbivory, microbial 

infection, and environmental stress, as well as wound-healing, and translocation and 

storage of soluble organic compounds (Lev-Yadun, 2011). Many protective properties 

can be attributed to the presence of cork, or suberized phellem cells, which derive from 

the meristematic secondary phloem (i.e.) phellogen layer, that is produced by the vascular 

cambium. The cork oak (Quercus suber L.) is a model woody species and representative 

of suberized phellem cells, due to its thick phellem layer that is commercially used for 

cork-derived products, and it is the namesake of this biopolymer (Graça and Pereira, 

1997; Pereira et al., 1987). The hydrophobic and impermeable properties of cork are 

largely attributed to the presence of suberin and its associated waxes deposited in these 

bark cells, which prevents water loss and infection in trees (Marques and Pereira, 1987; 

Silva et al, 2005; Soler et al., 2007). 

1.3.3 Suberin function in potato tubers 

Potato tuber skin (i.e., periderm) contains suberin in its outermost layers. Proper 

formation and maturation of an intact, suberized tuber periderm yields a physical barrier 

again various environmental threats and stresses, including microbial infection, insects, 

water vapor loss (Lulai and Freeman, 2001; Serra et al., 2010), and skinning injury 

(Lulai, 2001; Lulai and Freeman, 2001; Schreiber et al., 2005b; Lulai, 2007).  For 

example, studies focused on pathogen-resistant and susceptible potato cultivars have 

pointed to suberin as an important barrier to microbial infection of tubers (O’Brien and 

Leach, 1983; Vaughn and Lulai, 1991). 

Suberization is also induced by wounding in potato tubers, where the deposition of 

suberin is one aspect of the overall wound-healing process that aids in sealing off 

damaged cells at the wound site (e.g., Lulai, 2007). Wound-associated suberin production 

has been well-studied in wounded potato model systems that allow for characterization of 

different suberization events over the course of wound-healing. A wound-healing potato 
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tuber study by Lulai and Corsini (1998) exploited the differential timing of SPPD and 

SPAD deposition to highlight the distinct physiological role of each suberin domain in 

resistance to pathogen infection. The immediately deposited SPPD was found to promote 

resistance to a bacterial cause of soft rot (Erwinia carotovora subsp. carotovora), but the 

phenolic matrix alone was not sufficient to prevent infection by a fungal pathogen, 

Fusarium sambucinum. Fungal resistance was only attained once the aliphatic portion of 

suberin was fully deposited later into the time course, ca. 5-7 days after wounding.  

Suberin plays a critical role in protection against various abiotic and biotic stresses, and 

its production can be adjusted based on environmental signals. Due to its multitude of 

protective functions across the plant kingdom and in different plant organs and tissues, 

including those of agricultural and economic value, it is important to gain a fundamental 

understanding of how this complex polymer is synthesized. 

1.4 Suberin biosynthesis and assembly 

Decades of research that encompasses different species and employs several experimental 

approaches has led to the elucidation of many biosynthetic steps required for suberin 

production. Generally, characterization has focused on steps from two biosynthetic 

pathways implicated in phenolic and aliphatic monomer production required for the 

assembly of the respective poly(phenolic) and poly(aliphatic) suberin domains, while 

novel aspects of linkage and assembly have also been recently elucidated.  

Total and relative suberin monomer composition varies between developmental stages, 

plant organs and species, but is similar enough that diverse plants express shared 

pathways required for suberin production (Matzke and Riederer, 1991; Zeier and 

Schreiber, 1998; Ranathunge et al., 2011). Many characterized suberin biosynthetic 

enzymes and their encoding genes exhibit conserved functionality across species, making 

many studies in different plant systems relevant and applicable to others.  

Loss of function mutants have been used to characterize biosynthetic genes in 

Arabidopsis that translate well to putative potato orthologs in forward and reverse 

genetics experiments. For example, a key fatty acid ω-hydroxylase required to produce 
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predominant aliphatic suberin monomers, AtCYP86A1, was characterized using a 

cyp86a1/horst mutant system (Höfer et al., 2008), and subsequent reverse and forward 

genetics approaches in potato confirmed the function of its putative ortholog 

StCYP86A33 (Serra et al., 2009b; Bjelica et al., 2016). The wounded potato tuber has 

also been used as an effective model system to track temporal changes in metabolism and 

establish the timing of major biosynthetic events. 

1.4.1 Biosynthesis of phenolic domain components 

The SPPD is mostly made up of hydroxycinnamic acids and their derivatives, which are 

derived via the phenylpropanoid pathway. This biosynthetic pathway is highly conserved 

across the plant kingdom and is involved in preliminary steps that can be channeled 

towards the biosynthesis of different secondary metabolites, including monomers specific 

to lignin and the SPPD. The phenylpropanoid biosynthetic pathway is well-established in 

Arabidopsis due to its role in lignin biosynthesis, with many steps also characterized in 

potato. 

Phenylalanine ammonia lyase (PAL) encodes the first committed step of the 

phenylpropanoid pathway, which converts the shikimate pathway-derived amino acid 

phenylalanine into cinnamate (Havir and Hanson, 1970). The next step towards phenolic 

production involves para-hydroxylation of cinnamic acid by cinnamic acid 4-

hydroxylase (C4H) to yield 4-hydroxycinnamic acid, i.e. p-coumaric acid (Wang-Pruski 

and Cantle, 2004). Once formed, the hydroxycinnamate skeleton has several possible 

metabolic fates. Hydroxylation and methyl-transfer can be carried out by p-coumarate 3-

hydroxylase (C3H), caffeic acid O-methyltransferase (COMT) and ferulate 5-

hydroxylase (F5H) to synthesize other hydroxycinnamic acids (caffeic acid, ferulic acid, 

5-OH-ferulic acid and sinapic acid), found in the final suberin poly(phenolic) domain 

(Meyer et al., 1996; Humphreys et al., 1999; Schoch et al., 2001). COMT can utilize both 

caffeate and 5-hydroxyferulate as substrates in this pathway (Humphreys et al., 1999).  

Another phenylpropanoid route involves p-coumaric acid conversion into its acid-thiol 

derivative p-coumaroyl-CoA by 4-coumarate-CoA ligase (4CL) (Schneider et al., 2003), 

which can then be channeled toward three possible pathways for production of SPPD 
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monomers. One pathway leads to the production of hydroxycinnamoyl-CoA esters via 

hydroxycinnamoyl transferase (HCT)-mediated transfer of caffeoyl to CoA (Hoffmann et 

al., 2003), followed by p-coumaroyl-quinate/shikimate 3’-hydroxylase (C3’H) activity 

that can convert its two substrates p-coumaroyl shikimate and p-coumaroyl quinate to 

caffeoyl shikimate and caffeoyl quinate, respectively (Knollenberg et al., 2018). 

Caffeoyl-CoA, produced via C3H-hydroxylated p-coumaroyl-CoA or HCT-mediated 

conversion of caffeoyl quinate, can then undergo caffeoyl-CoA-O-methyltransferase 

(CCoAOMT)-catalyzed methylation of caffeoyl-CoA to yield feruloyl-CoA (Do et al., 

2007).  

Another metabolic pathway yields hydroxycinnamoyltyramines via tyramine 

hydroxycinnamoyl transferase (THT)-mediated conjugation of tyramine, derived from 

the decarboxylation of tyrosine (tyrosine decarboxylase; TyDC), with feruloyl-CoA, 

synthesized in the aforementioned pathway, to yield feruloyltyramine destined for the 

SPPD (Negrel et al. 1993). This pathway is also implicated in the wound- and pathogen-

induced biosynthesis of hydroxycinnamic acid amides in leaves (e.g. Hagel and Facchini, 

2005; Yogendra et al. 2014) 

Additionally, hydroxycinnamoyl-CoA thioesters are converted by cinnamoyl-CoA 

reductase (CCR) into their corresponding hydroxycinnamaldehydes as a committed step 

towards monolignol biosynthesis (Larsen, 2004). Cinnamyl alcohol dehydrogenase 

(CAD) carries out the final NADPH-dependent reduction of hydroxycinnamaldehydes to 

their respective alcohols (i.e., monolignols). Since monolignols make up a small 

proportion of the SPPD (Bernards et al., 1995), and CCR enzyme activity is lower in 

suberizing potato tubers relative to lignifying Pinus taeda cells (Bernards et al., 2000), 

the monolignol biosynthetic pathway is considered the least significant metabolic route 

for hydroxycinnamoyl-CoAs (Bernards, 2002). 

1.4.2 Assembly of the suberin poly(phenolic) domain 

The poly(phenolic) domain of suberin can be considered “lignin-like” due to the presence 

of phenylpropanoid-derived monomers that include monolignols, cross linked to the cell 

wall (Kolattukudy, 1980; Kolattukudy, 1981). Lignin and the SPPD are distinguished by 
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their main monomer constituents (Bernards and Lewis, 1998; Bernards and Razem, 

2001). The phenolic domain of suberin is thought to undergo polymerization mediated by 

peroxidase(s) and H2O2 (Espelie and Kolattukudy, 1985; Espelie et al.,1986), in a process 

akin to that described for lignification (Kolattukudy, 1980; Nawrath, 2002). A 

suberization-associated, H2O2-dependent anionic peroxidase from potato tuber is 

involved in the cross-linking of SPPD monomers via preferential oxidation of 

hydroxycinnamates with a greater number of methoxy groups (i.e. namely ferulic acid 

and its derivatives to a greater degree than caffeic acid, followed by coumaric acid and 

sinapic acid) over their corresponding alcohols, consistent with the greater proportion of 

polymerized hydroxycinnamates over monolignols in the wound-healing tuber SPPD 

(Bernards et al., 1999). The required H2O2 is likely generated by an NAD(P)H-dependent 

oxidase system, which is supported by evidence of reactive oxygen species production 

via oxidative bursts that occur upon tuber wounding (Bernards and Razem, 2001; Razem 

and Bernards, 2002; Razem and Bernards, 2003). Conversely, a salt stress-inducible 

cationic peroxidase, TPX1, has been described in tomato as playing a role in the 

polymerization of lignin and phenolic suberin monomers in roots (Quiroga et al., 2000, 

2001). This highlights the differences in this process that may exist even in closely 

related solanaceous species. 

Mediators that coordinate mechanisms required for the SPPD-specific polymerization 

processes have not been established, although this level of regulation has been elucidated 

in regards to Casparian strip formation. Casparian strip membrane domain proteins 

(CASPs) and CASP-like proteins (CASPLs) are involved in the precise localization of 

Casparian strip-specific cell wall modifications by acting as membrane scaffolds and 

mediating the recruitment of machinery involved in the polymerization of phenolics 

(Roppolo et al., 2011; Roppolo et al., 2014). Vulavala et al. (2017) demonstrated the 

expression of two CASP genes in developing potato tuber periderm cells, which produce 

suberin, but do not contain Casparian bands, and therefore may point to a role for 

CASP/CASPL family proteins in overseeing SPPD assembly.   
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1.4.3 Biosynthesis of suberin poly(aliphatic) domain monomers 

The SPAD consists primarily of cross-linked modified fatty acids, primary alcohols and 

glycerol that are ultimately derived from glycolysis and the tricarboxylic acid cycle, 

which yield acetyl-CoA for plastid-localized fatty acid biosynthesis (Kolattukudy, 1981; 

Schreiber et al., 1999). Several downstream modifications of 16:0 and 18:0 fatty acid 

precursors yield final aliphatic suberin monomers characteristic of the SPAD. These 

include elongation long (C20) and very long chain fatty acids (VLCFA; mostly C24-

C32), reduction of long and VLCFAs to primary alcohols, and ω-hydroxylation and 

further oxidation of ω-hydroxy fatty acids to α,ω-dioic acid. Several enzymes that 

catalyze these modification steps have been identified and characterized in Arabidopsis 

and/or potato systems (e.g. reviewed by Vishwanath et al., 2015).  

Acyl activation is typically an initial requirement for downstream fatty acid metabolism 

and is carried out by long-chain acyl-CoA synthetase (LACS) family enzymes prior to 

cutin monomer biosynthesis (Schnurr et al. 2004; Lü et al. 2009), although no LACSs 

linked to suberin biosynthesis have been described. Additionally, acyl activation of final 

SPAD monomers may prelude linkage of modified aliphatic monomers with glycerol. 

Chain elongation and oxidation represent two major fatty acid modification routes that 

yield the predominant aliphatic suberin monomers. Elongated chains can be reduced to 

form primary alcohols or decarboxylated to form alkanes, while a large proportion of 

oxidized fatty acids in the SPAD are short chains (especially C18) that have undergone 

desaturation instead of elongation. However, some elongated fatty acids are also oxidized 

to yield VLC ω-hydroxy and α,ω-dicarboxylic acids and are found in the SPAD.  

1.4.3.1 Elongation 

Fatty acid elongation is carried out by endoplasmic reticulum membrane-localized fatty 

acid elongase (FAE) complexes made up of four enzymes (reviewed by Samuels et al., 

2008). β-ketoacyl-CoA synthases (KCS) are elongase complex enzymes that catalyze the 

condensation of acyl-CoA with fatty acyl-CoAs, and determine the chain length 

specificity for each reaction, although single condensing enzymes are able to participate 

in some consecutive elongation steps (Blacklock and Jaworski, 2006). Suberin-related 
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KCSs have been characterized in Arabidopsis and potato. AtKCS2/DAISY was first 

described by Franke et al. (2009) as a salt stress-inducible docosanoic acid synthase, 

since daisy mutants produced root suberin that exhibited a concomitant decrease in C22 

and C24 VLCFA-based constituent accumulation, with increased C16, C18 and C20 

amounts. AtKCS20 was shown to be functionally redundant with AtKCS2, based on 

similar observations of C22 and C24 reductions in kcs20 mutants, and a more substantial 

alteration to root suberin aliphatics in kcs2 kcs20 double mutants (Lee et al., 2009). In 

potato, StKCS6 is involved in aliphatic suberin and wax monomer synthesis (Serra et al., 

2009a). StKCS6 silencing led to a drop in C28 and greater chain lengths, and led to 

accumulation of C26 and shorter chains, indicating that StKCS6 acts on C26 substrates 

but might elongate shorter chains as well.  

The KCS-generated β-ketoacyl-CoA is then reduced by a β -ketoacyl-CoA reductase to 

hydroxyacyl-CoA. Beaudoin et al. (2009) described a β-ketoacyl-CoA reductase 

(AtKCR1) that catalyzes the first reduction step by the fatty acid elongase complex to 

yield chain lengths greater than C18 for incorporation into different aliphatic polymers 

including the SPAD. There have been no potato homologs characterized to date. 

The next step involves a 3-hydroxyacyl-CoA dehydrogenase-mediated dehydration of 3-

hydroxyacyl-CoA to yield trans-2,3-enoyl-CoA. In Arabidopsis, AtPASTICCINO2 

(AtPAS2) encodes the third elongase complex enzyme (Bach et al., 2008). While suberin-

specific aliphatic analysis was not performed in AtPAS2 characterization, it has 

demonstrated involvement in synthesizing VLCFA used as precursors for various lipidic 

compounds, including seed storage triacylglycerols, cuticular waxes and sphingolipids.  

The final enzyme in the fatty acid elongase complex is an enoyl CoA reductase (ECR) 

that reduces its substrate into the elongated chain with two additional carbons. An 

enzyme has been characterized only in Arabidopsis, based on cer10 mutants. AtECR was 

characterized by Zheng et al. (2005) in terms of its requirement for proper production of 

cuticular wax, seed triacylglycerols and sphingolipid production, but no suberin aliphatics 

were specifically analyzed. 
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1.4.3.2 Oxidation 

Oxidation reactions yield modified fatty acids that comprise over half of the SPAD 

constituents in many plant species, including mid-chain epoxide and hydroxylated 

octadecanoates, and ω-hydroxyalkanoic acids and their further oxidized α,ω-dioic acid 

derivatives generated from saturated 16:0 to 24:0 chains as well as 18:1 unsaturated fatty 

acids. The presence of hydroxylated and dioic VLCFAs indicates that higher chain length 

products undergo elongation prior to oxidation (Kolattukudy and Agrawal, 1974; 

Agrawal and Kolattukudy, 1978a, 1978b; Bernards, 2002). In potato suberin, ω-hydroxy 

acids and dicarboxylic acids are predominant and together constitute ca. 65% of the 

SPAD, with only trace quantities of mid-chain modified fatty acids, whereas in other 

species such as cork oak, mid chain epoxides and hydroxyalkanoic acids together 

comprise >70% of the SPAD (Holloway, 1983), and Arabidopsis root aliphatic suberin is 

made up of almost 70% ω-hydroxy acids and dioic acids (Franke et al., 2005). 

Terminal carbon hydroxylations are carried out by cytochrome P450 enzymes belonging 

to the 86A, 86B, 94A and 704B subfamilies (Durst and Nelson, 1995), where most have 

been characterized in Arabidopsis and potato. An Arabidopsis CYP86A, AtCYP86A1, 

was first enzymatically characterized as a fatty acid ω-hydroxylase by Benveniste et al. 

(1998). Studies of loss-of-function AtCYP86A1/HORST and AtCYP86B1/RALPH mutants 

demonstrated the role of two monooxygenases with varying substrate specificities and 

functions, where the former yields shorter chain ω-hydroxy acids (≤C18) and the latter is 

responsible for the formation of very long chain C22-C24 ω-hydroxylated fatty acids in 

root and seed suberin (Höfer et al., 2008; Compagnon et al., 2009). The AtCYP86A1 

ortholog StCYP86A33 has been characterized in forward and reverse genetic studies, 

where its silencing led to a reduction in 18:1 and 20:0 ω-hydroxy acids and α,ω-dioic 

acids in tuber skin and concomitant increase in 22:0 and 24:0 monomers (Serra et al., 

2009b), and it was found to complement the Arabidopsis cyp86a1/horst-1 mutant by re-

establishing production of oxidized monomers (Bjelica et al., 2016). Complementation of 

horst-1 mutants with either AtCYP86A1 or StCYP86A33 resulted in an increase in longer 

chain distribution than the typically most abundant hydroxylated and dioic 18:1 

monomers that is not consistent with RNAi-induced observations (Serra et al., 2009b; 
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Bjelica et al., 2016). This suggests these CYP86As could also use longer chains in 

addition to their demonstrated shorter chain (C12-C18) substrates, or this result could be 

a byproduct of the experimental system (Benveniste et al., 1998; Serra et al., 2009b; 

Bjelica et al., 2016).  

Oxidation of the 16:1 ω-hydroxyhexadecanoic acid, into its corresponding α,ω-dioic acid 

is thought to be carried out by two NADP-dependent oxidoreductases in potato (Agrawal 

and Kolattukudy, 1977, 1978a). In the proposed sequence of events, an ω-hydroxy fatty 

acid dehydrogenase first oxidizes the ω-carbon of ω-hydroxy fatty acids to produce an ω-

oxo fatty acid, which is further oxidized to a dicarboxylic acid by an ω-oxo acid 

dehydrogenase (Agrawal and Kolattukudy, 1978a, 1978b). Only the former appeared to 

be wound-induced in potato tubers, while the latter demonstrated higher activity than the 

first enzyme despite a lack of wound-induced change, suggesting that the rate-limiting 

step for dicarboxylic acid production is the conversion of ω-hydroxy to ω-oxo acid 

(Agrawal and Kolattukudy, 1978a). Since longer chain α,ω-dioic acids are present in the 

SPAD, this suggested pair of enzymes either may not have such a narrow chain length 

substrate specificity, or there may be other unidentified enzymes responsible for 

catalyzing these steps with longer chains (Bernards, 2002). Studies in other species 

suggest that these enzymatic activities are carried out successively by a single 

monooxygenase. That is, the CYP94 family of monooxygenases have been implicated in 

catalyzing the formation of cutin and suberin ω-hydroxy fatty acids and dioic acid 

monomers, by catalyzing ω-hydroxylation of fatty acids. Some enzymes have 

additionally demonstrated a role in subsequent dicarboxylic acid formation. In vetch, the 

phytohormone-responsive VsCYP94A1 oxidizes the terminal methyl of C10-C16, C18:1, 

C18:2 and C18:3 chains (Tijet et al., 1998; Benveniste et al., 2005). Tobacco 

NtCYP94A5 is capable of oxidizing the terminal methyl group of saturated and 

unsaturated C12-C18 fatty acids into ω-hydroxy fatty acids, except for the C18:0 stearic 

acid, and the recombinant protein appears to act on 9,10-epoxystearic acid with the 

highest efficiency. NtCYP94A5 was the first plant enzyme observed to further catalyze 

the successive oxidation of its preferred substrate into its alcohol, aldehyde and α,ω-

diacid counterparts (Le Bouquin et al., 2001). The Arabidopsis CYP94C1 is a wound-
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responsive enzyme that can hydroxylate saturated, unsaturated and C12-C18 chains, 

including epoxy-fatty acids. AtCYP94C1 activity exhibited a preference for C12 and C18 

chains as substrates, with epoxystearic acid used most predominantly. Heterologous yeast 

microsome expression experiments demonstrated the ability of AtCYP94A1 to perform 

hydroxylations at ω-methyl group and in-chain positions, and to additionally catalyze 

α,ω-dioic acid formation (Kandel et al., 2007). While no CYP94s have been 

characterized to date in potato, Bjelica et al. (2016) demonstrated that the gene encoding 

a putative potato homolog of NtCYP94A5, StCYP94A26, is expressed in roots and 

wounded tubers.  

1.4.3.3 Reduction 

Fatty acyl-CoA reductases (FARs) catalyze the conversion of fatty acids to primary 

alkanols for incorporation in the SPAD. Domergue et al. (2010) used loss-of-function 

mutant lines to describe the role of three suberin-related FARs in Arabidopsis; AtFAR1, 

AtFAR4 and AtFAR5. All are involved in primary alcohol biosynthesis in root suberin 

and appear to have different saturated chain length substrate specificities. In far1 mutants, 

C22 alcohols were reduced in quantity, far4 mutants showed decreased C20 fatty 

alcohols and far5 accumulated lower amounts of C18 alkanols, while heterologous 

expression in yeast demonstrated a range of chain length specificities from C18-C24. 

These fatty alcohol-forming enzymes also contribute toward formation of a large 

proportion of Arabidopsis root wax alkyl hydroxycinnamates (Kosma et al., 2012; 

Vishwanath et al., 2013). 

Acyl-activated VLCFAs can also be routed towards synthesis of waxes that make up a 

soluble (i.e. unpolymerized) portion of the SPAD (Soliday et al., 1979). Decarboxylation 

reduces acyl-CoAs into intermediate aldehydes, and subsequent decarbonylation 

produces VLC-alkanes. In Arabidopsis, AtCER1 and AtCER3 are core components of a 

redox-dependent multi-enzyme complex, which interact with electron-transferring 

cytochrome B5 hemoproteins (CYTB5s) as cofactors to perform these alkane forming 

reactions after activation by long-chain acyl CoA synthase, AtLACS1 (Lü et al., 2009; 

Bernard et al., 2012).  
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1.4.4 Esterification, deposition and assembly of the suberin 
aliphatic domain components 

The SPAD contains modified fatty acid monomers linked to glycerol, and wax 

components such as alkyl ferulates that represent the convergence of the main suberin-

associated phenolic and aliphatic monomer biosynthetic pathways. Aliphatic monomers 

such as ω-hydroxy acids and α,ω-dioic acids are linked together by esterification to 

glycerol (Moire et al., 1999; Graça and Pereira, 2000), where LACS-mediated acyl 

activation of modified products is likely required. The hydrophobic nature of aliphatic 

suberin constituents requires energetic export of these monomers from the plasma 

membrane into the lipophobic cell wall. Several plasma membrane-localized ATP-

binding cassette (ABC) transporters have been characterized in associated with suberin 

assembly.  

1.4.4.1 Acyl-CoA-dependent aliphatic monomer esterification 

Glycerol 3-phosphate acyltransferases (GPATs) catalyze the transfer of acyl-CoAs to 

glycerols, to yield monoacylglycerols. GPATs exhibit different regiospecificity, where 

GPATs capable of catalyzing acylation of the sn-2 position of glycerol-3-phosphate 

represent a land plant-specific lineage of these enzymes (Yang et al., 2012). Arabidopsis 

AtGPAT5 loss-of-function mutants demonstrate substantial decreases in C20-C24 

VLCFA and their ω-hydroxy and dicarboxylic acid derivatives in suberin found in roots 

and seed coats, and overexpression of AtGPAT5 led to accumulation of sn-2 

monoacylglycerols in the wax of Arabidopsis stems (Beisson et al., 2007; Li et al., 2007). 

These findings support a sequence of biosynthetic events in which monooxygenase-

mediated oxidation of a fatty acyl-CoA occurs prior to its linkage with glycerol (Beisson 

et al., 2007; Yang et al., 2012). The wound-inducible AtGPAT7 is in the same clade as 

AtGPAT5, and its overexpression resulted in the accumulation of suberin monomers.  

Feruloyl-CoA transferases are involved in the conjugation of the hydroxycinnamic acid, 

ferulic acid, with modified fatty acid suberin monomers. Feruloyl transferases have been 

characterized in Arabidopsis and potato, where feruloyl-CoA acts as an acyl donor in the 

reaction with an ω-hydroxy fatty acid acceptor to yield ferulate esters. The ferulate esters 
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represent a point of convergence between the two major suberin-related biosynthetic 

pathways and also may act as a point of connection between suberin domains, as they are 

proposed to promote linkage of the SPPD and SPAD, as well as between the SPPD and 

cell wall polysaccharides (e.g. Iiyama et al., 1990; reviewed by Graça and Santos, 2007; 

Pollard et al., 2008; Graça, 2009).  

In potato periderm, feruloyl transferase StFHT is a wound-inducible fatty alcohol/fatty ω-

hydroxyacid hydroycinnamoyl acyltransferase that catalyzes the conjugation of ferulate 

to ω-hydroxyacids and primary alcohols in suberin, and primary alcohols in associated 

wax. StFHT may have a role in the synthesis of ω-feruloyloxy fatty acids that serve as 

precursors for ω-feruloyloxy fatty acid glycerol esters (Serra et al., 2010; Boher et al., 

2013). In Arabidopsis, aliphatic suberin feruloyl transferase/ω-hydroxyacid 

hydroxycinnamoyltransferase (AtASFT/HHT) transfers feruloyl-CoA to ω-hydroxy acids 

with an in vitro preference for 16-hydroxypalmitic acid and also demonstrates transferase 

activity toward primary fatty alcohols (Gou et al., 2009; Molina et al., 2009). 

1.4.4.2 ATP-binding cassette (ABC) transporters implicated in 
suberin deposition  

A rice transporter RCN1/OsABCG5 is required for root suberization (Shiono et al., 

2014). That is, loss-of-function reduced culm number 1 (rcn1) mutant plants 

demonstrated lower quantities of C28 and C30 fatty acids, C16, C28 and C30 ω-hydroxy 

fatty acids and C16 and C18 dioic acids with a concomitant increase in C24 and C26 ω-

hydroxy acids, relative to wild type plants. 

A pathogen-inducible potato transporter StABCG1 is involved in the deposition of 

suberin in tuber skin (Landgraf et al., 2014). RNAi-mediated silencing of StABCG1led to 

the reduction of two major C18:1 aliphatic monomers, ω-hydroxy-octadec-9-eneoic acid 

and its corresponding α,ω-dioic acid along with longer (≥C24) chain ω-hydroxy acids, 

dicarboxylic acids and fatty alcohols. Less ferulic acid was released in de-polymerized 

apolar extracts than in control plants, while feruloyloxy fatty acids and their glycerol 

esters, and other ferulic acid conjugates had accumulated in the soluble fraction of apolar 

extracts. These observations indicate that StABCG1 exports major aliphatic monomers 
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including those conjugated to ferulic acid and/or glycerol. StABCG11/WBC11 is the 

putative potato homolog of an Arabidopsis cuticle lipid exporter, AtABCG11/WBC11 

(Bird et al., 2007). While StABCG11/WBC11 has not been functionally characterized in 

potato, its root and tuber-localized expression was shown to be regulated by the suberin-

associated transcription factor StNAC103 (Verdaguer et al., 2016). Similarly, a putative 

ABC subfamily G, subgroup WBC/WHITE transporter is highly expressed in suberizing 

cork oak tissue (Soler et al., 2007).  

Yadav et al. (2014) used single, double and triple abcg2, abcg6 and abcg20 loss-of-

function mutant Arabidopsis lines to determine the role of these root and seed coat 

localized ABCG transporters. Aliphatic composition analysis of single mutants 

highlighted a role for each transporter in suberin production, although they did not have 

noticeable phenotypic changes. Triple mutants produced suberin with low levels of C20 

and C22 saturated fatty acids, C22 alkanol, and C18:1 ω-hydroxyacid and also displayed 

altered suberin organization and higher water permeability properties in roots and seed 

coats. The deposition of a suberin polymer in triple mutants, albeit altered, suggests that 

additional transporters are involved, and highlights the likeliness of substrate specificity 

along with some redundancy across transporters. Lipid transfer proteins (LTPs) may be a 

possible supplementary mechanism of suberin monomer export, and while none have 

been directly linked to suberin deposition, several LTP-encoding genes were up-regulated 

along with known suberin biosynthetic genes and ABCG transporters in an 

overexpression system studying a transcriptional regulator of suberization (Legay et al., 

2016). 

1.4.4.3 Possible mechanism for aliphatic monomer polymerization 

To date, no mechanism(s) has been described with respect to the assembly of SPAD 

monomers into a polyester macromolecule. In potato periderm suberin, Graça et al. 

(2015) proposed that two key acylglycerol building blocks provide the basis of the 

SPAD: glycerol-α,ω-diacid-glycerol as the core block, and glycerol-ω-hydroxyacid-

ferulic acid to link the SPAD to the SPPD. Given the similarity of aliphatic suberin and 

cutin, it is possible that SPAD monomers undergo an assembly process analogous to that 
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of cutin. Cutin monomers include C16 and C18 ω-hydroxylated acids, mid-chains with 

epoxy and hydroxyl groups. Primary functional groups can be linked to glycerol at 

different positions to form 1- and 2-monoacylgylceryl esters (Graça et al., 2002).  

The glycine-aspartic acid-serine-leucine (GDSL) motif lipase/hydrolase family of cutin 

synthases are acyltransferases that mediate the transesterification of major cutin 

monomers esterified to glycerol (Yeats et al., 2012; Girard et al., 2012). Cutin synthases 

from tomato fruit (CD1/SlCUS1) and Arabidopsis flowers (LTL1/AtCUS1) were shown 

to catalyze a two-step enzymatic polymerization reaction in vitro using a predominant 

cutin monomer as substrate (Yeats et al., 2012; Girard et al., 2012; Yeats et al., 2014; 

Philippe et al., 2016). First, cutin synthases act on a 2-mono-(10,16-

dihydroxyhexadecanoyl)glycerol molecule to generate an acyl-enzyme intermediate 

while freeing the glycerol moiety, then the intermediate reacts with another cutin 

monomer to yield a dimer. The polymerization reaction proceeds with fatty acyl groups 

from more molecules of the same monomer and increasingly larger oligomers as 

substrates (Jiang et al., 2011; Yeats et al., 2012; Yeats et al., 2014). However, tomato 

cutin synthase SlCD1/CUS1 produces only linear products from their acylglycerol 

substrates (Yeats et al., 2014), and suppression of SlCD1/CUS1 expression in RNAi 

knockdowns and mutants led to a change in esterification of sn-1,3 and sn-2 positions of 

glycerol, demonstrating that SlCD1/CUS1 acts on primary and secondary hydroxyl 

groups of its cutin monomer substrates (Philippe et al., 2016). Together, these findings 

suggest that additional mechanisms are involved in cutin polymerization, including those 

responsible for branching and cross-linking of the polymer (Yeats et al., 2014; Philippe et 

al., 2016). Due to the compositional similarities between the cutin and suberin polymers, 

it is feasible that GDSL-esterase/lipase enzymes may be involved in aliphatic suberin 

assembly. While there is some overlap between cutin and aliphatic suberin monomers, 

there are several distinct monomers in each polymer, and therefore such enzymes would 

require the ability to use suberin-specific acylglycerols as substrates.  
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1.5 Regulation of suberization 

The process of suberization must be highly coordinated to yield a complex, cross-linked 

heteropolymer that is specifically deposited in distinct subcellular locations and at 

different points in time. The differential timing of SPPD and SPAD monomer synthesis 

and deposition suggests that the enzymes involved in these biosynthetic pathways are 

controlled by different modes of regulation. The mechanistic details of this differential 

regulation are not understood, but some aspects regulating suberin biosynthesis have been 

described. A role for the phytohormone abscisic acid (ABA) has long been implicated as 

a regulator of suberization, and more recently, transcription factors in different species 

were demonstrated to control suberin biosynthetic genes.  

1.5.1 Phytohormone roles in suberization 

Abscisic acid is a carotenoid-derived signaling molecule involved in many developmental 

and stress-related processes in plants, which include mediating abiotic stress response to 

drought as well as biotic plant-pathogen interactions (e.g. reviewed by Mauch-Mani and 

Mauch, 2005; Tuteja, 2007). Abscisic acid has long been thought to play a regulatory role 

in potato tuber suberization. Given the established role of ABA in drought and pathogen 

stress responses, the involvement of ABA in suberization is consistent with the 

physiological function of suberin in protection against water loss and infection.  

Soliday et al. (1978) first posited the likely role of this hormone in wound-induced tuber 

suberization after observing that ABA was released into a solution used to wash cut 

potatoes. Washing in the first two days after wounding was shown to prevent suberization 

and the exogenous addition of ABA back into washed tuber slices partially reversed this 

inhibition. This study proposed that in the early phase of wound-healing, ABA formation 

triggers some suberization-inducing factor that leads to the induction of enzymes for 

suberin biosynthesis. Follow-up work by Cottle and Kolattukudy (1982) determined that 

suberin and its associated waxes increased with ABA treatment. A slight enhancement of 

ω-hydroxy fatty acid dehydrogenase and phenylalanine ammonia-lyase activity, and a 

significant increase in suberization-associated peroxidase activity were observed after 



21 

 

ABA treatment, linking ABA to the induction of suberization enzymes (Cottle and 

Kolattukudy, 1982). 

De novo ABA biosynthesis is triggered by tuber wounding as shown by an increase in 

ABA accumulation and the induction of ABA metabolism at the transcriptional level 

(Lulai et al., 2008; Lulai and Suttle, 2009; Kumar et al., 2010; Suttle et al., 2013). Lulai 

et al. (2008) provided further evidence of a role for ABA in wound-induced suberin 

deposition through the use of the biosynthetic inhibitor fluridone, which targets the 

phytoene desaturase enzyme involved in carotenoid biosynthesis (Sanderman and Boger, 

1989), effectively diminishing substrate levels for de novo ABA production. While the 

impact of fluridone on suberization was only described using a fluorescence microscopy-

based qualitative rating system, the impact of ABA inhibition and exogenous ABA 

application both appeared to be stronger on the SPAD relative to the SPPD. Endogenous 

ABA accumulation also promotes potato microtuber dormancy (Suttle and Hultstrand, 

1994), and ABA levels decrease with age in resting tubers. The latter is linked to an age-

associated increase in water permeability and loss of wound-healing ability (Kumar et al., 

2010).  

Overall, the involvement of ABA in wound-induced and native periderm suberization is 

evident, but knowledge of its targeted impact on recently characterized biosynthetic steps 

is limited. In silico analysis of the putative promoter region of the key suberin aliphatic 

gene StCYP86A33 led to the identification of several ABA-linked response elements 

(Bjelica et al., 2016). Exogenous ABA application was shown to induce StFHT 

expression in wound-healing tubers in support of predicted StFHT cis-regulatory motifs 

for biotic and abiotic stress and ABA responsiveness, although the impact of ABA on 

StFHT-generated metabolites was not investigated (Boher et al., 2013). Further, ABA has 

been shown to up-regulate specific transcription factors associated with suberin 

deposition (see §1.5.2). 

Other established wound-signaling hormones, such as jasmonic acid (JA) and ethylene 

(Hildmann et al., 1992; Léon et al., 2001), do not appear to be implicated in potato tuber 

suberization, although Barberon et al. (2016) observed that ethylene application led to the 
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degradation of suberin in Arabidopsis root endodermal cells. Ethylene evolution occurs 

after tuber wounding, and while it may play a role in other aspects of the wound 

response, inhibition of ethylene biosynthesis demonstrated that there is no apparent effect 

of ethylene on wound-induced suberin production in tubers (Lulai and Suttle, 2004; Lulai 

and Suttle, 2009). Jasmonic acid content also increases upon tuber wounding, and 

subsequently drops prior to the time at which ABA and ethylene reach their maximum 

levels (Lulai and Suttle, 2009), but its removal by tuber slice washing suggested its lack 

of requirement for suberization (Lulai et al., 2011). StFHT contains many putative 

hormone-responsive motifs including many associated with JA and salicylic (SA), but 

treatment with these hormones respectively demonstrated no change, or suppression, of 

StFHT expression (Boher et al., 2013). 

1.5.2 Transcription factors 

In the context of secondary metabolism, transcription factors (TFs) have been shown to 

regulate entire pathways including multiple branches (e.g. Vitis vinifera VvMYB5a that 

controls the phenylpropanoid pathway in grapevine, Deluc et al., 2006), or subgroups of 

pathway genes, and under stress-specific conditions (e.g. the wound-, pathogen- and UV-

inducible poplar PtMYB134 that controls the proanthocyanidin branch of 

phenylpropanoid biosynthesis, Mellway et al., 2009). Transcription factors from 

Arabidopsis, potato, and apple have recently been implicated in suberin biosynthesis.  

AtMYB41 was characterized as a salt stress- and ABA-induced regulator of aliphatic 

and, less definitively, phenolic suberin biosynthesis by Kosma et al. (2014). AtMYB41 

overexpression in Arabidopsis and its subsequent heterologous, transient expression in 

Nicotiana benthamiana resulted in ectopic accumulation of key suberin biosynthetic gene 

transcripts and characteristic metabolites in usually non-suberizing leaves, including 

AtCYP86A1 and its ω-hydroxy fatty acid products as well as corresponding dicarboxylic 

acids (Kosma et al., 2014). While phenylpropanoid and lignin biosynthetic genes were 

also up-regulated, these were to a substantially lesser degree than suberin aliphatic 

biosynthetic genes, and mostly manifested as an increase in aliphatic suberin-associated 

ferulic acid. Remarkably, transmission electron microscopy revealed that the ectopic 
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deposition of suberin in leaf epidermal and mesophyll cells resembled the ultrastructural 

organization of suberin typical of Arabidopsis roots, which is also found in native and 

wound potato tuber periderm. The abundance of suberin synthesized in AtMYB41-

overexpressing plants supports a role for this TF as an important regulator of 

suberization, and also suggests the role of additional regulatory mechanisms to control 

biosynthesis and deposition on a finer scale. The lesser degree of AtMYB41 impact on 

phenolic suberin biosynthesis also suggests that further TFs and/or other mechanisms 

exist within a larger regulatory network.   

StNAC103 was recently described by Verdaguer et al. (2016) as a wound- and ABA-

inducible negative regulator of aliphatic suberin and wax accumulation. Its promoter 

drove GUS expression in native and wound periderm phellem cells undergoing 

suberization, and also in tissues that do not produce suberin, namely lateral root 

primordia and root apical meristems. Its RNAi-mediated gene silencing led to the 

significant up-regulation of genes with predicted or known involvement in different 

branches of suberin-related metabolism: StCYP86A33, StKAR, StFHT and 

StABCG11/WBC11. Although TF binding activities were not investigated, the impact of 

StNAC103-silencing on these genes was consistent with an increase in their substrates, 

such as alkylferulate wax components, ω-hydroxyacids, primary alcohols, and alkanes. 

The observed transcriptional repression activities of StNAC103 likely control suberin 

synthesis during wound-healing on a fine scale, and also probably function to prevent 

premature suberization in certain root localizations in vivo.  

A transcriptomic comparison between russeted (i.e. suberized) and non-russeted apple 

varieties led to the identification of Malus × domestica MdMYB93, which displayed 

significantly higher expression in russeted skin, and correlated with the differential 

expression of putative homologs of other key suberin-related genes CYP86A1, GPAT5 

and CYP86B1 (Legay et al., 2015). Using the same heterologous expression system as 

Kosma et al. (2014) in concert with metabolite and RNA-seq analysis, the apple 

MdMYB93 was characterized as a regulator of suberin biosynthesis and deposition 

(Legay et al., 2016). This TF was found to co-express with biosynthetic genes involved in 

lipid and phenylpropanoid metabolism, ABCG family transporters, and cell wall 
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development genes, and enhanced accumulation of key suberin monomers and building 

blocks. Although the phenolic composition was altered in the MdMYB93 overexpression 

system, these may reflect lignin-specific changes and the role of these compounds as 

SPPD monomers remains speculative (Legay et al., 2016).   

A similar transcriptomic investigation of suberized tomato and russeted apple fruits led to 

the identification of genes associated with developmental suberin production, and yielded 

a suberization-related gene expression signature found to be highly conserved across 

angiosperms (Lashbrooke et al., 2016). Arabidopsis AtMYB107 and AtMYB9 were 

discovered through the study of suberin signature gene knockout mutants. Further TF 

loss-of-function mutants were indeed reduced in suberin phenolic and aliphatic 

components, and AtMYB107 was up-regulated in Atmyb9 mutants. These TFs therefore 

appear to act together to effectively regulate suberin-related phenylpropanoid and fatty 

acid biosynthesis. This work additionally identified putative orthologs in a suberin-

related MYB clade through multi-species suberin signature co-expression analysis, 

including tomato SlMYB93, apple MdMYB53, grape VvMYB107, potato StMYB93 

(currently annotated as StMYB102) and rice OsMYB93 (Lashbrooke et al., 2016). 

In potato, StWRKY1 was not characterized in a suberin-specific context, but was shown 

to bind to promoter regions of phenylpropanoid genes encoding 4-coumarate-CoA ligase 

(4CL) and tyramine hydroxycinnamoyl transferase (THT) to mediate the deposition of 

protective hydroxycinnamic acid amides into cell walls of Phytophthora infestans-

inoculated aerial tissues (Yogendra et al., 2015). StWRKY1 silencing led to a drop in 

hydroxycinnamic acid amide abundance and rendered plants less resistant to the late 

blight-causing major crop pathogen (Yogendra et al., 2015), which is capable of directly 

infecting potato foliage as well as tubers (Lacey, 1967). These observations suggest that 

StWRKY1 has a role in stress-induced phenylpropanoid metabolism, though a role in 

wound-induced suberization has not been demonstrated. 

Among characterized TFs that regulate aspects of suberin-related metabolism, the 

aforementioned were either stress-induced TFs mostly affiliated with one suberin-

associated metabolic pathway, or TFs with a demonstrated a role for both major suberin 
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biosynthetic pathways in a developmental context. Therefore, no clear regulators of 

SPPD-related metabolism have been defined with respect to potato tuber wound-healing 

or periderm suberization, or stress-induced accumulation of suberin in Arabidopsis roots. 

The regulatory oversight of differential pathway induction during the wound response, in 

terms of timing of biosynthesis and spatial organization of deposited suberin, remains 

unestablished.  

1.6 The wound-healing potato tuber 

Wounding induces a cascade of responses that lead to healing and protection of damaged 

tissue. In potato tubers, suberization is arguably the most important component of the 

overall wound-healing process, which occurs over a period of time and across two main 

phases after injury. The ability to rapidly suberize wounded parenchyma is imperative for 

tuber protection against damage incurred during growth, harvest, handling and cutting for 

seed production (reviewed by Lulai, 2007). 

