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Abstract

Electrical power system components are designed three-phase balanced and symmet-
ric with the internal connection of wye or delta. The common point of the wye-connected
equipments, which is called neutral, is impedance grounded for many reasons such as fault
ride through by controlling transient overvoltages, and limiting the ground overcurrents.
Depending on the application, different neutral impedance grounding methods exist that
employ resistors or reactors with/without neutral grounding transformers. These ap-
paratuses are known as Neutral Grounding Devices (NGD). The most well-known sort
of NGDs are the Neutral Grounding Resistor (NGR) and Neutral Grounding Reactor
(NGL) which are the main focus of this research work.

As said, NGDs provide many benefits; however, they fail due to many reasons such
as corrosion, lightning, and extended service life. Upon this failure, the advantages
of impedance grounding are replaced by disadvantages of the ungrounded or solidly
grounded traditional systems. Consequences of such a failure are false sense of secu-
rity, ungrounded system, transient overvoltages, overcurrents, line-to-ground voltage test
non-safety, and so on. In order to prevent these issues, the intactness and integrity of
the neutral-to-ground circuit shall be ensured. However, this cannot be done easily since
the neutral-to-ground circuit is dead or de-energized during the steady-state condition.
However, there has to be a continuous and online monitor, which without it there is no
guarantee or indication that these apparatuses have failed. That is why the Canadian
Electric Code (CEC) mandates monitoring of the neutral-to-ground circuit in industrial
and commercial networks.

Accordingly, this research work first reviews the existing monitoring methods to un-
derstand the fundamentals, and performance of these techniques. The performed lit-
erature survey results in a conceptual classification of the existing methods into three
categories called passive, active, and passive-active. This part of the carried-out research
highlights the advantages and disadvantages of the methods on one hand, and the evo-
lution trend of the methods on the other. It also reveals that all of the existing methods
suffer from one shared issue which is the hard-to-achieve continuous monitoring. In fact,
they cannot provide continuous or uninterrupted operation in all system conditions, i.e.,
normal, faulted, and de-energized. It is this major shortcoming of the literature which
motivates towards making a difference. Therefore, the mission is to resolve this issue
relying on the existing measurement instruments and protection installations. As the
results, three new or enhanced methods are achieved.
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The first technique is a cost-effective combination of two existing techniques resulted
in a better performance. The performance of this proposed method is comprehensively
studied using software analysis, and a fabricated prototype of the invented mechanism
for full-range neutral voltage measurement. The resulted method provides reliable mon-
itoring during both faulted and unfaulted conditions of the power system which is the
most prominent advantage of the proposed technique since none of the existing methods,
with the same measurements, provide the such a performance.

The second proposed technique is an economical solution that employs the third har-
monic of neutral and residual voltages for monitoring the NGR installed at the neutral
of the unit-connected generators. The proposed technique is comprehensively studied
including further hardware validations using an available industrial generator protective
relay. The required measurement instruments and protection infrastructures are readily
available which means that the proposed method could be implemented with no addi-
tional cost. In fact, the proposed method could be easily incorporated into the core of
the existing digital protective relays.

Lastly, the third technique employs an existing sub-harmonic injection based genera-
tor stator ground protection for monitoring the neutral-to-ground circuit of the same gen-
erator, which is equipped with either the neutral grounding resistor or neutral grounding
reactor. This alternative is also a money-saving solution since it only demands a current
sensor to measure the injected current. It is also easily retrofitted to installed digital
protective relays. The other advantage of this proposed method is its functionality in
de-energized condition of the power system beside its reliable performance in both faulted
and unfaulted operation conditions. It is this one last accomplishment that brings the
mission to completion.

Keywords: Neutral grounding devices, neutral grounding resistor, neutral grounding
reactor, continuous monitoring, resistance grounding, sensing resistor, third harmonic,
sub-harmonic injection, passive, active.
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Chapter 1

Introduction

1.1 Neutral Grounding Devices

Power system components are designed to be three-phase balanced and symmetric with

the internal connection of wye/star or delta. The common node of the wye-connected

equipment such as generators and transformers is known as neutral point. In conventional

and traditional power networks, this node is left floating known as ungrounded neutral,

or directly connected/wired to earthing point known as solidly grounded neutral [1].

Modern power networks maintain a safe electrical connection between the neutral

and earthing nodes to solve many of issues and challenges associated with ungrounded

and solidly grounded networks. A few of the most prominent advantages of this practice

are to ride through the first ground fault and avoid operation interruption, control the

transient overvoltages, limit the ground fault current, overcome electromechanical and

electrostatic stresses, avoid the risk of arc flash hazards to personnel associated with high

ground-fault current, etc. The requirements of neutral grounding, also known as neutral

earthing, are fulfilled by means of Neutral Grounding Devices (NGD) [2, 3].

Due to variety of neutral grounding methods, different types of the NGDs exist. First,

resistance grounding connects the neutral and earthing nodes to each other via a resistor

that is known as Neutral Grounding Resistor (NGR). This resistor comes with various

resistances for different strategies such as low, medium and high resistance grounding.

Second, effective grounding employs a very small inductor to limit the single-line-to-

ground fault current to the same level as the three-phase-to-ground fault current. Third,

1
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resonant grounding uses a very small inductor behind a single phase Neutral Grounding

Transformer (NGT) to limit the neutral current to a few amperes during the ground

faults [4, 5, 6, 7, 8].

1.2 Problem Definition

Properly designed neutral grounding systems eliminate many of the issues and challenges

associated with solidly grounded and ungrounded traditional systems while maintaining

their advantages [9]. Failure of NGDs is a well-reported issue in industrial and commer-

cial power networks that can happen due to natural incidents such as welding breakage

[10], lightning, storm, earthquakes, extended service life, corrosive atmosphere, extreme

temperature variations, and hail. The other causes are third harmonic currents, manu-

facturing defects, and vibration [11].

Another possible mechanism of NGR failure has been discussed in [12]. The authors

show that how an NGR fails due to local high frequency transients involving the in-

herent inductance of the resistor and the transformer terminal-to-ground-point coupling

capacitance.

Coal mining industry has widely reported the NGRs failure. This industry experiences

change in resistance of the NGRs which is a series problem in safety and protection aspect

of view. Many events have been reported by this industry that a failed NGR has been

identified as the main reason. A few reported events are: 1) a victim at an underground

coal mine in Virginia on November 11, 1991, 2) soft starter failure due to open NGR,

and 3) nine loose connections in Eastern Canada on a 200 A, 4160 V NGR [9].

Any kind of degradation of NGDs causes the risk of the ungrounded or solidly

grounded neutral and the consequent issues [9]. Depending on the failure mode, i.e.,

failed-open or failed-short, this can disable ground protection system, cause significant

damage to the power system equipment during ground faults, risk the safety of site per-

sonnel, etc. As such, most of the utilities perform periodical investigations to detect

such a failure. However, planned-maintenances or periodical inspections/tests guarantee

the intactness of these apparatuses only during the investigation as the failed-short and



Chapter 1. Introduction 3

failed-open NGRs have been detected right after preventive maintenances reported by

[11].

Indeed, without continuous monitoring of NGDs, there is no indication that they

have failed. Therefore, relaying industry needs a reliable solution for detecting the failed

NGDs installed at neutral system of generators and distribution transformers. In fact, the

NGDs must be continuously monitored to avoid false sense of security, as recommended

in article 250 of National Electrical Code (NEC) 2005 [13], and Sections 1-6 and 10-1102.3

of Canadian Electrical Code (CEC) 2011 [14].

Accordingly, as the initial goal of this research work, the existing methods and tech-

niques for monitoring NGDs will be reviewed to understand their behavior and perfor-

mance. These methods are known to have shortcomings and issues that motivate this

research work to search for better alternatives. Thereby, main goal is to devise new or

enhanced methods for monitoring the NGDs that can be easily adopted/retrofitted to

multi-functional digital protective relays or available protection platforms. Although this

criteria limits the work to rely on available infrastructures and installations; however, it

makes the outcomes of the research to be economical, cost-effective and money-saving

solutions. In other words, it motivates the work to employ the existing installations of

monitoring, control, and protection systems which are already in use in power networks

to not only reduce the cost of the proposed monitoring mechanisms but also to boost the

value of the previous investments.

1.3 Literature Survey

The continuity of service and intactness of the NGRs has been an unavoidable concern

to many industries for decades worldwide, especially in Canada. It can be said that

Canada is the frontier in the field of continuous NGR monitoring due to industries that

are well-known in the area of NGR monitoring.

On the basis of the performed literature survey for existing NGD monitoring tech-

niques, ten methods have been explored that are explained briefly in this section. It

should be mentioned that almost all of the existing explorable monitoring techniques
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focus on only the resistive type of the NGDs, i.e., the NGR. These methods are classified

into three different categories based on their principles and concepts. The first category

is called passive methods. The main reason behind such naming is that these methods do

not change the operation characteristic of the power network and rely on existing elec-

trical parameters of the neutral system, i.e., neutral voltage and current. These methods

claim that although the neutral system is theoretically supposed to not experience any

electrical energy flow, however, it always conducts a very negligible current (in the order

of milliamperes) due to inherent asymmetry or imbalance of the three-phase components

of the power system such as the transformers, generators, transmission lines, loads, and

system charging capacitances. Six methods are classified under the passive category. On

the other hand, the second category is called active methods since they inject signals

to neutral system. People who have proposed these methods believe that the neutral

voltage and current are not sufficient to be accurately and safely measured; hence, some

means of signal injection should be used to solve this issue. Three methods are classified

under this category. The third category is called passive-active since it uses both pas-

sive and active concepts. In fact, the passive concept is used when the neutral voltage

and current are high enough to be accurately measured to provide a reliable monitoring.

Furthermore, the active concept is used when the neutral voltage and current are very

low or absent.

The first passive method has a very long history that goes back to even the first

days of appearance of the power systems which is nothing but the periodical or planned

inspections, tests, maintenances or investigations. The [11] mentions this method with

minimum degree of satisfaction since it guarantees the integrity of the assets only during

the investigation and not after that. It means that the inspected equipment could fail

even right after the test [15]. Therefore, this method is not a continuous monitor and

not of interest.

The second passive technique measures and employs the negligible current in neutral

wire, which flows through the NGR itself, to detect the NGR failure by supervising the

level of this current. In fact, two level thresholds are used to detect whether the current is

absent or abnormally very high. This method, referred to as neutral current supervision
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logic, is mostly known as ground overcurrent protection since it only functions during

the ground faults, and besides, it cannot detect partial failure of the NGR [9, 11].

