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Abstract 

Nitrogen in wastewater treatment plant effluents has adverse environmental effects on aquatic 

systems. Excessive concentrations of nitrogen in water bodies can result in the depletion of 

dissolved oxygen, deterioration of water quality, and shifts of biotic community. Conventional 

biological nitrogen removal (BNR) processes consume high energy for nitrification and require 

external carbon for denitrification. Alternatively, partial nitrification is of interest as an 

emerging technology for its lower need of organic carbon addition and cost savings in aeration.  

In this study, the main objectives are: 1- developing a mathematical model involving 

operational parameters for the determination of successful partial nitrification conditions; 2- 

analyzing the factors affecting the performance of partial nitrification in a sequencing batch 

reactor (SBR) using kinetic models at 35oC; 3-  investigating the effect of dissolved oxygen 

(DO) on nitrification in a sequencing batch reactor (SBR) treating low ammonia wastewater 

(40 mg N/L) at low temperature (14oC); 4- investigating the effect of nickel on nitrification in 

a sequencing batch reactor (SBR) treating low ammonia wastewater (40 mg N/L) at low 

temperature (10oC). 

First, a mathematical model based on the minimum DO concentration (DOmin), 

minimum/maximum substrate concentration (Smin and Smax), was developed. The model 

evaluated the influence of pH (7-9), temperature (10oC-35oC), and solids retention time (SRT) 

(5days-infinity) on the minimum/maximum substrate concentration (MSC) values. In addition, 

specific application for shortcut nitrification-anammox process at 10oC was analyzed. 

Furthermore, experimental data from different literature studies was used for model simulation 
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and the model prediction fitted experimental data well. The model provides a method to 

identify feasible combinations of pH, DO, total ammonium nitrogen (TAN), total nitrite 

nitrogen (TNN), and solids retention time (SRT) for successful shortcut nitrification. 

Second, to meet objective 2, a sequencing batch reactor (SBR) was operated at 35oC for over 

4 months with dissolved oxygen (DO) and influent ammonia concentration as operating 

variables to evaluate nitrite accumulation. Stable partial nitrification was observed at two 

conditions, influent ammonia concentration of 190 mg N/L and a DO of 0.6-3.0 mg/L as well 

as influent ammonia concentration of 100 mg N/L and a DO of 0.15-2.0 mg/L with intermittent 

aeration. Kinetic parameters were determined or estimated with batch tests and model 

simulation. The kinetic model predicted the SBR performance well.   

Third, a sequencing batch reactor (SBR) treating low ammonia wastewater (40 mg N/L) at a 

low temperature (14 °C) was operated for 130 days. Three dissolved oxygen levels (5–6 mg 

O2/L, 2–3 mg O2/L, and 0.8–1.0 O2/L) were tested. Dissolved oxygen reduction resulted in 

lower ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) activity, with 

decreasing ammonia conversion ratio (ACR) and increasing nitrite accumulation ratio (NAR). 

The maximum growth rates of AOB and NOB determined in this study (0.28 and 0.38 d-1) 

were below the median literature values (0.47 and 0.62 d-1), whereas the oxygen half-saturation 

coefficients of AOB and NOB (1.36 and 2.79 mg/L) were higher than those found in the 

literature. The kinetic model explained the SBR performance well. Low dissolved oxygen, 

together with long solids retention time, was recommended for partial nitrification at a low 

temperature.  

Lastly, acute and chronic toxicity of nickel to nitrifiers was inverstigated. Chronic toxicity of 

nickel to nitrification of low ammonia synthetic wastewater was investigated at 10oC in two 
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SBRs with 1 mg/L nickel dosing either from the beginning or after biomass concentration 

decreased to 300 mg/L. Significant nickel inhibition occurred at Ni/MLSS ratio of 2.7 mg Ni/ 

g MLSS. At a Ni/MLSS ratio of 4-7 mg Ni/g MLSS, ammonia oxidizing bacteria (AOB) 

activity was inhibited by 47%-58% after acclimatization. After long-term acclimatization to 

nickel at 10oC, high DO(~7mg/L) and SRT of 63-70 days, the µmax, b and Ko of AOB and 

NOB were determined as 0.16 d-1, 0.098 d-1 and 2.08 mg O2/L, and 0.16 d-1, 0.098 d-1 and 2.12 

mg O2/L, respectively. Acute toxicity of nickel to nitrification at 10oC, 23oC, and 35oC was 

evaluated by short-term batch tests. The nickel inhibition constants based on a modified non-

competitive model for nitrification at 10oC, 23oC, and 35oC were determined. Long-term SBRs 

operation and short-term batch tests results were consistent. Short-term nickel inhibition of 

nitrifying bacteria was completely reversible. 

Keywords 

Partial nitrification, biological nitrogen removal, model, dissolved oxygen, temperature, 

kinetics, nickel 
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Chapter 1  

1 Introduction 

1.1 Rationale 

Eutrophication can be stimulated by nitrogen as well as phosphorus.  Thus, the discharge 

of nitrogen from wastewater treatment plants has been strictly regulated in the last two 

decades. Conventional biological nitrogen removal processes, which consist of 

nitrification–denitrification, have been applied worldwide. However, there are three 

concerns about the conventional BNR process. First, it consumes high amount of energy 

for nitrification; second, it requires external organic carbon sources for denitrification; 

third, it can release considerable amounts of nitrous oxide (N2O), the carbon footprint of 

which is over 300 times greater than CO2 over a 100-year period on climate [1]. 

Alternatively, new processes including partial nitrification-denitrification and partial 

nitrification-anammox have been put forward. Compared with conventional BNR process, 

these new processes consume lower energy, require less organic carbon, and produce less 

sludge [2,3]. However, the N2O emissions of partial nitrification has been reported as 4 to 

14 times higher than full nitrification [4].  

One hot topic that recently emerged centers on the feasibility and performance of nitritation 

at low temperature and low nitrogen concentration due to the motivation to further apply 

nitritation-anammox process for mainstream wastewater, which is characterized by low 

nitrogen concentrations (20 to 60 mg NH4-N l−1) and low temperatures (5-25°C) [5–7]. 
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This topic is more applicable to northern countries like Canada. In southern Ontario, the 

wastewater temperature can be as low as 14oC [8]. 

Several strategies have been adopted to realize partial nitrification. The strategies are: high 

temperature, pH, low dissolved oxygen (DO), short sludge retention time (SRT), high free 

ammonia (FA), and chemical inhibitors [9–11]. The operational conditions are correlated 

to each other. Also, despite the chemical inhibitors, the optimal operational conditions to 

realize partial nitrification are determined by microbial kinetics.  

1.2 Thesis objectives 

The specific objectives of this thesis are as follows: 

1) development of a mathematical model involving operational parameters for 

determination of successful partial nitrification conditions;  

2) analyzing the factors affecting the performance of partial nitrification in a sequencing 

batch reactor (SBR) using kinetic models at 35oC;  

3)  investigating the effect of DO on nitrification in a sequencing batch reactor (SBR) 

treating low ammonia wastewater (40 mg N/L) at low temperature (14oC);  

4) investigating the chronic and acute effect of nickel on nitrification in a sequencing batch 

reactor (SBR) treating low ammonia wastewater (40 mg N/L) at low temperature (10oC). 
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1.3  Thesis Organization 

This PhD thesis is written in the article-integrated format specified by the school of 

Graduate and Postdoctoral Studies at The University of Western Ontario. The contents of 

the seven chapters included in this thesis are presented below: 

Chapter 1 presents a general introduction related to the background and motivation for 

studying the effect of operational conditions on nitrification at different temperatures. The 

research objectives of the thesis are also included in Chapter 1. 

A literature review including background on biological nitrogen removal (BNR) is 

presented in chapter 2. The research progress related to three generations of BNR processes 

(conventional BNR process, partial nitrification-denitrification and partial nitrification- 

anammox) is presented.  

Chapter 3 is a research article entitled “A model for determination of operational conditions 

for successful shortcut nitrification”. In this study, a model based on minimum dissolved 

oxygen concentration (DOmin), minimum/maximum substrate concentration (Smin and 

Smax), was developed. In addition, the effect of temperature (10-35oC), pH (7-9), and SRT 

(5d-infinity) was analyzed. Specific application for partial nitrification-anammox process 

at 10oC was analyzed. Comparison of the model predicted DOmin with experimental data 

suggested that this model can be a useful and practical tool for shortcut nitrification systems 

design and operation. 

Chapter 4 is a research article entitled “Operational conditions for successful partial 

nitrification in a sequencing batch reactor (SBR) based on process kinetics”. In this study, 

http://iahr.tandfonline.com/doi/abs/10.1080/09593330.2016.1209246
http://iahr.tandfonline.com/doi/abs/10.1080/09593330.2016.1209246
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an SBR was operated for 4 months treating synthetic wastewater with ammonia in the range 

of 35–200 mg N/L at varying DO concentrations as well as continuous and intermittent 

aeration. Stable nitrite accumulation was observed at two conditions. Kinetic parameters 

were determined or estimated with batch tests and model simulation. The kinetic model 

predicted the SBR performance well. 

Chapter 5 is a research article entitled “Performance and kinetics of nitrification of low 

ammonia wastewater at low temperature”. In this study, an SBR was operated for over 4 

months treating low-ammonia (40 mg N/L) synthetic wastewater at low temperature (14oC) 

and an SRT of 10 days. The DO effect was invstestigated at DO levels of 5-6 mg/L, 2-3 

mg/L and 0.8-1.0 mg/L. This is the first attempt to directly measure the kinetics of the 

nitrifiers which are cultivated at low temperature.  

Chapter 6 is a research article entitled “Acute and chronic toxicity of nickel to nitrifiers at 

low temperature”. In this study, chronic toxicity of nickel to nitrification of low ammonia 

synthetic wastewater was investigated at 10oC in two SBRs with 1 mg/L nickel dosing 

either from the beginning or after biomass concentration decreased to 300 mg/L. Acute 

toxicity of nickel to nitrification at 10oC, 23oC, and 35oC was evaluated by short-term batch 

tests. This is the first study to compare the acute toxicity of nickel to nitrification at 

different temperatures and the first study on the chronic toxicity of nickel to nitrification at 

10oC. 

Chapter 7 includes the main conclusions of the thesis along with scientific contributions, 

study limitations and recommendations for future work. 

http://www.ingentaconnect.com/content/wef/wer/pre-prints/content-nahk
http://www.ingentaconnect.com/content/wef/wer/pre-prints/content-nahk
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Chapter 2  

2 Literature review 

2.1 Introduction 

Nitrogen in wastewater treatment plant effluents has adverse environmental effects on 

aquatic systems. Excessive concentrations of nitrogen in water bodies can result in 

eutrophication which would translate to accelerated growth of algae and plankton over 

other plants, leading to the depletion of dissolved oxygen, deterioration of water quality, 

and shifts of biotic community [1,2]. Therefore, most countries apply stringent discharge 

standards on organic and ammonium nitrogen. 

Most nitrogen in raw municipal wastewaters is in the form of organic nitrogen, and 

ammonia with limited nitrate and nitrite concentrations. Ammonia and organic nitrogen 

are often combined together, and measured as Total Kjeldahl Nitrogen (TKN). Both 

physico-chemical and biological methods have been put forward to eliminate nitrogen from 

wastewater [3]. Among all these strategies, BNR, is still the most economically feasible 

and effective treatment for municipal and industrial wastewaters [4]. 

Till now, three generations of biological processes have been put forward: conventional 

BNR process, partial nitrification-denitrification process, and partial nitrification-

anammox process.  
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2.2 Biological nitrogen removal processes 

2.2.1 Conventional BNR process 

Conventional biological wastewater treatment process consists of two steps: nitrification 

followed by denitrification, as shown in Figure 2-1.  

 

Figure 2-1. Conventional BNR process (adapted from [5]) 

Nitrification implies an autotrophic oxidation of ammonia to nitrate under aerobic 

conditions. Nitrification is conducted in two steps: first, ammonia is oxidized to nitrite by 

ammonia oxidizing bacteria (AOB); second, nitrite is further oxidized to nitrate by nitrite 

oxidizing bacteria (NOB). Both AOB and NOB are autotrophic bacteria. They use carbon 

dioxide as the carbon source and molecular oxygen as an electron acceptor. Ammonia or 

nitrite are the electron donor for AOB and NOB, respectively [6,7].  
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The stoichiometry of biological nitrification is as follows: 

AOBs: 2NH4
++3O2→2NO2

-+2H2O                                                                          (Eq.2.1) 

NOBs: 2NO2
-+O2→2NO3

-                                                                                        (Eq.2.2) 

Total oxidation reaction: NH4
++2O2→NO3

-+2H++H2O                                           (Eq.2.3)            

Based on the above stoichiometry, complete oxidation of 1g ammonia nitrogen requires 

4.57 g O2, with 3.43 g O2 and 1.14 g O2 in each stage, respectively. As acid is generated 

alkalinity is needed to neutralize the solution.  

The full nitrification reaction can be approximated by Equation 2.4. 

NH4
++2HCO3

-+2O2→NO3
-+2CO2+3H2O                                                                (Eq.2.4) 

In this equation, for each gram of ammonia nitrogen (as N), 7.14g of alkalinity as CaCO3 

will be required. 

Along with obtaining energy, a portion of the ammonium ion is assimilated into cell tissue. 

Equations for the biochemical conversion of ammonia to nitrate with cell synthesis using 

a representative measurement of yield and oxygen consumption for AOBs and NOBs are 

as follows [3]: 

AOBs: 55NH4
++76O2+109HCO3

-→C5H7O2N+54NO2
-+57H2O+104H2CO3          (Eq.2.5) 

NOBs: 400NO2
-+NH4

++4H2CO3+195O2+HCO3
-→C5H7O2N+400NO3

-+3H2O       (Eq.2.6) 

Overall reaction: 
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NH4
++1.83O2+1.98HCO3

-→0.021C5H7O2N+0.98NO3
-+1.041H2O+1.88H2CO3        (Eq.2.7) 

In the above equations, yields of AOBs and NOBs are 0.15 mg cells/mg NH4-N oxidized 

and 0.02 mg cells/mg NO2-N oxidized, respectively. Oxygen consumption ratios in the 

equations are 3.16 mg O2/mg NH4-N oxidized and 1.11 mg O2/mg NO2-N oxidized, 

respectively. Also, 7.07 mg alkalinity as CaCO3 is required per mg ammonia nitrogen 

oxidized to nitrate nitrogen. 

Denitrification is an anoxic process, during which nitrite or nitrate is converted to nitrogen 

gas (N2) by heterotrophic denitrifying bacteria. Denitrification utilizes organic matter as 

electron donor and nitrite or nitrate as electron acceptor instead of oxygen. Commonly used 

carbon source includes acetate, glucose, sugar, methanol and a variety of food and beverage 

wastes with the general chemical formula of C10H19O3N [3]. The general reaction of 

denitrification is shown below: 

 C10H19O3N+10NO3
-→5N2+10CO2+3H2O+NH3+10OH-                                        (Eq.2.8) 

However, for different organic carbons, the specific denitrification reaction are different. 

For example, the stoichiometry for acetate is shown in equation 2.9.  

5CH3COOH+8NO3
-→4N2+10CO2+6H2O+NH3+8OH-                                           (Eq.2.9) 

Based on the above equations, contrary to nitrification, alkalinity is produced rather than 

consumed in denitrification. For each gram of nitrate reduced, 3.57 gram of alkalinity is 

produced, which is half that consumed in nitrification.  

Optimum operational conditions for denitrification are depicted below in Table 2-1. 
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Table 2-1. Optimums operational conditions for denitrification process 

Parameters Value 

Temperature (oC) 20-40 

Dissolved oxygen (mg/L) <0.2 

Free nitrous acid (FNA) (mg N/L) <0.01 

pH 7.0-7.5 

SRT (d) 3-6 

2.2.2 Simultaneous Nitrification and Denitrification (SND) 

As nitrification and denitrification are carried out by different microorganisms under 

different conditions (aerobic and anoxic), they should be designed and operated in separate 

time sequences or spaces, which is common in conventional BNR processes [8]. As a result, 

a long retention time or a large volume is required to accomplish complete nitrogen 

removal. Conversely, in simultaneous nitrification and denitrification (SND), nitrification 

and denitrification occur concurrently in the same reactor [9,10]. Thus, both time and space 

are saved greatly. There are two mechanisms involved in SND: physical and biological 

[11–13].   

Physically, SND occurs as a result of DO concentration gradients within activated sludge 

flocs or biofilms due to diffusional limitations (Figure 2.2), which has been confirmed by 

microelectrode measurements [14–17]and 15N tracer techniques [18]. The nitrifiers and the 

denitrifiers exist in aerobic regions with DO higher than 1-2 mg/L, and in anoxic zones 

with DO less than 0.5 mg/L, respectively. 
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The biological mechanism for SND is very complex. From a microbiological point of view, 

SND results from oxidization of ammonia by heterotrophic nitrifiers and the reduction of 

nitrate or nitrite by aerobic denitrifiers [18–20]. For example, T. pantotropha was identified 

as not only a heterotrophic nitrifier but also an aerobic denitrifier, which can carry out the 

following reactions sequentially and simultaneously in the presence of a suitable electron 

donor (e.g. acetate)[19]. 

 NH4
+            NH2OH         NO2

-             N2O          N2                                                                

SND has significant advantages over conventional processes [21,22]. Not only is the cost 

for anoxic tanks saved, but also the overall process design is simplified.  

 

Figure 2-2. Schematic of oxygen concentration profile within a microbial floc. 

(adapted from [23]) 

2.2.3 Partial nitrification-denitrification 

Partial nitrification-denitritation process is a partial nitrification to nitrite followed by 

nitrite denitrification [24,25].  
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The reactions involved in this process are shown below [26]: 

Partial nitrification: 

NH4
++1.5O2+2HCO3

-→NO2
-+2CO2+3H2O                                                           (Eq.2.10) 

Denitrification: 

NO2
-+4H++3e-→0.5N2+ 2H2O                                                                               (Eq.2.11)       

Global equation of partial nitrification-denitritation:  

NH4
++1.5O2+2H++3e-→0.5N2+3H2O                                                                    (Eq.2.12) 

        

Figure 2-3. Partial nitrification-denitrification process (adapted from [26]) 

Compared with conventional BNR processes, the main reported advantages of partial 

nitrification and denitrification via nitrite are as followed [27–29]: 

1) 25% lower oxygen consumption in the aerobic stage. 

2) In the anoxic stage, the electron donor requirement is lower (up to 40%). 

3) Nitrite denitrification rates are 1.5 to 2 times higher than with nitrates. 
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4) 33%-35% lower sludge production in nitrification and 55% lower sludge 

production in denitrification, respectively. 

2.2.4 Partial nitrification-anammox 

An alternative route for biological nitrogen removal is provided by anammox-based 

processes. Anammox is the shortcut of ammonia removal cycles, which directly converts 

ammonium to nitrogen gas and a small amount of nitrate using nitrite as an electron 

acceptor under strict anoxic conditions [30]. Anammox bacteria account for about 50% of 

all N2 released into the atmosphere [31]. Anammox bacteria are strict anaerobes and 

autotrophs. They are characterized by slow growth rates and have a long doubling time of 

10 to 12 days at 35oC [32, 33]. Anammox bacteria utilize CO2 as the sole carbon source 

and NO2 as the electron acceptor for ammonium oxidation [34]. The stoichiometry of the 

overall anammox metabolic reaction is described below:   

NH4
++1.32NO2

-+0.066HCO3
-+0.13H+→1.02N2+0.256NO3

-+0.066CH2O0.5N0.15+2.03 

H2O                                                                                                                         (Eq.2.13) 

As can be seen in Eq.2.13, anammox bacteria need nitrite as an electron acceptor. Thus, 

combination of nitritation and anammox process is a good choice for biological nitrogen 

removal. Approximately 55% of the ammonia is converted to nitrite during nitritation and 

then the effluent enters the anammox process. 

The possible mechanism for anaerobic ammonium oxidation is shown in Fig 2-4 [35]. Part 

a in Fig 2-4 depicts the organellelike structure of the anammox microbe in which the 

energy-generating process involving the combination of ammonia with nitrite uptakes 



 

15 

 

occurs. Part b in Fig 2.4 shows the anammoxosome membrane and the anammox reaction 

pathway.  The nitrite-reducing enzyme (NR) is on the cytoplasm side of the cell membrane. 

It catalyzes the reduction of NO2
− to hydroxylamine. Hydrazine hydrolase (HH) across the 

cell membrane condenses hydroxylamine and ammonia to hydrazine. Hydrazine-oxidizing 

enzyme (HZO) is on the anammoxosome side of the cell membrane and catalyzes 

hydrazine to nitrogen. The electrons generated from these reactions are transferred back to 

NR. 

 

Figure 2-4. Mechanism of anaerobic ammonium oxidation.(adapted from [35]). 

In addition to this, it has been proposed that anammox is a three-reaction process (Eqs. 

2.14-2.16) [36,37]. NO2
- is reduced by nitrite reductase (NirS) to NO, which subsequently 

reacts with NH4
+ to form N2H4, catalyzed by the unique hydrazine synthase (HZS), and 
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finally N2H4 is oxidized to N2 by hydrazine dehydrogenase/oxidoreductase (HDH/HZO). 

It should be noted that the reactions only consider chemical mechanisms and neglect 

biomass synthesis.  

NH2OH+NH3→N2H4+H2O                                                                                 (Eq.2.14) 

N2H4→N2+4[H]                                                                                                    (Eq.2.15)  

HNO2+4[H]→NH2OH+H2O                                                                                  (Eq.2.16) 

NH3+HNO2→N2+2H2O                                                                                       (Eq.2.17) 

HNO2+H2O+NAD→HNO3+NADH2                                                                   (Eq.2.18) 

Partial nitrification-anammox process is also called the nitritation-anammox process. First, 

around 57% of the ammonia is oxidized to nitrite by AOBs. Second, the remaining 

ammonia and the nitrite are converted to nitrogen gas by anammox bacteria. The scheme 

of partial nitrification-anammox process is shown below in Figure 2-5.  
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Figure 2-5. Partial nitrification-anammox process (adapted from [4]) 

2.2.5 Comparison of N removal processes 

The comparison of the three biological nitrogen removal processes is depicted below in 

Table 2.2 with respect to bacteria involved, oxygen demand, COD needed, and alkalinity 

consumption and operational cost. The operational cost includes the aeration tank cost, i.e. 

aeration cost, as well as the cost of sludge treatment and disposal.  
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Table 2-2. Comparison of N removal processes 

Processes Conventional BNR Partial nitrification-

denitrification 

Partial nitrification-

anammox 

Bacteria involved  AOBs/NOBs/denitrifiers AOBs/denitrifiers AOBs/Anammox 

Oxygen demand 

(g O2/g N) a 

4.18 3.16 1.94 

COD needed (g 

COD/g N)b 

4.0 2.4 0 

Operational cost c 2-4 Euro/kg N removed 1 Euro/kg N removed 1 Euro/kg N removed;  

Sludge treatment and 

disposal cost decrease 

Alkalinity 

consumption (g 

CaCO3/g N) a 

7.07/-3.57 7.07/-3.57 4.02 

a source:[4] 

b source:[38] 

c source:[39,40] 

2.3 Microbiology 

2.3.1 AOBs and NOBs 

The most commonly recognized genus of bacteria that carries out ammonia oxidation is 

Nitrosomonas while Nitrosococcus, Nitrosopira, Nitrosovibrio, and Nitrosolobus are also 

able to oxidize ammonia to nitrite. These five recognized genera of AOB can be divided 

into two different phylogenetically distinct groups, β- and γ-subclass of Proteobacteria 

based on comparative 16S rRNA sequence analyses [41,42]. Nitrosomonas, Nitrosopira, 
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Nitrosovibrio, and Nitrosolobus are grouped in the β- subclass while Nitrosococcus is the 

only one within the γ-subclass [43,44].  

In the nitrite oxidation stage, several genera such as Nitrospira, Nitrospina and Nitrococcus 

are known to be involved while the most famous nitrite oxidizer genus is Nitrobacter [4]. 

Nitrococcus and Nitrobacter are assigned to the α- and γ-subclass of Proteobacteria, 

respectively [45]. The genus of Nitrospira is grouped closely to the δ-subclass [42]. 

The characteristics and environmental conditions of different autotrophic AOB and NOB 

species are presented in Tables 2.3 and 2.4 [46,47].  

Table 2-3. Characteristics and environmental conditions of different AOB species 

Parameters Nitrosomonas Nitrosococcus Nitrosopira Nitrosolobus Nitrosovibrio 

Shape  

Straight rods Spherical to 

ellipsoidal 

Tightly coiled 

spirals 

Pleomorphic 

lobate 

Slender curved 

rods 

Size (µm) 

(0.7-1.5)×  

(1.0-2.4) 

(1.5-1.8)×  

(1.7-2.5) 

(0.3-0.8)× 

(1.0-8.0) 

(1.0-1.5)× 

(1.0-2.5) 

(0.3-0.4)× 

(1.1-3.0) 

pH 

7.0-8.5 6.0-8.0 6.5-8.5 6.0-8.2 7.5-7.8 

Temperature 

(oC) 

5-40  2-40 20-35 15-30 25-40 

Table 2-4. Characteristics and environmental conditions of different NOB species 

Parameters Nitrobacter Nitrospina Nitrococcus Nitrospira 

Shape  Pear-shaped/ 

pleomorphic rods 

Slender straight 

rods 

Spherical Loosely coiled 

spirals 

Size (µm) (0.5-0.8)× 

(1.0-2.0) 

(0.3-0.4)× 

(1.7-6.6) 

1.5-1.8 (0.3-0.4)× 

(0.8–1.0) 

pH 6.0-7.5 6.5-7.0 6.8-8.0 6.5-7.0 

Temperature (oC) 5-30  25-30 15-30 25-30 

2.3.2 Key enzymes of AOB 

Two key enzymes, the ammonia monooxygenase (AMO) and the hydroxylamine 
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oxidoreductase (HAO), catalyze the conversion of ammonia to nitrite via NH2OH. AMO 

is a membrane-bound hetero-trimeric copper enzyme, and has broad substrate ranges [48]. 

It is coded by three gene subunits amoC (31.4 kDa), amoA (31.4 kDa) and amoB (38 kDa) 

while only a small portion of amoA acts as a function gene of AOBs [43,49,50].  

Compared with AMO, HAO was isolated and studied more extensively. HAO is coded by 

the gene clusters of hao (hydroxylamine oxidoreductase, 1710 bp) (Figure 2.6) [43,51]. 

Three copies of hao gene, that constitute 40% of the c-type heme, are contained in the 

genus of Nitrosomonas europaea [52]. 

NirK is another enzyme found in multiple AOBs. The function of NirK was assumed to be 

related to nitrite reduction, which, however, has not been confirmed [53].  

 

Figure 2-6. Flow of energy and reductants in nitrification through pertinent 

catabolic modules in AOB and NOB (adapted from [54]) 
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2.3.3 Key enzymes of NOB 

The key enzyme involved in the nitrite oxidation to nitrate is nitrite oxidoreductase (NXR) 

in Nitrobacter, and nitrite oxidizing system in the genera of Nitrococcus, Nitrospina, and 

Nitrospira (Figure 2-6). NXR composition is quite complex. It consistes of subunits such 

as α-subunit, NorA (115-130 kDa), β-subunit, and NorB (65 kDa) [55]. The function of 

NorA might be the acceletration of the nitrite oxidation, while NorB might work effectively 

as an electron-channeling protein between NorA and the membrane-integrated electron-

transport chain [55].  

2.3.4 Kinetics of AOB and NOB 

AOB and NOB kinetics, including maximum growth rate (μmax), decay rate (b), substrate 

half saturation constant (Ks), oxygen half saturation constant (Ko), yield coefficient (Y), free 

ammonia half-velocity constant (KiFA), and free nitrous acid half-velocity constant (KiFNA) 

have been thoroughly studied due to their crucial importance in controlling and optimizing 

nitrogen removal processes. However, the reported kinetic values varied in a very wide 

range, as summarized in Table 2-5 and 2-6 for AOB and NOB, respectively. The big 

differences result from various wastewater characteristics, reactor configurations, as well 

as operational conditions.  