1.6.1 Wound-induced signaling 

The changes that occur between initial cell damage, induction of suberization and final 

wound periderm maturation require wound-related signaling (e.g. Léon et al., 2001). The 

initial perception of physical damage may be mediated by an immediate shift in osmotic 

potential in wounded cells (Rosenstock and Kahl, 1978), or by molecules that are 

released by damaged cells and act as elicitors in intact cells adjacent to the wound site, 

such as cell wall components like oligogalacturonides (Bishop et al., 1981). Ion flux 

resulting in plasma membrane depolarization, cytosolic calcium concentration changes, 

the generation of active oxygen species, and protein phosphorylation are aspects of 

proposed signal transduction mechanisms, which in turn lead to phytohormone-mediated 

transcriptional changes of defensive and wound-healing related genes (reviewed by de 

Bruxelles and Roberts, 2001).  

Many studies that have collectively led to the general characterization of wound signaling 

have been conducted in leaves. Signal(s) and mechanism(s) associated with suberization 

in potato tubers have not been fully elucidated (Lulai, 2007). Tubers produce reactive 
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oxygen species (ROS) within 30-60 minutes of wounding, in an event that is distinct 

from later oxidase-associated oxidative bursts thought to be involved in wound-healing 

and SPPD cross-linking (Razem and Bernards, 2003). Therefore, the first ROS may be 

involved in the initial signal cascade (Razem and Bernards, 2003). Wound-induced signal 

transduction that leads to suberization is likely mediated by ABA, but does not appear to 

require JA or ET, as described in §1.5.1. Aside from suberization, the subsequent wound 

response involves re-organization in overall metabolism to fuel and feed into suberin-

specific biosynthetic reactions, and cell cycle activities to develop new cells that 

underscore the physical healing process. Signals and/or other mechanisms that coordinate 

and activate these additional processes required for wound-healing have not been 

described. 

1.6.2 Two major stages are involved in tuber wound-healing 

The first stage of wound-healing leads to the formation of a closing layer within ca. 5-6 

days of wounding. Closing layer formation is considered a primary level of suberization 

and involves the reinforcement of 1-2 layers of existing parenchyma cells adjacent to the 

wound site via suberin deposition (Thomson et al., 1995; Lulai, 2007; Lulai and 

Neubauer, 2014). This initial response involves the induction of phenylpropanoid 

biosynthesis that yields suberin poly(phenolic) compounds. Once SPPD synthesis and 

deposition into parenchyma cell walls is completed, the SPAD monomers are 

synthesized, linked and deposited (Lulai and Corsini, 1998; Bernards, 2002). The second 

stage leads to the production of the wound periderm, or secondary suberization, which is 

initiated ca. 7 days after wounding and is completed over the course of another ca. 21 

days (28 days post-wounding) (Lulai and Neubauer, 2014). This process involves the 

generation of a new layer of meristematic progenitor cells called the wound phellogen, 

analogous to cork cambium. These mother cells give rise to phellem cells that undergo 

suberization and remain beneath the closing layer, and also produce phelloderm cells that 

reside below the phellogen (Lulai, 2007). The cessation of suberized phellem cells marks 

the maturation of the wound periderm (Lulai and Neubauer, 2014; Figure 1.3).  
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Figure 1.3. Wound-induced tuber suberization during two major stages of wound-

healing. A. The cut tuber surface where closing layer formation occurs in response to 

wounding and B-F. Tuber wound-healing is shown as it progresses over time, visualized 

by epifluorescence microscopy to detect accumulation of cell-wall localized 

autofluorescent suberin poly(phenolic) (SPP) compounds over the course of closing layer 

and wound periderm formation, respectively. B. At 0 days post wounding (dpw), SPPs 

have not accumulated, but weak parenchyma cell wall autofluorescence is visible. C. By 

3 dpw, SPPs are detectable in parenchyma cell walls adjacent to the wound site and 

represent a component of closing layer formation. D. At 5 dpw, SPP accumulation is 

present around entire walls of the outer cell layer; the suberin poly(aliphatic) (SPA) 

components do not autofluoresce and cannot be seen in this image, but accumulate by 

this point of wound-healing and closing layer formation. E. By 7 dpw, SPP deposition 

ceases within existing parenchyma cells, and active phellogen is present, as indicated by 

SPP autofluorescence on newly formed phellem cells beneath the closing layer, identified 

by their rectangular shape. The formation of newly suberizing phellem cells indicates that 

wound periderm formation has initiated. F. By 21 dpw, several layers of wound phellem 

cells have formed and undergone suberization during active wound periderm formation. 

The phellogen continues to generate phellem cells until 28 dpw. A limited number of 

non-fluorescent, parenchyma-like phelloderm cells form beneath the phellogen at this 

time. Bars = 5 μm. *Indicates cells that are not visibly autofluorescent. Figure copied 

directly and caption adapted from Lulai and Neubauer (2014). 
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1.6.3 Various biological events occur during the wound-healing 
time course 

The same suite of suberization-related genes are up-regulated in the two temporal cycles 

that define the two phases of wound-healing (Lulai and Neubauer, 2014), and wounding 

also induces cell wall protein and pectin methyl esterase genes that may be important for 

strengthening phellogen cell walls during closing layer and wound periderm formation 

(Neubauer et al., 2012).  

Interestingly, the cell cycle undergoes biphasic activation as well, in which DNA 

replication is induced and takes place without cell division during early closing layer 

formation, then cell division is evident during wound periderm formation (Lulai et al., 

2016). DNA synthesis during the S-phase does not occur until after 12 hours post-

wounding, and proceeds for ca. 30 hours, ending approximately 4 days before the closing 

layer is formed (Lulai et al., 2014). 

Less is known about the early stages of wound-healing prior to closing layer formation, 

although it is clear that important processes are initialized within ca. 12 hours of 

wounding. Fairly recent research is still uncovering the nuances of the temporal changes 

across wound-healing, which are not well-established at finer timescales. There is a 

necessary requirement for initiation of primary metabolism in the tuber as it transitions 

from dormant to wound-healing, in order to supply metabolites and energy-rich 

molecules for various wound-healing processes, including, but not limited to, 

suberization. Wound-healing tubers differentially synthesize groups of metabolites and 

express relevant biosynthetic enzymes on a temporal scale, including those directly 

incorporated into the suberin polymer, as well as primary metabolites (Yang and 

Bernards, 2007; Chaves et al., 2009).  

1.6.4 The wound-healing potato tuber as a model system for 
suberization studies 

After wounding, de novo suberin synthesis in usually non-suberizing tuber parenchyma 

cells functions to seal off and heal the damaged area, which promotes post-injury survival 

(reviewed in Lulai, 2007). Since wounded tuber surfaces produce large amounts of 
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suberin (Kolattukudy and Dean, 1974), and are amenable to exogenous application of 

chemicals such as phytohormones and inhibitors (e.g. Soliday et al., 1978; Cottle and 

Kolattukudy, 1982; Lulai et al., 2008), the wounded tuber provides an ideal model system 

for studying the process of suberization over time. This experimental system also offers 

the opportunity to explore the regulatory mechanisms involved in this induced stress 

response, and other aspects of wound-healing. 

Gaining a fundamental understanding of plant defenses and their regulation has important 

implications for the production of stress-tolerant crops, which could ultimately translate 

into enhanced crop yield and post-harvest stability. Suberin is ubiquitous to roots and 

stems that undergo secondary thickening (i.e. the cork layer of bark), and exhibits 

important physiological functions in the regulation of water and ion transport, as well as 

protection against pathogen infection (e.g. Kolattukudy and Dean, 1974; Lulai and 

Corsini, 1998; Silva et al., 2005; Baxter et al., 2009). The overall chemical composition 

and biosynthetic steps involved in wound-induced tuber suberin production are generally 

conserved in developmental tuber periderm suberization (Schreiber et al., 2005b), and in 

species that synthesize suberin localized to other plant organs (e.g. Arabidopsis roots and 

seeds, and tomato and apple fruit skins, e.g. Legay et al., 2015; Legay et al., 2016; 

Lashbrooke et al., 2016), and therefore the tuber model offers information that can be 

applied directly to this important crop species, but also to others. 

1.7 Dissertation overview 

I used a wound-healing potato tuber model system to explore the temporal dynamics of 

induced suberization and other associated wound-responsive processes at the levels of 

transcription and metabolite accumulation. The major objectives of this project were to 

establish mechanisms responsible for the differential temporal regulation of suberin-

related metabolism, gain insight into global changes that occur during wound-healing 

including, but not limited to, suberization, to further understand coordination and timing 

of events, and to identify novel targets for downstream characterization that include 

regulatory components and biosynthetic genes.  
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In Chapter 2, wound-healing time course experiments were used to test the hypothesis 

that ABA plays a regulatory role in the differential induction of suberin-related metabolic 

pathways. The regulatory role of ABA was evaluated by subjecting wounded tubers to 

exogenous treatments including additional ABA and an ABA inhibitor, fluridone (FD). 

Gene expression and metabolite analyses were performed in concert to establish the 

regulatory role of ABA at the level of transcription and biosynthesis across the closing 

layer timeframe of the wound-healing response. 

Abscisic acid is affiliated with the wound response, wound-healing and the suberization 

process (Cottle and Kolattukudy, 1982; Lulai et al., 2008; Kumar et al., 2010), but its 

impact on different branches of suberin-associated metabolism are not clear. The 

differential timing of the pathways involved in the production of SPPD and SPAD 

monomers has been established (Lulai and Corsini, 1998; Lulai and Neubauer, 2014), but 

no mechanisms regulating this varied induction had been specifically explored. The 

temporal patterns of expression for genes involved in linkage, assembly and transport of 

the polymer and their relationship to ABA are also not well-described in the wound-

healing context. This study expands upon previous knowledge to present new insights 

into the differential regulatory role of ABA on suites of genes representative of suberin 

biosynthesis and assembly.  

In Chapter 3, wound-healing tubers were used to construct a time-series transcriptome 

that was explored with both global and targeted approaches to address questions about 

the biological changes that occur during wound-healing generally, and suberization 

specifically. Time points were selected to gain insight into early stages of wound-healing 

prior to closing layer formation and capture initial regulatory events. Whereas many 

wound-healing tuber studies focus solely on suberization, I have considered other wound-

activated processes that are less directly related to suberin production, including primary 

metabolism, and other wound-related responses or requirements for healing, especially at 

the transcriptional level. In completing the first transcriptomic analysis of the wound-

healing potato tuber, it was possible to explore these different aspects of the overall 

wound response and test the hypothesis that tuber wounding leads to a largescale re-

configuration of transcription including early initiation of primary metabolism.  
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Chapter 4 is presented as an integration of findings about events that relate to tuber 

wound-healing and suberization. This discussion offers an updated overview to the 

standard suberization biosynthetic scheme by including new information about primary 

metabolism, regulatory components, novel prospects for assembly genes, and associated 

physical healing events, all framed within the early wound-healing time course leading 

up to closing layer formation. Suggestions for future studies focus on aspects of the 

wound-healing process that warrant additional exploration and downstream 

characterization, such as further work on novel candidate genes. 
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Chapter 2  

2 Differential induction of polar and non-polar metabolism 
during wound-induced suberization in potato (Solanum 
tuberosum L.) tubers 

A version of this chapter was published in The Plant Journal (Woolfson, K.N., Haggitt, 

M.L., Zhang, Y., Kachura, A., Bjelica, A., Rey Rincon, M.A., Kaberi, K.M. and 

Bernards, M.A. (2018) Differential induction of polar and non‐polar metabolism during 

wound‐induced suberization in potato (Solanum tuberosum L.) tubers. The Plant Journal, 

93(5), 931-942). 

2.1 Introduction 

In response to a wounding event, the cells surrounding a wound site synthesize and 

deposit the biopolymer suberin. The main functions of suberin are to seal the tissue at the 

wound site, and provide protection from water loss and invading pathogens (e.g., Esau, 

1977). The regulation of wound-induced suberin biosynthesis and deposition has been 

difficult to investigate due to the complexity of the biopolymer itself and the variety of 

physiological and metabolic processes activated upon wounding. Nevertheless, it is clear 

that suberization requires the coordination of two major plant metabolic pathways: 

phenylpropanoid biosynthesis and fatty acid biosynthesis, which yield phenolic and 

aliphatic monomers, respectively. These are polymerized in situ to form a poly aliphatic 

polymer (suberin) and its associated poly(phenolic) domain (reviewed in Bernards, 2002; 

Graça and Santos, 2007; Ranathunge et al., 2011; Beisson et al., 2012; Vishwanath et al., 

2015; Graҫa, 2015). In potato, the phenolic monomers include hydroxycinnamyl alcohols 

(monolignols), hydroxycinnamic acids, amides and esters, while the aliphatic monomers 

consist of very long chain fatty acids, 1-alkanols, ω-hydroxy fatty acids and α,ω-dioic 

acids. Once at the site of incorporation, phenolics are thought to be cross-linked within 

the cell wall via an oxidative free-radical coupling process (Razem and Bernards, 2002; 

Arrieta-Baez and Stark, 2006), while aliphatic monomers may be esterified together or 

through glycerol linkers to create an insoluble matrix (insolubles) (Beisson et al., 2007; 

Yang et al., 2010, 2012, 2016), or remain as un-linked waxes (solubles) associated with 
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the polymer (reviewed in Li-Beisson et al., 2013; Graça et al., 2015; Vishwanath et al., 

2015). While the precise macromolecular structure of suberin is not known, one common 

feature of suberized tissues is the presence of both phenolic and aliphatic polymeric 

domains within the same cells. There is considerable evidence that the poly(phenolic) and 

poly(aliphatic) domains are distinct (e.g., Mattinen et al., 2009), but cross-linked (Stark 

and Garbow, 1992; Yan and Stark, 1998).  

Wound-induced suberization involves two stages, progressing through the formation of a 

“closing layer” to the development of the wound periderm (Lulai and Neubauer, 2014). 

The closing layer is formed during the first seven days post-wounding in parenchyma 

cells surrounding the wound site. Over the next 40 days, the wound periderm is formed 

from newly developed meristematic tissue (the phellogen), resulting in ordered files of 

suberized phellem cells that provide a more substantial and long-term protective barrier 

(Lulai and Neubauer, 2014). Throughout this process, suberin biosynthesis and 

deposition requires both spatial and temporal regulation of individual genes as well as 

entire biosynthetic pathways. 

In the context of potato aliphatic suberin biosynthesis, exogenous ABA has been shown 

to play a role in the up-regulation of 18:1 ω-hydroxy fatty acid and α,ω-dioic acid 

biosynthesis, as well as impact the function of the suberin barrier in potato tubers as 

measured by the resistance of water vapour diffusion through wound-healed surface 

tissue (Soliday et al., 1978; Cottle and Kolattukudy, 1982). More recently, Lulai et al., 

(2008) treated wound-healing potato tubers with ABA as well as fluridone (FD), a 

phytoene desaturase inhibitor (Gamble and Mullet, 1986) that blocks the production of 

precursors of ABA biosynthesis. Using qualitative measures (intensity of histochemical 

staining), FD inhibition of ABA biosynthesis was shown to result in a decrease in the 

accumulation of aliphatic components as well as an increase in the amount of water loss 

post-wounding (Lulai et al., 2008). However, the impact on phenolic metabolism was less 

clear, and resulted in only a relatively small attenuation in the induction of phenylalanine 

ammonia-lyase (StPAL1) enzyme activity (Lulai et al., 2008; Kumar et al., 2010). In 

silico analysis of the approx. 1.7 kb upstream promoter region of StCYP86A33, which 

encodes a fatty acid ω-hydroxylase required for aliphatic metabolism (Serra et al., 2009a; 
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Bjelica et al., 2016), uncovered 41 putative ABA-like responsive elements relative to 

only a few other hormone-related promoter motifs (Bjelica et al., 2016). The prevalence 

of ABA-related motifs in the StCYP86A33 promoter further supports the role of ABA in 

regulating aliphatic suberin monomer biosynthesis. Similarly, a recent investigation into 

the interplay between ABA and salicylic acid on the expression of feruloyl transferase 

(FHT) in potato also supported a role for ABA in the regulation of aliphatic suberin 

biosynthesis (Boher et al., 2013). In Arabidopsis, ABA has also been shown to affect 

suberin biosynthesis and deposition. For example, Efetova et al. (2007) demonstrated a 

role for ABA in drought-induced stress protection. Similarly, Barberon et al. (2016) 

demonstrated a role for ABA in the developmental deposition of Arabidopsis root 

suberin, and provided evidence for interference in the process by ethylene.  

The recently sequenced Solanum tuberosum (group Phureja) genome (Xu et al., 2011), 

has facilitated the identification of many key suberin-associated genes in potato, some of 

which have now been functionally characterized (reviewed in Vishwanath et al., 2015). 

Coupled with the ability to accurately identify and quantify aliphatic suberin monomers, 

the goals of the present research were two-fold: (1) to investigate the involvement of 

ABA in the expression of a broad range of suberin-associated genes in potato and (2) to 

relate gene expression to changes in phenolic and aliphatic metabolism, during wound-

induced suberin biosynthesis and deposition.  

 

2.2 Materials and Methods 

2.2.1 Tissue preparation 

Four and eight month old potato (Solanum tuberosum cv. Russet Burbank) tubers were 

washed, surface sterilized with 20% v/v bleach for 20 minutes, transferred to a laminar 

flow cabinet, and left to air dry overnight. Tubers were sectioned into 1-2 cm thick slices, 

and subdivided into four treatments: (1) dH2O-washed control, (2) 10-4 M FD, (3) 10-4 M 

ABA (four month old tubers only) and (4) 10-4 M FD with 10-4 M ABA. Treatment 

concentrations were the same as reported previously (Soliday et al., 1978; Cottle and 
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Kolattukudy, 1982; Lulai et al., 2008). Tuber slices were incubated for 4 hours in 1 L of 

treatment solution, with occasional mixing, at room temperature in a laminar flow 

cabinet. FD and ABA (each at 100 mM) were dissolved in dimethyl sulfoxide (DMSO) 

and diluted with dH2O to the final concentration (10-4 M). DMSO was added to 0.1% v/v 

in the dH2O treatment. Tuber slices were subsequently rinsed with sterile dH2O and 

placed upright in sterile Magenta® boxes on an elevated mesh platform covering a wetted 

No.1 Whatman paper (to maintain a high humidity environment). All treatments were 

incubated in the dark at 28˚C for one to six days; with day zero samples collected 

immediately after treatment (at four hours post-wounding). 

To harvest tissue, tuber slices were sampled perpendicular to the cut faces with a No. 9 

copper cork borer (VWR International) to yield cylinders. Using a razor blade, the top 

and bottom tissue of the resulting tuber cylinders were quickly excised to create approx. 1 

mm thick tuber discs. For each time-point, tuber discs from the same Magenta® box were 

pooled to create one sample. All harvested tissue was quickly flash frozen and ground by 

mortar and pestle into a fine powder in liquid N2, then stored at -80°C (for RNA analysis) 

or -20°C (for metabolite and suberin analysis). Frozen tissue (for each treatment and 

timepoint) was subdivided for polar metabolite analysis, aliphatic suberin monomer 

composition analysis and RNA extraction. The entire time course experiment was 

independently replicated three times using four month old tubers (n=3), with three 

technical replicates per experiment for RT-qPCR, and twice with eight-month old tubers 

(n=2) with three technical replicates per experiment for chemical analysis, but pooled 

tissue (1 technical replicate per experiment) used for RT-qPCR.  

2.2.2 Polar metabolite analysis 

Approximately 100 mg of each sample was extracted using MeOH-methyltertbutyl ether-

water (1:3:1), with a modified protocol adapted from Giavalisco et al. (2011). Briefly, 

with sample tubes kept on ice, 500 μL of cold (-20˚C) 50% v/v MeOH containing 0.05 

mg/mL anthracene-9-COOH (C15H10O2; Exact Mass= 222.068085; [M+H]+ = 223.0685 

m/z) as a polar phase internal standard (Cuthbertson et al., 2013) was added to each 

sample, followed by the addition of 750 μL of cold (-20˚C ) methyltertbutyl ether 
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(MtBE). Tubes were thoroughly vortexed then placed on a rotating mixer in the cold 

room (5˚C) for 30 minutes. Samples were subsequently placed in a sonicating bath for 15 

minutes in the cold room prior to their centrifugation in a bench top microcentrifuge for 

10 minutes. In order to recover polar compounds, 400 μL of the MeOH-H2O phase was 

transferred to a clean microcentrifuge tube, diluted with 800 μL dH2O and re-centrifuged. 

The supernatant from each sample was then transferred to a screw cap chromatography 

vial and analyzed by LCMS in positive ion mode using a protocol based on Landgraf et 

al. (2014). 

Chromatographic separations were performed on an Agilent 1260 LC system (Agilent 

Technologies) equipped with a C-18 column (Eclipse Plus RRHT, 2.1 x 50 mm, 1.8 μm; 

Agilent Technologies) by applying the following gradient at a flow rate of 0.25 mL min-1, 

after a sample injection of 2 μL: 0 to 2 minutes, 100% A (0.1% v/v formic acid in Milli-Q 

H2O); 12 minutes, 70% A, 30% B (0.1% v/v formic acid in acetonitrile- H2O [9:1]); 17 

minutes, 100% B; hold at 100% B for 4 minutes. A 9 minute post-run equilibration was 

completed at 100% A. ESI-TOF parameters: drying gas at 350˚C, 10 mL/min; nebulizer 

at 45 PSI; Vcap at 4000 V; Fragmentor at 130 V. Spectra were collected at 1.03/sec 

(9729 transients/spectrum) in the 100-1700 m/z range. Reference mass solution 

(121.050873 m/z and 922.009798 m/z) was infused constantly via a second nebulizer at 

15 psi. ABA and fluridone were measured by mining the data for the appropriate ABA 

and FD mass ([M+H]+) signals at 265.1539 and 330.1121 m/z, respectively. Peak areas 

were obtained using Agilent Mass Hunter Qualitative Analysis software (VB05) (Agilent 

Technologies, USA).  

2.2.3 Aliphatic suberin monomer biosynthesis 

Samples were ground to a fine powder in liquid N2 with a mortar and pestle, transferred 

to pre-weighed cellulose filter paper squares (Whatman Ltd., England), rolled into 

cylinders and extracted in a micro-soxhlet extractor using 50 mL of 2:1 

chloroform:MeOH over 3 hours (twice), followed by an overnight extraction using 50 

mL of chloroform. Soluble extracts were retained, pooled and dried under vacuum in a 

round-bottom flask using a rotary evaporator (Büchi, Switzerland). Extractive-free 
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residues were dried at room temperature and weighed into sub-samples ranging from 5-

15 mg of tissue. Soluble extractives and extractive-free residues were prepared for GC 

analysis as described (Meyer et al., 2011). 

2.2.4 RNA isolation, cDNA synthesis and gene expression 
analysis 

Total RNA was isolated as described by Chang et al. (1993) from the flash-frozen tuber 

tissue. RNA was quantified spectrophotometrically using a NanoDrop model ND-2000c 

Spectrophotometer set for RNA determination (Thermo-Scientific). The quality of total 

RNA was determined by the ratio of absorbance at 260/280 nm (>1.8). Qualitative 

assessment of RNA was performed with an Agilent 2100 Bioanalyzer (RIN ≥ 7). RNA 

(0.5 μg/μL) was treated with DNase I (Invitrogen), and cDNA synthesis performed with 

SuperScript II/RNaseOUT (Invitrogen) according to the manufacturer’s instructions. 

RNA from three independent tuber-wounding experiments was used to produce three 

replicates of 24 cDNA templates (tissue collection on days 0, 1, 2, 3, 4 & 6 from the 4 

treatments). Quantitative reverse transcription PCR (RT-qPCR) was performed using a 

Bio-Rad CFX Connect system. Amplification of genes of interest and endogenous 

controls EF1-α and APRT (Nicot et al., 2005) from 47.6 ng cDNA template were 

performed using sequence-specific primers (Table 2.1) and iTaq Universal SYBR Green 

Supermix (Bio-Rad), according to the manufacturer’s protocol. A standard curve was 

performed in duplicate using pooled cDNA templates, with a dilution range from 381 to 

0.61 ng, to determine PCR reaction efficiency. The reaction efficiency (E) of each primer 

pair was calculated from the slope of the standard curve linear regression where E = 10(-

1/slope) and percent efficiency, E% = (E – 1) x 100% (Pfaffl, 2001). Expected RT-qPCR 

product lengths of all 14 genes were visualized by agarose gel electrophoresis. Each 

product’s corresponding gel band was extracted and its nucleotide sequence confirmed 

(Robarts Research Institute DNA Sequencing, London, ON). RT-qPCR specificity was 

confirmed by melt curve analysis and gene expression data were processed using Bio-

Rad CFX manager version 3.1 software according to the manufacturer’s directions to 

yield ΔΔCq values, based on the Pfaffl (2001) and Vandesompele et al. (2002) methods. 

Each set of 24 cDNA templates was used for RT-qPCR reactions with each primer pair, 
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using EF1-α and APRT as endogenous references (Nicot et al., 2005) for normalization of 

relative expression (Vandesompele et al., 2002). The calculated expression levels were 

corrected for PCR reaction efficiency. 

2.2.5 Data analysis 

Polar metabolite data (Agilent *.d files) were exported as *.mzData files for import into 

mzMine (V 2.14.2) (Pluskal et al., 2010) and molecular feature extraction and alignment. 

Broad molecular feature tolerance parameters (m/z ± 0.005; RT ± 0.5 min) were used to 

compensate for potential retention time and m/z drift across samples. After 

chromatogram deconvolution and alignment, data were normalized to the internal 

standard (anthracene-9-carboxylic acid), and exported as a *.csv aligned peak list. The 

data for each replicate were aligned separately, combined into one dataset, and manually 

re-aligned to retain features found consistently within treatments across all three 

replicates. After further normalization based on the mass of tissue extracted, the data 

were imported into SIMCA-P V14.0 (Umetrics). PLS-DA analyses were performed in 

SIMCA-P using default parameter settings. 

Data analysis of aliphatic suberin monomers combined GC-MS for aliphatic monomer 

identification and GC-FID to quantify the compounds of interest. Data were normalized 

to the internal standard (triacontane), and subsequently, tissue surface area. Statistical 

analysis of soluble and insoluble aliphatic suberin monomer datasets was done using R. A 

two-way Analysis of Variance (ANOVA) for total aliphatics was performed using 

treatment (water, FD, ABA, FD + ABA) and time (days: 0, 1, 2, 3, 4, 6) as factors, with a 

Tukey HSD post-hoc test. P-values less than 0.05 were reported as statistically 

significant. Statistical significance between water and other treatments are denoted by 

different symbols: *, FD; ^, ABA; +, FD + ABA. 

For RT-qPCR data, one plate of RT-qPCR reactions used 24 cDNA templates from one 

experimental replicate in technical triplicates along with no-template controls (to ensure 

no contamination), and inter-run calibrator samples for each target gene (to detect and 

correct for variation between targets from different experimental replicates assayed in 

separate RT-qPCR runs). This was repeated for all three biological replicates of cDNA 
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templates obtained from tissue from 3 independent experiments. Data were combined 

across the three replicate plates per gene and adjusted via inter-run calibration to yield 

means, and endogenous reference genes (StEF1-α and StAPRT) were used to normalize 

expression of each target gene as described in §2.2.4.  

Gene expression data was log2-transformed to meet required assumptions for statistical 

testing before it was plotted and subjected to statistical analyses. Two-way ANOVAs 

were performed using R for each target gene. If there was a significant interaction 

between treatment and time, one-way ANOVAs for treatment and/or time were 

performed as appropriate to isolate the effects of each factor on mRNA levels. Where 

there was a significant treatment effect, one-way ANOVAs were performed to identify 

significant differences in log2 gene expression (p ≤ 0.05; |log2-fold change| ≥ 1) between 

treatments at each time-point. Where there was a significant time effect, one-way 

ANOVAs were performed using sequential time-point contrasts, followed by Benjamini-

Hochberg post-hoc tests. Only cases where p ≤ 0.05 and the magnitude of change 

between the compared data points exceeded a 2-fold threshold were considered to be of 

biological significance (Karlen et al., 2007) (Table B1).  

 

2.3 Results 

2.3.1 Measurement of ABA in tubers post-wounding 

To ensure that FD treatment effectively inhibited de novo ABA biosynthesis in tubers, as 

well as to determine the duration of efficacy, ABA levels were measured in wounded 

potato tuber tissue collected from each treatment/time point, by extracting the [M+H]+ 

signal at m/z 265.1539 from polar metabolite profiles (Figure 2.1). The identification of 

ABA was verified using a targeted, isotope dilution method (Figure B1). In water-treated 

controls, ABA began to accumulate within two days post wounding, reaching a 

maximum, sustained level by three days post wounding. By contrast, ABA accumulated 

significantly slower in FD-treated tissue, remaining less than 50% of control levels until 

late in the time course (Figure 2.1). Exogenous ABA, whether in combination with FD 
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or not, was readily taken up by the wounded tuber tissue, reaching levels >200% of 

control four days post-wounding. Importantly, FD was only present in the polar extracts 

of tissues treated with FD, at all time points, confirming that the compound persisted 

throughout the analysis period (Figure B2). 

 

Figure 2.1. Wound-induced changes in abscisic acid (ABA).  ABA amounts were 

estimated from polar extracts prepared from tissue treated with water, fluridone (FD), 

ABA or FD + ABA by mining the data for the appropriate mass ([M + H]+) signal at 

265.1539. Peak areas were obtained using Agilent Mass Hunter Qualitative Analysis 

software (VB05; Agilent Technologies, USA), and converted into percent values by 

setting the maximum peak area for control extracts to 100%. Data points marked with 

different symbols indicate statistically significant differences (P < 0.05) between water 

and FD (*), water and ABA (^), and water and FD + ABA (+). Data points represent the 

sample mean ± SD (n = 3).  

 

2.3.2 Effect of ABA and FD treatment on suberin-related gene 
expression 

The wound-induced expression of a suite of genes involved in suberin biosynthesis was 

tracked in independent time course experiments using tubers of two different ages (four 

months and eight months post-harvest) with similar results. Tuber were treated with 

water (control), FD, ABA (4 month old tubers only) or FD + ABA. Genes were chosen 

on the basis of their involvement in phenolic metabolism (phenylalanine ammonia-lyase, 
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StPAL1; cinnamate-4-hydroxylase, StC4H; cinnamoyl-CoA reductase, StCCR; and 

tyramine:hydroxycinnamoyl-CoA hydroxycinnamoyl transferase, StTHT), aliphatic 

metabolism (two fatty acid ω-hydroxylases, StCYP86A33, StCYP86B12; fatty acyl-CoA 

reductase, StFAR3; and keto-acyl synthase, StKCS6), as well as convergent metabolism; 

i.e., that linking phenolic and aliphatic monomers (fatty acyl:hydroxycinnamoyl-CoA 

hydroxycinnamoyl transferase, StFHT), acyl chains and glycerol (glycerol-3-phosphate 

acyl transferases, StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the 

site of suberization (ATP-binding cassette transporter, StABCG1) (Table 2.1). 

Representative data from four month old tubers (three replicate experiments) are 

presented (Figure 2.2). Gene expression data for the older tubers is presented as 

supplemental data (Figure B3). 

Phenylalanine ammonia-lyase is the entry point enzyme into phenolic metabolism. 

Treatment of tuber tissue with FD, ABA or a combination of FD + ABA did not alter 

StPAL1 gene expression patterns relative to water-treated controls (Figure 2.2). That is, 

StPAL1 expression was induced within one day of wounding and remained relatively 

high throughout the time course, and treatment of tissue with FD, ABA or the 

combination of FD + ABA had no significant effect on this pattern of expression. In 

contrast, StC4H, which encodes the cinnamate-4-hydroxylase that inserts a hydroxyl 

group in the para position of cinnamic acid to form the characteristic “phenolic” 

functional group, did not show a clear pattern of induced expression, and neither FD, 

ABA nor FD + ABA treatments altered this result. While neither of these two genes 

encode enzymes unique to suberin-related poly(phenolic) domain formation, they 

represent general markers for the induction of phenolic metabolism. 

CCR, the gene encoding a cinnamoyl-CoA reductase that is responsible in part for 

reducing hydroxycinnamic acids to their corresponding alcohols (monolignols), showed 

an induced expression pattern similar to that of StPAL1, in response to wounding (Figure 

2.2). Monolignols are known to form part of the suberin poly(phenolic) domain (Bernards 

et al., 1995; Negrel et al., 1996). While FD-treatment did not affect StCCR expression, 

exogenous ABA (whether alone or in combination with FD) led to a significantly earlier 

expression of this gene. Expression of StTHT, the gene that encodes a 
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tyramine:hydroxycinnamoyl-CoA hydroxycinnamoyl transferase, was significantly up-

regulated soon after wounding in both control and FD-treated tubers, but not by ABA or 

FD + ABA treatments (Figure 2.2, Table B1).  

In water-treated controls, genes associated with aliphatic metabolism, including 

StCYP86A33 (fatty acid ω-hydroxylase), StCYP86B12 (fatty acid ω-hydroxylase), 

StFAR3 (involved in 1-alkanol formation) and StKCS6 (involved in acyl chain 

elongation), were induced by two days post-wounding (Figure 2.2). FD treatment of 

tubers resulted in a clear, significant delay in the induction of StCYP86A33, StCYP86B12, 

StFAR3, and StKCS6 gene expression, though differences in expression levels between 

water and FD treatments were non-significant by the end of the time course.  By contrast, 

the application of ABA (with or without FD) to wounded tubers resulted in significantly 

earlier StCYP86A33, StCYP86B12 and StFAR3 gene expression relative to water-treated 

tubers (Figure 2.2; Table B1).  

Genes involved in convergent metabolism linking phenolic and aliphatic monomers 

(StFHT), acyl chains to glycerol (StGPAT5, StGPAT6), or in the delivery of aliphatic 

monomers to the site of suberization (StABCG1) all shared the same temporal expression 

patterns as genes involved in aliphatic metabolism, in response to wounding (Figure 2.2; 

water controls). The application of FD resulted in a significant delay in induced 

expression of all four of these genes, while the application of ABA (with or without FD) 

to wounded tubers resulted in significantly earlier StFHT, StGPAT5, StGPAT6 and 

StABCG1 gene expression relative to water-treated tubers (Table B1).  
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Table 2.1. Gene information and primer sequences used for RT-qPCR analyses of target genes involved in suberin 

biosynthesis and deposition.  Genes were selected due to previous identification and/or characterization in Solanum tuberosum, or 

based on amino acid sequence identity to Arabidopsis thaliana* or Solanum lycopersicum• proteins.
 Gene  GenBank 

Accession No. 

Predicted function Primer sequences Product 

length (bp) 

Efficiency (%) 

StPAL1a  X63103.1 Phenylalanine ammonia-lyase F: CAAACTTGACGCTGATGAAGC 

R: ACAGGACAATTGATGCCATACC 

131 104.6 

StC4Hb  DQ341174.1 Cinnamic acid 4-hydroxylase F: ACCAAGAGCATGGACAGCAA 

R: ATCCTCGTTGATCTCTCCCTTCT 

84 101.8 

StCCRc  AY149608.1 

 

Cinnamoyl CoA reductase F: GAGCCAGCGGTTATAGGGAC 

R: TCCACAACTTTATCCGGGGC 

131 110.4 

StTHTd  AB061243.1 

 

Tyramine hydroxycinnamoyl transferase F: AGGTATGGCAAATTGCATGGTG 

R: TGTCTCTTCCTCAATTTTCCCCT 

69 109.9 

StCYP86A33e  NM_001288290.1 

 

Cytochrome P450 fatty acid ω-hydroxylase  F: GACACGTGGCTCATGCAAAG 

R: TTGTCGTAGTGTCCGGGTTG 

63 99.0 

StCYP86B12f*  XM_006354906.2 

 

Cytochrome P450 fatty acid ω-hydroxylase F: TCCACCCTCACTTACCCCAA 

R: CGTGGGAGTGACAAACCGTA 

86 104.6 

StFAR3g*  XM_006347176.2 Fatty acyl-CoA reductase F: CCAGTAACGTTCGCATGTCC 

R: ACGAAGGGCCATGTATCTGC 

147 102.1 

StKCS6h  EU616538.1 3-Ketoacyl-CoA synthase F: AACCGCACAATCAAGACACCA 

R: TCTCTGGGATGAACACTGGGT 

76 100.8 

StGPAT5i*•  XM_006346646.2 Glycerol-3-phosphate acyltransferase F: ACCGAACCCTACTTGACCCT 

R: GCGTCCACTTCTCGAATCCT 

142 102.8 

StGPAT6j*  XM_006362983.2 

 

Glycerol-3-phosphate 2-O-acyltransferase F: TGGCCAACGTGGTGTACTTT 

R: CAGCAGTAACAACGGGGTCT 

65 109.2 

StFHTk  NM_001288261.1 Feruloyl transferase F: TGTGAAGCAAGGAGTGCCAA 

R: ACCGGCACGGCTATATTCTG 

99 107.7 

StABCG1l  XM_006345853.2 ATP-binding cassette subfamily G transporter F: GCTGTAGGCCTTGTAGGTGG 

R: CCGGAGAGGAACGTGACAAA 

101 108.1 

StEF1-αm  AB061263.1 Elongation factor 1-α F: TGGTCGTGTTGAGACTGGTG 

R: AACATTGTCACCGGGGAGTG 

133 100.9 

StAPRTm  XM_006361995.2 Adenine phosphoribosyltransferase F: GAACCGGAGCAGGTGAAGAA 

R: GAAGCAATCCCAGCGATACG 

121 99.2 

Initial identification and/or functional characterization of potato, tomato and/or Arabidopsis genes by: aWang et al. (2008); bWang-Pruski & Cantle (2004); cLarsen (2004); 
dNakane et al. (2003); eSerra et al. (2009a); f*Compagnon et al. (2009); g*Domergue et al. (2010); hSerra et al. (2009b); i*Beisson et al. (2007) and sequence used by •Lulai & 

Neubauer (2014); j*Li-Beisson et al. (2009); kBoher et al. (2013); lLandgraf et al. (2014). mReference genes selected based on Nicot et al. (2005) analysis.
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Figure 2.2. Expression of suberin biosynthetic genes after wounding. mRNA levels of 

phenolic suberin biosynthetic genes (StPAL1, StC4H, StCCR and StTHT), aliphatic 

suberin biosynthetic genes (StCYP86A33, StKCS6, StCYP86B12 and StFAR3) and genes 

involved in linkage and deposition (i.e., convergent; StGPAT5, StGPAT6, StFHT and 

StABCG1) (see Table 2.1) were measured by RT-qPCR. Gene expression values were 

normalized to the endogenous reference genes StEF1-α and StAPRT. One-way ANOVAs 

were performed to determine significant differences in log2 gene expression (p ≤ 0.05; 

|log2-fold change| ≥ 1) at each time-point. Data points marked with different symbols 

indicate statistically significant differences (p < 0.05, and exceeding a 2-fold change) 

between water and FD (*), water and ABA (^) and, water and FD + ABA (+). Data points 

represent the sample mean ± SD (n = 3).  
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2.3.3 Effect of ABA and FD treatment on polar metabolism 

Non-targeted profiling of polar metabolites allowed a direct measure of the impact of FD, 

ABA and the combined FD + ABA treatments on polar metabolism during wound-

healing. Within one day of wounding, there was a clear shift in polar metabolite profiles, 

regardless of tuber age, which continued until a new steady state profile was achieved by 

four days post-wounding (Figure 2.3, Figure B4). Within these temporal changes there 

was only a small apparent treatment effect, as the water-, FD-, ABA- and FD + ABA-

treated sample profiles clustered together until later time points (e.g., day four, day six) 

post-wounding, where samples from both ABA-treatments began to separate from the 

water- and FD-treated ones (Figure 2.3, Figure B4). The minimal treatment effect was 

also evident at the individual compound level, with no clear difference in the profiles of 

compounds such as L-phe, L-tyr, L-trp, caffeoyl putrescine, dihydrocaffeoyl putrescine, 

feruloyl putrescine, dihydroferuloyl putrescine, feruloyl octopamine (FO), feruloyl 

tyramine (FT), chlorogenic acid, FT-FT dimer, FT-FO dimer, α-chaconine, or α-solanine, 

which could be tentatively identified amongst the polar metabolites, based on their 

retention time and exact mass (Landgraf et al., 2014; Figure B5). Of these, FT, FO and 

the FT-FT and FT-FO dimers are likely to be destined for the poly(phenolic) domain of 

suberin (e.g., Negrel et al., 1996), while the other compounds are known soluble 

compounds from potato. 
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Figure 2.3. Polar metabolite analysis. Polar metabolites were extracted from wound-

induced potato tuber discs after treatment with water (open symbols), FD (light grey 

symbols), ABA (dark grey symbols) or FD + ABA (black symbols) and analyzed by LC-

MS. After molecular feature extraction, alignment and normalization, the data were 

analyzed using SIMCA-P (Umetrics) software. The PLS-DA plot was generated using 

treatment and time groupings as discriminant factors to help maximize separation 

between treatments and time points. Each symbol represents a single polar metabolite 

profile prepared from tissue at 0 days post-wounding (dpw) (circles), 1 dpw (squares), 2 

dpw (triangles), 3 dpw (inverted triangles), 4 dpw (diamonds) or 6 dpw (hexagons). 

2.3.4 Effect of ABA and FD treatment on aliphatic suberin 
monomer composition 

In the water-treated control tissues, the amount of total soluble aliphatic monomers that 

could be extracted remained relatively constant across all six days post-wounding 

regardless of tuber age (Figure 2.4). As suberization progressed, insoluble aliphatic 

monomers continued to accumulate in control tissue, with more total aliphatic suberin 

being deposited in younger tubers, compared to older ones. These same patterns were 

observed when total aliphatics were broken down by chain length within each substance 

class (Figures B6-9). FD treatment differentially impacted suberizing tubers, depending 

on age. In younger tubers, the soluble pools of aliphatic compounds were not 

significantly different in the FD treatment, relative to the water controls, except for the 
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day three time point. However, the accumulation of aliphatic monomers in the insoluble 

(polymerized) fraction in FD-treated tissues was consistently lower than that of water-

treated controls, especially after six days, albeit not statistically significant (Figure 2.4). 

This same pattern was evident, and statistically significant, when older tubers were used 

(Figure 2.4).  

Treatment of four month old tubers with exogenous ABA, with or without FD, had little 

effect on the soluble pools of suberin aliphatics (Figure 2.4), while treatment of eight 

month old tubers with a combination of FD and ABA led to a significantly greater 

accumulation of monomers (Figure 2.4). Regardless of tissue age, exogenous ABA, 

when added in combination with FD, completely “rescued” the tissue from the FD 

treatment-related effects (i.e., reduced or no poly(aliphatic) suberin deposition) and led to 

an enhanced aliphatic suberin deposition, especially at later time points (Figure 2.4). 

Analysis of individual compound classes (fatty acids, 1-alkanols, ω-hydroxy fatty acids, 

α,ω-dioic acids) (Figure 2.5), revealed a similar pattern of soluble aliphatic accumulation 

in response to the FD and ABA treatments as for the total aliphatics. The FD effect was 

more pronounced in older tubers (Figure 2.5). Remarkably, there was very little 

accumulation of α,ω-dioic acids in the soluble pools in any treatment group (Figure 2.5), 

despite these compounds accounting for almost half of total aliphatic suberin monomers 

released upon transesterification (Figure 2.5). Overall, FD treatment resulted in little or 

no accumulation of polymerized aliphatics, especially in older tubers. This reduced 

accumulation of aliphatic suberin was rescued by exogenous ABA (with or without FD). 