The third passive method employs the neutral current and voltage to monitor the

NGR using neutral current supervision and NGR impedance supervision. The neutral

current supervision is employed during the normal operation condition of the power

system where both neutral current and voltage are less than 0.1 pu. As mentioned earlier,

this logic cannot detect the partially failed NGR condition. However, the impedance

supervision logic that is employed during the faulted condition of the power system

detects all kinds of NGR degradation. It should be noted that although this technique

guarantees an acceptable monitoring during the ground faults, however, it is not that

much interested since NGR failure detection is required and necessary before the incidence

of the ground faults to guarantee a safe operation during the ground faults [9, 11].

The fourth passive method benefits from the same monitoring principles and con-

cepts as the previous method. The only difference is the neutral voltage measurement

instrument. This technique uses the residual voltage instead of neutral voltage since

the applicable configurations do not have the neutral PT. It uses the neutral current

supervision logic only when both neutral voltage and current become less than 0.01 pu.

Otherwise, the impedance supervision logic functions which is highly reliable [16, 17]. As

such, this method provides a better monitoring than the previous method.

The fifth passive method uses the same principles as the previous methods with

better performance. The neutral voltage is measured by Resistive Potential Divider

(RPD) which can cover wider range of neutral voltage. However, the very weak voltages

appearing across neutral system cannot be measured by this technique unless if very high

sampling resolutions are employed. The impedance measurement functions when both

neutral voltage and current are higher than 0.1%, which is the minimum accuracy limit of

the RPD. Otherwise, the neutral current supervision logic operates to detect the failed-

open or disconnected NGR condition. This method has been applied to distribution

systems up to 1000 V [18]. In fact, in order to employ this technique in MV systems, the

monitoring relays requires high sampling resolution to measure the very low voltage of

the neutral point.
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The sixth and last passive method employs both the neutral current supervision

and NGR impedance supervision as well, but in a different way. It uses a sensitive

CT to measure the neutral current, and a sensing resistor for metering neutral voltage.

The sensing resistor provides error-less measurement of the neutral voltage in unfaulted

condition where the neutral voltage is low, and invalid voltage measurement in faulted

condition. As a result, this new mechanism does not provide neutral voltage metering

during the ground faults. As such, this monitoring method employs the impedance

supervision during the unfaulted condition, and the neutral current supervision during

the faulted condition. As explained earlier, since the impedance supervision logic detects

partial failure of the NGR, this monitoring method functions very strong in unfaulted

condition. However, since the neutral current supervision logic cannot detect partial

failures of the NGR, the performance of this monitoring technique is very limited during

the ground faults [19, 20, 21, 22]. Additionally, since reliable monitoring in unfaulted

condition is more of interest, this method is very practical.

As mentioned, the passive methods rely on existing electrical parameters of the neutral

system. As such, if these parameters disappear for any reason such as de-energization or

power outage, the passive methods will become non-functional.

The seventh method is classified under active methods. It is basically the enhanced

version of the second passive method. In this technique, the neutral current is assumed

not sufficient to be accurately measured. Therefore, a current signal is injected between

the neutral and ground nodes. This current must move back and fourth only through

the grounding path. Therefore, the application of this monitoring method is limited to

specific configurations. Moreover, the presence or absence of the injected current is the

only criteria to detect the failed NGR resulting in an imperfect monitor [23, 24]. As

a result, this method is suitable for monitoring the continuity and connectivity of the

grounding path but not for NGR monitoring.

The eighths monitoring method is classified under active category too. In this tech-

nique, a DC voltage or current signal is injected to neutral node to guarantee the existence

of the neutral voltage and current. The DC voltage and current of the NGR are then mea-

sured, and the calculated impedance of the NGR is used to monitor its status. Neutral
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current supervision is also used to detect the failed-short or failed-open NGR [10, 25, 26].

In the third and last active monitoring method, an AC pulse is injected to grounding

system, and the time constant (RC) of the grounding path is supervised. The injected

pulse to grounding network is damped due to resistance of the grounding path. Hence,

the damping inertia known as time-constant is a very beneficial criteria for detecting

variations of the grounding path resistance. If the time constant becomes greater than a

predefined value, the disconnected grounding path is reported. Although this technique

has been designed to monitor the connectivity of the grounding path; however, it can be

set to continuously monitor the NGR as well [27]. This technique is applicable to very

low voltage distribution systems since the injection device is not well-protected against

the transients that happen in medium voltage power networks.

The active methods need means of signal injection and coupling filters to protect

the injection installations against the faulted condition. As a result, this technique

causes more costs compared to passive methods specially when its decoupling during the

ground faults is considered. In fact, this technique cannot function during the ground

faults since the protection or decoupling filters isolate the monitoring system from the

neutral. Furthermore, the injected current shall circulate through the NGR, and shall

not penetrate to the network. Therefore, its application is limited to wye connected

transformers that supply the ungrounded networks or delta connected loads that can be

found in coal mining distribution systems. The other application is the unit-connected

generators. Therefore, the active methods cause more expense with limited performance.

The other issue facing this technique is the DC stray influence, and continuity through

probable ground faults [9]. Furthermore, the integrity and continuity of the injection

circuit itself should be monitored which adds to the complexity of the active monitoring

methods. However, the active methods are well-known due to their functionality in

de-energized operation condition.

Understanding that 1) the active methods function reliably when the neutral voltage

and current are very low or absent, and 2) the passive methods operate strongly when

the neutral voltage and current are high enough to be accurately measured, the power

system engineers came across the most reliable solution by combining the active and
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passive methods resulted in active-passive methods [28, 29, 30]. These method mostly

rely on NGR impedance supervision due to availability of neutral current and voltage

over their full range. However, when these parameters fade completely, still the injection

remains in the picture to check the disconnected grounding path.

1.4 Challenges

Three-phase power system networks are highly symmetric and balanced. As such, the

neutral node is dead during the normal operation condition of the power system which

means that the neutral system does not experience any energy under this situation.

Theoretically, his fact results in zero or very weak voltage and current in neutral system.

On the other hand, if any kind of system faults or failures occurs, the same dead neutral

will experience thousands of amperes and volts depending on the application. As may be

realized, unlike the line voltage and current that always remain very close to the rating

level, the neutral system including the NGD experiences wide range of voltage and current

from just a few volts or amperes during the unfaulted condition to thousands of volts

or amperes during the faulted condition. Here, the accuracy limits of the conventional

metering instruments come to the picture. Most of the existing measurement instruments

cannot guarantee metering both extremely low and very high voltages and currents. They

provide an acceptable performance for only the very high or very low levels of the electrical

parameters. This fact is the major challenge of the existing NGR monitoring techniques.

None of them have succeeded in proposing or providing a mechanism or technique that

can overcome this challenge. As a result, the existing techniques cannot cover both the

normal and faulted conditions.

1.5 Objectives and Motivations

The objectives and motivations of this research work are to propose new or enhanced

NGR and NGL monitoring methods that fulfill the following principles required for a

well-designed monitoring scheme:
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• Proposed methods should detect the NGD failure during both normal and faulted

operation conditions of the power system.

• Monitoring mechanism should rely on existing measurement instruments and pro-

tection/control installation in order to be cost-effective.

• Adoptable or retrofittable to existing protection or monitoring platforms which

means avoiding very complex algorithms that pose high computation burden or

risk of malfunctioning.

• Monitor the whole grounding path from neutral node to earthing point including

grounding connections and wiring.

• Monitoring means should be properly decoupled from the high voltage neutral

during the system faults.

1.6 Thesis Outlines

Second chapter reviews the fundamentals and concept of the neutral grounding methods,

and existing NGD monitoring techniques. In this chapter, first the neutral grounding

and various NGDs are introduced. A brief explanation of the structure of a sample

NGD is included as well. Thereafter, the existing NGD monitoring techniques that are

categorized into three different categories will be explained in detail.

In Chapter 3, the behavior of two existing monitoring methods will be thoroughly

analyzed for various conditions of the NGDs and power system as well. The main goal

of this chapter is to understand the behavior/performance, shortcomings, challenges,

advantages and disadvantages of the existing techniques. This knowledge will later on

help to devise and develop new or enhanced methods, and avoid intellectual property

infringement.

In the fourth chapter, the first proposed method will be introduced. This technique

is the cost-effective combination of two existing techniques which provides better perfor-

mance than each of the originals. The combination methodology itself is novel. Hence,
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first the combination technique will be explained and thoroughly analyzed. Thereafter,

the performance of the monitoring technique itself will be studied under various condi-

tions.

In Chapter 5, the second proposed technique will be introduced. This method moni-

tors the high resistance NGR at neutral of unit-connected generators. It does not demand

any new measurement instruments and uses the existing generator protection installa-

tions, i.e., third harmonic voltage comparator (59D).

Chapter 6 introduces the third technique which injects a sub-harmonic to the neutral

and monitors the NGR or NGL based on its calculated impedance at the same injected

frequency. The performance of the technique will be thoroughly studied as well.

The summary and conclusions will be presented in Chapter 7.

Lastly, five appendices are included that present the simulation settings, and addi-

tional simulation results.



Chapter 2

Literature Review: Existing

Monitoring Methods

In this chapter, first various neutral grounding methods are reviewed followed by intro-

ducing different existing NGDs. Thereafter, the importance of monitoring the NGDs, and

various existing industrial techniques upon this practice are explained in detail. Lastly, a

thorough comparison of these methods will be presented considering the characteristics

of the existing monitoring techniques such as measurements, applicable configurations,

issues, challenges and shortcomings.

2.1 Neutral Impedance Grounding

In traditional power systems such as mining distribution networks, the neutral node

was left floating or directly connected/wired to earthing point, known as ungrounded

or solidly grounded neutral respectively. In fact, the neutral-to-ground impedance was

either zero or infinite. Obviously, the zero impedance causes very high ground fault

currents providing sensitive overcurrent protection and very low transient overvoltages.