Influent ammonia concentration affects the KiFA of AOB. In some studies, ammonia 

oxidation was observed at relatively low FA concentrations (~10 mg N/L). In the study of 

Abeling and Seyfried [56], nitritation inhibition was observed at 7 mg FA/L. Anthonisen 

[57] found nitritation inhibition at a FA range from 10-150 mg N/L (pH 7-9, temperature 
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of 20oC, TAN of 60-3000 mg N/L). Neufeld et al. [58] and Groeneweg et al. [59] also 

reported the beginning of nitritation at a FA concentration of 10 mg N/L (pH of 7-9 and 8, 

temperature of 23oC and 30oC, TAN of 20-1500 mg N/L and 100 mgN/L). Jubany et al.[60] 

reported a KiFA of around 7 mg N/L (pH 7.5, temperature of 25oC, TAN of 450 mg N/L). 

On the contrary, there are some other studies reporting a much higher FA concentration for 

nitritation inhibition. For example, nitritation was only observed at concentrations above 

300 mg FA/L (pH 8, temperature of 35oC, TAN of 2500 mg N/L)[61]. Hellinga et al. [62] 

found no nitritation inhibition up to 93 mg FA/L (pH 7, temperature 40oC, TAN of 5000 

mg N/L). Baquerizo et al. [63] determined an FA inhibition coefficient of 116±24 mg 

FA/L. The substrate inhibition constant in the study of Pambrun et al. [64] was 241 mg 

FA/L (pH 8.25, temperature of 35oC, TAN of 1200 mg N/L). Acclimatization of the AOB 

to high ammonia concentrations (500-1000 mg N/L) after 400 days exposure was presumed 

to be the reason for the high FA inhibition constant [64]. The highest inhibition coefficient 

of 605±87 mg N/L reported by Ganigue´ et al. [65] was attributed to acclimatization of the 

biomass to the inhibitory effects of FA due to a long term exposure (160 days) to high 

influent ammonia concentrations(518-1440 mg N/L) as well. The tolerance of NOB to FA 

may be enhanced by long-term acclimatization to high FA environment. Wong-Chong and 

Loehr [66] observed that the Nitrobacter could tolerate FA concentrations as high as 40 

mg N/L after acclimatization to high FA for 2-3 weeks, while the unacclimated cultures 

were inhibited at a FA concentrations of 3.5 mg N/L. 

The effect of reactor configuration on biomass kinetics has not been confirmed yet. In the 

study of Carrera et al. [67], with the same influent ammonia concentration of 1000 mg N/L, 

the same operational conditions (pH of 7.5 ± 0.1 and temperature of 23 ± 0.5), biomass 
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from a suspended biomass system (SBS) and an immobilised biomass system (IBS) have 

different μmax (0.97 vs 0.34 d-1), Ks (11 vs 28 mg N/L) and KiFA (13.9 vs 58.8 mg N/L). On 

the contrary, Munz et al. [68] reported the same μmax of 0.45±0.04 d-1 and quite similar b 

of 0.08±0.04 d-1 and 0.10±0.06 d-1 for biomass from a membrane biofilm reactor (MBR) 

and a conventional activated sludge process (CASP) with the same influent ammonia 

concentration of 35±7.7 mg N/L and the same operational conditions (SRT of 20 days, 

temperature of 18-20oC and pH of 7.7±0.1 or 7.6±0.1).  

Temperature traditionally was regarded as having a clear effect on the ammonia oxidation 

in partial nitrification systems. Both AOB and NOB acitivity are enhanced as temperature 

increases [69]. Typical temperature coefficients for μmax,AOB and μmax,NOB are 1.072 and 

1.063, respectively [70]. The typical temperature coefficient for b of both AOB and NOB 

is 1.04[70]. In addition, Weon et al. [71] reported that Ko,AOB and Ko,NOB decreased from 

1.61 mg O2/L and 1.10 mg O2/L at 5oC to 0.27 mg O2/L and 0.87 mg O2/L at 30oC, which 

suggested that both Ko,AOB and Ko,NOB may decrease as temperature increase. pH affects 

the activity of nitrifiers directly or indirectly through FA and FNA. The model equations 

of direct pH effects on AOB and NOB by Park et al. [72] are depicted below.  

μ =
𝜇𝑚𝑎𝑥

2
∙ {1 + cos [

𝜋

𝑤
∙ (𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡)  (|𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡|<w))                          (Eq.2.19) 

μ and 𝜇𝑚𝑎𝑥 are, respectively, the maximum specific growth rate at a given pH and at the 

optimal pH, d-1. w is the pH range within which the q is larger than one-half of qmax. 

Besides, it has been reported that Ks of AOB is also a function of pH and the relationship 

between pH and Ks,AOB/ Ks,NOB are shown in Eq.22.20 and 2.21, respectively [73]. 
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𝐾𝑠,𝐴𝑂𝐵 = 0.56 ∙ [
1

1+
[𝐻+]

10−6.96

] ∙ [1 +
[𝐻+]

10−9.093]                                                         (Eq.2.20) 

𝐾𝑠,𝑁𝑂𝐵 = 4.018 ∙ [1 +
8.04×10−9

[𝐻+]
]                                                                         (Eq.2.21) 

Where Ks is expressed in mg N/L.  
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Table 2-5. Summary of AOB kinetic parameters from literature 

Ref SRT

(d) 

T (oC) Reactor type DO 

(mg 

O2/L) 

pH Influent 

NH4
+-N 

(mg N/L) 

μmax 

(d-1) 

b 

(d-1) 

Ks 

(mg N/L) 

Ko 

(mg 

O2/L) 

Y 

(mg 

COD/

mg N) 

KiFA 

(mg 

N/L) 

KiFNA 

(mg 

N/L) 

Biomass 

type  

[74] 3.0 Room CSTR 1.54±0.

87 

7.5±0.

1 

500 1.1±1.0 0.32±0.3

4 

  0.15±0.

06 

  S 

[75] 2.4 21±2 CSTR 0.40±0.

05  

7.3±0.

1 

1100 0.54±0.0

9 

   0.20±0.

03 

  S  

[76]  30 CSTR  7.5    28 1.45 0.14   S 

[67]  23 ± 0.5 SBS  7.5 ± 

0.1 

1000 0.97  11   13.9  S 

 IBS  0.34  28   58.8  A 

[77] 15 20 ASR      12 0.99    S 

[60] 15-

25 

23±2 CSTR 3.0 7.5 3000 1.21 0.20 0.24 0.74 0.18 7.0 0.55 S 

[78] 10-

20 

20 CSTR 2 7.0-

7.5 

48 ± 2     0.24   S 

[79] 5-40 20 CSTR >4 7.0-

7.5 

24-96 0.24±0.0

1 

0.066±0.

003 

0.023±0.

003 

    S 

[80]  20 SBR >2  20-200 2.16  9.3  0.21   S 

[68] 20 18-20 MBR 2 7.7±0.

1 

35±7.7 0.45±0.0

4 

0.08±0.0

4 

     A 

8 18-20 Conventional 

activated 

sludge system 

2 7.6±0.

1 

35±7.7 0.72±0.2 0.10±0.0

6 

 

     S 

20 0.45±0.0

4 

     

[81] 5 30±0.5 SBR 3 6.5–8 800 ±50 1.00  5.1±0.4 0.34±0.0

7 

   S 

1 35±0.5 CSTR 3 6.5–

6.7 

700 ±50 2.00  5.7±0.4 0.49±0.0

6 

   S 



 

26 

 

  

[62] 1 30 CSTR   1000 2.1  0.47 1.45 0.15  0.21 S 

[82] 1.47 35 CSTR 3 7.1-

7.3 

730 0.9 0.17 0.7 0.25 0.15  0.07 S 

[83]  30 CSTR  7±0.2  0.74  2.1  0.24   S 

[84] 15 21 SBR 3  50 1.40 0.12 0.80  0.18   S 

[85] 2 35 CSTR 1.5-5.0 7.8-

8.9 

1000 1.75 0.23 0.44 0.34  24.9 0.44 S 

[61] 1.54 35 CSTR 6.1 6.83 500-2000 1.0±0.2  0.75±0.0

5 

0.94±0.0

91 

  2.04±0.0

17 

S 

[86]  26±0.5 SBR 0.5 or 

3.5 

 50-65 0.46  1.4 0.307 0.37   S 

[87] 9.2±

2 

20 SBR 3.5 7.0 3000 0.5 0.071 1 0.5    S 

[88]  22-23 SBR  7.5-

8.2 

150   0.11-0.28 0.33±0.0

4 

   S 

[89] 10-

40 

35±2 SBR 0.15-

3.0 

6.7-8 90-190 0.94-

0.99 

0.245  0.36    S 

[90] 10 14 SBR 1.0-5.5 6.6-

7.3 

40 0.28 0.10  1.36    S 

[91] 30 

or 

100  

30 SBR  7.5±0.

05 

250   5 1 for 30 

d and 3 

for 100 

d SRT 

   S 

[64] 16-

18 

30 SBR  7.5-

8.2 

500-1000 1.96 0.44 0.5 0.5 0.21 241 0.053 S 

[92,93] 1.68 30±1 SBR 2.8-3.3 >6.4 1000 1.02±0.1

7 

0.26±0.0

7 

0.36±0.0

2 

   0.40 S 

[94] 20 20 MBR 2.5-3.0 7.5    0.13±0.0

5 

0.18±0.0

4 

   A 
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CAS    0.14±0.1

0 

0.79± 

0.08 

   S 

[95]  30±1 SBR  8.0 ± 

0.2 

3790 0.12  66 

 

1.07 0.37   S 

[96]  32.1-33.6 MBR-MBBR 0.2-0.5 

or >1.5 

7.8-

8.2 

1200-1600 0.445-

0.639 

      A 

[97]  30±1 MABR  7.2 ± 

0.2 

200 1.2   0.16-

1.17 

   A 

[98]  30 Biofilm 0.4-2.0 7.5 320 0.71-

2.09 

 0.11-16 0.10-

0.47 

0.11-

0.18 

  A 

[99]  30 Upflow 

reactor 

>3.8 7.3-

8.0 

1000   0.72     A 

[100] 20 20 MBR 2.5-3 7.2±0.

1 

    0.42±0.1

1 

   A 

CAS     0.65±0.0

15 

   S 

[101]  20 Biofilm  8.8 7.5-8  1.08  18 0.176 0.119 0.271  A 

[102]  23±1 Airlift  7.5± 

0.1 

180   11±5   63.5 ± 

26.9 

 A 

[103]  20     1.023 0.15 1.5 0.50 0.47    

[104]  20     0.20-

0.90 

0.05-0.15 0.5-1.0 0.40-

0.60 

    

[105]  20     1.0 0.15 1 0.5     

[106] 20 20 SBR   18 0.63 0.061 0.5  0.1   S 

[107] 10-

15 

20 AAO 2.5  34 0.48 0.175      S 

[108]  122  28-32 SBR >2.0 7.9-

8.7 

500 and 

1000 

  53 ± 6 1.35 ± 0.

24 

   S 

[109]  10 Airlift reactor 0.5-2.5 8.0 ± 

0.1 

70 0.63 ± 

0.05 

 2.1 ± 0.7     A 

20 29 ± 2 SBR 0.4–2.5 7.8 300–900 0.92 0.01 29 0.17    S 
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[110] CSTR 3.0–3.3 0.42 0.01 3.5 0.10    

[111] 12 35±0.5 SBR 0.5- 3.0 >7.2 300 2.04     4 0.15 S 

[112,1

13] 

31 ±

 7 

30 SBNR >2.0 or 

<1.0 

8.0 1000   25-33   15.1-

22.3 

0.168 S 

WWTP     37-51   5.0 -

5.2 

SBR 6.3-

8.0 

100   24-37   22.0-

27.3 

[114]  30 MBBR 7.55 ± 

0.61 

7-8 50   8.8     A 

 7.64 ± 

0.47 

1   1.2     

[59]  20  

and 30 

CSTR 8.00±0.

02 

 392   0.52  0.09   S 

[71]  5-30 SBR 2-3  31-335    0.27-

1.63 

   S 

[115]  35 Continuous 

fermenter 

 7.5 100-300   0.61-2.5     S 

[116] 4, 7 

and 

10 

25 Activated 

sludge reactor 

     0.2-1.7     S 

[117]   Activated 

sludge reactor 

     4   36  S 

[65] 5 36±1 SBR 2 6.8-

7.1 

518-1440      605.48

±87.18 

0.49±0.0

9 

S 

[118] 10-

40 

20 SBR >2.0 6.0-

8.0 

226-1176 0.32±0.0

5 

      S 
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Table 2-6.Summary of NOB kinetic parameters from literature 

References SRT 

(d) 

Temperat

ure (oC) 

Reactor 

type 

DO 

(mg 

O2/L) 

pH Influent 

nitrogen 

concentrat

ion (mg 

N/L) 

μmax 

(d-1) 

b 

(d-1) 

Ks 

(mg N/L) 

Ko 

(mg 

O2/L) 

Y 

(mg 

COD/m

g N) 

KiFA 

(mg 

N/L) 

KiFNA 

(mg 

N/L) 

Bioma

ss type  

[119]  30   7.6    1.6    0.189 S 

[74] 3.0 Room CSTR 1.54±0.

87 

7.5±0.

1 

500 2.6±2.0

5 

1.7±1.9   0.04±0.

02 

  S 

[75]  21±2 SBR 3.0±0.2

5 

7.3±0.

1 

1000 0.67±0.

03 

   0.10±0.

01 

  S 

[67]  23 ± 0.5 SBS  7.5 ± 

0.1 

1000 0.24  1.6    0.06 S 

 IBS   4.1    0.35 A  

[77] 15 20 Activat

ed 

sludge 

reactor 

     3.53 1.40    S 

[120]  20 “Fed 

batch” 

ferment

or 

>6  200 0.33 0.14   0.015   S 

[78] 10-

20 

20 CSTR 2 7.0-7.5 48 ± 2     0.08   S 

[79] 5-40 20 CSTR >4 7.0-7.5 24-96 0.18±0.

01 

0.045±0.

006 

0.023±0.

001 

    S 

[80]  20 SBR >2  20-200 2.64  4.85  0.05   S 

[68] 20 18-20 MBR 2 7.7±0.

1 

35±7.7 0.41±0.

06 

0.11±0.0

5 

     A  

8 18-20 CASP 2 7.6±0.

1 

35±7.7 0.42±0.

03 

0.11±0.0

2 

     S 

20      

[62] 1 30 CSTR   1000 1.05  0.0014 1.1 0.041  0.27 S 



 

30 

 

[82] 1.47 35 CSTR 3 7.1-7.3 730 0.7 0.17 0.05 0.5 0.09  1.05 S 

[83]  30 CSTR  8  0.86  1.89  0.20   S 

[84] 15 21 SBR 3  50 0.65 0.12 0.50  0.06   S 

[85] 2 35 CSTR 1.5-5.0 7.8-8.9 1000 0.56 0.04 0.02 0.73  14.8 2.31 S 

[87] 9.2±

2 

20 SBR 3.5 7.0 3000 0.56 0.08 3 1    S 

[88] 3-5 22-23 SBR  7.5-8.2 150   9.59 ± 

1.42 

0.36±0.

02 

   S 

[89] 10-

40 

35±2 SBR 0.15-

3.0 

6.7-8 90-190 2.25-

2.51 

0.245  0.54    S 

[90] 10 14 SBR 1.0-5.5 6.6-7.3 40 0.38 0.10  2.79    S 

[91] 30 

or 

100  

30 SBR  7.5±0.

05 

250   2 1    S 

[64] 16-

18 

30 SBR  7.5-8.2 500-1000 0.67 0.38 1.62 1 0.03 11.1  S 

[121,122]  22±1 SBR 2.8-3.3 7.3 1000 0.48±0.

07 

0.069±0.

004 

1.49±0.0

8 

   0.018 S 

[94] 20 20 CAS 2.5-3.0 7.5    0.17±0.0

6 

0.13±0.

06 

   S 

MBR    0.28±0.2

0 

0.47±0.

04 

   A 

[96]  32.1-33.6 MBR-

MBBR 

0.2-0.5 

or >1.5 

7.8-8.2 1200-1600 0.312-

0.575 

      A 

[97]  30±1 MABR  7.2 ± 

0.2 

200 1   1.15-

4.65 

   A 

[98]  30 Biofilm 0.4-2.0 7.5 320 0.43-

1.92 

 0.11-

38.28 

0.10-

0.37 

0.11-

0.21 

  A 

[100] 20 20 MBR 2.5-3.0 7.5     0.28±0.

05 

   A 

CAS     0.23±0.    S 
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07 

[101]  20 Biofilm  8.8 7.5-8  1.53  5.04 0.544  0.0208  A 

[102]  23±1 Airlift  7.5± 

0.1 

180   4.1 ± 0.9    0.35 ± 

0.04 

A 

[123]  22 MABR 2.2-5.5   0.28-

0.31 

 0.27-0.39 0.4-

0.51 

   A 

[103]  20     1.079 0.15 2.70 0.68 0.12    

[104]       0.20-

0.90 

0.05-0.15 0.5-1.0 0.40-

0.60 

    

[105]       1.0 0.15 1 0.5     

[106] 20 20 SBR   18 1.05 0.061 0.5  0.14   S 

[112,113] 31 ±

 7 

30 SBNR >2.0 or 

<1.0 

8.0 1000   11.6-11.9    0.19-

0.97 

S 

  WWTP      7.8-10.2    0.09-

0.11 

  SBR  6.3-8.0 100   23.3-28.3    0.10-

0.32 

[114]  30 MBBR 7.55 ± 

0.61 

7-8 50   2.57     S 

 7.64 ± 

0.47 

1   1.34     

[71]  5-30 SBR 2-3  31-335    0.87-

1.10 

   S 

[118] 10-

40 

20 SBR >2.0 6.0-8.0 226-1176 0.67±0.

17 

    3.78±0.

56 

0.14±0.0

98 

S 
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2.3.5 Anammox bacteria 

Five anammox bacteria, tentatively named Candidatus Brocadia, Candidatus Kuenenia, 

Candidatus Jettenia, CandidatusScalindua and Candidatus Anammoxoglobus, were found to 

carry out anaerobic ammonium oxidation [124]. The first three exist commonly in freshwater 

ecosystems [125] and bioreactors [126], while the fourth genera is the only marine anammox 

[33]. 

2.4 Strategies for achieving partial nitrification 

In the partial nitrification process, nitrite accumulation is required, and the second step must 

be restrained to accumulate AOB and washout NOB [127]. To date, researchers have developed 

many control methods and strategies to achieve and maintain partial nitrification. These 

methods mainly include appropriate regulation of temperature, pH, dissolved oxygen (DO) 

concentration, sludge retention time (SRT), operational and aeration pattern, inhibitors, etc 

[40,128,129]. These various parameters will be elaborated on below.  

2.4.1 DO concentration 

In addition to other substrates, like ammonia nitrogen for AOB and nitrite nitrogen for NOB, 

DO is also an substrate for both AOB and NOB. With low DO concentration, both AOB and 

NOB growth rates are reduced [5]. It is generally accepted the oxygen Monod half saturation 

constant for AOB (KO,AOB) is lower than for NOB (KO,NOB) [130,131], which means that AOB 

have a higher affinity for oxygen than NOB. The dissolved oxygen half-saturation coefficients 
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of AOB and NOB are 0.2-0.5 mg/l and 0.7-2.0 mg/l, respectively [99,104,132]. Thus, when 

competing for DO, NOB are often at a disadvantage. For example, one study reported that the 

AOB growth rate was 2.6 times faster than NOB at a low DO level (<1.0 mg/L) [133]. It was 

suggested that DO concentration should be maintained about 1.0–1.5 mg/L, considering both 

ammonia oxidation rate and nitrite accumulation [26]. 

However, the suitable DO concentration for achieving partial nitrification varied in a wide 

range (0.16-5.0 mg/L) in different studies due to different operational conditions [134]. 

Yamamoto et al. [135] achieved 93% nitrite accumulation at a high DO of 5 mg/L at 25oC in 

an upflow column reactor with carrier media while Chuang et al., [136] reported that over 90% 

nitrite accumulation was achieved at a low DO of 0.16-0.2 mg/L at 30 oC in a closed down-

flow hanging sponge reactor . Below 0.5 mg/l of DO, ammonia accumulated and over 1.7 mg/L 

complete nitrification to nitrate was achieved [137]. 

2.4.2 Temperature 

With temperature increase, both AOB and NOB growth rates increase. Nitrification usually 

proceeds better in warmer seasons. The ammonia removal efficiency was more than 80% at 25 

°C decreasing to below 30% at 15 °C and lower [138]. It has been reported that AOB could 

outcompete NOB at higher temperature while NOB are able to oxidize nitrite much faster at 

lower temperature [139]. The typical growth rate curves of AOB and NOB with temperature 

were developed by Zhu et al. [69], as depicted in Figure 2-7. Nitrite accumulation in an 

activated sludge plant especially over the summer period has been reported [140]. In addition, 
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raising temperature to a range between 20 °C and 25 °C enhanced the ammonia oxidation 

activity while decreasing the nitrite oxidation activity [141]. Besides, a decrease in nitrate 

concentration was observed with a simultaneous increase in the nitrite concentration in an 

inverse turbulent bed reactor upon increasing the temperature from 30 °C to 35 °C [142]. It 

should be noted that partial nitrification could still be achieved at low temperatures if the 

operational conditions for AOB to outcompete NOB, i.e. DO, pH, FNA, FA, were prevalent 

[47]. 

 

Figure 2-7. Effect of temperature on growth rate of AOB and NOB (adapted from [69]) 
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2.4.3 pH and free ammonia and nitrous acid concentrations 

pH affects the activities of AOBs and NOBs directly by changing the enzymatic reaction 

mechanism [72] or indirectly through free ammonia (FA) and free nitrous acid (FNA) [62,112]. 

The optimum pH for both AOBs and NOBs lies between 7 and 8. The growth rate of NOBs 

decreased from 0.17 d-1 at pH 7 to 0.02 d-1 pH 8 while the variation in the growth rate of AOBs 

at these pH values was negligible [143].  Thus, pH control is commonly used as a strategy to 

achieve partial nitrification. 

The direct pH effect on the maximum specific substrate utilization rate of AOB or NOB had 

been considered in different models from literature. The equations suggested by US EPA [3], 

Siegrist and Gujer [144], and Park et al. [72] are listed as Eq.2.22-2.23, and Eq.2.17, 

respectively. 

μ = μ7.2 ∙ [1 − 0.833(7.2 − pH)]                                                                                (Eq.2.22) 

in which  μ and μ7.2  are the maximum specific cell-growth rate at any pH and pH 7.2, 

respectively, d-1. 

μ = μmax ∙ [1 + 10(6.5−pH)]
−1

                                                                                    (Eq.2.23) 

FA and FNA are determined by pH, temperature, ammonia, or nitrite levels (Eqs. 2.24-2.25, 

respectively) [57].  

FA =
17

14
∙

𝑇𝐴𝑁∙

exp(
6344

273+𝑇
)+10𝑝𝐻

                                                                                            (Eq.2.24) 
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FNA =
47

14
∙

𝑇𝑁𝑁

exp[(
−2300

273+𝑇
)∙10𝑝𝐻]+1

                                                                                    (Eq.2.25) 

where TAN is total ammonium nitrogen, mg N/L; TNN is total nitrite nitrogen, mg N/L; T is 

temperature (oC). 

FA inhibits both AOBs and NOBs. It has been confirmed that nitrite accumulation could be 

achieved by regulating pH to control free ammonia concentration. However, the reported 

threshold inhibition concentrations of FA fare different. It was first reported that NOBs are 

inhibited by free ammonia in the range of 0.1-1.0 mg/L, while AOBs can tolerate free ammonia 

as high as 10–150 mg/L, as depicted in Figure 2-8 [26,57]. Zone 1 represents the condition 

when the FA concentration is high enough to inhibit both Nitrosomonas and Nitrobacter. No 

nitrification will occur, and ammonia will accumulate in the system. At lower concentrations 

of FA, only Nitrobacter may be inhibited and nitrite accumulation will occur. This condition 

is represented by Zone 2. At still lower FA concentrations, neither Nitrobacter nor 

Nitrosomonas will be inhibited and complete nitrification will occur (Zone 3). In Zone 4, due 

to the presence of high FNA (>2.8 mg N/L), Nitrobacter will be inhibited and nitrite 

accumulation will occur. Bae et al. [145] reported thatinfluent FA concentrations at 0.1-4.0 

mg/L are inhibitory to NOBs. Abeling and Seyfried [56] reported that NOBs were inhibited at 

a range of 1-5 mg FA/L while AOB activity stopped at 20 mg FA/L. 

Additionally, FNA plays an important role at low pH as NOBs are more sensitive to FNA than 

AOB [146]. The threshold FNA inhibition levels affecting a 50% reduction in AOB activity 

were in the range of 0.42-1.72 mg N/L, while lower concentrations of 0.011-0.07 mg N/L 
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would start to inhibit NOB and 0.026-0.22 mg N/L could completely inhibit NOB [47,147]. 

FA and FNA inhibitions of nitrifiers were reversible [148,149]. 

The suggested pH to inhibit NOB in the literature is 7.5-8.5. Abeling and Seyfried [56] reported 

that pH should be maintained above 7.5 to realize partial nitrification. Likewise, a pH between 

7.5 and 7.8 was suggested favorable for partial nitrification [150]. The optimal pH for 

Nitrosomonas species and Nitrobacter species range between 7.9 and 8.2, and 7.2 and 7.6, 

respectively [151].  Similarly, Park et al. [72] reported that the optimum pH (pHopt) lied in the 

range of 8.2 ± 0.3 for AOB and 7.9 ± 0.4 for NOB. 

 

Figure 2-8. Relationship between concentrations of free ammonia (FA) and free nitrous 

acid (FNA) and inhibition to nitrifiers. (adapted from [57]) 
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2.4.4 Sludge retention time (SRT) 

The SRT also has a crucial influence on bacterial communities in partial nitrification reactors. 

Long SRTs are required for microorganisms with low maximum specific growth rates. The 

minimum doubling time for AOBs is 7-8 h and for NOBs 10-13 h at 35oC [26,152]. Thus, it is 

feasible to washout NOBs by controlling SRT for nitrite accumulation. The full-scale 

experience shows that SRT between 1 and 2.5 days at temperatures of 30-35°C resulted in good 

nitritation in a Sharon reactor [29]. Ahn et al. [74] successfully washed out NOB in an CSTR 

at a SRT of 3 days. However, longer SRTs were reported in other studies to realize partial 

nitrification. For example, SRTs of 10–13 days were reported to be more appropriate for AOB 

accumulation with a nitrite accumulation ratio of 95% in an activated sludge system [153], 

which maybe due to the room temperature rather than 35°C. Furthermore, in the study of 

Mohammed et al. [154], stable partial nitrification deteriorated at short SRT of 7 days, whereas 

increasing the SRT to 16 days resulted as well in a decrease in nitrite accumulation rate from 

93% to 37%.  Pollice et al. [155] successfully realized partial nitrifcation under oxygen 

limitation at SRTs of 10, 14, and 40 days and temperature of 32oC. Thus, it can be concluded 

that SRT is not the only factor to wash out NOB, successful partial nitrifcation can be achieved 

at long SRT by adopting other strategies like low DO, intermittent aeration, and aerobic HRT 

control.  

Since NOBs grow faster than AOB at cold temperature (<20oC) as shown in Fig. 2-7, it is 

difficult to wash out NOB simply with SRT control.  
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2.4.5 Real-time control 

Real-time control strategy has been proposed as an effective way to achieve partial nitrification. 

The aeration duration and intensity is determined through direct and indirect online parameters, 

i.e. pH, OUR, DO, NH4
+-N, et al [129,146–148,150]. The direct online control strategy is based 

on nitrogen concentration measurements with NH4
+-N, NO2

--N and/or NO3
--N sensors, to get 

indicative information for aeration supply. For example, a full nitritation (complete ammonia 

conversion to nitrite) was achieved with an automatic feed-forward control system, in which 

NH4
+-N and DO probes were applied to keep an optimal DO level of 5 mg/L[156]. The control 

stragety is presented as a conventional block diagram in Figure 2-9. The ratio is applied to the 

set points; therefore, once a TAN concentration set point ([TAN]SP) of 20-30 mg N/L and a 

set-point ratio (RSP) of 0.17-0.25 are selected, the resulting DO concentration set point is 

imposed by the ratio control strategy as [DO]SP=RSP[TAN]SP. 