Importantly, the application of ABA did not alter the timing of suberin aliphatic 

monomer accumulation relative to water-treated controls.  
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Figure 2.4. Total aliphatic monomer accumulation in wounded potato tubers. Total 

soluble and insoluble aliphatic suberin monomers (sum of fatty acids, fatty alcohols, ω-

OH fatty acids and α,ω-dioic acids) were extracted from four and eight month old tuber 

tissue following wounding and an initial treatment with water, fluridone (FD), abscisic 

acid (ABA; four month old tubers only) or FD + ABA. Data points marked with different 

symbols indicate statistically significant differences (p ≤ 0.05) between water and FD (*), 

water and ABA (^) and, water and FD + ABA (+). Data points represent the sample mean 

± SD (n = 3).  
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Figure 2.5. Wound induced potato suberin aliphatics by substance class. Total 

soluble and insoluble fatty acids, fatty alcohols, ω-OH fatty acids and α,ω-dioic acids 

were analyzed for four- and eight-month old, wound healing tuber tissue following initial 

treatment with water, FD, ABA or FD + ABA. Data points marked with different 

symbols indicate statistical significance (p ≤ 0.05) between water and FD (*), water and 

ABA (^) and, water and FD + ABA (+). Data points represent the sample mean ± SD (n = 

3). 

 

2.4 Discussion 

The biosynthesis of suberin requires the coordinated synthesis and deposition of two 

distinct biopolymers or domains. One domain, thought to be deposited first in the primary 

cell wall, is poly(phenolic) and comprises hydroxycinnamyl alcohols (monolignols), 

hydroxycinnamic acids, amides and esters (Bernards et al., 1995; Negrel et al., 1996). 

The other, which is poly(aliphatic), is deposited between the cell wall and plasma 
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membrane (with a characteristic lamellar pattern), consists of fatty acids, 1-alkanols, ω-

hydroxy fatty acids and α,ω-dioic acids (e.g., Holloway, 1983) and glycerol (Graça et al., 

2000a, 2000b, 2000c). While there are phenolic acids (principally ferulic acid, but also 

caffeic and coumaric acids, depending on species) esterified within the poly(aliphatic) 

domain, these are low in abundance, and their removal via transesterification yields a 

more recalcitrant phenolic polymer core (Graça, 2015). Accordingly, the regulation of 

both phenolic and aliphatic metabolism must be coordinated to ensure the delivery of the 

appropriate monomers to the cell wall in a temporally correct manner. This is especially 

true for wound-induced suberin biosynthesis, wherein a rapid and highly organized 

deposition of suberin occurs in the cells immediately adjacent to the wound site. In recent 

years, a number of genes associated with suberin biosynthesis have been identified, and 

some characterized, using Arabidopsis, tomato and potato as model systems. In potato, 

these include genes with confirmed or putative roles in phenolic metabolism (StPAL1, 

StC4H, StCCR, StTHT) and aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, 

StKCS6), as well as genes involved in convergent metabolism linking phenolic and 

aliphatic monomers (StFHT), acyl chains to glycerol (StGPAT5, StGPAT6), or in the 

delivery of aliphatic monomers to the site of suberization (StABCG1) (Table 1). In 

addition, transcription factors that function as regulators of stress-induced suberin 

biosynthesis have been identified in Arabidopsis and potato (e.g., AtMYB41; Kosma et 

al., 2014; StNAC103; Verdaguer et al., 2016). The discovery of suberin-associated genes 

allows for exploration of their underlying function and regulation. For example, three 

transgenic potato lines with “engineered” suberin have been developed and characterized 

(Serra et al., 2009a, 2009b; Serra et al., 2010), based on the RNAi knockdown of 

StCYP86A33, StKCS6 and StFHT, respectively. All three have an altered aliphatic suberin 

phenotype and reduced function. By contrast, there are no potato mutants defective in 

phenolic metabolism; however, earlier work in which StPAL1 activity was inhibited 

using 2-aminoindane-phosphonic acid suggests a critical role for functional phenolic 

metabolism in the establishment of an effective suberin barrier to pathogen infection of 

stored tubers (Hammerschmidt, 1984). 
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The sequencing of the potato genome (Xu et al., 2011) has opened the door to discovery 

of putative regulatory elements of known suberin biosynthesis genes, providing clues to 

potential mechanisms that govern their expression. For example, we recently 

demonstrated that the 1.7 kb region upstream of the StCYP86A33 open reading frame 

contains over 40 ABA-response or ABA-response like motifs, supporting a role for ABA 

in the regulation of this important aliphatic suberin biosynthesis gene (Bjelica et al., 

2016). While the general involvement of ABA in suberin deposition in potato tubers in 

response to wounding has already been demonstrated (Soliday et al., 1978; Cottle and 

Kolattukudy, 1982; Lulai et al., 2008; Kumar et al., 2010), whether both phenolic and 

aliphatic metabolism are affected by this plant hormone remains unclear. Here we 

established that the wound-induced metabolism leading to monomers of aliphatic suberin 

is impaired when de novo biosynthesis of ABA is impaired, but that polar metabolism 

leading to phenolic monomers is not greatly affected. 

2.4.1 ABA levels are dynamic during wound-healing 

Resting tubers contain high levels of ABA (e.g., 80-120 ng/g FW), though this declines 

with age post-harvest (Lulai et al., 2008; Kumar et al., 2010). Indeed, the timing of tuber 

response to wounding correlates with tuber age and ABA levels (Kumar et al., 2010), 

which partly explains the temporal differences we observed between our experiments 

using tubers of different age. Extensive washing of freshly cut tuber tissue leads to the 

loss of endogenous ABA (Soliday et al., 1978; Cottle and Kolattukudy, 1982), which 

helps explain why we observed low levels of ABA in our tissue immediately post-

harvest. Regardless of tuber age, however, wounding triggered the de novo synthesis of 

ABA (Figure 1; Kumar et al., 2010) and wound-induced expression of aliphatic 

metabolism genes, as well as the deposition of aliphatic suberin, followed the same 

temporal pattern as ABA biosynthesis. This is clearly evident in temporal aliphatic gene 

expression patterns in our time course experiments, regardless of tuber age. That is, 

aliphatic gene expression appeared to track de novo ABA biosynthesis. Overall, the 

inhibition of de novo ABA biosynthesis resulting from the application of FD delayed the 

induction of aliphatic suberin biosynthesis genes, without impacting phenolic metabolism 

genes. The application of FD + ABA, or ABA alone, resulted in aliphatic metabolism 
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gene expression patterns similar to those of water-treated tubers. That is, exogenous ABA 

compensated for the reduced level of de novo ABA biosynthesis in FD-treated tissue. 

However, there must be other factors involved in regulation of the wound-healing 

response since exogenous ABA did not affect phenolic metabolism or the timing of 

aliphatic metabolism downstream of gene expression. 

The role of other phytohormones, including jasmonates, salicylic acid and ethylene, in 

wound-induced suberization in potato remains speculative (Lulai and Suttle, 2004, 2009; 

Lulai et al., 2008). That is, the application of inhibitors of ethylene synthesis had no 

impact on suberin deposition, and while jasmonate levels changed transiently, no specific 

role in suberization was identified (Lulai et al., 2011). More recently, Barberon et al., 

(2016) demonstrated a role for ABA in the developmental deposition of Arabidopsis root 

suberin, and provided evidence for interference in the process by ethylene. However, it 

remains unclear how these two plant hormones interact to affect suberin deposition.  

2.4.2 Polar metabolism is minimally affected by changes in ABA 

Wounding of potato tubers induces the accumulation of a number of phenolic 

metabolites, some of which are destined for polymerization into the poly(phenolic) 

domain associate with suberin (e.g., monolignols, hydroxycinnamic acids, feruloyl 

octopamine, feruloyl tyramine) while others accumulate as soluble metabolites (e.g., 

caffeoyl putrescine, dihydrocaffeoyl putrescine, feruloyl putrescine, dihydroferuloyl 

putrescine, chlorogenic acid). Treatment of wounded tubers with FD did not affect the 

accumulation of any of these compounds, consistent with the minimal effect observed on 

the expression of genes associated with phenolic metabolism. For example, the induction 

of StPAL1 was reflected in a rapid decline in soluble pools of L-phe in all treatments 

(Figure B5), while the induction of StTHT, which encodes tyramine:hydroxycinnamoyl-

CoA hydroxycinnamoyl transferase and links hydroxycinnamic acids with tyramine, was 

reflected by increased levels of feruloyl tyramine derivatives. Of particular importance to 

the present study, the treatment of tissues with either FD, ABA or the combination of FD 

+ ABA did not alter phenolic gene expression (Figure 2.2) or polar compound 
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accumulation patterns (Figure 2.3) to the extent observed in aliphatic gene (Figure 2.2) 

and metabolite analyses (Figures 2.4-2.5, B6-9). 

2.4.3 Aliphatic suberin biosynthesis and deposition 

The application of FD to wound-healing potato tubers resulted in both delayed expression 

of aliphatic metabolism genes and reduced accumulation of aliphatic suberin monomers, 

though this was somewhat age-dependent. For example, delayed expression of 

StCYP86A33, which functions as a fatty acid ω-hydroxylase in potato suberin formation 

(Serra et al., 2009a; Bjelica et al., 2016) resulted in a significant reduction in the 

accumulation of 18-OH-octadec-9-eneoic acid and 1,18-octadec-9-ene dioic acid, the two 

major aliphatic suberin monomers in potato, especially in older tubers. A similar 

reduction in the accumulation of 1-alkanols and very long chain aliphatics was coincident 

with reduction in StFAR3 and StKCS6 expression, respectively. Interestingly, FD 

treatment also resulted in the delayed expression of StFHT, which codes for a fatty acyl-

CoA:hydroxycinnamate hydroxycinnamoyl transferase and functions to link phenolic and 

aliphatic monomers together into ferulate conjugates. Ferulate compounds accumulate 

late in the potato wound-healing process (Bernards and Lewis, 1992), so overall the 

delayed StFHT expression would not likely impact the overall suberization process.  

Overall, ABA was shown to play a role in the processes leading to suberization in a 

wound-healing tuber model. The main impact was at the transcriptional level of key 

aliphatic suberin monomer biosynthesis genes that resulted in the reduced accumulation 

of soluble aliphatic compounds and incorporation into the insoluble aliphatic suberin 

matrix. The de novo biosynthesis of ABA appears to play a role in aliphatic suberin 

biosynthesis; indeed, the accumulation of wound-induced ABA (around day 3 post-

wounding), was coincident with the onset of aliphatic metabolism. Abscisic acid itself, 

however, is not the only regulatory compound involved in suberization, since reduction 

of ABA in the FD treatment neither abolished soluble monomer accumulation nor 

impacted polar metabolism. While ABA is a major factor affecting suberin-associated 

gene expression and downstream insoluble aliphatic monomer accumulation, other 

unknown factors must also participate in the regulation of soluble aliphatic accumulation. 
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Chapter 3  

3 The wound-healing potato tuber: an RNA-seq approach 

3.1 Introduction 

Potato (Solanum tuberosum L.) is the most important non-grain staple crop in the world. 

Crop losses are largely attributed to pathogen infection and dehydration during both 

growth and post-harvest storage (Guenthner, 1995; Guenthner et al., 2001). The 

heteropolymer suberin comprises a poly(phenolic) domain covalently linked to a spatially 

distinct poly(aliphatic) domain (reviewed in Bernards, 2002; Graça and Santos, 2007; 

Ranathunge et al., 2011; Beisson et al., 2012; Vishwanath et al., 2015; Graҫa, 2015), and 

is deposited in both native and wound periderm cells, where it acts as a physicochemical 

barrier against various abiotic and biotic stresses (Kolattukudy, 1987; Lyon 1989; Lulai 

and Orr, 1994; Lulai and Corsini, 1998). Suberin is deposited in periderm cell walls 

during tuber development and maturation, i.e. its synthesis and deposition allows for 

skin-set after harvest (Lulai and Freeman, 2001; Lulai, 2007). Suberin production is also 

triggered in response to mechanical wounding in potato tubers (Esau, 1977), where it 

plays a role in resistance to water loss and microbial infection by sealing off the wound 

site (Lulai and Corsini, 1998).  

Wound-healing is a complex component of plant protection against different stresses, and 

encompasses many processes, including suberization. A variety of physiological and 

metabolic events are activated upon wounding that lead to the biosynthesis and 

deposition of the highly organized suberin heteropolymer. This level of coordination 

requires spatial and temporal regulation of genes individually, but also as subsets that 

constitute entire biosynthetic pathways.  

At the cellular level, wound-induced suberization involves two stages: a suberized 

closing layer is first formed within 5-7 days of wounding in existing parenchyma cells 

that surround the wound site, and then layers of suberized phellem cells develop over the 

next 40 days from new meristematic tissue (the phellogen) to produce a final wound 

periderm (Neubauer et al., 2012; Lulai and Neubauer, 2014). Rapid wound-healing is 
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essential for protection against desiccation and infection (Lulai, 2007), making the 

processes involved in initial closing layer formation of particular importance. 

Some aspects of the differential spatial organization and temporal induction of the two 

major metabolic pathways required for phenolic and aliphatic monomer production have 

been described (Yang and Bernards, 2006; Woolfson et al., 2018). For example, the 

poly(phenolic) domain monomers, which include hydroxycinnamyl alcohols 

(monolignols), hydroxycinnamic acids, amides and esters produced via phenylpropanoid 

metabolism (Bernards et al., 1995; Negrel et al., 1996), accumulate within 1 day of 

wounding (Yang and Bernards, 2006) and are deposited into the cell wall (Lulai and 

Neubauer, 2014). Genes characteristic of phenolic metabolism (e.g., PAL, C4H, CCR, 

THT) are induced rapidly, post wounding (Woolfson et al., 2018). By contrast, the 

poly(aliphatic) suberin domain spans the space between the cell wall and plasma 

membrane in tuber periderm cells, and consists of fatty acids (FAs), modified FAs such 

as fatty alcohols, ω-hydroxy FAs, and α,ω-dioic acids, and glycerol (Holloway, 1983; 

Graça and Pereira, 2000a, 2000b, 2000c; Lulai and Neubauer, 2014) that are produced 

within 3 days of wounding (Yang and Bernards, 2006). Genes characteristic of aliphatic 

metabolism (e.g., KCS6, FAR3, CYP86A33, CYP86B12) are induced after ca. 2 days post 

wounding (Woolfson et al., 2018). Genes involved in aliphatic polymer assembly (FHT, 

GPATs) and transport (ABCG1) are highly expressed by 3-4 days into wound-healing 

(Woolfson et al., 2018). 

The temporal regulation of phenolic and aliphatic metabolism remains unresolved. 

Recently, the transcription factor NAC103 was characterized as a negative regulator of 

some key aliphatic suberin and wax genes (Verdaguer et al., 2016), while abscisic acid 

(ABA) was shown to play a role in the differential induction of polar and non-polar 

metabolism by impacting only aliphatic suberin biosynthetic genes in potato tubers 

(Woolfson et al., 2018). Regardless, many aspects of the regulation of induced 

suberization remain uncharacterized, including that of the poly(phenolic) domain. 

Moreover, in a dormant potato tuber, many components of primary metabolism must be 

initiated upon wounding, to generate metabolic precursors for targeted, suberin-specific 

steps and the energy-rich molecules required to fuel enzyme-catalyzed biosynthetic 
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reactions. Therefore, I hypothesize that the wound-induced suberization and associated 

wound-healing processes must require the initial and sustained conversion of starch into 

usable carbon, ATP and NADPH to fuel all subsequent reactions, including the enhanced 

production and activation of any regulatory components such as ABA or other stress-

induced hormones. I predict the involvement of several regulatory components required 

for suberization, including transcription factors and mediators of suberin assembly. 

In the presented work, I address knowledge gaps in suberin biosynthesis by taking an 

RNA-seq approach to studying the wound-healing potato tuber. This approach has been 

greatly facilitated by the publishing of the potato genome sequence (PGSC, 2011). Our 

transcriptomic investigation expands upon and explores implicated pathways including, 

but not limited to, suberin monomer biosynthesis, to establish a greater overview of the 

molecular activities that underlie the overall wound-healing process. Further 

understanding of metabolic processes leading up to and directly required for suberization, 

the timing of biosynthetic and assembly events, and elucidation of regulatory components 

are all of fundamental importance and may offer potential targets for crop improvement 

applications related to improved suberization, especially in the context of tuber post-

harvest storage. Past potato RNA-seq experiments have focused on the response and 

resistance to different abiotic and biotic stress-related conditions in different organs and 

across developmental stages (Massa et al., 2011; Gao et al., 2013; Gong et al., 2015; 

Goyer et al., 2015; Gálvez et al., 2016), but to our knowledge, this is the first time that 

RNA-seq has been employed to address the mechanisms involved in tuber wound-

healing. Metabolite profiling (Yang and Bernards, 2007) and proteomic studies (Chaves 

et al., 2009) have been conducted in wound-healing tubers to track changes pertaining to 

primary and secondary metabolism at both the chemical and protein accumulation levels. 

This transcriptomic study provides the first global gene expression overview during 

wound-healing and acts to bridge previous metabolite and protein-focused studies, and 

offers new insights into the timing of transcriptional regulation of processes previously 

explored from different perspectives. 

The goals of this project were to further establish the temporal changes in gene 

expression that occur during the wound-healing process, identify novel candidate genes 
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required for different branches of the broader suberin-related pathway as they relate to its 

biosynthesis, assembly or regulation, and to integrate this information and update the 

current framework by generating a more comprehensive “roadmap” to suberin 

biosynthesis in the wound-healing potato tuber. 

The integration of gene expression data with the biochemical pathway towards suberin 

biosynthesis and assembly expands widely upon the sets of previously analyzed genes. 

This analysis thus provides a comprehensive overview that improves upon a well-

substantiated foundation (Bernards, 2002), by removing unsupported hypothetical steps 

and incorporating more recently characterized steps (e.g. Beisson et al., 2007; Li et al., 

2007; Landgraf et al., 2014; Serra et al., 2009b; Serra et al., 2010; Bjelica et al., 2016).  

 

3.2 Materials and Methods 

3.2.1 Plant material and wounding experiment 

Four to five month old potato (Solanum tuberosum cv. Russet Burbank) tubers were 

removed from cold storage (5°C), washed with tap water, surface sterilized with 20% v/v 

bleach for 20 minutes, transferred to a laminar flow cabinet, and left to air dry overnight. 

Tubers were sectioned into approx. 1 cm thick slices, rinsed briefly with sterile dH2O and 

placed upright in sterile Magenta® boxes on an elevated mesh platform atop a moistened 

No. 1 Whatman paper to maintain high humidity. Boxes of tuber slices were incubated in 

the dark at 28˚C for up to three days. Samples collected within 1 hour of wounding and 

rinsing were considered “0” days post-wounding (dpw). 

To harvest tissue, wound surfaces were excised from the cut tuber faces with razor 

blades. For each time point, tissue collected from tuber material in one Magenta® box 

was pooled to represent one sample replicate. All harvested tissue was immediately flash 

frozen and ground into a fine powder in liquid N2 by mortar and pestle, and then stored at 

-80°C for future RNA extraction. The entire time course experiment was independently 

replicated three times (n=3). 
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3.2.2 RNA isolation 

Total RNA was isolated from flash-frozen tuber material as described by Chang et al. 

(1993). RNA was quantified with a NanoDrop model ND-2000c Spectrophotometer set 

for RNA determination (Thermo-Scientific), and total RNA quality was determined by 

absorbance ratios at 260/280 nm (>1.8). RNA was qualitatively assessed with an Agilent 

2100 Bioanalyzer, and samples with RIN ≥ 7 were used for sequencing and to produce 

cDNA for RT-qPCR validation. 

3.2.3 Strand-specific cDNA library construction and sequencing 

cDNA library construction and sequencing were performed by Genome Quebec 

(Montreal QC, Canada). Total RNA was used to produce 15 strand-specific cDNA 

libraries to represent 5 time-points (0, 0.5, 1, 2 and 3 days post-wounding) with n=3 

biological replicates, which were then multiplexed and sequenced on four lanes using the 

Illumina HiSeq2500 platform (Illumina, San Diego, CA) to generate 125-bp paired-end 

reads.  

3.2.4 Genome-guided transcriptome assembly 

Raw reads were processed using Trimmomatic version 0.36 (Bolger et al., 2014). Clean 

reads were obtained by removing Illumina adapter sequences, low quality or N bases, and 

reads less than 36 bases long after the completion of quality trimming steps. FastQC was 

used to confirm the quality of processed data (Andrews, 2010).  

Bowtie2 v2.2.9 (Trapnell et al., 2012) was used to build an index for the reference 

genome using PGSC v4.03 (PGSC 2011; Sharma et al., 2013). Clean paired-end reads 

were aligned to the reference genome using TopHat v2.1.1 and parameters were adjusted 

to suit the potato genome as described by the PGSC (e.g. “-i 10 -I 15000” options to set 

minimum to maximum intron size of 10-15000bp as represented in the PGSC v4.03 GFF) 

(Trapnell et al., 2012). Alignment files (.bam) were filtered to remove discordant pairs 

and multiple-mapped reads, then used to assemble and merge transcripts using the 

Cufflinks v2.2.1 package (Trapnell et al., 2012). HTSeq v0.8.0 was used to count the 

number of reads that mapped to each gene (Anders et al., 2015).  



79 

 

Limma (Ritchie et al., 2015) and edgeR (Robinson et al., 2010) Bioconductor packages 

were used in R v3.3.3 (R Core Team, 2018) for count trimmed mean of M-values 

(TMM)-normalization and transformation (e.g. counts per million; CPM, log2CPM, 

fragments per kilobase of transcript per million mapped reads; FPKM, log2FPKM) for 

downstream analysis and visualization, including differential expression analysis (Law et 

al., 2014; Smyth, 2005; Ritchie et al., 2015). For analyses, only those genes with at least 

1 CPM in at least 3 of 15 libraries being compared were retained (Robinson et al., 2010). 

Filtering yielded 17,906 expressed loci. 

3.2.5 Differential expression (DE), gene ontology (GO), and gene 
set enrichment (GSEA) analyses 

Differentially expressed genes (DEGs) were identified across time points using pairwise 

comparisons. Genes were considered significantly up- or down-regulated between two 

sequential time points if they met p ≤ 0.01 and absolute log2 fold change |(LFC)| ≥ 2 

significance cut-offs. Lists of significant DEGs for sequential time points were generated 

using the voom function with quality weighting (voomWithQualityWeights) (Law et al., 

2014) in the limma Bioconductor package (Ritchie et al., 2015) to estimate the mean-

variance relationship of log-transformed TMM-normalized HTSeq count data, which 

were then entered into the limma empirical Bayes analysis pipeline using the 

aforementioned significance cut-off parameters with the Benjamini-Hochberg (BH) 

procedure (Benjamini and Hochberg, 1995).  

Gene Ontology (GO) annotation information was retrieved from the Ensembl Plants 

Solanum tuberosum BiomaRt (Kinsella et al., 2011). Additional GO annotations were 

determined via peptide BLAST (blastp) between potato and its close relative tomato 

(Solanum lycopersicum). For blastp, representative potato peptide sequences were 

queried against tomato ITAG 3.2 peptide database where a single top matching locus was 

reported with an e-value cut-off of 0.001. Missing GO terms were retrieved by mapping 

to GO ID using the Bioconductor packages AnnotationDbi and GO.db (Carlson, 2018; 

Pagès et al., 2018). TopGO was used with the Fisher’s test statistic and “weight01” 

algorithm filtered with a weighted p value < 0.05 cut-off (Alexa and Rahnenfuhrer, 2016) 
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to generate a list of the top 50 Biological Process GO annotations associated with 5441 

identified DEGs. 

Gene set enrichment analysis (GSEA) was performed using a custom version of the 

Bioconductor package, Piano (Väremo et al., 2013) called tunedPiano, as described by 

Martel et al. (2015). Voom-generated log2(fold change), p and t values were used as gene 

level statistics input for the GSEA, using gene lists generated from the original p ≤ 0.01 

and |LFC| ≥ 2 cutoffs. Parametric analysis of gene set enrichment (PAGE algorithm, Kim 

and Volsky, 2005) was selected following comparison with other methods. Genes were 

grouped into sets using GO annotation information, where biological process (BP), 

molecular function (MF) and cellular component (CC) categories were each analyzed 

individually. Gene sets were limited to those containing a minimum of five genes and a 

BH-adjusted p value < 0.05 was used to determine significance of distinct up- or down-

regulation of a gene set.  

3.2.6 Targeted suberin-related biosynthetic gene analysis 

A comprehensive list of known and putative suberin-related genes was generated based 

on predicted enzymatic functions required for each step of various pathway branches. 

Predicted functions were used in combination with information from the Potato Genome 

Sequencing Consortium (PGSC) and NCBI databases to identify likely candidates. 

Where genes could not be found in the PGSC database via functional annotated name 

search, they were identified based on blastp with potato sequences found on NCBI 

wherever possible. If the potato sequence could also not be found on NCBI, blastp was 

used with known proteins from Arabidopsis found on NCBI or The Arabidopsis 

Information Resource (TAIR; Berardini et al., 2015), or tomato proteins identified via the 

Sol Genomics Network (SGN; Fernandez-Pozo et al., 2015) or NCBI, to identify putative 

potato homologs.  

Heatmaps were generated with pheatmap (Kolde, 2012) using log2(FPKM) values to 

visualize temporal changes in suberin-related target gene expression. Heatmap figures 

that appear in the main text (Figure 3.3A-I) utilized a maximum of three representatives 

of known and candidate genes from complete candidate lists found in Appendix C 
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(Figure C3A-G; Table C4). These representatives were selected based on expression 

level and overall pattern; i.e. genes that showed the highest FPKM levels and appeared to 

be wound-induced were included, wherever possible.   

3.2.7 Targeted candidate gene analysis via hierarchical clustering 

Euclidean distance heatmaps were constructed with log2(FPKM) using the ward.D2 

option to implement Ward’s method of hierarchical clustering, to determine similarities 

between transcription factor or assembly gene candidates and suberization-related gene 

expression profiles (Ward, 1963; Murtagh and Legendre, 2014).  

3.2.8 cDNA synthesis and RT-qPCR validation of gene expression 

A portion of total RNA used for the RNA-seq experiment (see Methods 3.2.1-3.2.2) was 

also reverse transcribed and used for gene expression validation. RNA (0.5 μg/μL) was 

treated with DNase I (Invitrogen), and cDNA was synthesized with SuperScript 

II/RNaseOUT (Invitrogen) following the manufacturer’s instructions. RNA samples 

obtained from each time point with three biological replicates were used to yield 15 

cDNA templates (5 time points from 3 biological replicates). Quantitative reverse 

transcription PCR (RT-qPCR) was performed using a Bio-Rad CFX Connect system. 

Amplification of genes of interest from 47.6 ng cDNA template was performed in 

technical triplicate using sequence-specific primers and iTaq Universal SYBR Green 

Supermix (Bio-Rad), following the manufacturer’s protocol. PCR reaction efficiency was 

determined by standard curves performed in duplicate using pooled cDNA templates at a 

dilution range from 381 to 0.61 ng (Pfaffl, 2001). Primer sequences and amplification 

efficiencies can be found in Table C10. 

One plate of RT-qPCR reactions for four genes, including the endogenous reference, used 

5 cDNA templates, with each template representing one sample time point from one 

experimental replicate performed in technical triplicates. No-template controls were used 

to ensure no contamination occurred, and inter-run calibrator samples were included to 

allow for detection and correction of plate-to-plate variation. This was repeated for all 

three biological replicates of cDNA templates obtained from wound tissue derived from 

three independent experiments. Data were combined across the three replicate plates per 
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gene and adjusted via inter-run calibration to yield means (n=3), and endogenous 

reference gene EF1-α values were used to normalize expression of each target gene. RT-

qPCR specificity was confirmed by melt curve analysis and gene expression data were 

processed using Bio-Rad CFX manager version 3.1 software according to the 

manufacturer’s directions, based on the Pfaffl (2001) method. Gene expression data from 

a separate time course experiment, published in Woolfson et al. (2018), was used for 

additional validation (see Methods §2.2.1, 2.2.4-2.2.5). EF1-α and APRT (Nicot et al., 

2005) were used as endogenous references for normalization (Vandesompele et al., 

2002). The calculated expression levels were corrected for PCR reaction efficiency.  

Gene expression values for 14 genes from RT-qPCR (ΔΔCq) and RNA-seq (CPM) 

analyses were normalized to 0 dpw values, then log2-transformed to generate log2(fold 

change) values. Pearson’s correlation coefficients were calculated for log2(fold change) 

values from the two experimental procedures, with α = 0.05. The 95% confidence 

interval was calculated and plotted as 95% confidence bands. 

 

3.3 Results 

3.3.1 Genome-guided transcriptome assembly 

Potato tuber tissue was collected at 0, 0.5, 1, 2 and 3 days post-wounding (dpw) in order 

to capture different stages of the early wound-healing process at the transcriptional level. 

On average, libraries yielded over 65 million raw 125-bp reads that were trimmed to 

produce more than 51 million clean read pairs. High quality, clean reads had a 70% 

concordant pair alignment rate, and of these concordant pairs, over 87% mapped to 

annotated gene features in the potato genome. The numbers of concordant pairs that 

aligned to multiple locations (4.16%), or mapped to ambiguous regions in the genome 

(1.9%), were low, and were filtered out prior to quantification. Of the 39,031 predicted 

protein-coding genes in the potato genome (PGSC, 2011), 38,986 had corresponding 

gene identification names, of which 17,906 demonstrated some level of expression in this 

study (46%). Principal component analysis of normalized counts per million (CPM) 
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demonstrated that libraries representing biological replicates clustered together, and were 

well separated on the basis of time (Figure 3.1A). 

3.3.2 Differential expression analysis in wound-healing tubers  

To characterize transcriptional changes that occur during wound-healing, pairwise 

comparisons were made between sequential time points (0-0.5, 0.5-1, 1-2, and 2-3 dpw) 

for differential expression analysis. Changes in mRNA abundance as a proxy for 

differential gene expression over time were analyzed to identify genes that significantly 

change between successive time points. This analysis identified 5441 differentially 

expressed genes (DEGs) across all time point comparisons, with the largest number 

DEGs detected (2547 up-regulated; 1956 down-regulated) between 0 and 0.5 dpw. Later 

time point comparisons revealed decreasing numbers of DEGs as wound-healing 

progressed, where the majority of DEGs were up-regulated (0.5-1 dpw: 669 up-regulated 

and 169 down-regulated; 1-2 dpw: 621 up-regulated and 104 down-regulated; 2-3 dpw: 

266 up-regulated and 81 down-regulated; Figure 3.1B). Most of the identified DEGs 

were unique to each time point comparison, and no single gene continued to change 

significantly across all time points (Figure 3.1C). 
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Figure 3.1. Global overview of wound-healing transcriptome. A. Principle component analysis (PCA) of RNA-seq 

libraries. Colours represent biological replicate libraries generated from the same time point (gene log2(CPM) space without 

scaling). B. Differentially expressed genes (DEGs) across time point comparisons. Genes were considered significantly up- 

or down-regulated if they met p ≤ 0.01 and |log2(fold change)| (|LFC|) ≥ 2 significance cut-offs. Lists of significantly DEGs 

were generated using voom by applying these parameters with the Benjamini-Hochberg procedure to TMM-normalized HT-

Seq count data. C. Venn diagram of DEGs significantly up- (red) or down-regulated (blue) over the wound-healing time 

course. Genes were considered significantly up- or down-regulated if they met p ≤ 0.01 and |LFC| ≥ 2 significance cut-offs. 

Lists of significantly DEGs were generated using voom by applying these parameters with the Benjamini-Hochberg procedure 

to TMM-normalized HT-Seq count data. 
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3.3.3 Gene ontology (GO) analysis 

Gene ontology (GO) analysis was performed to characterize DEGs by biological role. 

Available GO annotation information accessed through BiomaRt covered 19,096 genes 

(49% of the genome). Additional GO information based on peptide BLAST between 

tomato and potato increased the number of annotated genes to 26,217 (67% of the 

genome). Of the 17,906 genes found to be expressed in this study, 90% were represented 

in this annotated gene list. 

TopGO analysis of the biological processes (BP) GO category demonstrated that within 

the list of 5441 total DEGs identified throughout the time course, the top 50 categories 

were reflective of biotic and abiotic stress response genes (e.g. response to stress, 

response to biotic stimulus, response to bacterium, chitin catabolic process, and response 

to heat), signaling and regulatory processes (e.g. “histone phosphorylation”, 

“dephosphorylation”), a range of biosynthetic pathways and metabolic processes that 

pertain to primary and secondary metabolism (e.g. “amino acid biosynthesis”, “sterol 

biosynthesis”, “carbohydrate metabolism”, “acetyl-CoA metabolism”, “lipid 

metabolism”, “oxidation-reduction process”, “brassinosteroid biosynthesis”, 

“indoleacetic acid biosynthesis” and “isoprenoid biosynthesis”), and various processes 

pertaining to the cell cycle and cell wall (e.g. “xyloglucan metabolic process”, “DNA 

replication”, “cell wall biogenesis”, “regulation of cell cycle”) (Table C1). Overall, this 

TopGO analysis highlighted several wound-related biological processes in terms of stress 

responses, metabolic changes, and physical alterations at the cellular level.  

3.3.4 Gene set enrichment analysis (GSEA) 

Generally, differential expression analyses pointed to large, immediate transcriptional 

changes followed by a decline in the number of DEGs, and TopGO analysis highlighted 

several biological processes associated with stress and wound-healing. Together, these 

findings raised the hypothesis that during early time points after wounding, 

transcriptional re-organization occurs on a large scale and is followed by a plateau and 

fine-tuning of specialized responses for suberization and physical aspects of healing. To 
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test this idea and further visualize changes in groups of genes between time points during 

wound-healing, a parametric analysis of gene set enrichment (PAGE) algorithm was used 

for gene set analysis of the 5441 DEGs identified across the entire time course, via 

sequential time point comparisons (Kim and Volsky, 2005; Väremo et al., 2013). GO 

annotation terms were used to group genes into sets, where each respective ontology 

category was employed for separate analyses (biological process, BP; molecular function, 

MF; cellular component, CC). Limma-generated gene level statistics, including log2(fold 

change), adjusted p-value, and the directional t-statistic, were used as input for the 

analyses. 

In total, 96 BP term gene sets were significantly up- or down-regulated during wound-

healing, where 2331 of the total 5441 DEGs were represented in enriched terms. These 

sequential time comparisons were used to demonstrate how implicated processes change 

over time (Figure 3.2, Table 3.1). In the first 0.5 dpw, gene sets involved in amino acid 

biosynthesis (nodes 13, 63, 70, 73) such as tryptophan (69), L-phenylalanine (95) and 

glycine (62), and GO terms related to primary metabolic pathways such as “glycolytic 

process” (7) and “tricarboxylic acid cycle” (48), were up-regulated along with protein 

synthesis related terms such as “translation” (21) and “ribosome biogenesis” (33). Genes 

included in the “L-phenylalanine biosynthesis” and “tricarboxylic acid cycle” terms 

encode enzymes involved in the synthesis of precursors required for the two major 

suberin biosynthetic pathways. Some regulatory terms were down-regulated, such as 

“protein dephosphorylation” (35) and “calcium ion transmembrane transport” (50), while 

others, including “histone H3-K9 methylation” (57) and “RNA methylation” (32), were 

up-regulated. Surprisingly, many stress response terms were down-regulated between 0-

0.5 dpw, including the general GO term “response to stress” (39), and more specific 

stress terms for response to: cold (6), chitin (17), light intensity (18), heat (66), hydrogen 

peroxide (79), fungus (86), bacterium (92), as well as “jasmonic acid mediated signaling 

pathway” (24). Many terms that were significantly up- or down-regulated within 0.5 dpw 

did not change further across the time course and were therefore maintained at steady 

expression levels after their initial substantial change. 



88 

 

From 0.5 to 1 dpw, “carbohydrate metabolism” (20), “cell wall organization” (10) and 

“cell wall biogenesis” (22), for which the latter two terms include manygenes encoding 

xyloglucan endotransglucosylase/hydrolases, cellulose synthases, pectinesterases and 

glycosyltransferases, and several terms associated with the cell cycle that mainly reflect 

processes involved in mitosis (54, 56, 59, 77, 82, 83, 94) were up-regulated, while terms 

associated with protein production (21, 33, 61) were down-regulated. Regulatory terms 

including “histone phosphorylation” (55), which is associated with mitosis and linked to 

transcriptional activation, “histone H3-K9 methylation” (57), which is associated with 

transcriptional repression, and “activation of protein kinase activity” (93), were up-

regulated. Catabolic process terms differed across this time point comparison; “lignin 

catabolic process” (60) decreased while “cell wall macromolecule catabolic process” (49) 

was up-regulated. 

Interestingly, only two nodes represented significantly enriched up-regulated terms 

between 1 and 2 dpw, where one gene set represented “response to abscisic acid” (ABA) 

(38) and the other term encompassed genes involved in nucleosome assembly (31). The 

“response to ABA” term includes several transcription factors, such as MYB102, the 

potato ortholog of a regulator of suberin production from Arabidopsis and tomato, as well 

as the osmotic stress-responsive gene Asg1. This time period during wound-healing 

marks a point at which many processes initially up-regulated quickly after wounding 

reach a plateau, or subsequently decline in expression. For example, the primary 

metabolism terms “carbohydrate metabolism” (20) and “tricarboxylic acid cycle” (48), 

along with many processes related to the mitotic cell cycle and protein synthesis that had 

been up-regulated at earlier time points, were significantly down-regulated between 1-2 

dpw. 

Subsequently, the final time point comparison from 2-3 dpw shows the up-regulation of 5 

nodes that were not previously enriched during the time course, except for a prior 

significant down-regulation of “oxidation-reduction process” (5) between 0.5-1 dpw. 

Three of the up-regulated terms were “fatty acid biosynthesis” (1), “oxidation-reduction 

process” (5) and “lipid metabolism” (9), where many genes within these terms encode 
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key aliphatic suberin biosynthetic enzymes, along with genes annotated as 

acyltransferases, lipases and peroxidases. Among these genes, some are involved in final 

steps of fatty acid biosynthesis (e.g. ketoacyl-ACP reductase, KAR, and β-hydroxyacyl-

ACP dehydratase), subsequent elongation (e.g. several ketoacyl-CoA synthases including 

KCS6, fatty acyl-CoA reductases including FAR3, and very long chain β-hydroxyacyl-

CoA dehydratase), and modification (e.g. fatty acid hydroxylases like the ω-hydroxylase 

CYP86A33) reactions, as well as the final step of glycerol production (glycerol-3-

phosphate dehydrogenase (GPDH)). 

Several genes found up-regulated in the GO term “oxidation-reduction process” are 

involved in phenylpropanoid metabolism, where some are required for early, general 

pathway steps (e.g. p-coumarate 3-hydroxylase (C3H) and p-coumaroyl 

quinate/shikimate 3’-hydroxylase (C3’H)), and others encode three consecutive steps 

towards monolignol biosynthesis (ferulate-5-hydroxylase (F5H), cinnamoyl-CoA 

reductase (CCR), and cinnamyl alcohol dehydrogenase (CAD)). The presence of these 

genes within this term is mostly due to significant up-regulation at earlier time point 

comparisons, but their categorization as up-regulated from 2-3 dpw reflects an increase in 

these transcripts at the end of the time course, albeit changes are not necessarily of 

statistical significance.  

The other two GO terms up-regulated between 2-3 dpw were “secondary cell wall 

biogenesis” (40) and “protein phosphorylation” (11). Down-regulated terms included 

those related to mitosis and the cell cycle that were previously up-regulated (54, 56, 81-

83, 91), DNA replication (28, 42, 51, 52, 84), protein translation (21, 33), and post-

translational modifications (55, 57). Terms involved in transcriptional repression such as 

“gene silencing” (44) and “DNA methylation” (53) also decreased in this later stage of 

wound-healing. GO terms related to the catabolism of: polysaccharides (27), pectin (34), 

cell wall macromolecules (49), chitin (78) and cellulose (89) were all significantly down-

regulated.  
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Figure 3.2. Gene set enrichment analysis (GSEA) of biological processes across differentially expressed 

genes (DEGs) identified in sequential wound-healing time point comparisons. Together, time point 

comparison panels represent a union parametric analysis of gene set enrichment (PAGE) of biological process 

(BP) categorized gene ontology (GO) terms. Nodes represent gene sets and their size represents a range from 5-

464 genes, and edges show overlapping genes between sets, with width representing ranges from 5-149 genes. 

Blue sets are down-regulated, red are up-regulated, and grey nodes denote terms that were not detected as 

significantly differentially regulated (i.e. enriched) at that time point comparison. Labels denote assigned node 

numbers that correspond to Table 3.1 with associated GO ID, GO term and regulation overview. 
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Table 3.1 Summary of gene ontology information represented in biological 

process gene set enrichment analysis plot and change in terms over time. 

