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Abstract 

Network level dysconnectivity has been studied in positive and negative symptoms of 

schizophrenia. Conceptual disorganization (CD) is a symptom which predicts impaired 

real-world functioning. Systematic reviews have reported aberrant connectivity in formal 

thought disorder, a construct related to CD. However, no studies have investigated whole-

brain functional correlates of CD in psychosis. We sought to investigate brain regions 

explaining the severity of CD in patients with first-episode psychosis (FEPs) compared 

with healthy controls (HCs). We computed whole-brain binarized degree centrality maps 

of 31 FEPs, 25 HCs and characterized the patterns of network connectivity in the two 

groups. In FEPs, we related these findings to the severity of CD. We also studied the effect 

of positive and negative symptoms on altered network connectivity. Compared to HCs, the 

FEPs showed reduced hubness of a cluster located in the right superior temporal gyrus 

(rSTG). In patients exhibiting high CD, increased hubness of a medial superior parietal 

(mSPL) cluster was observed, compared to patients exhibiting low CD. These two regions 

were strongly correlated with CD scores but not with other symptom scores. Our 

observations are congruent with previous findings of reduced but not increased hubness. 

We observed increased hubness of mSPL suggesting that a cortical reorganization occurs 

in brain networks to provide alternate routes for information transfer. These findings 

provide insight into the underlying neural processes mediating the presentation of 

symptoms in untreated FEP. A longitudinal tracking of the symptom course will be useful 

to assess the mechanisms underlying these compensatory changes. 

 

Keywords: conceptual disorganization, first-episode psychosis, resting-state fMRI, graph 

theory, cortical reorganization 
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1 Chapter 1: Introduction 

1.1 General overview 

Psychosis is a commonly occurring feature of many psychiatric, neurodevelopmental, 

neurological and medical conditions which is associated with a disruption of the normal 

functioning capabilities of the affected individuals. Observations such as reduced social or 

occupational participation (Arciniegas, 2015) and core clinical symptoms such as 

delusions, hallucinations without insight and disorder of thought processes (DSM-5; 

Gaebel and Zielasek, 2015) help conceptualize psychosis as a clinical feature. 

1.2 The clinical construct of psychosis – a historical overview 

The clinical construct of psychosis was first described in 1845 by an Austrian doctor, Ernst 

von Feuchtersleben, as a disease of the mind or ‘Geisteskrankheiten’ (Beer, 1995, 1996). 

The organic nature of psychosis was proposed by Flemming in his textbook ‘The 

Pathology and Treatment of the Psychoses’ which suggested that psychosis occurred as 

the result of an underlying disorder of the nervous system (neurosis) (Beer, 1996). In his 

characterization of the cerebral associations of consciousness, Wernicke hypothesized the 

splitting (‘sejunktion’) of different psychological processes (Wernicke, 1899; Beer, 1996) 

as the ‘psychoses’ of perception of one’s body (somatopsychoses), personality 

(autopsychoses) and the outside world (allopsychoses) (Beer, 1996). Around the same 

time, Wernicke’s conceptualization of mental illnesses (as having anatomical and 

physiological underpinnings) was replaced by Kraepelin’s theory of the dichotomous 

nature (Gaebel and Zielasek, 2015) of ‘dementia praecox’ and ‘manic-depressive insanity’ 

in psychosis (Leonhard, 1985). All of these theories suggested that psychosis was an 

organic illness. Fuerstner (1881) suggested the functional nature of psychosis, to separate 

it from ‘organic psychoses’ (Beer, 1995, 1996). However, until the 1920’s, there was no 

clear distinction between the functional and organic subtypes of psychosis. In 1924, 

Bumke defined organic psychosis to affect the brain tissue and functional psychosis to 

affect the mind (Beer, 1996). Later, Jaspers distinguished organic psychoses from 

functional psychoses by referring to the latter as schizophrenia, manic-depression, and 

epilepsy (Jaspers, 1963). 
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1.3 Definition of psychosis 

Both the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) 

(APA, 2013) and the International Classification of Diseases, Tenth Revision (ICD-10) 

(WHO, 1993) define psychosis as a loss of the sense of reality, characterized by delusions, 

hallucinations without insight, and disruptions in the form of thought processes. These 

three features have been implicated to be the ‘core’ features of psychosis (Arciniegas, 

2015; Gaebel and Zielasek, 2015). Psychosis has been implicated to be a fundamental 

feature of schizophrenia spectrum disorders, mood and substance use disorders, as well as 

some neurological conditions (Arciniegas, 2015). An impaired sense of reality is of central 

importance among the symptoms which characterize psychosis. 

Hallucinations are perceptions or experiences (e.g. hearing voices) which occur without 

the presence of any stimulus from the external environment. Often the individual is unable 

to identify the hallucinatory features of that episode. Hallucinations are mostly auditory in 

nature (Stephane et al., 2001; Verdoux and van Os, 2002), with some reports of visual, 

tactile and olfactory hallucinations (Bracha et al., 1989) as well.  

Delusions are false beliefs (e.g. notions that other people are plotting against oneself) 

which provide evidence of distorted reality and indicate an abnormality in the content of 

thoughts (Andreasen et al., 1995). The person experiencing the delusions is unable to 

change these beliefs despite being aware of the presence of logic which contradicts these 

beliefs (Arciniegas, 2015).  

‘Formal thought disorders (FTD)’ or disruptions in the form of thought processes 

commonly occur in psychosis. These disorders are generally related to observations such 

as taking a lot of time before speaking (retardation), not getting to the point when 

discussing something (tangentiality) or the tendency to offer bizarre explanations for things 

or events (illogicality) (WHO, 2018), to name a few. In the diagnosis of a psychotic 

disorder, FTD assumes greater importance over hallucinations and delusions when a 

psychotic episode is accompanied by disorganized behaviour, catatonia (motor and 
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behavioural abnormalities) and/or negative symptoms ーaccording to the guidelines put 

forward in the DSM-5 (APA, 2013; Arciniegas, 2015). 

1.4 Symptoms of psychosis 

Chronic or established psychosis (e.g. schizophrenia) is a complex mental condition, which 

can be diagnosed at least 6 months after the first presentation of a psychotic episode (DSM-

5; Thyer, 2015). A heterogenous symptom structure including positive, negative, and 

disorganization symptoms (Bilder et al., 1985; Kulhara et al., 1986; Liddle, 1987; 

Andreasen et al., 1995) characterizes the symptoms of chronic or established psychosis 

(schizophrenia). 

Positive symptoms of psychosis are defined as extreme representations of psychotic 

features which are associated with a magnification (Andreasen et al., 1995) of normal 

functions (Andreasen, 1990) such as hearing or thinking. These symptoms are 

characterized by a distorted perception of reality and manifest as hallucinations, delusions 

or false beliefs, thought disorders, and motor impairments (Andreasen et al., 1995). 

Negative symptoms are characterized by disruptions or alterations to normal emotions and 

behaviours which tend to have a basic underlying persistence (Andreasen et al., 1995). 

These symptoms include reduced spontaneity and fluency of speech or 'alogia', reduced 

expression of emotions through facial expressions or voice tone commonly known as 

'flattened affect' or 'affective blunting', loss of a sense of pleasure or 'anhedonia', difficulty 

beginning and sustaining activities or 'avolition' explained as a 'loss of will or drive', loss 

of the ability to focus attention on a specific activity/task in a sustained manner or 

'attentional impairment' and reduced social interaction (Andreasen et al., 1995). 

Disorganization is characterized as the impairment of the form of thought processes and 

bizarre actions, defined as conceptual and behavioural disorganization respectively. It has 

been shown to be a persistent feature in both acute and chronic stages of schizophrenia 

(Feigenson et al., 2014). The lack of effective treatment options results in the chronicity of 

the different symptom domains and relates to the unrelenting characteristics of 
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schizophrenia (Harrow and Marengo, 1986; Andreasen and Grove; 1986; Marengo and 

Harrow, 1997). 

1.5 Persistence of the symptoms of psychosis 

A large number of patients with established psychosis have been reported to experience 

unrelenting positive symptoms despite undergoing treatments with antipsychotics (Suzuki 

et al., 2011, 2012). In approximately 70% of the patients undergoing treatment with 

antipsychotics, a short-term reduction in the severity of positive symptoms (Haro et al., 

2018) has been implied (but not observed in all patients) (Menezes et al., 2006; Novick et 

al., 2009; Van Os and Kapur, 2009). Relapses of psychotic episodes, rehospitalization, 

deficits in functioning, and a reduced ‘quality of life’ could result from an insufficient 

management of positive symptoms (Lehman and Postrado, 1995; Doering et al., 1998; 

Norman et al., 1999, 2001; Csernansky and Schuchart, 2002; Menezes et al., 2006; Novick 

et al., 2009).  

Negative symptoms have been shown to be present at the time of the first psychotic episode 

(Bobes et al., 2010), and have been shown to persist even after treatments with 

antipsychotics (Erhart et al., 2006). The negative symptom subtype is a predictor of poor 

social and occupational functioning (Novick et al., 2009; Rabinowitz et al., 2012), even 

after the remission of positive symptoms (Stahl and Grady, 2004; Chue and Lalonde, 

2014).  

Disorganization is observed to be a persistent feature in both acute and chronic stages of 

established psychosis (schizophrenia) (Feigenson et al., 2014). As opposed to persistent 

disorganization, the pathophysiology of acute disorganization has been observed during an 

active psychotic episode (Breier and Berg, 1999). Acute disorganization resolves in many 

patients over time (Andreasen, 1979; Harrow and Marengo, 1986; Harrow, Marengo & 

McDonald, 1986; Harvey, Earle-Boyle & Wielgus et al., 1984), and often covaries with 

the severity of positive symptoms. On the other hand, the symptoms of disorganization 

(e.g. negative FTD) seen in chronic stages often emerge as a distinct subtype of the illness 

(Roche et al., 2014).  The persistence of disorganization despite treatment (in longitudinal 

cohorts) has suggested that existing treatments are not fully effective in alleviating the 
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symptoms of disorganization in patients with psychosis (Harrow and Marengo, 1986; 

Andreasen and Grove; 1986; Marengo and Harrow, 1997). 