On the other hand, the infinite impedance between neutral and earthing points causes

very high neutral voltage in case of ground faults guaranteeing a safe ground protection,

but causing excessive transient overvoltages across neutral side of the equipment. Due to

consequences of transient overvoltages and very high ground fault currents such as the risk

11
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of arc flash hazard, and electromechanical stresses on equipment windings and structure,

the impedance grounding emerged in late 70’s. Impedance grounding means that a safe

electrical connection between neutral and earthing nodes via electrical elements such as

resistors, inductors, capacitors and/or any possible beneficial combination of these key

assets. Moreover, various levels of neutral grounding impedances are used for different

strategies. High impedance means less ground current but higher overvoltages since the

higher impedance causes higher electrical distance from earth potential. On the other

hand, low impedance means high ground currents and low transient overvoltage since the

electrical distance to earthing point is low. Compromising between these two cases, the

medium impedance neutral grounding, and hybrid grounding techniques emerge, which

result in better performance controlling both the transient overvoltages and overcurrents.

Therefore, various neutral grounding methods exist that are explained in the next section.

2.1.1 Neutral Grounding Methods

In this section, all existing techniques for neutral grounding are reviewed followed by

their most prominent characteristics, advantages and disadvantages.

Ungrounded system means neutral node is intentionally left floating which means

there is no direct connection between the neutral node and earthing point. However,

the distributed system charging capacitors, and potential transformers cause other high

impedance paths to the closest earthing point. This method is called capacitive grounding

too [2]. As such, this method does not introduce any NGD whereas grounding impedance

is very high and capacitive. During the normal operation condition of the power system, a

very weak voltage is sensed across the neutral which appears due to inherent asymmetry of

the power system components; however, very high transient overvoltages are experienced

in the presence of ground faults. Indeed, the ungrounded systems are no longer interested

since these transients can easily be controlled by means of neutral impedance grounding.

However, the ungrounded systems do not sense the first single-phase-to-ground (LG)

fault which helps the power network, especially the coal mining motor loads, to ride

through the first ground fault, avoid operation interruption, and reduce the reconnection

costs. Ungrounded neutral can be found in unit-connected generators, and common bus
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generators without feeders as well [5]. The only available electrical parameter is the

neutral voltage obtained by either neutral PT or line PTs.

Solid grounding means neutral node is directly wired/connected to earthing point

without any intentionally inserted impedance introducing no NGD [2]. This method was

traditionally used to avoid the risk of the very high transient overvoltages appearing dur-

ing the restriking ground faults. However, solid grounding causes extremely high ground

fault currents and mechanical damages [5], yet very beneficial in protection aspect [8].

This method is mostly used in transmission systems and the only available measurement

is the neutral current [7].

Effective grounding means neutral node is connected to earth potential via a very

small inductor directly inserted between neutral and earthing points which hereafter will

be called Low reactance Neutral Grounding Inductor (LNGL). The main goal behind such

a grounding scheme is to limit the LG fault current to the same level as the three-phase-to-

ground fault current. In fact, the zero sequence impedance becomes less than the positive

sequence impedance when using the solid grounding, which was traditionally solved by

effective grounding [4]. This method is mostly used in generation and distribution levels

of the power system [7, 8].

Low inductance grounding is achieved in the same manner as effective grounding,

but using a reactor with higher reactance, hereafter called Medium reactance Neutral

Grounding Inductor (MNGL). The ground fault current is still relatively high, and the

risk of damage to iron-core caused by internal faults is noticeable. However, the transient

overvoltages are well-controlled to 230% of the system voltage rating [5].

Low resistance grounding is when the neutral node is grounded using a Low

resistance Neutral Grounding Resistor (LNGR) that is directly inserted between neutral

and earthing nodes. This resistor controls the neutral current to 400-1200 A. Sensitive

and selective ground overcurrent protection is well-achieved with this level of the ground

current. This method guarantees the lowest transient overvoltages among all impedance

grounding methods. That is why low resistance grounding is known as a satisfactory

replacement of the effective grounding [7].

Medium resistance grounding means neutral is grounded using a medium resis-
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tance Neutral Grounding Resistor (MNGR) that limits the neutral current to 200-400 A.

This method is known as a variant of the low resistance grounding method that further

limits the ground current to fulfill the requirements of selective ground protection [3].

High resistance grounding is accomplished using a high resistance Neutral Ground-

ing Resistor (NGR). This NGR is obtained by a very small resistor, i.e., less than 1Ω,

behind a single phase Neutral Grounding Transformer (NGT) with the turn ratio of

40-100. The resistor suppresses the LG fault current to 3.75-25 A to maintain the op-

eration of the power network during the first ground fault. The primary terminals of

the NGT are connected to neutral and earthing nodes. The other way to obtain this

kind of grounding is to install the small resistor at secondary of grounded-wye-to-broken-

delta line PTs, or terminal grounding transformers [31]. It should be noted that the

high resistance grounding can be performed without the NGT as well, but it is not an

economical alternative [3, 5]. Lastly, the available measurements with this method are

the neutral current, and neutral or residual voltage. In general, the resulted NGD with

this grounding method is either an NGR, NGR+NGT, or NGR+GT as shown in the

following figures for a generator.

Figure 2.1: High resistance grounded generator. a) without NGT, b) with NGT, and c)
with terminal grounded-wye-to-broken-delta grounding transformer [3, 5, 31].

Resonant grounding also known as tuned reactor or ground fault neutralizer means

that the neutral is connected to earthing point via a very small inductor behind a NGT
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in the same way as shown in Figure 2.1(b). The inductor is so designed that the seen

reactance at primary of the NGT is equal to one-third of the system line-to-ground

capacitance. This apparatus suppresses the LG fault current to 5 A to maintain the

operation of the power network during the first ground fault. Hence, the resulted NGD is

a reactor plus a NGT referred to as NGL+NGT or HNGL. The available measurements

by this method are the neutral current and voltage. In fact, the NGT operates as a

Potential Transformer.

Hybrid grounding is the combination of solid and high resistance grounding tech-

niques. In this method, the solid grounding serves in the absence of the ground faults.

Once the ground fault occurs, and ground current is sensed, the protection system

switches from the solid grounding to high-resistance grounding. Through such a strategy,

the solid grounding controls the transient overvoltages that appear right after the fault

incidence. Moreover, it provides sufficient current for ground fault detection and instan-

taneous overcurrent protection. The high resistance grounding which comes to service

after a few power frequency cycles suppresses the ground fault current to a few amperes

to avoid the mechanical and thermal damages to the equipment. The resulted NGD is

actually an NGR which shows zero resistance in unfaulted condition and high resistance

in the presence of ground faults [3]. It should be noted that hybrid grounding can be

achieved by combining any of the aforementioned grounding techniques, e.g., solid and

resonant grounding methods.

2.1.2 Neutral Grounding Devices

On the basis of the introduced neutral grounding methods, following NGDs exist which

are explained.

The Neutral Grounding Resistor (NGR) is used in low-resistance, medium-

resistance, high-resistance, and hybrid neutral grounding methods. This apparatus is

obtained by series and parallel combination of the small resistive elements that inter-

connectedly construct the desired rated resistor. These resistive elements are constructed

with resistive wire or metal strips coiled and wrapped around porcelain insulators. A

sample NGR is demonstrated below. The quality factor of this resistor (R/X) is usually
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about 100 since it contains very negligible inductance as well [12].

Figure 2.2: A typical NGR constructed with 6 series edge-wound resistive elements closed
with a bar type current transformer [32].

The Neutral Grounding Transformer (NGT) is another apparatus that is used

for neutral grounding. It can be found in high resistance and resonant grounding.

Lastly, the Neutral Grounding Inductor (NGL) is used in effective, low-reactance

and resonant neutral grounding methods. Unlike the NGR, it is composed of one single

coil reactors. The quality factor of this element (X/R) is about 20.

2.1.3 Failure of Neutral Grounding Devices

NGRs fail due to natural incidents such as lightning, storm, earthquakes, extended service

life, corrosive atmosphere, extreme temperature variations, and hail. The other causes

are third harmonic currents, manufacturing defects, and vibration [11, 17]. A sample

failed NGR due to thermal issues is shown in Figure 2.3.

The [10] mentions that the history of NGR failure mostly contains the mechanical

defection since it is highly interconnected with edge wound resistive inter-elements that

are mechanically joint to two supporting steel frames. This resource relates the NGR

failure to structure defections such as breakage of spot and fillet welding used for mechan-
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Figure 2.3: Thermal failure of NGR [11].

ical assembly. The spot welding defect occurs due to wide range temperature variation

and fault current thermal forces. The fillet welding breakage happens due to mechanical

stress caused by fault currents, corrosion, and uneven thickness of the welding. Depend-

ing on the location of the defection, the NGR can be partially or completely failed-short

or failed-open.

Furthermore, another work shows that NGR can be burnt because of overvoltage tran-

sients initiated by high-frequency (125 kHz) oscillations involving the inherent inductance

of the NGR and system charging capacitances. This phenomenon is known as ferroreso-

nance [12]. The waveform of the neutral voltage containing the 125 kHz oscillations, and

resulted failed-open NGR are shown in Figures 2.4 and 2.5.

Figure 2.4: Overvoltage due to un-
disired effect of NGR inductance [12].

Figure 2.5: Melted neutral point junc-
tion [12].
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Unlike the NGRs, the NGLs do not have lots of mechanical connections and are

constructed using a single coil or winding. Hence, failure of these elements is not as

popular as the NGRs.

2.2 Importance of Monitoring The Neutral-to-Ground

Path

Properly designed neutral grounding systems eliminate many of the issues and challenges

associated with solidly grounded and ungrounded traditional systems while maintaining

the same advantages. Any kind of degradation of NGDs causes the risk of ungrounded

or solidly grounded neutral and the consequent issues [9]. Depending on the failure

mode, i.e. failed-open or failed-short, this can disable ground protection system, cause

significant damage to the power system equipments during ground faults, risk the safety

of site personnel, etc. As such, most of the utilities perform periodical investigations

to detect such a failure. However, planned-maintenances or periodical inspections/tests

guarantee the intactness of these apparatuses only during the investigation as the failed-

short and failed-open NGRs have been detected right after preventive maintenances [11].

Coal mining industry has widely mentioned this issue regarding the NGRs. This

industry experiences change in resistance of NGRs that is a major problem in protection

aspect of view. Many events have been reported by this industry that a failed NGR

has been identified as the main reason. A few reported events are: 1) a victim at an

underground coal mine in Virginia on November 11, 1991, 2) soft starter failure due to

an open NGR, and 3) nine loose connections in Eastern Canada on a 200 A, 4160 V NGR

[9].