   
Time point comparison 
(days post-wounding) 

Node GO ID GO Term 0-0.5 0.5-1 1-2 2-3 

1 GO:0006633 fatty acid biosynthetic process - - - ↑ 

2 GO:0006351 transcription, DNA-templated ↓ - - - 

3 GO:0006355 regulation of transcription, DNA-
templated 

↓ - - - 

4 GO:0071555 cell wall organization - ↑ - - 

5 GO:0055114 oxidation-reduction process - ↓ - ↑ 

6 GO:0009409 response to cold ↓ - - - 

7 GO:0006096 glycolytic process ↑ - - - 

8 GO:0008150 biological_process - ↑ - - 

9 GO:0006629 lipid metabolic process - - - ↑ 

10 GO:0009664 plant-type cell wall organization - - - ↓ 

11 GO:0006468 protein phosphorylation - - - ↑ 

12 GO:0008152 metabolic process ↑ - - - 

13 GO:0008652 cellular amino acid biosynthetic process ↑ - ↓ - 

14 GO:0000226 microtubule cytoskeleton organization - ↑ ↓ ↓ 

15 GO:0000911 cytokinesis by cell plate formation - ↑ ↓ ↓ 

16 GO:0010090 trichome morphogenesis ↑ - - - 

17 GO:0010200 response to chitin ↓ - - - 

18 GO:0009644 response to high light intensity ↓ - - - 

19 GO:0032259 methylation ↑ - - - 

20 GO:0005975 carbohydrate metabolic process - ↑ - ↓ 

21 GO:0006412 translation ↑ ↓ ↓ ↓ 

22 GO:0042546 cell wall biogenesis - ↑ - - 

23 GO:0006612 protein targeting to membrane ↓ - - - 

24 GO:0009867 jasmonic acid mediated signaling 
pathway 

↓ - - - 

25 GO:0016036 cellular response to phosphate 
starvation 

↑ - - - 

26 GO:0030968 endoplasmic reticulum unfolded 
protein response 

↓ - - - 

27 GO:0000272 polysaccharide catabolic process - - - ↓ 

28 GO:0006260 DNA replication ↑ ↓ - ↓ 

29 GO:0006364 rRNA processing - ↓ - - 

30 GO:0006511 ubiquitin-dependent protein catabolic 
process 

↑ - - - 

31 GO:0006334 nucleosome assembly ↑ ↓ ↑ ↓ 

32 GO:0001510 RNA methylation ↑ ↓ ↓ ↓ 

33 GO:0042254 ribosome biogenesis ↑ ↓ ↓ ↓ 

34 GO:0045490 pectin catabolic process - - - ↓ 

35 GO:0006470 protein dephosphorylation ↓ - - - 

36 GO:0015979 photosynthesis ↓ - - - 

37 GO:0006541 glutamine metabolic process - ↓ - - 
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38 GO:0009737 response to abscisic acid - - ↑ - 

39 GO:0006950 response to stress ↓ - - - 

40 GO:0009834 plant-type secondary cell wall 
biogenesis 

- - - ↑ 

41 GO:0006281 DNA repair - - - ↓ 

42 GO:0006310 DNA recombination ↑ - - ↓ 

43 GO:0009909 regulation of flower development - - ↓ ↓ 

44 GO:0016458 gene silencing - - - ↓ 

45 GO:0048449 floral organ formation - ↑ - ↓ 

46 GO:0006333 chromatin assembly or disassembly - ↓ - - 

47 GO:0006606 protein import into nucleus ↑ ↓ ↓ - 

48 GO:0006099 tricarboxylic acid cycle ↑ - ↓ - 

49 GO:0016998 cell wall macromolecule catabolic 
process 

- ↑ - ↓ 

50 GO:0070588 calcium ion transmembrane transport ↓ - - - 

51 GO:0006270 DNA replication initiation ↑ - ↓ ↓ 

52 GO:0006275 regulation of DNA replication ↑ - ↓ ↓ 

53 GO:0006306 DNA methylation - - ↓ ↓ 

54 GO:0010389 regulation of G2/M transition of mitotic 
cell cycle 

- ↑ ↓ ↓ 

55 GO:0016572 histone phosphorylation - ↑ ↓ ↓ 

56 GO:0051225 spindle assembly - ↑ ↓ ↓ 

57 GO:0051567 histone H3-K9 methylation ↑ ↑ ↓ ↓ 

58 GO:0006457 protein folding ↓ ↓ - - 

59 GO:0007010 cytoskeleton organization - ↑ ↓ - 

60 GO:0046274 lignin catabolic process - ↓ - - 

61 GO:0006414 translational elongation ↑ ↓ ↓ ↓ 

62 GO:0006545 glycine biosynthetic process ↑ - - - 

63 GO:0006730 one-carbon metabolic process ↑ - - - 

64 GO:1903959 regulation of anion transmembrane 
transport 

↑ - - - 

65 GO:0000413 protein peptidyl-prolyl isomerization - ↓ - - 

66 GO:0009408 response to heat ↓ - - - 

67 GO:0009553 embryo sac development - ↓ - - 

68 GO:0030154 cell differentiation ↓ - - - 

69 GO:0000162 tryptophan biosynthetic process ↑ - - - 

70 GO:0009073 aromatic amino acid family 
biosynthetic process 

↑ - - - 

71 GO:0006626 protein targeting to mitochondrion ↑ ↓ ↓ - 

72 GO:0048438 floral whorl development - ↑ - - 

73 GO:0006807 nitrogen compound metabolic process ↑ - - - 

74 GO:0007017 microtubule-based process ↑ ↑ ↓ - 

75 GO:0007623 circadian rhythm ↓ - - - 

76 GO:0007059 chromosome segregation - - ↓ - 

77 GO:0007018 microtubule-based movement - ↑ ↓ ↓ 

78 GO:0006032 chitin catabolic process - - - ↓ 

79 GO:0042542 response to hydrogen peroxide ↓ - - - 
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80 GO:0006342 chromatin silencing - - ↓ ↓ 

81 GO:0008283 cell proliferation - - - ↓ 

82 GO:0000278 mitotic cell cycle - ↑ ↓ ↓ 

83 GO:0007049 cell cycle - ↑ ↓ ↓ 

84 GO:0032508 DNA duplex unwinding ↑ - - ↓ 

85 GO:0035999 tetrahydrofolate interconversion ↑ - - - 

86 GO:0009620 response to fungus ↓ - - - 

87 GO:0009765 photosynthesis, light harvesting ↓ - - - 

88 GO:0018298 protein-chromophore linkage ↓ - - - 

89 GO:0030245 cellulose catabolic process - - - ↓ 

90 GO:0030048 actin filament-based movement - ↑ ↓ - 

91 GO:0051726 regulation of cell cycle - - - ↓ 

92 GO:0009617 response to bacterium ↓ - - - 

93 GO:0032147 activation of protein kinase activity - ↑ ↓ ↓ 

94 GO:0060236 regulation of mitotic spindle 
organization 

- ↑ ↓ ↓ 

95 GO:0009094 L-phenylalanine biosynthetic process ↑ - - - 

96 GO:0048317 seed morphogenesis ↓ - - - 
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Biological process (BP) terms offer insights relevant to wound-healing and associated 

suberization events largely reflected by metabolic pathway, signaling and regulatory 

terms. Molecular function (MF) and cellular component (CC) GO term analyses were 

also conducted to further supplement BP findings by providing information about 

mechanisms relating to molecular interactions, and the sub-cellular localization of these 

events, respectively.  

In the MF term analysis, 67 gene sets comprising 2648 genes from the DEG list changed 

significantly over time (Figure C1, Table C2). Between 0-0.5 dpw, up-regulated terms 

included those involved in enzyme-mediated catalytic activities (e.g. ligase, 12; 

isomerase 22; O-methyltransferase, 36; oxidoreductase, 41; and general catalytic 

activities, 21), while many binding functions (i.e. selective and non-covalent interactions) 

were down-regulated (4, 44, 58, 60, 62), except for “protein heterodimerization” (19) and 

“RNA binding” (20), which increased. Most of these initially up-regulated enzyme 

activity terms decreased by 0.5-1 dpw except for “O-methyltransferase activity” (36), 

which did not change again until further up-regulation between 2-3 dpw, and “protein 

heterodimerization” (19), a term that alternated between up- and down-regulation for 

each successive time point comparison. The majority of changing genes in this term that 

are initially up-regulated encode all four core histones and some variants, and their 

expression drives the overall node directional statistic. Other genes within this term act 

mostly in an opposite temporal pattern and encode transcription factors such as CCAAT-

binding proteins. Some terms related to oxidoreductase activities were down-regulated 

between 0.5-1 dpw, did not change further between 1-2 dpw, then were significantly up-

regulated 2-3 dpw (9, 29, 41, 48), as observed for the BP oxidation-reduction term. 

Several general transferase activity terms (7, 8, 34) as well as “O-methyltransferase 

activity” (36) and “acyltransferase activity” (39) were significantly up-regulated during 

late stages of the time course, along with “peroxidase activity” (43), which also overlap 

with genes comprising BP terms enriched in the 2-3 dpw time point comparison. 

In the CC term analysis, 38 significantly regulated gene sets changed over the time 

course, with 2641 DEGs represented by enriched terms (Figure C2, Table C3). Many 
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initially up-regulated GO terms reflected cellular machinery involved in protein synthesis 

(“ribosome”, 13, and “small ribosomal subunit”, 30) and cell cycle components (e.g. 

“nucleolus”, 15, “cytoskeleton”, 23, “microtubule”, 29), while these terms were down-

regulated across later points of the time course. The cell wall term was up-regulated 

between 0.5-1 dpw, maintained between 1-2 dpw, then significantly down-regulated 

between 2-3 dpw, which is similar in trend for cell wall-related BP terms, except for the 

secondary cell wall-specific BP term. “Golgi apparatus” (5), “membrane” (1) and 

“integral membrane” (2) were the only cellular components that were up-regulated 

between days 2-3 post-wounding. The latter term is made up of hundreds of genes, of 

which those up-regulated at this time point comparison include known and putative 

suberin-deposition related ABC subfamily G transporters, ABCG1, ABCG6 and ABCG11, 

as well as other uncharacterized ABC and MDR family transporters, and genes encoding 

Casparian strip membrane (CASP) or CASP-like (CASPL) proteins, including CASP8 

and CASP9. Other genes up-regulated between 2-d dpw with involvement in 

esterification of aliphatic suberin monomers to glycerol (GPAT5 and GPAT6) or to 

feruloyl-CoA (FHT) were also included in this term.   

3.3.5 Wound-induced transcriptional changes: the long and 
winding road to suberin assembly 

A broad roadmap to suberin production was generated with associated transcriptome data 

to provide a comprehensive overview of the expression patterns for all characterized and 

putative potato suberin-related metabolic events throughout the wound-healing time 

course (https://www.uwo.ca/biology/faculty/bernards/research/index.html under “Suberin 

Roadmap”; Figure 3.3). This scheme was constructed using a previous model (Bernards, 

2002) as a basis for pathway steps, but updated to incorporate current knowledge and 

recent advances in our understanding of suberin biosynthesis. This hypothetical 

framework was used to probe RNA-seq data for expression of relevant steps, and by 

incorporating transcriptomic data into the overview, gene expression information helped 

to guide the formation of the new roadmap.  

https://www.uwo.ca/biology/faculty/bernards/research/index.html
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Figure 3.3. Roadmap to suberin biosynthesis and assembly.  A. Starch and sucrose degradation. B. Carbohydrate metabolism C. 

Shikimate pathway D. Phenylpropanoid metabolism E. Phenolic suberin assembly F. Tricarboxylic acid (TCA) cycle G. Fatty acid 

biosynthesis H. Aliphatic metabolism I. Aliphatic suberin assembly. Panels comprise detailed pathway branch figures, in which final 

monomers destined for SPPD incorporation are red and SPAD components are blue, and corresponding heatmaps to demonstrate 

changes in transcript accumulation of known and putative genes that encode pathway steps involved in suberin biosynthesis and 

assembly over the wound-healing time course. Log2FPKM means for n=3 biological replicates are presented for each time point. 

Numbered pathway steps correspond to numbers on heatmaps, and to numbers in the associated supplemental screening figure and 

table that include gene ID information (Figure C3; Table C4).  
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Our previous work, which integrated gene expression and metabolite accumulation data, 

demonstrated the differential temporal regulation of aliphatic and phenolic suberin 

biosynthesis and assembly (Woolfson et al., 2018). The generation of this transcriptomic 

dataset made it possible to explore an extensive, targeted list of wound-healing and 

suberin-related genes of interest and observe how they change during the time course at 

an individual level, but also in conjunction with other genes from shared pathways. This 

approach was also used to provide support for hypothesized steps towards suberization 

and to identify candidates for further investigation.  

Log2(FPKM) values for each target gene at each time point were used for heatmap 

visualization of changes for each target gene throughout wound-healing. Each gene 

corresponds to a known or predicted enzyme involved in the pathway towards suberin 

biosynthesis and assembly. This pathway comprises various branches of metabolism 

required for suberin production. The earliest steps involve primary metabolic processes 

for starch and sucrose degradation (steps 1-11, Figure 3.3A), carbohydrate metabolism 

(steps 12-26, Figure 3.3B), the shikimate pathway (steps 27-38, Figure 3.3C), the 

tricarboxylic acid cycle (steps 55-64, Figure 3.3F) and fatty acid biosynthesis (steps 65-

73, Figure 3.3G), which yield energy and precursor molecules that fuel and feed into 

downstream, suberin-specific metabolism. Phenylpropanoid metabolism (steps 39-51, 

Figure 3.3D) and aliphatic metabolism (steps 74-88, Figure 3.3H) produce final suberin 

monomers that then undergo transport and linkage via respective phenolic (steps 52-54, 

Figure 3.3E) and aliphatic suberin assembly steps (steps 89-94, Figure 3.3I) to build and 

deposit the heteropolymer. Genes presented in Figure 3.3 were selected from a larger 

pool of candidates (Figure C3, Table C4), from which a maximum of three 

representative genes were selected per enzymatic step based on expression levels and 

wound-induction profiles, wherever possible.  

3.3.5.1 Starch degradation and carbohydrate metabolism 

Starch and sucrose degradation and carbohydrate metabolism pathways comprise genes 

involved in starch breakdown (steps 1-11; Figure 3.3A) that mostly yield glucose and its 

phosphorylated products, mainly glucose-6-phosphate (G6P), used as a precursor for the 
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ATP-, NADH- and pyruvate-generating glycolytic pathway (7, 12, 19-26), and its parallel 

pentose phosphate pathway (13-18), which yields 5-carbon sugars and NADPH (Figure 

3.3B).  

Most de-branching steps of starch metabolism (1-6) were already expressed at 0 dpw and 

either decreased or increased slightly by 0.5 dpw, then exhibited consistent levels of 

transcript accumulation for the duration of the time course. Here β-amylase (5.1) 

exhibited the highest expression levels that were maintained over time. The two types of 

phosphorylases that yield G6P (hexokinase, step 7) and G1P (α-1,4 glucan 

phosphorylase, step 8) displayed different patterns after wounding, where hexokinase 

expression slightly increased after wounding, but α-1,4 glucan phosphorylases dropped to 

lower mRNA levels between 0 and 0.5 dpw, then did not change further. One gene 

encoding a glycosyltransferase for sucrose synthesis (10.1) demonstrated a down-

regulation from 0-0.5 dpw, followed by a gradual increase over the time course, 

achieving its peak expression at 3 dpw. The expression levels of G6P-forming 

phosphoglucomutase (9) and the UTP-glucose generating uridylyltransferase (11) did not 

appear to be altered by wounding, as they remained consistent over all time points.  

Generally, at least one gene encoding each enzymatic step of the glycolytic pathway was 

up-regulated from 0 to 0.5 dpw, and retained consistent expression until 3 dpw, where 

several achieve their highest FPKM levels by 1 dpw. The rate-limiting 

phosphofructokinase-catalyzed step and one enolase-encoding gene were exceptions, 

since their transcript levels did not change between the first two time points. That is, 

phosphofructokinase expression remained steady until 3 dpw, while enolase expression 

dropped slightly at 2 dpw. The final step for pyruvate biosynthesis, encoded by pyruvate 

kinase (26), was up-regulated between 0 and 0.5 dpw, and mostly present at consistent 

transcript levels over time.  

The pentose phosphate sub-branch of carbohydrate metabolism showed similar patterns 

of expression over time (i.e. an initial increase in FKPM by 0.5 dpw), although slightly 

lower levels relative to glycolysis genes. The most highly expressed genes within this 

pathway shared the aforementioned pattern of expression, which includes at least one 
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gene encoding each NADPH-yielding dehydrogenase step (13.1 and 15.1) in the 

oxidative ribulose-5-phosphate producing pathway, as well as the transketolase (18.1) 

responsible for non-oxidative synthesis of sugars including fructose-6-phosphate. 

Among all sub-pathways within carbohydrate metabolism, the steps required for starch 

degradation and the pentose phosphate pathway generally had lower log2FPKM values 

than genes involved in glycolysis, and within sub-branches, different expression patterns 

were also observed.  

3.3.5.2 Shikimate pathway 

The shikimate pathway bridges carbohydrate and phenylpropanoid metabolism via the 

production of aromatic amino acids phenylalanine, tyrosine and tryptophan, where the 

former two are required for SPPD monomer biosynthesis. These products are synthesized 

using the phosphoenol-pyruvate-derived intermediate prephenate (via steps 27-33) and 

glutamate as a nitrogen source (steps 34-36) that yields arogenate, followed by either 

dehydratase (37) or dehydrogenase (38) conversion into phenylalanine, or tyrosine, 

respectively (Figure 3.3C). Most genes in this pathway were expressed at 0 dpw, except 

for three genes with undetectable transcripts at this time point (3-dehydroquinate 

dehydratase/shikimate dehydrogenase, 29.1; 3-phosphoshikimate 1-

carboxyvinyltransferase, 31.2; glutamine synthetase, 35.3), then were subsequently up-

regulated between 0 and 0.5 dpw. The most highly expressed genes within this pathway 

include the first committed pathway step, DAHP synthase (27.1), and glutamine 

synthetase (GS, 35.1), a key nitrogen metabolism enzyme that makes the transamination 

of prephenate possible.  
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Figure 3.3A. Starch and sucrose degradation. 

 

 

log2(FPKM) 
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Figure 3.3B. Carbohydrate metabolism. 

log2(FPKM) 
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Figure 3.3C. Shikimate pathway. 

log2(FPKM) 



105 

 

3.3.5.3 Phenylpropanoid pathway 

Different sub-branches of genes implicated in phenylpropanoid metabolism that yield 

polar suberin monomers, monolignols and hydroxycinnamic acid amides, were up-

regulated at different points during wound-healing and demonstrated varied expression 

patterns over time (Figure 3.3D). Generally, most genes were expressed at 0 dpw, except 

for some O-methyltransferases (46.1, 47.2 and 47.3) and the monolignol biosynthetic 

genes cinnamoyl CoA reductase (49.1) and cinnamyl alcohol dehydrogenase (50.2), 

which exhibited very little to no expression at 0 dpw.  

Genes encoding steps required for synthesis of hydroxycinnamates and their thioesters 

(steps 40-48) were up-regulated by 0.5 dpw, and were maintained at high levels 

throughout the duration of the time course. The main exception was p-coumaroyl 

quinate/shikimate 3’-hydroxylase (45.1), which was present at its highest levels on 0 

dpw, then decreased over time.  

Tyrosine decarboxylase (39.1) catalyzes the conversion of tyrosine to tyramine as a 

precursor for hydroxycinnamic acid amide (HCAA) synthesis, and its transcripts were 

very low and did not exceed log2FPKM value over 2 until 3 dpw. The only gene in this 

pathway that utilizes tyramine as substrate, tyramine hydroxycinnamoyl transferase 

(THT, 51.1), was expressed throughout the time course, albeit at lower levels than those 

required for synthesis of other SPPD monomers like feruloyl-CoA, which is required for 

HCAA and also a known substrate of THT. Monolignol-specific biosynthetic genes (49-

50) also showed different patterns than the majority of genes in this branch, where 

expression levels gradually increased over time and peaked at 3 dpw.  
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Figure 3.3D. Phenylpropanoid pathway.  
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3.3.5.4 Phenolic suberin assembly 

Most phenolic suberin assembly genes demonstrated similarly consistent FPKM levels 

over time, but generally at lower levels than the biosynthetic branch (Figure 3.3E). 

NADPH-dependent oxidases were generally expressed throughout the time course, 

although one encoding gene (52.1) was at its peak expression at 0 dpw, whereas another 

(52.2) was not expressed until 0.5 dpw and reached its highest expression at 3 dpw. Two 

superoxide dismutases (53.1-53.2) were expressed consistently over time, but levels of 

the former were ca. 3.5 log2-fold greater than the latter, and the third gene (53.3) was not 

expressed from 0.5-3 dpw. The suberization-associated anionic peroxidases (54.1-54.2) 

demonstrated different temporal patterns than other assembly genes since they increased 

gradually in expression over time, in which the induction of one (54.1) preceded the other 

(54.2) by as much as 12 hours.  

 

Figure 3.3E. Phenolic suberin assembly. 

3.3.5.5 Tricarboxylic acid cycle 

Another metabolic fate for phosphoenolpyruvate is conversion to pyruvate and entry into 

the tricarboxylic acid (TCA) cycle, which yields acetyl-CoA required for fatty acid 

biosynthesis, and NADH that is used in the electron transport chain to generate ATP 

(Figure 3.3F). Most genes encoding TCA cycle enzymes and complex components were 

expressed at 0 dpw, except for one citrate synthase gene (57.3). Two pyruvate 

dehydrogenase complex subunits (55.1 and 55.3) involved in the initial production of 

log2(FPKM) 
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acetyl-CoA, and citrate synthase (57.1) that yields citrate from pyruvate-derived 

oxaloacetate and acetyl-CoA, continued to increase in transcript abundance, reaching 

their maximum expression levels on 3 dpw, and phosphoenolpyruvate carboxylases 

(56.1-56.2) that synthesize oxaloacetate decreased after 0 dpw. The remaining genes that 

encode subsequent pathway steps (58-64) were up-regulated to their maximal levels at 

0.5 dpw, and remained at similar transcript abundances through to 3 dpw. Fumarase (step 

63) transcript abundance could not be assessed as it did not have an associated PGSC-

based gene ID. 

3.3.5.6 Fatty acid biosynthesis 

Fatty acid biosynthesis requires acetyl-CoA, generated by citrate lyase (step 65), acting 

on citrate exported from mitochondria. This step was up-regulated between 0-0.5 dpw 

(Figure 3.3G). The subsequent steps involved in acetyl-CoA carboxylation (step 66) to 

form malonyl-CoA and transfer of activated malonyl-CoA to the acyl carrier protein 

(ACP, step 67) and all subsequent elongation steps by the fatty acid synthase complex 

(FAS, steps 68-71) followed similar induction patterns and maintained fairly consistent 

expression levels between 0.5-3 dpw. The steroyl-ACP (18:0) product of the FAS is then 

either released as 18:0 stearic acid (step 72), or desaturated to 18:1 oleic acid (step 73). 

The transcript abundance of the desaturase (73.1) was higher than that of the thioesterase 

(72.1), especially at 0 dpw. Otherwise, they shared similar profiles with all other genes in 

this pathway. 
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Figure 3.3F. Tricarboxylic acid cycle. Fumarase (step 63) is included as a step in the 

pathway, but is shown in grey because its sequence did not have a corresponding PGSC 

gene identification number, and therefore transcript abundance could not be estimated in 

this study. 

log2(FPKM) 
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Figure 3.3G. Fatty acid biosynthesis. 
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3.3.5.7 Aliphatic metabolism 

Stearic acid (18:0) and oleic acid (18:1) from the fatty acid biosynthesis pathway are used 

as substrates for further modifications to yield aliphatic suberin monomers, including 

chain elongation (74-77), hydroxylation (79-82), acyl reduction (83), acyl chain 

activation (84) and decarboxylation (85-86) (Figure 3.3H). Some modifying enzymes act 

directly on 18C fatty acids from the previous pathway (steps 78-81), and others use 

VLCFA substrates after elongation steps (steps 82-87).  

In contrast to other pathways that yield precursors or phenolic monomers, genes related 

to specialized and more final aliphatic monomer biosynthesis were not up-regulated until 

later time points (days 1 or 2 post-wounding), and typically increased gradually over 

time, until reaching their highest log2FPKM levels on day 3 of wound-healing. Temporal 

patterns were also observed within these pathways branches. For example, other than the 

gene encoding the first subunit of the FAS complex (74), the transcripts of most chain 

elongation steps (75-77) accumulated by 0 or 0.5 dpw, which is up to two days earlier 

than other fatty acid modification genes such hydroxylation (79-82), reduction (83), acyl 

chain activation (84) and decarboxylation steps (85-86), which encode enzymes that use 

long chain fatty acids as substrates. An exception to this general pattern is the putative 

α,ω-dioic acid forming hydroxylase, CYP94A26 (81.3), which is highest at 0 dpw. Other 

sub-branches within this pathway expressed different patterns than most modification 

genes, but showed temporal patterns consistent with elongation genes, including CER-

interacting cytochrome b5s (step 87) and glycerol-forming dehydrogenases (step 88). 
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Figure 3.3H. Aliphatic metabolism. 
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3.3.5.8 Aliphatic suberin assembly 

Genes that encode enzymatic steps involved in aliphatic suberin linkage (e.g. to feruloyl-

CoA, step 89, or to glycerol, step 90) and deposition by ABC transporters (92-94) 

demonstrated clear wound-induction profiles as seen for many fatty acid modification 

genes  (Figure 3.3I). For example, FHT (89.1) was strongly up-regulated more than 10 

log2-fold between 0 to 0.5 dpw, and the GPATs (90.1-91.1) were up-regulated 8 and 9 

log2-fold, respectively. ABCG1 (92.1) increased 3 log2-fold by 0.5 dpw, and two ABC 

transporters (93.1-93.4) did not have detectable transcript accumulation until 2 dpw, 

following greater than 4 log2-fold up-regulation from 1 dpw. 

 

Figure 3.3I. Aliphatic suberin assembly. 

3.3.6 Evaluation of suberin assembly candidates 

Many biochemical steps for suberin monomer synthesis are known or can be predicted, 

but aside from the participation of peroxidase in SPPD production, and enzymatic 

esterification and deposition steps involved in SPAD assembly, no mechanisms have 

been established for the overall polymerization, assembly and organization of either 

domain. Since proposed mechanisms are analogous to those known for cutin 

polymerization and lignin-based Casparian strip assembly, putative potato homologs 

and/or protein family members of characterized cutin synthases and Casparian strip 

membrane (CASP) and CASP-like (CASPL) proteins were identified and evaluated for 

potential involvement in wound-induced tuber suberization. All annotated potato CASPs 

log2(FPKM) 
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were included in this analysis, of which CASP8 (C.12) and CASP9 (C.13) are expressed 

during periderm maturation (Figure C4, Table C5).  

The putative potato homolog of tomato cutin synthase (SlCDS1/CUS1), StCDS1 (G.1) 

along with many similar proteins that were either annotated as putative members of the 

GDSL-esterase/lipase family, or annotated as zinc finger domain-containing proteins and 

are homologs of Arabidopsis and tomato GDSL or CUS proteins (G.2-G.8), were 

incorporated in this analysis to investigate a possible role for these in the wound-healing 

suberin biosynthetic process (Figure C4, Table C6).  

Preliminary screening in which putative CASP and GDSL genes were clustered 

demonstrated that over half of genes encoding CASP/CASPL and GDSL family proteins 

were not expressed in the time course (Figure C4, Table C5-C6). Of those CASP-

encoding genes that were expressed, CASP8 (C.12) and CASP9 (C.13) and CASP 

GSVIVT00013434001 (C.14) displayed the highest log2FPKM values and clustered 

together, with 18 others demonstrating some level of expression during the time course. 

Only two of eight genes encoding GDSL-type proteins were expressed (G.6 and G.7), 

which did not include the SlCDS1 likely ortholog, StCDS1 (G.1). 

The 21 expressed CASP and two GDSL candidates were included in another clustering 

analysis with previously outlined suberin phenolic and aliphatic assembly genes to 

generate hypotheses about their potential involvement in certain pathways (Figure 3.4). 

Five of the most highly expressed candidates (CASP8, C.12; CASP9 C.13; CASP 

GSVIVT00013434001, C.14; and GDSL, G.7) followed similar temporal patterns, in 

which no transcripts were detected until 0.5 dpw, and continued to increase until 3 dpw. 

These genes clustered together with a phenolic assembly branch peroxidase (54.1), 

GPATs involved in glycerol linkage to aliphatic monomers (90.1 and 90.2), and a gene 

that represents a point of convergence between the phenolic and aliphatic pathways, 

feruloyl transferase (FHT, 89.1), that esterifies aliphatic monomers to phenylpropanoid 

pathway-derived feruloyl-CoA. Another highly expressed GDSL candidate, G.7, 

exhibited a similar profile, but was not initially up-regulated until 1 dpw, and another 

CASP candidate (C.17) followed the same temporal pattern, but with lower overall 
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expression levels. These genes clustered with two putative ABC transporters, ABCG6 

(94.1) and ABCG11 (93.1) with hypothetical involvement in aliphatic suberin deposition. 

Two CASP candidates, C.33 and C.34, were not expressed at 0 dpw, initially up-regulated 

at 0.5 dpw, and then decreased in expression, and closely followed expression patterns of 

the known assembly genes that they clustered with, including the aliphatic transporter 

ABCG1 (92.1), NADPH-dependent oxidase (52.2) and anionic oxidase (54.2). Other 

CASP candidates that were expressed more consistently over time grouped together with 

genes that are implicated in phenolic suberin assembly, including two NADPH-

dependent oxidases (52.1, 52.3) and two superoxide dismutase genes (53.1, 53.2). Several 

candidate CASPs clustered with another superoxide dismutase gene (53.3), and all shared 

very low, consistent expression levels. 
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Figure 3.4. Hierarchical clustering analysis of known and putative suberin assembly 

genes with newly identified candidate genes. Genes included have putative predicted 

roles in aliphatic monomer polymerization (GDSLs, denoted by G), and recruitment and 

organization of machinery for assembly of the suberin polymer (CASPs, denoted by C) 

over the wound-healing time course. Biological replicate means of n=3 log2FPKM values 

are presented for each time point. 
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3.3.7 Changes in abscisic acid metabolism after wounding 

A role for abscisic acid (ABA) was previously implicated in the regulation of aliphatic 

suberin biosynthesis, linkage and deposition genes during wound-induced suberization. 

Genes involved in ABA synthesis and degradation were therefore targeted for analysis to 

better characterize the timing of ABA metabolism during the wound response and gain 

insight into its regulatory role. ABA is derived from β-carotene, therefore early 

isoprenoid and carotenoid biosynthetic genes were included in our analysis to establish 

expression patterns for pathways that provide the required precursors (Figure 3.5, Table 

C7). For the isoprenoid pathway (steps 1-11), all genes showed some level of expression 

at 0 dpw, and most were up-regulated to their highest levels (e.g. steps 2, 5-8, 10-11) by 

0.5 dpw. The most clear exception to this pattern is that of geranyl diphosphate synthase 

(step 9), which was down-regulated to nearly undetectable levels by 0.5 dpw. 

Interestingly, the gene encoding the enzyme for the following step that utilizes geranyl 

diphosphate as substrate, farnesyl diphosphate synthase, displayed the highest level of 

expression across all isoprenoid genes at 0.5 dpw.  Genes for later steps of the pathway 

that yield the intermediate geranylgeranyl pyrophosphate, which is a precursor for 

carotenoid synthesis, remained consistently expressed throughout the time course (Figure 

3.5A) 

Carotenoid pathway genes (steps 12-14) mostly exhibited their highest expression levels 

at 0 dpw, which decreased to undetectable levels by 1 dpw for the earliest steps, phytoene 

synthase (12.1-12.2) and phytoene desaturase (13.1). Lycopene β-cyclase catalyzes the 

final step of β-carotene biosynthesis, and its encoding genes (14.1-14.2) demonstrated 

lower log2FPKM levels than earlier steps, but remained consistent over the time course, 

and increased slightly by 3 dpw. 

Transcripts associated with at least one functionally annotated version of each ABA 

biosynthesis gene (steps 15-20) were detected at 0 dpw, albeit at lower levels than most 

isoprenoid biosynthetic genes (Figure 3.5B). Steps involved in the initial conversion of 

-carotene were down-regulated after 0 dpw. In contrast to carotenoid and early ABA 

biosynthetic steps, genes encoding later steps (17-20) were up-regulated over time, 
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especially xanthoxin dehydrogenase (19.1) and abscisic aldehyde oxidase (20.1), which 

encode the two final steps for ABA production. For both of these steps, different patterns 

of expression were observed over the time course for multiple genes with the same 

annotated function (e.g. 19.1, 19.2 and 19.3 do not share the same patterns, nor do 20.1, 

20.2 and 20.3), but together, represent some level of expression for that gene at every 

time point during wound-healing. Additionally, at least one gene per annotated function 

demonstrated expression into 3 dpw, which was not observed for all carotenoid 

biosynthetic genes. 

ABA catabolism involves inactivation by hydroxylation and/or glucosylation, whereas β-

glucosidase returns catabolized products back to active ABA. ABA-8’-hydroxylase 

(CYP707A)-encoding genes (1.1-1.3) decreased in transcript levels between 0-0.5 dpw, 

where one annotated version maintained detectable transcript levels throughout the time 

course, but the other two were close to undetectable from 0.5-3 dpw (Figure 3.5C, Table 

C8). Genes encoding ABA-glucosyltransferase (2.1-2.3) were expressed in differential 

patterns, with at least one version expressed at each time point. -Glucosidases (3.1-3.3) 

also displayed varied patterns of expression. At 3 dpw, one β-glucosidase (3.1) exhibited 

the highest log2FPKM level across ABA catabolism genes. 
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Figure 3.5. Transcriptional changes in abscisic acid (ABA)-related metabolism during wound-healing. A. Isoprenoid and β-

carotene biosynthesis. B. Abscisic acid biosynthesis. C. ABA catabolism. Log2FPKM means for n=3 biological replicates are 

presented for each time point. Numbered pathway steps correspond to gene information provided in Tables C7 and C8.  

A 
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3.3.8 Temporal gene expression patterns of transcription factor 
candidates 

As transcription factors (TFs) often function as the link between hormones and target 

gene expression, a set of putative TF candidates were identified using known TFs as a 

guide (Table C9). Transcription factors with known roles in suberin pathway-related 

metabolism (e.g. suberin regulators AtMYB41 and StNAC103, and phenylpropanoid 

pathway regulator StWRKY1) were used to find putative potato homologs that might 

regulate suberization during tuber wound-healing. The amino acid sequences of known 

suberin-associated TFs were queried by BLAST to find the top 10 protein matches in the 

potato PGSC database. Only those displaying some level of expression (i.e., 21 of 23 

original candidates, data not shown) in the time course were used further analysis. 

Expression profiles for these candidate TFs were analyzed within the RNA-seq data using 

hierarchical clustering analysis with genes encoding known TFs, to formulate hypotheses 

about their likely roles (Figure C5, Table C9).  

At the amino acid sequence level, MYB3 (TF.1) and MYB39 (TF.2) had the highest hit 

scores to AtMYB41, WRKY19/WRKY56 (TF.16) was most similar to the 

phenylpropanoid regulator WRKY1, and NAC58 (TF.9) was the most similar candidate 

to the characterized repressor NAC103 (Table C9). Their encoding genes all clustered 

together in this analysis. These genes showed no expression at 0 dpw and were up-

regulated by 0.5 dpw. NAC103 (TF.8) clustered closely with MYB102 (TF.5) and MYB 

ODO1 (TF.7), along with two NACs that were not expressed until 2 dpw. WRKY1 

clustered with two other highly and consistently expressed TFs from MYB and WRKY 

families. A group of candidates representing MYB, WRKY, and NAC-type TFs 

demonstrated lower expression levels than other known and candidate TFs, and either 

exhibited a gradual increase (TF.6, TF.13, TF.12, TF.20) or a gradual decrease (TF.4, 

TF.17, TF.19) in expression over time (Figure C5).  

Further analysis involved clustering the known and putative TFs with targeted suberin-

related pathway genes to determine where similar temporal patterns occurred on a 

broader scale (Figure 3.6A-D). NAC103 (TF.8) clustered with several other transcription 

factors such as MYB102 (TF.5), MYB39 (TF.2), NAC58 (TF.9) and other MYB and 
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NAC-encoding genes (Figure 3.6A). These TF genes mostly grouped with aliphatic 

biosynthetic genes that were not detectably expressed until 1 or 2 dpw. Genes that are 

thought to be regulated by NAC103 (KAR, CYP86A33, ABCG11) demonstrated similar 

expression patterns as NAC103, but were in the adjacent major cluster, with candidates 

including MYB3, and WRK19/WRKY56 along with other hydroxylases and reductases 

responsible for key aliphatic modification steps. These genes had no initial detectable 

expression at 0 dpw and were mostly up-regulated by 0.5 or 1 dpw. Several TF 

candidates that demonstrated low, consistent levels of expression such as MYB 

ODORANT1 (TF.4) and NAC21/22 (TF.13) clustered with primary metabolism genes, or 

phenylpropanoid genes, such as MYB1 (TF.6) and cinnamoyl-CoA reductase (CCR, 49.1) 

(Figure 3.6B). WRKY1 (TF.15), WRKY4 (TF.18) and MYB34 (TF.3) clustered with 

mostly primary metabolism pathway genes, as well as phenylalanine ammonia-lyase 

(PAL1, 40.3), the first committed step towards phenylpropanoid metabolism (Figure 

3.6C). WRKY1 did not cluster closely with genes it is known to regulate in aerial tissues, 

4-coumarate:CoA ligase (4CL, 42.1, Figure 3.6C) and tyramine hydroxycinnamoyl 

transferase (THT, 51.1, Figure 3.6B). These genes demonstrated similarly consistent 

temporal profiles as WRKY1, but at varied levels of expression, and appeared in visibly 

separate clusters. There were no transcription factors in the clusters presented in Figure 

3.6D, which mostly consists of primary metabolism genes.  
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Figure 3.6. Hierarchical clustering analysis of transcription factor candidates with suberin-related biosynthetic and assembly 

genes across the tuber wound-healing time course. Panels A-D provide a detailed view of sub-clusters within the overall heatmap. 

Transcription factors are numbered as TFs; other targeted genes are numbered as in Figure 3.3A-I heatmaps. Log2FPKM means for 

n=3 biological replicates are presented for each time point. Numbered pathway steps correspond to Table C9 TF gene information.

A 

log2(FPKM) 
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3.3.9 Validation of RNA-seq quantification by gene-specific RT-
qPCR expression analysis 

RT-qPCR was used to validate wound-healing time course transcript levels observed in 

RNA-seq counts. cDNA was generated from RNA used for RNA-seq as well as from 

separate experiments outlined in Woolfson et al. (2018) to encompass technical and 

biological validation. Pearson correlations were performed for 14 selected genes, where 

each data point represents the X,Y coordinate of expression values (log2(fold change) 

from 0 dpw) for one gene at one time point across both experimental methods (Figure 

3.7). Genes encompass key known and putative suberin biosynthetic genes (PAL, C4H, 

THT, CCR, CYP86A33, CYP86B12, KCS6, GPAT5, GPAT6, FHT, ABCG1) and 

transcription factor candidates (MYB34, MYB3, ODORANT1; Table C10) that could be 

normalized to their respective 0 dpw expression level (i.e. four selected genes were 

excluded from the correlation analysis due to no detectable expression at 0 dpw and 

inability to perform normalization). The overall Pearson correlation co-efficient of 

log2(fold change) gene expression values from RNA-seq (CPM) and RT-qPCR (ΔΔCq) 

revealed a significantly positive (p < 0.0001) r-value of 0.8598 (n=45) (Table C11). 

These findings demonstrate that overall, gene expression values correlate between two 

methods of quantification.  
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Figure 3.7. Validation of gene expression by Pearson correlation of RNA-seq with 

RT-qPCR expression values. Data points represent coordinates of expression values 

between the two experimental approaches for 14 genes over time, in which 3 genes 

encompass 4 time points and 11 genes include 3 time points (n=45). Mean expression 

values from biological triplicates for each experimental method were log2-transformed 

and normalized to 0 dpw for all presented data points to represent the log2 (fold change) 

from the control time point. Pearson’s correlation coefficient (r) is shown at the bottom 

right. The regression line is plotted with 95% confidence interval bands. RT-qPCR 

expression values were normalized to EF1-α (3 genes) and also to APRT (11 genes). 

Gene and primer information can be found in Table C10 and the statistical output is 

provided in Table C11.  
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3.4 Discussion 

Wounding of potato tubers induces a multitude of responses in order to heal and seal over 

damaged cells to prevent water loss and infection (Kolattukudy, 1987; Lyon 1989; Lulai 

and Orr, 1994; Lulai and Corsini, 1998). One major induced process is the formation of 

suberin in cells immediately below the wound surface. Suberization requires the 

biosynthesis of monomers from both phenylpropanoid and fatty acid metabolic pathways, 

including the biosynthesis of precursor molecules (phenylalanine and fatty acids) from 

available carbohydrate resources. Wound-induced suberin production requires initial 

signals and coordinated regulatory oversight to ensure all required metabolic pathways 

have been appropriately engaged. While some aspects of the regulation of wound-

induced suberization have been elucidated in Arabidopsis and potato, including 

transcription factors (e.g. AtMYB41, Kosma et al., 2014; StNAC103, Verdaguer et al., 

2016) and the role of ABA (Soliday et al., 1978; Lulai et al., 2008; Kumar et al., 2010; 

Suttle et al., 2013; Woolfson et al., 2018), and the differential temporal patterns of 

suberin-related metabolism have been established to some degree (Lulai and Corsini, 

1998; Kumar et al., 2010; Lulai and Neubauer, 2014; Woolfson et al., 2018), many steps 

of suberization remain uncharacterized. Additionally, the overall potato wound-healing 

response that includes necessary primary metabolism has been less well described at the 

molecular level, relative to suberin-specific studies (Neubauer et al., 2012; Lulai and 

Neubauer, 2014).  

In this study, RNA-seq was employed to uncover transcriptional changes that occur 

during the course of induced wound-healing in order to further our understanding of 

processes that relate to suberization in potato tubers. Taken together, unbiased and 

targeted gene expression analyses revealed a rapid, large-magnitude transcriptional re-

configuration followed by fine scale temporal changes that occur after wounding across 

individual genes independently, and as components of diverse metabolic pathway 

branches, whether predetermined or identified through gene ontology (GO) analysis. This 

approach allowed for the generation of an updated and novel framework for suberin-

related metabolism and facilitated the identification and validation of novel components 
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of induced wound-healing. An improved understanding of the mechanisms involved in 

wound-healing in an agricultural crop species may have important implications for future 

crop improvement efforts.  

3.4.1 Wound-healing is a dynamic process that leads to differential 
temporal patterns of transcription 

The generation of a wound-healing potato tuber transcriptome time series allowed for the 

investigation of overall changes that drive significant differential gene expression as well 

as targeted suberin-specific analyses. On a global level, findings from differential 

expression and GO analyses support the hypothesis that wound-induced suberization in 

the dormant potato tuber requires an initial re-organization of biological processes at the 

transcriptional level that are re-routed and focused towards more specialized activities 

that relate to suberin biosynthesis and physical wound-healing. These findings were 

corroborated by the temporal expression patterns revealed by targeted investigation of 

suberin-related metabolic pathways and associated regulatory components. The targeted 

approach included genes that were not necessarily differentially expressed, but rather 

provided a detailed investigation through the suberization lens. This comprehensive 

overview of the broad suberin biosynthetic pathway supports observed patterns for gene 

sets organized by GO term, providing further evidence towards the hypothesis regarding 

a shift from more general primary metabolism to specialized suberin-associated 

metabolism. Targeted analysis results demonstrate that overall, different pathway 

branches are expressed at different times after wounding, of which similar temporal 

expression patterns are shared across genes that constitute entire pathways involved in 

precursor and suberin-specific monomer biosynthesis, as well as polymer assembly. 

However, some distinct profiles exist at the individual gene level and among sub-groups 

of genes within pathways. This time course transcriptome provides evidence for the 

differential temporal induction of genes and their overarching pathways, and highlights 

the likeliness of various levels of regulatory oversight to coordinate their expression. 

After harvest and curing, potato tubers maintain a limited set of physiological activities 

during the ensuing dormancy, such as respiration, accumulation of reducing sugars, 
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synthesis of RNA, DNA and proteins, and subcellular compartmentation (as reviewed in 

Wiltshire and Cobb, 1996). Many of these processes were initially altered by the 

wounding event as seen by changes in differentially expressed genes (DEGs) reflected by 

enriched gene set terms for primary metabolic pathways like “carbohydrate metabolic 

process” and “tricarboxylic acid cycle”, amino acid biosynthesis including “aromatic 

amino acid family biosynthetic process” and “L-phenylalanine biosynthetic process”, and 

synthetic events like “DNA replication” and “translation” (Figure 3.2, Table 3.1). 

Targeted analysis of genes involved in the enriched metabolic pathways also 

demonstrated that the majority were expressed at 0 dpw, and their levels changed 

substantially within 12 hours of wounding (Figure 3.3A-F). The highest proportion of 

DEGs occurred within this initial 12 hour timeframe and coincided with the observed 

substantial shift in maintenance metabolism. In both global DEG and targeted pathway-

specific analyses, these aspects of primary metabolism generally achieved a new steady 

state of expression that remained consistent throughout the rest of the wound-healing 

time course, which highlights the importance of ongoing primary metabolism to fuel 

downstream reactions during wound-healing through the provision of precursor and 

energy molecules. As the wound-healing time course went on, new terms became 

enriched and genes from different pathway branches became up- or down-regulated, 

reflecting a more focused set of responses. Overall, the observed switch in the quantity 

and biological role of enriched terms over the time course marked a shift from broad and 

precursor-synthesizing metabolism to more healing and suberization-specific processes.  

While the response of these preliminary metabolic pathway steps have not been well-

characterized in a wound-healing tuber system, Strehmel et al. (2010) took a 

metabolomics approach to investigate the biochemical changes in tuber tissue primary 

metabolism within 48 hours of mechanical impact that leads to blackspot bruising. While 

metabolism associated with blackspot may be involved in the formation of melanin as a 

visible bruise, this type of mechanical injury can be considered a wound-related defect 

(Lulai, 2007). Key metabolites identified in this early stress response were intermediates 

of primary and carbon metabolism. These findings were also consistent with a metabolite 

profiling study (Yang and Bernards, 2007) that demonstrated an induced shift in primary 
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metabolites (e.g. sugars, organic acids and amino acids) during early tuber wound-

healing. Proteomic analysis of wound-healing tubers also demonstrated early (0-2 dpw) 

induction of processes related to primary metabolism and generalized defense responses, 

including storage glycoproteins like patatins and general protective protease inhibitors 

(Chaves et al., 2009). The transcriptomic approach described herein further illustrates the 

wound-induced changes within these primary pathways.  