Taking stoichiometry and diffusivity coefficients from the literature [3,104,132], the oxygen-

limiting conditions for nitrification will appear when  

[𝐷𝑂]

[𝑇𝐴𝑁]
<

𝛾
𝑂2/𝑁𝐻4

+𝐷
𝑁𝐻4

+

𝐷𝑂2

=
4.57∙1.9∙10−9

2.2∙10−9 = 3.9 
𝑔 𝑜𝑓 𝑂2

𝑔 𝑜𝑓 𝑁
                                                    (Eq.2.26) 

where [DO] and [TAN] represent the concentrations of DO and TAN in the bulk liquid, 

respectively.  DNH4+ and DO2 are the diffusivity coefficients for ammonium and oxygen 

respectively, and γO2/NH4+ is the ratio of the stoichiometric coefficients of ammonium and 
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oxygen, i.e. 4.57 g O2/g NH4-N. From the literature, DNH4+ and DO2 are 1.9 × 10−9  m2/s and 

2.2 × 10−9 m2/s at 20oC, respectively[132].   

If strong oxygen-limiting conditions were applied in a biofilm reactor (i.e., DO/TAN 

concentration ratios much lower than 1, AOB would outcompete NOB, and nitrite build up 

would appear in the effluent, even without any nitrate formation. 

 

Figure 2-9. Block diagram of the automatic control for partial nitrification to nitrite in 

biofilm reactors used to ensure the required oxygen-limiting conditions in the biofilm to 

obtain and maintain continuous full nitritation under stable operating conditions [156]. 

Figure 2-10 shows the chemical profiles of COD, ammonia, nitrite, nitrate and TN, and online 

signals of DO, pH, and ORP, from which the end point of nitrification could be obtained. When 

ammonium was almost depleted after aeration for nearly 555 min, DO reached breakpoint B, 

followed by the ORP knee point A. When the valley point appeared in the pH profile at point 

C (585min), chemical analyses showed complete removal of ammonia and therefore indicated 

the end of nitrification [157].   
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Figure 2-10. Typical pH, ORP and pH profiles with nitrogen and COD in a typical cycle 

of an SBR (Adapted from [157]) 

On the contrary, the indirect real-time control strategy includes general water quality probes 

(i.e. pH, DO, redox potential (ORP), oxygen utilization rate (OUR), and blower frequency 

(BF)), which are more cost-efficient and dependable than direct online control strategy [158–

160].The overview of real-time control strategies for partial nitrification is depicted in Fig.2-

11. 
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BF: blower frequency; NBP: nitrogen break point; MSC: moving slope change; ALR: ammonia loading 

rate; TAN: total ammonia nitrogen 

Figure 2-11. Overview of real-time control strategies for partial nitrification(adapted 

from [47]). 

In addition, Regmi et al. [161] proposed the AOB versus NOB or ammonia versus nitrate- plus-

nitrite (AVN) reactor based on online in-situ DO, NH4
+-N, NO2

--N and NO3
--N sensors. The 

AVN control system consists of the aerobic duration controller and the DO controller. In the 

AVN reactor, the cycle duration is fixed while the aerobic duration alters between the minimum 

and maximum aeration times based on NH4
+-N/ NOx

--N ratio. The DO was maintained at a 

desired set-point of 1.5 mg/L during the aerated period by the DO controller. The goal of the 

AVN reactor is to maintain equal effluent NH4
+-N and NOx

--N at all times.  

t 
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The real-time aeration duration control led to full nitritation with all ammonia converted to 

nitrite while AVN control led to partial nitritation with half of the ammonia converted to NOx-

N.  The effluent of the AVN reactor is ideal for anammox processes. 

2.4.6 Intermittent aeration   

Intermmitent aeration was proposed as a strategy to control ammonium oxidation to nitrite 

[162]. Duration of aeration time was found to be inversely related to the degree of nitrite build-

up [28]. Using intermittent aeration favored nitrite accumulation [155]. Nitrate formation can 

be effectively prevented by frequent switching between aerobic and anoxic phases. Recently, 

81.5±9.2% of nitrite accumulation was achieved in a continuous plug-flow step-feed process 

treating municipal wastewater by appropriately alternating anoxic/aerobic conditions following 

a pattern of anoxic mixing (10 min), aeration (20 min), anoxic mixing (10 min) and aeration 

(20 min) [163]. A model has been proposed to explain the mechanism, in which NOB were 

inhibited under periodic aerobic/anoxic operation, since the enzyme of NOB was deactivated 

under anoxic conditions and reactivated under aerobic conditions [164]. 

2.5 Partial nitrification in a sequencing batch reactor (SBR) 

Sequencing batch reactors (SBR) is a simple technology for wastewater treatment that has been 

successfully used to treat both municipal and industrial wastewater. Basically, SBR is 

considered as fill-and-draw version of the activated sludge. Both biological treatment and 

sedimentation are performed within the same reactor.  
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Typical SBR operation consists of fill, react, settle, draw and idle, as shown in Figure 2-12. 

The summary of the SBRs cycles used in partial nitrification systems is illustrated in Table 2-

7. The cycle times ranged from 180 min (3 hrs) to 1440 min (24 hrs). Long cycle time is 

required for treatment of high-strength wastewater. For example, the longest cycle time of 1440 

min was reported in an SBR treating landfill leachate with extremely high nitrogen 

concentration (6000 mg N/L) at both 25oC and 35 oC.  On the contrary,  Guo et al. [165] 

achieved stable partial nitrification in an SBR treating domestic wastewater with  a cyle time 

of 240-360 min. In addition, the cycle time is also affected by temperature. At low temperature, 

long cycle time is required. For example,  Yang et al. [158] adopted a cycle time of 700-800 

min in an SBR treating municipal wastewater with influent ammonia concentration of 60 mg 

N/L at 11.9-25oC.    

Successful nitrite accumulation has been achieved in SBRs. Table 2-8 summarizes the 

operational condition and strategies of partial nitrification in SBRs. Commonly used strategies 

include FA and/or FNA inhbition, intermittent aeration, real-time aeration control, low DO, 

among others. Wei et al. [166] observed 96.1% nitrite accumulation in an SBR by increasing 

the influent ammonia to 400-720 mg N/L at 24oC -26oC, which was attributed to the high FA 

(40.4-86.3 mg N/L) and FNA (0.03-0.36 mg N/L) concentrations. Yang et al. [158] achieve 

stable nitrite accumulation (95%) in an SBR treating municipal wastewater with influent 

ammonia concentration of 60 mg N/L using real-time control with temperature ranging from 

11.9oC-26.5°C under normal dissolved oxygen condition (>2.5mg/L) . Li et al. [167] reported 
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over 90% nitrite accumulation in an SBR treating ammonium-rich wastewater (300 mg N/L) 

at 20oC and pH of 7.1-7.4 by adopting intermittent aeration and low DO (<0.2 mg/L).  In 

addition, some chemicals could inhibit NOB activity. For example, nitrite builtup occurred at 

the hydroxylamine dosing of 10 mg/L in aerobic granules cultures [168], and 2.5–5 mg/L in a 

submerged filter system[169]. 

           Figure 

2-12. SBR operation for each tank for one cycle for the five discrete time periods of Fill, 

React, Settle, Draw, and Idle (adapted From [170]) 
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Table 2-7. SBR cycle duration for different partial nitrification studies 

Reference Cycle time (min) Fill 

(min) 

Reaction (min) Settle 

(min)  

Decant and idle (min) 

[171] 1440 140 1260 20 20 

[158] 700-800 60 500-600 60 80 

[165] 240-360 3 192-312 30 15 

[172] 1440 30 1320 60 30 

[168] 180-240 2 175–235 2 1 

[173] 240 5 200 30 5 

[174] 720 10 300 45 5 

[175] 767 2 720 30 15 

[176] 480 5 445 20 10 

[166,177] 480 5 385 20 70 

[65] 480 360 80 15 25 

[178] 720 25 660 30 5 

[81] 240 5 210 20 5 

[179] 303-423 3 240-360 30 30 

[159] 705 15 540 120 30 

[89] 360 20 300 20 20 

[90] 240 20 180 20 20 
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Table 2-8. Operational conditions and control strategies of SBRs for partial nitrifcation 

Reference Temperature 

(oC) 

HRT 

(h) 

SRT 

(d) 

Influent ammonia 

concentration (mg 

N/L) 

DO 

(mg/L) 

pH Control stategy 

[171] 25 or 35 108 or 

288 

 6000 2.0 8 FA, FNA 

[176] 25–27 16 20 200 4.0 8.99-

9.52 

FA 

[166] 24-28 16 30 200-720  7.8-

8.5 

FA, FNA 

[180] 32±1 or 21±1 8-12 14 domestic   Real-time control 

[181] 18-22 42 15 141-157 or 223-229 1.5-2.0 7.1-

7.9 

Real-time control 

[158] 11.9-25  13 60.05 >2.5  Real-time control 

[175] 10-30.6   131-180 0.5-2.0 7.5-

8.8 

Real-time control 

[165] 12-25 8-12 30 58.1±12.8 2-6 7.3-

7.6 

Real-time control 

[167] 20 48 >100 300 <0.2  7.1–

7.4 

Low DO, 

intermittent 

aeration 

[182] 12.6-24  16 domestic <0.2 7.2-

7.6 

Low DO, 

intermittent 

aeration 

[183] 25±0.2  Very 

high 

50 2-6.5 7.2-

7.3 

Intermittent 

aeration 

[172] 23-28 24 or 

48 

 700 <0.5  7.5± 

0.2 

Sulfide dose 

[168] 33±1 6-8  100 5.5 7.8-

8.2 

hydroxylamine 

 

[184] Room 

temperature 

6  100 >9 7.8–

8.2 

Chlorate dose 

 

[173] 31 12-20  149.5-990 0.5-1.2 7.9–

8.2 

Low DO, FA, 

FNA 

[174] 28±1 36 10 1253-1307 1.0–2.0 7.2-

7.8 

Low DO, FA, 

FNA 
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[177] 23-27   300 0.5-1 7.5-

8.5 

Low DO, FA 

[65] 36±1 36 5 518-1440 2 6.8-

7.1 

FA, FNA 

[178] 30±0.1   360 0.5 7.5 Low DO, FA 

[81] 30±0.5 8.4 5 800±50 3 6.5–8 FA, FNA 

[179] Room 

temperature 

  46.8–75.6 >3 or 0.4-

0.8 

7.1-

7.6 

Real-time control 

[159] 11-16 and 17-

26 

16-20 15–18 41.2–78.3 2.0 7.1-

7.7 

Real-time control 

[89] 35 ± 2 12 10-40 90-190 0.6-3.0 

and 0.15-

2.0 

6.7-

8.0 

FA, intermittent 

aeration 

[185] 20±1  70–92 96.6-254.9 1.0±0.5 >8 FA, low DO 

[186] 29 ± 1  28-42 688-1748 <2.0 8.18–

8.39 

Intermittent 

aeration, FA 

[187] 30±1   1600−3100 0.8-2.3 8.6 FA 
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Chapter 3 * 

3 A model for determination of operational conditions for 

successful shortcut nitrification 

Accumulation of nitrite in shortcut nitrification is influenced by several factors including 

dissolved oxygen concentration (DO), pH, temperature, free ammonia (FA) and free nitrous 

acid (FNA). In this study, a model based on minimum dissolved oxygen concentration (DOmin), 

minimum/maximum substrate concentration (Smin and Smax), was developed. The model 

evaluated the influence of pH (7-9), temperature (10oC-35oC) and solids retention time (SRT) 

(5days-infinity) on Minimum/maximum substrate concentration (MSC) values. The evaluation 

was conducted either by controlling total ammonium nitrogen (TAN) or total nitrite nitrogen 

(TNN), concentration at 50 mg N/L while allowing the other to vary from 0 to 1000 mg N/L. 

In addition, specific application for shortcut nitrification-anammox process at 10oC was 

analyzed. At any given operational condition, the model was able to predict if shortcut 

nitrification can be achieved and provide the operational DO range which is higher than the 

DOmin of AOB and lower than that of NOB. Furthermore, experimental data from different 

literature studies were taken for model simulation and the model prediction fit well the 

experimental data. For the Sharon process, model prediction with default kinetics did not work 

but the model could make good prediction after adjusting the kinetic values based on the 

                                                 
*  This chapter has been published in a manuscript entitled “Liu, X., Kim, M., & Nakhla, G. 

(2017). A model for determination of operational conditions for successful shortcut 

nitrification. Environmental Science and Pollution Research, 24(4), 3539-3549.” 
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Sharon-specific kinetics reported in the literature. This is the first model that provides a method 

to identify feasible combinations of pH, DO, TAN, TNN, and SRT for successful shortcut 

nitrification. This model can be a useful and practical tool for shortcut nitrification systems 

design and operation.  

3.1 Introduction 

Conventional biological nitrogen removal (BNR) consists of two successive steps: autotrophic 

nitrification and heterotrophic denitrification. Nitrification consists of two steps: ammonia is 

first oxidized to nitrite by ammonia-oxidizing bacteria (AOB), and then nitrite is oxidized to 

nitrate by nitrite-oxidizing bacteria (NOB). From a biochemical perspective, AOB utilize 

ammonium (NH4
+-N) as their electron donor and NOB utilize nitrite (NO2

-) as electron donor. 

Both AOB and NOB utilize dissolved oxygen (DO) as their electron acceptor, suggesting that 

a competition for DO between AOB and NOB exists in nitrification systems. Shortcut 

nitrification/denitrification and shortcut nitrification/anammox are two promising technologies 

to replace conventional biological nitrogen removal (BNR) [1,2]. The benefits of shortcut 

nitrification processes include lower oxygen and carbon requirements [3–5]. Enrichment of 

AOB and washout or inhibition of NOB are important for realizing the partial-nitrification 

process.  

When competing for DO, NOB are often at a disadvantage due to their higher dissolved oxygen 

half-saturation coefficients. Thus, DO control has been adopted by many researchers to achieve 

shortcut nitrification. However, DO concentrations for achieving stable shortcut nitrification 
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varied in different studies, as shown in Appendix A Table A3-1. As apparent from SI-Table 3-

1, DO values range from 0.16 to 5 mg DO/L. The wide differences in operational DO 

concentrations resulted directly from the changes in pH, free ammonia (FA), free nitrous acid 

(FNA), and temperature, as well as the type of system (attached growth or suspended growth). 

Thus, optimization of DO concentration at any given operational conditions such as pH, FA, 

FNA, temperature is critical for the design and operation of a successful shortcut nitrification 

system. 

In this study, we developed a mathematical model proposing the concept of the 

minimum/maximum substrate (MSC) concentrations to include oxygen limitations and the 

effect of pH, FA and FNA, temperature and SRT at a given ambient TNN and TAN 

concentration. The choice of free ammonia as the AOB substrate is rationalized by [6,7], who 

demonstrated from batch tests that NH3 rather than NH4
+ is the actual substrate, which is also 

supported by the fact that biomass can only transport the uncharged NH3 over its membrane 

[8]. The model was also validated with data from the literature.   

3.2 Methodology  

3.2.1 General MSC equation.  

Smin is the minimum substrate concentration to support steady-state biomass [9,10].  Smin and 

DOmin can be derived from the Monod equation as eq.3.1 and eq.3.2, respectively [10]. 

𝑆𝑚𝑖𝑛 = 𝐾𝑠 ∙
𝑏

𝜇𝑚𝑎𝑥∙𝐷𝑂

𝐷𝑂+𝐾𝑂
−𝑏

                                                                                                     (Eq.3.1) 
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𝐷𝑂𝑚𝑖𝑛 = 𝐾𝑂 ∙
𝑏

𝜇𝑚𝑎𝑥∙𝑆

𝑆+𝐾𝑆
−𝑏

                                                                                                   (Eq.3.2) 

Smin refers to the minimum electron donor. Ks and Ko are the Monod half-saturation 

concentrations for the electron donor (S) and electron acceptor (DO), respectively, 𝜇𝑚𝑎𝑥 is the 

maximum growth rate and b is the endogenous decay rate. 

3.2.2 MSC equation for AOB. 

 In this study, by adopting free ammonia as substrate, Eq.3.1 and Eq.3.2 are converted to Eq. 

3.3 and Eq.3.4. 

𝐹𝐴𝑚𝑖𝑛 = 𝐾𝐹𝐴 ∙
𝑏

𝜇𝑚𝑎𝑥∙𝐷𝑂

𝐷𝑂+𝐾𝑂
−𝑏

                                                                                           (Eq.3.3) 

𝐷𝑂𝑚𝑖𝑛 = 𝐾𝑂 ∙
𝑏

𝜇𝑚𝑎𝑥∙𝐹𝐴

𝐹𝐴+𝐾𝐹𝐴
−𝑏

                                                                                             (Eq.3.4) 

In which, FA is free ammonia, mg N/L; DO is dissolved oxygen, mg O2/L; Ko is the Monod 

half-saturation rate concentration for dissolved oxygen, mg O2/L;  KFA is the Monod half-

saturation rate concentration for FA, mg N/L;  𝜇𝑚𝑎𝑥 is the maximum growth rate and b is the 

endogenous decay rate, d-1;  

3.2.3 MSC equation for NOB.  

In this study, TNN is chosen as the substrate for NOB [11,12]. Eq.3.1 and Eq.3.2 are converted 

to Eq.3.5 and Eq.3.6: 

TNN = 𝐾𝑇𝑁𝑁 ∙
𝑏

𝜇𝑚𝑎𝑥∙𝐷𝑂

𝐷𝑂+𝐾𝑂
−𝑏

                                                                                           (Eq.3.5) 
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𝐷𝑂𝑚𝑖𝑛 = 𝐾𝑂 ∙
𝑏

𝜇𝑚𝑎𝑥∙𝑇𝑁𝑁

𝑇𝑁𝑁+𝐾𝑇𝑁𝑁
−𝑏

                                                                                          (Eq.3.6) 

In which TNN is total nitrite nitrogen, mg N/L; KTNN is the Monod half-saturation 

concentration for TNN, mg N/L. 

3.2.4 Effect of pH.  

The pH can influence nitrification directly by changing the enzymatic reaction mechanism 

[7,13] and indirectly by changing the concentrations of FA and FNA, which inhibit AOB and 

NOB [6,7,12]. 

The direct pH effect on the maximum specific substrate utilization rate of AOB or NOB can be 

captured by the empirical bell-shaped Eq.3.7 [13]: 

q =
𝑞𝑚𝑎𝑥

2
∙ {1 + cos [

𝜋

𝑤
∙ (𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡)]}                                                                  (Eq.3.7)  

(| 𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡|<w))                                              

q and qmax are, respectively, the maximum specific substrate utilization rate at a given pH and 

at the optimal pH, mg N/(mg VSS d). w is the pH range within which the q is larger than one-

half of qmax. 

Since the biomass yield is a constant, 𝜇 is also affected by pH similar to q: 

μ =
𝜇𝑚𝑎𝑥

2
∙ {1 + cos [

𝜋

𝑤
∙ (𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡)]}                                                                (Eq.3.8) 

In which, μ is the maximum specific substrate utilization rate at a given pH, d-1. 
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FA and FNA, both of which inhibit AOB and NOB, are influenced by pH. FA and FNA 

concentrations can be calculated based on pH and TAN or TNN concentration [8,13]. 

FA =
17

14
∙

𝑇𝐴𝑁∙10𝑝𝐻

exp(
6344

273+𝑇
)+10𝑝𝐻

                                                                                          (Eq.3.9) 

FNA =
47

14
∙

𝑇𝑁𝑁

exp[(
−2300

273+𝑇
)∙10𝑝𝐻]+1

                                                                                  (Eq.3.10) 

where T is temperature (oC), TAN is total ammonium nitrogen, mg N/L. 

Given that FA is the substrate for AOB and FNA is not a substrate for AOB, the inhibition of 

FA and FNA may potentially be modeled by the following substrate inhibition model [14,15] 

and non-substrate inhibition model [6], as shown below in eq.3.11 and eq.3.12, respectively.  

μ = 𝜇𝑚𝑎𝑥 ∙
𝐷𝑂

𝐷𝑂+𝐾𝑂
∙

𝐹𝐴

𝐾𝐹𝐴+𝐹𝐴+
𝐹𝐴2

𝐾𝐼𝐹𝐴

                                                                             (Eq.3.11) 

μ = 𝜇𝑚𝑎𝑥 ∙
𝐷𝑂

𝐷𝑂+𝐾𝑂
∙

𝐹𝐴

𝐹𝐴+𝐾𝐹𝐴
∙

𝐾𝐼𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴+𝐹𝑁𝐴
                                                                  (Eq.3.12) 

Thus, integrating the direct and indirect effects of pH on AOB yields: 

μ𝑜𝑏𝑠 =
𝜇𝑚𝑎𝑥

2
∙ {1 + cos [

𝜋

𝑤
∙ (𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡)]} ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂
∙

𝐹𝐴

𝐾𝐹𝐴+𝐹𝐴+
𝐹𝐴2

𝐾𝐼𝐹𝐴

∙
𝐾𝐼𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴+𝐹𝑁𝐴
              

(Eq.3.13) 

KIFA and KIFNA are the inhibition concentrations for FA and FNA on AOB, mg N/L. μ𝑜𝑏𝑠 is the 

observed specific biomass growth rate, d-1. 

A non-substrate inhibition model was adopted for FA inhibition of NOB as FA is not a substrate 

for NOB. The model by Boon and Laudelout (1962) was chosen to describe the FNA inhibition 
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of NOB [11]. Thus, integrating the direct and indirect effects of pH on NOB yields the 

following: 

μ𝑜𝑏𝑠 =
𝜇𝑚𝑎𝑥

2
∙ {1 + cos [

𝜋

𝑤
∙ (𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡)]} ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂
∙

𝑇𝑁𝑁

(𝐾𝑇𝑁𝑁+𝑇𝑁𝑁)(1+
𝐹𝑁𝐴

K´𝐼𝐹𝑁𝐴
)

∙
K´𝐼𝐹𝐴

K´𝐼𝐹𝐴+𝐹𝐴
         

(Eq.3.14) 

K´IFA and K´IFNA are the inhibition concentration for FA and FNA on NOB, mg N/L. 

3.2.5 Effect of Temperature.  

The Monod maximum growth rate (μmax), the half-saturation concentration (KS) and the 

endogenous decay rate (b)were adjusted for temperature: 

μ𝑚𝑎𝑥 = μ𝑚𝑎𝑥20 ∙ 𝜃μ
𝑇−20                                                                                                (Eq.3.15) 

K𝑆 = K𝑆20 ∙ 𝜃K𝑆

𝑇−20                                                                                                                                                    (Eq.3.16) 

𝑏 = b20 ∙ 𝜃b
𝑇−20                                                                                                                                                       (Eq.3.17)  

where T is temperature (oC), 𝜃 is the temperature coefficient. 

3.2.6 SRT effect.  

The effect of SRT on the MSC equations is shown in eq.3.18: 

𝜇𝑚𝑎𝑥 ∙
𝐷𝑂

𝐾𝑂+𝐷𝑂
∙

𝑆

𝑆+𝐾𝑆
− 𝑏 −

1

𝑆𝑅𝑇
= 0                                                                          (Eq.3.18) 
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3.2.7  Integration of Effects.  

DOmin equations for AOB and NOB are shown in eq.3.19 and eq.3.20, respectively.  

𝐷𝑂𝑚𝑖𝑛 =
(b20∙𝜃b

𝑇−20+
1

𝑆𝑅𝑇
)∙𝐾𝑜

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20

2
∙{1+cos [

𝜋
𝑤

∙(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)]}

(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)∙(1+

K𝐹𝐴20∙𝜃K𝐹𝐴
𝑇−20

𝐹𝐴
+

𝐹𝐴
𝐾𝐼𝐹𝐴

)

−b20∙𝜃b
𝑇−20−

1

𝑆𝑅𝑇

  for AOB                         (Eq.3.19) 

𝐷𝑂𝑚𝑖𝑛 =
(b20∙𝜃b

𝑇−20+
1

𝑆𝑅𝑇
)∙𝐾𝑜

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20

2
∙{1+cos [

𝜋
𝑤

∙(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)]}

(1+
𝐹𝑁𝐴

K´𝐼𝐹𝑁𝐴
)∙(1+

𝐹𝐴
K´𝐼𝐹𝐴

)∙(1+
K𝑇𝑁𝑁20∙𝜃K𝑇𝑁𝑁

𝑇−20

𝑇𝑁𝑁
)

−b20∙𝜃b
𝑇−20− 

1

𝑆𝑅𝑇

 for NOB                   (Eq.3.20) 

FAmin and FAmax for AOB and TNNmin and TNNmax for NOB can be calculated from 

Eq.3.21- Eq.3.24, respectively, since FA for AOB and TNN for NOB have two limiting values 

with FA and FNA inhibition. The lower limiting value (FAmin or TNNmin) has the same meaning 

as the traditional Smin i.e. the minimum substrate concentration to support steady-state biomass 

while the higher value (FAmax or TNNmax) represents the maximum substrate concentration able 

to sustain steady-state biomass, above which inhibition by FA or FNA will lead to wash out of 

AOB or NOB. 
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For AOB, 

FA𝑚𝑖𝑛 =

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20

2 ×{1+cos [
𝜋
𝑤∙(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)]}×𝐷𝑂

(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)∙(𝐾𝑂+𝐷𝑂)

−b20∙𝜃b
𝑇−20− 1

𝑆𝑅𝑇−√(

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20

2 ∙{1+cos[
𝜋
𝑤∙(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)]}∙𝐷𝑂

(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)∙(𝐾𝑂+𝐷𝑂)

−b20∙𝜃b
𝑇−20− 1

𝑆𝑅𝑇)2−4∙
(b20∙𝜃b

𝑇−20+ 1
𝑆𝑅𝑇

)2∙K𝐹𝐴20∙𝜃K𝐹𝐴
𝑇−20

𝐾𝐼𝐹𝐴

2∙(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)∙
1

𝐾𝐼𝐹𝐴

                                                              (Eq.3.21) 

FA𝑚𝑎𝑥 =

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20

2 ×{1+cos [
𝜋
𝑤∙(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)]}∙𝐷𝑂

(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)∙(𝐾𝑂+𝐷𝑂)

−b20∙𝜃b
𝑇−20−

1
𝑆𝑅𝑇+√(

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20

2 ∙{1+cos[
𝜋
𝑤∙(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)]}∙𝐷𝑂

(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)∙(𝐾𝑂+𝐷𝑂)

−b20∙𝜃b
𝑇−20−

1
𝑆𝑅𝑇)2−4∙

(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)2×K𝐹𝐴20×𝜃K𝐹𝐴
𝑇−20

𝐾𝐼𝐹𝐴

2×(b20×𝜃b
𝑇−20+ 1

𝑆𝑅𝑇
)×

1

𝐾𝐼𝐹𝐴

                                                              (Eq.3.22) 

For NOB, 

TNN𝑚𝑖𝑛 =

μ𝑚𝑎𝑥20×𝜃μ
𝑇−20×𝐷𝑂

(1+
𝐹𝐴

K´𝐼𝐹𝐴
)×(𝐾𝑂+𝐷𝑂)

−(b20×𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)(1+K𝑇𝑁𝑁20×𝜃K𝑇𝑁𝑁
𝑇−20 ×

𝑓𝐹𝑁𝐴
K´𝐼𝐹𝑁𝐴

)−√(
μ𝑚𝑎𝑥20×𝜃μ

𝑇−20×𝐷𝑂

(1+
𝐹𝐴

K´𝐼𝐹𝐴
)×(𝐾𝑂+𝐷𝑂)

−(b20×𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)(1+K𝑇𝑁𝑁20×𝜃K𝑇𝑁𝑁
𝑇−20 ×

𝑓𝐹𝑁𝐴
K´𝐼𝐹𝑁𝐴

))

2

−4×(b20×𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)2∙K𝑇𝑁𝑁20∙𝜃K𝑇𝑁𝑁
𝑇−20 ∙

𝑓𝐹𝑁𝐴
K´𝐼𝐹𝑁𝐴

2∙(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)∙
𝑓𝐹𝑁𝐴

K´𝐼𝐹𝑁𝐴

                                             (Eq.3.23) 

TNN𝑚𝑖𝑛 =

μ𝑚𝑎𝑥20∙𝜃μ
𝑇−20∙𝐷𝑂

(1+
𝐹𝐴

K´𝐼𝐹𝐴
)∙(𝐾𝑂+𝐷𝑂)

−(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)(1+K𝑇𝑁𝑁20∙𝜃K𝑇𝑁𝑁
𝑇−20 ∙

𝑓𝐹𝑁𝐴
K´𝐼𝐹𝑁𝐴

)+√(
μ𝑚𝑎𝑥20∙𝜃μ

𝑇−20×𝐷𝑂

(1+
𝐹𝐴

K´𝐼𝐹𝐴
)∙(𝐾𝑂+𝐷𝑂)

−(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)(1+K𝑇𝑁𝑁20∙𝜃K𝑇𝑁𝑁
𝑇−20 ∙

𝑓𝐹𝑁𝐴
K´𝐼𝐹𝑁𝐴

))

2

−4∙(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)2∙K𝑇𝑁𝑁20∙𝜃K𝑇𝑁𝑁
𝑇−20 ∙

𝑓𝐹𝑁𝐴
K´𝐼𝐹𝑁𝐴

2∙(b20∙𝜃b
𝑇−20+

1
𝑆𝑅𝑇

)∙
𝑓𝐹𝑁𝐴

K´𝐼𝐹𝑁𝐴

                                                         (Eq.3.24) 
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For AOB, using the relationship between TAN and FA of Eq.3.9, TANmin and TANmax can be 

derived as Eq.3.25 and Eq.3.26, respectively.  