1.6 Conceptual disorganization in acute psychosis 

Of the three major subtypes of disorganization (conceptual disorganization (CD), poor 

attention, difficulties related to abstract thinking) (Rocca et al., 2018), CD has been 

implicated in the previous literature to be a persistent feature at all phases of the illness 

(Feigenson et al., 2014) and related to impairments in cognition (Bleuler, 1950; Hardy-

Bayle et al., 2003) and real-world functioning (Rocca et al., 2018). CD is characterized by 

difficulties in the goal-directed sequencing of thoughts that manifest as circumstantial, 

illogical or tangential speech or weakened goal of thinking (loose associations) (Kay et al., 

1987). Formal thought disorder (FTD), a construct associated with disorganization, has 

been shown to be the strongest predictor of impaired speech and peculiar word use (Ayer 

et al., 2016) in first-episode psychosis. In established psychosis (schizophrenia), FTD has 

also been related to impaired cognitive control (Yoon et al., 2012) and impaired 

functioning at different phases of the illness (Roche et al., 2015; Ortiz et al., 2017). While 

the construct of FTD encompasses both positive (e.g. illogical, tangential, loosened 

speech) as well as negative (e.g. poverty of speech, reduced content of speech) FTD, the 

clinical construct of CD refers only to positive aspects of FTD. Of the three major 

impairments (neurocognition, social cognition, formal thought disorders (FTD)) related to 

CD, FTD is the most extensively studied feature which is characterized by deficits in 

thought processes manifesting as speech disorders (eg. illogicality, retardation, 

tangentiality). Longitudinal studies have reported FTD to be a persistent feature at all 

stages of psychosis and implied that the existing treatment options are not effective towards 

alleviating the symptoms of CD (Harrow and Marengo, 1986; Andreasen and Grove; 1986; 

Marengo and Harrow, 1997). 

1.7 Neural correlates of conceptual disorganization - a review of 

the neuroimaging literature 

Numerous neuroimaging studies have sought to investigate the neural correlates of CD 

(more specifically, FTD) in established psychosis (schizophrenia), which have been 
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systematically reviewed (Sumner et al., 2018a, 2018b; Kircher et al., 2018; Cavelti et al., 

2018). 

Sumner et al. (2018a) reviewed studies which investigated the functional correlates of 

thought disorder and reported the frontal and temporal lobes, fusiform gyrus, cingulum 

and some subcortical structures (caudate nucleus, cerebellum) as the brain regions 

associated with functional activations in relation to positive thought disorders. Functions 

of the temporal lobe including language perception, comprehension and production, 

semantic information processing were related to the severity of thought disorders. Tasks 

of the frontal lobe related to attention and working memory were also implicated to be 

related to thought disorders. This review also lists studies which conducted exploratory 

analyses on specific regions-of-interest (ROI) in relation to negative thought disorders. A 

ROI study reported increased temporal activation when performing tests of executive 

functioning (e.g. the Wisconsin card sorting test) in relation to thought disorders. The real-

world functioning deficits, or the behavioural correlates, reported in this review associated 

the severity of thought disorders with the production of less syntactically complex 

sentences and the number of pauses between words which were filled with non-word 

sounds.  

Another review by Sumner et al. (2018b) reviews the structural correlates of thought 

disorder and reports heterogeneous findings with respect to measures of brain structure 

(e.g. gray matter volume, thickness, gyrification) and the severity of thought disorders. In 

both reviews, the superior temporal gyrus has been implicated (structurally and 

functionally) to be an important brain region associated with language processing. This 

review also lists studies which reported reduced gray matter volume directly related to the 

severity of positive and total thought disorders, and also showed a greater loss of temporal 

lobe volume in individuals who had recently experienced a first episode of psychosis. 

Some drawbacks which include the lack of studies conducting a hypothesis-driven 

investigation of the structural and functional correlates of thought disorders, the non-

specificity of assessment scales used to measure the severity of thought disorders, as well 

as the non-specificity of investigations into the defining aspects of thought disorders have 

been implied in these reviews.  
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Cavelti et al. (2018) included studies which examined the association of formal thought 

disorder (FTD) with either the whole brain or a ROI in the language network. They 

separately reviewed findings from volumetric, diffusion tensor imaging, resting-state 

functional MRI (fMRI) and task-based fMRI studies, and reported deficits in regions of 

the language network (e.g. superior temporal gyrus). A few resting-state fMRI studies have 

associated the severity of FTD with altered functional (resting state) activity in brain 

regions not part of the language network such as the insula (Horn et al., 2009; Skudlarski 

et al., 2010) and cingulate gyrus (Sabri et al., 1997; Skudlarski et al., 2010). In contrast, a 

few studies have reported observations of no relation between FTD and resting state 

activity in the cingulate gyrus (Liemburg et al., 2012) as well as no correlation of resting 

state activity with the severity of FTD in subcortical brain regions such as the thalamus 

and basal ganglia (Sabri et al., 1997). This review demonstrates very heterogeneous 

findings of the association of the language network with the severity of FTD, therefore 

suggesting the multifaceted nature of the disorder of the form of thought processes. 

Methodological differences such as a distinctly different gender ratio across all studies and 

inconsistencies in the measurement of clinical variables (e.g. duration of illness, 

medication status, and severity of FTD) were reported in this review. 

Kircher et al. (2018) reviewed the positive and negative, as well as the objective and 

subjective symptoms of FTD and discussed their genetic, structural and functional 

underpinnings in relation with the severity of the symptoms of FTD. The existing literature 

has focused on alterations in language networks in relation to the severity of FTD. 

However, the authors of this review argued that since language is not a specific human 

ability, there is a need to conduct more studies which would investigate the aspects of FTD 

that are related to real-world functioning abilities such as speech processing (involving the 

perception and generation of speech) and social cognition. 

In summary, these reviews have indicated a significant focus towards the investigation of 

aberrations in brain regions associated with language processing (especially superior 

temporal gyrus (STG)) as the major structural and functional correlates of FTD (Sumner 

et al., 2018a, 2018b; Wensing et al., 2017). Nevertheless, null findings, as well as findings 

that implicate brain regions not considered a part of the language network, have also been 
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reported (Sumner et al., 2018a, 2018b). A notable lack of studies which directly relate 

network-level functional connectivity (FC) to disorganization has also been highlighted 

(Cavelti et al., 2018). 

A limited number of resting-state fMRI (rs-fMRI) studies have investigated the network 

level dysconnectivity underlying the symptoms of disorganization. In a sample of patients 

presenting with first episode psychosis, an increased functional connectivity (FC) of the 

default mode network (DMN) with the insula and dorsolateral prefrontal cortex (dlPFC) 

was reported in relation to clinical measures (He et al., 2013). In contrast, another study 

reported no alterations of FC between the DMN and other resting state networks as well 

as no evidence of aberrant FC within the DMN (Repovs et al., 2011) in patients with 

established psychosis (schizophrenia). This study also reported altered FC between the 

frontoparietal and cerebellar networks (Repovs et al., 2011). In another study investigating 

the connectivities across five resting state networks (default mode network, fronto-parietal 

network, cingulo-opercular network, cerebellar network, salience network) in 

schizophrenia, reduced network-level FC was shown to be decreased between the cingulo-

opercular and salience networks, fronto-parietal and cingulo-opercular networks, as well 

as fronto-parietal and cerebellar networks (Mamah et al., 2013). Other studies report 

reduced connectivity between the thalamus and postcentral gyrus (Skudlarski et al., 2010), 

between dorsolateral prefrontal cortex (DLPFC) and insula, Wernicke’s area, sensorimotor 

area and frontal pole, and increased connectivity between the DLPFC and premotor cortex 

(Cole et al., 2011) in relation to pronounced CD or FTD. Several studies have also failed 

to find a relationship between the severity of disorganization and FC (Palaniyappan et al., 

2013b, 2018b; Cavelti et al 2017; Kircher et al., 2018). With the exception of one study by 

He et al. (2013), all other studies recruited patients during a stable medicated phase of 

established psychosis (schizophrenia). Therefore, the neural correlates of conceptual 

disorganization seen during first episode psychosis is still unclear. 

1.8 Current limitations in existing literature 

One limitation in identifying the prevalence of FTD (or CD) in psychosis samples is the 

absence of cutoff scores and validation studies as well as the limited number of studies 

using more than one assessment tool to indicate the presence of FTD (Roche et al., 2015). 
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A second limitation is the paucity of studies explicitly relating FTD to impairments in 

social cognition (Kircher et al., 2018), an important component of real-world functioning 

(Rocca et al., 2018). A comprehensive review of neuroimaging studies in schizophrenia 

reveals the absence of adequate sample sizes to study the structural and functional 

correlates of FTD as well as a heterogeneity in assessment scales used to measure FTD 

(Cavelti et al., 2017). Alongside these observations, the majority of neuroimaging studies 

have been reported to investigate structural and functional alterations of brain regions 

primarily involved in auditory and language processing with few studies investigating 

higher-order cognitive processing (eg. social cognition, working memory and executive 

functioning) in FTD. The review by Cavelti et al. (2017) reveals a gap in the literature of 

studies that have investigated whole-brain connectivity patterns voxel-by-voxel in relation 

to the severity of conceptual disorganization. 

 

The next sections review the imaging modality of functional magnetic resonance imaging 

(fMRI), the imaging techniques and graph theoretical measures used in this study as tools 

to assess the severity of psychotic symptoms. 

1.9 Use of functional Magnetic Resonance Imaging (fMRI) as a 

tool to study psychosis 

Patterns of brain activity in disorders such as psychosis were initially studied using animal 

models, post-mortem studies and examination of the concentrations of peripheral 

metabolites (Andreasen, 1988). However, these approaches had some inherent limitations; 

for example, animal models could not be used to study the distinctive cognitive or 

behavioural abilities observed in humans, a post-mortem investigation of brain tissue 

would not be able to account for effects of dynamically changing confounding variables 

(e.g. age, treatment with various medications, alterations in brain tissue associated with 

other diseases). An examination of concentrations of peripheral metabolites would not be 

helpful towards explaining alterations in concentrations of brain metabolites, or 

neurochemical processes in the brain. In summary, these techniques could not provide a 
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means to investigate the structural, functional, chemical, cognitive or behavioural 

components associated with psychosis.  

It, therefore, became imperative to study changes in the brain through direct observations 

in living human beings. In vivo neuroimaging became a widely used tool with different 

techniques to study the human brain. Functional magnetic resonance imaging (fMRI) is a 

technique commonly used to study brain function. It uses a strong magnetic field to detect 

changes in blood flow patterns in the brain as a marker of brain function. fMRI is a 

powerful non-invasive tool used to measure changes in blood flow patterns and blood 

oxygenation levels associated with changes in neuronal activity either at rest or when 

performing a particular task. The most popular fMRI technique used to study brain activity, 

Blood Oxygen Level Dependent (BOLD) imaging, allows us to study hemodynamic 

responses to neuronal firing. This imaging technique takes advantage of the differences in 

magnetic properties of oxygenated and deoxygenated hemoglobin. The fMRI modality 

used to study patterns of brain activation in this study is resting-state fMRI. 

1.10 Description of the imaging technique(s) used in this study 

Resting-state fMRI (rs-fMRI) and structural MRI are two imaging techniques used in this 

study. 