Gene expression and metabolite analyses have previously revealed that the suberin 

poly(phenolic) domain is synthesized and deposited prior to the poly(aliphatic) domain in 

wound-healing potato tubers (Lulai and Corsini, 1998; Lulai et al., 2008), where ABA 

only regulates the latter (Woolfson et al., 2018). Our RNA-seq analysis included twelve 

genes representing phenolic, aliphatic and assembly genes that were studied in these 

previous wound-healing tuber experiments (e.g. Lulai and Neubauer, 2014; Woolfson et 

al., 2018), and displayed conserved patterns of gene expression. The shared expression 

patterns between our RNA-seq data and those observed in previous studies validates our 

findings and provides confidence in the conclusions that can be drawn from the RNA-seq 

data. In unbiased analyses, GSEA also indicated that primary and polar metabolism-

related GO terms were up-regulated earlier, followed by response to ABA, and finally 

terms involved in fatty acid metabolism (e.g. “fatty acid biosynthetic process”, 

“oxidation-reduction process” and “lipid metabolic process”; nodes 1, 5, and 9; Figure 

3.2). The fatty acid-related terms include key genes involved in aliphatic suberin 

modification, such as CYP86A33 (Serra et al., 2009b, Bjelica et al., 2016), KCS6 (Serra et 

al., 2009a), FAR3 (Domergue et al., 2010) and KAR (Beaudoin et al., 2009). These 

enriched terms demonstrate the importance of suberization as a specialized process 

within the overall wound response and subsequent healing, and changes in expression are 

congruent with the differential timing demonstrated in the targeted expression analysis 

(Figure 3.3H).  

Gene set enrichment analysis was performed with genes grouped by ontology term, 

where the determination of directional regulation for an enriched term depended on the 

significance and magnitude of change for all genes within the term. Genes were grouped 
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by metabolic pathway branches for targeted analysis, and entire branches shared similar 

patterns over time with relevant GSEA terms. Differential temporal patterns were also 

observed between individual genes and/or gene subsets within overarching pathway 

branches. For example, phenylpropanoid metabolism yields hydroxycinnamic acid-

derived products specifically for the poly(phenolic) suberin assembly pathway, but also 

wound-associated tyramine-derived hydroxycinnamic acid amides and monolignols 

involved in both phenolic suberin and cell wall-associated lignin production (Figure 

3.3D). Expression patterns differed between these different subgroups within the 

phenylpropanoid branch, where THT transcripts remained at consistent, albeit lower 

levels than other genes (as previously observed in Woolfson et al., 2018). THT encodes 

the only committed step towards tyramine-derived hydroxycinnamic acid amide (HCAA) 

biosynthesis, and while it yields cell wall- and phenolic suberin-associated products, it 

represents a distinct branch point of polar suberin metabolism (reviewed by Facchini et 

al., 2002). CCR transcripts accumulate at lower quantities and more gradually over time, 

which is consistent with minimal induction of CCR enzyme activity (Bernards et al., 

2000) and lower accumulation of monolignols relative to other phenolic monomers 

(Bernards et al., 1995). Cinnamoyl CoA reductase (CCR) commits hydroxycinnamic acid 

carbon skeletons into monolignol formation and controls the flux of metabolites towards 

monolignol biosynthesis as the first committed step for this sub-branch of the 

phenylpropanoid pathway. This may explain why the subsequent CAD-encoded step 

exhibited higher log2FPKM levels; i.e., it is present at high levels to ensure complete 

reduction of hydroxycinnamic acids to monolignols, as has been previously suggested 

(Bernards et al., 2000).  

Within the phenolic suberin assembly branch, oxidases and dismutases were generally 

active early on and consistently throughout the time course, whereas peroxidase genes 

were expressed at higher levels later in the time course than biosynthetic genes (Figure 

3.3E). This timing is consistent with previous studies on wound responses and phenolic 

polymerization (reviewed in Bernards et al., 2004). NADPH-dependent oxidases are 

known to be activated rapidly after wounding during the respiratory burst to generate 

superoxide, which is involved in plant signaling. Dismutases then convert superoxide into 
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hydrogen peroxide, which is used for peroxidase-mediated polymerization of polar 

suberin monomers (as reviewed by Bernards et al., 2004). Overall, these patterns reflect 

the difference in genes encoding enzymes for production of metabolites destined solely 

for suberin via two metabolic routes, or towards production of monolignols that can be 

incorporated into suberin or lignin, or HCAAs incorporated into the cell wall whether in 

association with suberin (e.g. feruloyl tyramine) or not, as well as steps involved in the 

initial wound response and of final polymerization of monomers.  

Genes involved in aliphatic suberin production also demonstrate differences in their 

temporal expression patterns that reflect varying levels of suberin-related specialization. 

Preliminary fatty acid modification steps such as chain elongation, and genes encoding 

cytochrome b5 proteins that act as electron donors for a multitude of fatty acid 

modification reactions including fatty acid desaturation and hydroxylation (Kumar et al., 

2006), had consistent transcript abundance, which contrasts other modification steps that 

gradually increase in expression. Modification and assembly genes shared similar 

patterns of later onset up-regulated expression. These patterns of expression are 

supported by the enzymatic progression of aliphatic suberin biosynthesis and assembly – 

acetyl-CoA is produced first from products of the tricarboxylic acid cycle to feed into 

fatty acid biosynthesis. Once fatty acids have been generated, they can be modified, 

where elongation steps occur initially, and downstream modifications (e.g hydroxylation, 

reduction and decarboxylation) use long to very long chain fatty acids as substrates (e.g. 

AtCYP86B1, Compagnon et al., 2009 and its putative potato homolog StCYP86B12, 

Bjelica et al., 2016) in some cases (Figure 3.3H). These products must be formed before 

final linkage and assembly steps are possible, and expression patterns of genes encoding 

the final assembly steps are similar to those of the later modification steps. Feruloyl 

transferase (FHT, step 89 Figure 3.3I) is an exception as it is expressed prior to the fatty 

acid modification genes and other aliphatic assembly genes. The early gene expression 

observed could represent the ability of FHT to catalyze acyltransferase reactions as soon 

as both its phenylpropanoid-derived feruloyl-CoA and aliphatic monomer substrates are 

available, or this could allude to its possible generic transferase activity that may involve 

other reactions and substrates (Molina et al., 2009; Serra et al., 2010). Landgraf et al. 
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(2014) characterized the ATP-binding cassette transporter ABCG1 as the main exporter 

of aliphatic suberin components in potato. ABCG1 and putative homologs of Arabidopsis 

aliphatic suberin transporters, ABCG6 (Yadav et al., 2014) and ABCG11 (Bird et al., 

2007), exhibited slightly different gene expression patterns over time. This suggests they 

may transport different products, or could coordinately function to transport products as 

they become available. 

The timing of cell wall and membrane related GO terms appear to match the respective 

timing of phenolic and aliphatic suberin deposition, and offers insight into the spatial 

locations of these gene expression events. Cell wall biogenesis appears to be up-regulated 

early in the time course, from 0.5 to 1 dpw, around the same time as GO terms related to, 

and genes involved in, phenolic suberin biosynthesis and assembly of the polar 

poly(phenolic) suberin domain. Over the 2-3 dpw time period, Golgi apparatus, 

membrane, and integral membrane cellular component GO terms were enriched with 

overall up-regulation of the genes within these terms, where membrane and integral 

membrane terms include many overlapping genes (Figure C2). Genes encoding ABC 

transporters with involvement in aliphatic suberin deposition, ABCG1, ABCG6 and 

ABCG11, were included in the “integral component of membrane” term, along with 

suberin assembly genes FHT, GPAT5, and GPAT6 (Beisson et al., 2007; Serra et al., 

2010). The CASP candidates CASP8 (C.12) and CASP9 (C.13) that were predicted to be 

involved in the wound-induced suberization process due to their previously observed 

expression in potato periderm (Vulavala et al., 2017), also came up in the up-regulated 

enriched membrane GO terms. CASPs involved in Casparian strip assembly in 

Arabidopsis roots are four-transmembrane proteins associated with the plasma membrane 

(Roppolo et al., 2011). Interestingly, transcriptome analysis by Massa et al. (2011), which 

is available on the PGSC database, demonstrated that CASP9 FPKM levels are higher in 

tubers than in roots, and CASP8 is present at comparable transcript levels between these 

two tissues. Coincidentally, targeted clustering analysis of assembly candidates and 

known genes demonstrated shared temporal expression profiles of CASP8 and CASP9 

with the aforementioned linkage and deposition genes, along with an anionic peroxidase 

linked to phenolic polymerization (Bernards et al., 1999), where these two CASPs were 
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the most highly expressed candidates to cluster with known suberin assembly genes 

(Figure 3.4). The poly(aliphatic) domain of suberin is thought to exist between the 

plasma membrane and the primary cell wall, where it links to the cell wall-anchored 

poly(phenolic) suberin domain (Bernards, 2002; Graça, 2015). The up-regulation of key 

assembly genes and newly identified wound-induced suberization CASP candidates 

within the cellular component integral membrane GO term reflects the activities of these 

genes occurring at this site, and likely represents the localization of components involved 

in the regulatory oversight and organization of suberin assembly and deposition.  

Taken together, the GO and clustering analyses, the timing of up-regulation and the lack 

of root-specific localization point to a potential role for CASP8 and CASP9 in wound-

induced tuber suberization. CASP8 and CASP9 likely function in recruiting 

polymerization machinery and localizing cell wall modifications as described for root-

specific CASP family proteins involved in Casparian strip assembly (Roppolo et al., 

2011; Roppolo et al., 2014), which in this case might involve mediating linkage of 

aliphatic monomers to build the SPAD, organizing the correct pattern of SPAD 

deposition by directing localization, as well as promoting linkage between the two 

spatially distinct suberin domains (Bernards, 2002; Graça, 2015). Many CASP candidates 

expressed in this time course displayed temporal profiles more consistent with those of 

genes required for phenolic polymerization, and could therefore possess similar mediator 

roles for SPPD assembly, and coordination of cell wall modifications associated with 

SPPD deposition.  

Cutin synthase homologs (GDSLs) were incorporated into this analysis as candidates for 

aliphatic linkage. Since the only two expressed candidates (G.6, G.7) clustered closely 

with CASP8 (C.12), CASP9 (C.13) and known aliphatic assembly genes (Figure 3.4), it 

is possible that these are also involved in the process of SPAD monomer polymerization, 

although they could also be involved in other biosynthetic activities. Multi-species 

transcriptome comparisons of suberizing tissues demonstrated the up-regulation of 

several GDSL-motif esterase/acyltransferase/lipase genes, along with many known 

suberin biosynthesis genes (Lashbrooke et al., 2016). GDSL G.7 identified in this study 
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was also highlighted by Lashbrooke et al. (2016) as a putative “suberin synthase” with 

hypothesized extracellular polymerization function. Transcriptomic analysis of Nicotiana 

benthaniama leaves transiently over-expressing MdMYB93, a regulator of suberin 

deposition in russetted apple skin, demonstrated the enhanced expression of suberin-

related biosynthetic genes along with several genes encoding GDSL-esterase/lipases, and 

provides further support for the potential role of GDSLs in aliphatic suberin assembly 

(Legay et al., 2016).  

Lulai et al. (2016) described two stages of tuber wound-healing – closing layer formation 

during the first five to seven days post wounding, followed by wound periderm 

formation. There are marked differences in biological processes that occur during these 

two phases of suberization-associated healing. Closing layer formation involves DNA 

synthesis and nuclear division (Lulai et al., 2014), but not cell division; the latter occurs 

during the later healing stage of wound periderm formation (Lulai et al., 2016). Our 

findings were consistent with this timeline regarding DNA synthesis, as several mitosis-

related cell cycle GO terms became up-regulated early during wound-healing, then were 

significantly enriched as down-regulated for most other time points captured within our 

time course. As cell cycle-related genes decreased over the duration of the time course, 

cell wall organization and cell wall biogenesis GO terms became up-regulated. 

Considering that cell division does not occur during this early stage of wound-healing, 

up-regulated genes within cell wall-related GO terms must not be involved in cell wall 

synthesis for newly generated cells, but rather for the reinforcement of existing cells, as 

expected during closing layer formation (Thomson et al., 1995; Lulai, 2007). In this case, 

the enrichment of these GO terms offers lists of mainly cell wall modification genes that 

are likely relevant to the physical aspects of wound-healing (see below), like the 

production of the closing layer in cells surrounding the wound site.  

The phenylpropanoid pathway and phenolic suberin assembly steps are expressed early in 

the time course and around when the first cell wall GO terms demonstrate enrichment. 

Suberin SPPD components, guaiacyl acid and sinapyl acid, are thought to covalently 

bond with cellulosic cell wall components (Yan and Stark, 2000). These cell wall-related 
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changes may signify that the healing process is occurring in cells adjacent to wounded 

cells and could reflect processes that allow for required SPPD components to be 

embedded into the cell wall. Several genes in the cell wall organization and biogenesis 

GO terms code for xyloglucan endotransglucosylase/hydrolases, which are involved in 

primary cell wall structural modifications, and typically associated with cell wall 

loosening, through the cleavage of xyloglucan chains and subsequent joining of new ends 

with xyloglucan or oligosaccharide acceptors (Fry et al., 1992; Rose et al., 2002). Pectin 

esterases, cellulose synthases, and glycosyltransferases were also represented in the up-

regulated cell wall terms. To our knowledge, no wound-induced tuber suberization 

studies have quantified changes in cell wall polysaccharides. However, it is possible that 

the differentially expressed cell wall organization genes and biogenesis are involved in 

cell wall remodeling that promotes correct deposition of phenolic suberin components.  

Notably, genes in the plant-type secondary cell wall biogenesis term are only 

significantly up-regulated later in the time course, between 2-3 days post-wounding. This 

could reflect the final steps of closing layer formation, since secondary cell walls are only 

formed after completion of primary cell wall formation and cell expansion has ceased. 

The dynamic set of temporal patterns over the wound-healing period reflects an initial 

largescale set of changes that subsequently achieve a new steady state, followed by fine-

tuning of specialized responses. Wounding can be linked to both biotic and abiotic stress 

since injury can occur as a product of herbivory, infection, or environmental stress, and 

physical damage alone can introduce the potential for infection and water loss. Since this 

type of damage can occur as a component of different threats, the initial upheaval of 

metabolism could prime the tuber to respond accordingly, as observed in the case of 

wounding herbivory (e.g. Schwachtje and Baldwin, 2008). In the present experiment, 

tubers were kept in a sterile, high humidity environment, and therefore the later processes 

that reflect fine-tuning of responses appear to largely reflect suberization and cell wall 

related processes required for initial formation of the closing layer.  

Overall, these findings establish a detailed view of the differential timing and patterns of 

suberin-related metabolic pathway activities, both between and within pathway branches. 
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Many genes within a pathway branch share temporal patterns of expression, which could 

imply that these sets of genes are concomitantly regulated by the same signal molecules 

and/or proteins like transcription factors. In contrast, those with further differentiation in 

temporal expression within pathways are likely regulated by different or additional 

components to coordinate their activities on a finer scale.  

3.4.2 Regulatory components of wound-healing and suberization 

The differential timing of suberin-related processes has been established through 

histochemical investigations (Lulai and Morgan, 1992; Lulai and Corsini, 1998) and time 

course metabolite profiling (Yang and Bernards, 2007) of suberin accumulation, that are 

further supported by studies integrating histochemistry-based suberin ratings with 

analysis of suberin biosynthetic gene expression (Lulai and Neubauer, 2014), and by 

combining a molecular approach with metabolite analyses (Woolfson et al., 2018). 

Proteomic analysis of the wound-healing tuber has provided further evidence of a 

temporal difference in suberization events at the protein expression level (Chaves et al., 

2009). The observation that suberin-related events occur in two major phases directed our 

previous investigation towards how the various pathways required for suberin 

biosynthesis are coordinately regulated and activated at different points in time 

(Woolfson et al., 2018). Given the dynamic temporal patterns of transcript accumulation 

between and within pathway branches, there are likely multiple levels of regulation at 

play, and within each level, several individual constituents. Regulatory components can 

control the plant stress response at RNA, DNA and/or protein levels. Based on previous 

knowledge in combination with findings from this RNA-seq time course, regulation of 

the potato wound response likely includes phytohormones  and transcription factors (e.g. 

Kosma et al., 2014; Verdaguer et al., 2016), as well as epigenetic, post-transcriptional 

and post-translational modifications.  

The regulation of phenolic and aliphatic suberin biosynthesis and deposition is largely 

uncharacterized, especially in the potato tuber model. A role for ABA has been 

established in the regulation of aliphatic suberin production, and in part explains the 

differential timing of phenolic and aliphatic suberin related metabolism, since it impacts 
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aliphatic biosynthesis and linkage genes that are expressed later into wound-healing, but 

not phenolic pathway steps (Woolfson et al., 2018). However, there is evidence for 

enhanced PAL activity when ABA is added exogenously to wounded tubers (Lulai et al., 

2008; Kumar et al., 2010).  

The synthesis and catabolism of phytohormones that regulate normal growth and 

development as well as stress responses, such as ABA and JA, occurs during dormancy 

(Koda and Kikuta, 1994; De Stefano-Beltrán et al., 2006). The expression profiles for 

genes involved in ABA biosynthesis are consistent with this knowledge, as they are 

already expressed at some level in the 0 dpw libraries. In previous wound-healing studies, 

endogenous levels of ABA present in resting tubers prior to wounding dropped to very 

low levels within 1 dpw. This was followed by de novo synthesis of ABA within 2 dpw, 

reaching a maximum, sustained level by 3 dpw (Woolfson et al., 2018) or 4 dpw (Lulai et 

al., 2008). The importance of de novo ABA synthesis has been further demonstrated via 

application of the inhibitor fluridone (e.g. Lulai et al., 2008; Woolfson et al., 2018), 

which specifically led to delayed expression of aliphatic biosynthetic and assembly genes 

and their corresponding metabolite products, whereas exogenous ABA treatment resulted 

in their earlier induction (Woolfson et al., 2018). Abscisic acid biosynthetic reactions are 

not necessarily up-regulated by wounding, but rather, some degradation genes drop in 

log2FPKM level over time, likely to maintain circulation of active forms of ABA as 

needed (Figure 3.5). These gene expression changes are consistent with the observed 

decrease in ABA concentration immediately after wounding followed by gradual increase 

(Lulai et al., 2008; Woolfson et al., 2018), and support the hypothesis that changes in 

ABA content can be attributed to shifts in degradation and synthesis activities during 

wound-healing (Lulai et al., 2008). It is likely that the initial wound-induced drop in 

existing ABA content reflects the use of ABA as an early wound-responsive signal, and 

subsequently, the concomitant de novo synthesis and attenuated degradation of ABA 

results in its accumulation at levels that induce SPAD metabolism by 2-3 dpw.  

In the BP GSEA, the GO term “response to ABA” was the only enriched, up-regulated 

term pertaining to hormone signaling (Figure 3.2, Table 3.1), and the timing of its up-
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regulation between 1-2 dpw followed by no further significant change over 2-3 dpw is 

congruent with previously established timelines for ABA accumulation. Transcription 

factors implicated in aliphatic suberin production, namely AtMYB41 and StNAC103, are 

both regulated by ABA, offering further support for a regulatory role for this 

phytohormone (Kosma et al., 2014; Verdaguer et al., 2016). Although these genes were 

not present in the “response to ABA” GO term, the transcription factor candidate 

MYB102 was included along with other uncharacterized MYB family TFs, and it was up-

regulated between 1-2 dpw. MYB102 was previously identified as StMYB93 by 

Lashbrooke et al. (2016) as a member of a multi-species MYB transcription factor clade 

linked to suberin biosynthesis. Asg1 was another gene up-regulated in the “response to 

ABA” term, which has been described as an ABA-induced positive regulator of the 

potato osmotic stress response (Batelli et al., 2012).  

The delayed pattern of expression for genes involved in aliphatic metabolism appears to 

match the profile of ABA accumulation after wounding. That is, after an initial depletion 

of the pre-wounding levels of ABA, it begins to accumulate by 2 dpw, and reaches 

maximum, sustained levels as of 3 dpw, coinciding with the time at which aliphatic 

metabolism and assembly genes are up-regulated (Woolfson et al., 2018). Identification 

of ABA-responsive promoter regions of genes involved in SPAD-destined monomer 

production, such as cytochrome P450s (Bjelica et al., 2016) and feruloyl transferase 

(FHT) (Boher et al., 2013), offer evidence for the direct regulation of aliphatic 

metabolism genes by ABA. The timing of the induced accumulation of ABA is supported 

by the expression of ABA biosynthetic genes and lower expression of catabolic genes 

(Figure 3.5A-C). Notably, the “response to ABA” term increased in expression at the 

time post-wounding when up-regulation of fatty acid metabolism-related GO terms that 

include key aliphatic suberin genes also increased. This suggests that the perception of 

ABA for suberin-specific metabolism occurs when ABA accumulates, just prior to 

aliphatic gene expression, and, consistent with our previous work (Woolfson et al., 2018), 

does not support a role for ABA in phenolic suberin production. 



143 

 

In contrast to ABA-related processes during wound-healing, a BP term reflecting genes 

involved in the JA-mediated response was down-regulated in the GSEA. This further 

supports the hypothesis that JA has little role in suberization (Lulai et al., 2011). 

However, it does not preclude involvement of an initial JA burst, as observed by Lulai 

and Suttle (2009), which may be involved in early wound signaling. There is also no 

evidence for the requirement of ethylene in wound-induced potato suberization (Lulai 

and Suttle, 2004; Lulai and Suttle, 2009). JA has demonstrated involvement in the 

general wound response in different potato organs (Dammann et al., 2002; Koda and 

Kikuta, 1994), and both JA and ethylene play a role in tomato and Arabidopsis wound 

signaling and responses, (e.g. O’Donnell et al., 1996; Reymond et al., 2000; Wasternack 

et al., 2006). More specifically, JA is involved in Arabidopsis cell wall damage-induced 

lignin biosynthesis (Denness et al, 2011).  

Two transcription factors were recently characterized as regulators of suberin deposition. 

The Arabidopsis AtMYB41 has root-localized, ABA- and salt stress-induced gene 

expression, and acts as positive regulator of aliphatic suberin production, and less 

definitively, phenylpropanoid and lignin biosynthesis (Kosma et al., 2014). The potato 

StNAC103 is a negative regulator of aliphatic suberin production, induced by wounding 

in tuber parenchyma and ABA treatment in tuber periderm and roots (Verdaguer et al., 

2016). In spite of recent advances towards understanding the regulation of aliphatic 

suberin production in the context of ABA and the TFs it impacts, mechanisms that 

control phenolic suberin metabolism have yet to be elucidated. StWRKY1 was recently 

characterized as a regulator of pathogen-induced phenylpropanoid metabolism in potato 

leaves that binds promoter regions of 4-coumarate:CoA ligase (4CL) and tyramine 

hydroxycinnamoyl transferase (THT) to mediate deposition of hydroxycinnamic acid 

amides into secondary cell walls for reinforcement. Its potential role in the regulation of 

SPPD-related metabolism had not been addressed prior to this study. 

While AtMYB41 heterologous overexpression in Nicotiana benthamiana leaves promoted 

suberization by enhancing transcripts of suberin genes, including those with characterized 

potato homologs (e.g. AtCYP86A1, AtCYP86B1, AtGPAT5, AtFAR5, AtFAR4, AtFAR1, 
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AtASFT, AtKCS2 AtPAL1, AtCCoAMT, AtCAD5, AtC4H), StNAC103-RNAi experiments 

highlight the genes under suppressive control of StNAC103. Potato StNAC103 silencing 

by Verdaguer et al. (2016) led to the induction of key fatty acid modification and 

aliphatic suberin biosynthesis and assembly genes (StKAR, StCYP86A33, StFHT, 

StACBG11). The repressive activity of StNAC103 suggests that it is responsible for fine-

tuning aliphatic suberin production and deposition, both temporally and spatially 

(Verdaguer et al., 2016). Interestingly, StNAC103 displayed similar transcript 

accumulation patterns in our RNA-seq transcriptome to other TF candidates identified as 

putative homologs of positive suberin-related gene regulators (e.g. MYB39, MYB3, 

MYB102, WRKY45 and WRKY56; based on Kosma et al., 2014; Lashbrooke et al., 2016; 

Yogendra et al., 2015) and clusters with many aliphatic suberin-related genes, although it 

did not cluster with its targets KAR and CYP86A33, despite similar temporal profiles 

(Figure 3.5). As a specific example, MYB102 is the current PGSC-annotated name for 

StMYB93, the potato homolog of Arabidopsis AtMYB9 and tomato SlMYB93 

(Lashbrooke et al., 2016), which has a role in positively regulating both phenolic and 

aliphatic related suberin biosynthesis and assembly in Arabidopsis seed coats. In the 

wound-healing tuber, MYB102 expression followed a typical pattern for aliphatic genes 

as well as the characterized suberin regulator NAC103, with which it clustered very 

closely. The similar expression profiles observed between putative positive regulators 

and a known negative regulator emphasize the fine level of control that must be in place 

to allow for the correct temporal-spatial production and deposition of the highly 

organized, two-domain polymer, suberin. This observation also provides further support 

for the notion that multiple transcription factors are likely involved. 

StWRKY1 is a TF that has not been characterized in the context of suberization, but was 

included in this study along with highly similar genes (WRKY4, WRKY45, WRKY56) due 

to its known regulation of phenylpropanoid genes, some of which are involved in suberin 

biosynthesis, and because it is stress-induced (Yogendra et al., 2015). WRKY1 did not 

cluster with the genes it is known to regulate, though it did share highly similar 

expression patterns with them, and a likely reason for separation during clustering is the 

difference in 0 dpw log2FKPM levels. That is, expression levels of WRKY1 were much 
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lower at 0 dpw compared with phenolic genes such as phenylalanine ammonia lyase 

(PAL, step 40). Nevertheless, PAL genes were the closest suberin-related biosynthetic 

gene to cluster with WRKY1, along with other transcription factor candidates WRKY4 and 

MYB34 (Figure 3.6C).  

MYB34 is highly similar to MYB103. In Arabidopsis stems, the homolog AtMYB103 

regulates ferulate-5-hydroxylase (F5H) transcription that is required for syringyl lignin 

biosynthesis (Öhman et al., 2013). StMYB103 expression was not observed in our RNA-

seq experiment, which could be due to organ localization, or reflective of developmental 

rather than stress-induced phenolic gene regulation. Since the highly similar TF candidate 

MYB34 was expressed and clustered with the known phenolic regulator, WRKY1, and 

some key biosynthetic genes, it is a good candidate for a TF with a role in 

phenylpropanoid pathway regulation during induced suberization. WRKY4 (TF.18) 

clusters closely with MYB34, and would also be a justifiable candidate for further pursuit.  

Transcription factors were generally predicted to demonstrate onset of expression prior to 

induction of their putative targets. However, we also considered that initial TF induction 

may not have been captured within the sampled time points, and thus TFs and targets 

could exhibit what appear to be shared, or co-expressed, temporal profiles. The 

characterized TFs WRKY1 and NAC103 did not cluster closely with their targets, 

indicating that regulatory components are not necessarily expressed in the exact pattern 

or to the same degree as biosynthetic genes, but rather follow similar temporal transcript 

accumulation profiles that are reflective of typical phenolic or aliphatic suberin 

biosynthetic genes (Figure 3.6A-D). NAC103 expression was evident later into wound-

healing than all of its described targets (KAR, CYP86A33, FHT and ABCG1), but this is 

likely explained by its role as a transcriptional repressor (Verdaguer et al., 2016). The 

lack of clustering between TF and target genes renders the precise identification of most 

likely TF candidates and their putative downstream targets more challenging, but if TF 

expression follows a wound-induction pattern characteristic of some aspect of 

suberization, this can guide appropriate hypothesis generation for future work. 
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Additionally, similarities in expression between TFs were considered when assigning 

proposed roles to candidate TFs.  

Other regulatory processes identified as enriched GO terms throughout time course 

include “histone phosphorylation”, “histone H3-K9 methylation”, “post-translational 

modifications”, “DNA-methylation”, “gene silencing”, and “chromatin silencing” 

(Figure 3.2, Table 3.1). These GO terms are not specific to suberization, but are also 

involved in general wound-healing process and other pathways, and provide insight into 

the many levels of regulation that allow for the coordination of a broad response to a 

major stress (i.e., wounding). For example, methylation of histone H3 at lysine 9 (H3-K9) 

is generally associated with transcriptional repression. The “H3-K9 methylation” GO 

term was significantly up-regulated between the two earlier time point comparisons, but 

significantly down-regulated between 1-2 and 2-3 dpw, along with the “DNA 

methylation” and “gene silencing” terms. The GO term “RNA methylation” was also 

enriched with mostly up-regulated genes initially, but significantly down-regulated at the 

later three time point comparisons. RNA methylation can enhance or silence mRNA 

production and impact other types of nuclear RNA (Fu et al., 2014), while DNA 

methylation also typically represses transcription, and can interplay with H3-K9 histone 

methylation (reviewed in Rose and Klose, 2014; Zhang et al., 2018). Fu et al. (2014) 

posit that reversible RNA methylation evolved as a regulatory mechanism to control 

processes that require rapid changes in expression of large groups of genes and proteins. 

These dynamic epigenetic, post-transcriptional and post-translational modification 

mechanisms could be responsible for the observed switch in metabolism from primary 

and phenolic suberin-related pathways at early time points to those required for later 

aliphatic suberin production and assembly.  

Many regulatory aspects of wound-induced suberization have yet to be elucidated, but 

our RNA-seq transcriptome-based study emphasizes the vast complexity of the wound-

healing process and points towards a dynamic regulatory network capable of fine-tuning 

events both temporally and spatially. A high degree of control would ensure expression 
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of required genes within and among pathway branches for appropriate metabolite 

accumulation, linkage and deposition during suberization. 

3.4.3 Targeting putative suberin biosynthesis and regulation genes 
in the wound-healing tuber transcriptome provides support 
for uncharacterized steps 

The generation of a transcriptome time series that tracked the wound-healing process in 

potato tubers was used to study nuances in temporal changes and gain support for 

putative steps of suberin-associated biosynthetic pathways. Many uncharacterized gene-

encoded steps now have associated temporal expression profiles that provide evidence for 

their involvement based on wound-induction patterns and similar expression profiles to 

known biosynthetic genes in the same pathways. A number of additional steps were also 

placed in primary metabolic pathways such as starch degradation, and the TCA cycle was 

incorporated into this scheme.  

In some cases, pathways were revised based on the identification and expression of 

candidate genes. For example, a previous biosynthetic scheme for suberin (Bernards, 

2002) proposed roles for two CYP98A enzymes, p-coumaric acid 3-hydroxylase and p-

coumaroyltyramine-3-hydroxylase, that catalyze hydroxylations prior to methylations 

performed by three hypothesized O-methyltransferases thought to be responsible for five 

enzymatic steps with caffeoyl conjugates as substrates: caffeic acid O-methyltransferase 

(COMT), caffeoyl-CoA-3-O-methyltransferase (CCoAOMT), and caffeoyltyramine-O-

methyltransferase (CTOMT). It was initially hypothesized that one of the aforementioned 

CYP98As acted on p-coumaroyl-tyramine to yield caffeoyltyramine, followed by 

CTOMT-mediated methylation to produce feruloyltyramine. The hydroxylase and 

subsequent O-methyltransferase enzyme-catalyzed steps are analogous to the conversion 

of p-coumaroyl-CoA to caffeoyl-CoA and subsequently to feruloyl-CoA. This pathway 

also uses similar coumaroyl conjugates followed by caffeoyl conjugates as substrates. 

Investigation of the annotated potato genome, however, did not lead to the identification 

of the specific CYP98A-type hydroxylases by predicted functional name, but revealed 

several p-coumaroyl quinate/shikimate 3’-hydroxylases. CTOMT did not come up in a 
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functional annotation search, but COMT and CCoAOMT queries yielded several 

candidates. The targeted expression analysis included these genes in the phenylpropanoid 

metabolism pathway, where several demonstrate similar temporal profiles to 

characterized phenolic biosynthetic genes. This analysis provided support for the role of 

one recently characterized p-coumaroyl quinate/shikimate 3’-hydroxylase (Knollenberg 

et al., 2018), with the possibility of a second also being involved (steps 45.1-45.2), and 

could potentially map it to the alternate hypothetical p-coumaroyl-tyramine sub-branch. 

There is also good evidence for the role of one COMT, which is in agreement with the 

proposed progression from caffeic acid through to sinapic acid, where two 

methyltransferase steps are catalyzed by one enzyme (Figure 3.3D). There are also clear 

induction patterns followed by sustained expression for two CCoAOMTs, with another 

two demonstrating similar profiles, but at lower levels of expression (steps 47.1-47.54). It 

is possible that one of these highly expressed genes could encode an enzyme 

hypothesized to convert caffeoyl tyramine to feruloyl tyramine, or perhaps suggests that 

the 5’OH-feruloyl-CoA conversion to sinapoyl-CoA is catalyzed by a secondary enzyme 

to the first O-methyltransferase activity on caffeoyl-CoA. These findings allowed for an 

update to the phenylpropanoid portion of the suberin roadmap by removing the 

unsupported CTOMT step, while also offering candidates for future analysis to determine 

whether one or several enzymes in these families are involved.  

Pathways leading to aliphatic suberin production were also updated at the level of 

precursor formation in the TCA cycle and fatty acid biosynthesis branch (Figure 3.3F-

3.3G), and a rearrangement of the aliphatic metabolism pathway that emphasizes the split 

between desaturation (steps 72-73, Figure 3.3G) and elongation (steps 68-71, Figure 

3.3G; 74-77, Figure 3.3H). Putative hydroxylases investigated by Bjelica et al. (2016) 

were included (Figure 3.3H) along with many genes definitively characterized or 

implicated in suberin biosynthesis since 2002, e.g. specifically in potato, FHT by Serra et 

al. (2010) and ABCG1 by Landgraf et al. (2014).  

In addition, this targeted investigative approach provided evidence for the role of putative 

assembly genes and regulatory transcription factors that encourages further pursuit 
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(Figure 3.4, Figure 3.6A-C). Candidates with expression patterns that align with both 

phenolic and aliphatic suberin-related genes warrant future investigation and 

characterization to better elucidate the regulation of pathways that are differentially 

expressed both temporally and spatially, and the assembly of their metabolite products 

into the organized suberin heteropolymer. Both RNAi and overexpression studies have 

been used recently to characterize transcription factors StNAC103 (Verdaguer et al., 

2016) and AtMYB41 (Kosma et al., 2014) that control aspects of suberin biosynthesis. 

Further investigation of shared motifs in promoter regions of genes that behave similarly 

on a temporal scale could reveal transcription factor binding domains and lead to 

discovery of transcription factors common to groups or subsets of genes.  

This work highlights the fine level of regulation and discrete differences between genes 

in their expression over time, even within a metabolic pathway. While a 0.5 dpw time 

point was included in this study to capture different regulatory and biosynthetic events, 

future studies could focus on even shorter time intervals to fill any gaps that may have 

been missed in this study.  

3.4.4 Comparison of transcriptome findings with metabolite and 
protein based studies 

The generation of an mRNA-based transcriptome time course highlights the 

transcriptional response as a proxy for gene expression, but not all steps involved in this 

process are necessarily regulated at the transcriptional level, and the accumulation of 

mRNA does not necessarily reflect rates of translation or quantities of active proteins. 

However, prior studies have demonstrated the importance of transcription in the 

activation of suberization and our past work has matched temporal gene expression 

patterns to metabolite accumulation (e.g. Woolfson et al., 2018). Enzyme activities, 

protein accumulation, and metabolite levels have been used to corroborate RNA-seq 

generated transcript abundances over time where possible. For example, Chaves et al. 

(2009) conducted a time course based proteomic evaluation of wound-healing in potato 

tubers, where groups of enzymes clustered into two major groups, determined by 

sampling dates. These findings were congruent with changes in metabolite composition 
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over time determined by Yang and Bernards (2006), which also matched timing of gene 

expression and suberin metabolite accumulation over time by Woolfson et al. (2018). 

Yang and Bernards (2007) performed principle component analysis (PCA) of polar and 

non-polar metabolite profiles to characterize global changes in the wound-healing tuber 

metabolome. Overall, cluster analysis of polar and non-polar metabolite profiles revealed 

a large-scale, temporal reorganization of metabolism comparable with the magnitude of 

transcriptional reconfiguration observed in my RNA-seq time course (Figures 3.1-3.3). 

In the Yang and Bernards (2007) metabolome study, 0 dpw polar profiles were mostly 

influenced by primary metabolites such as sugars, amino acids and organic acids, 

consistent with primary metabolic pathway gene expression profiles (Figure 3.3A-C, F). 

The appearance of suberin-associated phenolic compounds such as ferulic acid 

distinguished 1 and 2 dpw polar metabolite profiles from the 0 dpw profiles. Transcripts 

of hydroxycinnamic acid biosynthesis genes also accumulated soon after wounding, as 

evidenced by up-regulation between 0-0.5 dpw (steps 40-47, Figure 3.3D). Non-polar 

metabolite profile PCAs formed three clusters mostly separated by time – 0-2 dpw, 3-4 

dpw and 5-7 dpw. The first cluster included profiles dominated by aliphatic products of 

primary metabolism and membrane components, then the appearance of suberin-

associated aliphatics such as 18:1 ω-hydroxy fatty acids increased from 3-4 dpw, 

followed by an accumulation of wax components from 5-7 dpw (Yang and Bernards, 

2007). These findings are consistent with the observed up-regulation of aliphatic suberin 

genes that typically occurred later into the 3-day time course than all other targeted 

genes, from 1-2 or 2-3 dpw (Figure 3.3H). 

Generally, differential temporal metabolite profile patterns matched those of the observed 

transcriptome time course, through targeted (Figure 3.3A-I) and GO-based gene set 

analyses (Figure 3.2). The similarity in temporal profiles between transcriptome and 

metabolome results suggests that changes at the protein level, which act to bridge gene 

expression and downstream metabolism, may also follow similar patterns.  

Chaves et al. (2009) highlighted that their wound-healing tuber proteome observations 

were consistent with the timing of metabolome-based findings by Yang and Bernards 
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(2007). In the wound-healing tuber proteome, the first two days after wounding were 

dominated by proteins involved in energy production and primary metabolism, along 

with changes in defensive and secondary metabolism proteins that are not necessarily 

related to suberization (e.g. high molecular weight patatins). Notably, superoxide 

dismutases and several peroxidase isoenzymes, including a known suberization-

associated anionic peroxidase, were either detected immediately, or their levels were up-

regulated within the first two days after wounding, and quantities were generally 

sustained throughout an 8-day time course. These observations are largely consistent with 

temporal changes of phenolic suberin assembly genes in the wound-healing 

transcriptome, including superoxide dismutases and anionic peroxidases (Figure 3.3E). 

CCoAOMT, which has a predicted role in the production of feruloyl-CoA found in both 

the SPPD and SPAD, was up-regulated between 1 dpw and 4 dpw (Chaves et al., 2009). 

Two of the most strongly up-regulated CCoAOMT genes were highly expressed by 0.5 

dpw (Figure 3.3D), and continued to increase throughout my 3-day time course. The 

Chaves et al. (2009) proteomic study did not detect significant changes in proteins 

required for SPAD-specific metabolism, or explain the lack thereof, but used microscopy 

to demonstrate accumulation of aliphatic suberin by 4 dpw.  

Some enzymes involved in suberin biosynthesis and assembly have been studied in the 

context of tuber wound-healing, and the timing of up-regulation of enzyme activities 

and/or accumulation of protein is also similar to observed RNA-seq based gene 

expression profiles. For example, phenylalanine ammonia lyase (PAL) activity is induced 

within the first 6-12 hours of wounding (Borchert, 1978; Bernards et al., 2000), 4-

coumaroyl CoA ligase (4CL) activity is detectable within 12 hours of wounding 

(Bernards et al., 2000), and tyramine hydroxycinnamoyl transferase (THT) activity is 

detectable within 3-4 hours after wounding (Negrel et al., 1993). All of the genes that 

encode these enzymes follow similar expression profiles in my wound-healing 

transcriptome (Figure 3.3D).  

Monolignol biosynthesis enzymes cinnamoyl CoA reductase (CCR) and cinnamyl 

alcohol dehydrogenase (CAD) demonstrate minimal induction during suberization 
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(Bernards et al., 2000), and the activity of the latter is greater than that of the former. 

These findings are echoed in my transcriptome analysis (Figure 3.3D), as described in 

§3.4.1.  

Feruloyl transferase (FHT) conjugates feruloyl-CoA, a phenylpropanoid pathway derived 

product, with aliphatic chains (Serra et al., 2010). Boher et al. (2013) demonstrated that 

FHT accumulates in wounded tubers within 1 dpw, and continues to increase during 

wound-healing time course. This timing is similar to the observed up-regulation of FHT 

from 0-0.5 dpw, followed by further increased transcript accumulation, in my wound-

healing transcriptome (Figure 3.3I) 

Studies by Agrawal and Kolattukudy (1977, 1978a, 1978b) used cell-free extracts 

obtained from wound-healing tubers to characterize the accumulation and activity of a 

putative ω-hydroxyacid dehydrogenase involved in the formation of α,ω-dioic acids 

found in the SPAD. The described ω-hydroxyacid dehydrogenase was transcribed within 

3 dpw, translated into active protein before 4 dpw (Agrawal and Kolattukudy, 1977), and 

remained active at 5 dpw (Agrawal and Kolattukudy, 1978a), overall matching the timing 

of aliphatic suberin accumulation. Genes encoding putative oxidoreductases involved in 

aliphatic suberin metabolism were typically expressed by 2-3 dpw in the wound-healing 

transcriptome (steps 78-80, 82, Figure 3.3H; Woolfson et al., 2018).  

Since the majority of the protein and metabolite focused studies noted above did not 

include analysis between 0-1 dpw, it is possible that proteins also accumulated within 12 

hours of wounding, as observed for many genes. It is also feasible that transcription 

precedes detectable protein accumulation by half a day or more for many possible 

reasons. Some considerations include the time lag between transcription and translation, 

transcript and protein turnover, and factors such as post-translational modifications or 

substrate availability that may be required for enzyme activation. Regardless of slight 

differences, the overall temporal patterns observed in my wound-healing transcriptome 

were consistent with other studies that track suberization-related metabolite and protein 

accumulation over time. Specifically, all analyses to date point to an activation of 
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primary metabolism followed by induced phenolic metabolism, in advance of induced 

aliphatic metabolism.  

3.4.5 Final considerations and conclusions 

In this work, I sequenced the first transcriptome time series investigating wound-healing 

in potato and has improved our current state of knowledge on suberization. The data 

generated by this RNA-seq project was used to better establish the nuances of 

transcriptional changes throughout the wound-healing time course through both global 

and targeted approaches. These findings provided support for novel, and in some cases 

wound-induced, candidate genes involved in different metabolic branches required for 

suberization, and new information was integrated into an updated and comprehensive 

hypothetical framework for suberin biosynthesis in the wound-healing potato tuber. 

Suberin biosynthesis is one aspect of wound-healing, which also includes primary 

metabolism and secondary metabolism that can be considered responsive to both abiotic 

and biotic stress. Certain biological processes are critical for physical healing and 

formation of the closing layer initially, and a new wound periderm later into wound-

healing. This study provides a more complete overview of the early processes that occur 

during the first three days after wounding and include events involved in closing layer 

formation. 

Wounding leads to transcriptional changes that follow distinctive temporal patterns – 

primary metabolic pathways were already expressed, or up-regulated immediately, and 

maintained at levels that would allow for precursor carbon skeletons and energy to feed 

into downstream metabolic processes. Genes involved in pathways for phenolic and 

aliphatic suberin production generally followed previously established differential 

temporal patterns, while also revealing a finer level of within-pathway changes. 

Evaluation of putative Casparian band membrane and cutin synthase-like genes 

pinpointed wound-responsive candidates that may mediate polymerization and deposition 

processes, and oversee the high level of organization required for appropriate suberin 

assembly. Analyses of regulatory components further investigated the steps involved in 
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the known aliphatic suberin regulating hormone ABA to better establish timing of events, 

and highlighted the potential role of candidate transcription factors.  

The roadmap towards suberin biosynthesis was updated to include steps characterized 

since its first publication (Bernards, 2002), with corresponding changes in gene 

expression at each pathway step incorporated to provide a comprehensive overview of the 

metabolism required for suberin biosynthesis and assembly. 