Indeed, without continuous monitoring of neutral grounding systems, there is no

indication that NGDs have failed. Therefore, relaying industry needs a reliable solution

for detecting the failed NGDs installed at neutral system of generators and distribution

transformers. In fact, the NGDs must be continuously monitored to avoid false sense of

security, as mandated for NGRs installed in mining systems per article 250 of National
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Electrical Code (NEC) 2005 [13], and for all NGR applications per Sections 1-6 and 10-

1102.3 of Canadian Electrical Code (CEC) 2018 [14]. As understood from these resources,

industries of the North America shall continuously monitor the NGRs to guarantee a safe

operation during the likely-to-happen ground faults [15].

2.3 Existing Monitoring Methods – Passive Cate-

gory

Continuity of service, integrity and intactness of the NGRs have been unavoidable con-

cerns of many industries for decades worldwide especially in Canada. It can be said that

Canada is one of the frontiers in the field of continuous NGR monitoring due to industries

that are well-known in competition [19, 20, 21, 28, 29]. The [16, 17] also show the record

of this practice in Slovenia. In USA, the continuity of service and connectivity of the

grounding path has been focused as can be found in [23, 24, 27]. India has contributed

in this industrial field as well [25].

On the basis of the performed literature survey for existing NGD monitoring tech-

niques, ten different concepts have been explored that are explained in this section. The

explored methods are classified into three different categories based on their principles

and concepts, i.e., passive, active, and passive-active. The first category is the passive

methods since they rely on existing electrical parameters of the neutral system, i.e.,

neutral voltage and current, without polluting the electrical characteristics of the power

network. These methods claim that although the neutral system is theoretically supposed

to not experience any electrical energy flow; however, it always conducts a very negligible

current, less than 100 mA, due to inherent asymmetry or imbalance of the three-phase

components of the power system such as the transformers, generators, transmission lines,

loads, and system charging capacitances. Obviously, presence of this current in neutral

system is a must for these methods since monitoring will be disabled if this current

disappears for any reason except the failed-open NGR condition. Six methods are classi-

fied under the passive category, called methods P1-P6. The main issue with the passive
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methods is that none of them could provide monitoring in de-energized state of the power

system. As mentioned earlier, these techniques do not inject signals and rely on existing

electrical parameters of the neutral system. Hence, the monitoring will be disabled if

these electrical parameters become absent due to any reason.

2.3.1 Method P1 – Preventive maintenance

The first method, hereafter referred to as preventive maintenance or method P1, has

a very long history that goes back to even the first days of appearance of the power

systems which is nothing but the periodical or planned inspections, tests, maintenances

or investigations. This practice exists even these days where the power systems are

highly advanced. The [11] mentions this method with minimum degree of satisfaction

since it guarantees the integrity of the assets only during the investigation and not after

that. This means the inspected device could fail even right after the test. Moreover, the

[11] mentions that a few open NGRs have been detected after completion of a planned

maintenance. Thus, this method cannot guarantee continuous monitoring of the NGDs.

It is classified under passive methods since it does not inject any signals to the power

network. Although this method is not a continuous monitoring alternative; however, it

provides a minimum level of monitoring applicable to almost any possible kind of NGDs.

A few case studies are presented for preventive-maintenance-based NGR monitoring.

As the first record, a conducted inspection of the NGRs in a 60-year-old chemical plant

with 80 substations of various ages has resulted detection of two failed-open NGRs among

ten high-resistance grounded substations yielding 20% chance for NGR failure [11].

Second, five NGRs have been detected faulty at a P&G’s facilities during an inves-

tigation of eight NGRs shortly before they were about to be empowered. These NGRs

were unintentionally left disconnected after transformer testing. The issue was solved by

manually reconnecting the NGRs. This case means even the inspection itself could cause

failed-open NGR situation. How long would these undetected failed-open NGRs have

risk the network safety without continuous monitoring [15]?

Third, a physically damaged NGR has been noticed during visiting the processing

plant at a mine in Northern Minnesota, USA in 2001. The NGR was mounted too close



Chapter 2. Literature Review: Existing Monitoring Methods 21

to the overhang of the building, and an iceberg sized icicle had fallen over the screened

enclosure. The enclosure and the resistor were both crushed by the impact. The same

question rises here which bolds the importance of continuous monitoring [15].

2.3.2 Method P2 – Neutral Current Supervision

Second technique, hereafter referred to as method P2 or method IN, is classified under

passive methods. This technique measures the negligible current of the neutral wire

that flows through the NGR as well. This current is induced in neutral system due to

inherent asymmetry of the power system components. Figure 2.6 shows a sample resis-

tance grounded wye-connected transformer or generator configuration. A very negligible

imbalance of the phase-to-ground capacitors of this system causes the residual current.

This current which will be referred to as leakage current circulates through the neutral

system including the NGR as well.

Figure 2.6: Connection diagram of the monitoirng method P2.

This monitoring technique employs the measured neutral current to detect the NGR

failure through supervising the level. In fact, two thresholds are used to detect whether

the current is absent or abnormally very high. In other words, dissatisfaction of the
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following constraint turns the NGR failure detection signal on.

0.01% < IN < 120% (2.1)

where the base value is neutral let-through current (Ilet). The failed-open NGR is de-

tected only if the NGR current declines to less than the lower threshold disregarding the

operation mode of the power system. This means that the NGR is completely discon-

nected. Therefore, if the NGR fails partially open, this method will not be able to detect

it. Moreover, the failed-short NGR is detected only if the neutral current rises beyond

the maximum expected level which is 120% of the Ilet that is experienced during the LG

fault. Obviously, if the NGR fails partially shorted in the absence of ground faults, its

failure will remain undetected until a ground fault occurs. As such, this method has

many shortcomings even though it is very economical since the only needed measure-

ment instrument is already installed for the protection system. The first issue with this

method is that it cannot detect partial failure of the NGR. Second, neutral current is not

a reliable or satisfying parameter for the aimed monitoring system. Third, it is mainly

an overcurrent ground protection scheme rather than a continuous monitoring technique.

Yet, it provides a very limited performance for monitoring the NGR. It should be noted

that neutral current supervision can be used for monitoring the other types of NGDs,

and even the continuity of service of the solid grounding [9, 11].

2.3.3 Method P3 – Impedance Supervision Using VN and IN

As known, the impedance is the best parameter to detect the intactness, integrity, and

continuity of service of power system components. This concept appears in following

monitoring techniques causing better performance .

The third method, hereafter referred to as method P3 or method VNIN, is classified

under passive methods. The measurement points and connection diagram of the config-

uration are shown in Figure 2.7. This technique benefits from two logics that are neutral

current supervision, and NGR impedance supervision. The neutral current supervision is

employed during the normal operation condition of the power system where the neutral
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Figure 2.7: Connection diagram of the monitoirng method P3.

voltage is so low that the utilized voltage metering instrument (PT) cannot provide an

accurate measurement. As such, only the neutral current is used which is applied to

neutral current supervision logic. As mentioned for previous method, this logic cannot

detect partial failure. As a result, the method VNIN cannot detect partial failure during

the normal operation condition. However, the impedance supervision logic, Equation

2.2, that is employed during the faulted condition of the power system detects all kinds

of degradation of the NGR.

80% < |ZN | < 120% [9] (2.2)

As known, the ground fault overcurrent or overvoltage protection pickup settings are

tuned to 10-20% of the maximum voltage or current that is expected in neutral system

during the ground faults. The complete monitoring algorithm is presented in Figure 2.8.

This technique is applicable to high impedance NGDs such as HNGR used in high

resistance grounding with/without NGT, and HNGL used in resonant grounding [9, 10,

11]. It should be noted that although this technique guarantees an acceptable monitoring

during the ground faults; however, it’s performance is very limited since NGR failure
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Figure 2.8: Monitoring algorithm of method P3.

detection is required and necessary before ground faults incidence to guarantee a safe

operation during the likely to happen ground faults.

2.3.4 Method P4 – Impedance Supervision Using V0 and IN

The fourth method, hereafter referred to as method P4 or method V0IN, is classified

under passive methods category. The measurement points and connection diagram of the

configuration are shown in Figure 2.9. The monitoring principles and concepts of this

technique are the same as the method VNIN. The only difference is the neutral voltage

metering mechanism. This technique uses the residual voltage instead of neutral voltage

since the applicable configurations do not have the neutral PT. However, the neutral

voltage is obtained by grounded-wye-broken-delta PT configuration that provides the

residual voltage at terminals of the generators and transformers, as shown in Figure 2.9

[16, 17].

This technique uses the neutral current supervision logic if residual voltage is less than

1%, and the impedance supervision logic when the residual voltage is higher than 1%.

The performance of this technique is believed to be better than the previous method since

the minimum accuracy limit of the residual voltage is around 1% which is lower than that

of the neutral voltage, i.e., 10%. Hence, this technique relies on impedance measurement

if the neutral current is more than 1% instead of 10%. As a result, this monitoring
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Figure 2.9: Connection diagram of the monitoirng method P4 [16, 17].

method relies on impedance supervision on a wider range compared to previous method

resulting a better performance. The monitoring algorithm is the same as shown in Figure

2.8 except that the voltage threshold is 1% instead of 10%.

Again, it should be noted that although this technique guarantees an acceptable

monitoring during the ground faults, however, it is not an widely used practice since NGR

failure detection is required and necessary before ground faults incidence to guarantee a

safe operation during the ground faults.

2.3.5 Method P5 – Impedance Supervision Using VRPD and IN

The fifth method, hereafter referred to as method P5 or method VRPDIN, is classified

under passive methods. Its concept is very close to methods P3 or P4, but with better

performance. In other words, this practice is toward an enhanced version of the monitor-

ing methods P3 and P4 by employing a more accurate voltage metering instrument. The

measurement points and connection diagram of the configuration are shown in Figure

2.10. The neutral voltage is measured by Resistive Potential Divider (RPD) technique.

The minimum accuracy limit of the RPD is less than the neutral and residual voltages

obtained by neutral PT and terminal PTs, respectively. Hence, it can cover wider range
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Figure 2.10: Connection diagram of the monitoirng method P5 [18].

of NGR voltage measurement from 0.1%, to the phase voltage rating. However, the very

weak voltages appearing across neutral system, i.e., less than 0.1% which happen during

the normal condition, cannot be measured by this technique unless a high sampling res-

olutions is employed. This monitoring method uses the same algorithm as the previous

method with some enhancements as shown in Figure 2.11. The enhancements are the

switching level between the neutral current and impedance measurement logics. This

level indicates the reliability of the method. In fact, the lower this threshold declines the

more reliable it becomes since lower levels of this threshold makes the impedance supervi-

sion logic more dominant than the current supervision logic. The impedance supervision

logic functions very strong, while the neutral current supervision logic functionality is

very limited since the neutral current supervision logic only detects the completely dis-

connected or failed-open NGR while the impedance supervision logic detects even the

partial failure of the apparatus. The ground fault constraint is now changed to following

constraint which is the switching criteria between monitoring logics.