Resting-state functional magnetic resonance imaging (rs-fMRI)  

This is an in vivo non-invasive imaging technique which was first described by Biswal et 

al., in 1995. Rs-fMRI is used to study changes in blood flow and oxygenation patterns in 

the brain of an individual at rest or without the presence of any external stimulus. In other 

words, resting-state fMRI is used to measure the BOLD signal when the brain is not 

explicitly involved in performing any task/activity. During the scan, the individuals are 

instructed to lay inside the scanner, either with their eyes open or closed and asked to not 

think of anything in particular. Rs-fMRI is helpful for scanning participants with severe 

psychiatric conditions (e.g. psychosis), who might experience difficulties in performing 

tasks within the scanner environment. 

Structural magnetic resonance imaging 
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This is a non-invasive imaging technique which is used to examine the anatomy and 

pathology of the brain. Structural MRI provides qualitative and quantitative information 

about the shape, size and integrity of gray and white matter structures in the brain. It also 

provides an anatomical reference for the visualization of activation patterns and regions of 

interest to extract functional signal information. 

 

1.10.1 Imaging sequences: rs-fMRI and structural MRI 

The properties of magnetic resonance imaging sequences are based on the random 

orientation or anisotropy of water molecules when a strong, uniform, external magnetic 

field is applied to different types of brain tissue. The anisotropy of water molecules is 

influenced by the application of an external radio frequency (RF) pulse to the magnetic 

field. Difference image sequences are obtained by varying the sequences of RF pulses 

applied to the field and collected from the emitted signals. During image acquisition, the 

time interval between the application of two successive RF pulses is known as repetition 

time (TR) and the time interval between the application of an RF pulse and receipt of the 

echo signal is known as echo time (TE). 

‘Relaxation time’ is a measure which can help differentiate between different tissue types 

alongside measures of TR and TE. In magnetic resonance imaging, ‘relaxation’ can be 

defined as a measure of change in emitted signal over time. Tissues can be classified based 

on two types of relaxations- T1 (longitudinal) and T2 (transverse). The time constant 

which determines the rate at which excited protons return to equilibrium, or conversely, 

the time taken for spinning protons to lose their ‘spin’ momentum and align with the 

magnetic field is known as T1. The time constant at which excited protons go out of phase 

with each other, or alternatively, the time taken by the excited protons to lose phase 

coherence and spin orthogonal to the magnetic field is known as T2. The time constants 

TR and TE are used to characterize the T1 and T2 properties of the tissue respectively. 

Resting state functional magnetic resonance imaging is characterized by T2*-weighted 

mages. T2* weighting is obtained by both the T2 signal as well as inhomogeneities of the 
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external magnetic field. In our acquisition protocol, the TR of rs-fMRI data is 1000 

milliseconds and the TE is 20 milliseconds. Structural magnetic resonance imaging is 

characterized by T1-weighted images. In our acquisition protocol, the TR of structural MRI 

data is 6000 milliseconds and the TE is 2.83 milliseconds. 

1.11 Graph theoretical measures and the theory of ‘dysconnection’ 

in psychosis 

Graph theory is a branch of mathematics which is used to define a real-world complex 

system in the form of nodes (vertices of the graph) and connections between the nodes 

(edges of the graph).  It has been widely used to characterize structural and functional brain 

networks in terms of graph metrics namely, nodes (specialized brain regions) and edges 

(axons, dendrites, and synaptic terminals) (Bullmore & Sporns, 2009). Furthermore, graph 

theory has been successful in demonstrating aberrant patterns of structural and functional 

network connectivities in medicated patients with established psychosis (chronic 

schizophrenia) (Zalesky et al., 2011; Palaniyappan & Liddle, 2014; Yu et al., 2015; Cheng 

et al., 2015; Cao et al., 2016; Kambeitz et al., 2016; Palaniyappan et al., 2018a). Therefore, 

measures of graph theory are useful to characterize the the theory of ‘dysconnection’ 

(Friston & Frith, 1995) in relation to brain networks. 

1.11.1 The ‘dysconnection’ hypothesis 

Wernicke’s hypothesis of ‘sejunktion’ suggested that an aberrant shunting of neural 

processes occurring in psychosis resulted in a disruption of interconnections and abnormal 

functionalities in distributed neural systems (Ungvari, 1993). Following this, the concept 

of 'splitting' or 'disintegration' of different psychological domains in established psychosis 

was proposed by Bleuler in 1911, based on Janet’s concepts of ‘association’ and 

'dissociation' (Moskowitz, 2006). In 1995, Friston and Frith united the concepts of 

'sejunktion' and ‘disintegration’ to put forward the ‘dysconnection hypothesis’ which 

suggested that the core symptoms of psychosis (schizophrenia) result in an abnormal 

functional integration in distributed brain networks (Friston & Frith, 1995). Stephan et al. 

in 2009 proposed an alternate pathophysiological framework of schizophrenia to suggest 

that the underlying abnormal functional integration of distributed brain networks explains 
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the characteristic core symptoms and associated cognitive impairments in schizophrenia 

(Stephan et al., 2009). 

 

1.11.2 Description of graph theoretical measures used in this study 

The graph theoretical measures used in this study to assess the presence and severity of 

disorganization in psychosis are degree centrality (quantitative) and hubness (qualitative).  

Degree centrality (DC) is a quantitative graph theoretical metric which was first introduced 

by Buckner et al., 2009. It is defined as the number of voxels across the brain that are 

strongly correlated with the target voxel (Buckner et al., 2009). This metric measures the 

local network connectivity by accounting for the number of direct extrinsic or intrinsic 

connections (edges) one node has to all other nodes in a distributed brain network. A node 

with high DC, therefore, has a large number of direct connections to other nodes in the 

network.  

Hubness is a qualitative graph theoretical metric used to quantify the characteristics of 

nodes or brain regions with high DC in a brain network. Nodes with high DC have high 

hubness (or hub-like properties) and are crucial to efficient communication. On the other 

hand, nodes with low DC are regions through which information flow occurs but are not 

important for efficient communication. Increased hubness of a node would indicate an 

increase in its hub-like properties and thus its emergence as a crucial network node for 

information exchange. In contrast, reduced hubness of a node would indicate a reduction 

in hub-like properties of a brain region, therefore lowering its importance in the network. 

These two complementary graph metrics measure the number of connections each brain 

region has to other brain regions. These graph metrics would help characterize aberrant 

connectivity patterns which occur in distributed brain regions as a result of the underlying 

symptoms of disorganization in first episode psychosis. Such a characterization would help 

study the theory of ‘dysconnection’ in an acutely psychotic sample and may also provide 

insights as to whether the symptoms are a result of the functional aberrations (or vice-

versa). 
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1.11.3 The methodological approach used in this study to detect altered 

functional connectivity with respect to conceptual disorganization 

Without making any a priori assumptions about the brain regions implicated in acute 

disorganization, a graph theoretical measure known as degree centrality (DC) (first 

introduced by Buckner et al., 2009) was used to characterize differences in local network 

connectivity between the two groups across the whole brain. We undertook a whole brain 

voxel wise search to locate brain regions showing aberrant connectivity in relation to the 

presence of psychosis as well as the severity of disorganization. A correlation threshold of 

r > 0.25 (Buckner et al., 2009; Zuo et al., 2012; Yan et al., 2013a, b) was used to generate 

an undirected adjacency matrix to identify the brain voxels which were strongly connected 

to other brain voxels. To establish the specificity of our findings on the symptom of 

conceptual disorganization, we studied the effects of other positive and negative symptoms 

of psychosis in relation to the observed results. 

1.11.3.1 Influence of thresholding parameters 

While computing topological properties such as centrality based on graph theory to study 

brain connectomes, a limited number of brain regions are usually selected as nodes of 

interest, and sparse connectivity matrices are obtained to delineate the networks of interest. 

The 2 commonly used approaches to generate sparse matrices are (1) the use of an absolute 

edge-defining threshold (e.g. edges with functional connectivity value above 0.25 are 

retained as in Buckner et al., 2009) or (2) using a fixed edge density threshold (e.g. 30% 

of all possible edges are retained in the matrices). The use of an absolute edge defining 

threshold can result in various sparsity values across different individuals (or groups). As 

several topological metrics depend on the degree of sparsity (Tewarie et al., 2014), the 

resulting differences may indeed be due to variations in the number of edges rather than 

true differences in the network topology.  Proportional thresholding using several values 

of fixed edge density obviates this problem (e.g. Bassett et al., 2008). But when using this 

approach, if systematic differences in the global strength of connectivity exist between two 

groups of interest, this can result in noisy and spurious edges with low connectional 
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strength being included in one group and not in the other. Again, this could lead to an 

apparent group difference in topological metrics, with a shift towards randomness in the 

group with weaker overall connectivity (van den Heuvel 2017; Vasa et al., 2018). Our 

primary interest was not in deriving the topological architecture of functional connectivity. 

Instead, we were focused on deriving a single score for each voxel that best represented 

the overall (voxelwise) functional connectivity required to characterize hubs. As a result, 

we used Buckner’s approach in this study. Our previous use of this approach resulted in 

highly reproducible hubs across different brain states (rest, 0,1, and 2 back task 

performance) (Palaniyappan & Liddle 2014). 

 

1.12 Influence of assessment procedure used to measure 

disorganization 

Disorganization and the related construct of FTD are both multidimensional constructs, 

with variations along the axes of subjectivity, positive-negative speech productivity, as 

well as illness stage related (i.e. acute vs chronic) differences. As recommended by recent 

comprehensive reviews in this field (Cavelti et al., 2018; Kircher et al., 2018; Sumner et 

al., 2018), we assessed both a positive (P2 of PANSS) and a negative (N6 of PANSS) 

feature of FTD. In addition, we also corroborated the presence of disorganization using 

complementary clinical definitions (YMRS scale items 6 and 7). Nevertheless, our results 

cannot be taken to represent the neural basis of FTD as such, as we lacked instruments that 

comprehensively quantify the various aspects of FTD (Kircher et al., 2018; Strik et al., 

2010). 

 

1.13 Aims and Hypotheses 

The aim of this study was to investigate whole brain alterations of functional connectivity 

in patients presenting with first-episode psychosis in comparison with healthy controls. A 

second aim was to relate the symptoms of disorganization to these functional connectivity 

alterations. 
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Our hypothesis is that in association with the symptoms of disorganization, there is a 

reduction in hubness (measured using degree centrality) of major brain areas in patients 

presenting with drug-naive first-episode psychosis in comparison to healthy controls. 
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2.3 Abstract 

Background: 

Network level dysconnectivity has been studied in positive and negative symptoms of 

schizophrenia. Conceptual disorganization (CD) is a symptom which predicts impaired 

real-world functioning. Systematic reviews have reported aberrant connectivity in formal 

thought disorder, a construct related to CD. However, no studies have investigated whole-

brain functional correlates of CD in psychosis. We sought to investigate brain regions 
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explaining the severity of CD in patients with first-episode psychosis (FEPs) compared 

with healthy controls (HCs). 