TAN𝑚𝑖𝑛 = FA𝑚𝑖𝑛 ∙
14

17
∙

[exp(
6344

273+℃
)+10𝑝𝐻]

10𝑝𝐻                                                             (Eq.3.25) 

TAN𝑚𝑎𝑥 = FA𝑚𝑎𝑥 ∙
14

17
∙

[exp(
6344

273+℃
)+10𝑝𝐻]

10𝑝𝐻                                                           (Eq.3.26) 

3.2.8 Modeling Simulations  

Simulations were conducted based on Eq.3.19- Eq.3.24 using six cases to evaluate the effect of 

pH, temperature, and SRT on a CSTR without biomass recycle. The kinetic parameter values used 

for modelling are summarized in Table 3-1 while the simulation conditions are presented in Table 

3-2. Taking case 1 as an example, the TNN and temperature were kept constant at 50 mg N/L and 

35oC, respectively, SRT was set as infinity, at each pH, the input ws TAN as mg N/L and the 

output was DOmin for AOB and NOB as mg O2/L.    
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Table 3-1. Various Kinetic Parameters Selected for the Model Simulation (at 20oC) 

 Kinetic parameters AOB NOB Reference 

KS half-max-rate concentration (mg N/L) 0.75(NH3-N) 2.7(TNN) [7,16]; 

[7,17] KO half-max-rate concentration (mg DO/L) 0.51 1.98 

𝜇
𝑚𝑎𝑥

  maximum growth rate(d-1) 0.9 1.0 

[18] 

b decay coefficient (d-1) 0.17 0.17 

W pH range 3.2 2.4 

[12] 

pHopt optimal pH 8.4 7.7 

θKs Temperature coefficient for Ks 1.029 1.029 

[14] θμ Temperature coefficient for 𝜇
𝑚𝑎𝑥

 1.072 1.063 

θb Temperature coefficient for b 1.04 1.04 

KIFA inhibition concentration (mgFA/L) 10 0.75 

[16] 

KIFNA inhibition concentration (mgFNA/L) 0.5 0.1 

 

Table 3-2. Operational Conditions for Six Simulation Cases 

Case TAN (mg N/L) TNN (mg N/L) pH Temperature (oC) SRT (d) 

1 0-1000 50 7, 7.5, 8, 8.5, 9 35 infinity 

2 50 0-1000 7, 7.5, 8, 8.5, 9 35 infinity 

3 0-1000 50 8 10, 15, 20, 25, 30, 35 infinity 

4 50 0-1000 8 10, 15, 20, 25, 30, 35 infinity 

5 0-1000 50 8 35 5,10,20,30, infinity 

6 50 0-1000 8 35 5,10,20,30, infinity 
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3.3 Results and Discussion 

3.3.1 Impact of pH: Cases 1 and 2. 

Figures 3-1A and 3-1B show the DOmincurves for AOB and NOB at different pHs. For each pH in 

case 1, the curves are generated by fixing TNN at 50 mg N/L, temperature of 35oC, pH of 8 as an 

example, and predicting the DOmin for AOB and NOB at TAN from 0 to 1000 mg N/L. Generally, 

if the operating DO is above the DOmin curves for AOB and/or NOB, the conditions support the 

growth of AOBs, NOBs, or both. FA inhibition increases with pH increase while FNA inhibition 

increases with pH decrease. For case 1, the TANmin and TANmax represent the maximum and 

minimum TAN concentration for AOB to grow. When the TAN is lower than TANmin, AOB can 

not be sustained due to substrate limitation. When the TAN is higher than TANmax, AOB can not 

grow due to FA inhibition. For AOB, when the TAN concentration is below TANmin or over 

TANmax, DOmin approaches infinity, which identifies the washout range (WR) for AOBs. Similar 

boundaries of TNNmin or over TNNmax also exist for NOB.  

 

A 
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Figure 3-1. Comparison with MSC curves. (A-F represent case 1-6, respectively) 

Case 1 simulates the effect of pH on AOB and NOB at a constant TNN concentration of 50 mg 

N/L and TAN concentration of 0-1000 mg N/L. At pH 7, AOB and NOB curves intersect at 38 mg 

N/L, implying that below 38 mg N/L it is impossible to wash out NOB and maintain AOB by DO 

control as DOmin for NOB is lower than DOmin for AOB. The intersection TAN concentrations at 

pH 7.5, 8, 8.5 and 9 are 10 mg N/L, 3 mg N/L, 0 mg N/L and 0 mg N/L, implying that the minimum 

operational TAN concentration decreases as pH increases. Both TANmin and TANmax 

concentrations for AOB decrease as pH increases. For example, for pH in the 7 to 9 range, the 

TANmin concentration for AOB decreases from 24 mg N/L to 0.3 mg N/L. Similarly, the TANmax 

values for AOB at pH 7 and 7.5 are over 1000 mg N/L and at 8, 8.5 and 9 are approximately 489 

mg N/L, 200 mg N/L and 90 mg N/L. Due to FA inhibition, the TANmax for NOB also decreases 

from 126 mg N/L at pH 7 to 0.3 mg N/L at pH 9. In this analysis, both TANmin and TANmax 

represent the TAN concentration at which DOmin reaches 5 mg /L. When the DO is 2 mg/L and 

TNN concentration is constant at 50 mg N/L, the TAN concentration range for shortcut 
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nitrification at pH 7, 7.5, 8, 8.5 and 9 are 74-1000 mg N/L, 43-1000 mg N/L, 16-489 mg N/L, 5-

200 mg N/L, and 1-90 mg N/L, respectively. Yan and Hu (2009) operated a CSTR, at SRTs of 1 

to 2 day, DO of 2 mg/L, temperature of 35 oC, pH 8 and achieved nitrite accumulation at a TAN 

of 150 and TNN of 180 mg N/L for CSTR [19]. The computed DOmin for AOB growth and 

complete NOB washout based on this model for the conditions of Yan and Hu (2009) are 0.29-

0.78 mg/L which are less than 2 mg/L and consistent with the experimental results.  

Case 2 simulates the effect of pH on AOB and NOB at a constant TAN concentration of 50 mg 

N/L and TNN concentration of 0-1000 mg N/L (Figure 1B). The DOmin for NOB are always higher 

than those for AOB, implying that shortcut nitrification is achievable at any pH, especially at pH 

over 8, when DOmin for NOB goes to infinity meaning that NOB are always washed out. The 

optimal pH is around 8 as the DOmin range for AOB with TNN ranging from 0 mg/L to 1000 mg/L 

are 0.15-0.17 mg/L at pH 8, 0.24-0.26 mg/L at pH 8.5 and 0.66-0.68 mg/L at pH 9. TNN 

concentrations exert minimal impact on the DOmin for AOB. As apparent from cases 1 and 2, the 

TAN has a much greater effect on the DOmin of AOB and NOB than the TNN. There is a turning 

point which corresponds to the minima of the DOmin curves (Fig 1B as an example) on the TAN-

DO curve for AOB and on the TNN-DO curve for NOB, when TNN or TAN is fixed. For example, 

in Fig 1A, when TAN is lower than the turning point value, DOmin for AOB will increase 

significantly with TAN decrease. As discussed above, pH 8 seems to be optimal for AOB at 

constant TAN values at 50 mg N/L. However, the optimal pH may not be applicable to specific 

circumstances. For example, if an effluent TAN of 800 mg N/L and TNN of 50 mg N/L is required, 

only pH 7 or 7.5 can be utilized.  
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3.3.2 Impact of Temperature: Cases 3 and 4.  

The effect of temperature in the 10oC to 35oC range on the DO MSC curves for AOB and NOB is 

shown in Figures 3-1C and 3-1D. Case 3 is similar to case 1 at a constant TNN concentration of 

50 mg N/L and TAN concentration of 0-1000 mg N/L while case 4 is similar to case 2 at a constant 

TAN concentration of 50 mg N/L and TNN concentration of 0-1000 mg N/L.  

In case 3, both TANmin and TANmax values for AOB decreased as temperature increased. The 

TANmin and TANmax values for AOB decreased from 11 mg N/L and over 1000 mg N/L at 10oC 

to 1.5 mg N/L and 489 mg N/L at 35oC. The TANmax for NOB also decreased from 65 mg N/L at 

10oC to 24 mg N/L at 35oC. The intersection TAN concentration of AOB and NOB curves 

decreased from 16 mg N/L at 10oC to 3 mg N/L at 35oC. From the aforementioned point of 

intersection to TANmax for AOB, it is possible to maintain AOB and wash out NOB by adopting 

specific DO control. For example, from TANmax for NOB to TANmax for AOB, nitrite accumulation 

can always be achieved with DO higher than DOmin for AOB. In case 4, when TAN is fixed at 50 

mg N/L, the DOmin for NOB are always higher than that for AOB, meaning that shortcut 

nitrification is achievable at any temperature in the 10 oC to 35 oC range.  

3.3.3 Impact of SRT: Cases 5 and 6.  

The effect of SRT on DO MSC curves for AOB and NOB is shown in Figure 3-1E and 3-1F by 

changing SRT from 5 days to infinity while maintaining pH and temperature constant at 8 and 

35oC, respectively.  

Case 5 simulates the effect of SRT on AOB and NOB at a constant TNN concentration of 50 mg 

N/L and TAN concentration of 0-1000 mg N/L. The TANmin concentrations for AOB at any SRT 
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are lower than 3 mg N/L. BothTANmax values for AOB and NOB increased with SRT. The TANmax 

concentration for AOB increases from 263 mg N/L at an SRT of 5d to 489 mg N/L at an infinite 

SRT. The TANmax for NOB increased from 13 mg N/L at an SRT of 5d to 24 mg N/L at an infinite 

SRT. The intersection point of the DO curves for AOB and NOB corresponds to the TAN 

concentration at which both species survive. The common TAN concentration for both AOB and 

NOB decreased as SRT increased from 5d to infinity but always fell within the range of 3 to 4 mg 

N/L.  

Case 6 simulates the effect of SRT on AOB at a constant TAN concentration of 50 mg N/L and 

TNN concentration of 0-1000 mg N/L. At all SRTs, NOB will be washed out, ending up with 

nitrite accumulation when DO is higher than DOmin for AOB. From figure 1F, DOmin for AOB 

decreased as SRT increased at a given TNN concentration.  

3.3.4 Special Applications of the DOMSC Curves.  

Recently, the feasibility and performance of nitritation-anammox system at low nitrogen 

concentrations (20 to 60 mg NH4-N/L) and low temperatures (5-25°C) has elicited the attention of 

both researchers and practitioners [20–23]. The MSC curves for various pHs for the special case 

of shortcut nitrification-anammox process at 10oC are shown in Figure 3-2. In this simulation, SRT 

were set at 10, 20, and 30 days, temperature was set as 10, 15 and 20 oC, the pH was set at 8. 

Stoichiometrically, anammox needs an influent that has almost the same concentrations of 

ammonium- and nitrite-nitrogen [24]. Thus, the TAN/TNN was set at 1:1.32 with total nitrogen 

(TN) as the sum of TAN and TNN i.e. completely ignoring nitrates. As presented in Figure 3-2, 

the DOmin for both AOB and NOB decreased when SRT or temperature increased. The minimum 
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SRT decreased with temperature increase. At a given condition, for example, a TN of 60 mg N/L, 

pH 8, the minimum SRT was 13 d at 10oC, decreasing to 7d at 15oC, and further to 3.6 d at 35oC.  

 

Figure 3-2. DOmin curves by SRT (10-30d) and temperature(10-20oC) for shortcut 

nitritation to provide an input to the ANAMMOX process. 

Specifically, the DOmin curves of AOB and NOB as a function of TN (based on NO2-N/NH4-N of 

1.32) at SRT of 30 d, temperature of 20oC and pH of 8, are shown in Figure 3-3. Three areas were 

marked as area A, B and C, respectively in the figure. Based on AOB curve, areas B and C 

represent the conditions for AOB to grow. Based on NOB curve, areas A and B represent the 

conditions for NOB to grow. Thus, full nitrification can be achieved inarea B, in which the 

operational DO is higher than DOmin of both AOB and NOB, i.e. DO of 2 mg/L, SRT of 30 days, 

temperature of 20oC, and TN of 40 mg N/L. Partial nitrification could be achieved under conditions 

of area C, in which the operational DO is higher than DOmin of AOB but lower than that of NOB. 

For example, at a TN of 40 mg N/L, the DO should be in the range from 0.45 mg O2/L to 0.9 mg 

O2/L for partial nitrification.      
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Figure 3-3. DOmin curves of AOB and NOB at SRT of 30d, temperature of 20oC, and pH 

of 8-Effluent NO2-N/NH4-N=1.32 

3.3.5 Analysis of literature results with the MSC model.  

Table 3-3 summarizes the comparison of literature operational conditions and performance data 

with the computed DOmin values based on this model. Columns 1 to 8 are from the experimental 

data, columns 10 to 11 are AOB and NOB DOmin values calculated using the experimental values 

in this model. Almost all experimental DO values are higher than DOmin for AOB and lower than 

DOmin for NOB, suggesting that this model may become a predictive tool for successful shortcut 

nitrification system.  
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Table 3-3. Determination of the Minimum DO Concentration in Short-cut Nitrification Systems 

reference 

TAN  

(mg 

N/L) 

TNN 

(mg 

N/L) 

pH T(oC) NO2/NOx SRT(d) 

DO 

(mg/L) 

Duration(d) System 

DOmin 

AOB NOB 

[25] 250 170 8 30 93% 31 <2 800 
activated sludge with biofilm carriers 

and a clarifier 
0.66 WR 

[26] 350 350 
6.5-

6.7 
35 >90% 1 3 180 SHARON WR WR 

[27] 550 600 6.4-7 30-40 100% 1 NA 250 SHARON WR WR 

[28] 400 400 6.2-7 30 94% infinity 2-4 90 moving bed biofilm reactor 
0.73-

WR 
WR 

[29] 

137.3 353.9 8 30 95.7% 8-12 >1.5 70 continuous stirred-tank reactor 
2.55-

4.25 
WR 

73.2 391.4 7-7.5 30 85.3% 14-18 >1 55 continuous stirred-tank reactor 
0.48-

WR 
WR 

[30] 127.5 154.2 8 35 81% 12-14 0.3-0.5 120 
continuous stirred-tank reactor with a 

settler  

0.37-

0.39 
WR 

[31] 50 45 7.6 30 >90% infinity 0.2 150 
closed down-flow hanging sponge 

reactor 
0.20 2.67 

[32] 12 390 
7.8-

7.9 
30 67% infinity 0.7 50 activated sludge reactor with a settler 

0.27-

0.34 

1.24-

1.38 

[33] 30 400 7.8 25 80% infinity 1.4 300 activated sludge reactor with a settler  0.27 3.29 

[34] 80 163 8.2 30 98% 20-25 1.3±0.3 96 
suspended-growth shortcut biological 

nitrogen removal with a clarifier 

0.30-

0.31 
WR 
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When analyzing the effect of SRT in this work, SRT ranged from 5 to 30 days. However, the 

SHARON process usually has an SRT less than 2 days [26,27,35,36]. As apparent from Table 3-

3, this model was unable to predict the SHARON process as the DOmin for AOB by the model 

suggested that the AOB would be washed out under the Sharon conditions. The reason for the 

aforementioned discrepancy is different kinetics. The maximum observed growth rates of AOB in 

the SBR and SHARON were 1.0 d-1 and 2.0 d-1 , 1.3 d-1 and 2.4 d-1 in the study of Galí et al. (2007a) 

and Galí et al. (2007b), respectively [26,35]. One set of SHARON kinetic parameters for AOB 

determined by Van Hulle et al.[7] at pH 7, and a temperature of 35oC are: b= 0.045d-1, KNH3=0.75 

mgNH3-N L−1, KINH3 was very high and KIHNO2=2.04 mgHNO2-N L−1 and Ko=0.94 mg/L. By 

using the aforementioned kinetic parameters and μmax of 2.4 d-1, the predicted DOmin for AOB was 

1.09 to 1.36 mg/L in the case of van Dongen et al. [27]. The model predictions for several typical 

Sharon processes are shown in Table 3-4. Although in some studies the actual DO was not 

mentioned, the model suggested that the AOB could survive with DO higher than DOmin while 

NOB would be washed at any operational DO. This indicates that the model could predict the 

SHARON process based on its specific kinetic parameters. In this study, b of 0.17 d-1 at 20oC and 

θb of 1.04 were used, resulting in  b value of 0.31 d-1 at 35oC, which is actually higher than the b 

value of 0.23 d-1 at 35oC reported by Magrí et al. [37]. In fact, the reported b values at 35oC range 

from 0.045 d-1 to 0.31 d-1 [7,14,38,39]. In addition, the FA and FNA inhibition threshold 

concentrations range from 5.0 to 27.3 mg FA/L, and 0.09 to 0.97 mg FNA/L [12].  
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Table 3-4. Model prediction of Sharon reactors based on specific kinetic values 

reference 

TAN  

(mg 

N/L) 

TNN 

(mg 

N/L) 

pH T(oC) NO2/NOx SRT(d) 
DO 

(mg/L) 

DOmin 

AOB NOB 

[26] 350 350 
6.5-

6.7 
35 >90% 1 3 2-2.86 WR 

[27] 550 600 6.4-7 30-40 100% 1 NA 
1.09-

1.36 
WR 

[35] 350 400 7 35 88% 1.4 3 0.65 WR 

[36] 130 345 7.4 35 100% 1.5 NA 1.05 WR 

3.3.6 Model use for bioreactor design. 

This model not only suggests a DO range in which nitrite accumulation can be successfully 

achieved, but also provides bioreactor design information such as SRT.  

For example, if a CSTR is to be designed to treat wastewater, with Qin, influent TAN of 220 mg 

N/L to achieve an effluent concentration of TAN 20 mg N/L and TNN 200 mg N/L at a pH of 7.5 

and a temperature of 35oC, the SRT ranges from 2.4 d to infinity, i.e. any SRT>2.4 days is feasible. 

Furthermore, the operational DO ranges from 0.31 to 1.19 mg/L atlong SRT (>40 days) to over 

4.5 mg/L at an SRT of 2.4 d. Obviously, from a practical perspective, the minimum SRT is 

recommended despite the high energy costs. 

3.4 Conclusions 

A model for successful shortcut nitrification conditions determination was derived based on MSC 

values. In addition, the effect of temperature, pH and SRT was analyzed. Specific application of 

this model for shortcut nitrification coupled with anaerobic ammonium oxidation (ANAMMOX) 
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in which the effluent concentrations of nitrite and ammonium from shortcut nitrification were 

equal, was discussed. Comparison of the model predicted DOmin with experimental data suggested 

that this model can be a useful and practical tool for shortcut nitrification systems design and 

operation.  
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Chapter 4 * 

4 Operational conditions for successful partial nitrification in an 

SBR based on process kinetics 

The objective of this study is to analyze the factors affecting the performance of partial nitrification 

in a sequencing batch reactor (SBR) using kinetic models. During the 4-month operation, dissolved 

oxygen (DO) and influent ammonia concentration were selected as operating variables to evaluate 

nitrite accumulation. Stable partial nitrification was observed with two conditions, influent 

ammonia concentration of 190 mg N/L and a DO of 0.6-3.0 mg/L as well as influent ammonia 

concentration of 100 mg N/L and a DO of 0.15-2.0 mg/L with intermittent aeration. At a DO of 

0.6-3.0 mg O2/L and influent ammonia concentration of 90 mg N/L, NOB growth was not 

suppressed. Kinetic parameters were determined or estimated with batch tests and model 

simulation. The kinetic model predicted the SBR performance well.   

4.1 Introduction  

Partial nitrification is a prerequisite for emerging novel biological nitrogen removal processes such 

as shortcut nitrification/denitrification and shortcut nitrification/anammox as nitrite is required as 

a substrate or intermediary product [1]. Compared to conventional biological nitrogen removal 

(CBNR), the advantages of shortcut nitrification were reported as follows [1]: 1- 25% lower 

                                                 
*
 This chapter has been published in a manuscript entitled “Liu, X., Kim, M., & Nakhla, G. 

(2017). Operational conditions for successful partial nitrification in a sequencing batch reactor 

(SBR) based on process kinetics. Environmental technology, 38(6), 694-704.” 
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oxygen consumption; 2- lower electron donor requirements for denitrification (up to 40%); 3- 

higher denitrification rate; 4- CO2 reduction emission by 20%; 5- lower sludge production.  

Strategies for successful partial nitrification include low dissolved oxygen (DO) [2], intermittent 

aeration [3], solids retention time (SRT) control [4], high temperature [5], substrate inhibition, i.e. 

free ammonia (FA) and free nitous acid (FNA) [6], and chemical (NH2OH) inhibition [7] among 

others. In addition, the combination of free nitrous acid-based sludge treatment and oxygen 

limitation has been recently reported as an effective way to achieve stable nitritation (> 80%) for 

mainstream deammonification [8]. 

At high temperature, SRT control is often used to wash out nitrite oxidizing bacteria (NOB) as 

ammonia oxidizing bacteria (AOB) grow faster than NOB. Dissolved oxygen is another important 

selective factor because AOBs have lower oxygen half saturation coefficients than NOB, which 

means that NOB lose more activity as DO decreases [2]. Alternation of aeration pattern from 

continuous aeration to intermittent aeration is favorable for AOB but unfavorable for NOB as the 

delay time in nitrate production after an anoxic period is longer than in ammonium conversion [9]. 

High concentrations of free nitrous acid (FNA) and free ammonia (FA) have adverse impacts on 

nitrification. NOB are inhibited by free ammonia in the range of 0.1-1.0 mg/L [10,11], while AOB 

can tolerate free ammonia as high as 10–150 mg/L. Chang et al. [11] and Hellinga et al. [5] reported 

that FNA inhibited nitrite oxidation at concentrations of 0.2-0.22 mg/L. 

Previously, it was believed that low DO is favorable for NOB suppression [12].  However, 

recently, it has been discovered that NOBs can be divided into two kinds of species, that is, r-

strategists and K-strategists [13]. Nitrospira sp. and Nitrobacter sp. are widely regarded as the two 

major types of NOB present in WWTPs. Nitrobacter sp. are considered to be r-strategists which 
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catalyze the reactions with high rates, high Ks values, and low affinity for oxygen, while Nitrospira 

sp. are K-strategists with lower rates, low Ks values, and high affinity for oxygen. There is a wide 

variation of reported operational conditions for partial nitrification. DO is a very important factor 

for partial nitrification. Practically the DO adopted in different studies varied from 0.16 to 5 mg/L 

[12]. It was suggested that all these factors are not isolated but correlated with each other [12]. 

Thus, kinetic models are very useful and quantitative tools for analyzing biochemical processes.  

To our knowledge, using partial nitrification SBR treating relatively low ammonium wastewater 

(100-200 mg N/L) at 35oC has not been studied extensively. To date, the major strategies for partial 

nitrification in low strength wastewater are real time aeration duration control and intermittent 

aeration with low DO [14–17]. All the aforementioned studies were conducted at low temperature 

or ambient temperatures and treated very low ammonia wastewater (40-80 mgN/L). The study of 

Li et al. [18] was conducted at 20oC treating wastewater with 300 mg NH4-N/L using intermittent 

aeration with limited DO (<0.2 mg O2/L). With temperature increasing from ambient to 35oC, the 

growth rates of both AOB and NOB increase, while the inhibition of FA and FNA also become 

more significant. Additionally, the numerous partial nitrification studies have rarely been 

supported by kinetic analysis.  

The objectives of this paper are: a- determination of the optimum DO, aeration pattern and influent 

concentration conditions for successful partial nitrification; b- delineation of the kinetic parameters 

and c- using kinetic model analysis to rationalize the conditions for successful partial nitrification.  
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4.2 Materials and methods 

4.2.1 Partial nitrification reactor 

A sequencing batch reactor (SBR) with a working volume of 10 L was used in this study. The 

reactor height and the diameter are 24cm and 30 cm, respectively. The schematic diagram of the 

SBR is depicted in Figure 4-1. Two pumps (Masterflex L/S, Cole-Parmer, Montreal, Canada) were 

used, one feeding the wastewater to the SBR and the other withdrawing the treated wastewater. 

Aeration was provided with an air pump (Rena air 400, Rena Aquatic Supply, Charlotte, US) 

through an air diffuser. The operating sequence of the SBR consisted of four 6 h cycles with feed 

(20 min), aeration (300 min), settle (20 min), and decant (20 min) phases in each cycle. In each 

cycle, 5 L of supernatant were withdrawn from the reactor after the settling phase, and replaced 

with fresh wastewater, resulting in a hydraulic retention time (HRT) of 12 h. Temperature in the 

reactor was maintained at 35±2oC with a water bath (VWR® Heated Circulating Bath, VWR 

International, Mississauga, Canada).  
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Figure 4-1. SBR schematic diagram 
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4.2.2 Synthetic Wastewater and Activated Sludge Characteristics. 

The synthetic wastewater was composed of NH4Cl (35-200 mg N/L), NaHCO3 (420-2400 mg/L) 

(as carbon source for nitrification), KH2PO4, MgSO4·7H2O(100 mg/L), CaCl2(100 mg/L), 1 ml/L 

water of trace elements solution I (composition in g/L as follows: EDTA 15, ZnSO4 0.43, CoCl2 

0.24, MnCl2 0.63, CuSO4 0.25, Na2MoO4 0.22, NiCl2 0.19, Na2SeO4 0.21, H3BO3 0.01 and NaWO4 

0.05) and 1 ml/L water of trace elements solution II containing FeSO4 and EDTA at 5 g/L each. 

For full nitrification, the NaHCO3:NH4-N:P mass ratio was 60:5:1, corresponding to an alkalinity 

to ammonia nitrogen ratio of 7.14:1 while for partial nitritation, the NaHCO3:NH4-N:P mass ratio 

was 34.2:5:1, corresponding to an alkalinity to ammonia nitrogen ratio of 4.1:1 The seed sludge 

was return activated sludge (RAS) taken from the Adelaide wastewater treatment plant in London, 

Ontario. The initial concentration of the sludge in the SBR after seeding was approximately 1.5 

g/L (MLSS).  

4.2.3 Analytical methods 

MLSS/MLVSS were determined using Whatman GF/A filters (VWR International, Mississauga, 

Canada) in accordance with Standard Methods [19]. DO and pH were measured using a DO meter 

(HACH HQ 40d, HACH Co, London, Canada) and a pH meter (VWR B10P, VWR International, 

Mississauga, Canada), respectively. Nitrogen species were determined using HACH methods i.e. 

ammonium (method 10031), nitrite (8153) and nitrate (10020).  

FA and FNA concentrations were calculated by Eq.4.1 and Eq.4.2 [10]: 

𝐹𝐴 =
17

14
∙

𝑇𝐴𝑁∙10𝑝𝐻

exp(
6344

273+𝑇
)+10𝑝𝐻

                                                                                        (Eq.4.1) 
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𝐹𝑁𝐴 =
47

14
∙

𝑇𝑁𝑁

exp(
−2300

273+𝑇
)∙10𝑝𝐻+1

                                                                                 (Eq.4.2) 

In which, FA is the free ammonia and FNA is the free nitrous acid, mg N/L. 