VN > 0.1% (2.3)

In short, the impedance supervision logic is used during the faulted conditions or when the

neutral voltage is sufficient during the unfaulted condition. Moreover, the neutral current
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Figure 2.11: Monitoring algorithm of method P5.

supervision logic functions during the unfaulted conditions that the neutral voltage is very

weak and less than the minimum accuracy limit of the used RPD [18].

2.3.6 Method P6 – Impedance Supervision Using VTVS and IN

The sixth monitoring technique, hereafter referred to as method P6 or method VTVSIN,

is classified under passive category. The functionality of this method is inverse of the

methods P4 and P5. It uses a sensitive CT, and a new mechanism for neutral voltage

metering called sensing resistor, as shown in Figure 2.12. It is mainly composed of a

Transient Voltage Suppressing (TVS) diode, and an isolation or protective resistor. It

provides very accurate voltage metering in unfaulted systems where the neutral voltage

is very weak and in the order of a few volts even in medium voltage distribution systems.

The isolation resistor (R1) limits the TVS current to its maximum tolerating overcur-

rent level. Thereby, the monitoring relay is protected against ground faults in the high

voltage system. For example, a 100 kΩ isolation resistor is used in distribution networks

up to 35 kV to limit the TVS current to 250 mA. On the other hand, the TVS diode is

composed of two back-to-back zener diodes making the device bidirectional. This device

comes in parallel to the NGR and neutral voltage measurement points. When the neutral

voltage is less than the clamping level of the zener diode, chosen 1% of line-to-ground
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Figure 2.12: Connection diagram of the monitoirng method P6.

voltage, the TVS acts open, and the neutral voltage is accurately measured. However, if

neutral voltage becomes noticeable such as during ground faults, the TVS acts shorted

bypassing the measurement points to protect the relay against the neutral transient over-

voltages. Hence, it can be said that the neutral voltage measurement is not valid when

it becomes greater than the clamping level of the TVS diode. As a result, this new

mechanism does not provide neutral voltage metering during the ground faults. The I-V

characteristic of a sample TVS diode with the breaking voltage equal to 9 V is shown in

the following graph.

Figure 2.13: I-V characteristic of a sample TVS diode [33].
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On the basis of the understood operation modes of the sensing resistor technique, this

monitoring method employs the impedance supervision logic during the unfaulted con-

dition, and the neutral current supervision logic during the faulted condition. It should

be mentioned that the clamping level of the TVS diode is designed greater than the

maximum known voltage at neutral in absence of ground faults. As explained earlier,

since the impedance measurement logic can detect partial failure of the NGR, this mon-

itoring method functions very strong in unfaulted condition. However, since the neutral

current supervision logic cannot detect partial failures of the NGR, the performance of

this monitoring technique is very limited during the ground faults. Yet, it can detect

the failed-short and failed-open NGR conditions in the presence of ground faults. The

monitoring algorithm is shown in Figure 2.14 [1, 9, 19, 20, 21, 22].

Figure 2.14: Monitoring algorithm of method P6.

Lastly, it should be noted that although this monitoring technique cannot guarantee a

safe operation during the ground fault, however, it is the most popular passive technique

since it operates strongly in unfaulted condition. In fact, detecting degraded NGR before

incidence of ground faults is more of interest to guarantee protecting the power system

equipment in case of an upcoming ground fault. Following, a few case studies that have

been solved by this technique are reviewed briefly.

As the first case, after finding three left-open NGRs of a stationary surface substation

of an Anglo Coal mine in Australia in 2004, this industry used this monitoring method and
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reported it beneficial. Furthermore, this method has tripped on a 5 year old installation

reported by Assistant Maintenance Manager at Cargill Fertilizer Inc. in Bradley Junction

Florida. The NGR was hit and burnt out by a lightning strike [15].

2.4 Existing Monitoring Methods – Active Category

The second category of the existing NGR monitoring techniques is called active methods

since they inject AC/DC signals to neutral system and do change the operation char-

acteristics of the system. The main philosophy behind appearance of these methods is

that the neutral voltage and current are not sufficient to be accurately measured, and

some means of signal injection should be employed to solve this issue. The injection

source should be decoupled from the power network in case of ground faults which is

accomplished by means of coupling filters. These filters do not let the power frequency

harmonics to penetrate to the injection equipment, however, when the ground faults oc-

cur, the signal processing of the injected signal becomes challenging since the level of the

power frequency signal is remarkably higher than the injected signal. Furthermore, the

injection circuit itself shall be monitored to ensure being failsafe. Three methods are clas-

sified under this category that are called methods A1-A3. The most prominent advantage

of the active methods is the functionality in de-energized operation mode of the power

network. However, the injection means and coupling filters add to the implementation

costs compared to the passive methods.

2.4.1 Method A1 – Injected Neutral Current Supervision

The seventh monitoring method, hereafter referred to as method A1, is classified under

active methods. It is basically the enhanced version of the method P2 used to monitor

the bonding system which earths the entire structure of a distribution network. The

method P2 supervised the presence of the neutral current that exists due to inherent

asymmetry of the power system while the method A1 monitors the neutral system via

supervising the injected AC or DC current signals.

The main reason behind emerging this technique is that the neutral current due to
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power system asymmetry is not sufficient for a secure measurement as it sometimes fades

completely. Therefore, a current signal is injected to neutral system to resolve this issue.

This current must only back and fourth through the pilot and grounding conductors,

as shown in Figure 2.15 [23]. This concept can be used for NGR monitoring as well.

However, it will only detect the failed-open NGR condition. In fact, the current is

injected to ensure the connectivity of the grounding circuit. These methods are mostly

known as continuous monitoring of grounding/bonding circuit. Yet, they are counted as

a continuous monitoring principle that can be used for monitoring the connectivity of

the NGDs as well.

A sample technique, that relies on this concept, injects DC pulses to neutral and

monitors the continuity of the bonding path through supervising the level of the injected

current in two directions. The connection diagram of this technique is demonstrated in

Figure 2.15 [23]. The power source can be a generator or transformer. The monitoring

relay injects a current that circulates through the pilot and bonding wires that earth the

chassis of the ungrounded load. The measured current should be zero in one direction

and non-zero in the other. If the bonding wire is disconnected, this current will be zero

Figure 2.15: Injected current supervision based pilot monitor [23].
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in both directions. Thereby, the disconnected bonding circuit is easily identified.

2.4.2 Method A2 – Impedance Supervision Using Injected DC

Signal

The eighths monitoring method, hereafter referred to as method A2, is classified under

active methods. In this technique, a DC voltage is injected between neutral and ground

nodes to guarantee the existence of the neutral electrical parameters. The DC voltage

and current of the NGR are then measured to calculate its impedance for monitoring

purpose. The neutral current supervision logic is also used to detect the dis-connectivity

of the NGR [10, 26, 25]. This technique needs means of signal injection and coupling

filters to protect the injection installations against the high voltage system faults. As a

result, this technique causes more costs compared to passive methods specially when its

decoupling during the ground faults is considered. In fact, this technique cannot function

during the ground faults since the protection or decoupling filters isolate the monitoring

system from the neutral. Furthermore, the injected current has to mostly flow through

the NGR and shall not penetrate to the network. Hence, its application is limited to wye-

connected transformers that supply the ungrounded networks or delta-connected loads

that can be found in coal mining distribution network. As a conclusion, this method,

alongside with the other active methods, cause more expense with limited performance.

The other application of this technique is the unit-connected generators. The stator

winding of these kinds of generators is protected against near the neutral ground faults

by supervising the seen impedance from neutral using injected sub-harmonic [34], inter-

harmonics [31], or multi-harmonics [35]. The injection and coupling filters are already

installed. Thereby, the NGR continuous monitoring is easily achieved employing these

installations resulting an efficient solution.

A sample approach of this monitoring method is shown in Figure 2.16 [26], which

includes only only the NGR and voltage injection means. The coupling resistor,RC, is

used for voltage isolation in case of ground faults in high voltage side of the system

to protect the injection means. It’s resistance shall be equal to the resistance of the
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Figure 2.16: Connection diagram of the monitoring method A2 [26].

NGR. Practically, its resistance cannot be very high due to probable challenges caused

by sampling resolution. This fact limits the performance of this technique to low voltage

applications. The bidirectional TVS diode. together with the coupling resistor protect

the DC source against the system ground faults. The logic resistor, RIV , is a 1 Ω resistor

used to convert the injected current to DC voltage shown as V2. In the absence of the

ground faults, and when the existing voltage across the NGR is less than the clamping

level of the TVS, the battery injects a DC current that flows through the logic resistor,

coupling resistor and NGR. Thereby, the Equation (2.4) can be used to calculate the

NGR resistance in unfaulted condition.

RNGR =
1
2

V1

V2
(2.4)

The 1/2 coefficient reflects the fact that the coupling resistor and NGR have the

same resistance that both are noticeably higher than that of the logic resistor. Indeed,

the V2/V1 is twice as the resistance of the NGR for intact NGR in unfaulted condition.

The impedance supervision logic represented by Relation (2.2) detects the failed NGR

in unfaulted condition.

This method suffers from few issues. First, if the neutral voltage grows due to possible

asymmetry of the power system, filtration of the injected DC signals from the AC profile

of the neutral voltage current and voltage will be struggling. Therefore, this method

cannot obtain the NGR impedance when the neutral voltage increases due to asymmetry

of the system. Another probable issue facing this technique is the DC/AC strays or influ-

ences that appear at neutral node due to environmental effects. Furthermore, continuity



Chapter 2. Literature Review: Existing Monitoring Methods 34

through a ground fault may be recognized as NGR continuity [9].

2.4.3 Method A3 – Neutral Grounding System Time Constant

Supervision based on Pulse Injection

The last active monitoring method, hereafter referred to as method A3, is introduced here.