Methods: 

We computed whole-brain binarized degree centrality maps of 31 FEPs, 25 HCs and 

characterized the patterns of network connectivity in the two groups. In FEPs, we related 

these findings to the severity of CD. We also studied the effect of positive and negative 

symptoms on altered network connectivity. 

Results: 

Compared to HCs, the FEPs showed reduced hubness of a cluster located in the right 

superior temporal gyrus (rSTG). In patients exhibiting high CD, increased hubness of a 

medial superior parietal (mSPL) cluster was observed, compared to patients exhibiting low 

CD. These two regions were strongly correlated with CD scores but not with other 

symptom scores. 

Discussion: 

Our observations are congruent with previous findings of reduced but not increased 

hubness. We observed increased hubness of mSPL suggesting that cortical reorganization 

occurs to provide alternate routes for information transfer. 

Conclusion:  

These findings provide insight into the underlying neural processes mediating the 

presentation of symptoms in untreated FEP. A longitudinal tracking of the symptom course 

will be useful to assess the mechanisms underlying these compensatory changes. 

2.4 Keywords 

conceptual disorganization, first-episode psychosis, resting-state fMRI, graph theory, 

cortical reorganization 
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2.5 Introduction 

Disorganization is one of the three distinct syndromes of schizophrenia (Bilder et al., 1985; 

Kulhara et al., 1986; Liddle, 1987; Andreasen et al., 1995), defined collectively as the 

impairment of the form of thought processes (conceptual disorganization) and bizarre 

actions (behavioural disorganization). Conceptual disorganization (CD), in particular, is 

comprised of difficulties in the goal-directed sequencing of thoughts that manifest as 

circumstantial, illogical or tangential speech or weakened goal of thinking (loose 

associations) (Kay et al., 1987). CD has been shown to be tightly linked to real-world 

functioning (Bellack et al., 1994; Galderisi et al., 2014; Rocca et al., 2018). Conceptual 

disorganization is also referred to as ‘formal thought disorder (FTD)’, though the latter is 

often measured using specific instruments that focus on testing aspects of speech rather 

than the clinical interpretation of disorganization. While the construct of FTD encompasses 

both positive (e.g. illogical, tangential, loosened speech) as well as negative (e.g. poverty 

of speech, reduced content of speech) FTD, the clinical construct of CD refers only to 

positive aspects of FTD.   

CD is seen in both acute and chronic stages of established psychosis (schizophrenia) 

(Feigenson et al., 2014), with some indication that the pathophysiology of persistent CD 

may be distinct from the acute CD seen during an active psychotic episode (Breier and 

Berg, 1999). For example, the acute CD resolves in many patients over time (Andreasen, 

1979; Harrow and Marengo, 1986; Harrow, Marengo & McDonald, 1986; Harvey, Earle-

Boyle & Wielgus et al., 1984), and often covaries with the severity of positive symptoms 

such as delusions and hallucinations, while the CD seen in chronic stages often emerge as 

a distinct subtype, with more negative features of FTD being noted (Roche et al., 2014).  

The persistence of CD despite treatment in longitudinal cohorts has also led to the 

suggestion that existing treatments are not fully effective in alleviating the degree of 

disorganization in patients with psychosis (Harrow and Marengo, 1986; Andreasen and 

Grove; 1986; Marengo and Harrow, 1997). 

A large body of neuroimaging literature has attempted to parse the brain regions implicated 

in the thought disorders of schizophrenia (Kircher et al., 2018), with several 

comprehensive systematic reviews (Roche et al., 2014; Kircher et al., 2018; Cavelti et al., 
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2018) providing an excellent overview of the reported brain correlates of conceptual 

disorganization (more specifically, FTD).  These reviews indicate that a large number of 

studies have focussed explicitly on aberrations in language processing brain regions 

(especially superior temporal gyrus) as the major structural and functional underpinnings 

of FTD (Sumner et al., 2018; Wensing et al., 2017). Nevertheless,  null findings as well as 

findings that implicate brain regions that are not considered to be a part of the language 

network are also reported (Sumner et al., 2018). A notable lack of studies directly relating 

network-level functional connectivity to disorganization has been highlighted (Cavelti et 

al., 2018).  

A limited number of resting-state fMRI (rs-fMRI) studies have investigated the network 

level dysconnectivity underlying disorganization. These studies report reduced 

connectivity between thalamus and postcentral gyrus (Skudlarski et al., 2010), between the 

frontoparietal and cerebellar networks (Repovs et al., 2011), between dorsolateral 

prefrontal cortex (DLPFC) and insula, Wernicke’s area, sensorimotor area and frontal pole, 

and increased connectivity between DLPFC and premotor cortex (Cole et al., 2011) in 

relation to pronounced disorganization or FTD. Taken together, dysconnectivity of several 

brain regions outside of the traditional language network appears to contribute to the 

severity of disorganization. Several studies have also failed to find a relationship between 

severity of disorganization and functional connectivity (Palaniyappan et al., 2013b, 2018a; 

Kircher et al., 2018; Cavelti et al 2017). All of these studies have been conducted on 

established cases of schizophrenia, with patients recruited during a stable medicated phase 

of illness. Thus, the neural basis of acute disorganization seen during first episode 

psychosis is still unclear. Furthermore, to our knowledge, there have been no studies to 

date that investigate voxel-by-voxel whole-brain connectivity in relation to 

disorganization. 

In the current study, we quantified acute conceptual disorganization from a sample of 38 

untreated patients with first-episode psychosis (FEP) and 31 age-matched healthy controls. 

We acquired rs-fMRI scans from an ultra-high field 7-tesla MRI scanner. Without making 

any a priori assumptions about the brain regions implicated in acute disorganization, we 

first undertook a whole brain, voxel wise search to locate brain regions showing aberrant 
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connectivity in relation to the presence of psychosis as well as the severity of 

disorganization. To establish the specificity of our findings to the symptom of conceptual 

disorganization, we studied the effect of other positive and negative symptoms of 

psychosis in relation to the observed results. 

 

2.6 Materials and Methods 

2.6.1 Participants 

The sample consisted of 51 consecutive new referrals to the PEPP (Prevention and Early 

Intervention for Psychosis Program) at London Health Sciences Centre, London, Ontario, 

Canada between April 2017 and July 2018. The PEPP program uses an assertive case-

management model to provide assessment and treatment to individuals 16-39 years old 

experiencing FEP. All potential study participants provided written, informed consent 

prior to participation as per the approval provided by the Western University Health 

Sciences Research Ethics Board, London, Ontario.  

Inclusion criteria for study participation were as follows: individuals experiencing a first 

episode of psychosis and having received antipsychotic treatment for less than 14 days in 

their lifetime. Both inpatients and outpatients were eligible to participate if they were able 

provide informed consent and safely participate in the MRI protocol. All participants 

received a consensus diagnosis from 3 psychiatrists (LP/KD and the primary treatment 

provider) after approximately 6 months on the basis of the best estimate procedure (as 

described in Leckman et al., 1982) and the Structured Clinical Interview for DSM-5 (APA, 

2013). Following the 6-month consensus diagnosis, participants meeting criteria for 

bipolar disorder with psychotic features, major depressive disorder with psychotic features, 

or suspected drug-induced psychoses were excluded from further analyses. Care was 

provided as usual to the study participants through their psychiatrist and other allied health 

members with the PEPP program. Antipsychotic medications were chosen by the treating 

psychiatrist in collaboration with the patient and/or their substitute decision-maker. 

Individuals were offered the option of treatment with a long-acting injectable at the earliest 
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opportunity (Remington et al., 2017) in accordance with current national guidelines for the 

treatment of FEP. 

Recruitment of healthy control subjects (n = 31) was carried out through posters which 

advertised the opportunity to participate in a neuroimaging study to track the outcomes of 

FEP. Healthy control subjects had no personal history of mental illness and no family 

history of psychotic disorders. Group matching with the FEP cohort for age, gender and 

parental education was maintained.  

Exclusion criteria for both the FEP and healthy control groups involved meeting criteria 

for a substance use disorder in the past year according to DSM-5 criteria (DSM-5; APA, 

2013), having a history of a major head injury (leading to a significant period of 

unconsciousness or seizures), having a significant, uncontrolled medical illness, or having 

any contraindications to undergoing MRI. 

 

2.6.2 Clinical and cognitive assessments 

The severity of symptoms in patients was assessed using the 8-item Positive and Negative 

Syndrome Scale (PANSS-8) which measures the severity of positive and negative 

symptoms. We also used the Social and Occupational Functioning Assessment Scale 

(SOFAS) to assess the overall level of functioning (Morosini et al., 2000). We also used a 

modified digit symbol substitution task (DSST) to quantify processing speed, a cognitive 

function that shows the most prominent reduction among patients with psychosis 

(Dickinson et al., 2008). The written and oral items on the DSST were scored separately, 

and the mean scores from these items were used for assessment as in our prior study 

(Palaniyappan et al., 2013a).  

Scores from the PANSS-8 scale were grouped into a positive component (P1, P3 and G9 

measuring ‘delusions’, ‘hallucinations’ and ‘unusual thought content’ respectively), a 

negative component (N1, N4 and N6 measuring ‘blunted affect’, ‘passive/apathetic social 

withdrawal’ and ‘lack of spontaneity & flow of conversation’ respectively) and P2 

measuring ‘conceptual disorganization’. These 8 items were chosen as they are the most 
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indicative of the achievement of clinical remission when patients receive treatment 

(Andreasen et al., 2005) scores. The PANSS-8 was applied by one of the 2 research 

psychiatrists (LP or KD) on the same week of the MRI acquisition, prior to the patients 

receiving clinically adequate treatment (i.e. at first contact on presentation). In addition, 

we also quantified the severity of 2 domains of negative symptoms using Brief Negative 

Symptom Scale (BNSS) (Kirkpatrick et al., 2011) and overall illness severity using 

Clinical Global Impression (CGI) (Guy, 1976). 

Patients who scored 1, 2 or 3 points on individual PANSS items were categorized to have 

low severity of the specific symptom (e.g. low P2), compared to those who scored 4, 5, 6 

or 7 (high P2). We chose this cut-off to distinguish those who have clinically severe vs. 

minimal symptoms recommended by the Remission Working Group (Andreasen et al., 

2005). This cut-off has also been recently employed to distinguish patients with or without 

formal thought disorder and language dysfunction (Çokal et al., 2018). 

As different antipsychotics were prescribed, we used WHO’s algorithm for defined daily 

doses (DDD) for antipsychotic medications (WHO, 2013) to obtain a common unit of 

exposure. DDD refers to a specific amount i.e. a ratio unit of the defined daily dose whose 

absolute milligram units varies among the different medications. 