4.2.4 Batch test 

Conventional batch kinetics tests were conducted in the reactor at each operational condition by 

temporarily stopping feed flow and maintaining a constant DO of 4.0 mg/L to determine the 

biomass ammonia oxidation rate (AOR) and nitrite oxidization rate (NOR), as suggested by Liu 

and Wang [20].  

Without alkalinity and substrate limitation, 

X=
𝑌∙(𝑆0−𝑆)∙𝑄

𝑉∙(𝑏+
1

𝑆𝑅𝑇
)
                                                                                                           (Eq.4.3) 

AOR=XAOB ∙qAOB=𝑞𝐴𝑂𝐵 ∙
𝑌𝐴𝑂𝐵∙(𝑆0,𝑁𝐻−𝑆𝑁𝐻)

𝐻𝑅𝑇∙(𝑏𝐴𝑂𝐵+
1

𝑆𝑅𝑇
)

                                                           (Eq.4.4) 

NOR= XNOB∙ qNOB=𝑞𝑁𝑂𝐵 ∙
𝑌𝑁𝑂𝐵∙(𝑆𝑁𝑂2−𝑆0,𝑁𝑂2)

𝐻𝑅𝑇∙(𝑏𝑁𝑂𝐵+
1

𝑆𝑅𝑇
)

                                                       (Eq.4.5) 

where 𝑏𝐴𝑂𝐵 and 𝑏𝑁𝑂𝐵 are endogenous decay coefficients for AOB and NOB, respectively, d-1; 

YAOB and YNOB are biomass yield coefficients for AOB and NOB, respectively, mg VSS/mg 

N;  𝑞𝐴𝑂𝐵  and 𝑞𝑁𝑂𝐵  are maximum specific substrate utilization rates for AOB and NOB, 

respectively, mg N/(mg VSS∙d); XAOB and XNOB are active AOB and NOB biomass concentrations, 

respectively, mg VSS/L; AOR and NOR are sample maximum ammonia oxidation rate and 

maximum nitrite oxidation rate, respectively, mg N/(L∙min); 𝑆𝑁𝐻and 𝑆𝑁𝑂2 are effluent ammonia 

and nitrite concentrations, respectively, mg N/L;(𝑆0,𝑁𝐻 − 𝑆𝑁𝐻) and (𝑆𝑁𝑂2 − 𝑆0,𝑁𝑂2) are ammonia 
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and nitrite oxidized, respectively; Q is inflow rate, L/d; and V is effective volume of the SBR, L. 

At the end of the study, the reactor was fed with deionized water mixed and aerated for several 

days to determine the decay coefficient (b).  

4.2.5 Model analysis 

The inhibition model by Park & Bae [21] was used in this study for the calculation of AORmax, as 

shown below: 

AOR = AORmax ∙
𝐷𝑂

𝐷𝑂+𝐾𝑂,𝐴𝑂𝐵
∙

𝑇𝐴𝑁

𝑇𝐴𝑁∙(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴,𝐴𝑂𝐵
+

𝐹𝐴

𝐾𝐼𝐹𝐴,𝐴𝑂𝐵
)+𝐾𝑆,𝐴𝑂𝐵∙(1+

𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴,𝐴𝑂𝐵
)
              (Eq.4.6) 

NOR = NORmax ∙
𝐷𝑂

𝐷𝑂+𝐾𝑂,𝑁𝑂𝐵
∙

𝑇𝑁𝑁

𝑇𝑁𝑁∙(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴,𝑁𝑂𝐵
+

𝐹𝐴

𝐾𝐼𝐹𝐴,𝑁𝑂𝐵
)+𝐾𝑆,𝑁𝑂𝐵∙(1+

𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴,𝑁𝑂𝐵
)
              (Eq.4.7) 

The inhibition kinetic parameters used for calculation were as follows: KIFA 10 and 0.75 mg N/L, 

KIFNA 0.5 and 0.1 mg N/L for AOB and NOB, respectively [12]. Other kinetic parameters were 

determined in this study. The free ammonia (FA) and free nitrous acid (FNA) concentration used 

for calculation were the average values during the batch test. 

4.3 Results 

4.3.1 Start-up performance 

In the 26 days of start-up, air flowrate was constant at 1.5 L/min, resulting in 0.6 to 2.0 mg DO/L 

in the SBR. The SBR was fed with increasing influent ammonia concentrations from 35 mg N/L 

to 100 mg N/L at an HRT of 12 hours, corresponding to volumetric nitrogen loading rates (VNLRs) 

of 0.07 kg N m-3 d-1 to 0.20 kg N m-3 d-1. The NH4
+-N, NO2

--N and NO3
--N concentrations shown 
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in Fig.4-2 indicate that under the above conditions, NOBs were not inhibited as nitrate 

accumulation was observed. To limit the activity of NOBs, SRT was set at 3d from day 23 to day 

28. As apparent from Fig.4-1, NOBs were washed out while the activity of AOBs was not 

significantly affected. At the end of the start-up stage, volumetric ammonia conversion rate 

(VACR) and volumetric nitrite conversion rate (VNCR) were 0.29 kg N m-3 d-1 and 0.03 kg N m-

3 d-1, resulting in an ammonia removal efficiency (ARE) of 96% and a nitrite accumulation ratio 

(NAR) of 87%, confirming the successful start-up of the system.  

 

Figure 4-2. Start-up of the SBR 

4.3.2 Performance of the SBR  

Following the successful start-up, the SBR was operated for about 98 days. Different operational 

conditions were tried by changing influent ammonia concentration, SRT, aeration pattern and DO 

level. The performance of the SBR is shown in Fig.4-3. Two operational periods with stable 

effluent ammonia, nitrite and nitrate concentrations were achieved. Besides, from day 22 to day 
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35, although the performance is not stable, the operational conditions were maintained constant. 

The detailed conditions and performance of the SBR during all these periods are summarized in 

Table 4-1. At the end of period 1, the influent ammonia concentration was further increased to 250 

mg N/L. However, the SBR started to exihibit inhibition as the ARE decreased from 94% on day 

21 to 36% in two days on day 23. To recover the system, the influent ammonia concentration was 

decreased to 90 mg N/L. As the inhibition diminished, the NOB started to grow and the system 

became unstable during period 2 with NAR decreasing from 74% to 17% in 10 days. From day 36 

to 43, SRT control was exercised with the SRT set at 7 days. At the same time, the influent 

ammonia concentration was increased back to 180 mg N/L. On day 43, the ARE and NAR were 

60% and 85%, respectively, suggesting that SRT control washed out both AOB and NOB. On day 

44, sludge wastage was stopped. However, both AOB and NOB activity recovered in 6 days, with 

ARE and NAR of 94% and 73% on day 49, respectively. Then from day 55 to 57, the SRT was set 

at 3d, after which the ARE and NAR were 89% and 78%, respectively. From day 60, the condition 

was changed and the SBR was operated with intermittent aeration. Intermittent aeration was 

applied with air off for 15 minutes and on for 15 minutes. No sludge wastage was carried out 

during these three periods and the SRTs were estimated based on reactor and effluent biomass. For 

example, in period 2, the biomass concentration in the SBR was 100 mg MLVSS/L and the effluent 

biomass concentration was 5 mg MLVSS/L, resulting in the SRT of 10 d.  
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Figure 4-3. Temporal variation of performance parameters of partial nitrification SBR. 
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Table 4-1. Stable operational conditions and performance of the SBR 

Period    1 2 3  

DO level (mg/L) 0.6-3.0 0.6-3.0 0.15-2.0  

Airflowrate (L/min) 0.6 0.6 0.2  

Aeration pattern continuous continuous intermittent  

Influent concentration (mg N/L) 190* 90 100  

Biomass concentration (MLVSS/L) 400 400 100  

SRT 40 40 10  

Alkalinity/N  7.14 7.14 4.10  

Effluent ammonia (mg N/L) 10.4±4.2 0.3±0.3 44.8±1.0  

Effluent nitrite (mg N/L) 164.3±7.8 22.83±2.3 44.4±1.7  

Effluent nitrate (mg N/L) 18.5±1.6 64.6±2.0 10.9±1.7  

Average FA (mg N/L) 4.4 1.0 2.2  

Average FNA (mg N/L) 0.04 0.01 0.01  

Duration (d) 0-21 22-35 60-98  

* The influent concentration increased in two steps to 150 mgN/L and then to 190 mgN/L. 

4.3.3 Kinetic study 

4.3.3.1 Decay coefficient (b) 

The sludge was starved for 5 days with aeration and biomass concentration was measured every 

day. The result is shown in Fig. 4-4. Based on the data, the decay coefficient b was calculated as 

0.245 d-1 at 35oC.  
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Figure 4-4. Evolution of biomass concentration during starvation test 

4.3.3.2 Batch tests 

Typical batch test results during period 1 are shown in Fig.4-5 with the results summarized in 

Table 4-2. At each DO condition a single batch test was conducted. The ammonia range in this 

study was 10 to 70 mg N/L while the nitrite was above 90 mg N/L. Reported half-velocity constant 

for substrate for AOB(KAOB) and NOB(KNOB) range from 0.07-1.62 mg N/L and 0.11-2.7 mg N/L 

[22–24]. As the ammonia and nitrite ranges in this study were much higher than KAOB and KNOB, 

both ammonia oxidation and nitrite oxidation followed zero order kinetics. The maximum AOR 

with FA and FNA inhibition, and oxygen half saturation coefficient (Ko) of AOB was 0.6 mg N/(L 

min) and 0.36 mg O2/L. The maximum NOR with FA and FNA inhibition, and oxygen half 

saturation coefficient (Ko) of NOB was 0.037 mg N/(L min) and 0.54 mg/L. Free ammonia (FA) 

and free nitrous acid (FNA) changes during the AOR tests are shown in Fig 4D and 4E. The 

average FA and FNA concentrations were 4 mg N/ L and 0.012 mg N/L, respectively. Based on 
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the AOR test results and the inhibition coefficients of Park et al. [12], the actual maximum AOR 

and NOR without inhibition during were 0.87 and 0.22 mg N/(L min), respectively. As a result, 

the maximum growth rate of AOB and NOB were 0.94 and 2.51 d-1, respectively. The maximum 

specific substrate utilization rates using the yield coefficient of 0.24 and 0.1 mg COD/mg N for 

AOB and NOB were 5.6 and 35.7 mg N/(mg VSS d), respectively [25]. 
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Figure 4-5. Batch test results during period 1 in the reactor 
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Table 4-2. Summary of Batch Test Conditions and Results (at 35oC) 

Condition  1 3 

DO (mg O2/L) 4.0 1.0 0.5 0.2 4.0 

AOR (mg N/(L min)) 0.49 0.44 0.39 0.21 0.159±0.001 

NOR (mg N/(L min)) 0.033 0.024 0.018 0.01 0.021±0.003 

Average FA 

(mg N/L) 
4 2.4 

Average FNA 

(mg N/L) 
0.012 0.01 

AORmax with inhibition 0.6 0.18 

NORmax with inhibition 0.037 0.023 

AORmax 0.87 0.22 

NORmax 0.22 0.1 

Additionally, batch tests at a DO of 4.0 mg/L were also conducted three times during period 3. 

Typical batch test results during period 3 are shown in Fig.4-6. The AOR and NOR with substrate 

inhibition were 0.159±0.001 and 0.021±0.003 mg N/(L min). Assuming that the respective oxygen 

half saturation coefficients of 0.36 and 0.54 mg/L do not change, the maximum AOR and NOR 

with inhibition were 0.18 and 0.023 mg N/(L min). The average FA and FNA concentrations were 

respectively 2.4 mg N/ L and 0.01 mg N/L, respectively. The actual maximum AOR and NOR 

without inhibition were 0.22 and 0.1 mg N/(L min), respectively. As a result, the maximum growth 

rates of AOB and NOB were 0.99 and 2.25 d-1, respectively. It is evident that the growth rate of 

both AOB and NOB did not change significantly, with DO in the range of 0.2 to 4.0 mg/L, 

increasing marginally from 0.94 in period 1 to 0.99 d-1 in period 3 for AOB and decreasing from 
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2.51 in period 1to 2.25 d-1 in period 3 for NOB. The maximum specific substrate utilization rate 

for AOB and NOB in period 3 were 5.9 and 32.1 mg N/(mg VSS d) , respectively.  

 

 

Figure 4-6. Batch test results during period 3 in the reactor 
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4.3.3.3 Comparison of Kinetic Parameters 

The kinetic parameters from this study are compared with the literature, as shown below in Table 

4-3. For each kinetic parameter, literature values vary widely. The kinetic values from this study 

fall within the reported range from the literature.  

Table 4-3. Kinetics Parameters for AOB, T=35oC 

Parameter 
This 

study 

literature 

Max specific growth rate of AOB, μmax (d-1) 0.94-

0.99 

0.56-2.55a, 1.0b, 1.4c, 2.1d, 0.68e 

Max specific growth rate of NOB, μmax (d-1) 2.25-

2.51 

1.05d, 1.55-2.33f, 3.21g, 0.51e 

Max specific substrate utilization rate of 

AOB, q (mg N/(mg VSS d)) 

5.6-5.87 5.4e, 13h 

Max specific substrate utilization rate of 

NOB, q (mg N/(mg VSS d)) 

32.1-

32.8 

32.5-54.0(based on temperature 

coefficient 1.06-1.1)a, 36.36d 

Oxygen half saturation coefficient (Ko) for 

AOB 

0.36 0.5 a,i, 0.51j, 0.74k, 0.40l 

Oxygen half saturation coefficient for NOB 0.54 0.68i,0.9a, 1.75k, 1.98 j, 0.43m 

Aerobic decay coefficient, 

b (d-1) 

0.245 0.09-0.27 a 

a Metcalf and Eddy (2003)[24]; b Van Hulle et al. (2007)[26]; c Galí et al. (2007)[27]; d Hellinga et al. (1999)[28]; e 

Liu and Wang (2013)[20]; f Kampschreur et al. (2007)[29]; g Wett and Rauch (2003)[30]; h Rittmann and McCarty 

(2001)[22]; i Park et al. (2010)[12]; j Schramm et al. (1999)[13]; k Grady Jr et al. (2011)[25]; l Wett et al. (2013)[31]; 

m Blackburne et al. (2008)[2]. 

4.4 Discussion  

As evident from Table 4.1, successful nitrite accumulation was achieved under operational periods 

1 and 3, which may be explained by kinetic analysis.  

The effects of DO limitation on μmax are shown in Eq.4.8-4.9. 
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μ𝑚𝑎𝑥,𝐴𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂,𝐴𝑂𝐵
                                                                         (Eq.4.8) 

μ𝑚𝑎𝑥,𝑁𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂,𝑁𝑂𝐵
                                                                         (Eq.4.9) 

Taking inhibition into consideration, Eq.4.10 and Eq.4.11 can be derived: 

μ𝑚𝑎𝑥,𝐴𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂,𝐴𝑂𝐵
∙

𝑇𝐴𝑁

𝑇𝐴𝑁∙(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
+

𝐹𝐴

𝐾𝐼𝐹𝐴
)+𝐾𝑆,𝐴𝑂𝐵∙(1+

𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)
            (Eq.4.10) 

μ𝑚𝑎𝑥,𝑁𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂,𝑁𝑂𝐵
∙

𝑇𝑁𝑁

𝑇𝑁𝑁∙(1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
+

𝐹𝐴

𝐾𝐼𝐹𝐴
)+𝐾𝑆,𝑁𝑂𝐵∙(1+

𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
)
            (Eq.4.11) 

In this study, Ks for both AOB and NOB were quite small as evident from the zero-order kinetics 

depicted in Figures 4.4 and 4.5. In this case, Eq.4.10 and Eq.4.11 can be simplified as: 

μ𝑚𝑎𝑥,𝐴𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂,𝐴𝑂𝐵
∙

1

1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
+

𝐹𝐴

𝐾𝐼𝐹𝐴

                                             (Eq.4.12) 

μ𝑚𝑎𝑥,𝑁𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐷𝑂+𝐾𝑂,𝑁𝑂𝐵
∙

1

1+
𝐹𝑁𝐴

𝐾𝐼𝐹𝑁𝐴
+

𝐹𝐴

𝐾𝐼𝐹𝐴

                                             (Eq.4.13) 

The calculated μ𝑚𝑎𝑥,𝐴𝑂𝐵
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛and μ𝑚𝑎𝑥,𝑁𝑂𝐵

𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 during the three periods are shown in Table 4-4. 

Besides, actual growth rate (μ) as (𝜇𝑚𝑎𝑥 − 𝑏 −
1

𝑆𝑅𝑇
) were also calculated. The calculation was 

based on the average FA and FNA shown above in Table 4-1. Average DO values of 1.9, 1.9 and 

1.1 mg/L during 3 periods were used for calculations. In period 3, intermittent aeration was 

applied. As a result, the DO decreased from 2.0 to 0.15 mg DO/L during the anoxic period and 

then increased from 0.15 to 2.0 mg/L during the aerobic period. Thus, the average DO of 1.1 mg/L 

was used for the above calculations. 
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Table 4-4. Calculated growth conditions for AOB and NOB during different periods 

period 1 2 3 

μ𝑚𝑎𝑥
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 for AOB  0.79 0.79 0.76 

μ𝑚𝑎𝑥
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 for NOB 1.94 1.94 1.5 

μ𝑚𝑎𝑥
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 for AOB with inhibition  0.52 0.70 0.61 

μ𝑚𝑎𝑥
𝐷𝑂−𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 for NOB with inhibition 0.26 0.80 0.37 

μ for AOB 0.25 0.44 0.27 

μ for NOB 0 0.53 0.02 

For period 1, the actual growth rate of NOB is 0 d-1, suggesting that the growth of NOB can be 

neglected. For period 2, the growth rate of NOB is even higher than AOB. The estimated doubling 

time for NOB is 1.9 d, which explains the high effluent nitrates. As the operational period 2 was 

favorable for NOB growth, it is anticipated that with longer operation, the NOB would have 

completely dominated the SBR with no nitrite accumulation observed. Period 3 is stable based on 

kinetic modelling as the growth rate of NOB is 0.02 d-1, which means that the NOB need up to 50 

d to double, hence the lowest effluent nitrate concentrations were observed.   

However, based on the data in Table 4-4, for the different periods, the major factors contributing 

to nitrite accumulation in the different periods are different. In period 1, an average DO of 1.9 

mg/L resulted in the growth rate of NOB decreasing from 2.51 to 1.94 d-1 while the FA inhibition 

further decreased it to 0.26 d-1. DO contributed about 23% decrease of the maximum NOB growth 

rate while FA inhibition caused a 67% decrease. In period 3, the average DO of 1.1 mg O2/L 

decreased the maximum growth rate of NOB by about 33% from 2.25 to 1.5 d-1 while the FA 

inhibition decreased it by 50% from 1.5 to 0.37 d-1. In addition, intermittent aeration is another 

important factor as NOB have a longer lag phase when alternating from anoxic to aerobic 
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conditions. Thus, it can be concluded that in both periods 1 and 3, FA inhibition was more 

important than DO in nitrite accumulation and intermittent aeration also contributed to NOB 

suppressionFor period 2, the DO effect was the same as period 1. However, as the average FA was 

only 1.0 mg N/L compared with 4.4 mg N/L during period 1, the growth rate of NOB only 

decreased from 1.94 to 0.8 d-1. Taking decay and SRT effects into consideration, the actual growth 

rate of NOB was still 0.53 d-1, higher than that of AOB as evidenced by conversion of 72% of the 

ammonia to nitrates. 

A major finding of this study is that the growth rate of AOB at 35oC is 0.94-0.99d-1 while that of 

NOB is 2.25-2.51 d-1. Galí et al. [27] also observed an AOB growth rate of 1.0 d-1 in a SBR, 

corresponding to 1.4 d-1.at 35oC with temperature coefficient of 1.072, compared to 2.0 d-1 in a 

Sharon reactor at a temperature of 30oC. Liu and Wang [20] suggested an AOB growth rate of 0.24 

d-1 in a SBR at 20oC, corresponding to 0.68 d-1.at 35oC. While the values fall within the reported 

ranges in the literature, the NOB grow faster than AOB, which is contradictory to the literature 

that AOB grow faster than NOB at temperatures above 15oC [5]. However, the growth rate of 

AOB and NOB vary in a very wide range. For example, Ahn et al. [32] reported the growth rate 

of AOB and NOB to be 1.08 and 2.6 d-1 at 20oC, corresponding to 3.06 and 6.3 d-1 at 35oC with 

temperature coefficients of 1.07 and 1.06 for AOB and NOB, respectively. In this study, the growth 

rates of AOB and NOB were not directly determined but estimated based on the model. Calculation 

of the growth rates was affected by the kinetic parameters. In this study, a relatively low free 

ammonia inhibition coefficient (KiFA) for NOB (0.75 mg N/L) was adopted. Despite the fact that 

AOB are less likely to be inhibited by FA as the free ammonia inhibition coefficient (KiFA) for 

AOB is high (10-3000 mgN/L) [12, 30, 33], different free ammonia inhibition coefficient (KiFA) 

ranging from 0.1 to 20 mg N/L for NOB have been reported [33-36]. However, the relatively high 
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values of KiFA for NOB of 6-11mg N/L and 19.9 mg N/L were both determined with biomass 

adapted to high ammonia concentrations (500-1000 mg N/L) [33, 36]. In this study, utilization of 

KiFA for NOB of 0.75 mg N/L is consistent with the reported values for biomass treating low 

ammonia wastewater, i.e, 0.1-1.0 mg N/L by Chang et al. [11], 0.33 mg N/L by Wu et al. [34] and 

0.95 mg N/L by Jubany et al. [35].  

As discussed above, despite the impact of the variability, the kinetic analysis in general confirmed 

that the operational conditions during periods 1 and 3 imposed a kinetic selection for AOB. 

In addition, the model developed in Chapter 3 was adopted for analysis using the average data 

during phases 1-3, with kinetic parameters, and input and output depicted in Table 3-1 and Tables 

4-5, respectively. The model prediction fitted the SBR performance well. For example, during 

period 1, the operational DO of 0.6-3.0 mg/L was higher than the DOmin for AOB of 0.2 mg/L 

but lower than the DOmin for AOB of 3.0-3.8 mg/L. Thus, model predicted that partial nitrification 

should be achieved in the SBR, which was confirmed by the performance as shown in Table 4-1. 

Table 4-5. Comparison between performance and model DO predictions 

 Parameters Period 1 Period 2 Period 3 

Input of the model NH4-Navg 55 23 60 

NO2-Navg 125 17 35 

pHavg 7.4-7.5 7.2-7.3 7.2-7.3 

 Operational DO (mgO2/L) 0.6-3.0 0.6-3.0 0.15-2.0 

 Average DO (mgO2/L) 1.9 1.9 1.1 

Output of the model DOmin for AOB (mgO2/L) 0.2 0.5-0.7 0.2-0.3 

DOmin for NOB (mgO2/L) 3.0-3.8 0.8-0.9 1.8-2.2 
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4.5 Conclusions 

An SBR was operated for 4 months treating synthetic wastewater with ammonia in the range of 

35 to 200 mg N/L at varying DO concentrations as well as continuous and intermittent aeration. 

Stable nitrite accumulation was observed at two conditions: a-influent ammonia concentration of 

190 mg N/L and continuous aeration and a DO of 0.6-3.0 mg/L, and b-influent ammonia 

concentration of 100 mg N/L, intermittent aeration and a DO of 0.15-2.0 mg/L. Various kinetic 

parameters were determined or estimated. Kinetic analysis indicated that free ammonia inhibition 

was the major cause of nitrite accumulation. Period 2 with 90 mg N/L influent and DO 0.6 to 3.0 

mg/L turned out favorable for NOB growth as the FA inhibition was not pronounced and the DO 

was not low enough.  
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Chapter 5 * 

5 Performance and Kinetics of Nitrification of Low Ammonia 

Wastewater at Low Temperature 

The objective of this study was to investigate the effect of dissolved oxygen on nitrification in a 

sequencing batch reactor (SBR) treating low ammonia wastewater (40 mg N/L) at a low 

temperature (14 °C). During the 130 days of operation, three dissolved oxygen levels (5–6 mg 

dissolved oxygen/L, 2–3 mg dissolved oxygen/L, and 0.8–1.0 mg dissolved oxygen/L) were tested. 

Dissolved oxygen reduction resulted in lower ammonia oxidizing bacteria (AOB) and nitrite 

oxidizing bacteria (NOB) activity, with decreasing ammonia conversion ratio and increasing nitrite 

accumulation ratio. The maximum growth rates of AOB and NOB determined in this study (0.28 

and 0.38 d-1) were below the median values from the literature (0.47 and 0.62 d-1), whereas the 

oxygen half-saturation coefficients of AOB and NOB (1.36 and 2.79 mg/L) were higher than those 

found in the literature. The kinetic model explained the SBR performance well. Low dissolved 

oxygen, together with long solids retention time, was recommended for partial nitrification at a 

low temperature.  

5.1 Introduction 

Conventionally, ammonia in wastewater is removed biologically by nitrification-denitrification. 

Nitrification is a two-step process involving nitritation (ammonia oxidized to nitrite) by ammonia 

                                                 
*  This chapter has been published in a manuscript entitled “Liu, X., Kim, M., & Nakhla, G. 

(2018). Performance and Kinetics of Nitrification of Low Ammonia Wastewater at Low 

Temperature. Water Environment Research, 90(6), 498-509.” 
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oxidizing bacteria (AOB), and nitratation (nitrite oxidized to nitrate) by nitrite oxidizing bacteria 

(NOB) [1]. Nitritation is a prerequisite for some emerging novel biological nitrogen processes, 

such as partial nitritation-anammox and nitritation-denitrification, as nitrite is the substrate, or 

intermediary product, of both anammox and denitrification [2]. Compared to full nitrification, 

nitritation consumes less oxygen, which translates to significant energy savings, given that the 

energy used for aeration accounts for approximately 50% of the total energy consumption of a 

typical wastewater resource recovery facility [3].  

The operational dissolved oxygen may influence nitrification. It has been reported that low 

dissolved oxygen below 2.0 mg O2/L led to inhibition of nitrifier growth, resulting in incomplete 

nitrification [1,4]. Generally, it is believed that NOB are more sensitive to dissolved oxygen than 

AOB as they have a higher dissolved oxygen half-saturation coefficient (Ko) [5–8]. As a result, 

low dissolved oxygen is used as a strategy to wash-out NOB to realize nitritation [9]. However, 

some studies still reported a higher Ko for AOB than NOB [10–12]. In fact, very wide Ko ranges 

of 0.03 to 1.5 mg O2/L and 0.13 to 3.00 mg O2/L were reported for AOB and NOB, respectively 

[13,14]. 

Recently, the application of partial nitrification-anammox process for mainstream wastewater 

treatment, which is characterized by low nitrogen concentrations and low temperatures, has 

received wide attention. Single-stage partial nitrification-anammox processes have been conducted 

in various reactors, that is, sequencing batch reactor (SBR) [15], moving bed biofilm reactor 

[16,17], and rotating biological contactor [18]. However, the single-stage partial nitrification-

anammox process suffers from nitrite accumulation, leading to complete process collapse at low 

temperatures, as the activity of AOB is greater than that of the anammox bacteria [15], suggesting 

that two-stage systems may be a good alternative at low temperatures because of ease of control. 
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In addition, most of the studies adopted the strategy of starting partial nitrification at relatively 

high temperatures, and then gradually decreasing the temperature [19,20]. 