In this technique, an short duty impulse is injected into the grounding system, and the

time constant of the neutral-to-ground system (RC) is supervised. The injected impulse

causes the appearance of an exponentially damping sinusoidal signal. The damping

inertia of this signal known as time-constant is a very beneficial criteria for detecting

variations of the grounding path resistance. The analog circuit calculates the subtraction

of the damped signal by the grounding system from an internally damped signal. If the

difference becomes more than a predefined threshold, the disconnected grounding path is

identified. Although this technique is designed to monitor the grounding path, however,

it can be set to continuously monitor the NGR as well. This technique is very old and

uses analog calculations for supervision. The connection diagram of this technique is

obsolete and out of the scopes of this research work. However, it can be found with

complete details in [27].

2.5 Existing Monitoring Methods – Passive-Active

Category

The active monitoring methods function very well in the absence of the ground faults spe-

cially when the existing neutral voltage is very low. On the other hand, the passive meth-

ods operate satisfactorily in the presence of the ground faults or when the neutral voltage

exists. As may be realized, the passive and active methods are perfect compliments to

each other. In fact, if both of them are used simultaneously, a continuous monitoring

method will be achieved that guarantees NGR monitoring in all de-energized, unfaulted,

and faulted conditions of the power system. Such a combination yields to the third cat-

egory of existing NGR motoring methods which is called passive-active [28, 29, 30]. A
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sample approach is introduced here which combines the methods P6 and A2, hereafter

referred to as method P6A2, with the connection diagram shown in 2.17.

Figure 2.17: Connection diagram of the monitoring method P6A2 [30].

In this method, the sensitive CT at neutral provides wide range current measurement

with less than 10% error. On the other hand, the neutral voltage is measured by the

vector sum of the line voltages that are measured by the relay. The measurements

achieved by these instruments are used for NGR resistance supervision if they exist. In

other words, these parameters shall be more than a minimum level which is known as

10% [30]. If not, the signal injection comes to the operation. Under this condition, the

very same methodology shown in Figure 2.16 is employed. In fact, the line PTs and

neutral CT are switched off the service. Again, the resistance of the NGR is obtained

using the injected voltage and current, and the NGR resistance supervision functions to

detect the failed NGR. Obviously, the NGR resistance is available over its full range which

provides a dependable indication of its status. As such, the neutral current supervision is

removed from the monitoring scheme increasing the reliability of the monitor. Although

this method casts more, but it guarantees a better performance than all other previously

mentioned methods.
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2.6 Comparison of Existing Monitoring Methods

In this section, the existing NGR monitoring methods will be compared in two ways.

First, the evolution of the art of NGR monitoring will be shown using a trend graph,

and second, a table will be provided which lists all of the existing methods mentioning

the employed measurement instruments and the guaranteed operation conditions.

In Figure 2.18, three categories of the existing monitoring methods are demonstrated.

Further, the evolution trend of these methods is depicted yielding the most recent tech-

niques, i.e., passive-active methods. In fact, this graph not only shows different existing

concepts of NGR monitoring, but also represents the way these methods have been en-

hanced. The most recent generation of these methods are the passive-active techniques

that are nothing but efficient combination of the passive and active methods.

Figure 2.18: Evolution of the existing NGR monitoring methods.

Furthermore, the existing methods are compared based on the employed measurement

instruments, and their performance under various operation conditions of the power

system, as shown in Table 2.1. The most essential requirement of a well-designed NGR

monitoring method is its continuity which means it could identify the precise status of

the NGR in all de-energized, normal, and faulted operation conditions of the system.

As such, the strength of different existing NGR monitoring methods are ranked relying

on this parameter, as shown in the following table. Besides, the required measurement
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instruments is the other factor that is considered in the comparison since it limits the

methods to specific applications.

Table 2.1: Comparison of the existing NGR monitoring methods.

2.7 Summary

In this chapter, different existing neutral grounding methods were reviewed resulted in

introducing various existing neutral grounding devices such as the NGR. Thereafter, the

NGR failure and importance of monitoring the NGR were highlighted. Lastly, various

existing NGR monitoring methods were reviewed. On the basis of the employed mea-

surement instruments, these methods were classified into three categories named passive,

active, and passive-active.

The passive methods rely on existing neutral voltage and/or current of the neutral

system that appear due to inherent asymmetry of the power network components such

as the generators and transformers. The most prominent issue with these methods is the

non-functionality in de-energized operation condition of the power system which causes

the appearance of the active category.
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The active methods rely on the injected voltage and/or current to the neutral system

which results in an excellent performance in de-energized and unfaulted operation con-

ditions. Unlike the passive methods that rely on existing measurement instruments, the

active methods come with further implementation cost due to additional measurement

instruments to be installed. Besides, these methods cannot monitor the NGR in the

presence of the ground faults due to coupling filters that protect the injection source.

Therefore, the third and most recent category of the NGR monitoring methods ap-

peared in the line of the review which is the passive-active category. These methods

combine the passive and active methods in such a way that NGR could be monitored

in all de-energized, unfaulted and faulted operation conditions of the system. Although

these methods are more expensive compared to the other methods, however, they provide

the best performance specially in de-energized operation condition.



Chapter 3

Modeling and Behavior Analysis of

Two Existing Monitoring Methods

In this chapter, the performance of two existing NGR monitoring methods is investigated.

The primary purpose of this investigation is to comprehend the fundamentals and oper-

ation principles of these methods. Understanding their concepts and fundamentals helps

developing new or enhanced methods that could solve the shortcomings of the existing

monitoring methods. Furthermore, the value of the proposed techniques will be clear

after understanding the issues and challenges facing the investigated methods. The effi-

ciency of the methods is thoroughly investigated for different operating conditions of the

simulated power system configurations, and the degree of their effectiveness is identified.

On the basis of the performed studies, three new methods for monitoring the NGRs will

be proposed and verified in the next chapters.

Although there are various monitoring methods, as reviewed in the previous chap-

ter, only two methods are analyzed since 1) they are well-known and popular, and 2)

understanding their principles and concepts is required in Chapter 4 where the first pro-

posed monitoring method is presented. Following, the monitoring algorithm of each of

the methods will be extracted based on their logics of operation provided by available

resources. Thereafter, the shortcomings of the methods will be shown through compre-

hensive scenario-based analysis performed considering three well-known power system

configurations.

39
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3.1 Method P6 - NGR Monitoring Using Sensing

Resistor and Neutral CT

In this section, the performance of the sixth passive monitoring method, i.e., method

P6, is studied. This method has been implemented, verified and widely employed in

distribution systems during recent years [19, 20]. Hence, it will be worthwhile to study

and understand its performance. The main concepts and principles of this method have

been reviewed in the second chapter. This section conducts the detailed studies on

modeling and behavior analysis of this method. This technique employs a sensitive CT

and a sensing resistor to measure the neutral current and voltage respectively. Both of the

utilized measurement instruments are not conventional instruments that could be readily

available in most of the applications which causes additional implementation costs.

Following, the detail principles and concepts of operation of the method are extracted

and employed by its developed monitoring algorithm. The dead zones of the algorithm

are also derived to show the blind regions of its operation. Moreover, the performance

and functionality of the method for three different power system configurations are inves-

tigated through 150 scenarios. Finally, the learned lessons will be included summarizing

the defects, issues, advantages, and disadvantages of this method.

3.1.1 Monitoring Algorithm

The monitoring algorithm of this method has been extracted from the available resources

[19, 20]. This decision making flowchart might not reflect the exact operation of the

original method. However, it employs the same logics of operation of this technique that

have been mentioned in the available publications. The algorithm has different elements

for both NGR monitoring and ground fault protection that will be explained one by

one. After understanding the employed elements of monitoring, the dead zones of the

algorithm will be derived and represented. In fact, the conditions that the proposed

monitoring algorithm fails to function correctly will be shown and discussed using the

dead zones of the algorithm.
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Decision Making Flowchart

The main principles of the monitoring algorithm are divided into four major protec-

tion/monitoring elements. Two elements provide ground fault protection. The other

two elements monitor the status of the NGR. The complete flowchart of the monitoring

algorithm is shown in Figure 3.1. It should be noted that ground fault protection is

not a focus of this research work; however, it is believed that the NGR monitoring is

very much connected to ground fault protection. As such, the ground fault protection is

Figure 3.1: Decision making flowchart of the monitoring method P6.
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investigated as well.

In order to clearly introduce each part of the scheme, a different color is assigned to

each element. For example, the overcurrent ground fault protection element is differen-

tiated by green color and coded as 50G. The other element is the overvoltage ground

fault protection, represented in blue and coded as 59G. This element detects the very

high impedance ground faults where the 50G fails to function. The last element, shown

in red, is the monitoring scheme which is the main focus of this research work. It itself

consists of two separate logics, as mentioned on top of the monitoring block. The left

part functions during the faulted condition, while the right side element operates during

the normal operation condition where the voltage across the NGR is very low.

Since the main focus of the work is the monitoring part of the algorithm, the protection

elements are not discussed anymore. The only challenge facing the motioning part is the

neutral voltage metering mechanism which is the sensing resistor. In Appendix B, detail

explanations and operation principles of the sensing resistor have been presented that are

followed by its detail modeling in PSCAD software. The main issue is the accuracy limits

of the sensing resistor that measures the neutral voltage. On the basis of [19], the neutral

voltage can be measured with less than 1% error when it is less than 1% of the system

line-to-ground voltage rating, e.g., 100 V. This means that the very weak voltage across

the neutral system, less than 100 V, that appear during the normal operation condition

can be measured accurately. As such, both of the voltage and current signals of the NGR

become available with an acceptable accuracy. Thereby, the impedance of the NGR can

be used as shown in the algorithm. A calibration margin is used to identify the intact

NGR, which is 90-110% of the rated resistance of the NGR. The failed NGR is identified

if its resistance goes out of this preset region considering 10 s time delay.

When the sensed voltage is higher than 1%, which is not measured accurately, the

monitoring algorithm relies on IN . It supervises the magnitude of this parameter, and

if it does not fall within a preset safe region, i.e., 5-120% of neutral let through current

(Ilet), then the failed NGR is reported considering 0.1 s time delay. It should be noted

that the used 0.1 s time delay is to detect NGR failure before that the ground fault trip is

commanded. If the current measured by neutral current transformer becomes less than
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5%, the failed-open NGR will be reported, and if it is more than 120%, the failed-short

NGR.