 

 

 

 

 

 

 

 



33 

 

 

 

Measure Group Group Comparison 

 
High P2 Low P2 Healthy controls 

F / T / 𝜒2 p – value 
Mean (S.D.) Mean (S.D.) Mean (S.D.) 

Subjects included in the final analysis 

Demographic information 

Number of subjects 12 26 31   

Age (years) 21 (2.80) 23.15 (5.04) 21.61 (3.26) 1.61 0.21 

Gender (M/F)^ 11 / 1 21 / 5 19 / 12 5.02 0.08 

Exposure to antipsychotic 

medication (days) 
2.57 (3.55) 5.53 (4.48) - 1.69 0.21 

Duration of untreated illness 

(days) 
207 (186) 343 (579) - 2.36 0.13 

Total DDD of antipsychotics 1.04 (1.79) 2.91 (2.95) - 2.26 0.15 

Diagnosis  

(SCZ / Other psychoses)^ 
8 / 4 21 / 5 - 0.90 0.34 

National Statistics Socio-

Economic Classification 

score 

3.67 (1.22) 3.47 (1.30) 3.20 (1.42) 0.50 0.61 

         

Clinical and Cognitive assessments 

PANSS-8         

Conceptual disorganization 

(P2)† 
4.5 (0.67) 1.73 (0.92) -  < 0.001 

Lack of spontaneity & 

flow of conversation (N6)† 
1.92 (0.996) 2.04 (1.31) -  0.96 

Total positive component 

(P1 + P3 + G9) 
14.10 (2.02) 13.00 (2.56) - 1.20 0.24 

Total negative component  

(N1 + N4) 
5.80 (3.26) 5.61 (3.22) - 0.16 0.88 

Thought and Language Index 

(TLI) 
     

Impoverishment in thinking 0.26 (0.26) 0.10 (0.16) 0.02 (0.06) 11.85 < 0.001a 

Disorganization in speech 0.36 (0.41) 0.22 (0.21) 0.05 (0.08) 9.28 < 0.001a 

YMRS         

Speech rate & amount 

(YMRS 6)† 
0.75 (1.49) 0 (0) -  0.04 

Language / Thought disorder 

(YMRS 7)† 
2.88 (1.81) 0.75 (1.41) -  < 0.001 

SOFAS 37.50 (8.81) 41.83 (13.69) 79.96 (4.77) 109.17 < 0.001b 

DSST (Mean) 53.00 (17.10) 53.27 (12.90) 68.63 (10.93) 12.26 < 0.001b 

†Mann Whitney U-test 
^ chi-square 

test 

S.D. = Standard 

deviation 

DDD = Defined daily 

dose of antipsychotics 

bHigh P2 = Low 

P2 < HC 

aHigh P2 > Low P2 > HC 
High P2: Patients with high 

conceptual disorganization 

Low P2: Patients with low 

conceptual disorganization 

Table 1 Demographic and clinical characteristic of the sample included for analysis in 

the study.  
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Measure Group Group Comparison 

 
High P2 Low P2 Healthy controls 

F / T / 𝜒2 p - value 
Mean (S.D.) Mean (S.D.) Mean (S.D.) 

Subjects excluded from the final analysis 

Demographic information 

Number of subjects 9 4 0   

Age (years) 22.23 (3.64) 21.75 (4.57) - 0.30 0.77 

Gender (M/F)^ 8 / 1 2 / 2 - 2.36 0.13 

Exposure to antipsychotic 

medication (days) 
n.a. n.a. -   

Duration of untreated illness 

(days) 
551 (787.85) 212.5 (147) - 0.83 0.42 

Total DDD of antipsychotics n.a. n.a. -   

Diagnosis (SCZ / Other 

psychoses)^ 
6 / 3 1 / 1‡ - 0.19 0.67 

National Statistics Socio-

Economic Classification 

score 

3.11 (1.45) 2.33 (1.53) - 0.80 0.45 

         

Clinical and Cognitive assessments 

PANSS-8         

Conceptual disorganization 

(P2)† 
4.56 (0.527) 2.00 (1.16) -  0.003 

Lack of spontaneity & 

flow of conversation (N6)† 
1.56 (0.882) 1.75 (0.957) -  0.71 

Total positive component 

(P1 + P3 + G9) 
13.22 (2.54) 10.75 (0.96) - 1.85 0.09 

Total negative component 

(N1 + N4) 
3.56 (2.83) 5.00 (2.16) - 0.90 0.39 

Thought and Language Index 

(TLI) 
     

Impoverishment in thinking 0.08 (0.14) 0.21 (0.31) - 0.589 0.46 

Disorganization in speech 0.03 (0.05) 0.70 (0.71) - 6.397 0.03 

YMRS         

Speech rate & amount 

(YMRS 6)† 
1.21 (1.72) 0 (0) -  < 0.001 

Language / Thought disorder 

(YMRS 7)† 
2.79 (1.27) 0.73 (1.85) -  < 0.001 

SOFAS 35.22 (10.39) 
46.50 

(11.21) 
- 1.77 0.11 

DSST (Mean) 46.39 (9.97) 57.25 (2.90) - 2.09 0.06 

^ chi-square test †Mann Whitney U-test S.D. = Standard deviation 

DDD = Defined daily dose of 

antipsychotics 

‡ data unavailable for other 2 

subjects 

n.a. = not available for dropout 

subjects 

High P2: Patients with high conceptual 

disorganization 

Low P2: Patients with low conceptual 

disorganization 
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Table 2 Demographic and clinical characteristics of the sample excluded from analysis 

in the study. 

2.6.3 MRI acquisition 

All magnetic resonance (MR) images were acquired on a 7.0 T Siemens (Erlangen, 

Germany) Magnetom magnetic resonance imaging (MRI) scanner using a 32-channel head 

coil at the Centre for Functional and Metabolic Mapping (CFMM), Robarts Research 

Institute, Western University.  

Functional (resting-state) MRI data (rs-fMRI) 

A T2*-weighted 2D gradient echo planar imaging (EPI) sequence with 360 volumes 

[acquisition time = 6 min; repetition time (TR) = 1000 ms; echo time (TE) = 20 ms; flip 

angle = 30°; FOV (read, phase) = 208 mm, 100%; number of slices = 63; slice thickness = 

2 mm] was collected. Subjects were instructed to lay still inside the scanner with their eyes 

open for the duration of the scan and not to think of anything in particular. Foam pads were 

used to minimize subject head motion, and headphones were used to reduce scanner noise. 

Dummy scans were acquired prior to the acquisition of resting-state functional volumes to 

allow for the stabilization of both the signal and magnetic field. 

Structural MRI data 

High-resolution T1-weighted sequences were collected for co-registration with the EPI and 

had the following parameters: acquisition time = 9 min 38 s; TR = 6000 ms; TE = 2.83 ms; 

flip angles = 4°, 5°; FOV (read, phase) = 240 mm, 100%; number of slices = 63; slice 

thickness = 0.75 mm. 

 

2.6.4 Data preprocessing 

All steps of data processing and analysis are displayed in Figure 1. 

Preprocessing of rs-fMRI data was performed using the Data Processing Assistant for 

Resting-State fMRI Advanced toolbox (DPARSFA, Yan and Zang 2010, 
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http://rfmri.org/DPARSF), which is based on the Statistical Parametric Mapping software 

(SPM, http://www.fil.ion.ucl.ac.uk/spm, version 12) and the toolbox for Data Processing 

& Analysis of Brain Imaging (DPABI, Yan et al., 2016, http://rfmri.org/DPABI).  

All 360 functional volumes (rs-fMRI) acquired from each subject were corrected for 

differences in slice acquisition times, following which images were spatially realigned to 

the mean image of the dataset to correct for small movements that occurred between scans. 

Individual T1-weighted structural images were co-registered to the mean of the realigned 

EPI images, followed by segmentation into gray matter, white matter, and cerebrospinal 

fluid (Ashburner and Friston, 2005) tissue classes. The “Diffeomorphic Anatomical 

Registration using Exponentiated Lie algebra” or DARTEL toolbox (Ashburner, 2007) 

used the information from the previous step to generate tissue class images which were 

rigidly transformed and in close alignment with SPM tissue probability maps. 

Rs-fMRI signal measures have been shown to be highly sensitive to micro-scale head 

motions (Yan et al., 2013a). We derived the 24 motion parameters (Friston et al., 1996) (6 

head motion parameters [t], 6 head motion parameters at the previous time point [t-1], and 

the squared values of these 12 measures), and regressed the variance in BOLD signal 

amplitude that related to these motion parameters from the realigned data, before further 

processing. 

To control for the effects of confounding factors, linear and quadratic trends in the data as 

well as the signals from the white matter and cerebrospinal fluid were removed from the 

data with linear regression (Yan et al., 2013b). Following temporal filtering using a band-

pass filter (0.01-0.1 Hz), linear detrending and standardization procedures were performed 

on the EPI images. The head motion ‘scrubbing’ routine in DPARSFA was used to correct 

for framewise displacement (FD) motion artifacts using the ‘nearest neighbours’ 

interpolation method (see Iwabuchi & Palaniyappan, 2017). For each subject, we estimated 

the mean FD in mm, averaged across 360 volumes to estimate the overall degree of motion 

during the acquisition (Power et al., 2012, 2014). This was then compared between groups 

to investigate if systematic differences in head motion influenced the results reported.  
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We excluded 13 subjects due to motion during acquisition (n=5), failure of quality check 

during preprocessing (n=5), experiencing anxiety inside the scanner (n=2), not resting 

during the scan (n=1) (13 FEPs, 0 HCs). The excluded subjects did not differ from the 

patients who were included in the final sample in terms of age, gender and PANSS-8 total, 

DSST, NSSEC, SOFAS scores (all p > 0.06) (Table 2), except for head motion which was 

higher in the excluded group (p < 0.001). 

 

2.6.5 Computing degree centrality maps 

To quantify the whole brain connectivity of each voxel to the rest of the brain, we 

employed the metric of degree centrality which was first introduced by Buckner et al., 

2009. The number of connections each voxel has with every other voxel in the brain above 

a certain threshold (r = 0.25 in this case), determines the degree centrality (DC) of that 

voxel. We restricted our voxel-wise analyses of degree centrality (DC) to a predefined gray 

matter mask to control for correlation estimates with non-gray matter voxels. This gray 

matter tissue probability template, released as a part of the tissue priors in SPM12, was 

resliced using the ‘Utilities’ function provided by the DPARSFA software to match the 

dimensions (104 x 104 x 63) of the acquired functional images. The gray matter mask was 

warped into individual space using DARTEL information to compute DC maps in the 

‘native’ space for each subject. 