Previous studies on nitrification kinetics have predominantly used biomass cultivated at 20 °C or 

35 °C (as shown in Table 5-1), although temperature may affect the microbial consortia 

composition and kinetics of the cultivated biomass. Shammas [21] studied the effect of 

temperature on nitrification process using short term batch tests conducted with biomass cultivated 

at 20 to 25 °C. In the study of Salvetti et al. [22], the effect of temperature on the rate of nitrification 

was studied in two pure-oxygen moving-bed biofilm reactors at an average temperature of 17.9 °C 

and 19.2 °C, respectively. However, only the temperature coefficient (θ) was determined, whereas 

AOB and NOB maximum specific growth rates (µmax) and the dissolved oxygen half-saturation 

coefficient (Ko) were not measured. To date, and to the best of the authors’ knowledge, there is no 

direct measurement of the nitrifiers’ maximum growth rate (μmax) and Ko at temperatures lower 

than 20 °C. The μmax at low temperatures are usually calculated based on μ at 35 °C or 20 °C and 

temperature coefficient, which, however, may not be accurate because of the different temperature 

coefficients reported in the literature. More importantly, Ko cannot be calculated in the same way 

because of a lack of temperature dependency. Thus, Ko at 20 °C is assumed to be pertinent at low 

temperature, although temperature may impact it. 
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Table 5-1. Summary of kinetic parameters during phase II 

Kinetic parameters Phase II Literature* Median 

value 

Oxygen half-saturation coefficient 

(Ko) for AOB (mg DO/L) 

1.36 0.50a, 0.03b, 0.42c, 0.79d, 0.18d, 0.74e, 1.16f, 

0.18g, 1.00h, 0.36i, 0.51j, 0.40k, 0.2–1.5l 

0.46 

Oxygen half-saturation coefficient 

(Ko) for NOB (mg DO/L) 

2.79 0.68a, 0.43b, 0.28c, 0.47d,0.13d,1.75e, 0.16f, 

0.54g, 3.00h, 0.54i, 1.98j 

0.54 

Max. specific growth rate of AOB, 

μmax (d-1) 

0.28 0.13–0.59l, 0.23m, 0.33n,0.49o, 0.16p,0.22i, 

0.99q, 0.47–0.54r, 0.57-0.78s, 0.35t  

0.47 

Max. specific growth rate of NOB, 

μmax (d-1) 

0.38 0.29o, 0.43–0.65t, 0.89u, 0.14p, 0.62–0.7i 0.62 

Aerobic decay coefficient, b (d-1) 0.10 0.04–0.12l, 0.11i,j, 0.13q 0.035–0.065r, 0.06t 0.065 

a. Rittmann and McCarty, at 20 °C[23]; b. Blackburne et al., 20 °C[5]; c. Daebel et al., 20 °C[10]; d. Manser et al. 

(2005), 20 °C[11]; e. Guisasola et al. (2005), 25 °C[24]; f. Regmi et al. (2014), 25 °C[12]; g. Pérez et al. (2009), 20 

°C[25]; h. Moussa et al. (2005), 20 °C[26]; i. Liu et al. (2016), 35 °C[2]; j. Schramm et al. (1999), 30 °C[27]; k. Wett 

et al. (2013), 20 °C[28]; l. Ge et al. (2015), 20 °C[14]; m. Metcalf and Eddy, 20 °C[1]; n. Van Hulle et al., 35 °C[29]; 

o. Galí et al., 30-35 °C[30]; p. Hellinga et al., 20 °C[31]; q. Liu and Wang, 20 °C[32]; r. Hunik et al., 20 °C[33]; s. 

Park and Noguera, 30 °C[34]; t. Kaelin et al., 20 °C[35]; u. Kampschreur et al., 20 °C[36]; v. Wett and Rauch, 20 

°C[37].  

* μAOB, μNOB and b values have been converted to 14 °C using temperature coefficients of 1.072, 1.063, and 1.04; for 

μAOB, μNOB, and b, respectively [1]. Ko values have not been converted. DO = dissolved oxygen. 

Furthermore, the short-term effect of dissolved oxygen on biological nitrogen removal has been 

discussed in many studies, using batch tests [9,38]. Until now, limited reports have been available 

on comparisons of partial nitrification performance, at different dissolved oxygen concentrations, 

based on long-term operation, especially at low temperature. The objectives of this study are: (1) 

to investigate the effect of dissolved oxygen on the nitrification performance; (2) to test if partial 

nitrification of low ammonia wastewater could be achieved under low dissolved oxygen and low 



 

133 

 

temperature conditions; and (3) to determine the kinetics of the cultivated biomass at low 

temperature. Since, in southern Ontario, the wastewater temperature in winter is as low as 14 °C, 

14 °C was chosen for this work.  

5.2 Methodology 

5.2.1 Partial Nitrification Reactor.  

An SBR with a working volume of 10 L was used in this study. The reactor height and the diameter 

are 30 cm and 24 cm, respectively. Two pumps (Masterflex L/S, Cole-Parmer, Montreal, Canada) 

were used, one feeding the wastewater to the SBR and the other withdrawing the treated 

wastewater. Aeration was provided with an air pump (Rena Air 400, Rena Aquatic Supply, 

Charlotte, U.S.) through an air diffuser. The operating sequence of the SBR consisted of six 4 h 

cycles with feed (20 min), aeration (180 min), settle (20 min), and decant (20 min) phases in each 

cycle. In each cycle, 5 L of supernatant were withdrawn from the reactor after the settling phase, 

and replaced with fresh wastewater, resulting in a hydraulic retention time (HRT) of 8 h. 

Temperature in the reactor was maintained at 14 °C with a water bath (PolySciences Heated 

Circulating Bath, 1 SD07R-20-A11B, Polysciences, Inc., Warrington, PA 18976). pH was not 

controlled, and during each cycle pH decreased with time. Solids retention time (SRT) was 

maintained at around 10 d, and the nitrification performance was tested at three different dissolved 

oxygen levels (averaging 5.5 mg /L, 2.5 mg /L, and 0.8 mg /L) denoted as phases I, II, and III, 

respectively.  
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5.2.2 Synthetic Wastewater and Activated Sludge Characteristics.  

The synthetic wastewater was composed of NH4Cl (40 mg N/L), NaHCO3 (480 mg/L) (as carbon 

source for nitrification), KH2PO4 (8 mg P/L), MgSO4·7H2O (100 mg/L), CaCl2 (100 mg/L), 1 ml/L 

water of trace elements solution I (composition in g/L as follows: EDTA 15, ZnSO4 0.43, CoCl2 

0.24, MnCl2 0.63, CuSO4 0.25, Na2MoO4 0.22, NiCl2 0.19, Na2SeO4 0.21, H3BO3 0.01, and 

NaWO4 0.05), and 1 ml/L water of trace elements solution II containing FeSO4 and EDTA at 5 

g/L each[2]. Although, theoretically, the required NaHCO3:NH4-N:P mass ratio was around 

34.2:5:1, corresponding to an alkalinity to ammonia nitrogen ratio of 4.1:1 mg CaCO3/mg N; to 

maintain residual alkalinity and effluent pH, an additional 30 mg CaCO3/L of alkalinity was added. 

The alkalinity was controlled to allow conversion of around 60% of the feed ammonia to nitrite, 

in order to provide the right influent conditions for anammox [2]. The seed sludge was return 

activated sludge taken from the Greenway water pollution control plant in London, Ontario.  

5.2.3 Analytical Methods.  

Effluent samples were analyzed for ammonia, nitrite, and nitrate daily. The mixed liquid 

suspended solids to mixed liquid volatile suspended solids ratio (MLSS/MLVSS) were determined 

in triplicates using Whatman GF/A filters (VWR International, Mississauga, Canada), in 

accordance with Standard Methods [39]. Specifically, biomass was filtered, and the aluminum 

dishes with the filter paper were put into an oven and heated at 105 °C for 1h and 550 °C for 20 

min, respectively. Dissolved oxygen and pH were measured using a dissolved oxygen meter 

(HACH HQ 40d, HACH Co., London, Canada) and a pH meter (VWR B10P, VWR International, 

Mississauga, Canada), respectively. Nitrogen species were determined using HACH methods, that 

is, ammonium (method 10031), nitrite (8153), and nitrate (10020) every day.  
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5.2.4 Batch Tests.  

Kinetic batch tests were also conducted to determine the ammonia oxidation rate (AOR) and nitrite 

oxidation rate (NOR) when the system stabilized at each operating condition after at least three 

SRT turnovers. The batch tests were conducted following Liu et al. [2] at three different dissolved 

oxygen levels. Specifically, the online batch tests were conducted in the SBR as follows: for the 

AOR test, the same influent with an ammonia concentration of 40 mg N/L, and alkalinity to 

ammonia nitrogen mass ratio of 4.1:1, was used. The dissolved oxygen was adjusted by changing 

the air flowrate. Two sets of batch tests were conducted during phase II, at dissolved oxygen levels 

of 5.2, 2.4, and 1.0 mg/L, and 5.0, 2.0, and 1.0 mg/L, respectively. The AOR and NOR tests were 

conducted by measuring ammonia and nitrite concentrations in the SBR every 30 min until the end 

of the cycle. For the NOR test, the influent nitrite concentration was 40 mg N/L. Alkalinity was 

added to adjust the influent pH to approximately 7.3.  

5.2.5 Kinetic Modelling.  

Kinetic modelling was carried out based on the important pertinent equations summarized below: 

𝑌 ∙ 𝑄 ∙ (𝑆0 − 𝑆) − 𝑏 ∙ 𝑉 ∙ 𝑋 −
𝑉∙𝑋

𝑆𝑅𝑇
 =  0                (Eq.5.1) 

X = 
𝑌 ∙  𝑄∙(𝑆0−𝑆)

𝑉∙ (𝑏+
1

𝑆𝑅𝑇
)

=
𝑆𝑅𝑇

𝐻𝑅𝑇
∙

𝑌 ∙ (𝑆0− 𝑆)

𝑏 ∙ 𝑆𝑅𝑇 + 1
                (Eq.5.2) 

AOR = XAOB ∙qAOB = 𝑞𝐴𝑂𝐵 ∙
𝑌𝐴𝑂𝐵 ∙ (𝑆0,𝑁𝐻 − 𝑆𝑁𝐻)

𝐻𝑅𝑇 ∙ (𝑏𝐴𝑂𝐵 + 
1

𝑆𝑅𝑇
)

              (Eq.5.3) 

NOR = XNOB∙ qNOB = 𝑞𝑁𝑂𝐵 ∙
𝑌𝑁𝑂𝐵∙(𝑆𝑁𝑂3 − 𝑆0,𝑁𝑂3)

𝐻𝑅𝑇∙(𝑏𝑁𝑂𝐵 + 
1

𝑆𝑅𝑇
)

               (Eq.5.4) 
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μ
𝐴𝑂𝐵

=
AOR ∙ HRT ∙ (𝑏𝐴𝑂𝐵 + 

1

𝑆𝑅𝑇
)

𝑆0,𝑁𝐻 − 𝑆𝑁𝐻
                              (Eq.5.5) 

μ
𝑁𝑂𝐵

=
NOR ∙ HRT ∙ (𝑏𝑁𝑂𝐵 + 

1

𝑆𝑅𝑇
)

𝑆𝑁𝑂3 − 𝑆0,𝑁𝑂3
                 (Eq.5.6) 

q =
𝜇

𝑌
                     (Eq.5.7) 

where 𝑏𝐴𝑂𝐵 and 𝑏𝑁𝑂𝐵 are endogenous decay coefficients for AOB and NOB, respectively, d-1; 

YAOB and YNOB are biomass yield coefficients for AOB and NOB, respectively, mg VSS/mg 

N;  𝑞𝐴𝑂𝐵  and 𝑞𝑁𝑂𝐵  are the maximum specific substrate utilization rates for AOB and NOB, 

respectively, mg N/(mg VSS∙d); μ
𝑚,𝐴𝑂𝐵

 and μ
𝑚,𝑁𝑂𝐵

 are the maximum growth rates for AOB and 

NOB, respectively, d-1; XAOB and XNOB are the active AOB and NOB biomass concentrations, 

respectively, mg VSS/L; AOR and NOR are the maximum ammonia oxidation rate and maximum 

nitrite oxidation rate, respectively, mg N/(L∙min); 𝑆𝑁𝐻and 𝑆𝑁𝑂2 are effluent ammonia and nitrite 

concentrations, respectively, mg N/L;(𝑆0,𝑁𝐻 − 𝑆𝑁𝐻) and (𝑆𝑁𝑂3 − 𝑆0,𝑁𝑂3) are ammonia and nitrite 

oxidized, respectively; and HRT is the hydraulic retention time, h.  

In addition, the Monod model was used in this study to calculate AORmax and NORmax as well as 

Ko, as shown below: 

AOR = 𝐴𝑂𝑅𝑚𝑎𝑥 ∙
𝐷𝑂

𝐷𝑂 + 𝐾𝑂,𝐴𝑂𝐵
                            (Eq.5.8) 

NOR = NOR𝑚𝑎𝑥 ∙
𝐷𝑂

𝐷𝑂 + 𝐾𝑂,𝑁𝑂𝐵
                            (Eq.5.9) 

The ammonia conversion ratio (ACR) and nitrite accumulation ratio (NAR) were calculated based 

on influent and effluent quality as shown below in Eq.5.10 and Eq.5.11. 
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ACR =
𝑆0,𝑁𝐻  − 𝑆𝑁𝐻

𝑆0,𝑁𝐻
                                                                                                   (Eq.5.10) 

NAR =
𝑆𝑁𝑂2

𝑆𝑁𝑂2 + 𝑆𝑁𝑂3
                                                                                                  (Eq.5.11) 

in which, 𝑆0,𝑁𝐻 is influent ammonia, and 𝑆𝑁𝐻, 𝑆𝑁𝑂2 and 𝑆𝑁𝑂3 are effluent ammonia, nitrite, and 

nitrate, respectively, mg N/L. 

The theoretical nitrite accumulation ratio (NAR) was calculated based on eq Eq.5.12. 

NAR = 1 −
𝑁𝑂𝑅

𝐴𝑂𝑅
                                                                                                      (Eq.5.12) 

5.3 Results  

5.3.1 Effluent Quality.  

Figure 5-1A shows the nitrification performance for the 10d SRT reactor. The detailed 

performance data are shown in Table 5-2. The data for phases I and II were collected from day 21 

to day 28, and day 60 to day 100, respectively, as shown in Figure 1A. In phase I, the MLVSS 

between day 21 and day 28 averaged 107 ± 4 mg/L, whereas, in phase II, from day 60 to 100, it 

averaged 59 ± 4 mg/L, indicating relative biomass stability. Thus, the data reported in Table 2 

reflects the steady-state operation of the SBR in phases I and II. During phase I, as influent 

alkalinity was controlled, only around 57% to 60% of the ammonia could theoretically be 

converted by AOB. The reactor was operated at this condition for 28 d, which is almost 3 SRT 

turnovers, until stable performance was achieved. The results suggest that at the high dissolved 

oxygen level of 5 to 6 mg/L, NOB had a very high activity, resulting in average effluent ammonia, 

nitrite, and nitrate concentrations of 17.6 ± 1.5 mg N/L, 1.4 ± 0.8 mg N/L, and 20.2 ± 1.6 mg N/L, 
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respectively. Accordingly, as apparent from Figure 5-1B, the average ammonia conversion ratio 

(ACR) and nitrite accumulation ratio (NAR) were 55.1 ± 3.7% and 6.3 ± 3.7%, respectively. The 

average values were determined based on data from day 21 to day 28, after two SRT turnovers. 

With such a low NAR, obviously, NOB dominated the system and full nitrification was achieved.  
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Figure 5-1. (A) Effluent ammonia, nitrite, and nitrate concentrations, (B) ammonia 

conversion ratio (ACR) and nitrite accumulation ratio (NAR), and (C) MLSS and SRT 

change at different dissolved oxygen concentrations (SRT = 10 d; temperature = 14 °C; TN, 

total nitrogen; SS, suspended solids.). (Phases I to III with dissolved oxygen range of 5–6 

mg/L, 2–3 mg/L and 0.8–1.0 mg/L, respectively.) 

As apparent from Figure.5-1A, the decrease of dissolved oxygen from 5 to 6 mg/L to 2 to 3 mg/L 

resulted in ammonia accumulation, that is, poor conversion to NOx. The effluent ammonia 

increased from 17.8 mg N/L on day 28, to 26.2 mg N/L on day 29, whereas the effluent nitrate 

decreased from 21.9 mg N/L to 10.7 mg N/L. Thus, incomplete nitrification was observed. The 

SBR was then operated at the same conditions for 70 days, almost 6 SRTs. The performance of 

the SBR was relatively stable with average effluent ammonia, nitrite, and nitrate concentrations of 

27.7 ± 1.3 mg N/L, 2.4 ± 0.9 mg N/L, and 9.7 ± 0.8 mg N/L, respectively. Accordingly, from 

Figure 5-1B, the average ACR and NAR were 30.4 ± 2.5% and 19.5 ± 6.3%, respectively.  

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 E
ff

lu
en

t 
S

S
 (

m
g
/L

) 
o
r 

S
R

T
 (

d
)

M
L

S
S

 (
m

g
/L

)

Duration (d)

MLSS SRT effluent SS

C Phase I

DO=5-6 mg/L

Phase II

DO=2-3 mg/L

Phase III

DO=0.8-1.0 mg/L



 

140 

 

As shown in Figure 5-1A, on day 100, the dissolved oxygen concentration decreased to 0.8 to1.0 

mg/L. The effluent ammonia, nitrite, and nitrate concentrations changed from 29, 2.7, and 8.2 mg 

N/L on day 100, to 34.5, 1.8, and 4.4 mg N/L on day 101, after which the ammonia almost 

continued to increase. After operating for over 30 days at dissolved oxygen 0.8 to 1.0 mg/L, the 

effluent ammonia concentration increased to over 39 mg N/L, with only less than 2.5% ammonia 

removal, suggesting that AOB were washed out at dissolved oxygen 0.8 to 1.0 mg/L, SRT 10d, 

and a temperature of 14 °C. In the study of Liu and Wang [32], AOB wash-out was observed at a 

dissolved oxygen of 0.19 mg/L. The washout dissolved oxygen for AOB of 0.8 to 1.0 mg/L in this 

study was much higher than that of Liu and Wang [32], which may be the result of the lower µmax 

at 14 °C compared to 20 °C. Although unstable performance in phase III was observed, as shown 

in Figure 5-1B, the NAR was relatively stable at 35.7 ± 4.5%. Obviously, the NAR increased from 

6.3% to 19.5%, and, again, to 35.7%, with the dissolved oxygen decreasing from 5 to 6 mg/L 

towards 2 to 3 mg/L, and, again, towards 0.8 to 1.0 mg/L, perhaps because of the difference in 

oxygen affinity for AOB and NOB, which will be further discussed. 
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Table 5-2. Performance of the SBR at different dissolved oxygen levels (the average data 

for phases I and II were collected from day 20 to day 28, and day 60 to day 100, 

respectively). 

 Phase I Phase II Phase III 

Parameter average STD average STD average STD 

Ammonia (mg 

N/L) 
17.6 1.5 27.3 1.1 NA NA 

Nitrite (mg N/L) 1.4 0.8 3.0 0.5 NA NA 

Nitrate (mg N/L) 20.2 1.6 9.4 0.8 NA NA 

NAR (%) 6.3 3.7 24.4 3.4 35.7 4.5 

ACR (%) 55.1 3.7 31.3 2.5 NA NA 

Calculated NAR 

(%) 
9.2  23.7  34.2  

Biomass 

concentration 

(mg MLSS/L) 

107 4 59 4   

To conclude, decreases in operational dissolved oxygen led to ACR decrease and NAR increase. 

In this study, the SRT was maintained at around 10 d, with biomass concentrations of 100 to 120 

and 55 to 65 mg MLSS/L, at dissolved oxygen of 5 to 6 mg/L and 2 to 3 mg/L, respectively, as 

can be seen from Figure 5-1C. With dissolved oxygen decreasing further towards 0.8 to 1.0 mg/L, 

the biomass concentration continued to decrease. The effluent suspended solids concentration after 

105 d was not determined as it was too low (<1 mg/L) and could not be measured accurately.   
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5.3.2 Online Batch Tests.  

Two rounds of batch tests were completed during phase II, and the duplicate results are shown in 

Figures 5-2 and 5-3, with the results summarized in Table 5-1. The results demonstrate that not 

only both the specific ammonia oxidation and the nitrite oxidation were very reproducible, but 

they also increased with dissolved oxygen, as dissolved oxygen was the cosubstrate for both AOB 

and NOB [40]. During the entire batch test, the free nitrous acid (FNA) and free ammonia 

concentrations were below 0.0025 and 0.17 mg N/L, respectively. Thus, free ammonia and FNA 

inhibition did not occur since free ammonia and FNA concentrations of 1.0 and 0.1 mg N/L did 

not inhibit AOB and NOB [2]. Alkalinity and pH are two important factors affecting nitrification. 

In this study, during phase I, the pH gradually decreased from 7.3 to 6.6 in one cycle, as evident 

from Figure 4. The activity of AOB and NOB dropped by approximately 40% as a result of pH 

changes. Thus, kinetics were not determined based on phase I data. Influent alkalinity was around 

190 mg CaCO3/L, and effluent alkalinity was around 30 mg CaCO3/L, with over 160 mg CaCO3/L 

consumed. The effluent NOx of 22.6 mg N/L, corresponding to an alkalinity consumption of 161 

mg CaCO3/L based on an alkalinity-to-nitrite ratio of 7.14:1 and the minimal alkalinity 

consumption during nitratation [41], confirms a good alkalinity balance. It is suggested that limited 

alkalinity provision, that is, an alkalinity to nitrogen ratio of less than 5 mg CaCO3/mg N, may be 

favorable for partial nitrification, as it is the carbon source for nitrifiers [1,42]. However, in this 

study, during phase I, a NAR of only 6.3% was observed, suggesting that alkalinity limitation may 

be a supportive factor for partial nitrification, but not the sole one because in phases II and III 

ammonia accumulated, despite the high effluent alkalinity of over 95 mg CaCO3/L.  
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Figure 5-2. First set of batch test results during phase II: (A) ammonia concentration, (B) 

nitrate concentration, and (C) relationship between 1/AOR (or 1/NOR) and 1/dissolved 

oxygen. 
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Figure 5-3. Second set of batch test results during phase II: (A) ammonia concentration, (B) 

nitrate concentration, and (C) relationship between 1/AOR (or 1/NOR) and 1/dissolved 

oxygen. 
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Figure 5-4. Typical pH cycle change during phase I and II. 

During phases II and III, as ammonia accumulation was observed, less alkalinity was consumed. 

During phase II, the pH gradually decreased from 7.3 to 7.1 in one cycle. Influent alkalinity was 

about 190 mg CaCO3/L, and effluent alkalinity was around 90 to 100 mgCaCO3/L, with around 

90 to 100 mg CaCO3/L consumed. The effluent NOx of 12.4 mg N/L was consistent with 
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effluent alkalinity was about 95 mg CaCO3/L. Based on the Monod equation, the difference 
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as apparent from Figure 5-2, both ammonia consumption and nitrate production were almost linear, 

suggesting that pH and alkalinity had very limited effects on AOB and NOB activity.  

Both ammonia oxidation and nitrite oxidation followed zero-order kinetics [2]. The AOR and NOR 

at dissolved oxygen 5.2, 2.4, and 1.0 mg/L were 0.0285, 0.0232, and 0.015 mg N/L·min, and 

0.0245, 0.0177, and 0.01 mg N/ L·min, respectively. Based on Figure 5-2C and eqs 8 and 9, the 

AORmax and NORmax were 0.036 and 0.038 mg N/L·min, whereas the Ko for AOB and NOB were 

1.36 and 2.79 mg dissolved oxygen/L, respectively. Thus, based on eqs 5 and 6, using the data in 

Table 5-2, and yield coefficients of 0.24 and 0.1 mg COD/mg N for AOB and NOB, the maximum 

growth rates of AOB and NOB were 0.28 and 0.38 d-1, respectively [44]. Based on eq 7, the 

maximum specific substrate utilization rates (q) for AOB and NOB were 1.66 and 5.40 mg N/mg 

VSS·d, respectively.  

The kinetic parameters from this study were compared with the literature, as shown in Table 5-1. 

It must be emphasized that the Ko values in Table 5-1 have not been corrected for temperature, 

with most of the literature values at 20 to 30 °C, whereas the data of this study are at 14 °C. On 

the other hand, μmax for both AOB and NOB, as well as decay coefficient (b) from the literature, 

have all been converted to 14 °C using temperature coefficients (θ) of 1.072, 1.063, and 1.04, 

respectively [1]. However, different temperature coefficients have been reported in the literature. 

Table 5-3 summarizes the range of temperature coefficients reported in the literature. As apparent 

from Table 5-3, the temperature coefficients for AOB ranged from 1.023 to 1.172 while those for 

NOB ranged from 1.06 to 1.123. Figure 5A,B show the AOB and NOB growth rates of selected 

literature studies plus this study. There are bars for data from past studies as they were converted 

to 14 °C, based on the aforementioned temperature coefficient ranges, that is, 1.023 to 1.172 for 

AOB and 1.06 to 1.123 for NOB. There are no bars for this study as the AOB and NOB growth 
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rates were determined at 14 °C, and thus no temperature coefficients were applied. Previously, the 

kinetic parameters for AOB and NOB at low temperatures were not directly determined, but 

calculated using temperature coefficients, which may not be accurate enough, as low temperatures 

may lead to nitrifier community change. As seen in Table 5-1, even with the same growth rates of 

AOB and NOB measured at 20 °C, the calculated growth rates at 14 °C may vary widely because 

of the different temperature coefficients. This study is the first attempt to directly determine the 

kinetic parameters of nitrifiers with sludge cultivated at 14 °C. For each kinetic parameter, 

literature values vary widely. While the maximum growth rates from this study fall within the 

reported literature range, the Ko for AOB and NOB of 1.36 and 2.79 mg dissolved oxygen/L were 

much higher than the median values reported in the literature. In fact, the Ko values for AOB of 

1.36 mg dissolved oxygen/L was the second highest of 15 literature studies, and, similarly, the Ko 

for NOB of 2.79 mg dissolved oxygen/L was the second highest of 12 literature studies. The 

significantly greater Ko values in this study are attributed to temperature effects. 

Table 5-3. Summary of temperature coefficients (θ) for AOB and NOB, from the literature. 

 Literature 

AOB  1.023–1.081a, 1.172 (5 °C–20 °C) and 1.062 (5 °C–20 °C)b, 

1.098–1.118c, 1.098d, 1.045e, 1.120f,1.095–1.113g 

NOB 1.068–1.112c, 1.06h, 1.094–1.102g 

Nitrifiers (AOB and 

NOB) 

1.06–1.123i 

a. Salvetti et al. [22]; b. Guo et al. [45]; c. Grady Jr. et al. [44]; d. Sözen et al. [46]; e. Görgün et al. [47]; f. Henze et 

al. [42]; g. Zhang et al. [48]; h. Munz et al. [49]; i. Metcalf and Eddy [1]. 
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Figure 5-5. Comparison of (A) µmax,AOB and (B) µmax, NOB between this study and literature 

studies (all literature values have been converted to 14 °C using a θ range of 1.023–1.12 for 

AOB and 1.06–1.112 for NOB). 
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The calculated NAR for phases I to III are shown in Table 5-2. For phase III, the values of μmax 

(0.28 d-1 for AOB and 0.38 d-1 for NOB), and Ko (1.36 mg dissolved oxygen/L for AOB and 2.79 

mg dissolved oxygen/L for NOB) in phase II, were used to calculate the NAR. The calculated 

NAR fall within the range of measured NAR for each phase. In this study, b was not directly 

measured but calculated as 0.1 d-1 using the Metcalf and Eddy [1] value of 0.15 d-1 at 20 °C and a 

temperature coefficient of 1.04, whereas the median literature value is 0.065 d-1, which may affect 

the calculation of μmax of AOB and NOB. Thus, with a b of 0.065 d-1, the μmax of AOB and NOB 

in this study were 0.24 and 0.31 d-1, respectively. The μmax of AOB and NOB were lower than the 

median values of 0.47 and 0.62 d-1 from the literature studies (Table 5-1). It is evident from Figure 

5-5 that, despite the wide variability in the projected literature growth rates based on the broad 

range of temperature coefficients, the growth rates measured in this study are well below most of 

the literature. The kinetics of this study are directly measured with sludge cultivated at 14 °C, 

whereas all the literature kinetics are measured with sludge cultivated at 20 °C to 35 °C (as shown 

in Table 5-1), and converted to 14 °C by temperature coefficients, determined mostly within the 

20 °C to 35 °C, which may not be applicable to other temperature ranges.  