My study has yielded a dataset that will offer a valuable resource for continued 

exploration of the tuber wound response, including screening transcriptional changes in 

genes of interest during wound-healing, for comparison and/or use with other potato 

transcriptome datasets, and for future hypothesis generation. Future work could utilize 

this information towards crop improvement applications, in potato specifically, and in 

other species, if novel characterized biosynthetic genes and regulatory components are 

conserved in roots, fruit skins and cork. 
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Chapter 4  

4 General discussion 

4.1 Thesis summary 

I used a wounded potato tuber model system to study the progression of suberization and 

other wound-healing related processes over time. The wound-induced suberization 

process is complex on both temporal and spatial scales, and must involve a high level of 

coordination and regulation to result in the synthesis of the large, precisely organized 

macromolecular biopolymer suberin. 

4.1.1 The role of ABA in the differential temporal regulation of 
suberin-associated metabolism 

To better understand the regulatory mechanisms underlying the differential temporal 

induction of suberin-related metabolic pathways, I used a 6-day wound-healing potato 

tuber time course experiment to test the hypothesis that abscisic acid (ABA) is involved 

in the differential regulation of a select sub-set of suberin biosynthetic, linkage and 

deposition genes as they relate to the production and assembly of suberin phenolic and 

aliphatic monomers (Chapter 2). The application of the ABA biosynthesis inhibitor, 

fluridone (FD) to cut tuber slices led to the delayed induction of aliphatic and convergent 

(i.e. linkage and deposition) gene expression, whereas the exogenous application of ABA 

or ABA together with FD resulted in earlier up-regulation of these genes. In contrast, 

genes involved in phenolic suberin biosynthesis were not affected by different ABA-

related treatments. Chemical analyses demonstrated a shift in polar metabolite (i.e. 

phenolic compound) profiles over time, of which some differences between treatments 

were evident by later time points during wound-healing. At the individual metabolite 

level, an early drop in aromatic amino acids that feed into later phenylpropanoid 

metabolism for the synthesis of different polar suberin products preceded an observed 

increase in several phenolic products. Non-polar, aliphatic metabolites accumulated in 

soluble pools of control tubers by 3 dpw, coinciding with the time at which ABA reached 

its peak level. This change was followed by an increase in deposited, insoluble (i.e. 
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polymerized) aliphatic monomers between 4-6 dpw. Fluridone-treated tubers 

demonstrated both suppression of, and a lag in, soluble aliphatic accumulation, but the 

same impact was not observed at the level of insoluble non-polar compounds. Taken 

together, these findings suggest that ABA is involved in the regulation of aliphatic and 

convergent metabolism at the transcriptional level, but not phenolic metabolism. This 

regulatory oversight of aliphatic suberin-associated gene expression has important 

implications for the synthesis of soluble aliphatic monomers, but also suggests that ABA 

is not solely responsible for coordinating polymerization and/or deposition of these 

monomers. These findings also suggest that one or more mechanisms of regulation must 

control phenylpropanoid metabolism, which have yet to be elucidated in the context of 

tuber suberization.  

4.1.2 The wound-healing tuber transcriptome 

The study described in Chapter 2, along with the recent characterization of suberin-

associated transcription factors, led to the generation of new hypotheses about additional 

regulatory mechanisms involved in this process. More specifically, these findings led to 

the hypothesis that regulatory components, such as transcription factors, must be in place 

to control phenolic suberin metabolism, and others likely interplay with ABA to oversee 

aliphatic suberin production. To expand upon the list of previously studied genes and 

incorporate novel candidates (e.g. transcription factors and assembly genes) into targeted 

investigations as well as global overviews, I took an RNA-seq approach to studying the 

wound-healing potato tuber during the first three days of closing layer formation, 

including a 0.5 dpw time point to capture putative regulatory gene activation (Chapter 

3). This transcriptomic analysis was used to gain insight into changes that occur after 

wounding that include suberization, but also encompass additional requirements for 

wound-healing, such as primary metabolism, and the transcription of genes involved in 

physical healing and cell wall modification. By exploring the wound-healing tuber 

transcriptome during the early stages of closing layer formation, I was able to identify 

new targets with potential involvement in the regulation of biosynthesis and assembly of 

both phenolic and aliphatic suberin components. This largescale investigation outlined 

temporal shifts of groups of genes (organized by GO term or by pre-determined 
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biosynthetic pathway), while also highlighting the nuances in gene expression that exist 

within pathways to offer insight into the timing of suberization and wound-healing 

events. On a global scale, I observed an initial reconfiguration of biological processes, 

followed by fewer changes that reflected more specialized activities related to 

suberization and wound-healing. Additionally, the transcriptome data were used to 

generate an updated, comprehensive framework for suberin biosynthesis that incorporates 

new transcriptomic data from this study, and also up-to-date information from the 

literature. My findings from both global and targeted analyses provide support for the 

role of previously uncharacterized genes involved in wound-healing that can be targeted 

in future work. 

4.1.3 Summary 

My work has helped to update the current knowledge of ABA regulation of suberin 

production at the transcriptional level and in connection to the biosynthesis of soluble and 

cross-linked metabolites incorporated into the insoluble suberin polymer. I generated data 

to further define the transcriptional changes that occur at different times after wounding 

that relate to suberin biosynthesis and deposition, primary metabolism that provides 

energetic fuel and precursors for suberin production, components for regulatory oversight 

of suberin-associated processes, and physical healing during closing layer formation. By 

exploring this new set of information, I was able to contribute to the construction of 

largescale overviews of the wound-healing process that includes, but is not limited to, 

suberization (Figure 3.3, Figures 4.1-4.2).  

4.2 Wound-healing events during induced suberization and 
closing layer formation 

I generated an overview of transcriptional and metabolic changes over the course of 

wound-healing during closing layer formation. These highlight the differential temporal 

induction and steady states of different branches of metabolism that relate to the synthesis 

of primary precursors, phenolic and aliphatic suberin-related biosynthesis and assembly, 

and regulatory components including the phytohormone abscisic acid (ABA), as well as 

changes in gene expression of putative transcription factors and of genes involved in sub-
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cellular processes (Figure 4.1). A synthesis of established and putative wound-healing 

events described in this thesis, including hypothetical mechanisms related to the 

regulatory oversight and assembly of suberin components, is presented in Figure 4.2. 

Figure 4.1. Temporal summary of biosynthetic and regulatory events during wound-

healing and associated suberization. Observations from gene expression and metabolite 

analysis in a six day wound-healing time course that involved manipulation of wound-

induced de novo ABA biosynthesis (Chapter 2) are integrated with findings from both 

targeted and unbiased analyses from a three day wound-healing tuber transcriptomic 

study (Chapter 3). Solid lines represent gene expression results, and dashed lines signify 

findings from metabolite analyses. Bar colours represent gene expression (from targeted 

or GO term enrichment analysis) or metabolite accumulation as follows: red symbolizes 

high levels, while blue represents low levels, with differing intensity showing gradual 

change over time, and grey denotes a time period with no observed further change. White 

text is used to show processes with known or hypothesized involvement in aliphatic 

suberin metabolism, grey text represents phenolic suberin-associated metabolism, blue 

text signifies convergent processes (i.e. pertaining to both phenolic and aliphatic suberin 

metabolism), black text represents other wound-healing processes that are not necessarily 

directly related to suberization, and text is underlined if is impacted by ABA.  
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4.2.1 Primary metabolism 

In the three-day RNA-seq transcriptome time course, targeted metabolic pathways 

involved in the production of suberin precursors were generally expressed throughout the 

time course, although gene set enrichment analysis highlighted several primary metabolic 

pathway GO terms as initially up-regulated, then down-regulated ca. 2-3 dpw. These 

findings suggest the reconfiguration of primary metabolic processes is tailored towards 

the up-regulation of those that are required for this specific response, i.e. channeling of 

energy and metabolism towards producing precursors for suberin biosynthesis, and 

followed by down-regulation of processes that are not necessary or worth the resource 

investment. Although most primary metabolites were not analyzed in the Chapter 2 time 

course, Yang and Bernards (2007) noted the timing of primary metabolite accumulation 

in their polar metabolite analysis. Polar metabolite profiles included sugars, amino acids 

and organic acids as major components detected at 0 dpw. The metabolite profile at this 

time point was distinguished from 1 and 2 dpw profiles by the appearance of newly 

synthesized suberin phenolic compounds such as ferulic acid (Yang and Bernards 2007). 

4.2.2 Phenylpropanoid metabolism 

Phenylpropanoid biosynthetic genes were studied in both time course experiments, while 

phenolic suberin assembly gene expression was analyzed in the three-day wound-healing 

study. Overall, phenylpropanoid metabolism genes were expressed to some degree prior 

to wounding, and then up-regulated and maintained at a steady level of expression early 

into wound-healing. Associated metabolites were shown to accumulate over time, 

whereas aromatic amino acids phenylalanine, tyrosine and tryptophan used as precursors 

for the biosynthesis of hydroxycinnamates and their CoA-esters, hydroxycinnamic acid 

amides, and monolignols, decreased quickly after wounding. GSEA showed that GO 

terms for biosynthesis of these amino acids persisted throughout the time course. At the 

metabolism level, this suggests that these compounds are continuously synthesized to 

support suberization, and then quickly utilized, since their levels did not appear to 

increase over 14 days of wound-healing (Chapter 2, Figure B5), but SPPD-destined 

products were shown to accumulate over time.  



170 

 

Phenylpropanoids such as chlorogenic acid (i.e. caffeoyl quinic acid) and coumaroyl 

quinic acids have been demonstrated to accumulate in tubers and may act as pools for 

remobilization of phenolic carbon skeletons, depending on plant needs, such as suberin 

biosynthesis (Valiñas et al., 2015), although not incorporated into the SPPD directly. This 

may help to explain the prompt induction of phenylpropanoid metabolism after 

wounding. For example, Payyavula et al. (2015) used hydroxycinnamoyl CoA:quinate 

hydroxycinnamoyl transferase (HQT)-silenced potato plants to study the synthesis and 

regulation of chlorogenic acid, a product of HQT and major potato phenolic compound, 

and determined the likely existence of a regulatory loop between chlorogenic acid levels 

and phenylalanine ammonia-lyase (PAL) gene expression and enzyme activity, which is 

required for the first committed step of phenylpropanoid biosynthesis. The reduction of 

total phenolic levels was not as strong as the decrease in chlorogenic acid, which 

demonstrated the likely re-routing towards the flux of other phenylpropanoids (Payyavula 

et al., 2015). Valiñas et al. (2015) observed a negative correlation between chlorogenic 

acid levels and genes involved in downstream suberin biosynthetic activities such as 

hydroxycinnamoyl-transferase (HCT) and caffeoyl-CoA O-methyltransferase 

(CCoAOMT), suggesting that chlorogenic acid is channeled towards suberin and lignin 

biosynthesis. Sucrose feeding induces chlorogenic acid biosynthesis, and was also shown 

to up-regulate the expression of PAL, HCT and p-coumarate 3’ hydroxylase (C3H) in 

potato tubers with purple flesh (Payyavula et al., 2015). It is possible that a similar 

signaling system could function to activate phenylpropanoid synthesis in the context of 

suberin production in non-purple potatoes.  

4.2.3 Aliphatic metabolism 

Induction of genes involved in aliphatic suberin production generally occurs later into 

wound-healing relative to phenylpropanoid metabolism genes. The onset of aliphatic 

gene expression appears to track the time at which ABA accumulates (Chapter 2) and 

coincides with the up-regulation of the enriched “response to ABA” GO term (Chapter 

3), which includes transcription factors of interest. Key aliphatic suberin-associated genes 

like KCS6 (Serra et al., 2009a), FAR3 (Domergue et al., 2010), and CYP86A33 (Serra et 

al., 2009b), and their respective VLC aliphatic, 1-alkanol, and 18:1 ω-hydroxy and α,ω-
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dioic acid biosynthetic products were impacted by altered ABA levels. RNA-seq analysis 

demonstrated similar temporal patterns for targeted suberin-specific fatty acid 

modification genes, although within the larger sub-set of genes, some demonstrated 

expression immediately after wounding, and others did not have detectable transcripts 

until 3 dpw. It is likely that the majority of the genes that follow similar patterns as those 

assessed in Chapter 2 are influenced by ABA accumulation, but others may be subjected 

to additional regulatory control, or have higher sensitivity to lower ABA quantities. 

These between-gene differences within the pathway point to the likelihood of finer levels 

of regulation that allow for biosynthetic steps to be carried out in the correct sequential 

order, such as elongation steps that occur prior to further modification of VLCFAs.  

4.2.4 SPPD and SPAD assembly 

4.2.4.1 Genes previously implicated in suberin assembly 

Genes with known involvement in SPPD assembly, such as NADPH-dependent oxidases 

and superoxide dismutases, were expressed throughout the three-day wound-healing time 

course, whereas anionic peroxidases were expressed by 0.5 or 1 dpw (Chapter 3). 

Linkage and assembly steps that reflect the convergence points of different biosynthetic 

pathways via esterification of aliphatics to feruloyl-CoA (FHT, Serra et al., 2010) or 

glycerol (GPAT5 and GPAT6, Beisson et al., 2007; Li et al., 2007), and transport of 

SPAD-affiliated esterified monomers (ABCG1, Landgraf et al., 2014) were demonstrably 

impacted by attenuated or enhanced ABA levels at the gene expression level, similarly to 

aliphatic genes (Chapter 2; Figure 4.2). The finer RNA-seq based temporal 

investigation revealed that these four genes are up-regulated prior to those encoding 

aliphatic modification genes for SPAD monomer biosynthesis. These findings suggest 

that either another regulator is involved in addition to ABA, that these genes are more 

sensitive to lower ABA levels during initial accumulation, or, at least for FHT and the 

GPATs, that they are somewhat induced by the presence of one of their substrates.  

Bacterial operons (i.e. gene clusters) are induced by the presence of their substrates. In 

the classical example of the lac operon, lac genes are transcriptionally activated in the 

presence of the substrate lactose (Jacob and Monod, 1961). Gene clusters comparable to 
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operons have also been described in plants, of which many are involved in secondary 

metabolite biosynthesis (reviewed by Boycheva et al., 2014). At the protein level, 

metabolons are complexes that transiently form between enzymes catalyzing sequential 

metabolic steps. Metabolon formation and activity might also be metabolite-induced (e.g. 

Norris et al., 1999). This type of multi-enzyme complex has been established for 

tricarboxylic acid cycle enzymes in potato (Zhang et al., 2017) and proposed for the 

phenylpropanoid pathway towards the biosynthesis of phenolic metabolites and lignin 

(Stafford, 1974; reviewed by Laursen et al., 2015). Payyavula et al. (2015) demonstrated 

that PAL expression is induced by chlorogenic acid accumulation. PAL does not use 

chlorogenic acid directly as a substrate, but catalyzes the first step of phenylpropanoid 

biosynthesis towards synthesis of chlorogenic acid and its derivatives (Payyavula et al., 

2015). It is possible that genes encoding enzymatic steps towards suberin production are 

activated by the presence of their substrates. Glycerol-3-phosphate is synthesized via 

dehydrogenation of the glycolysis-derived dihydroacetone-phosphate. Genes involved in 

the glycolytic pathway are active in dormant tubers and after wounding (steps 7, 12, 19-

26, Figure 3.3B), with the glycerol-3-phosphate dehydrogenase gene also consistently 

expressed throughout wound-healing (step 88, Figure 3.3H). Feruloyl-CoA is 

synthesized via the phenylpropanoid pathway that is expressed during the wound-healing 

time course. Therefore, it is possible that genes encoding enzymes involved in 

esterification of modified fatty acids to these metabolites that are synthesized earlier into 

wound-healing are induced by their presence. This would ensure that their protein 

products are poised to catalyze linkage steps once aliphatic components become available 

later into wound-healing, and may highlight a further method of control and organization 

over this process. ABCG1 expression also occurs earlier than expected, if it is primarily a 

transporter of SPAD components. Landgraf et al. (2014) used RNAi to silence ABCG1, 

then evaluated the build-up of suberin monomers and the concomitant decrease in 

quantities of certain polymerized components in tuber periderm to characterize ABCG1 

and generate hypotheses about its putative substrates. An observed reduction in ≥ C24 

chains, including major C18:1 ω-hydroxy and α,ω-dioic acid monomers deposited in 

tuber periderm suggests they are exported by ABCG1 (Landgraf et al., 2014). The 

increase in ω-feruloyloxy fatty acid glycerol esters in RNAi-ABCG1 potato also provides 
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evidence for monoacylglycerol derivatives as ABCG1 substrates (Landgraf et al., 2014, 

Figure 4.2). CYP86A33-silencing led to a drop in 18:1 ω-hydroxy fatty acids, but also of 

glycerol, therefore ω-hydroxylation is thought to occur before export of esterified 

aliphatics (Serra et al., 2009b). FHT-RNAi potatoes showed decreased C18:1 ω-hydroxy 

acid levels, highlighting the additional importance of conjugation to ferulic acid prior to 

export of these aliphatic components (Serra et al., 2010).  

ABCG1 is induced by 12 hours after tuber wounding and is sensitive to changes in ABA 

levels, similarly to FHT and GPATs, which utilize substrates derived from more than one 

biosynthetic pathway. This provides further support for the likelihood that ABCG1 

transports SPAD-destined esterified products, and also suggests that ABCG1 could be co-

regulated with FHT and GPATs involved in the synthesis of its esterified substrates. The 

fact that the timing of ABCG1 transcript accumulation precedes that of aliphatic 

metabolism genes and peak ABA levels indicates that these genes are likely regulated by 

mechanisms in addition to ABA-mediated control, such as transcription factors (Figure 

4.2). ABCG6 and ABCG11 are putative potato suberin transporters with high amino acid-

level similarity to characterized transporters from Arabidopsis (e.g. 

AtABCG11/AtWBC11, Bird et al., 2007; AtABCG6, Yadav et al., 2014) that follow the 

temporal profile of aliphatic gene expression, and therefore may be more important for 

the export of non-esterified aliphatic products that will either undergo polymerization, or 

remain in the SPAD as soluble associated wax components (Figure 4.2). The timing of 

expression of genes involved in the synthesis and transport of esterified products 

precedes the observed accumulation of soluble (3 dpw) and insoluble (4-6 dpw) SPAD 

components. This is especially evident for wound-induced FHT, which synthesizes 

ferulate esters that are incorporated in the SPAD ca. 3-4 dpw, but also yields alkyl 

ferulates that do not accumulate until ca. 14 days after wounding (Chapter 2). Together, 

the observed differences in expression of genes within pathways toward SPAD 

production and disparity between gene expression and metabolite accumulation suggest 

that additional regulation is involved in the coordination of these linkage and transport 

processes.  
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Future studies could focus on comparative promoter analyses including these convergent 

metabolism genes that have been shown to be under some level of ABA control, but also 

are likely regulated by one or more additional mechanisms. Further exploration of 

regulatory elements in promoter regions of FHT (Boher et al., 2013) or analysis of the 

ABCG1 promoter in comparison with phenolic or aliphatic metabolism-specific genes 

could offer insight into both major suberin pathways and their coordination. For example, 

regulatory motifs shared across the promoters of FHT and aliphatic genes may not also be 

present in phenolic biosynthetic gene promoters, and vice versa, and allow for 

identification of pathway-specific motifs. 

4.2.4.2 Novel candidates and proposed mechanism for suberin 
assembly and its coordination 

The key genes for linkage and deposition of SPAD monomers (FHT, GPAT5, GPAT6, 

ABCG1) demonstrate gene expression early into wound-healing and are impacted by 

ABA. Despite the enhanced synthesis of soluble aliphatic components by exogenous 

ABA application and diminished and delayed accumulation by FD treatment, the 

temporal patterns of insoluble aliphatic deposition did not differ between ABA-related 

treatments (Chapter 2). This inconsistency in ABA effect suggests an additional level of 

regulation aside from ABA, or some other limiting factor that prevents the assembly of 

soluble monomers into the SPAD. It is possible that beyond the likely role of regulatory 

components such as transcription factors or phytohormone interactions, mediators of 

deposition may be involved. The Casparian strip membrane domain protein (CASP) 

candidate CASP8 that was previously identified as expressed during tuber periderm 

maturation (Vulavala et al., 2017), was expressed over time in a highly similar pattern to 

the convergent metabolism genes required for SPAD assembly, along with a candidate 

cutin synthase-like GDSL lipase/esterase (G.7). The timing of CASP8 and GDSL (G.7) 

appeared to overlap with the expression of aliphatic metabolism genes, and CASP9 and 

GDSL (G.6), although aliphatic genes share more similar temporal profiles with CASP9 

and GDSL (G.6) (Chapter 3, Figure 4.1). It is feasible that, if involved in the process, 

the CASP genes expressed in this transcriptome encode proteins that recruit machinery 

for organization and deposition of the polymeric domains of suberin, similarly to those 
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involved in Casparian strip assembly (Roppolo et al., 2014). While CASPs have been 

characterized as mediators of lignin-like polymerization by coordinating necessary 

enzymes and forming transmembrane scaffolds (Roppolo et al., 2014), the fact that there 

are actively expressed CASP genes that appear to be wound-induced and co-expressed 

with linkage and aliphatic suberin-related genes could indicate that they have 

involvement in mediating aliphatic component polymerization, possibly via GDSLs or 

similar polyester-forming enzymes. The temporal overlap in induction of these putative 

mediators of assembly and polymerization could point to a mechanism that coordinates 

the deposition of different suberin components, and possibly the linkage of the SPPD and 

SPAD (Figure 4.2). 

Some CASP and GDSL assembly candidates were expressed in patterns similar to either 

phenylpropanoid or aliphatic-specific metabolism, but CASP8 and GDSL (G.7) were 

most similar to convergent metabolism genes. Thus it is possible that CASP8 and GDSL 

(G.7) specifically target esterified products and act to regulate their incorporation into the 

SPAD at a later time than when genes are first expressed and soluble monomers 

accumulate. Additionally, CASP8 could act as a mediator between SPPD and SPAD 

assembly activities, possibly by orchestrating the linkage of the two domains. (Figure 

4.2). CASP9 and GDSL (G.6) followed temporal expression patterns similar to aliphatic 

metabolism genes, and are therefore hypothesized to primarily have involvement in 

SPAD assembly. 

The hypothesis that CASPs mediate suberin assembly fits within the context of an 

additional level of regulation of deposition beyond ABA control, since characterized 

CASPs to date do not appear to be under ABA-mediated regulation, or at least not 

directly. For example, in Arabidopsis roots, MYB36 (Kamiya et al., 2015) directs 

Casparian strip organization and deposition via control over CASP1 and its recruitment of 

the respiratory burst oxidase homolog PER64 and ESB1. Potato homologs of MYB36 and 

ESB1 were not detected at the transcriptional level in this RNA-seq study (Chapter 3), 

consistent with publicly available transcriptome data that demonstrates FPKM levels are 

equal to or close to 0 in tubers (Massa et al., 2011). A family of peptide hormones are 

signals that must specifically bind to Casparian strip-associated receptor kinases for the 
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correct localization of CASP expression and deposition of the Casparian strip (Nakayama 

et al., 2017), but a role for ABA has not been described for the developmental deposition 

of the Casparian strip. Casparian strip deposition has been observed in response to salt 

stress (e.g. Karahara et al., 2004), and although ABA-mediated signaling is often linked 

to salt and drought stress responses, the role of ABA has not been specifically established 

in the context of stress-induced Casparian strip development.  

GO terms encompassing cell wall organization and biogenesis were up-regulated from 

0.5-1 dpw, around the time that the phenylpropanoid pathway genes increase in 

expression and phenolic metabolites begin to accumulate (Chapter 2), and also the time 

at which CASP8 and GDSL (G.7) transcript levels rose (Figure 4.1). CASP and CASP-

like proteins have speculative involvement in forming membrane scaffolds for Casparian 

strip deposition, and/or in the recruitment of cell wall modification machinery (Roppolo 

et al., 2014). Since cell division does not occur during closing layer formation (Lulai et 

al., 2016), it is likely that the up-regulation of cell wall modification genes reflects cell 

wall reinforcement in cells surrounding the wound site. It is feasible that cell wall 

remodeling in wound-healing tubers may promote the anchoring of the SPPD into the 

primary cell wall during closing layer formation. Since CASPs can influence the 

localization of cell wall modifying activities (Lee et al., 2013), the differentially 

expressed cell wall modification genes highlighted in this study along with SPPD 

oxidative coupling machinery could be targets of recruitment by active CASPs (Figure 

4.2).  

The term “secondary cell wall biogenesis” was significantly up-regulated between 2-3 

dpw (Chapter 3), at the same time that aliphatic monomer levels increase to their peak 

levels at 3 dpw, and just prior to the time when insoluble aliphatics begin to accumulate 

by 4 dpw (Chapter 2). The RNA-seq experiment measured transcriptomic changes up to 

3 dpw, so it is not clear whether these secondary cell wall changes would continue to 

undergo up-regulation beyond this time point. It is possible that the implicated genes 

within this term are important for the organization, correct spatial localization and 

deposition of aliphatic monomers prior to the formation of the secondary cell wall. In 

periderm, secondary cell wall synthesis occurs after suberin aliphatics have been 
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deposited between the primary cell wall and the plasma membrane, and the secondary 

cell wall itself is also deposited in this sub-cellular location, meaning the final suberin 

polymer is found between the primary and secondary cell walls in tissues that undergo 

secondary thickening (Esau, 1977; Schmidt and Schönherr, 1982). ABCG6 and ABCG11 

may be involved in the export of SPAD monomers, and the latter appears to be regulated 

by NAC103 (Verdaguer et al., 2016). These genes co-expressed with CASP9, GDSL 

(G.6), NAC103, MYB102 and MYBODO1, offering further support for the possibility that 

aliphatic suberin organization and assembly is overseen by CASP9-mediated recruitment 

of cell wall modifying genes in this distinct spatial location where the SPAD is deposited, 

analogous to the predicted SPPD assembly process described above (Figure 4.2).  
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Figure 4.2. Proposed mechanism for the suberization process in wound-healing tubers. This overview offers a synthesis of 

findings from Chapter 2 and Chapter 3, and offers novel hypothetical aspects of regulation at the levels of monomer biosynthesis, 

deposition, polymerization and assembly established in this thesis. Primary metabolic pathways (shaded green) yield precursors and 

energy molecules that feed into specialized suberin-related metabolic branches. Carbohydrate metabolism yields pyruvate used 

towards shikimate pathway production of aromatic amino acids used as precursors for phenolic suberin biosynthesis. Pyruvate is also 

used along with glycolysis-derived glyceraldehyde-3-phosphate for isoprenoid metabolism that yields the phytohormone abscisic acid 

(ABA) via the carotenoid pathway, and as a substrate for the tricarboxylic acid cycle that yields acetyl-CoA for fatty acid biosynthesis, 

which results in the generation of 16:0, 18:0 and 18:1 fatty acids that undergo various modifications for aliphatic suberin monomer 

production. Glycerol-3-phosphate is synthesized from the dehydrogenation of dihydroxyacetone phosphate produced during 

glycolysis. The biosynthesis of suberin poly(phenolic) domain monomers (dark red) may be regulated by WRKY1, which regulates 

THT and 4CL in relation to phenylpropanoid metabolism in pathogen-infected aerial potato organs (Yogendra et al., 2015). 

Transcription factors like WRKY4 and MYB34 that demonstrate similar temporal expression profiles and cluster with known phenolic 

suberin-associated genes are also included as candidate regulators of this metabolic pathway branch. ABA regulates the biosynthesis 

of several key suberin poly(aliphatic) domain monomers (blue) by positively impacting genes involved in their production. NAC103 

acts as a transcriptional suppressor of fatty acid and aliphatic suberin-related genes, and is induced by ABA (Verdaguer et al., 2016). 

Several candidate transcription factors (MYB3, MYB39, NAC58, WRKY56) co-expressed with aliphatic metabolism genes and are 

presented as putative regulators of aliphatic suberin production. MYB102 was significantly up-regulated under the “response to ABA” 

GO term between 1-2 dpw, and offers a potential regulator of aliphatic suberin biosynthesis. Most phenolic monomers are solely 

polymerized and incorporated into the SPPD. Feruloyl-CoA can also be conjugated to very long chain fatty acids (VLCFAs), ω-

hydroxy and α,ω-dioic acids, and 1-alkanols to yield ferulate esters, including alkyl ferulates as SPAD-associated soluble wax 

components. Modified fatty acids can also be esterified to glycerol via the glycerol-3-phosphate acyltransferases (GPATs). Esterified 

aliphatic constituents are exported by ABCG1 (Landgraf et al., 2014). These steps are referred to as “convergent metabolism” (shaded 

purple). MYB3, MYB39, NAC58 and WRKY56 expression coincided with peak levels of convergent metabolism genes, and are also 

considered putative regulators of these genes. Since convergent metabolism steps require substrates derived from pathways activated 

at different times after wounding, there is likely a high level of regulation and coordination between different pathway branches. 

Oligomer and polymer formation are thought to occur after monomers and esterified building blocks are transported. The translocation 

of aliphatic monomers (alkanes, VLCFAs, modified fatty acids, 1-alkanols) that are not esterified to glycerol or feruloyl-CoA (i.e. 

soluble components destined for polymerization, or that remain non-polymerized as associated wax) has not been established in 

potato, but ABCG6 and ABCG11 have predicted involvement. Phenolic monomers are thought to undergo a NADPH-dependent 

oxidase (NOX), superoxide dismutase (SOD), and anionic peroxidase (PRX)-mediated polymerization, whereas SPAD polymerization 

activities remain uncharacterized. The coordination and organization of SPPD and SPAD assembly and linkage is not currently 
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established, but novel candidates and mechanisms are presented based on findings from RNA-seq analysis (Chapter 3). CASP 

candidates were expressed at different times during wound-healing, along with GDSL candidates for SPAD polymerization. CASPs 

expressed early in the time course (C.3, C.41) may recruit NOX, SOD, PRX for polymerization, and influence enzymes involved in the 

organization of cell wall polysaccharides in a process that may be associated with SPPD deposition via localization of cell wall 

modifying activities. CASP8 co-expresses with GDSL (G.7), and their expression profiles overlap with those of phenylpropanoid and 

convergent metabolism genes. These could regulate the linkage between two domains, their spatial organization, and/or the 

polymerization and deposition of esterified aliphatics that act as building blocks for SPAD assembly. CASP9 co-expresses with GDSL 

(G.6), ABCG6, ABCG11, MYB102, MYBODO1, and NAC103, which negatively regulates ABCG11 (Verdaguer et al., 2016). Based on 

their temporal expression profiles and co-expression with NAC103, these genes are proposed to be involved in the export, deposition 

and polymerization of non-esterified aliphatics, as well as the organization of non-polymerized, soluble waxes. Up-regulated 

secondary cell wall biogenesis glycosyltransferases and cellulose synthases may be regulated by CASP9 to organize the deposition of 

polymerized aliphatics between the cell wall and plasma membrane, prior to secondary cell wall formation.  

Abbreviations: 4CL, 4-coumarate-CoA ligase; ABA, abscisic acid; ABCG1, ATP-binding cassette (ABC) subfamily G transporter 1; 

ABCG11, ATP-binding cassette (ABC) subfamily G transporter 11; ABCG6, ATP-binding cassette (ABC) subfamily G transporter 6; 

C3H, p-coumarate 3-hydroxylase; C3'H, p-coumaroyl quinate/shikimate 3'-hydroxylase; C4H, cinnamic acid 4-hydroxylase; CAD, 

cinnamyl alcohol dehydrogenase; CASP8, Casparian strip membrane domain protein 8; CASP9, Casparian strip membrane domain 

protein 9; CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl CoA reductase; CER, ECERIFERUM; COMT, caffeic acid 

O-methyltransferase; CYP, cytochrome P450; CYP86A33, cytochrome P450 subfamily 86A 33; CYP86B12, cytochrome P450 

subfamily 86B 12; CYTB5, cytochrome P450 b5; F5H, ferulate 5-hydroxylase; FA, fatty acid; FAE, fatty acid elongase; GDSL, GDSL 

domain esterase/lipase; Glycerol-3P, glycerol-3-phosphate; GPAT5, glycerol-3-phosphate acyltransferase 5; GPAT6, glycerol-3-

phosphate acyltransferase 6; HCAA, hydroxycinnamic acid amide; HCT, hydroxycinnamate transferase; KAR, β-ketoacyl-ACP 

reductase; KCS6, β-ketoacyl-CoA reductase 6; LACS, long-chain acyl-CoA synthetase; MYB, MYB family transcription factor; NAC, 

NAC domain transcription factor (NAM, no apical meristem, ATAF, Arabidospis transcription activation factor, and CUC, cup-

shaped cotyledon); NOX, NADPH-dependent oxidase; PAL, phenylalanine ammonia lyase; PRX, anionic peroxidase; SOD, 

superoxide dismutase; SPAD, suberin poly(aliphatic) domain; SPPD, suberin poly(phenolic) domain; THT, tyramine 

hydroxycinnamoyl transferase; VLCFA, very long chain fatty acid; WRKY, WRKY domain family transcription factor; XTH, 

xyloglucan endotransglucosylase/hydrolase 
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4.2.5 Regulators of differential induction of suberization processes 

The evidence supporting the differential induction of various processes during 

suberization suggests a role for different mechanisms of control that differentially 

regulate biosynthetic activities and events. Chapter 2 aimed to further address the role of 

ABA as a regulator of certain suberin-associated pathways, while Chapter 3 targeted 

ABA biosynthesis and catabolism and captured the time point at which several 

transcription factor (TF) candidates underwent changes in gene expression after 

wounding. ABA contributes to part of this differential temporal regulation, but does not 

account for nuances within aliphatic suberin-related pathways or the regulation of 

phenylpropanoid biosynthesis, and factors controlling the initial wound-induced up-

regulation of primary metabolism are also not known.  

AtMYB41 was previously demonstrated as an ABA-induced regulator of aliphatic, and 

possibly phenolic, suberin production (Kosma et al., 2014), and genes encoding its 

putative potato homologs were included in this analysis, including MYB3 and MYB39. 

NAC103 was demonstrated to be an ABA-responsive negative regulator of aliphatic 

suberin biosynthesis and deposition (Verdaguer et al., 2016), whereas WRKY1 has been 

shown to regulate hydroxycinnamic acid amide deposition in pathogen-infected potato 

leaves. Therefore genes encoding highly similar proteins to NAC103 and WRKY1 were 

incorporated into targeted RNA-seq investigations. Of the candidate genes included in 

this analysis, NAC58, WRKY19/56 and MYB102 (previously called StMYB93) were 

highlighted as part of the suberization signature described across species by Lashbrooke 

et al. (2016). Two Arabidopsis homologs of MYB102, AtMYB107 and AtMYB9, are 

thought to coordinately and positively regulate phenylpropanoid and aliphatic suberin 

metabolism in Arabidopsis seed coats (Lashbrooke et al., 2016). The closest Arabidopsis 

homolog of potato NAC58 is ANAC058, which is the putative ortholog of StNAC103 

(Verdaguer et al., 2016), and is also implicated in the regulation of suberin production 

(Markus, 2018). Chapter 3 demonstrated that different transcription factor candidates 

clustered with genes involved in different suberin-related metabolic pathways, or with 

known TFs, and therefore offer several good candidates for further pursuit (Figure 3.6). 
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Hypotheses were generated about the putative roles of these TFs based on their temporal 

patterns of transcript accumulation with respect to typical profiles for suberization genes, 

or if they clustered closely with characterized TFs (Figure 3.6). For example, WRKY1, 

MYB34 and WRKY4 cluster together, and are predicted to have involvement in phenolic 

biosynthesis, since WRKY1 regulates phenylpropanoid genes THT and 4CL (Yogendra et 

al., 2015), and they demonstrate similar temporal expression profiles as phenylpropanoid 

pathway and phenolic assembly genes. MYB39, NAC58, WRKY19/56 and MYB3 mostly 

cluster with fatty acid modification, deposition and glycerol-esterification genes. They 

could be involved in coordination between phenolic and aliphatic suberin production 

since they are all up-regulated between 0-0.5 dpw, or in aliphatic-specific regulation due 

to peak expression later into wound-healing. MYB102 and MYB ODO1 are encoded by 

genes that follow the same temporal expression profile as NAC103, and may be co-

regulators of NAC103 targets, and could therefore participate in the fine-tuning of 

aliphatic suberin metabolism and/or assembly by countering the suppressive control 

exerted by NAC103 (Verdaguer et al., 2016) (Figure 4.2). MYB102 is also a good 

candidate for regulation of SPAD production due to its inclusion in the “response to 

ABA” GO term, since aliphatic genes (Chapter 2) and characterized SPAD regulators 

are ABA-responsive (e.g. AtMYB41, Kosma et al., 2014; StNAC103, Verdaguer et al., 

2016). If CASPs are involved in orchestrating suberin assembly in tubers, they could be 

regulated by candidate TFs that demonstrate patterns of expression similar to CASPs, 

biosynthesis and assembly genes (Figure 4.2).  

The regulatory control of ABA over aliphatic suberin-associated TFs suggests that a 

similar mechanism could be in place for indirect regulation of phenolic metabolism 

through other signal compounds. Other hormones do not have any established impact on 

any of the suberization process except for the inhibitory effect of salicylic acid on FHT 

expression (Boher et al., 2013). Jasmonic acid and ethylene levels change in response to 

wounding, but are not required for suberin production (Lulai and Suttle, 2004; Lulai and 

Suttle, 2009; Lulai et al., 2011). Sucrose enhances chlorogenic acid pools in potato plants 

and leads to PAL expression, but a role for sucrose signaling has not been defined in the 

suberization context. GO term enrichment analysis of the wound-healing transcriptome 
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also identified points at which terms including genes involved in non-transcriptional 

levels of regulation were differentially regulated. In cases where most genes followed 

similar temporal profiles for changes in transcript levels within pathways for suberin 

metabolite production, there were always exceptions to the general pattern, suggesting 

the likely existence of factors that control entire pathways as well as individual gene-

level regulation and fine-tuning. Taken together, the coordination of different pathways 

required for suberization in the wound-healing tuber is a highly complex process, and 

likely involves many levels and types of regulation. This thesis presents some new 

insights into the regulatory oversight and coordination of biosynthesis and assembly 

events, while providing targets for further analysis. The generation of a wound-healing 

transcriptome also offers a large scale dataset that can be further mined during future 

investigations of genes of interest.  

4.2.6 Other wound-healing processes involved in closing layer 
formation 

Many enriched GO terms identified as differentially regulated were relevant to 

suberization, and also to cell-level changes that occur during closing layer formation 

(Chapter 3). Several GO terms relating to cell cycle processes like DNA replication were 

up-regulated early in the wound-healing time course then decreased, which was 

consistent with a previously established timeline for the S-phase of mitosis in wound-

healing tubers that occurs between 18-48 hours after wounding (Lulai et al., 2014). DNA 

synthesis occurs prior to the second phase of wound-healing, during which time the 

meristematic phellogen tissues develop and give rise to suberized phellem cells to 

generate the wound periderm (Lulai et al., 2016).  

In tubers monitored for 6 days after wounding (Chapter 2), genes involved in aliphatic 

and convergent metabolism decreased around 4-6 dpw, which matched previous 

observations by Lulai and Neubauer (2014). In time course experiments that extend into 

wound periderm formation, it appears that this drop in gene expression marks the time at 

which closing layer formation has reached completion, and is followed by a second wave 

of up-regulation related to suberization of phellem cells during wound periderm 

formation (Lulai and Neubauer; 2014; Lulai et al., 2016). Between the studies outlined in 
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Chapter 2 and Chapter 3, transcriptional and metabolic aspects of closing layer 

formation were captured and integrated to better understand aspects of wound-healing 

that include signaling, regulation, suberization and physical healing (i.e. cell wall-related 

changes that may be implicated in suberin deposition and organization during closing 

layer formation).  

4.3 Applications for crop improvement 

Suberin acts as a barrier to abiotic (e.g. Schreiber et al., 2005; Baxter et al., 2009) and 

biotic threats (e.g. Lulai and Corsini, 1998; Thomas et al., 2007) in underground plant 

organs, and is responsible for the characteristics that make cork commercially important 

(Marques and Pereira, 1987), making it a good target for crop improvement applications 

that rely on existing plant defenses. The recent characterization of the AtMYB41 

transcription factor from Arabidopsis by Kosma et al. (2014) highlights the possibility of 

identifying a “master regulator” capable of activating the suberization process in a model 

species. However, similar studies have not been conducted in underground organs of crop 

species, therefore this fundamental discovery has not yet been translated into a functional 

application. Further understanding of the overall suberization process and its regulation in 

an economically important crop species such as potato could lead to the identification of 

gene targets for enhancement efforts, and could also be relevant to other crops in the 

Solanaceae family.  

The importance of appropriate suberization to prevent water loss and infection in the 

context of potato tuber skin set and maturation, as well as healing wounds incurred 

during harvest, has been well-described (reviewed by Lulai, 2007). Additionally, the 

deposition of suberin in roots of important crop species, such as soybean, has been shown 

to correlate with resistance to soil borne pathogen infection (Thomas et al., 2007). Loss-

of-function mutant (e.g. Yadav et al., 2014) and knockdown (e.g. Serra et al., 2010) 

studies have demonstrated that the correct assembly and organization of suberin is critical 

in its ability to function as a protective chemical and exhibit its characteristic properties, 

such as water impermeability.  
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ABA-related treatments altered soluble aliphatic pool accumulation, but not the timing of 

insoluble, polymerized aliphatic metabolite accumulation, suggesting additional 

mechanisms regulate SPAD assembly (Chapter 2). This finding further emphasizes the 

importance of addressing genes involved in the coordination of suberin deposition and 

assembly in addition to enhancing monomer production. Each domain of the suberin 

macromolecule is also important for exhibiting the different characteristic protective 

qualities of suberin. The characterization of genes involved in the coordinated regulation 

of both SPPD and SPAD-related metabolism could have important implications. For 

example, MYB102 (previously identified as StMYB93) is a putative ortholog of an 

Arabidopsis TF involved in the regulation of both phenolic and aliphatic suberin 

metabolism (Lashbrooke et al., 2016) and would therefore be an ideal target for 

enhancing suberin biosynthesis. Since organized and coordinated assembly and 

deposition are important for the production of functional suberin, the roles of CASP and 

GDSL candidates highlighted in Chapter 3 should be elucidated. Crop improvement via 

enhanced suberization should address regulators of suberin biosynthetic genes and/or 

entire pathways in concert with genes involved in polymerization and assembly. This 

would more likely lead to increased accumulation of polymerized, correctly deposited 

suberin that would exhibit all of its characteristic protective properties in plant organs 

including roots, wounded tubers, tuber periderm, and cork.  

4.4 Concluding remarks 

This thesis presents a detailed overview of the wound-healing process that integrates 

information pertaining to suberin biosynthesis and assembly at the levels of gene 

expression and metabolism, and control of these processes by hormone-mediated and 

transcriptional regulation. I helped define the role of ABA as a regulator of aliphatic and 

convergent metabolism genes and factor in the differential induction of suberin 

biosynthetic pathways, while acknowledging that ABA cannot be the sole regulator of 

these pathways. I generated the first wound-healing tuber transcriptome data set that was 

used to revise a broad “roadmap” to suberin assembly that incorporated many more 

components than previously, and matched transcriptome derived gene expression profiles 
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for each known or candidate gene involved in wound-healing suberization, including 

primary metabolic pathway genes. 