 Individual voxel-wise network centrality maps were generated within the study 

gray matter mask by subjecting the preprocessed functional runs to a time-series 

correlation analysis conducted for all voxels over the whole brain. The time-series of each 

voxel within the gray matter mask was correlated with the time-series of every other voxel, 

which resulted in a time-series correlation matrix. A correlation threshold of r > 0.25 

(Buckner et al., 2009; Zuo et al., 2012; Yan et al., 2013a, b) was used to generate an 

undirected adjacency matrix. We computed both binarized DC (bDC - the number of edges 

in the binarized adjacency matrix, thresholded at r = 0.25) and the weighted DC (wDC - 

the sum of the weights of all pairwise connections for each voxel (Zuo et al., 2012). The 

individual-level voxel-wise bDC and wDC maps were converted into respective z-score 
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maps by subtracting the mean DC across the entire brain and dividing by the standard 

deviation of the whole-brain DC (Zuo et al., 2012; Yan et al., 2013b). The resulting maps 

were then registered into MNI space with dimensions of isotropic 3 mm3 cubic voxels 

using the transformation information acquired from DARTEL. A smoothing kernel of 4 

mm full-width at half-maximum was applied after registration to enable parametric 

mapping. 

As the one-sample and group comparison contrasts for both wDC and bDC were very 

similar to each other, we only report bDC results in the following section. The wDC maps 

for primary analysis (HC vs FEP comparison) are shown in Appendix 1). 

 

Figure 1 Steps of preprocessing performed in this study, including slice timing correction, 

realignment, coregistration to structural image, segmentation into GM, WM and CSF 

tissue classes, nuisance covariates regression, filtering, removing linear trends from data 

(detrending), computing DC maps in the ‘native’ space, normalization to MNI template 

using DARTEL information, smoothing. 
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2.7 Statistical analysis 

2.7.1.1 Contrasts 

We were primarily interested in 2 contrasts. First, to locate brain regions with aberrant 

connectivity in relation to FEP, we compared all FEP subjects with control subjects. 

Second, to locate brain regions with aberrant connectivity in relation to CD, we compared 

high P2 with low P2 subjects.  In order to interpret the specific region-to-region functional 

connections affected by aberrant bDC, we used a seed-based functional connectivity 

approach (6 mm sphere around the centre of mass of the cluster) and studied the 

relationship between time series of BOLD signals of the seed and the rest of the brain 

within the FEP group. 

 

2.7.1.2 Correction for multiple testing 

For all statistical analyses in this study, the threshold for significance was set after 

correction for multiple testing using a familywise error correction procedure (Nichols and 

Hayasaka, 2013). A conservative cluster inclusion threshold of p<0.001 was used to define 

the clusters (Woo et al., 2014), with a cluster-level significance set at family-wise error 

(FWE) corrected p < 0.05. Given the limitations of clusterwise procedures when making 

localised spatial inferences, we primarily interpret the location of the centre of mass of the 

identified clusters, and not the individual voxel peaks. The nomenclature used in AAL 

atlas (Tzourio-Mazoyer et al., 2002) was used to label the significant clusters. As gender 

was not balanced between patients and controls in the final sample, gender was used as a 

covariate in all group contrasts. 

 

2.7.1.3 Specificity of findings to P2 scores 

Firstly, to demonstrate that the binary split based on a cut-off value does not spuriously 

result in apparent group differences, we used Spearman’s correlation to relate the 

eigenvariate of the cluster showing bDC changes in high vs low symptom severity 
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comparisons to the individual symptom score. Next, to investigate if the findings are 

specific to P2 as a symptom and not to other symptoms of psychosis, we first compared 

the low and high P2 groups on the distributions of all individual symptom scores (namely, 

N6 - the equivalent of negative FTD, G5, positive symptoms (P1, P3, G9), as well as 

negative symptoms (N1, N4) of PANSS-8). We also investigated differences in the DSST 

scores, SOFAS, BNSS between the low P2 and high P2 groups. For the clinical features 

that differed between the two P2-based groups, we repeated the low vs. high severity 

between groups analysis of bDC maps. 

2.8 Results 

2.8.1 Demographic and clinical characteristics 

All patients were acutely psychotic, minimally treated and had significant social and 

occupational dysfunction at the time of scanning. The average duration of illness 

(including prodrome) was 302 days (S.D. = 495 days), with the mean number of days of 

exposure to antipsychotic medication being < 4 days at the time of scanning. 

 The demographic and clinical characteristics of the sample are presented in Table 

1. The two patient groups did not differ from HCs in terms of age, gender and socio-

economic status. The two patient groups did not differ in terms of age, gender, socio-

economic status, duration of untreated illness in days, exposure to antipsychotic 

medication in days, total daily dose of antipsychotic medication and the number of patients 

with schizophrenia in either group (diagnosed 6 months after the initial presentation). 

Across the three groups, we observed a significant difference for the SOFAS and DSST 

(mean) scores, confirmed by an ANOVA. 

 

2.8.2 Effect of psychosis on bDC 

 Two sample t-tests of bDC between the two groups (FEP, HC) revealed a 

significant reduction in hubness of the right superior temporal gyrus (STG), right insula 

and right Heschl’s gyrus in patients with FEP compared to HCs. The group differences are 
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shown in Table 3 and Figure 2 (a). No significant increases in hubness were observed in 

the patient group compared to HCs. 

We also performed a two sample t-test of wDC between the two groups and observed the 

same brain regions showing differences in the two groups (Appendix 1). 

Cluster information Peak voxel statistics 

Brain regions 

included in cluster 

(AAL labels) 

Cluster 

size 

Peak MNI coordinates 

T- value 

p-value 

(cFWE 

corrected) x y z 

FEP < HC       

STG/Insula cluster 148 48 -9 3 5.00 0.001 

Temporal_Sup_R 75      

Insula_R 46      

Heschl_R 22      

       

FEP > HC        

Not significant       

cFWE = cluster FWE   

MNI = Montreal 

Neurological 

Institute 

FEP = First 

episode 

psychosis 

HC = Healthy 

controls 

Table 3 Brain regions showing reduced hubness in the FEP (n = 38) group compared to 

HCs (n = 31). 

 

2.8.3 Functional connectivity of STG/insula cluster with the rest of the 

brain 

In seed-based FC within the entire FEP group, we noted that the right STG/insula cluster 

showed significant functional connectivity with a set of distributed brain regions, including 

bilateral insula, middle cingulate region, SMA, as well as clusters in bilateral thalamus, 

bilateral calcarine and lingual regions extending to cerebellum (lobules 4, 5 and 6), and 

two clusters located at the left and right middle frontal gyrus. This indicates that the right 
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STG/insula cluster belongs to a distributed network of other highly connected hub regions 

of the salience network as well as executive network (Table 4 and Figure 2 (b)). [Also see 

the Appendix 2 for the meta-analytic functional connectivity data from Neurosynth 

database]. We did not find any significant differences in the functional connectivity 

between patients and control subjects on a two sample t test, indicating that the reduced 

hubness of the right STG/insula cluster in psychosis is not driven by any specific network 

level reductions in connectivity. 

Cluster information Peak voxel statistics 

Brain regions included in 

cluster (AAL labels) 

Cluster 

size 

Peak MNI coordinates T- 

value 

p-value 

(cFWE 

corrected) x y z 

STG/Insula cluster 10298 51 -6 3 13.23 < 0.001 

Postcentral_R/L 739      

Temporal_Sup_R/L 597      

Insula_R/L 376      

Precentral_R/L 563      

Paracentral_Lobule_R/L 241      

Supp_Motor_Area_R/L 384      

       

Thalamus cluster 307 -12 -21 3 9.72 < 0.001 

       

Cerebelum cluster 447 -33 -24 3 8.02 < 0.001 

Calcarine_R/L 333      

Cerebelum_4_5_R/L 232      

Cerebelum_6_R/L 210      

Lingual_R/L 202      

       

Left middle frontal gyrus 

cluster 
344 -30 33 33 8.41 < 0.001 

       

Right middle frontal 

gyrus cluster 
194 39 51 15 7.59 < 0.001 

cFWE = cluster FWE 
MNI = Montreal 

Neurological Institute 

AAL = Automated Anatomical 

Labeling 

Table 4 Functional connectivity of the STG/insula cluster to other brain areas for subjects 

in the FEP group (n = 38). The colour bar indicates T-values. 



43 

 

 

 

 

Figure 2 (a) Brain regions showing reduced hubness in the FEP (n = 38) group compared 

to HCs (n = 31) (yellow), (b) Functional connectivity of the STG/insula cluster to other 

brain areas for subjects in the FEP group (n = 38). The colour bars indicate T-values. 

 

2.8.4 Effect of conceptual disorganization on bDC 

In patients with high P2 compared to low P2, we observed a significant increase in bDC 

of a medial superior parietal cluster, comprising of paracentral lobule and precuneus 

regions. Results are shown in Table 5 and Figure 3 (a). 
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Cluster information Peak voxel statistics 

Brain regions included 

in cluster (AAL labels) 

Cluster 

size 

Peak MNI coordinates 
T- 

value 

p-value 

(cFWE 

corrected) x y z 

High P2 > Low P2       

Medial superior 

parietal lobule  cluster 
88 -12 -30 69 4.93 < 0.001 

Paracentral_Lobule_R/L 59      

Precuneus_R/L 17      

cFWE = cluster FWE 
MNI = Montreal 

Neurological Institute 

AAL = Automated 

Anatomical Labeling 

Table 5 Brain regions showing reduced hubness in the High P2 group (n = 12) compared 

to the Low P2 group (n = 26). 

In patients with FEP as a group, the medial superior parietal cluster showed significant 

functional connectivity with a cluster comprising of the post/precentral regions, middle 

cingulate cortex and SMA, as well as bilateral STG and right middle temporal gyrus. This 

indicates that the region showing increased hubness among patients with high degree of 

disorganization is functionally connected to sensorimotor (post/precentral regions), motor 

planning and control (middle cingulate cortex and SMA) regions and to a limited extent, 

to language processing regions (bilateral STG and right middle temporal gyrus) in patients 

(Table 6 and Figure 3 (b)). 
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Cluster information Peak voxel statistics 

Brain regions included 

in cluster (AAL labels) 

Cluster 

size 

Peak MNI coordinates 
T- 

value 

p-value 

(cFWE 

corrected) 
x y z 

Precuneus/SMA cluster 4838 -12 -27 75 9.45 < 0.001 

Postcentral_R/L 351      

Precuneus_R/L 342      

Cingulum_Mid_R/L 279      

Precentral_R/L 261      

Paracentral_Lobule_R/L 255      

Supp_Motor_Area_R/L 233      

       

Gyrus rectus cluster 195 9 30 -21 7.94 < 0.001 

Rectus_R/L 55      

Frontal_Med_Orb_R 50      

       

Sup. Temporal gyrus 

cluster 
466 54 -18 6 8.39 < 0.001 

Temporal_Sup_R/L 247      

       

Middle temporal gyrus 

cluster 
130 51 -66 9 7.07 < 0.001 

cFWE = cluster FWE 
MNI = Montreal 

Neurological Institute 

AAL = Automated 

Anatomical Labeling 

Table 6 Functional connectivity of the medial superior parietal lobule cluster to other 

brain areas in the FEP group (n = 38). 