5.4 Discussion 

5.4.1 Analyzing the Factors Affecting Nitrification Performance. 

Generally, it is believed that low dissolved oxygen is more favorable to AOB than NOB, which is 

confirmed in this study, as the determined Ko for AOB is lower than that for NOB. To date, all of 

the studies adopting low dissolved oxygen as the selection factor are conducted at temperatures 

equal to, or higher than, 20 °C, whereas the optimal conditions for partial nitrification at high 

temperatures and low temperatures may be different.  
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It is suggested that at high temperatures (>20 °C), AOB grow faster than NOB, and slower at low 

temperatures [31]. In this study, it was found that NOB had a higher maximum growth rate than 

AOB at 14 °C. However, despite temperature, the actual growth rates of AOB and NOB are also 

affected by other factors, like dissolved oxygen concentration. Wiesmann [50] suggested that, at 

dissolved oxygen concentrations below 1.8 mg/L, the specific growth rate of AOB is superior to 

NOB, which was observed in this study as well. It has been reported that dissolved oxygen 

concentrations below 1.0 mg/L favor the dominance of ammonium oxidizers [51,52]. Stable partial 

nitrification has been reported at 0.5 mg dissolved oxygen/L [40] and 0.2 mg/L [53,54]. In this 

study, at an SRT of 10d, low dissolved oxygen favored AOB over NOB. However, as the dissolved 

oxygen decreased towards 0.8 to 1.0 mg/L, washout of both AOB and NOB was observed, because 

of low growth rates in the presence of low temperature and low dissolved oxygen concentration.  

It must be stressed that, despite dissolved oxygen concentration, SRT is another selection factor 

for AOB cultivation and NOB washout. Usually, SRTs shorter than the doubling time of NOB, 

and longer than the doubling time of AOB, are required. As mentioned above, at temperatures 

higher than 20 °C, it is relatively easy to adopt the proper SRT, as AOB grow faster than NOB. 

Bock et al. [55] reported the minimum doubling times of AOB and NOB at 35 °C to be 7 to 8 h 

and 10 to 13 h, respectively. An SRT of 1 to 2.5 days was suggested at 35 °C by Van Kempen et 

al. [56]. However, the results of this work suggested that a long SRT is needed when operating at 

low dissolved oxygen, because of the low growth rates of nitrifiers. For example, based on the 

AOB and NOB kinetics determined in this study, at a dissolved oxygen of 0.8 mg/L, an SRT of 

between 25 d to 50 d may be required to allow AOB growth and NOB washout. The recommended 

SRT for full nitrification at DOs of 1, 1.5, 2, 3, and 5 mg/L at 14oC based on the kinetics of this 

study (excuding the b value of 0.1 d-1 ) and the median literature b value of 0.065 d-1 from Table 
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5-1 is depicted in Table 5-4. In Table 5-4, NA means not applicable as at this condition the SRTmin 

of NOB is lower than that of AOB. At DO higher than 3 mg O2/L, partial nitrification could not 

be achieved. Hafez et al. [57] reported successful full nitrification at a temperature of 12oC, SRT 

of 7.1 d, and DO 3-5 mg/L, which agrees with the recommended SRT ranges in Table 5-4. While 

practically full nitrification has been reported at low temperature and SRTs below the 25-50 d 

determined above, these plants typically operate at DO>1.5-2.0 mg/L in winter. Furthermore, the 

uncertainty in estimating Ko at 14oC in this study may have contributed to the atypical high 

estimated SRT. 

Table 5-4. Recommend SRT range for partial and full nitrification at DOs of 1-5 mgO2/L at 

14oC 

DO (mg/L) SRT range for partial nitrification (d) SRT range for full nitrification (d) 

1 18-27 >27  

1.5 12-14 >14 

2 9.8-10.5 >10.5 

3 NA >7.8 

4 NA >6.9 

5 NA >6.4 

5.4.2 Feasibility of Achieving Nitritation by Low Dissolved Oxygen and 

LowTemperature.  

The analysis of the actual growth rates for AOB and NOB, summarized in Table 5-5, based on the 

kinetics determined in this study, also confirmed that nitrification could be sustained in phases I 

and II but not III. As AOB had a lower Ko than NOB, as shown in Table 5-5, it is possible to 

realize nitritation by decreasing the dissolved oxygen concentration. In fact, the NAR value 
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increased as dissolved oxygen decreased, as shown in Table 5-2. However, based on the 

performance, low dissolved oxygen led to AOB washout as well.  

Table 5-5. Calculated growth rates for AOB and NOB during different phases. 

Phases I II III 

μmaxAOB
DO−limitation 0.24 0.18 0.11 

μmaxNOB
DO−limitation 0.25 0.18 0.09 

μ for AOB 0.01 to 0.1 -0.05 to 0.04 -0.12 to -0.03 

μ for NOB 0.02 to 0.11 -0.05 to 0.04 -0.14 to -0.05 

As evident from the actual growth rates (μ), the factors affecting actual growth rate (μ) are 

dissolved oxygen concentration and SRT. Using the kinetic values in this study, the relationship 

between dissolved oxygen and minimum SRT is depicted in Figure 5-6. For example, to achieve 

complete nitrification at 14 °C and 10 d SRT, a minimal dissolved oxygen of 2.3 mg/L should be 

maintained. At dissolved oxygen higher than 2 mg/L, the minimum SRT of AOB and NOB are 

quite close, making it difficult to washout NOB by dissolved oxygen control. In addition, at 

dissolved oxygen concentrations over 4 mg/L, the minimum SRT for NOB is slightly lower than 

that for AOB (8 d vs 9 d), as NOB have higher growth rates than AOB at 14 °C. However, at 

dissolved oxygen levels lower than 2 mg/L, the minimum SRT of AOB and NOB start to separate 

from each other. Therefore, it seems that controlling the dissolved oxygen at a low level, that is, 1 

mg/L, while maintaining a long SRT, that is, 40 d, can achieve stable nitritation.  
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Figure 5-6. Relationship between dissolved oxygen and minimum SRT, for AOB and NOB 

at 14 °C. 

5.4.3 Kinetic Rationalization of SBR Performance. 

As shown above, each time, the dissolved oxygen concentration was reduced, either from 5 to 6 

mg/L towards 2 to 3 mg/L, or further towards 0.8 to 1.0 mg/L, ammonia accumulation occurred, 

which may be explained by kinetics. The effects of dissolved oxygen limitation on μmax are shown 

in eqs 5.13-5.14. 

μmaxAOB
DO−limitation = μmax ×

DO

DO+KO,AOB
                                                           (Eq.5.13) 

μmaxNOB
DO−limitation = μmax ×

DO

DO+KO,NOB
                                                           (Eq.5.14) 

The calculated μmaxAOB
DO−limitationand μmaxNOB

DO−limitation  during the three phases are shown in Table 4. The 

kinetics during phase III, at a dissolved oxygen of 0.8 to 1.0 mg/L, were not measured directly 

because of the low biomass, and were assumed not to have changed from phase II. Besides, actual 
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growth rates (μ) as μmax
DO−limitation − b −

1

SRT
   were also calculated [2]. Average dissolved oxygen 

values of 5.5, 2.4, and 0.9 mg/L during the 3 phases, as well as a b value of 0.1 d-1, were used for 

calculations.  

The actual growth rates of AOB and NOB were positive during phase I, slightly negative to 

positive during phase II, and very negative during phase III. Taking into consideration that the 

decay coefficient (b) varies from 0.04 to 0.13 d-1, as shown in Table 4, the actual growth rates of 

AOB and NOB were almost zero during phase II and always negative during phase III. The 

performance of the SBR can be explained well, based on kinetics. In addition, the kinetic analysis 

explained why the AORmax and NORmax decreased with dissolved oxygen. 

5.5 Conclusions  

An SBR was operated for over 4 months treating low-ammonia (40 mg N/L) synthetic wastewater 

at a low temperature (14 °C) and an SRT of 10 days. The dissolved oxygen effect was investigated 

at dissolved oxygen levels of 5 to 6 mg/L, 2 to 3 mg/L, and 0.8 to 1.0 mg/L. The decrease in 

ambient dissolved oxygen concentration resulted in ammonia accumulation, as well as an increase 

in the nitrite accumulation ratio. Various kinetic parameters were determined or estimated. The 

performance of the SBR was explained by kinetics. The low growth rates of AOB and NOB, 

caused by low temperature, were the reason for biomass loss. Low dissolved oxygen, combined 

with a long SRT, appears to be a viable strategy for stable nitritation at low temperatures (14 °C).  
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Chapter 6 

6 Acute and chronic toxicity of nickel to nitrifiers at low 
temperature 

Chronic toxicity of nickel to nitrification of low ammonia synthetic wastewater was investigated 

at 10oC in two SBRs with 1 mg/L nickel dosing either from the beginning or after biomass 

concentration decreased to 300 mg/L. Significant nickel inhibition occurred at Ni/MLSS ratio of 

2.7 mg Ni/ g MLSS. At a Ni/MLSS ratio of 4-7 mg Ni/g MLSS, the final ammonia oxidizing 

bacteria (AOB) activity was inhibited by 47%-58% after acclimatization. After long-term 

acclimatization to nickel at 10oC, high DO(~7mg/L) and SRT of 63-70 days, the µmax, b and Ko of 

AOB and NOB were determined as 0.16 d-1, 0.098 d-1 and 2.08 mg O2/L, and 0.16 d-1, 0.098 d-1 

and 2.12 mg O2/L, respectively. Acute toxicity of nickel to nitrification at 10oC, 23oC, and 35oC 

was evaluated by short-term batch tests. The nickel inhibition half-velocity constants based on a 

modified non-competitive model for nitrification at 10oC, 23oC, and 35oC were determined. Long-

term SBRs operation and short-term batch tests results were consistent. Short-term nickel 

inhibition of nitrifying bacteria was completely reversible, as evidenced by same ammonia 

oxidization rate (AOR) and nitrite oxidization rate (NOR) using returned activated sludge without 

nickel, and with nickel inhibition for 2 hours. 

6.1 Introduction 

Nitrification, carried out by ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria 

(NOB), is the rate-limiting process in biological nitrogen removal (BNR) process. Both AOB and 

NOB are autotrophs [1]. Nitrifiers grow slowly and are very sensitive to environmental conditions 

such as pH, dissolved oxygen (DO) concentrations, temperature, and toxic chemicals [2–4]. 
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A variety of organic and inorganic chemical species can affect the specific growth rate of the 

nitrifiers [5]. The influence of heavy metals on the conventional activated sludge system has been 

thoroughly studied [6–10]. However, most research studied the effect of metal on organic carbon 

removal [11]. 

Nickel (Ni) is a common metal which exists at various ranges in the influents of different 

wastewater treatment plants. Although the typical influent nickel concentration in municipal 

wastewater treatment plant (MWWTP) is low (<50μg/L), still some plants receiving industrial 

wastes may suffer from high influent nickel concentrations, as shown by the following cases. 

Busetti et al. [12] reported a nickel concentration of 1-39 μg/L in the influent of Fusina (Venice, 

Italy) MWWTP. Carletti et al. [13] reported an influent nickel concentration of 3.5-61.7 μg/L from 

5 MWWTPs in Italy. A higher influent nickel concentration range of 20.2-107.6 μg/L from the 

Depurbaix (Barcelona, Spain) MWWTP was reported by Teijon et al. [14]. The report of European 

Communities:Pollutants in urban wastewater and sewage sludge reported that nickel 

concentration in municipal wastewater ranged from 40-170 μg/L in Austria[15]. A high influent 

nickel concentration of up to 970 μg/L in Thessaloniki (Greece) MWWTP was reported by 

Karvelas et al. [16].  

The three most important factors of nickel inhibition on nitrification are: 1.  the sludge type i.e., 

either activated sludge or nitrifying culture; 2. the exposure mode, either long-term dose or short-

term; and 3. the temperature [17]. Studies on nickel inhibition of nitrification are summarized in 

Table 6-1. The literature results are not always consistent. For example, Hu et al. [18] conducted 

short-term batch tests at 25oC and found that AOB were more sensitive to nickel than NOB while 

Aslan & Sozudogru [4] conducted short-term batch tests at 35oC, and observed that NOB were 

more affected than AOB, as evidenced by the increase in ratio of NO2-N/NOx-N from 0.002 to 0.3 
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upon addition of 4.0 mg/L of Ni2+. Randall & Buth [19] operated an activated sludge system at 14, 

17, and 30oC and reported that nickel is more toxic to nitrifiers at low temperature. In the study of 

Randall & Buth [19], nickel was more toxic to NOB at 14oC, and equally toxic for both AOB and 

NOBs at 17oC and 30oC. The reported nickel inhibition thresholds for nitrification are limited. You 

et al. [11] conducted short-term batch tests on activated sludge (1678-2133 mg MLSS/L) at room 

temperature and reported that the 50% inhibition concentration (IC50) for AOB is 1.2-3.0 mg Ni/ 

g MLSS, respectively. To date, the long-term effect of nickel on nitrification performance of 

nitrifying cultures at low temperature (10oC) has not been studied. 
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Table 6-1. Summary of previous studies on nickel inhibition on nitrification 

Referenc

e  

Biomass 

type 

Biomass 

concentration 

(mg MLSS/L) 

Exposure 

mode 

Temperatur

e  

Conclusion IC50 based on Ni 

concentration (mg 

Ni/L)  

IC50 based on 

Ni/MLSS ratio (mg 

Ni/g MLSS)  

[18] Nitrifying 

culture 

NA Short 

term 

batch test 

25oC Nickel inhibited AOB but not NOB up to total 

concentrations of approximately 58.5 mg/L 

  

[11] Activated 

sludge 

1678-2133  Short 

term 

batch test 

Room   AOB: 2.5-5 1.2-3.0 

[20] Activated 

sludge 

2150 Short 

term 

batch test 

Room  No inhibition occurred at 1 mg Ni/L of added; Little 

inhibition occurred at 5 and 10 mg Ni/L. Significant 

inhibition occurred at 50 mg/L. 

  

[19] Activated 

sludge 

900-3300 Long 

term dose 

14, 17 and 

30oC 

Nickel is more toxic to NOB than to AOB at 14oC and 

equal for AOB and NOB at 17 and 30oC; Nickel is 

more toxic at low temperature; The toxic effects of 

nickel on activated sludge was a function of nickel-

to-MLVSS ratio.  

  

[4] Nitrifying 

culture 

NA Short 

term 

batch test 

35 oC No inhibition of AOB and NOB activity were 

observed up 0.5 mg Ni/L; NH4-N removal efficiency 

decreased from 98.6% to 64.3% by increasing the 

inlet Ni2+ concentrations from 0.5 to 4.0 mg/L; NOB 

was more affected than AOB as evidenced by the 

ratio of NO2-N/NOx-N elevated from 0.002 to 0.3 by 

adding 4.0 mg/L of Ni2+. 

  

This 

study 

Nitrifying 

culture 

100-350 mg/L Long 

term dose 

10oC Significant acute nickel inhibition of 33% activity 

loss occurred at Ni/MLSS ratio of 2.7 mg Ni/g MLSS 

and the SBRs lost 47%-58% activity of AOB & NOB 
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at Ni/MLSS ratio of 4-7 mg Ni/g MLSS after re-

acclimatization. 

Activated 

sludge 

340-2720 mg/L Short 

term 

batch test 

10,23, and 

35oC 

Short-term nickel inhibition was much more serious 

for NOB than AOB at 35oC and slightly more serious 

for NOB than AOB at 23oC. With temperature 

decreasing further to 10oC, the inhibition was equal 

or less for NOB than AOB.     

 AOB:  

5.4, 4.6, and 9.1 mg 

Ni/g MLSS at 

10,23, and 35oC 

NOB: 

5.6, 3.5, and 2.7 mg 

Ni/g MLSS at 

10,23, and 35oC 
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The objectives of this study are: 1) comparison of the long-term nickel impact on the 

nitrification performance of nitrifying culture with or without long-term acclimatization at 

low temperature(10oC); 2) determination of the nitrification kinetics at low temperature 

after long-term nickel dosing; 3) study of the acute toxicity effects of nickel to nitrification 

at different temperatures and; 4) assessment of the reversibility of acute nickel toxicity to 

nitrification.  

6.2 Methodology 

6.2.1 Nitrification reactors  

Two SBRs with a working volume of 10 L were used in this study. The reactor height and 

the diameter are 30 cm and 24cm, respectively. Two pumps (Masterflex L/S, Cole-Parmer, 

Montreal, Canada) were used, one feeding the wastewater to the SBR and the other 

withdrawing the treated wastewater. Aeration was provided with an air pump (Rena Air 

400, Rena Aquatic Supply, Charlotte, U.S.) through an air diffuser. The SBRs were 

operated at 10 oC with a water bath (PolySciences Heated Circulating Bath, 1 SD07R-20-

A11B). DO was maintained high (~7 mg/L). Each cycle consisted of 20 min feed, 10 hrs 

50 min mixing and aerobic reaction, 30 min settling and 20 min effluent discharge. The 

exchange ratio was 50%. pH was not controlled, and during each cycle pH decreased with 

time. 

SBR1 was operated initially without nickel until the biomass concentration decreased to 

300 mg MLSS/L after which nickel was dosed at 1 mg/L while SBR2 was operated with a 

nickel does of 1 mg/L from the beginning.  
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6.2.2 Synthetic Wastewater and Activated Sludge Characteristics. 

The synthetic wastewater was composed of NH4Cl (40-60 mg N/L), NaHCO3 (480-720 

mg/L), KH2PO4 (8-12 mg P/L), MgSO4·7H2O (100 mg/L), CaCl2 (100 mg/L), 1 ml/L water 

of trace elements solution I (composition in g/L as follows: EDTA 15, ZnSO4 0.43, CoCl2 

0.24, MnCl2 0.63, CuSO4 0.25, Na2MoO4 0.22, NiCl2 0.19, Na2SeO4 0.21, H3BO3 0.01, and 

NaWO4 0.05), and 1 ml/L water of trace elements solution II containing FeSO4 and EDTA 

at 5 g/L each[21]. The alkalinity to ammonia-nitrogen ratio was 7.17:1[1]. The seed sludge 

was return activated sludge (RAS) taken from the Greenway water pollution control plant 

in London, Ontario. 

6.2.3 Analytical Methods. 

Effluent ammonia, nitrite, and nitrate were measured using HACH methods every two 

days. Mixed liquid suspended solids (MLSS) concentrations in the SBR and effluent were 

measured in triplicates using Whatman GF/A filters (VWR International, Mississauga, 

Canada), in accordance with Standard Methods [22] once a week. Nickel concentrations in 

the influent, SBR, and effluent were measured by inductively coupled plasma optical 

emission spectrometry (ICP-OES) (Vista-Pro, VARIAN) with a flame temperature in a 

range from 6000 to 10000 K according to Standard Methods (3120) [22] after acid 

digestion with HNO3 and filtration through a 0.45 μm filter paper. The pH of the filtrate 

was adjusted to below 2, using concentrated nitric acid (67-70 %) prior to measurement. 

The detection limit of Ni is 0.01 mg/L. 

Dissolved oxygen and pH were measured using a dissolved oxygen meter (HACH HQ 40d) 

and a pH meter (VWR B10P), respectively.  
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6.2.4 Online batch tests 

Online batch tests were conducted in SBR 2 during the last stage of the experiment at 

different DOs to determine the biomass ammonia oxidation rate (AOR) and nitrite 

oxidization rate (NOR), as suggested by [21,23]. At the end of the study, the reactor was 

fed with deionized water and 1mg/L of nickel, after which the SBR was mixed and aerated 

for several days to determine the decay coefficient (b) [21].  

Kinetic modelling was carried out based on the important pertinent equations summarized 

below [24]: 

𝑌 ∙ 𝑄 ∙ (𝑆0 − 𝑆) − 𝑏 ∙ 𝑉 ∙ 𝑋 −
𝑉𝑋

𝑆𝑅𝑇
 =  0              (Eq.6.1) 

XAOB = 
𝑌𝐴𝑂𝐵 ∙  𝑄∙(𝑆0,𝑁𝐻 − 𝑆𝑁𝐻)

𝑉 ∙ (𝑏+
1

𝑆𝑅𝑇
)

=
𝑆𝑅𝑇

𝐻𝑅𝑇
∙

𝑌𝐴𝑂𝐵 ∙ (𝑆0,𝑁𝐻 − 𝑆𝑁𝐻)

1+𝑏 ∙ 𝑆𝑅𝑇 
           (Eq.6.2) 

XNOB = 
𝑌𝑁𝑂𝐵 ∙  𝑄∙(𝑆𝑁𝑂3−𝑆0,𝑁𝑂3)

𝑉 ∙ (𝑏+
1

𝑆𝑅𝑇
)

=
𝑆𝑅𝑇

𝐻𝑅𝑇
∙

𝑌𝑁𝑂𝐵 ∙ (𝑆𝑁𝑂3−𝑆0,𝑁𝑂3)

1+𝑏 ∙ 𝑆𝑅𝑇 
           (Eq.6.3) 

q =
𝜇

𝑌
                   (Eq.6.4) 

AOR = XAOB qAOB = 𝑞𝐴𝑂𝐵 ∙
𝑆𝑅𝑇

𝐻𝑅𝑇
∙

𝑌𝐴𝑂𝐵∙ (𝑆0,𝑁𝐻 − 𝑆𝑁𝐻)

1+𝑏 ∙ 𝑆𝑅𝑇 
            (Eq.6.5) 

NOR = XNOB qNOB = 𝑞𝑁𝑂𝐵 ∙
𝑆𝑅𝑇

𝐻𝑅𝑇
∙

𝑌𝑁𝑂𝐵 ∙ (𝑆𝑁𝑂3−𝑆0,𝑁𝑂3)

1+𝑏 ∙ 𝑆𝑅𝑇 
                        (Eq.6.6) 

μ𝐴𝑂𝐵 =
AOR∙ HRT ∙ (𝑏𝐴𝑂𝐵 + 

1

𝑆𝑅𝑇
)

𝑆0,𝑁𝐻 − 𝑆𝑁𝐻
               (Eq.6.7) 

μ𝑁𝑂𝐵 =
NOR ∙ HRT ∙ (𝑏𝐴𝑂𝐵 + 

1

𝑆𝑅𝑇
)

𝑆𝑁𝑂3−𝑆0,𝑁𝑂3
                          (Eq.6.8) 
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where 𝑏𝐴𝑂𝐵 and 𝑏𝑁𝑂𝐵 are endogenous decay coefficients for AOB and NOB, respectively; 

YAOB and YNOB are biomass yield coefficients for AOB and NOB, respectively; 𝑞𝐴𝑂𝐵 and 

𝑞𝑁𝑂𝐵 are the maximum specific substrate utilization rates for AOB and NOB, respectively; 

XAOB and XNOB are the active AOB and NOB biomass concentrations, respectively; AOR 

and NOR are the ammonia oxidation rate and nitrite oxidation rate, respectively; 𝑆𝑁𝐻and 

𝑆𝑁𝑂2  are effluent ammonia and nitrite concentrations, respectively; (𝑆0,𝑁𝐻 − 𝑆𝑁𝐻)  and 

(𝑆𝑁𝑂3 − 𝑆0,𝑁𝑂3) are ammonia and nitrite oxidized, respectively; and HRT is the hydraulic 

retention time.  

In addition, the Monod model was used in this study to calculate AORmax and NORmax as 

well as the DO-half saturation concentration (Ko), as shown below: 

AOR = 𝐴𝑂𝑅𝑚𝑎𝑥 ∙
𝐷𝑂

𝐷𝑂 + 𝐾𝑂,𝐴𝑂𝐵
                (Eq.6.9) 

AOR = 𝑁𝑂𝑅𝑚𝑎𝑥 ∙
𝐷𝑂

𝐷𝑂 + 𝐾𝑂,𝑁𝑂𝐵
               (Eq.6.10) 

The ammonia conversion ratio (ACR) and nitrite accumulation ratio (NAR) were 

calculated based on influent and effluent quality as shown below in eqs 10 and 11. 

ACR =
𝑆0,𝑁𝐻  − 𝑆𝑁𝐻

𝑆0,𝑁𝐻
                                                                                                  (Eq.6.11) 

NAR =
𝑆𝑁𝑂2

𝑆𝑁𝑂2 + 𝑆𝑁𝑂3
                                                                                                  (Eq.6.12) 

in which, 𝑆0,𝑁𝐻  is influent ammonia, and 𝑆𝑁𝐻 , 𝑆𝑁𝑂2 and 𝑆𝑁𝑂3  are effluent ammonia, 

nitrite, and nitrate, respectively. 
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6.2.5 Offline batch tests 

Acute nickel toxicity to nitrification was determined using offline batch tests in small 

beakers (500 ml) using RAS from the Greenway water pollution control plant. The design 

of the offline batch tests is depicted in Table 6-2. The initial ammonia concentration in the 

batch tests was 25-30 mgN/L with an alkalinity-to-nitrogen ratio of 7.14 mg CaCO3/mg N 

and a constant DO of 7 mg/L. The batch tests were conducted at 10oC, 23oC and 35oC. The 

objective of batches A-E was to evaluate the effect of different nickel concentrations on 

nitrification with the same MLSS concentration and thus batch tests A-E have the same 

biomass concentration (340 mg MLSS/L) while the nickel dose increased from 0 to 2.0 

mg/L. The objective of batches C & F-I was to evaluate the effect of same nickel 

concentration on nitrification at different MLSS concentrations and therefore batch tests C 

& F-I have the same nickel dose (1.0 mg/L) while the biomass concentration increased 

from 340 to 2720 mg MLSS /L. Samples were taken with time regularly and ammonia, 

nitrite, and nitrate were determined by the aforementioned HACH methods.  

Table 6-2. Offline batch tests design 

 A B C D E F G H I 

Ni concentration (mg/L) 0 0.5 1.0 1.5 2.0 1.0 1.0 1.0 1.0 

MLSS concentration (mg/L) 340 340 340 340 340 680 1020 1360 2720 

MLVSS concentration (mg) 260 260 260 260 260 520 780 1040 2080 

6.2.6 Short-term nickel inhibition modelling  

As nickel is not a substrate for nitrifying bacteria, the inhibition of nickel may potentially 

be modelled by non-competitive inhibition model, as shown below in Eqs.6.13-6.16[25]. 
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SAOR = SAORmax ∙
KI,Ni

KI,Ni+Ni
                                                                                  (Eq.6.13) 

SNOR = SNORmax ∙
KI,Ni

KI,Ni+Ni
                                                                                  (Eq.6.14) 

1

SAOR
=

I

SAORmax∙KI,Ni
+

1

SAORmax
                                                                             (Eq.6.15) 

1

SNOR
=

I

SNORmax∙KI,Ni
+

1

SNORmax
                                                                            (Eq.6.16) 

In this study, as the toxicity of nickel is a function of Ni/MLSS ratio[19,26], a modified 

non-competitive inhibition model based on Ni/MLSS ratio (Eqs.6.17-6.20), was used. 

SAOR = SAORmax ∙
KI,Ni/MLSS

KI,Ni/MLSS+Ni/MLSS
                                                                 (Eq.6.17) 

SNOR = SNORmax ∙
KI,Ni/MLSS

KI,Ni/MLSS+Ni/MLSS
                                                                 (Eq.6.18)  

1

SAOR
=

I

SAORmax∙KI,Ni/MLSS
+

1

SAORmax
                                                                     (Eq.6.19)   

1

SNOR
=

I

SNORmax∙KI,Ni/MLSS
+

1

SNORmax
                                                                    (Eq.6.20) 

SAOR and SNOR are specific ammonia oxidation rate and specific nitrite oxidation rate 

(mg N/g MLSS-hr), KI,Ni is the half-velocity inhibition nickel concentration (mg Ni/L), 

and KI,Ni/MLSS is the half-velocity inhibition constant based on Ni/MLSS ratio (mg Ni/g 

MLSS). 
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6.2.7 Toxicity Reversibility tests 

The reversibility of the acute nickel toxicity was investigated through offline batch tests in 

500 ml beakers. The batch tests were conducted at 23oC. RAS was taken from the 

Greenway water pollution control plant in London, Ontario. Batch tests A, B and C had the 

same biomass concentration (340 mg MLSS/L). The initial ammonia concentration was 

around 26 mg N/L with an alkalinity-to-nitrogen ratio of 7.14 mg CaCO3/mg N. In batch 

test A, nitrification was conducted without nickel. In batch test B, the RAS was first 

inhibited by nickel dose of 1 mg/L for 2hrs, after which the RAS was washed, resuspended 

in distilled water, and tested for nitrification activity. In batch test C, nitrification was 

conducted with 1 mg/L of nickel. Samples were taken every two hours and ammonia, 

nitrite, and nitrate were determined by aforementioned HACH methods.  