This provides not only an overview of suberization, but also support for the involvement 

of previously unexplored candidate genes with putative involvement in many aspects of 

suberin production. I carried out global analyses that corroborated targeted analyses and 

provided further information about other wound-healing events. By integrating findings 

pertaining to gene expression, metabolite accumulation, and ABA impact, I was able to 

identify novel candidate genes and describe putative mechanisms for the regulation and 

coordination of suberin biosynthesis and assembly involving putative CASP mediators 

and polyester-forming GDSLs, as well as transcription factors. I synthesized this 

information and provided insight into the wound-healing process by exploring a complex 

transcriptional and regulatory network underlying suberization. I have contributed to the 

current state of knowledge in this field and generated new hypotheses regarding wound-

healing and suberization in the potato tuber, which is a valuable suberin model system 

and an important crop species. 
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Appendix B: Chapter 2 supplementary material 

Table B1. Statistical analysis for gene expression data of four month old tubers. A. Treatment comparisons at each time point. 

B. Time comparisons within each treatment. Significant differences between water and each ABA-related treatment were denoted 

in figures, all additional treatment and sequential time point comparisons are also provided in this table. After initial two-way 

ANOVAs, one-way ANOVAs were performed for treatment (if significant, using Tukey’s honest significance difference post-hoc 

test) and/or for time (if significant, using contrasts that only made pairwise time comparisons between sequential time points within 

the series, and the Benjamini-Hochberg test), to isolate the effects of each factor.  In the two-way ANOVA, THT was the only gene to 

show no significant interaction, no treatment effect and solely a time effect, so statistical analysis for treatment effect on THT 

expression was not performed. Statistically significant differences are denoted by * for both |log2(fold change)| ≥ 1 and p ≤ 0.05. Note: 

There is no treatment comparison for THT because two-way ANOVA revealed no treatment:time interaction or treatment effect for 

THT expression data.  

Table B1-A. Treatment comparisons at each time point. 

Day post-wounding Treatment comparison PAL1 C4H CCR CYP86A33 CYP86B12 FAR3 KCS6 GPAT5 GPAT6 FHT ABCG1 

0 Water-FD           

1 Water-FD        * *   

2 Water-FD            

3 Water-FD    * * * * * * * * 

4 Water-FD    * * * * * *  * 

6 Water-FD         *   

0 Water-ABA    * *   *    

1 Water-ABA   * * * *  * *  * 

2 Water-ABA         *  * 

3 Water-ABA            

4 Water-ABA            

6 Water-ABA            

0 Water-FD+ABA *    *   *    
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1 Water-FD+ABA   * * * *  * * * * 

2 Water-FD+ABA   *      *   

3 Water-FD+ABA            

4 Water-FD+ABA            

6 Water-FD+ABA         *   

0 FD-ABA    * *   *    

1 FD-ABA   * * * * * * * * * 

2 FD-ABA    * * * * * * * * 

3 FD-ABA    * * * * * * * * 

4 FD-ABA   * *   *  *  * 

6 FD-ABA            

0 FD+ABA-FD     *   *    

1 FD+ABA-FD  * * * * * * * * * * 

2 FD+ABA-FD   * * * * * * *  * 

3 FD+ABA-FD    * * * * * *  * 

4 FD+ABA-FD   * * *  * * *  * 

6 FD+ABA-FD            

0 FD+ABA-ABA            

1 FD+ABA-ABA            

2 FD+ABA-ABA            

3 FD+ABA-ABA            

4 FD+ABA-ABA            

6 FD+ABA-ABA            
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Table B1-B. Time comparisons within each treatment.  

Treatment Time comparison PAL1 C4H CCR THT CYP86A33 CYP86B12 FAR3 KCS6 GPAT5 GPAT6 FHT ABCG1 

Water 1d-0d *      *  * * * * 
 2d-1d *  * * * * * * *   * 
 3d-2d *  *  * * * * * * * * 
 4d-3d        *  *  * 
 6d-4d         * *   

FD 1d-0d *      *  * * * * 
 2d-1d *  * * * * * * *  *  

 3d-2d *  *  * * * * * * *  

 4d-3d     * * * * * * * * 
 6d-4d        *     

ABA 1d-0d *  *  *   * * * * * 
 2d-1d *  *  * * * * * *  * 
 3d-2d   *  * * * * * *  * 
 4d-3d             

 6d-4d *        * *   

FD+ABA 1d-0d *  *  *   * * * * * 
 2d-1d     * * * * * *  * 
 3d-2d   *  * * * * * *  * 
 4d-3d      *  *    * 
 6d-4d      *   * *   
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Figure B1. ABA verification by isotope dilution. ABA was measured in un-treated, 

wound-healing tubers using a targeted, isotope dilution method. Frozen tissue was ground 

to a fine powder under liquid N2 with a mortar and pestle and weighed into 1 g 

subsamples. To each sample, 5 mL ice-cold 90% v/v/ methanol (MeOH) containing 0.1% 

v/v acetic acid was added, along with 20 μL ABA-d4 standard (2.5 μg/mL; National 

Research Council-Plant Biotechnology Institute, Saskatchewan, Canada). Tissue was 

incubated with occasional stirring for 5 minutes, and then transferred to a 15 mL 

centrifuge tube. The mortar and pestle were washed three times with 3 mL ice cold 90% 

v/v MeOH (containing 0.1% v/v acetic acid), and the washes added to the initial 5 mL 

extraction. Samples were centrifuged at 12 000 x g for 10 minutes, and the supernatant 

transferred to 25 mL round-bottom flasks and the solvent volume reduced under vacuum 

at 40˚C using a roto-evaporator (Buchi, Switzerland). When less than 1.5 mL liquid 

extract remained, samples were transferred to 1.5 mL microcentrifuge tubes and 

centrifuged at 15 000 x g for 5 minutes. The supernatant was transferred to a LC vial 

containing a micro-volume insert (Agilent Technologies, USA). For LC-MS analysis, 

100 μL samples were injected onto a Zorbax C-18 column (3.0 x 50 mm, 1.8 μm; Agilent 

Technologies, USA) attached to an Agilent 1260 LC system and eluted with the 

following solvent gradient (solvent A = 0.1% v/v formic acid in Milli-Q H2O; solvent B 

= 0.1% v/v formic acid in 90% v/v acetonitrile-10% Milli-Q H2O): Start condition, 20% 

v/v B in A, followed by a three step gradient to 60% v/v B in A over 4.5 minutes, 80% 

v/v B in A over 3 minutes and finally 100% B over 2.5 minutes. After 2 minutes at 100% 

B, the initial conditions were restored over 1 minute, followed by a 7 minute equilibration 

before the next sample was injected. Solvent flow rate was 0.3 mL/min. Compounds were 

detected by UV absorbance (240 nm) and ESI-TOF-MS (Agilent Technologies model 

6230) in negative ion mode. ESI-TOF parameters: drying gas at 350˚C, 10 mL/min; 

nebulizer at 45 PSI; Vcap at 4000 V; Fragmentor at 150 V. Spectra were collected at 

1.03/sec (9729 transients/spectrum) in the 100-1700 m/z range. Reference mass solution 

(112.985587 m/z and 1033.988109 m/z) was infused constantly via a second nebulizer at 

15 psi. ABA ([M-H]- = 263.1289 m/z) was quantified using the ABA-d4 ([M-H]- = 

267.1540 m/z) peak area as an internal calibration standard, using Agilent Mass Hunter 

Qualitative Analysis software (VB05) (Agilent Technologies, USA).  
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Figure B2. Persistence of fluridone in potato tubers. Fluridone (m/z 330.1121) signals 

were extracted from the MS-data collected for polar metabolite extracts prepared from 

wound-induced potato tuber discs after treatment with water, FD, ABA or FD+ABA. 

Data are from four-month old tubers and correspond to the gene expression data in 

Figure 2.2. 
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Figure B3. Expression of suberin biosynthesis genes after wounding of eight month 

old tubers. Expression of phenolic suberin biosynthetic genes (StPAL1, StC4H, StCCR 

and StTHT), aliphatic suberin biosynthetic genes (StCYP86A33, StKCS6, 

StCYP86B12and StFAR3) and genes involved in linkage and deposition (Convergent; 

StGPAT5, StGPAT6, StFHT and StABCG1) was measured using RT-qPCR. RNA was 

extracted from tuber tissue previously treated with water, FD or FD + ABA. Gene 

expression values were normalized to the endogenous reference gene StEF1-α. Data 

points represent the sample mean ± SD (n = 3 technical replicates). 
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Figure B4. PLS-DA analysis of polar metabolites isolated from eight month old 

tubers. Polar metabolites were extracted from wound-induced potato tuber discs after 

treatment with water, FD or FD + ABA and analyzed by LC-MS. After molecular feature 

extraction, alignment and normalization, the data were analyzed using SIMCA-P 

(Umetrics) software. The PLS-DA plot was generated using treatment and time groupings 

as discriminant factors to help maximize separation between treatments and time points. 

Each symbol represents a single polar metabolite profile. 
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Figure B5. Accumulation of polar compounds in wound-healing tubers. Polar 

metabolites were extracted from wound-induced potato tuber discs treated with water, FD 

or FD+ABA, and analyzed by LC-MS. MS data was mined for known compounds based 

on their exact mass ([M+H]+), according to Landgraf et al. (2014). 
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Figure B6-9 (below). Aliphatic suberin monomer analysis. Detailed chain length 

distribution of aliphatic monomers. Data for individual monomers are presented for both 

solubles extracted from suberizing tissues and the monomers released from the polymer 

after methanolic HCl transesterification (i.e., insolubles). Monomers were analysed as 

their methyl esters/TMS-ethers. Four month old tuber tissue was treated with water, FD, 

ABA or FD+ABA. Data points represent the sample mean ± standard deviation (n = 3). 
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Figure B6. Chain length distribution of fatty acids isolated from suberizing potato 

tubers. 
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Figure B7. Chain length distribution of 1-alkanols isolated from suberizing potato 

tubers. 
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Figure B7 (continued). Chain length distribution of 1-alkanols isolated from 

suberizing potato tubers. 
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Figure B8. Chain length distribution of ω-hydroxy fatty acids isolated from 

suberizing potato tubers. 
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Figure B8 (continued). Chain length distribution of ω-hydroxy fatty acids isolated 

from suberizing potato tubers. 
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Figure B9. Chain length distribution of α,ω-dioic acids (as methyl esters) isolated 

from suberizing potato tubers. 
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Appendix C: Chapter 3 supplementary material 

Table C1. TopGO analysis of top 50 gene ontology terms enriched within 5441 differentially expressed genes identified 

from the wound-healing tuber time course.  
GO.ID Term Annotated Significant Expected Weighted Fisher 

GO:0007018 microtubule-based movement 58 36 11.5 2.30E-12 

GO:0010411 xyloglucan metabolic process 32 21 6.35 2.20E-08 

GO:0006270 DNA replication initiation 22 15 4.36 1.10E-06 

GO:0009765 photosynthesis, light harvesting 48 24 9.52 4.40E-06 

GO:0042546 cell wall biogenesis 158 56 31.33 5.50E-06 

GO:0018298 protein-chromophore linkage 48 23 9.52 1.10E-05 

GO:0006629 lipid metabolic process 1010 225 200.29 1.40E-05 

GO:0006950 response to stress 2272 473 450.56 1.50E-05 

GO:0055114 oxidation-reduction process 2194 499 435.1 1.90E-05 

GO:0006334 nucleosome assembly 47 22 9.32 2.70E-05 

GO:0008283 cell proliferation 75 24 14.87 3.00E-05 

GO:0006260 DNA replication 143 58 28.36 9.20E-05 

GO:0006275 regulation of DNA replication 34 16 6.74 0.0002 

GO:0009219 pyrimidine deoxyribonucleotide metabolic process 5 5 0.99 0.00031 

GO:0016572 histone phosphorylation 14 9 2.78 0.00035 

GO:0010951 negative regulation of endopeptidase activity 84 30 16.66 0.00049 

GO:0080167 response to karrikin 66 25 13.09 0.00052 

GO:0008299 isoprenoid biosynthetic process 196 34 38.87 0.00057 

GO:0009408 response to heat 137 43 27.17 0.00076 

GO:0015979 photosynthesis 241 66 47.79 0.00126 

GO:0048827 phyllome development 259 49 51.36 0.0015 

GO:0009070 serine family amino acid biosynthetic process 62 18 12.3 0.00154 

GO:0010075 regulation of meristem growth 60 22 11.9 0.00179 
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GO:0006569 tryptophan catabolic process 11 7 2.18 0.00186 

GO:0016126 sterol biosynthetic process 39 16 7.73 0.00195 

GO:0046274 lignin catabolic process 20 10 3.97 0.00241 

GO:0006974 cellular response to DNA damage stimulus 238 57 47.2 0.0029 

GO:0009607 response to biotic stimulus 497 125 98.56 0.00297 

GO:0016998 cell wall macromolecule catabolic process 34 14 6.74 0.00352 

GO:0010389 regulation of G2/M transition of mitotic cell cycle 12 7 2.38 0.0037 

GO:0051726 regulation of cell cycle 132 41 26.18 0.00391 

GO:0048438 floral whorl development 126 31 24.99 0.00399 

GO:0051225 spindle assembly 15 8 2.97 0.004 

GO:0016132 brassinosteroid biosynthetic process 31 13 6.15 0.00403 

GO:0000226 microtubule cytoskeleton organization 106 41 21.02 0.00593 

GO:0030245 cellulose catabolic process 19 9 3.77 0.00625 

GO:0009157 deoxyribonucleoside monophosphate biosynthetic process 5 4 0.99 0.0065 

GO:0042814 monopolar cell growth 5 4 0.99 0.0065 

GO:0048544 recognition of pollen 66 22 13.09 0.00681 

GO:0009147 pyrimidine nucleoside triphosphate metabolic process 14 5 2.78 0.00779 

GO:0016311 dephosphorylation 293 53 58.11 0.00904 

GO:0006545 glycine biosynthetic process 8 5 1.59 0.01001 

GO:0009664 plant-type cell wall organization 144 37 28.56 0.01011 

GO:0006032 chitin catabolic process 14 7 2.78 0.01105 

GO:0009684 indoleacetic acid biosynthetic process 11 6 2.18 0.01115 

GO:0009617 response to bacterium 141 36 27.96 0.01177 

GO:0009834 plant-type secondary cell wall biogenesis 24 10 4.76 0.01184 

GO:0005975 carbohydrate metabolic process 1101 271 218.34 0.01201 

GO:0000911 cytokinesis by cell plate formation 55 19 10.91 0.01315 

GO:0006084 acetyl-CoA metabolic process 34 14 6.74 0.01353 
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Figure C1. Gene set enrichment analysis (GSEA) of molecular function across differentially expressed genes (DEGs) identified 

in sequential wound-healing time point comparisons. Together, time point comparison panels represent a union parametric analysis 

of gene set enrichment (PAGE) of molecular function (MF) categorized gene ontology (GO) terms. Nodes represent gene sets and size 

represent ranges from 5-495 genes, and edges show overlapping genes between sets, with width representing ranges from 5-269 genes. 

Blue sets are down-regulated, red are up-regulated, and grey node denote terms that were not detected as significantly differentially 

regulated (i.e. enriched) at that time point comparison. Labels denote assigned node numbers that correspond to Table C2 with 

associated GO ID, GO term and regulation overview. 
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Table C2. Summary of gene ontology information represented in molecular 

function gene set enrichment analysis plot and change in terms over time. 

   
Time point comparison 
(days post-wounding) 

Node GO ID GO Term 0-0.5 0.5-1 1-2 2-3 

1 GO:0003677 DNA binding - ↓ ↑ - 

2 GO:0003682 chromatin binding - ↓ - - 

3 GO:0000166 nucleotide binding - ↑ ↓ - 

4 GO:0005524 ATP binding ↓ - ↓ - 

5 GO:0016887 ATPase activity - - - ↑ 

6 GO:0003700 transcription factor activity, sequence-
specific DNA binding 

↓ - - - 

7 GO:0016740 transferase activity - ↓ - ↑ 

8 GO:0016757 transferase activity, transferring 
glycosyl groups 

- - - ↑ 

9 GO:0016491 oxidoreductase activity - ↓ - ↑ 

10 GO:0046872 metal ion binding - ↓ - ↑ 

11 GO:0045735 nutrient reservoir activity - - - ↑ 

12 GO:0016874 ligase activity ↑ ↓ - - 

13 GO:0003674 molecular_function - ↑ - - 

14 GO:0004672 protein kinase activity - - - ↑ 

15 GO:0016746 transferase activity, transferring acyl 
groups 

- - - ↑ 

16 GO:0008270 zinc ion binding - - - ↑ 

17 GO:0016798 hydrolase activity, acting on glycosyl 
bonds 

- - - ↓ 

18 GO:0042803 protein homodimerization activity - ↓ - - 

19 GO:0046982 protein heterodimerization activity ↑ ↓ ↑ ↓ 

20 GO:0003723 RNA binding ↑ ↓ ↓ ↓ 

21 GO:0003824 catalytic activity ↑ ↓ - - 

22 GO:0016853 isomerase activity ↑ - - - 

23 GO:0003924 GTPase activity - ↑ ↓ ↓ 

24 GO:0005525 GTP binding - ↑ ↓ ↓ 

25 GO:0020037 heme binding - - - ↑ 

26 GO:0003735 structural constituent of ribosome ↑ ↓ ↓ ↓ 

27 GO:0016779 nucleotidyltransferase activity ↓ - - - 

28 GO:0009055 electron carrier activity - ↑ - - 

29 GO:0004497 monooxygenase activity - ↓ - ↑ 

30 GO:0005506 iron ion binding - ↓ - ↑ 

31 GO:0016705 oxidoreductase activity, acting on 
paired donors, with incorporation or 
reduction of molecular oxygen 

- ↓ - ↑ 

32 GO:0003779 actin binding - - ↓ - 

33 GO:0051287 NAD binding ↑ - - - 

34 GO:0016772 transferase activity, transferring 
phosphorus-containing groups 

- - - ↑ 

35 GO:0003676 nucleic acid binding - ↓ - - 
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36 GO:0008171 O-methyltransferase activity ↑ - - ↑ 

37 GO:0004674 protein serine/threonine kinase activity - - - ↑ 

38 GO:0005199 structural constituent of cell wall - ↑ - - 

39 GO:0016747 transferase activity, transferring acyl 
groups other than amino-acyl groups 

- - ↑ ↑ 

40 GO:0000287 magnesium ion binding ↑ ↓ - - 

41 GO:0016616 oxidoreductase activity, acting on the 
CH-OH group of donors, NAD or NADP 
as acceptor 

↑ - - - 

42 GO:0015035 protein disulfide oxidoreductase 
activity 

- ↑ - - 

43 GO:0004601 peroxidase activity - - - ↑ 

44 GO:0005509 calcium ion binding ↓ - - ↑ 

45 GO:0008017 microtubule binding - ↑ ↓ ↓ 

46 GO:0008061 chitin binding - ↑ ↓ - 

47 GO:0004722 protein serine/threonine phosphatase 
activity 

↓ - - - 

48 GO:0052716 hydroquinone:oxygen oxidoreductase 
activity 

- ↓ - ↑ 

49 GO:0008308 voltage-gated anion channel activity ↑ - - - 

50 GO:0003755 peptidyl-prolyl cis-trans isomerase 
activity 

↑ ↓ - - 

51 GO:0030145 manganese ion binding - - ↑ ↑ 

52 GO:0030570 pectate lyase activity ↑ - - ↓ 

53 GO:0005200 structural constituent of cytoskeleton ↑ ↑ ↓ - 

54 GO:0008810 cellulase activity - - - ↓ 

55 GO:0003777 microtubule motor activity - ↑ ↓ ↓ 

56 GO:0004386 helicase activity ↑ ↓ - - 

57 GO:0004721 phosphoprotein phosphatase activity ↓ - - - 

58 GO:0043169 cation binding ↓ - - - 

59 GO:0004568 chitinase activity - - - ↓ 

60 GO:0031072 heat shock protein binding ↓ - - - 

61 GO:0010333 terpene synthase activity - - - ↑ 

62 GO:0051082 unfolded protein binding ↓ - - - 

63 GO:0003774 motor activity - ↑ ↓ ↓ 

64 GO:0003678 DNA helicase activity - ↓ - ↓ 

65 GO:0016168 chlorophyll binding ↓ - - - 

66 GO:0004866 endopeptidase inhibitor activity - - - ↓ 

67 GO:0008970 phosphatidylcholine 1-acylhydrolase 
activity 

- - - ↑ 
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Figure C2. Gene set enrichment analysis (GSEA) of cellular components across differentially expressed genes (DEGs) 

identified in sequential wound-healing time point comparisons. Together, time point comparison panels represent a union 

parametric analysis of gene set enrichment (PAGE) of cellular component (CC) categorized gene ontology (GO) terms. Nodes 

represent gene sets and size represent ranges from 5-1220 genes, and edges show overlapping genes between sets, with width 

representing ranges from 5-1150 genes. Blue sets are down-regulated, red are up-regulated, and grey node denote terms that were not 

detected as significantly differentially regulated (i.e. enriched) at that time point comparison. Labels denote assigned node numbers 

that correspond to Table C3 with associated GO ID, GO term and regulation overview. 
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Table C3. Summary of gene ontology information represented in cellular 

component gene set enrichment analysis plot and change in terms over time. 

   
Time point comparison 
(days post-wounding) 

Node GO ID GO Term 0-0.5 0.5-1 1-2 2-3 

1 GO:0016020 membrane ↓ - - ↑ 

2 GO:0016021 integral component of membrane ↓ - - ↑ 

3 GO:0005737 cytoplasm - - ↓ - 

4 GO:0005634 nucleus - ↓ - ↓ 

5 GO:0005794 Golgi apparatus - - - ↑ 

6 GO:0005886 plasma membrane - ↑ - - 

7 GO:0009507 chloroplast ↓ ↓ - - 

8 GO:0005829 cytosol - - ↓ ↓ 

9 GO:0005739 mitochondrion - ↓ ↓ ↓ 

10 GO:0005773 vacuole - - ↓ - 

11 GO:0005802 trans-Golgi network ↑ - - - 

12 GO:0009504 cell plate - ↑ ↓ - 

13 GO:0005840 ribosome ↑ ↓ ↓ ↓ 

14 GO:0005622 intracellular ↑ ↓ ↓ ↓ 

15 GO:0005730 nucleolus ↑ ↓ ↓ ↓ 

16 GO:0030529 intracellular ribonucleoprotein complex ↑ ↓ ↓ ↓ 

17 GO:0005576 extracellular region - ↑ ↑ - 

18 GO:0009579 thylakoid ↓ - - - 

19 GO:0000786 nucleosome ↑ ↓ ↑ ↓ 

20 GO:0005694 chromosome ↑ ↓ ↑ ↓ 

21 GO:0009535 chloroplast thylakoid membrane ↓ - - - 

22 GO:0009941 chloroplast envelope - ↓ - - 

23 GO:0005856 cytoskeleton ↑ ↑ ↓ - 

24 GO:0005618 cell wall - ↑ - ↓ 

25 GO:0009523 photosystem II ↓ - - - 

26 GO:0005743 mitochondrial inner membrane - - ↓ - 

27 GO:0009506 plasmodesma - - ↓ - 

28 GO:0009524 phragmoplast - ↑ ↓ - 

29 GO:0005874 microtubule ↑ ↑ ↓ ↓ 

30 GO:0015935 small ribosomal subunit ↑ ↓ ↓ ↓ 

31 GO:0005759 mitochondrial matrix - ↓ - - 

32 GO:0031225 anchored component of membrane - ↑ - - 

33 GO:0005871 kinesin complex - ↑ ↓ - 

34 GO:0045298 tubulin complex - ↑ ↓ - 

35 GO:0042555 MCM complex ↑ ↓ - ↓ 

36 GO:0005819 spindle - ↑ ↓ ↓ 

37 GO:0009522 photosystem I ↓ - - - 

38 GO:0005884 actin filament ↓ - - - 
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Figure C3. Transcriptional changes of known and putative genes encoding enzymes 

for suberin production over the wound-healing time course.  A. Starch and sucrose 

degradation. B. Carbohydrate metabolism. C. Shikimate pathway. D. Phenylpropanoid 

pathway and SPPD assembly. E. Tricarboxylic acid cycle. F. Fatty acid biosynthesis. G. 

Aliphatic metabolism and SPAD assembly. Mean log2FPKM values of n=3 biological 

replicates are presented for each time point. This extensive list of genes was used to 

screen candidates for further targeted analysis (Figure 3.3). A maximum of three genes 

demonstrating the highest expression levels and/or wound-induction profiles were 

selected, where possible. Numbers correspond to pathway steps and further gene 

information that is available in Table C4.  
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Table C4. Suberin-related biosynthetic and assembly gene and encoded enzyme list. Numbers, PGSC gene IDs and annotated 

functional names are associated with Figure 3.3 and Figure C3. Bolded numbers correspond to up to three selected gene IDs per 

functional name used to generate heatmaps for main pathway branch figures (Figure 3.3A-I). Known or predicted functional names 

were used for consistency and simplicity relative to given PGSC annotations. *Note: fumarase (step 63) is included as a step in the 

pathway, but its sequence did not have a corresponding PGSC gene ID. 

Group Name Number 
Known or predicted enzyme 
functional name 

PGSC gene ID PGSC annotated functional name 

Starch and sucrose degradation 
 

1.1 Glucan/water dikinase PGSC0003DMG400016613 Glucan/water dikinase 

  2.1 Isoamylase PGSC0003DMG400000954 Isoamylase isoform 2 

  2.2 Isoamylase PGSC0003DMG402007274 Isoamylase isoform 3 

  2.3 Isoamylase PGSC0003DMG400020699 Isoamylase isoform 1 

  2.4 Isoamylase PGSC0003DMG400030253 Isoamylase isoform 1 

  2.5 Isoamylase PGSC0003DMG401007274 Isoamylase isoform 3 

  3.1 Disproportionating enzyme PGSC0003DMG400016589 Glucosyl transferase (4-alpha-
glucanotransferase) 

  4.1 Alpha amylase PGSC0003DMG400020603 Alpha amylase 

  4.2 Alpha-amylase PGSC0003DMG401017626 Alpha-amylase 

  4.3 Alpha-amylase PGSC0003DMG400009891 Alpha-amylase 

  4.4 Alpha-amylase PGSC0003DMG400007974 Alpha-amylase 

  5.1 Beta-amylase PGSC0003DMG400001549 Beta-amylase 

  5.2 Beta-amylase PGSC0003DMG400000169 Beta-amylase 

  5.3 Beta-amylase PGSC0003DMG400012129 Beta-amylase PCT-BMYI 

  5.4 Beta-amylase PGSC0003DMG400024145 Beta-amylase 

  5.5 Beta-amylase PGSC0003DMG400001855 Beta-amylase PCT-BMYI 

  5.6 Beta-amylase PGSC0003DMG402020509 Beta-amylase PCT-BMYI 

  5.7 Beta-amylase PGSC0003DMG400026199 Beta-amylase 
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  5.8 Beta-amylase PGSC0003DMG400026198 Beta-amylase 

  5.9 Beta-amylase PGSC0003DMG400026166 Beta-amylase 

  6.1 Alpha-glucosidase PGSC0003DMG400014540 Alpha-glucosidase 

  6.2 Alpha-glucosidase PGSC0003DMG400005353 Alpha-glucosidase 

  6.3 Alpha-glucosidase PGSC0003DMG400016018 Alpha-glucosidase 

  6.4 Alpha-glucosidase PGSC0003DMG400015881 Alpha-glucosidase 

  7.1 Hexokinase PGSC0003DMG400016521 Hexokinase 

  7.2 Hexokinase PGSC0003DMG400002525 Hexokinase 7 

  7.3 Hexokinase PGSC0003DMG400009861 Plastidic hexokinase 

  7.4 Hexokinase PGSC0003DMG400013187 Hexokinase 6 

  7.5 Hexokinase PGSC0003DMG400030624 Hexokinase 

  7.6 Hexokinase PGSC0003DMG400000295 Hexokinase 5 

  8.1 Alpha-1,4 glucan 
phosphorylase 

PGSC0003DMG400007782 Alpha-1,4 glucan phosphorylase L-1 isozyme, 
chloroplastic/amyloplastic 

  8.2 Alpha-1,4 glucan 
phosphorylase 

PGSC0003DMG400002479 Alpha-1,4 glucan phosphorylase L-1 isozyme, 
chloroplastic/amyloplastic 

  8.3 Alpha-1,4 glucan 
phosphorylase 

PGSC0003DMG400003495 Alpha-1,4 glucan phosphorylase L-1 isozyme, 
chloroplastic/amyloplastic 

  9.1 Phosphoglucomutase PGSC0003DMG400001912 Phosphoglucomutase 

  10.1 Sucrose synthase PGSC0003DMG400002895 Sucrose synthase 

  10.2 Sucrose synthase PGSC0003DMG400013546 Sucrose synthase 2 

  10.3 Sucrose synthase PGSC0003DMG400006672 Sucrose synthase 

  10.4 Sucrose synthase PGSC0003DMG400031046 Sucrose synthase 

  10.5 Sucrose synthase PGSC0003DMG400016730 Sucrose synthase 

  11.1 UTP-glucose-1-phosphate 
uridylyltransferase 

PGSC0003DMG401013333 UTP-glucose-1-phosphate uridylyltransferase 

Carbohydrate Metabolism  
12.1 Glucose-6-phosphate PGSC0003DMG400012910 Glucose-6-phosphate isomerase 
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isomerase 

  12.2 Glucose-6-phosphate 
isomerase 

PGSC0003DMG400030128 Glucose-6-phosphate isomerase 

  12.3 Glucose-6-phosphate 
isomerase 

PGSC0003DMG400009848 Glucose-6-phosphate isomerase 

  13.1 Glucose-6-phosphate 1-
dehydrogenase 

PGSC0003DMG400020269 Glucose-6-phosphate 1-dehydrogenase, 
cytoplasmic isoform 

  13.2 Glucose-6-phosphate 1-
dehydrogenase 

PGSC0003DMG400010802 Glucose-6-phosphate 1-dehydrogenase 

  13.3 Glucose-6-phosphate 1-
dehydrogenase 

PGSC0003DMG400002750 Glucose-6-phosphate 1-dehydrogenase 

  13.4 Glucose-6-phosphate 1-
dehydrogenase 

PGSC0003DMG400017394 Glucose-6-phosphate 1-dehydrogenase, 
chloroplastic 

  14.1 6-phosphogluconolactonase PGSC0003DMG400018511 6-phosphogluconolactonase 

  14.2 6-phosphogluconolactonase PGSC0003DMG402026150 6-phosphogluconolactonase 

  14.3 6-phosphogluconolactonase PGSC0003DMG401026150 6-phosphogluconolactonase 

  15.1 6-phosphogluconate 
dehydrogenase 

PGSC0003DMG400001932 6-phosphogluconate dehydrogenase, 
decarboxylating 

  15.2 6-phosphogluconate 
dehydrogenase 

PGSC0003DMG400043373 6-phosphogluconate dehydrogenase, 
decarboxylating 

  15.3 6-phosphogluconate 
dehydrogenase 

PGSC0003DMG400025121 6-phosphogluconate dehydrogenase, 
decarboxylating 

  16.1 Ribose-5-phosphate 
isomerase 

PGSC0003DMG400019448 Ribose-5-phosphate isomerase 

  16.2 Ribose-5-phosphate 
isomerase 

PGSC0003DMG400030509 Ribose-5-phosphate isomerase 

  16.3 Ribose-5-phosphate 
isomerase 

PGSC0003DMG400005961 Ribose-5-phosphate isomerase 

  17.1 Ribulose-phosphate 3-
epimerase 

PGSC0003DMG400023059 Ribulose-phosphate 3-epimerase, 
cytoplasmic isoform 
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  17.2 Ribulose-phosphate 3-
epimerase 

PGSC0003DMG400019521 Ribulose-phosphate 3-epimerase, 
chloroplastic 

  17.3 Ribulose-phosphate 3-
epimerase 

PGSC0003DMG400023318 Conserved gene of unknown function 

  18.1 Transketolase PGSC0003DMG400007019 Transketolase 1 

  18.2 Transketolase PGSC0003DMG400022088 Transketolase, chloroplastic 

  18.3 Transketolase PGSC0003DMG400014756 Transketolase 

  19.1 Phosphofructokinase PGSC0003DMG400016726 Pyrophosphate--fructose 6-phosphate 1-
phosphotransferase subunit beta 

  19.2 Phosphofructokinase PGSC0003DMG400010007 Pyrophosphate--fructose 6-phosphate 1-
phosphotransferase subunit alpha 

  19.3 Phosphofructokinase PGSC0003DMG400025455 Phosphofructokinase 

  19.4 Phosphofructokinase PGSC0003DMG400017413 Phosphofructokinase 

  19.5 Phosphofructokinase PGSC0003DMG400019734 Phosphofructokinase 

  19.6 Phosphofructokinase PGSC0003DMG400027554 Phosphofructokinase 

  19.7 Phosphofructokinase PGSC0003DMG400045386 Phosphofructokinase 

  20.1 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400002675 Fructose-bisphosphate aldolase 

  20.2 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400030565 Fructose-bisphosphate aldolase 

  20.3 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400028261 Fructose-bisphosphate aldolase 

  20.4 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400003548 Fructose-bisphosphate aldolase 

  20.5 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400012012 Fructose-bisphosphate aldolase 

  20.6 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400022263 Fructose-bisphosphate aldolase 

  20.7 Fructose-bisphosphate 
aldolase 

PGSC0003DMG400003123 Fructose-bisphosphate aldolase 
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  21.1 Triosephosphate isomerase PGSC0003DMG400027745 Triosephosphate isomerase 

  21.2 Triosephosphate isomerase PGSC0003DMG400001595 Triosephosphate isomerase, chloroplastic 

  21.3 Triosephosphate isomerase PGSC0003DMG400004436 Triosephosphate isomerase, chloroplastic 

  22.1 Glyceraldehyde 3-phosphate 
dehydrogenase 

PGSC0003DMG400017433 Glyceraldehyde 3-phosphate dehydrogenase 

  22.2 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400011246 Glyceraldehyde-3-phosphate dehydrogenase 

  22.3 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400015253 Glyceraldehyde-3-phosphate dehydrogenase 

  22.4 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400011132 NADP-dependent glyceraldehyde-3-
phosphate dehydrogenase 

  22.5 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400009992 Glyceraldehyde-3-phosphate dehydrogenase 
B subunit 

  22.6 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400011530 Glyceraldehyde-3-phosphate dehydrogenase 
A, chloroplastic 

  22.7 Glyceraldehyde 3-phosphate 
dehydrogenase 

PGSC0003DMG400017434 Glyceraldehyde 3-phosphate dehydrogenase 

  22.8 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400036713 Glyceraldehyde-3-phosphate dehydrogenase 

  22.9 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400029406 Glyceraldehyde-3-phosphate dehydrogenase 
B subunit 

  22.10 Glyceraldehyde-3-phosphate 
dehydrogenase 

PGSC0003DMG400004130 Glyceraldehyde-3-phosphate dehydrogenase 
C subunit 

  23.1 Phosphoglycerate kinase PGSC0003DMG400022119 Phosphoglycerate kinase 

  23.2 Phosphoglycerate kinase PGSC0003DMG400022118 Phosphoglycerate kinase 

  23.3 Phosphoglycerate kinase PGSC0003DMG400001147 Conserved gene of unknown function 

  23.4 Phosphoglycerate kinase PGSC0003DMG400003882 Phosphoglycerate kinase 

  24.1 Phosphoglycerate mutase PGSC0003DMG400000935 Phosphoglycerate mutase 

  25.1 Enolase PGSC0003DMG402002721 Enolase 



230 

 

  25.2 Enolase PGSC0003DMG400011044 Enolase 

  25.3 Enolase PGSC0003DMG400030344 Enolase 

  26.1 Pyruvate kinase PGSC0003DMG400025298 Pyruvate kinase, cytosolic isozyme 

  26.2 Pyruvate kinase PGSC0003DMG400028177 Pyruvate kinase 

  26.3 Pyruvate kinase PGSC0003DMG400006590 Pyruvate kinase 

  26.4 Pyruvate kinase PGSC0003DMG400010913 Pyruvate kinase, cytosolic isozyme 

  26.5 Pyruvate kinase PGSC0003DMG400024220 Pyruvate kinase isozyme G, chloroplastic 

  26.6 Pyruvate kinase PGSC0003DMG400002690 Pyruvate kinase 

  26.7 Pyruvate kinase PGSC0003DMG400027321 Pyruvate kinase 

  26.8 Pyruvate kinase PGSC0003DMG400025734 Pyruvate kinase 

  26.9 Pyruvate kinase PGSC0003DMG400019605 Pyruvate kinase family protein 

  26.10 Pyruvate kinase PGSC0003DMG400027347 Pyruvate kinase 

  26.11 Pyruvate kinase PGSC0003DMG400027346 Pyruvate kinase 

Shikimate Pathway  
27.1 Phospho-2-dehydro-3-

deoxyheptonate aldolase 1 
PGSC0003DMG400030812 Phospho-2-dehydro-3-deoxyheptonate 

aldolase 1, chloroplastic 
  27.2 Phospho-2-dehydro-3-

deoxyheptonate aldolase 2 
PGSC0003DMG402016226 Phospho-2-dehydro-3-deoxyheptonate 

aldolase 2, chloroplastic 
  27.3 Phospho-2-dehydro-3-

deoxyheptonate aldolase 
PGSC0003DMG400012549 2-dehydro-3-deoxyphosphoheptonate 

aldolase/ 3-deoxy-d-arabino-heptulosonate 
7-phosphate synthetase 

  27.4 Phospho-2-dehydro-3-
deoxyheptonate aldolase 2 

PGSC0003DMG401016226 Phospho-2-dehydro-3-deoxyheptonate 
aldolase 2, chloroplastic 

  28.1 Dehydroquinate synthase PGSC0003DMG400003582 Dehydroquinate synthase 

  29.1 3-dehydroquinate 
dehydratase / shikimate 
dehydrogenase 

PGSC0003DMG400005284 3-dehydroquinate dehydratase / shikimate 
dehydrogenase isoform 2 

  30.1 Shikimate kinase PGSC0003DMG400016553 Shikimate kinase, chloroplastic 

  30.2 Shikimate kinase PGSC0003DMG401020240 Shikimate kinase 
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  31.1 3-phosphoshikimate 1-
carboxyvinyltransferase 

PGSC0003DMG400026006 3-phosphoshikimate 1-
carboxyvinyltransferase, chloroplastic 

  31.2 3-phosphoshikimate 1-
carboxyvinyltransferase 

PGSC0003DMG400007018 3-phosphoshikimate 1-
carboxyvinyltransferase, chloroplastic 

  32.1 Chorismate synthase 1 PGSC0003DMG400024392 Chorismate synthase 1, chloroplastic 

  32.2 Chorismate synthase 2 PGSC0003DMG400016016 Chorismate synthase 2, chloroplastic 

  33.1 Chorismate mutase 1 PGSC0003DMG400001438 Chorismate mutase 1 

  33.2 Chorismate mutase PGSC0003DMG400009237 Chorimate mutase 

  34.1 Aspartate aminotransferase PGSC0003DMG400027919 Aspartate aminotransferase 

  35.1 Glutamine synthetase PGSC0003DMG400013235 Glutamine synthetase 

  35.2 Glutamine synthetase PGSC0003DMG400023620 Glutamine synthetase 

  35.3 Glutamine synthetase PGSC0003DMG400028276 Glutamate-ammonia ligase 

  35.4 Glutamine synthetase PGSC0003DMG400014592 Glutamine synthetase 

  35.5 Glutamine synthetase PGSC0003DMG400004355 Glutamine synthetase 

  35.6 Glutamine synthetase PGSC0003DMG400033059 Glutamine-dependent NAD(+) synthetase 

  35.7 Glutamine synthetase PGSC0003DMG403009595 Glutamate-ammonia ligase 

  35.8 Glutamine synthetase PGSC0003DMG400028171 Glutamate-ammonia ligase 

  35.9 Glutamine synthetase PGSC0003DMG401019012 Glutamate-ammonia ligase 

  35.10 Glutamine synthetase PGSC0003DMG400014115 Glutamine synthetase 

  35.11 Glutamine synthetase PGSC0003DMG400014454 Glutamine synthetase 

  35.12 Glutamine synthetase PGSC0003DMG400017703 Glutamine synthetase 

  36.1 Ferredoxin-dependent 
glutamate synthase 1 

PGSC0003DMG400009698 Ferredoxin-dependent glutamate synthase 1 

  37.1 Arogenate dehydratase PGSC0003DMG400007122 Arogenate dehydratase 

  37.2 Arogenate dehydratase 2 PGSC0003DMG400025374 Arogenate dehydratase 2 

  37.3 Arogenate dehydratase 3 PGSC0003DMG400026536 Arogenate dehydratase 3 

  38.1 Arogenate dehydrogenase PGSC0003DMG400030683 Arogenate dehydrogenase 

  38.2 Arogenate dehydrogenase PGSC0003DMG400020334 Prephenate dehydrogenase 
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  38.3 Arogenate dehydrogenase PGSC0003DMG400042196 Prephenate dehydrogenase 

Phenylpropanoid Metabolism  
39.1 Tyrosine Decarboxylase PGSC0003DMG400024278 Phenylacetaldehyde synthase 

  39.2 Tyrosine Decarboxylase PGSC0003DMG400014863 Phenylacetaldehyde synthase 

  40.1 Phenylalanine ammonia-
lyase 

PGSC0003DMG400023458 Phenylalanine ammonia-lyase 

  40.2 Phenylalanine ammonia-
lyase 

PGSC0003DMG400031365 Phenylalanine ammonia-lyase 

  40.3 Phenylalanine ammonia-
lyase 

PGSC0003DMG402021564 Phenylalanine ammonia-lyase 

  40.4 Phenylalanine ammonia-
lyase 

PGSC0003DMG401021549 Phenylalanine ammonia-lyase 

  40.5 Phenylalanine ammonia-
lyase 1 

PGSC0003DMG400031457 Phenylalanine ammonia-lyase 1 

  40.6 Phenylalanine ammonia-
lyase 

PGSC0003DMG402021549 Phenylalanine ammonia-lyase 

  40.7 Phenylalanine ammonia-
lyase 

PGSC0003DMG401021564 Phenylalanine ammonia-lyase 

  40.8 Phenylalanine ammonia-
lyase 

PGSC0003DMG400019386 Phenylalanine ammonia-lyase 

  40.9 Phenylalanine ammonia-
lyase 

PGSC0003DMG400005492 Phenylalanine ammonia-lyase 

  41.1 Cinnamic acid 4-hydroxylase PGSC0003DMG401030469 Cinnamic acid 4-hydroxylase 

  42.1 4-coumarate-CoA ligase PGSC0003DMG400014223 4-coumarate-CoA ligase 2 

  43.1 p-Coumarate 3-hydroxylase PGSC0003DMG400003289 P-coumarate 3-hydroxylase 

  44.1 Hydroxycinnamoyl 
transferase 

PGSC0003DMG400014152 Hydroxycinnamoyl transferase 

  45.1 p-Coumaroyl 
quinate/shikimate 3'-
hydroxylase 

PGSC0003DMG400007178 P-coumaroyl quinate/shikimate 3'-
hydroxylase 
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  45.2 p-Coumaroyl 
quinate/shikimate 3'-
hydroxylase 