 

Figure 3 (a) Brain regions showing reduced hubness in the High P2 group (n = 12) 

compared to the Low P2 group (n = 26). (b) Functional connectivity of the medial superior 

parietal lobule cluster to other brain areas in the FEP group (n = 38). The colour bars 

indicate T-values. 
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2.8.5 Specificity of findings to disorganization 

To test the specificity of the relationship between CD and increased bDC of medial SPL 

cluster, we extracted the principal eigenvariate of bDC from this cluster for each patient, 

and related this to individual symptom scores (P1, P3, N1, N4, N6, G5, G9), DSST score, 

SOFAS, mean framewise displacement, age and CGI severity score, using Spearman’s 

correlation test. There were no significant correlations (uncorrected p ranging from 0.13 

to 0.75). Furthermore, there were no systematic differences in the distributions of clinical 

and demographic variables (other than P2 scores) between the two groups of patients. 

We observed a significant relationship between P2 scores and bDC of medial superior 

parietal cluster (Spearman’s rho= 0.42, p=0.009), confirming that the observed results are 

not influenced by the cut-off used to identify highly disorganized FEP subjects.  

We did not find any significant differences in the functional connectivity between the high 

P2 and low P2 groups on a two sample t test, indicating that the increase in hubness of the 

paracentral cluster in high P2 group is not driven by any localised aberrations in 

connectivity. 

 

2.8.6 Discussion 

To our knowledge, this is the first voxel-wise whole brain study investigating the neural 

basis of acute conceptual disorganization.  In an acutely psychotic sample representative 

of the minimally treated patients with first episode psychosis, we report the following 3 

major findings using ultra high-field 7T resting-state fMRI data: (1)  Patients with acute 

first-episode psychosis (FEP) show reduced hubness of the right superior temporal cortex, 

a region that is functionally coupled to many other established cortical hubs (insula, 

midcingulate cortex, thalamus and dorsolateral prefrontal cortex), (2) Highly conceptually 

disorganized patients, compared to those with lower levels of disorganization, demonstrate 

a significant increase in the hubness of medial superior parietal region that is functionally 

coupled to sensorimotor regions (3) This pattern of increased hubness observed in a task-
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free resting state among the acutely symptomatic FEP patients is specific to the symptom 

of conceptual disorganization, not influenced by other positive/ negative symptoms or 

degree of reduced functioning among patients.  

Our observation of reduced hubness affecting superior temporal gyrus and insula is 

consistent with our prior work in a medicated sample of patients with schizophrenia 

(Palaniyappan & Liddle, 2014). In that previous study, we also observed increased hubness 

in the hippocampus, thalamus, inferior temporal and occipital regions in patients with 

schizophrenia compared to healthy controls. In the current acutely psychotic, early stage 

sample, the lack of any increased hubness in FEP indicates that the emergence of such 

peripheral hubs in visual cortex and medial/inferior temporal regions may be a feature of 

chronicity or treatment effect rather than being a feature of psychosis per se.  

We observed an association between increased hubness of paracentral/medial superior 

parietal region that is not conventionally regarded as a functional hub and conceptual 

disorganization. Interestingly, this cluster was functionally connected to the superior and 

middle temporal regions as well as regions comprising the sensorimotor network 

(Dosenbach et al., 2010). Assuming that the pathophysiology of psychosis is a generalized 

dysconnectivity that has a preponderance to affect regions such as STG due to their higher 

hubness, one would not expect to see an increased hubness of peripheral, sensory nodes in 

a subgroup of patients. In this context, our results reaffirm the notion that distinct 

pathophysiological processes are likely to underlie the myriad of symptoms seen in 

psychosis.  

In so far as functional connectivity reflects the ability to transmit information across distant 

brain regions, it is possible that the emergence of peripheral (sensory) hubs could be a 

compensatory mechanism to preserve brain function. This may result in a re-routing of 

information transmitted via functional brain networks (Palaniyappan, 2017). Such re-

routing could result in an aberrant shunting of associative processes (in line with 

Wernicke’s notion of sejunction (Franzek, 1990)), resulting in disorganized speech. While 

we cannot disentangle the compensatory changes from the causally influential changes in 
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the present study, longitudinal tracking of the symptom course as well as change in hubness 

will clarify this issue. 

While most previous studies that recruited patients with persistent disorganization in later 

stages of illness implicated a role for the language processing regions, we note STG 

hubness to be reduced in both high and low P2 groups. It is worth noting that the extant 

literature implicating language regions in thought disorder sought changes in language 

network a priori, rather than taking a discovery approach without task constraints. Cavelti 

et al., 2017 and Sumner et al., 2018 could identify only 2 resting state fMRI studies 

investigating this issue, despite their exhaustive search. Interestingly, these few whole 

brain studies have reported sensorimotor dysconnectivity in association with thought 

disorder. It is also important to note that STG changes seen in patients with psychosis are 

not specific to thought disorder (Sumner et al., 2018). For instance, a large body of 

structural and functional studies implicate STG in negative symptoms (Fischer et al., 2012; 

Li et al., 2018), as well as auditory hallucinations (Modinos et al., 2013, Palaniyappan et 

al., 2012). Our findings support the notion that language network dysfunction is likely to 

be a common feature across the various symptomatic subgroups of psychosis, at least in 

the early, untreated stages of illness.  

 We wish to highlight that our observation does not necessarily negate a role for language 

network in thought disorder; instead it provides empirical support for a role of system-

level dysconnectivity at resting-state as a determinant of the severity of FTD. Our results 

are not directly comparable to the results obtained from studies on patients with persistent 

thought disorder. Ketamine challenge which recapitulates acute thought disorder, has been 

reported to increase functional (BOLD) activity in the same medial sensory association 

cluster where we observed higher level of bDC among the more disorganized patient group 

(Deakin et al., 2008). A white fiber bundle recognized to participate in language production 

(Asami et al., 2013) connects the sensory association cortex to auditory association cortex 

(Wang et al., 2012). Our functional connectivity analysis also revealed a significant 

relationship between superior and middle temporal areas and the medial cluster located on 

the sensory association area in patients with FEP. It is possible that the primary 
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‘downstream’ interference caused by an emergent hub in the sensory association cortex is 

mediated via the language network. 

To conclude, in the presence of reduced hubness of the superior temporal hub region, a 

relative increase in the hubness of sensory association regions is seen in highly 

disorganized patients with FEP. We postulate that an inefficient cortical information 

transfer resulting from the emergence of peripheral hubs underlies the pathogenesis of 

disorganization among patients with psychosis. 
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2.10 Supplementary information 

Appendix 1 Results from a two-sample t-test (FEPs vs. HC) of weighted degree 

centrality (wDC) maps 

We found a similar reduction in weighted degree centrality in the STG/Insula cluster with 

same coordinates (x = 48, y = -9, z = 3) for the peak of the cluster and same peak statistics 

(T = 5, p = 0.001) as observed for the two sample t-test results of our binarized degree 

centrality maps (Table 7). 

Cluster information Peak voxel statistics 

Brain regions 

included in cluster 

(AAL labels) 

Cluster 

size 

Peak MNI coordinates 
T- value 

p-value 

(cFWE 

corrected) x y z 

FEP < HC       

STG/Insula cluster 201 48 -9 3 5.00 0.001 

Temporal_Sup_R 88      

Insula_R 56      

Heschl_R 16      

       

FEP > HC        

Not significant       

cFWE = cluster FWE   

MNI = Montreal 

Neurological 

Institute 

FEP = First 

episode 

psychosis 

HC = Healthy 

controls 

Table 7 Brain regions showing wDC alterations in the FEP group (n = 38) compared to 

the HC group (n = 31). 

Appendix 2 Neurosynth meta-analyses 

For the STG/Insula cluster 
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After obtaining functional connectivity maps of the STG/Insula cluster (showing reduced 

hubness in the patients vs. healthy controls) with the rest of the brain for healthy controls, 

we wanted to assess the comparability of our results with those observed in previous 

literature. We searched the Neurosynth online database (www.neurosynth.org) for meta-

analytic maps of functional connectivity of the cluster belonging to that coordinate (x = 

48, y = -9, z = 3). Our observations of the brain regions which were functionally connected 

to the STG/Insula cluster were similar to findings from the existing literature, confirming 

the comparability of our study to the literature (Figures 4 & 5). 

 

Figure 4 Meta-analytic results (obtained from the Neurosynth database) of functional 

connectivity associations between the STG/Insula cluster and the rest of the brain. 

Figure 5 Functional connectivity associations between the STG/Insula cluster and the rest 

of the brain. 

For the medial superior parietal cluster 

We performed a similar comparability check for the mSPL cluster showing increased 

hubness in the patient group with high disorganization vs. the patient group showing low 

http://www.neurosynth.org/
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disorganization. Results from the meta-analytic maps of functional connectivity of the 

cluster belonging to that coordinate (x = -12, y = -30, z = 69) showed similarities to our 

findings of functional connectivity (Figures 6 & 7). 

 

Figure 6 Meta-analytic results (obtained from the Neurosynth database) of functional 

connectivity associations between the medial superior parietal cluster and the rest of the 

brain. 

 

 

Figure 7 Functional connectivity associations between the medial superior parietal cluster 

and the rest of the brain. 

 

Appendix 3 Correlation between eigenvariate of STG/Insula and mSPL 
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We wanted to determine how the hubness properties of the STG/Insula cluster and medial 

superior parietal clusters were correlated and whether an increase or decrease in hubness 

of one cluster predicted the hubness properties of the other cluster. We extracted the 

eigenvariate of the two clusters and performed a bivariate correlation analysis between 

them. Results of the analysis show a significant positive correlation between the clusters, 

suggesting that an alteration in degree centrality of the STG/Insula is related to the 

alteration in hubness of the medial superior parietal cluster. In our results, we observe a 

decrease in hubness of the STG/Insula cluster but whether that predicts a decrease in 

hubness of the medial superior parietal cluster is not clear.  

Patients (FEP group) mSPL eigenvariate 

 Spearman’s rho p-value 

STG/Insula eigenvariate 0.424 0.008 

Table 8 Correlation between the eigenvariates of STG/Insula and mSPL clusters in the 

FEP group 

 

 

 

 

 

 

 

 

Appendix 4 Scatterplots between the P2 scores and eigenvariate of the STG/Insula 

and mSPL clusters 
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Figure 8 Relationship between eigenvariate of the medial superior parietal cluster and 

conceptual disorganization scores. 

