Role of PU.1 and C/EBPa in Remodelling the Interleukin (IL)-1ß Enhancer-Promoter Interaction

Background:

IL-1 β is a potent inflammatory cytokine promptly expressed in activated myeloid immune cells. Among various transcription factors, PU.1 and CCAAT/enhancer-binding protein alpha (C/EBP α) play a key role in the lineage commitment of myeloid cells. To date, however, the exact mechanisms by which these lineage-determining transcription factors employ to regulate the expression of myeloid-specific genes remains elusive; thus, this study explores the role of PU.1 and C/EBP α in remodelling the chromatin conformation that allows ample production of IL-1 β .

Methods:

To examine the mechanism of these lineage-determining transcription factors, production of IL-1 β and enhancerpromoter interactions were analyzed in non-myeloid B16-BL6 cells that were ectopically expressed with PU.1 and C/EBP α .

Results:

Overexpression of PU.1 and C/EBP α rendered B16-BL6 cells response to the bacterial component lipopolysaccharide (LPS) and expressed IL-1 β . These cells also expressed a putative enhancer RNA, located ~10 kbs upstream of the IL-1 β transcription start site, in response to LPS. Knocking out the enhancer region reduced IL-1 β mRNA expression, suggesting that the genomic region is an enhancer. Based on the chromatin conformation capture-qPCR analysis, IL-1 β enhancer-promoter interactions were established upon overexpression of PU.1 and C/EBP α , which was further enhanced by LPS.

Discussion & Conclusion:

These results suggest that PU.1 and C/EBP α are pioneering transcription factors that establish chromatin looping between IL-1 β regulatory elements and induce the generation of enhancer RNA, resulting in the production of IL-1 β in non-myeloid cells.

Interdisciplinary Reflection:

Our system that investigates how transcription factors can remodel the chromatin landscape will further expand our understanding of gene regulation.