PGSC0003DMG401014734 P-coumaroyl quinate/shikimate 3'-
hydroxylase 

  45.3 p-Coumaroyl 
quinate/shikimate 3'-
hydroxylase 

PGSC0003DMG400007180 P-coumaroyl quinate/shikimate 3'-
hydroxylase 

  45.4 p-Coumaroyl 
quinate/shikimate 3'-
hydroxylase 

PGSC0003DMG400029243 P-coumaroyl quinate/shikimate 3'-
hydroxylase 

  46.1 Caffeic acid O-
methyltransferase 

PGSC0003DMG400000560 Catechol O-methyltransferase 

  46.2 Caffeic acid O-
methyltransferase 

PGSC0003DMG400007863 Caffeic acid 3-O-methyltransferase 

  46.3 Caffeic acid O-
methyltransferase II 

PGSC0003DMG400017552 Caffeic acid O-methyltransferase II 

  47.1 Caffeoyl-CoA O-
methyltransferase 5 

PGSC0003DMG400006214 Caffeoyl-CoA O-methyltransferase 5 

  47.2 Caffeoyl-CoA O-
methyltransferase 6 

PGSC0003DMG400025882 Caffeoyl-CoA O-methyltransferase 6 

  47.3 Caffeoyl-CoA O-
methyltransferase 

PGSC0003DMG400018688 O-methyltransferase 

  47.4 Caffeoyl-CoA O-
methyltransferase 6 

PGSC0003DMG400030131 Caffeoyl-CoA O-methyltransferase 6 

  47.5 Caffeoyl-CoA O-
methyltransferase 

PGSC0003DMG401026272 O-methyltransferase family 3 protein 

  48.1 Ferulate-5-hydroxylase PGSC0003DMG400003546 Ferulate-5-hydroxylase 

  49.1 Cinnamoyl CoA reductase PGSC0003DMG400019825 Cinnamoyl CoA reductase 

  50.1 Cinnamyl alcohol 
dehydrogenase 

PGSC0003DMG401025767 Cinnamyl alcohol dehydrogenase 

  50.2 Cinnamyl alcohol PGSC0003DMG400012919 Cinnamyl alcohol dehydrogenase 
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dehydrogenase 

  50.3 Cinnamyl alcohol 
dehydrogenase 

PGSC0003DMG400005001 Alcohol dehydrogenase 

  50.4 Cinnamyl alcohol 
dehydrogenase 

PGSC0003DMG400010305 Cinnamyl alcohol dehydrogenase 

  50.5 Cinnamyl alcohol 
dehydrogenase 

PGSC0003DMG400018446 Cinnamyl alcohol dehydrogenase 

  51.1 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014778 Tyramine hydroxycinnamoyl transferase 

  51.2 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014770 N-hydroxycinnamoyl-CoA:tyramine N-
hydroxycinnamoyl transferase THT7-8 

  51.3 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014772 Tyramine hydroxycinnamoyl transferase 

  51.4 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014774 N-hydroxycinnamoyl-CoA:tyramine N-
hydroxycinnamoyl transferase THT7-1 

  51.5 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014776 Tyramine hydroxycinnamoyl transferase 

  51.6 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014777 Tyramine hydroxycinnamoyl transferase 

  51.7 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400037933 N-hydroxycinnamoyl-CoA:tyramine N-
hydroxycinnamoyl transferase THT1-3 

  51.8 Tyramine hydroxycinnamoyl 
transferase 

PGSC0003DMG400014771 Tyramine hydroxycinnamoyl transferase 

Phenolic Suberin Assembly  
52.1 NADPH-dependent oxidase PGSC0003DMG400014168 Respiratory burst oxidase homolog protein C 

  52.2 NADPH-dependent oxidase PGSC0003DMG400012316 Respiratory burst oxidase homolog protein A 

  52.3 NADPH-dependent oxidase PGSC0003DMG400025890 NADPH oxidoreductase 

  52.4 NADPH-dependent oxidase PGSC0003DMG400024754 Respiratory burst oxidase homolog protein B 

  52.5 NADPH-dependent oxidase PGSC0003DMG400013550 Respiratory burst oxidase 

  52.6 NADPH-dependent oxidase PGSC0003DMG400025701 Respiratory burst oxidase 
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  52.7 NADPH-dependent oxidase PGSC0003DMG400030390 NOX1 

  52.8 NADPH-dependent oxidase PGSC0003DMG400015543 NOX1 

  53.1 Superoxide dismutase PGSC0003DMG400010660 Superoxide dismutase [Cu-Zn] 2 

  53.2 Superoxide dismutase PGSC0003DMG400023086 Superoxide dismutase [Cu-Zn] 

  53.3 Superoxide dismutase PGSC0003DMG400027577 Superoxide dismutase 

  53.4 Superoxide dismutase PGSC0003DMG400000417 Superoxide dismutase [Cu-Zn] 

  53.5 Superoxide dismutase PGSC0003DMG400005247 Superoxide dismutase 

  53.6 Superoxide dismutase PGSC0003DMG400017948 Superoxide dismutase 

  54.1 Anionic peroxidase PGSC0003DMG400022342 Suberization-associated anionic peroxidase 

  54.2 Anionic peroxidase PGSC0003DMG400022341 Suberization-associated anionic peroxidase 2 

  54.3 Anionic peroxidase PGSC0003DMG400030430 Anionic peroxidase swpa7 

TCA Cycle  
55.1 Pyruvate dehydrogenase E1 

alpha 
PGSC0003DMG402013561 Pyruvate dehydrogenase E1 alpha subunit 

  55.2 Pyruvate dehydrogenase E2 PGSC0003DMG400018735 Dihydrolipoamide acetyltransferase 
component of pyruvate dehydrogenase 

  55.3 Pyruvate dehydrogenase E3 PGSC0003DMG400002777 Dihydrolipoyl dehydrogenase 

  55.4 Pyruvate dehydrogenase E1 
beta 

PGSC0003DMG400031370 Pyruvate dehydrogenase E1 beta subunit 

  55.5 Pyruvate dehydrogenase E2 PGSC0003DMG400009219 Pyruvate dehydrogenase E2 subunit 

  55.6 Pyruvate dehydrogenase E2 PGSC0003DMG400012966 Dihydrolipoyllysine-residue acetyltransferase 
component of pyruvate dehydrogenase 

  55.7 Pyruvate dehydrogenase E1 
alpha 

PGSC0003DMG400002921 Pyruvate dehydrogenase E1 alpha subunit 

  55.8 Pyruvate dehydrogenase E1 
beta 

PGSC0003DMG400007488 Pyruvate dehydrogenase E1 beta subunit 

  55.9 Pyruvate dehydrogenase PGSC0003DMG401004334 Pyruvate dehydrogenase 

  55.10 Pyruvate dehydrogenase PGSC0003DMG400026943 Pyruvate dehydrogenase 

  55.11 Pyruvate dehydrogenase PGSC0003DMG400025407 Pyruvate dehydrogenase 
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  56.1 Phosphoenolpyruvate 
carboxylase 

PGSC0003DMG400007466 Phosphoenolpyruvate carboxylase 

  56.2 Phosphoenolpyruvate 
carboxylase 

PGSC0003DMG400020422 Phosphoenolpyruvate carboxylase 

  56.3 Phosphoenolpyruvate 
carboxylase 

PGSC0003DMG400021264 Phosphoenolpyruvate carboxylase 

  56.4 Phosphoenolpyruvate 
carboxylase 

PGSC0003DMG400015385 Phosphoenolpyruvate carboxylase 

  57.1 Citrate synthase PGSC0003DMG403018293 ATP-citrate synthase 

  57.2 Citrate synthase PGSC0003DMG400028982 Citrate synthase (mitochondrial) 

  57.3 Citrate synthase PGSC0003DMG400013485 ATP-citrate synthase 

  57.4 Citrate synthase PGSC0003DMG400007797 Citrate synthase (peroxisomal) 

  57.5 Citrate synthase PGSC0003DMG400025587 ATP-citrate synthase 

  57.6 Citrate synthase PGSC0003DMG400017338 Citrate synthase (peroxisomal) 

  57.7 Citrate synthase PGSC0003DMG400029179 Gene of unknown function 

  58.1 Aconitase PGSC0003DMG400028951 Aconitase 

  58.2 Aconitase PGSC0003DMG400008740 Aconitase 

  59.1 Isocitrate dehydrogenase PGSC0003DMG400032124 Isocitrate dehydrogenase [NADP] 

  59.2 Isocitrate dehydrogenase PGSC0003DMG400016826 NAD-dependent isocitrate dehydrogenase 

  59.3 Isocitrate dehydrogenase PGSC0003DMG400000481 Isocitrate dehydrogenase [NADP] 

  59.4 Isocitrate dehydrogenase PGSC0003DMG400001525 NAD-dependent isocitrate dehydrogenase 

  59.5 Isocitrate dehydrogenase PGSC0003DMG400013332 Isocitrate dehydrogenase [NADP] 

  60.1 2-Oxoglutarate 
dehydrogenase 

PGSC0003DMG400023519 2-oxoglutarate dehydrogenase 

  60.2 2-Oxoglutarate 
dehydrogenase 

PGSC0003DMG401010423 2-oxo acid dehydrogenase, lipoyl-binding site 

  60.3 2-Oxoglutarate 
dehydrogenase 

PGSC0003DMG400022308 Dihydrolipoamide succinyltransferase 
component of 2-oxoglutarate dehydrogenase 

  60.4 2-Oxoglutarate PGSC0003DMG400027873 Dihydrolipoamide succinyltransferase 
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dehydrogenase component of 2-oxoglutarate dehydrogenase 

  60.5 2-Oxoglutarate 
dehydrogenase 

PGSC0003DMG400027739 2-oxoglutarate dehydrogenase 

  61.1 Succinyl CoA ligase PGSC0003DMG400020149 Succinyl CoA ligase beta subunit 

  62.1 Succinate dehydrogenase PGSC0003DMG400012624 Mitochondrial succinate dehydrogenase iron 
sulfur subunit 

  62.2 Succinate dehydrogenase PGSC0003DMG400014901 Succinate dehydrogenase 

  62.3 Succinate dehydrogenase PGSC0003DMG400024973 Mitochondrial succinate dehydrogenase iron 
sulfur subunit 

  62.4 Succinate dehydrogenase PGSC0003DMG402008334 Succinate dehydrogenase subunit 3 

  62.5 Succinate dehydrogenase PGSC0003DMG400036514 Succinate dehydrogenase 

  62.6 Succinate dehydrogenase PGSC0003DMG400020612 Succinate dehydrogenase 

  63.1 Fumarase*     

  64.1 Malate dehydrogenase PGSC0003DMG400017170 Malate dehydrogenase 

  64.2 Malate dehydrogenase PGSC0003DMG400012395 Malate dehydrogenase 

  64.3 Malate dehydrogenase PGSC0003DMG400019511 NAD-malate dehydrogenase 

  64.4 Malate dehydrogenase PGSC0003DMG400010386 Malate dehydrogenase 

  64.5 Malate dehydrogenase PGSC0003DMG400015379 Malate dehydrogenase 

  64.6 Malate dehydrogenase PGSC0003DMG400031063 Malate dehydrogenase 

  64.7 Malate dehydrogenase PGSC0003DMG400026029 Malate dehydrogenase 

  64.8 Malate dehydrogenase PGSC0003DMG400011570 NAD-malate dehydrogenase 

  64.9 Malate dehydrogenase PGSC0003DMG402025430 NAD-malate dehydrogenase 

Fatty Acid Biosynthesis  
65.1 Citrate lyase PGSC0003DMG400004696 ATP:citrate lyase 

  65.2 Citrate lyase PGSC0003DMG400024016 ATP:citrate lyase 

  65.3 Citrate lyase PGSC0003DMG400027212 ATP:citrate lyase 

  66.1 Acetyl-CoA Carboxylase PGSC0003DMG400016395 Acetyl co-enzyme A carboxylase biotin 
carboxylase subunit 
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  66.2 Acetyl-CoA Carboxylase PGSC0003DMG400020325 Acetyl co-enzyme A carboxylase 
carboxyltransferase alpha subunit 

  66.3 Acetyl-CoA Carboxylase PGSC0003DMG400023955 Biotin carboxyl carrier protein of acetyl-CoA 
carboxylase 

  66.4 Acetyl-CoA Carboxylase PGSC0003DMG400033054 Biotin carboxyl carrier protein subunit 

  66.5 Acetyl-CoA Carboxylase PGSC0003DMG401023454 Biotin carboxylase carrier protein 

  66.6 Acetyl-CoA Carboxylase PGSC0003DMG400000025 Acetyl-coenzyme A carboxylase carboxyl 
transferase alpha 

  66.7 Acetyl-CoA Carboxylase PGSC0003DMG400010806 Acetyl-coenzyme A carboxylase carboxyl 
transferase alpha 

  66.8 Acetyl-CoA Carboxylase PGSC0003DMG400011755 Acetyl-coenzyme A carboxylase carboxyl 
transferase alpha 

  66.9 Acetyl-CoA Carboxylase PGSC0003DMG400016327 Acetyl-coenzyme A carboxylase carboxyl 
transferase alpha 

  67.1 Malonyl-CoA:ACP 
transacylase 

PGSC0003DMG400021362 Acyl-carrier-protein S-malonyltransferase/ 
transferase 

  68.1 Beta-ketoacyl-ACP synthase II PGSC0003DMG400008311 50 kDa ketoavyl-ACP synthase 

  68.2 Beta-ketoacyl-ACP synthase II PGSC0003DMG400013579 Beta-ketoacyl-ACP synthase II 

  68.3 Beta-ketoacyl-ACP synthase II PGSC0003DMG400027322 3-oxoacyl-[acyl-carrier-protein] synthase 

  68.4 Beta-ketoacyl-ACP synthase II PGSC0003DMG400030158 50 kDa ketoavyl-ACP synthase 

  68.5 Beta-ketoacyl-ACP synthase II PGSC0003DMG400022891 Beta-ketoacyl-ACP synthase II 

  68.6 Beta-ketoacyl-ACP synthase II PGSC0003DMG400012262 3-oxoacyl-[acyl-carrier-protein] synthase 

  68.7 Beta-ketoacyl-ACP synthase II PGSC0003DMG400006426 3-oxoacyl-[acyl-carrier-protein] synthase 

  68.8 Beta-ketoacyl-ACP synthase II PGSC0003DMG400002927 Beta-ketoacyl-ACP synthase II-1 

  68.9 Beta-ketoacyl-ACP synthase 
III 

PGSC0003DMG400026308 3-oxoacyl-(Acyl-carrier-protein) synthase III 

  69.1 Beta-ketoacyl-ACP reductase PGSC0003DMG401026981 3-oxoacyl-(Acyl-carrier protein) reductase 

  69.2 Beta-ketoacyl-ACP reductase PGSC0003DMG400014095 2,4-dienoyl-CoA reductase 

  69.3 Beta-ketoacyl-ACP reductase PGSC0003DMG400017459 Ketoacyl-ACP Reductase (KAR) 



239 

 

  69.4 Beta-ketoacyl-ACP reductase PGSC0003DMG400015249 3-oxoacyl-(Acyl-carrier protein) reductase 

  70.1 Beta-hydroxyacyl-ACP 
dehydratase 

PGSC0003DMG400012564 DH putative beta-hydroxyacyl-ACP 
dehydratase 

  71.1 Enoyl-ACP reductase PGSC0003DMG400011436 Enoyl-acyl-carrier-protein reductase 

  71.2 Enoyl-ACP reductase PGSC0003DMG400032152 Enoyl-acyl-carrier-protein reductase 

  72.1 Acyl-ACP thioesterase PGSC0003DMG400020163 Acyl-ACP thioesterase 

  73.1 Acyl-ACP desaturase PGSC0003DMG400000978 Acyl-[acyl-carrier-protein] desaturase, 
chloroplastic 

Fatty Acid Modification  
74.1 Beta-ketoacyl-CoA synthase 6 PGSC0003DMG400012670 3-ketoacyl-CoA synthase 

  75.1 Beta-ketoacyl-CoA reductase PGSC0003DMG400012642 3-ketoacyl-CoA reductase 1 

  76.1 Beta-hydroxyacyl-CoA 
dehydratase 

PGSC0003DMG400023576 PASTICCINO 2 

  76.2 Beta-hydroxyacyl-CoA 
dehydratase 

PGSC0003DMG400016135 3-hydroxyacyl-CoA dehydratase PASTICCINO 
2 

  77.1 Enoyl CoA reductase PGSC0003DMG400029352 Trans-2-enoyl CoA reductase 

  77.2 Enoyl CoA reductase PGSC0003DMG402029257 Trans-2-enoyl CoA reductase 

  78.1 Fatty acid omega-
hydroxylase (CYP86A33) 

PGSC0003DMG400030349 CYP86A33 fatty acid omega-hydroxylase 

  78.2 Fatty acid omega-
hydroxylase (CYP86A33) 

PGSC0003DMG400002111 CYP86A33 fatty acid omega-hydroxylase 

  79.1 Fatty acid omega-
hydroxylase (CYP86A68) 

PGSC0003DMG400046813 Cytochrome P450 

  80.1 Fatty acid omega-
hydroxylase (CYP86A69) 

PGSC0003DMG400012202 Cytochrome P450 fatty acid omega-
hydroxylase 

  81.1 Fatty acid omega-
hydroxylase (CYP94A26) 

PGSC0003DMG400018744 Cytochrome P450-dependent fatty acid 
hydroxylase 

  82.1 Fatty acid omega-
hydroxylase (CYP86B12) 

PGSC0003DMG400010578 Cytochrome P450 



240 

 

  83.1 Fatty acyl-CoA reductase 3 PGSC0003DMG400007113 Fatty acyl-CoA reductase 3 

  83.2 Fatty acyl-CoA reductase PGSC0003DMG400007405 Acyl CoA reductase 

  83.3 Fatty acyl-CoA reductase 1 PGSC0003DMG401007406 Fatty acyl-CoA reductase 1 

  83.4 Fatty acyl-CoA reductase PGSC0003DMG402007406 Male sterility protein 

  83.5 Fatty acyl-CoA reductase PGSC0003DMG400007115 Male sterility protein 

  83.6 Fatty acyl-CoA reductase PGSC0003DMG400023759 Male sterility protein 

  83.7 Fatty acyl-CoA reductase PGSC0003DMG400023916 Male sterility protein 

  83.8 Fatty acyl-CoA reductase PGSC0003DMG400045792 Male sterility protein 

  83.9 Fatty acyl-CoA reductase 3 PGSC0003DMG400007114 Fatty acyl-CoA reductase 3 

  83.10 Fatty acyl-CoA reductase 2 PGSC0003DMG400008885 Fatty acyl-CoA reductase 2 

  83.11 Fatty acyl-CoA reductase 2 PGSC0003DMG400008886 Fatty acyl-CoA reductase 2 

  83.12 Fatty acyl-CoA reductase 2 PGSC0003DMG400041559 Fatty acyl-CoA reductase 2 

  83.13 Fatty acyl-CoA reductase 2 PGSC0003DMG401002698 Fatty acyl-CoA reductase 2 

  83.14 Fatty acyl-CoA reductase 2 PGSC0003DMG402002698 Fatty acyl-CoA reductase 2 

  84.1 Long-chain acyl-CoA 
synthetase 

PGSC0003DMG402000216 Long-chain acyl-CoA synthetase 4 

  84.2 Long-chain acyl-CoA 
synthetase 

PGSC0003DMG400009052 Long-chain-fatty-acid CoA ligase 

  84.3 Long-chain acyl-CoA 
synthetase 

PGSC0003DMG400025174 Acyl CoA synthetase 

  85.1 Alkane forming enzyme 
(CER1) 

PGSC0003DMG400028022 Sterol desaturase 

  85.2 Alkane forming enzyme 
(CER1) 

PGSC0003DMG400005436 Sterol desaturase 

  85.3 Alkane forming enzyme 
(CER1) 

PGSC0003DMG400033650 Sterol desaturase 

  85.4 Alkane forming enzyme 
(CER1) 

PGSC0003DMG400001676 Sterol desaturase 

  86.1 Alkane forming enzyme PGSC0003DMG400007879 Protein WAX2 
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(CER3) 

  86.2 Alkane forming enzyme 
(CER3) 

PGSC0003DMG401014160 Protein WAX2 

  86.3 Alkane forming enzyme 
(CER3) 

PGSC0003DMG400011170 Protein WAX2 

  87.1 Cytochrome b5 PGSC0003DMG400018534 Cytochome b5 

  87.2 Cytochrome b5 PGSC0003DMG400020160 Cytochrome b5 

  87.3 Cytochrome b5 PGSC0003DMG400017661 Cytochrome b5 

  87.4 Cytochrome b5 PGSC0003DMG400000127 Cytochrome b5 isoform Cb5-A 

  87.5 Cytochrome b5 PGSC0003DMG400005465 Cytochrome b5 

  87.6 Cytochrome b5 PGSC0003DMG400001228 Cytochrome b5 

  87.7 Cytochrome b5 PGSC0003DMG400028310 Cytochrome b5 isoform Cb5-D 

  87.8 Cytochrome b5 PGSC0003DMG400007706 Cytochrome b5 

  88.1 Glycerol-3-phosphate 
dehydrogenase 

PGSC0003DMG400012712 Glycerol-3-phosphate dehydrogenase 

  88.2 Glycerol-3-phosphate 
dehydrogenase 

PGSC0003DMG400006965 Glycerol-3-phosphate dehydrogenase 

  88.3 Glycerol-3-phosphate 
dehydrogenase 

PGSC0003DMG400006765 Glycerol-3-phosphate dehydrogenase 

  88.4 Glycerol-3-phosphate 
dehydrogenase 

PGSC0003DMG400016644 Glycerol-3-phosphate dehydrogenase 

Aliphatic Suberin Assembly  
89.1 Feruloyl transferase PGSC0003DMG400031731 Feruloyl transferase 

  90.1 Glycerol-3-phosphate 
acyltransferase 5 

PGSC0003DMG400006342 ER glycerol-phosphate acyltransferase 

  91.1 Glycerol-3-phosphate 
acyltransferase 6 

PGSC0003DMG400020315 Glycerol-3-phosphate acyltransferase 6 

  92.1 ATP-binding cassette 
transporter (ABCG1) 

PGSC0003DMG400023506 ATP-binding cassette transporter 
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  93.1 ATP-binding cassette 
transporter (ABCG11) 

PGSC0003DMG400016225 ATP-binding cassette transporter 

  94.1 ATP-binding cassette 
transporter (ABCG6) 

PGSC0003DMG400011482 Stigma/style ABC transporter (ABCG6) 
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Figure C4. Hierarchical clustering analysis of genes encoding putative Casparian 

membrane strip protein (CASP) and cutin esterase-like (GDSL) proteins to screen 

for candidate novel assembly genes. Biological triplicate means of log2FPKM are 

presented at each time point. CASPs are denoted by numbering with C, and GDSLs are 

denoted with G. Both groups of genes correspond to information in Table C5 and Table 

C6. 

0  0.5 1   2   3 
Day Post Wounding 

log2(FPKM) 
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Table C5. Casparian strip membrane protein (CASP) family in Solanum tuberosum. Putative Arabidopsis homolog information 

is provided for all PGSC gene IDs that had this associated information, as accessed through the PGSC database. 

 
Number 

PGSC name PGSC gene ID 
Arabidopsis 

homolog 
accession 

Arabidopsis 
homolog 

name 
% ID % Query E-value 

C.1 CASP PGSC0003DMG400027047 AT2G39530.1 CASPL4D1 56.6 94 1.00E-19 

C.2 CASP PGSC0003DMG400011859 AT2G38480.1 CASPL4B1 72 85 7.70E-45 

C.3 CASP PGSC0003DMG400008080 AT2G28370.1 CASPL5A2 85.5 99 2.90E-68 

C.4 CASP PGSC0003DMG400017235 AT3G23200.1 CASPL5B3 78.1 99 8.10E-50 

C.5 CASP PGSC0003DMG400024498 AT2G36330.1 CASPL43A 54.2 76 2.50E-30 

C.6 CASP PGSC0003DMG400027092 AT2G36330.1 CASPL43A 63.9 81 5.60E-58 

C.7 CASP PGSC0003DMG400027136 AT5G02060.1 CASPL5B1 78 97 1.00E-49 

C.8 CASP PGSC0003DMG400011620 AT2G38480.1 CASPL4B1 67.4 89 2.90E-45 

C.9 CASP PGSC0003DMG400017586 AT2G28370.1 CASPL5A2 76.8 99 3.00E-59 

C.10 CASP PGSC0003DMG400019144 AT3G53850.1 CASPL5B2 83.1 90 1.50E-57 

C.11 CASP PGSC0003DMG403000524 AT2G36330.1 CASPL43A 64.5 70 4.70E-54 

C.12 CASP 8 PGSC0003DMG400022659 AT4G15610.1 CASPL1D1 71.6 86 2.20E-40 

C.13 CASP 9 PGSC0003DMG400021195 AT4G20390.1 CASPL1B2 75.1 85 1.10E-50 

C.14 CASP GSVIVT00013434001 PGSC0003DMG400029690 AT4G03540.1 CASPL1C1 74.2 98 5.40E-44 

C.15 CASP GSVIVT00013502001 PGSC0003DMG400013293 AT2G35760.1 CASPL2B2 82.9 71 8.80E-60 

C.16 CASP GSVIVT00013502001 PGSC0003DMG400008455 AT2G35760.1 CASPL2B2 79.1 100 7.20E-65 

C.17 CASP GSVIVT00034332001 PGSC0003DMG400002535 AT3G16300.1 CASPL3A1 65.1 85 1.40E-38 

C.18 CASP PIMP1 PGSC0003DMG400027748 AT2G39518.1 CASPL4D2 60.6 99 7.70E-29 

C.19 CASP PIMP1 PGSC0003DMG400035890 AT2G39530.1 CASPL4D1 62 97 2.50E-23 

C.20 CASP PIMP1 PGSC0003DMG400027749 AT2G39518.1 CASPL4D2 59.2 99 6.30E-27 

C.21 CASP POPTRDRAFT_822486 PGSC0003DMG400023526 AT3G55390.1 CASPL4C1 71.9 99 2.90E-61 

C.22 CASP POPTRDRAFT_822486 PGSC0003DMG400027734 AT3G55390.1 CASPL4C1 76.4 98 2.50E-62 

C.23 CASP POPTRDRAFT_823430 PGSC0003DMG400012025 AT4G25040.1 CASPL1F1 53.5 85 6.90E-21 
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C.24 CASP RCOM_0680180 PGSC0003DMG400011355 AT4G15620.1 CASPL1E2 63.8 87 1.50E-34 

C.25 CASP RCOM_0680180 PGSC0003DMG400022677 AT4G15630.1 CASPL1E1 70.9 96 9.60E-47 

C.26 CASP RCOM_1206790 PGSC0003DMG400037321 AT2G39530.1 CASPL4D1 58 88 1.10E-20 

C.27 CASP RCOM_1206790 PGSC0003DMG400001986 AT2G39530.1 CASPL4D1 57 98 1.40E-15 

C.28 CASP RCOM_1302390 PGSC0003DMG400027868 AT5G54980.1 CASPL2D1 72.1 93 2.60E-44 

C.29 CASP SDM1_58t00016 PGSC0003DMG400002855 AT5G15290.1 CASP5 69.4 99 2.20E-47 

C.30 CASP SDM1_58t00016 PGSC0003DMG400018410 AT5G15290.1 CASP5 72.6 99 9.30E-49 

C.31 CASP VIT_01s0010g01870 PGSC0003DMG400031087 AT1G17200.1 CASPL2A1 82.3 83 2.70E-58 

C.32 CASP VIT_01s0010g01870 PGSC0003DMG400021246 AT1G17200.1 CASPL2A1 80.1 98 1.60E-53 

C.33 CASP VIT_17s0000g00560 PGSC0003DMG400026945 AT4G25040.1 CASPL1F1 62.4 84 1.70E-26 

C.34 CASP VIT_17s0000g00560 PGSC0003DMG400026944 AT4G25040.1 CASPL1F1 63.2 86 3.00E-27 

C.35 CASP XL3 PGSC0003DMG400018742 AT4G25830.1 CASPL2C1 66.5 86 6.60E-39 

C.36 
Casparian strip membrane 
protein 
POPTRDRAFT_569472 

PGSC0003DMG400001337 AT5G15290.1 CASP5 78.7 91 1.10E-52 

C.37 
Casparian strip membrane 
protein VIT_06s0080g00840 

PGSC0003DMG400005887 AT5G06200.1 CASP4 72.3 97 1.00E-58 

C.38 
Casparian strip membrane 
protein 3 

PGSC0003DMG400008859 AT5G06200.1 CASP4 71.8 98 1.20E-57 

C.39 
Casparian strip membrane 
protein 
POPTRDRAFT_569472 

PGSC0003DMG400025146 AT5G15290.1 CASP5 79.6 97 1.40E-59 

C.40 
Casparian strip membrane 
protein RCOM_1282030 

PGSC0003DMG400028249 AT3G11550.1 CASP2 72.6 99 2.60E-60 

C.41 
UPF0497 Integral 
membrane protein 

PGSC0003DMG401008816 AT3G53850.1 CASPL5B2 83.8 99 2.40E-57 

C.42 
UPF0497, trans-membrane 
plant domain containing 
protein 

PGSC0003DMG400022768 no hits no hits - - - 
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Table C6. List of cutin synthase-like candidates screened in the wound-healing tuber RNA-seq data. The amino 

acid sequence of the tomato cutin synthase, SlCDS1, was queried by blastp against the PGSC database to yield similar 

proteins that could potentially be involved in aliphatic monomer polymerization. 
Number PGSC functional name PGSC gene ID Hit score E value Query % ID % 

G.1 Cutin-deficient 1 protein PGSC0003DMG400000997 1741 0 100 91.48 

G.2 Zinc finger protein PGSC0003DMG400028701 1456 0 97.79 75.41 

G.3 Tea geometrid larvae-
inducible protein 

PGSC0003DMG400028703 1411 0 100 70.99 

G.4 Zinc finger protein PGSC0003DMG400020084 1371 0 98.34 71.15 

G.5 Zinc finger protein PGSC0003DMG400018956 1226 1.00E-169 99.45 61.62 

G.6 Lipolytic enzyme, G-D-S-L PGSC0003DMG400015683 589 6.00E-73 92.82 37.65 

G.7 Zinc finger protein PGSC0003DMG400010076 588 9.00E-73 91.44 39.17 

G.8 Zinc finger protein PGSC0003DMG400005185 572 2.00E-70 94.75 35.9 
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Table C7. Abscisic acid-related biosynthetic gene information. Bolded numbers 

correspond to gene IDs used to generate heatmap figures. 
Pathway 
branch 

Number Predicted or known enzyme 
name 

PGSC gene ID 

Isoprene 
Biosynthesis 

1.1 1-deoxy-D-xylulose 5-phosphate 
synthase 

PGSC0003DMG400022855 

 
1.2 1-deoxy-D-xylulose 5-phosphate 

synthase 
PGSC0003DMG400029091 

 
1.3 1-deoxy-D-xylulose 5-phosphate 

synthase 
PGSC0003DMG400016120 

 
2.1 1-deoxy-D-xylulose 5-phosphate 

reductoisomerase 
PGSC0003DMG400024503 

 
3.1 2-C-Methyl-D-erythritol 4-

phosphate cytidylyltransferase 
PGSC0003DMG401018218 

 
4.1 CDP-Methyl-D-erythritol Kinase PGSC0003DMG400022703  
5.1 Methylerythrose-2,4-

cyclodiphosphate synthase 
PGSC0003DMG400012185 

 
6.1 Hydroxy-3-methylbut-2-enyl 

diphosphate synthase 
PGSC0003DMG400008050 

 
7.1 Hydroxy-3-methylbut-2-enyl 

diphosphate reductase 
PGSC0003DMG400025165 

 
8.1 Isopentenyl pyrophosphate 

isomerase 
PGSC0003DMG400023359 

 
8.2 Isopentenyl pyrophosphate 

isomerase 
PGSC0003DMG400007268 

 
8.3 Isopentenyl pyrophosphate 

isomerase 
PGSC0003DMG400012082 

 
9.1 Geranyl diphosphate synthase PGSC0003DMG400007081  

10.1 Farnesyl diphosphate synthase PGSC0003DMG400029788  
10.2 Farnesyl diphosphate synthase PGSC0003DMG400014369  
10.3 Farnesyl diphosphate synthase PGSC0003DMG400008690  
11.1 Geranylgeranyl diphosphate 

synthase 4 
PGSC0003DMG400002687 

 
11.2 Geranylgeranyl diphosphate 

synthase 3 
PGSC0003DMG400047044 

 
11.3 Geranylgeranyl diphosphate 

synthase 1 
PGSC0003DMG400015673 

 
11.4 Geranylgeranyl diphosphate 

synthase 2 
PGSC0003DMG400027856 

 
11.5 Geranylgeranyl diphosphate 

synthase 
PGSC0003DMG400041508 

 
11.6 Geranylgeranyl diphosphate 

synthase 
PGSC0003DMG400043267 

 
11.7 Geranylgeranyl diphosphate 

synthase 
PGSC0003DMG400022214 

Carotenoid 
biosynthesis 

12.1 Phytoene synthase 1 PGSC0003DMG400024063 
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12.2 Phytoene synthase 2 PGSC0003DMG400016721  
12.3 Phytoene synthase 2 PGSC0003DMG400019372  
12.4 Phytoene synthase 2 PGSC0003DMG400029005  
12.5 Phytoene synthase 2 PGSC0003DMG400021926  
13.1 Phytoene desaturase PGSC0003DMG400009156  
14.1 Lycopene beta cyclase PGSC0003DMG400010637  
14.2 Lycopene beta cyclase PGSC0003DMG400008159 

ABA 
biosynthesis 

15.1 Carotene hydroxylase PGSC0003DMG400028897 

 
15.2 Carotene hydroxylase PGSC0003DMG400010169  
15.3 Carotene hydroxylase PGSC0003DMG400009501  
16.1 Zeaxanthin epoxidase PGSC0003DMG400004020  
17.1 Neoxanthin synthase PGSC0003DMG400014477  
17.2 Neoxanthin synthase PGSC0003DMG401026407  
17.3 Neoxanthin synthase PGSC0003DMG400024184  
17.4 Neoxanthin synthase PGSC0003DMG402019589  
17.5 Neoxanthin synthase PGSC0003DMG400005886  
18.1 9-cis-epoxycarotenoid  

dioxygenase 
PGSC0003DMG400027633 

 
18.2 9-cis-epoxycarotenoid  

dioxygenase 
PGSC0003DMG400019162 

 
18.3 9-cis-epoxycarotenoid  

dioxygenase 
PGSC0003DMG400004311 

 
18.4 9-cis-epoxycarotenoid  

dioxygenase 
PGSC0003DMG400004312 

 
19.1 Xanthoxin dehydrogenase PGSC0003DMG400008389  
19.2 Xanthoxin dehydrogenase PGSC0003DMG400025067  
19.3 Xanthoxin dehydrogenase PGSC0003DMG400018801  
19.4 Xanthoxin dehydrogenase PGSC0003DMG400011038  
19.5 Xanthoxin dehydrogenase PGSC0003DMG400028245  
19.6 Xanthoxin dehydrogenase PGSC0003DMG402025066  
19.7 Xanthoxin dehydrogenase PGSC0003DMG400032163  
19.8 Xanthoxin dehydrogenase PGSC0003DMG400032162  
19.9 Xanthoxin dehydrogenase PGSC0003DMG400008785  
20.1 Abscisic aldehyde oxidase PGSC0003DMG403006826  
20.2 Abscisic aldehyde oxidase PGSC0003DMG402018708  
20.3 Abscisic aldehyde oxidase PGSC0003DMG400008710  
20.4 Abscisic aldehyde oxidase PGSC0003DMG401006826  
20.5 Abscisic aldehyde oxidase PGSC0003DMG401018708  
20.6 Abscisic aldehyde oxidase PGSC0003DMG402006826  
20.7 Abscisic aldehyde oxidase PGSC0003DMG402019668 
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Table C8. Abscisic acid catabolism gene information. Bolded numbers correspond 

to gene IDs used to generate the associated heatmap figure. 
Number  Predicted or known enzyme name PGSC gene ID 

1.1 
 

ABA 8′-hydroxylase (CYP707A) PGSC0003DMG400001960 

1.2 
 

ABA 8′-hydroxylase (CYP707A) PGSC0003DMG402018475 

1.3 
 

ABA 8′-hydroxylase (CYP707A) PGSC0003DMG400015100 

1.4 
 

ABA 8′-hydroxylase (CYP707A) PGSC0003DMG400025795 

1.5 
 

ABA 8′-hydroxylase (CYP707A) PGSC0003DMG400007972 

2.1 
 

ABA-glucosyltransferase PGSC0003DMG400035666 

2.2 
 

ABA-glucosyltransferase PGSC0003DMG400013559 

2.3 
 

ABA-glucosyltransferase PGSC0003DMG400034632 

2.4 
 

ABA-glucosyltransferase PGSC0003DMG400011971 

2.5 
 

ABA-glucosyltransferase PGSC0003DMG400011973 

2.6 
 

ABA-glucosyltransferase PGSC0003DMG400034882 

2.7 
 

ABA-glucosyltransferase PGSC0003DMG400015327 

2.8 
 

ABA-glucosyltransferase PGSC0003DMG400016611 

2.9 
 

ABA-glucosyltransferase PGSC0003DMG400006737 

2.10 
 

ABA-glucosyltransferase PGSC0003DMG400004573 

2.11 
 

ABA-glucosyltransferase PGSC0003DMG400011972 

3.1 
 

β-glucosidase PGSC0003DMG400006319 

3.2 
 

β-glucosidase PGSC0003DMG400005656 

3.3 
 

β-glucosidase PGSC0003DMG400028773 

3.4 
 

β-glucosidase PGSC0003DMG400025239 

3.5 
 

β-glucosidase PGSC0003DMG401016246 

3.6 
 

β-glucosidase PGSC0003DMG400029676 

3.7 
 

β-glucosidase PGSC0003DMG400019235 

3.8 
 

β-glucosidase PGSC0003DMG400029974 

3.9 
 

β-glucosidase PGSC0003DMG400019091 
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Table C9. Candidate transcription factors screened in the wound-healing transcriptome analysis. Three characterized 

transcription factors were used for blastp searches to query the PGSC database for putative potato homologs or similar 

regulatory proteins. Transcription factor names were given based on annotated PGSC or NCBI names, or previously 

published names where applicable. 
Enzyme 
family 

Number 
Transcription 
factor name 

PGSC gene ID 
Hit from 

blastp against 
Hit 

score 
% Similarity % Query E-value 

MYB 1 MYB3 PGSC0003DMG400011250 AtMYB41 729 53.61 94.33 6.00E-96  
2 MYB39 PGSC0003DMG400026628 AtMYB41 723 77.19 60.64 8.00E-95  
3 MYB34 PGSC0003DMG400022399 AtMYB41 724 70.18 74.11 2.00E-94  
4 MYB 

ODORANT1 
PGSC0003DMG400018331 AtMYB41 714 80.57 62.06 2.00E-93 

 
5 MYB102 PGSC0003DMG400006408 AtMYB41 591 74.44 47.16 1.00E-74  
6 MYB1 PGSC0003DMG400031317 AtMYB41 542 71.88 45.39 4.00E-68  
7 MYB ODO1 PGSC0003DMG400004780 AtMYB41 538 72.66 45.39 1.00E-67 

NAC 8 NAC103 PGSC0003DMG400005384 StNAC103 1797 100 100 1.70E-183  
9 NAC58 PGSC0003DMG400028779 StNAC103 920 99.7 59.82 1.00E-124  

10 NAC - 
transcription 
factor 

PGSC0003DMG400014845 StNAC103 676 75.78 47.16 5.00E-87 

 
11 NAC - 

transcription 
factor 

PGSC0003DMG400029593 StNAC103 667 73.65 49.25 2.00E-85 

 
12 NAM18 PGSC0003DMG400033047 StNAC103 646 74.21 46.27 2.00E-82  
13 NAC21/22 PGSC0003DMG400019523 StNAC103 628 71.7 46.27 1.00E-79  
14 NAM14 PGSC0003DMG400001338 StNAC103 607 69.14 47.16 1.00E-76 

WRKY 15 WRKY1 PGSC0003DMG400021895 StWRKY1 928 100 100 1.00E-130  
16 WRKY19/WRKY

56 
PGSC0003DMG400012317 StWRKY1 356 63.64 57.56 2.00E-42 

 
17 STP PGSC0003DMG400031175 StWRKY1 313 57 57.56 8.00E-36  
18 WRKY4 PGSC0003DMG400009051 StWRKY1 316 67.95 45.35 1.00E-35 
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19 WRKY - 

transcription 
factor 

PGSC0003DMG400028381 StWRKY1 310 64.63 47.67 1.00E-34 

 
20 WRKY10 PGSC0003DMG400019706 StWRKY1 304 61.73 47.09 1.00E-34  
21 WRKY - 

transcription 
factor 

PGSC0003DMG400007788 StWRKY1 295 67.61 41.28 2.00E-32 
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Figure C5. Hierarchical clustering analysis of transcription factor candidates with 

characterized potato transcription factors NAC103 and WRKY1. Mean log2FPKM 

values of n=3 biological replicates are presented.  
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Table C10. Gene information and primer sequences used for RT-qPCR validation of 

RNA-seq expression values. 

Gene PGSC ID Primer sequences 
Product 

length (bp) 
Efficiency 

(%) 

MYB34 PGSC0003DMG400022399 F:TGTTAGGCCATGTGCAACCT 
R:TGAGTTTTGGCGTTGGGATG 

83 104.5 

MYB3 PGSC0003DMG400011250 F:GTCTGCCTGGAAGGACTGAT 
R:CAAGAAGATCAAGACGAGGGCT 

117 108.7 

ODORANT1 PGSC0003DMG400018331 F:GGTCCTGGAAATTGGCGAAC 
R:CCACACCTTTGAAGTCCAGC 

53 100.6 

PAL1 PGSC0003DMG402021564 F: CAAACTTGACGCTGATGAAGC 
R: ACAGGACAATTGATGCCATACC 

131 107.6 

C4H PGSC0003DMG402030469 F: ACCAAGAGCATGGACAGCAA 
R: ATCCTCGTTGATCTCTCCCTTCT 

84 104.6 

CCR PGSC0003DMG400019825 F: GAGCCAGCGGTTATAGGGAC 
R: TCCACAACTTTATCCGGGGC 

131 113 

THT PGSC0003DMG400014778 F: AGGTATGGCAAATTGCATGGTG 
R: TGTCTCTTCCTCAATTTTCCCCT 

69 109.9 

KCS6 PGSC0003DMG400012670 F: AACCGCACAATCAAGACACCA 
R: TCTCTGGGATGAACACTGGGT 

76 100.8 

CYP86A33 PGSC0003DMG400030349 F: GACACGTGGCTCATGCAAAG 
R: TTGTCGTAGTGTCCGGGTTG 

63 99.0 

CYP86B12 PGSC0003DMG400010578 F: TCCACCCTCACTTACCCCAA 
R: CGTGGGAGTGACAAACCGTA 

86 104.6 

GPAT5 PGSC0003DMG400006342 F: ACCGAACCCTACTTGACCCT 
R: GCGTCCACTTCTCGAATCCT 

142 102.8 

GPAT6 PGSC0003DMG400006342 F: TGGCCAACGTGGTGTACTTT 
R: CAGCAGTAACAACGGGGTCT 

65 109.2 

FHT PGSC0003DMG400031731 F: TGTGAAGCAAGGAGTGCCAA 
R: ACCGGCACGGCTATATTCTG 

99 107.7 

ABCG1 PGSC0003DMG400022399 F: GCTGTAGGCCTTGTAGGTGG 
R: CCGGAGAGGAACGTGACAAA 

101 108.1 

EF1-α* PGSC0003DMG400023272 F:TGGTCGTGTTGAGACTGGTG 
R:AACATTGTCACCGGGGAGTG 

133 101.5 

APRT* PGSC0003DMG400021527 F: GAACCGGAGCAGGTGAAGAA 
R: GAAGCAATCCCAGCGATACG 

121 99.2 
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Table C11. Pearson correlation statistical output for RT-qPCR validation of 

RNA-seq transcript levels. 45 data pairs were used for this analysis that incorporated 

14 genes across 3 or 4 time points. Input data were log2(fold change) values 

normalized to the control 0 time point. 

Number of XY Pairs 45 

Pearson r 0.8598 

95% confidence interval of Pearson r 0.7573 to 0.9209 

P value (two-tailed) < 0.0001 

P value summary *** 

Is the correlation significant? (alpha=0.05) Yes 

R squared 0.7392 

95% confidence interval of R squared Slope: 0.7824 to 1.132 
Y-intercept when X=0.0: 0.7225 to 2.917 
X-intercept when Y=0.0: -3.542 to -0.6717 
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