We observed a positive relationship between the P2 scores (X-axis) and the eigenvariate 

of the STG/Insula cluster (Y-axis) as shown in Figure 8. The scatterplot suggests that an 

increase in the severity of P2 (conceptual disorganization) is associated with an increase 

in hubness of the STG/Insula cluster. Therefore, in patients with high conceptual 

disorganization, we would expect the STG/Insula cluster to act like a functional hub of the 

healthy control group which could explain the lack of findings of any differences in degree 

centrality between the healthy controls and the High P2 group. However, some points on 

the scatterplot do not follow the relationship depicted by the line of best fit. We would 

expect to see a collinear relationship between low P2 scores and low STG/Insula hubness 

and High P2 scores and high STG/Insula hubness. However, some patients (points on the 

graph) exhibit low P2 scores but high STG/Insula hubness and vice-versa. Therefore, the 

relationship between the eigenvariate of the STG/Insula cluster and P2 scores do not 

present a conclusive relationship. 
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Figure 9 Relationship between eigenvariate of the medial superior parietal cluster and 

conceptual disorganization scores. 

We observed a positive relationship between the P2 scores (X-axis) and the eigenvariate 

of the mSPL cluster (Y-axis) as shown in Figure 9. The scatterplot suggests that an increase 

in the severity of P2 (conceptual disorganization) scores is associated with an increase in 

hubness of the mSPL cluster. However, most FEPs show high hubness of the mSPL cluster 

at different values of the P2 scored item. From this relationship we would expect to confirm 

that conceptual disorganization is a persistent feature of psychosis and is associated with 

increase in the hubness of the mSPL brain region. There are, however, a few subjects who 

show reduced hubness properties of the mSPL cluster at a low severity of conceptual 

disorganization. This suggests that there is no reorganization of cortical networks 

occurring in these subjects as a result of the decrease in hubness of the STG/Insula region. 

There are 2 subjects which depict reduced hubness in the mSPL cluster with high 

conceptual disorganization, which suggests that in these subjects the mSPL cluster either 



62 

 

 

 

does not show any hubness alterations or reduces in hubness after the initial compensatory 

increase in hubness, therefore behaving like a functional hub in the healthy brain. 
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Chapter 3: General discussion 

3 Conclusions  

The aim of the current study was to investigate the theory of ‘dysconnection’ (Friston & 

Frith, 1995) in an acutely psychotic patient sample. A reduction in hubness of the 

STG/Insula region in relation to the symptoms of conceptual disorganization (and the 

association of this region to other regions involved in sensory and executive functioning) 

helps explain the theory of ‘dysconnection’ in distributed brain networks in first episode 

psychosis. These results are consistent with previous work in a medicated sample of 

patients with schizophrenia (Palaniyappan & Liddle, 2014). In that previous study, 

increased hubness was also observed in the hippocampus, thalamus, inferior temporal and 

occipital regions in patients with schizophrenia compared to healthy controls. In the current 

acutely psychotic, early stage sample, the lack of any increased hubness in FEP indicates 

that the emergence of such peripheral hubs in visual cortex and medial/inferior temporal 

regions may be a feature of chronicity or treatment effect rather than being a feature of 

psychosis per se.  

Furthermore, increased hubness of the medial superior parietal (mSPL) cluster ─in the 

group with a high severity of conceptual disorganization─ provides evidence of an 

abnormal reorganization occurring in cortical networks. Conventionally, this brain region 

is not regarded as a functional hub. This speaks to an adaptive mechanism to 

counterbalance the reduced hubness observed in the overall patient group. Interestingly, 

this cluster was functionally connected to the superior and middle temporal regions as well 

as regions comprising the sensorimotor network (Dosenbach et al., 2010). We, therefore, 

conclude that a generalized dysconnectivity of the STG/Insula cluster might explain the 

underlying pathophysiology of psychosis. Specifically, the observation of increased 

connections in the peripheral sensory brain regions (mSPL) could explain the distinct 

pathophysiological processes that are likely to underlie the multifaceted nature of the 

symptoms of psychosis. The compensatory hubness increase in the peripheral sensory 

brain region may suggest the emergence of alternate routes for the transmission of 

information, via functional brain networks, as an activity to preserve brain function 

(Palaniyappan, 2017). This re-routing could result in an aberrant shunting of associative 
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processes (Wernicke’s notion of sejunction (Franzek, 1990)) —explaining the core 

symptoms observed in psychosis.  

Graph theory has, therefore, been very useful in studying brain network alterations in early-

stage as well as established psychosis at the level of a microscopic voxel. Previously, graph 

theory has been successful in demonstrating abnormalities in a sample comprising of 

patients with chronic schizophrenia (Zalesky et al., 2011; Palaniyappan & Liddle, 2014; 

Yu et al., 2015; Cheng et al., 2015; Cao et al., 2016; Kambeitz et al., 2016; Palaniyappan 

et al., 2018). However, careful consideration is necessary when using graph metrics as 

diagnostic measures or as tools to predict the future functional outcomes of psychosis. This 

is because a single graph metric would both be insufficient in the characterization of 

aberrations in functional brain networks and might not consider the dynamically changing 

topological properties of brain networks when explaining these network alterations (De 

Vico Fallani et al., 2014). This suggests the need for using other mathematical models 

(e.g., dynamic causal modelling (Friston, 2003) and Granger causality analysis (Granger, 

1969)) alongside graph theory which would be useful to predict brain activity at a future 

time point based on patterns of brain activity at the present and previous time points. This 

approach would also be helpful to map the directionality of information processing, not 

only in terms of top-down and bottom-up processing streams but also in terms of the 

sequential recruitment of brain areas in either performing a task or maintaining internal 

homeostasis.  

One limitation of this study is the difficulty in delineating the specificity of these 

compensatory changes occurring as a result of the causally influential decrease in 

connectivity. To delineate the specificity of these compensatory changes, future works 

should include a longitudinal characterization of brain networks at follow-up time points 

(e.g. at 6 and 12 months). This would allow us to identify the effects of the severity and 

duration of the symptoms on the patterns of altered connectivity across the whole brain. 

Furthermore, a cross-sectional analysis of altered hubness in patients with established 

psychosis compared to healthy controls would be useful to confirm that our findings are 

comparable to the observations in the existing literature. It is important to note here that 

for the HCs in our sample the FC between the whole brain and both the STG/Insula and 
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mSPL clusters is similar to the evidence obtained from the meta-analytic literature on the 

FC of these two regions, suggesting the relevance of our findings to further the goal of 

establishing the neural basis of established psychosis. In addition, these results provide a 

limited understanding of the extent of these hubness alterations which is a second 

limitation of this study. To identify the extent of DC alterations, it would be beneficial to 

employ a region-of-interest (ROI) approach to characterize and compare functional 

networks in both patients and controls. A major advantage of using this approach would 

be a reduction in the size of adjacency matrices (moving from a voxel-wise approach to an 

ROI-based approach) used to characterize graph metrics (e.g. degree centrality (DC)). This 

would reduce the computational complexity of a multidimensional dataset. Another 

advantage of this approach would be estimating DC alterations in a single subject (as 

opposed to the entire group) by comparing the DC maps of an individual patient and the 

entire HC sample. The measure of ‘Hub Disruption Index’ (proposed by Achard et al., 

2012), which determines the functional reorganization occurring in resting-state brain 

networks, could be helpful for such an estimation. However, the estimation of the extent 

of FC alterations and cortical reorganizations for individual patients is highly sensitive and 

variable in nature due to several reasons (e.g., the inter-subject variability of the 

psychopathological domains and the number of voxels within a particular ROI). 

Addressing these two limitations in our current study could help characterize functional 

brain networks in unmedicated first-episode psychosis as well as provide insight into the 

progressive changes which occur as a characteristic feature of established psychosis.  

With regards to the related construct of FTD in psychosis, our study lacked instruments 

such as the Thought and Language Index (TLI) which comprehensively quantify the 

various aspects of FTD (Kircher et al., 2018; Strik et al., 2010). As a result, the functional 

correlates of hemodynamic (BOLD) activation in relation to the symptoms of FTD were 

not investigated in this study. However, our non-investigation of the neural correlates of 

FTD (and observations of aberrant FC in relation to CD) does not necessarily negate the 

importance of studying the language network in thought disorder; instead, it provides 

empirical support for the need to investigate a system-level dysconnectivity occurring at 

resting-state as a determinant of the severity of FTD. It would, therefore, be helpful to 

obtain scores for individual items on the TLI assessment tool for all individuals and 
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investigate the functional connectivity patterns which explain the multifaceted nature of 

FTD in psychosis. Although the individual items of formal thought disorder (Thought, 

Language and Communication scales) and conceptual disorganization (PANSS) have both 

been used to measure disorders in thought processes associated with psychosis, no 

significant correlations were observed between these items in terms of their respective 

scores for individual subjects (Docherty, 2012). Testing the functional dependence of both 

these measures (by correlating individual functional connectivity correlates of FTD and 

CD) would thus be interesting to assess the reliability of the construct of FTD as a measure 

of disorganization. Since the current study was focused on studying patients with first 

episode psychosis, our observations are not directly comparable to the results obtained 

from previous studies on patients with persistent thought disorder. 

One of the strengths of our study is the use of an ultra-high field (UHF) magnet of field 

strength 7T to scan the study participants. Using an ultra-high field (UHF) over traditional 

field strengths (1.5 T / 3 T) can have many advantages such as a better spatial resolution 

of the MR images. UHF can help resolve the difficulties in the assessment of structural 

and functional complexities of the human brain at various spatial resolutions. With an 

increase in field strength, it is possible to increase the signal-to-noise ratio (SNR) as well 

as the contrast-to-noise ratio (CNR) of the MR signal ─therefore increasing the resolution 

of the scanned image (Duyn, 2012). A multiband acceleration factor (MB = 3) was also 

included in the functional (rs-fMRI) acquisition protocol for our study. This is an 

advantage over other standardized protocols because this technique effectively shortens 

acquisition time (without decreasing either the echo time (TE) or SNR) by the 

simultaneous acquisition of multiple slices. In terms of the implications of using a 

multiband acceleration factor for rs-fMRI data, analyses have revealed significantly 

increased levels of sensitivity in the detection of RSNs (Preibisch et al., 2015).  

Another strength of our study is the inclusion of unmedicated patients in their first episode 

of psychosis. This implies that our findings (of aberrant functional connectivity of 

distributed brain regions) point towards the functional basis of psychosis and that they are 

specific to the symptom of conceptual disorganization observed in psychosis, not 



68 

 

 

 

influenced by other positive/ negative symptoms or degree of reduced functioning among 

patients. 
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