Dead Zones of The Algorithm

The following figure shows the dead zones of the aforementioned algorithm. The dead

zones point out to the conditions that the algorithm cannot function correctly. For

this monitoring algorithm, it fails if the operating point falls inside the areas of the

(VN , RNGR) plane that are gray, as shown in the following figure. It should be advised

that this characteristic is not a protection zone. It is derived just for figuring out the

dependability of the algorithm and finding ideas to improve the proposed algorithm.

Further improvements can be obtained by reducing the gray area. The gray areas cover

around 20% of the plane meaning that the dependability of the algorithm is around
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20%; however, it is 100% reliable during the unfaulted condition. This characteristic will

mostly be used to explain the conditions that this algorithm fails to function correctly.

As shown, the characteristic is effected by two current thresholds, one voltage level,

and the NGR calibration margins. The neutral voltage is securely measured during the

normal operation condition where it is less than 70 V RMS or 100 V peak. Under this

condition, the resistance of the NGR is obtained accurately, and the calibration margins

are used to detect the failed NGR. The algorithm operates strongly during this mode of

operation. There is no dead zone for this condition which means that the algorithm does

not maloperate at all. However, when a ground faults occurs, the neutral voltage rises

beyond the minimum accuracy limit, i.e., 1%, where the neutral voltage is not measured

accurately. Under this condition, the algorithm only uses the current signal and the safe

region defined as 1.8-30 A.

3.1.2 Performance Analysis

Following, the performance of the monitoring method P6 is studied for high-resistance

NGR during different system conditions. Three of the popular-in-the-art power system

configurations will be simulated in PSCAD. The current and voltage waveforms captured

from PSCAD will be played back to Matlab-based model of the monitoring algorithm to

investigate its performance for various NGR failures and/or system faults. The studied

configurations have been selected from [2, 3, 16, 17], which are listed below:

• Configuration 1 � High-resistance-grounded generator.

• Configuration 2 � High-resistance-grounded DYg distribution transformer.

• Configuration 3 � High-resistance-grounded YD distribution transformer.

The proposed algorithm is expected to monitor the status of the NGR during both un-

faulted and faulted conditions. Furthermore, the resistance of the NGR will be changed

so as to represent various kinds of NGR degradations during both the faulted and un-

faulted conditions of the power system configurations. As such, there will be five different

cases to analyze the performance of the monitoring method, as listed below:
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• Case 1 � Monitoring a healthy NGR during various system faults.

• Case 2 � Monitoring various NGR degradations in a healthy system.

• Case 3 � Monitoring various NGR degradations during a LG fault.

• Case 4 � Monitoring a failed-short NGR during various system faults.

• Case 5 � Monitoring a failed-open NGR during various system faults.

These five cases are investigated through 50 scenarios, 10 scenarios per case. Since

three configurations are studied, the total number of the scenarios is 150 resulting a

comprehensive study of the performance of this monitoring method.

Configuration 1 — High Resistance Grounded Generator

On the basis of IEEE Standard C37.101 [3], the generators are mostly unit-connected

rather than directly loaded. The main reason behind this principle is the zero sequence

isolation of the generation side from the rest of the power system. The neutral of such

generators is often resistance grounded. Therefore, analysis of the operation and function-

ality of the monitoring method for a high-resistance-grounded unit-connected generator

is worthwhile as performed here. The high-resistance grounding is carried out using a

small resistor at the secondary of a single-phase Neutral Grounding Transformer (NGT)

which actually makes the grounding easier since the ratings of the grounding compo-

nent decrease strikingly. In fact, the voltage at the secondary of the NGT is usually

50-100 times smaller than the system voltage level. Additionally, the impedance of NGR

decreases by a factor of 2500-10000.

The connection diagram of the configuration is shown in Figure 3.3. It represents

a LV distribution system supplied by a 14MVA generator. As shown, the generator

neutral is grounded using a 9.6/0.240 kV NGT, and a 0.18 Ω resistor, resulting 288 Ω

at primary. The system charging capacitors are also demonstrated. An imbalance of

1% has been considered in system charging capacitors to induce a milliampere current

in the neutral wire. This phenomenon happens in real practice since the three-phase

power system is inherently asymmetric and does have some negligible levels of imbalance.
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The induced current is called residual or leakage current and is employed by passive

monitoring methods. The measurements, VN and IN , are transmitted to the monitoring

relay, and the status of the NGR is monitored using the obtained resistance of the NGR,

and neutral current supervision logic.

Figure 3.3: High resistance grounded unit-connected generator.

Case 1 � Monitoring the healthy NGR During Various System Faults: First,

a healthy NGR is monitored during different faulted conditions, i.e., case 1. The moni-

toring and protection outcomes for investigated scenarios are presented in Table 3.1. The

NGR status is reported by NF or F representing the healthy (non-failed) or failed NGR,

Table 3.1: Case 1 –Monitoring a healthy NGR during various system faults.
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respectively. In addition, the Ground Fault (GF) detection is identified by 1 or 0.

In this case, NGR remains healthy even during the faults. The scenario 1 models

monitoring a healthy NGR during the loading condition because the neutral voltage is in

the order of a few volts. The other scenarios monitor the healthy NGR during 9 system

faults that happen in different locations of the generator stator winding with different

fault resistances.

The monitoring algorithm successfully detects the ground faults and the NGR status

except during high impedance or near the neutral ground faults, i.e., somewhere between

scenarios 1 and 2. In this condition, the neutral current is less than the GF trip level,

i.e., 20% of CT rating equal to 6 A. Moreover, the voltage is more than clamping level.

Therefore, the current signal is used for monitoring the status of the NGR. The relay

reports a failed NGR because the neutral current is less than 1.8 A. As a conclusion, it

should be mentioned that the medium level voltages across neutral during any of the

following conditions will lead to an undetected NGR failure.

• A very close to neutral single-line-to-ground fault

• A high impedance fault

• A very distant fault

Case 2 � Monitoring Various NGR Degradations In a Healthy System:

The second case happens when the power network is healthy, and the NGR fails. This

situation has been investigated for different kinds of NGR failures. The voltage of the

neutral is 12 V peak of fundamental frequency induced due to inherent asymmetry of

the power network. The simulation outcomes have been analyzed, and the results of the

monitoring are represented in Table 3.2.

As expected, the ground protection elements remain disabled. As shown, the algo-

rithm securely detects all degradations, and does not trip on ground faults since the

neutral voltage and current are very low. The only reason behind this performance is

nothing but the properly measured voltage of the neutral. In other words, the neutral

voltage is less than the 100 V, and well-measured. Therefore, the measured resistance is
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Table 3.2: Case 2 –Monitoring various NGR degradations in a healthy system.

valid. Since the measured resistance takes place out of the calibration margins, the failed

NGR is reported. The only challenge facing this case is the minimum current that the

used sensitive CT can measure. In fact, the used CT cannot accurately measure the very

low currents recorded in scenarios 19 and 20 which are less than 2 mA. In these cases,

the monitoring algorithm should report an open circuit or disconnected NGR because

of absence of neutral current. Fortunately, since the calibration margins for NGR resis-

tance are used, absence of neutral current and very low currents are treated the same,

considered as open NGR. This scheme has been used in [16] as well.

Case 3 � Monitoring Various NGR Degradations During Line-to-Ground

Faulted Condition: In this case study, the NGR fails during a bolted LG ground fault

at terminal of the generator, as represented in Table 3.3. These scenarios demonstrate

the double faults. Different NGR failures are modeled by different NGR resistance values.

During the fault, the neutral node experiences 1 pu or 7200 V of the fundamental power

frequency modulated by 15% of each of 2nd, 3rd, 5th, and 7th harmonics resulting 30%

THD. A double fault is expected to be detected by the monitoring algorithm. The first

detection is the ground fault, and the second one is the NGR failure. It should be

mentioned that the NGR is healthy, 288Ω, at the beginning of all scenarios. When the

fault happens, the NGR degradation starts after three power cycles with the variation

rate considered as 10% in 100 ms. Its resistance changes toward the final value shown in

the table.
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As shown in Table 3.3, the ground fault is detected successfully for all conditions. As

shown in the algorithm of the relay, the ground fault is detected using both overvoltage

and overcurrent functions. In scenarios 21 to 25, the sensed current is more than 100%

of the CT rating meaning than the NGR resistance has been lower than the rated value.

It should be noted that this detection is performed without calculating the resistance of

the NGR since the neutral voltage is more than the clamping level of the TVS diode of

the sensing resistor. In scenarios 26-28, the sensed current is higher than GF trip level

and less than 100% of the neutral let through current. The NGR is reported healthy

while its resistance is higher than the normally expected value. In fact, the failed-open

NGR conducts a current that forces the neutral current supervision element to report it

healthy. However, the failed-open NGR is detected in scenarios 29 and 30 since the sensed

current is lower the 5% of the CT rating. Although the ground fault has been detected

in all of the scenarios, but the overcurrent element does not operate in scenarios 28-30

because the measured current is less than the GF trip level. However, the overvoltage

protection function is activated because the voltage across the neutral is more than 20%.

Additionally, the overvoltage ground protection function does not operate in scenarios 21-

23 where the overcurrent ground protection function detects the ground fault. Thereby,

it should be noted that the ground faults in an impedance grounded system will not be

detected always if only one of the aforementioned ground protection functions are used.

Table 3.3: Case 3 –Monitoring various NGR degradations during a solid LG fault.
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Case 4 � Monitoring a Failed-Short NGR During Various System Faults:

The previous study is carried out for a failed-short NGR, i.e., 100% to 20% in two

consequents steps over 1 s, during different system faults. The outcomes of the monitoring

algorithm during different system faults are listed in Table 3.4.

Table 3.4: Case 4 –Monitoring a failed-short NGR during various system faults.

The NGR status is monitored securely except when the voltage across the neutral

system is less than 20% of the phase-to-ground voltage, somewhere between scenarios

31 and 32 including scenario 32 itself. This situation is considered as a shortcoming

of this method. In fact, the neutral voltage is more than clamping level. Therefore,

the resistance calculation element remains unused while the neutral current supervision

functions detecting the failed-short NGR in all scenarios 33 to 40.