6.3 Results and Discussion 

6.3.1 SBR performance 

Table 6-3 summarizes the performance of the two SBRs. Figure 1A shows the nitrification 

performance for the SBR 6-1. The operation of SBR 1 can be divided into two phases, that 

is, phase 1 from day 0 to day 94 with no nickel addition, and phase 2 from day 95 to day 

137 with 1.0 mg/L of nickel addition. After a quick acclimatization period (<10d), 

relatively stable effluent quality was observed during phase 1. The average effluent 

ammonia, nitrite, and nitrate concentrations from day 66 to day 96 were 8.3±3.0 mg N/L, 

1.4±0.6 mg N/L and 30.2±2.9 mg N/L, respectively. The stable biomass concentration of 

280±14 mg MLSS/L and the aforementioned stable effluent quality indicated good 

nitrifying culture. AOBs were not able to convert all the ammonia, due to the low activity 
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of AOB at low temperature (10oC). The average ACR and NAR were 79.1±7.5% and 

4.5±1.8%, respectively. Due to the low temperature (10oC) and high DO (~7.0 mg/L), NOB 

dominated the system and full nitrification was achieved. A significant drop of AOB and 

NOB activity was observed with effluent of 28.7 mg NH4-N/L, 0.6 mg NO2-N/L and 10.7 

mg NO3-N/L after adding nickel on day 95. In the following week, the performance 

deteriorated even further with effluent NH4-N, NO2-N and NO3-N concentrations of 33.6, 

0.3 and 6.1 mg N/L on day 104, respectively. After day 104, acclimatization of nitrifiers 

was observed and the effluent stabilized at 26.6±3.3 mg NH4-N/L, 0.4±0.4 mg NO2-N/L, 

and 13.0±3.1 mg NO3-N/L. Compared with phase 1, the final average activity of AOB 

dropped by 58% due to nickel addition. 
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Figure 6-1. Effluent ammonia, nitrite, and nitrate concentrations and Ni/MLSS 

ratio of SBR 1 (A) and SBR 2 (B). 
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Table 6-3. Performance of the SBRs 

SBR No. Phase  Ammonia (mg N/L) Nitrite  

(mg N/L) 

Nitrate  

(mg N/L) 

AOB activity loss (%)  

vs 

SBR1 phase 1 

1 1 8.3±3.0  1.4±0.6  30.2±2.9  0 

2 26.6±3.3  0.4±0.4 13.0±3.1 58 

2 2 11.2±2.2 0.6±0.6 28.4±1.9 8 

4 23.0±2.8  0.3±0.5 16.5±2.4 47 

Figure 6-1B shows the nitrification performance for the SBR 2 with 1.0 mg/L of nickel 

addition from the start. The operation of SBR 2 can be divided into four phases, that is, 

phase 1 from day 0 to day 34 as start-up period, phase 2 from day 35 to day 95 as steady-

state period, phase 3 from day 96 to day 112 as unstable period, and phase 4 from day 113 

to day 164 as acclimatization period. The initial biomass could convert 40-50 mg N/L of 

ammonia, which is higher than that of 30-40 mg N/L in SBR1, due to higher initial RAS 

concentration (1.4g/L versus 1.0 g/L). After around 1 month, relatively stable effluent with 

constant ammonia, nitrite, and nitrate was observed for a long time (phase 2). The average 

effluent ammonia, nitrite, and nitrate concentrations from day 35 to day 96 were 11.2±2.2 

mg N/L, 0.6±0.6 mg N/L and 28.4±1.9 mg N/L. The average ACR and NAR were 

72.1±4.9% and 2.1±2.1%, respectively.  

Ni/MLSS ratio is one of the major parameters for nickel inhibition. During Phases 1 and 

2, the Ni/MLSS ratio was below 2.6 mg Ni/g MLSS, and no obvious nickel inhibition was 

observed. On day 98, when Ni/MLSS reached 2.7 mg Ni/g MLSS, significant drop of 

nitrifiers’ activity was observed with effluent of 19.1 mg NH4-N/L, 0.9 mg NO2-N/L and 

20 mg NO3-N/L. Thus, AOB and NOB activity dropped by 34% relative to SBR1 phase 1. 
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In the following week, the performance deteriorated with effluent NH4-N, NO2-N and NO3-

N concentrations of 32.6, 0.6 and 6.8 mgN/L on day 106, respectively. After day 112, the 

biomass acclimatized, and the effluent stabilized at 23.0±2.8 mg NH4-N/L, 0.3±0.5 mg 

NO2-N/L, and 16.5±2.4 mg NO3-N/L. Compared with SBR1 phase 1, the final average 

activity of AOB dropped by 47%.  

One-way ANOVA analysis suggested that the effluent quality data are significantly 

different at the 95% confidence limit for SBR 1 phase 1 and SBR 2 phase 2, and SBR 1 

phase 2 and SBR 2 phase 4.     
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Figure 6-2. MLSS, effluent SS, and SRTs of SBR 1 (A) and SBR 2 (B). 

Figures 6-2A and 6-2B show the mixed liquor suspended solids (MLSS), effluent 

suspended solids (SS), and SRTs for SBRs 1 and 2, respectively. No sludge wastage was 

carried out and the SRTs were estimated based on reactor and effluent biomass. In this 

study, both SBRs were operated at long SRTs. The average, maximum, and minimum 

SRTs of SBR 1 were 71d, 83 d, and 56 d, respectively. The average, maximum and 

minimum SRTs of SBR 2 were 64d, 75 d, and 50 d, respectively. 
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The initial inoculum concentrations were around 1.0 g SS/L and 1.4g SS/L for SBR 1 and 

SBR 2, respectively, with a volatile fraction of 77%. MLSS decreased with time for both 

SBRs due to decay of heterotrophic bacteria as there was no COD in the influent, which is 

similar to our previous observations [21,24]. The MLSS concentration in SBR 1 between 

days 66, and day 91 was 260-300 mg/L. After nickel dosing at 1 mg/L on day 95 and 

acclimatization, the MLSS in SBR 1 dropped to 100-120 mg/L between days 120 and 140. 

The MLSS concentration in SBR 2 was 125-140 mg/L between days 130 and 160. The 

effluent TSS concentration in SBR1 decreased from an initial value of 18 mg/L to stabilize 

at 3.9±0.2 mg/L on days 66-91 before nickel addition, and decreased further after nickel 

addition to 2.1±0.6 mg/L on days 100-133. Similarly, the effluent TSS concentration in 

SBR2 decreased from an initial value of 27 mg/L to 2.5±0.4 mg/L on days 109-160.  

6.3.2 Online Batch Tests.  

Online batch tests were conducted in SBR 2 at three different DO levels (3.0, 5.0 and 7.4 

mg/L, respectively) between days 120, and 140 with nickel dosing, and the results are 

shown in Figure 6-3. The Ni/MLSS ratio (Figures 1A & 1B) in SBR 2 between days 120 

and 140 ranged from 5.2-7.5 mg Ni/g MLSS. At the ambient ammonia concentrations of 

17-26 mgN/L, nitrite concentration of 0.2-0.6 mg N/L, and the pH of 7.0-7.5, the free 

ammonia (FA) concentration was 0.04-0.3 mg/L while free nitrous acid (FNA) was almost 

0 mg/L. Thus, free ammonia and FNA inhibition did not occur since free ammonia and 

FNA concentrations of 1.0 and 0.1 mg N/L did not inhibit AOB and NOB in previous 

studies [21]. Alkalinity was sufficient as the influent alkalinity-to-ammonia ratio was 7.14 

mg CaCO3/mg NH4-N while around 13-16 mg NO3-N/L accumulated in the effluent. 
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Influent alkalinity was about 330 mg CaCO3/L, and effluent alkalinity was around 130 to 

170 mgCaCO3/L, with around 160 to 200 mg CaCO3/L consumed.  

 

y = -0.7921x + 25.841

R² = 0.9773

y = 0.7886x + 6.5943

R² = 0.9764

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

N
it

ro
g

en
 (

m
g

 N
/L

)

Time (h)

ammonia

nitrite

nitrate

DO 7.4 mg/L



 

183 

 

 

Figure 6-3. Online batch tests at different DOs in SBR 2 

The AOR at DOs of 7.4, 5.0, and 3.0 mg/L were 0.79, 0.66, and 0.59 mgN/L-hr, 

respectively. The AOR at a DO of 5.2 mg/L was 1.7 mgN/L-hr at 14oC without nickel 

inhibition [24]. Considering a temperature coefficient of 1.072 for AOB [1], the estimated 

AOR without nickel inhibition at DO of 5.2 mg/L at 10oC is 1.3 mgN/L-hr. Thus, the AOR 
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about 50% inhibition. Based on the AORs at different DOs, the estimated AORmax and 

KO,AOB, using equation 9, were 0.98 mgN/L-hr and 2.08 mg O2/L, respectively. The NOR 

at DOs of 7.4, 5.0, and 3.0 mg/L were 0.79, 0.65, and 0.58 mgN/L-hr, respectively. Based 

on the NORs at different DOs, the estimated NORmax and KO,NOB, using equation 9, were 

0.98 mgN/L-hr and 2.12 mg O2/L, respectively. 

In order to determine the decay coefficient, the sludge was starved for 12 d after day 160 

with aeration and biomass concentration was measured every two to three days, as shown 

in Figure 6-4. Based on the data, the decay coefficient (b) of nitrifiers was calculated as 

0.098 d−1 at 10oC. The reported b value at 14oC was in the range of 0.035-0.13 d-1 with a 

temperature coefficient of 1.029[1,24]. Thus, the b value at 10oC is estimated to be in the 

range of 0.031-0.115 d−1, i.e. the b value of 0.098 d−1 reported here is well within the range.   

 

Figure 6-4. Evolution of biomass concentration during starvation test. 
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Thus, based on eq7, using the average effluent concentrations of 23.0 mg NH4-N/L, 0.3 mg 

NO2-N/L, and 16.5 mg NO3-N/L in SBR 2 between day 112-140 (Table 3), and AORmax 

of 0.98 mgN/L-hr, the maximum growth rate of AOB (µmax,AOB) at 10oC was 0.16 d-1 with 

nickel inhibition. The reported µmax,AOB at 14oC ranges from 0.13-0.99 d-1 with a median 

value of 0.47 d-1 [24]. The typical temperature coefficient for µmax,AOB is 1.072 [1]. Thus, 

the estimated µmax,AOB at 10oC range from 0.10 to 0.75 d−1. The µmax,AOB value of 0.16 d−1 

falls within the aforementioned range, albeit much lower than the 0.35 d−1 based on the 

median without inhibition. Based on Eq.6.8, using the average effluent concentrations of 

23.0 mg NH4-N/L, 0.3 mg NO2-N/L, and 16.5 mg NO3-N/L in SBR 2 between day 112-

140 (Table 3), and and AORmax of 0.98 mgN/L-hr, the maximum growth rate of NOB 

(µmax,NOB) at 10oC was 0.16 d-1 with nickel inhibition. 

6.3.3 Offline Batch Acute Toxicity Tests.   

The offline batch test results at 10oC, 23oC, and 35oC are summarized below in Figure 6-

5, with the detailed results shown in Appendix B Figures B6-(1-3). The maximum SAOR 

at 10oC, 23oC, and 35oC were 1.03, 4.97, and 9.63 mg N/g MLSS-hr, respectively. The 

maximum SNOR at 10oC, 23oC, and 35oC were 0.96, 4.32 and 6.46 mg N/g MLSS-hr. The 

temperature coefficients (θ) for AOBs between 10oC and 23oC and between 23oC and 35oC 

were 1.13 and 1.056, while those for NOB between 10 oC and 23oC and between 23oC and 

35oC were 1.123 and 1.034. The reported θ value for AOB ranged between 1.023 to 1.172 

[1,27–30]. The θ value of 1.13 between 10oC and 23oC and 1.056 between 23 and 35oC are 

well within the aforementioned range. In the study of Guo et al. [28], the θ value was 1.172 

at 5-20oC with activation energy (Ea) of 111.5 kJ mol-1, and 1.062 at 20-35oC with Ea of 

42.0 kJ mol-1, respectively. Thus, the θ value was lower at higher temperature ranges, 
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which is in agreement with this study. Compared with AOBs, there are fewer studies on 

the temperature dependency of kinetic coefficients for NOBs. However, the general 

consensus is that the θ values for NOB are lower than those for AOB [27], consistent with 

the findings of this study.  
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Figure 6-5. Specific ammonia oxidation rate (SAOR) and specific nitrite oxidation 

rate (SNOR) versus Ni/MLSS at 10oC, 23oC and 35oC 

At 10oC, nickel inhibition was observed at low Ni/MLSS ratio. However, up to a Ni/MLSS 

ratio of 1.5 mg Ni/g MLSS, slight inhibition (<22%) for AOB and NOB was observed. 

With Ni/MLSS ratio increasing to 3.0 mg Ni/g MLSS, both AOB and NOB activities were 

inhibited by 36%. A Ni/MLSS ratio of 4.4 mg Ni/g MLSS resulted in 51% inhibition of 

both AOB and NOB activities. At 10oC the SNOR was almost the same as SAOR. In 
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conclusion, at 10oC, the acute nickel toxicity is predominantly to AOB, with equal or less 

inhibition for NOB. At 23oC, no nickel inhibition was observed at Ni/MLSS ratio lower 

than 0.7 mg Ni/g MLSS. 24% of AOB activity inhibition and 33% of NOB activity were 

observed at Ni/MLSS ratio of 1.5 mg Ni/g MLSS. With Ni/MLSS ratio increasing to 3.0 

mg Ni/g MLSS, AOB and NOB activity were inhibited by 42% and 47%, respectively. A 

Ni/MLSS ratio of 4.4 mg Ni/g MLSS resulted in over 52% inhibition of AOB activity and 

56% inhibition of NOB activity. In conclusion, at 23oC, the acute nickel toxicity was more 

serious for NOB rather than AOB. At 35oC, unlike at 10oC and 23oC, the SNOR is much 

lower than SAOR. Additionally, the nitrifying bacteria may have experienced difficulties 

acclimatizing to the short-term temperature shocks. 20%-32% AOB inhibition and 45%-

49% NOB inhibition were observed at a Ni/MLSS ratio of 1.5 mg Ni/g MLSS. With 

Ni/MLSS ratio increasing to 3.0 mg Ni/g MLSS, AOB and NOB activity were inhibited 

by 30% and 61%, respectively. A Ni/MLSS ratio of 4.4 mg Ni/g MLSS resulted in over 

32% inhibition of AOB activity and 66% inhibition of NOB activity. In conclusion, at 

35oC, the acute nickel toxicity was much more serious for NOB rather than AOB. 

To summarize, the acute nickel toxicity was much more serious for NOB than AOB at 

35oC and slightly more serious for NOB than AOB at 23oC. With temperature decreasing 

further to 10oC, the inhibition was equal or less for NOB than AOB. The results of this 

study are in agreement with Aslan & Sozudogru [4] who also observed that NOB were 

more affected than AOB at 35oC in short-term batch tests.    

To further describe the short-term nickel inhibition on AOB and NOB activity, non-

competitive inhibition model and modified non-competitive inhibition model were 

assessed. The half-velocity inhibition constant, which is equal to the IC50, was determined 
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through linearization of equations 6.13-6.16, as illustrated in Figures 6-6 and 6-7 for non-

competitive inhibition model and modified non-competitive inhibition model, respectively.  

Generally, the curve based on Ni/MLSS ratio (Figure 6-7) fitted the experimental data 

better as evidenced by the higher R2 values compared to Figure 6, suggesting that the 

modified non-competitive inhibition model is better than non-competitive inhibition model 

in terms of accuracy. 
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Figure 6-6. 1/SAOR and 1/SNOR versus Ni at 10oC, 23oC and 35oC 
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Figure 6-7. 1/SAOR and 1/SNOR versus Ni/MLSS at 10oC, 23oC and 35oC 

Table 6-4. Nickel inhibition constant for AOB and NOB at 10 oC, 23 oC and 35oC 

Bacteria species Temperature (oC) Maximum 

SAOR or SNOR 

(mg N/g MLSS-

hr) 
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23 4.6 3.5 

35 5.7 2.7 
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velocity inhibition constant (KI,Ni/MLSS) for NOB at 10oC, 23oC and 35oC were 5.6, 3.5 and 

2.7 mg Ni/g MLSS, respectively. Thus, nickel inhibition seems more serious for AOB at 

10oC and 23oC than at 35oC, while the nickel inhibition for NOB increased with 

temperature. By far, there are very limited studies on temperature effect on nitrification. 

Randall & Buth [19] operated an activated sludge system at 14 oC, 17 oC, and 30oC and 

reported that both AOBs and NOBs are more tolerate to nickel inhibition at higher 

temperatures after acclimatization. Both the IC50 for AOB and NOB based on Ni/MLSS 

ratio at 14 oC, 17 oC and 30oC were >0.47, 1.6-5.0, and 1.9-5.6 mg Ni/g MLSS [19]. You 

et al. [11] reported an IC50 for AOB of 1.2-3.0 mg Ni/ g MLSS at room temperature, which 

is lower than the IC50 for AOB of 4.6 mg Ni/g MLSS in this study.  

6.3.4 Reversibility of acute nickel toxicity 

The reversibility of acute nickel toxicity was evaluated by offline batch tests as mentioned 

above. The results of offline batch tests are illustrated in Table 6-5. Based on Table 6-5, 

acute nickel toxicity to nitrifying bacteria is reversible. 

Table 6-5. Offline reversibility batch tests results 

Test No. 
AOR (mg N/L-hr) NOR (mg N/L-hr) 

A 1.7 1.5 

B 1.6 1.4 

C 1.0 0.8 

6.3.5 Comparison of chronic and acute toxicity 

In short-term batch tests, the Greenway biomass (6.5 g/L) was diluted to 340 mg SS/L to 

2720 mg SS/L, as can be seen from Figure 5, at 10oC, the nickel inhibition of AOB was 

9%-12% at Ni/MLSS ratio below 1.5 mg Ni/g MLSS. In SBR 2, during phase 2, the 
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Ni/MLSS ratio was mostly between 1.0-2.0 mg Ni/g MLSS with an activity drop of 8.3% 

compared with SBR 1 phase 1, which agrees with the short-term batch tests. In addition, a 

significant drop of AOB activity (33%) was observed in short-term batch tests at Ni/MLSS 

ratio of 2.7 mg Ni/g MLSS. In SBR 2, on day 98, when Ni/MLSS reached 2.7 mg Ni/g 

MLSS, significant drop of AOB and NOB activity was observed with effluent of 19.1 mg 

NH4-N/L, 0.9 mg NO2-N/L and 20 mg NO3-N/L. Compared with SBR 1 phase 1, nitrifying 

bacteria dropped by 34%, which corroborates the short-term batch test results. Besides, 

based on Figure 5, AOB activity dropped by 43%-57% in the acute toxicity test at 10oC at 

Ni/MLSS ratio of 4-7 mg Ni/g MLSS, which is in agreement with the activity loss of 47% 

in SBR 2, during phase 4 and 58% in SBR 1 during phase 2(Table 3). In summary, the 

results of the long-term SBRs operation and short-term batch tests were consistent.  

6.4 Conclusion 

1) Upon comparing the performances of SBR 1(late Ni addition) and SBR 2(Ni addition 

during start-up), it appears that after acclimatization, AOB activity dropped by 47% in SBR 

2 and 58% in SBR1 at Ni/MLSS ratio of 4-7 mg Ni/g MLSS, indicating that after long-

term acclimatization since the start, nitrifiers are more tolerant to nickel inhibition at 10oC. 

2) After long-term acclimatization to nickel dose at 10oC and high DO and SRT, the 

µmax,AOB, b and Ko of AOB in SBR 2 were determined as 0.16 d-1, 0.098 d-1 and 2.08 mg 

O2/L, respectively.  

3) A modified non-competitive nickel inhibition model using Ni/MLSS was established for 

AOB and NOB at 10oC, 23oC and 35oC based on short-term offline batch tests results. 

4) The nickel inhibition constant (KI,Ni) for AOB and NOB based on Ni/MLSS ratio at 10oC, 

23oC and 35oC are 5.4 and 5.6 mg Ni/g MLSS, 4.6 and 3.5 mg Ni/g MLSS, and 9.1 and 
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2.7 mg Ni/g MLSS, respectively.  

5) Long-term SBRs operation and short-term batch tests inhibition results with respect to 

extent of inhibition and corresponding Ni/MLSS ratio were consistent. 

6) Short-term nickel inhibition of nitrifying bacteria was reversible. 
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Chapter 7 

7 Conclusions and recommendations 

7.1 Conclusions 

A mathematical model for successful shortcut nitrification conditions determination based 

on MSC values was established. At any given operational condition, the model was able to 

predict if shortcut nitrification can be achieved and provide the operational DO range which 

is higher than the DOmin of AOB and lower than that of NOB. This is the first model that 

involves all the operational factors like pH, DO, TAN, TNN, temperature, and SRT, which 

makes it a quite effective method to predict operational conditions for partial nitrification.  

In addition, the model not only suggests a DO range for partial nitrification, but also 

provide information for partial nitrification systems design and operation.  

At 35oC, stable nitrite accumulation was observed at two conditions: a-influent ammonia 

concentration of 190 mg N/L and continuous aeration and a DO of 0.6–3.0 mg/L with 

average FA of 4.4 mg N/L, and b-influent ammonia concentration of 100 mg N/L, 

intermittent aeration and a DO of 0.15–2.0 mg/L with average FA of 2.2 mg N/L. 

Combinition of FA inhibition and DO limitation could be a good way to achieve partial 

nitrification at 35oC. This is the first time that an SBR was used to treat relatively low 

ammonium wastewater (100-200 mg N/L) at 35oC with the support of kinetic analysis. In 

addition, this is the first attempt to mathematically identify the contributions of factors to 

partial nitrification based on kinetics.   

At 14oC with an influent of 40 mg N/L to a SBR operated at a SRT of 10 d, the decrease 

in ambient dissolved oxygen concentration from 5.5 mg/L to 2.5 mg/L, and further to 0.8 
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mg/L, resulted in ammonia accumulation, as well as an increase in the nitrite accumulation 

ratio. Low dissolved oxygen (<1 mg/L), combined with a long SRT (>30 d), appears to be 

a strategy for stable nitritation at low temperatures (14 oC). This is the first study in which 

partial nitrification performance at different DO concentrations, based on long-term 

operation at low temperature (14oC), were compared. In addition, this study is the first 

attempt to directly determine the kinetc parameters of nitrifiers with sludge cultivated at 

14oC.  

At 10oC, after acclimatization, AOB activity dropped by 47%-58% at Ni/MLSS ratio of 4-

7 mg Ni/g MLSS. Short-term nickel inhibition was much more serious for NOB than AOB 

at 35oC and slightly more serious for NOB than AOB at 23oC. With temperature decreasing 

further to 10oC, the inhibition was equal or less for NOB than AOB. Short-term nickel 

inhibition on nitrifying bacteria was reversible. This is the first study to evaluate and 

compare the acute and chronic nickel toxicity to nitrification systematically at low 

temperature. 

7.2 Recommendations for future work 

Based on the findings of this research, future research should address the following areas: 

1. Study the feasibility of achieving partial nitrification at low temperature by 

adopting low DO and long SRT, as suggested by the findings of this work. 

2. Investigate the effect of COD on the feasibility of achieving partial nitrification at 

low temperature. 

3. Inverstigate the effect of other heavy metals or chemical inhibitors on nitrification 

at low temperature. 
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Appendices  

Appendix A. Supplementary information for Chapter 3 

Table A3-1. DO concentrations causing nitrite accumulation 

Reference DO(mg/L) NO2/NOx(%) System 

Chung et al. (2007) <2 93% activated sludge with biofilm carriers 

Galí et al. (2007)  >3 99% sequential batch reactor 

Yamamoto et al. (2008) 5 93% up-flow reactor with biomass carrier 

Fux et al. (2004) 2-4 94% moving bed biofilm reactor 

Yan andHu (2009) 2 100% Sequencing batch reactor 

 2 >90% continuous stirred-tank reactor 

Chen et al. (2010) >1.5 95.7% continuous stirred-tank reactor 

 >1 85.3% continuous stirred-tank reactor 

Sinha andAnnachhatre 

(2007) 

0.3-0.5 81% continuous stirred-tank reactor 

Chuang et al. (2007) 0.16-0.2 >90% closed down-flow hanging sponge (DHS) 

reactor 

Ruiz et al. (2006) 0.7 67% activated sludge reactor 

Ciudad et al. (2005) 1.4 80% activated sludge reactor 

van Dongen et al. (2001) NA 100% SHARON reactor 

Kong et al. (2013) 0.05-1.33 90% sequencing batch biofilm reactor (SBBR) 

Hanaki et al. (1990) 0.5 NA Suspended growth 

Blackburne et al. (2008) 0.4 15-95% Continuous-flow reactor 

Kim et al. (2003) 1.0 100% Biofilm airlift reactor 

Garrido et al. (1997) 1.5 100% Biofilm airlift suspension reactor 

Joo et al. (2000) 2.0-5.0 100% Biological aeraated reactor 

Bernet et al. (2001) 0.5 90% Completely stirred biofilm reactor 

Wang andYang (2004) 1.5 NA  



 

201 

 

Park et al. (2010) 1.3±0.3 98% suspended-growth  

Text A3-1. Derivation of the equation of minimum substrate concentration curve 

The derivation of the general MSC equation follows the steps of the traditional Smin 

derivation based on a CSTR system. The steady-state mass balance for biomass at steady 

state in a nitrification CSTR is shown in eq.1. 

0 = 𝑄 ∙ 𝑋0 − 𝑄 ∙ X + 𝜇𝑚𝑎𝑥 ∙
𝐷𝑂

𝐾𝑂+𝐷𝑂
∙

𝑆

𝑆+𝐾𝑆
∙ 𝑋 ∙ 𝑉 − 𝑏 ∙ 𝑋 ∙ 𝑉                             (1) 

Dividing by active biomass concentration, X and flow rate, Q, converts eq 1 to eq 2. 

0 =
𝑋0

𝑋
− 1 + 𝜇𝑚𝑎𝑥 ∙

𝐷𝑂

𝐾𝑂+𝐷𝑂
∙

𝑆

𝑆+𝐾𝑆
∙

𝑉

𝑄
− 𝑏 ∙

𝑉

𝑄
                                             (2) 

Since V/Q can be defined as the hydraulic retention time (HRT) and influent 

biomass, X0=0, eq.2 is simplified to eq.3. 

𝜇𝑚𝑎𝑥 ∙
𝐷𝑂

𝐾𝑂+𝐷𝑂
∙

𝑆

𝑆+𝐾𝑆
− 𝑏 −

1

𝐻𝑅𝑇
= 0                                                      (3) 

As HRT go to infinity eq 3 becomes eq 4. 

𝜇𝑚𝑎𝑥∙𝐷𝑂

𝐷𝑂+𝐾𝑂
∙

𝑆

𝐾𝑆+𝑆
− b = 0                                                                (4) 

   then we get, 

𝜇𝑚𝑎𝑥∙𝐷𝑂𝑚𝑖𝑛

𝐷𝑂𝑚𝑖𝑛+𝐾𝑂
∙

𝑆

𝐾𝑆+𝑆
− b = 0                                                             (5) 

𝜇𝑚𝑎𝑥∙𝐷𝑂

𝐷𝑂+𝐾𝑂
∙

𝑆𝑚𝑖𝑛

𝐾𝑆+𝑆𝑚𝑖𝑛
− b = 0                                                             (6) 
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Appendix  B. Supplementary information for Chapter 6 

Table B6-1. Offline batch tests design 

 A B C D E F G H I 

Ni concentration (mg/L) 0 0.5 1.0 1.5 2.0 1.0 1.0 1.0 1.0 

MLSS concentration (mg/L) 340 340 340 340 340 680 1020 1360 2720 

MLVSS concentration (mg) 260 260 260 260 260 520 780 1040 2080 
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Figure B6-1. Short-term batch tests results at 10oC 
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Figure B6-2. Short-term batch tests results at 23oC 
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Figure B6-3. Short-term batch tests results at 35oC 
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Figure B6-4. Reversibility of nickel inhibition 
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