Case 5 � Monitoring a Failed-Open NGR During Various System Faults: In

the last case, the same studies as the previous case are repeated for a failed-open NGR,

i.e., 1 pu to 20 pu over 1 s. The monitoring and protection outcomes are listed in Table

3.5. The monitoring algorithm relies on the neutral current supervision element since

the neutral voltage is not available during these scenarios. Although all the scenarios are

well-detected, however, the monitoring algorithm fails to operate properly when the NGR

resistance increases to 2-5 pu. In fact, the neutral current is in the safe region, 5-120%,

for such resistances at neutral. The very same behavior happened in scenarios 26-28 that

were demonstrated in case 3. As such, the imperfection of the neutral current supervision

element of the monitoring algorithm is highlighted once more. The other shortcoming
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faced this technique is its non-functionality in de-energized operation condition which is

inherent to passive methods. However, this method is highly of interest since it operates

reliably in unfaulted condition.

Table 3.5: Case 5 –Monitoring a failed-open NGR during various system faults.

Following, the failed conditions are analyzed using the dead zones characteristic of

the monitoring algorithm. In fact, it will be demonstrated that how this algorithm fails

to function correctly using the VN versus RNGR trajectory movement. The trajectories

are calculated using sequential networks analysis too. The sequential network of the

configuration for a LG fault at 12.47 kV bus is used as shown in Figure 3.4, and the

voltage across the NGR is derived as a function of NGR and fault resistances, as follows.

IN = Ia + Ib + Ic (3.1)

hence, IN = 3 I0 (3.2)

As a result, VN = NGR × IN = 3 NGR × I0 (3.3)

Accordingly, the voltage of the generator neutral can be obtained based on resistive

potential division law as follows.
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Figure 3.4: Sequential network of the configuration 1 for LG fault at 12.47 kV bus.

VN = –
3 NGR

3 NGR + ZG0
V0 (3.4)

where V0 =
(ZC0 + 3 Zg)‖(ZG0 + 3 NGR)

(ZC0 + 3 Zg)‖(ZG0 + 3 NGR) + 3 RF
VG+ (3.5)

where ZC, Zg, ZG represent the impedance of the system per phase charging capacitor,

earth impedance, and generator stator impedance respectively. This relation is simplified

considering that the ZC is so high that can be neglected.

VN = –
3 NGR

ZG0 + 3 NGR + 3 RF
(3.6)

The dead zones characteristic and the trajectory movement for scenarios 2, 26-30, and

32 are demonstrated in Figure 3.5. In addition, the calculated VN versus RNGR trajectories,

based on Equation (3.6), are also depicted for these cases. It should be noted that the

RF is 600 Ω for scenarios 2 and 32 while it is just 0.1 Ω for scenarios 26-30.

As shown, the trajectories highly match the obtained curves using Equation (3.6).

The description of the characteristics is the same as Figure 3.5. Therefore, the reader
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Figure 3.5: Behavior analysis using the dead zones of the algorithm.

is recommended to first understand the according sections. As observed, the trajectory

that contains scenario 32 passes through the dead zones and remains inside this region.

The main reason is the fault resistance. This parameter affects the voltage across NGR

based on 3.6. In fact, NGR is shorted. The neutral current is mainly dependent to fault

resistance. This means that even though the NGR resistance decreases but the neutral

current remains unchanged. As a result, the trajectory moves along a constant current

characteristic. The trajectory remains totally inside the dead zones even if the NGR

resistance decreases down to 5Ω.

On the other hand, the failed-open NGR condition, studied in scenarios 26-28, are

shown as well. In these scenarios, the fault resistance is very low and the neutral current

is completely dependent to NGR resistance. Additionally, the phase-to-ground voltage
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appears across the NGR. In other words, the fault resistance does not experience any

voltage. As a result, the voltage across NGR remains constant equal to phase-to-ground

voltage and the trajectory moves inside the dead zones, as shown in Equation (3.5) by

Sc26, Sc27, and Sc28, and the NGR is detected healthy while it is failed-open.

Configuration 2 - High Resistance Grounded DYg Distribution Transformer

In the second configuration, a high resistance grounded utility supplier is studied in the

same way as the previous configuration. There is a minor but very important difference,

and that is the larger system charging capacitance of the distribution network compared

to generation system. Typically, the system charging capacitance of a generator is very

low and less than 5 µF, while the system charging capacitance of a distribution system

is very high with the maximum of 500 µF. Moreover, the distribution networks are more

unbalanced in contrast to generators due to distributed loads across the wide area of the

distribution system. As known, higher imbalance of the system will cause more voltage

across the NGR specially if the system charging capacitance is high as seen in distribution

Figure 3.6: High resistance grounded DYg distribution transformer.
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networks. As such, higher voltage and current is expected in the new configuration which

is referred to as Configuration 2, as demonstrated in Figure 3.6. The NGR can be inserted

either directly between the neutral and earthing points, or at the secondary of the NGT.

The NGR and NGT are designed based on a step by step methodology provided in [3].

As shown, the voltage level and measurement instruments are identical to the previous

configuration to only focus on the performance of the monitoring method.

The same analysis as the previous configuration was carried out for this configuration.

With the system charging capacitance of only three times the previous configuration,

higher voltage was observed at neutral. As may be realized, higher voltage at neutral

during the unfaulted operation condition might disable the impedance supervision logic

since the clamping level of the TVS diode is only 100 V peak. However, this clamping

level is well-designed since the neutral of most of distribution systems will not experience

such a voltage level in the absence of ground faults. As such, the performance of the

monitoring method P6 is the same for this configuration. Therefore, it is suggested to

read the analysis of the previous configuration, included in Tables 3.1-3.5, to figure out

the behavior of this monitoring technique for the new configuration.

Configuration 3 - High Resistance Grounded YD Distribution Transformer

In this section, the operation of method P6 is studied for monitoring the status of a high

resistance NGR installed at the neutral of a zig-zag grounding transformer, which grounds

the terminals of the secondary of a wye-delta utility supplier that feeds an ungrounded

distribution network. The connection digram of the complete system is depicted in Figure

3.7.

The distributed charging capacitances of the distribution system, considering the

transformer phase-to-ground windings, grounding transformer, unbalanced loads, 12.470 kV

bus, surge arresters, and circuit breakers, are lumped into one three-phase unbalanced

capacitor equal to 1.100 µF that is connected to 12.47 kV bus. In this configuration,

±0.1% drift in capacitance of the system charging capacitors causes around 10 V and

30 mA in neutral system.

The specifications of the zig-zag transformer have been chosen based on [36, 37, 38].
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Figure 3.7: High resistance grounded wye-delta distribution transformer.

This connection is obtained by three single-phase transformers. The voltage rating of

each phase transformer is less than the phase-to-ground voltage by a factor of
√

3, i.e.,

VLG/
√

3 or 4.157 kV. Furthermore, the turn ratio of all phase transformers is unit meaning

that the voltage rating of the primary and secondary sides are the same. However, the

maximum voltage across the neutral system is still equal to VLG, i.e., 7.2 kV. Reminding

that the NGR is designed to limit the ground current to 25 A, the capacity of the one-

phase transformers is calculated as follows.

IPH =
Ilet

3
=

25 A
3

= 8.333 A (3.7)

S PH =
VLG
√

3
IPH = S PH =

12.47 kV/
√

3
√

3
8.333 A = 34.64 kVA (3.8)

where the S PH is the capacity of each of the one-phase transformers, and IPH is the

maximum current that each transformer experiences. This current is very weak during

the loading condition since the positive sequence impedance of the zig-zag transformer

is very high. But, when the line-to-ground faults happen, it rises to its maximum level
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equal to IPH = 8.33 A. Since the neutral is high-resistance-grounded, the IN should be

limited to 25 A. Accordingly, the current flowing through each phase transformer is equal

to 8.333 A [37]. Then, the rating of the phase transformers is obtained 34.64 kVA. To

meet the 10 s duty requirement, just 3% of the continuous rating is required as per the

IEEE Standard 32 [36]. Therefore, three one-phase 1.04 kVA transformers, rounded off

to 1 kVA, are chosen. Thereby, the capacity of the zig-zag transformer bank should be

3 kVA.

The zig-zag connection has been modeled in PSCAD based on [38]. Three 1 kVA and

4.157 kV single phase transformers are combined as depicted in Figure 3.8. The leakage

reactance of the phase transformers are the same and equal to 4.3%, perunitized based

on their own parameters.

Figure 3.8: The zig-zag connection modeled in PSCAD.

The positive and negative sequence impedances of the connection are very high [38].

But, the zero sequence is so low that it conducts the imbalance current during the un-

faulted conditions. The software simulation clearly shows that the positive and negative

sequence impedances are indefinite. But, the zero sequence impedance is definite and

cannot be simply derived from the simulation. Following, the zero sequence impedance

of the zig-zag connection is calculated based on sequence network analysis and a simple

test using the software simulation.

In order to calculate the zero sequence impedance of the zigzag connection, assume
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that a solid single phase to ground fault, AG, happens at 12.47 kV busbar. The NGR

is shorted to avoid its impact on the calculations. The zero sequence impedance of the

zig-zag connection is then obtained as follows [39]:

ZZZ0 =
VLG

I0
=

VLL/
√

3
IN/3

=

√
3 VLL

IN
(3.9)

The IN has been obtained 29.7 A by PSCAD simulation. As such, the ZZZ0 comes

equal to 727 Ω. Now, the NGR resistance should be calculated. In order to calculate

the NGR resistance, the sequential network of the configuration is derived, as depicted

in Figure 3.9. The following relationships are then derived based on sequential network

analysis.

V0 =
1
3

(Va + Vb + Vc) =
1
3

(3 VPH∠180◦) = −VPH (3.10)

also, V0 = (ZZZ0 + 3 NGR) I0 = (
ZZZ0

3
+ NGR) IN (3.11)

Figure 3.9: Sequential network of configuration 3 for LG fault at 12.47 kV busbar.



Chapter 3. Modeling and Behavior Analysis of Existing NGR ... 59

hence, V0

IN
=
−VPH

IN
=

ZZZ0

3
+ NGR (3.12)

⇒
−7.2 kV

25 A
∠(ϕVPH − ϕIN ) = j242.33 + NGR (3.13)

(A = B ⇒ A ·A∗ = B ·B∗) ⇒ NGR =
√

2882 − 242.332 = 155.63Ω (3.14)

Finally, the NGR is obtained rounded off to 160 Ω. As observed, it is less than 288 Ω

as expected earlier. It should be noted that since the NGR has been changed for this

configuration, the VN Trip Level of the overvoltage element of the monitoring algorithm

should be updated. This setting is achieved by multiplying the NGR resistance to 20%

of the neutral CT rating which comes equal to 13% or 800 V.

The same studies as the previous configurations are carried out for this configuration

as well. As expected and as clearly mentioned in [19, 20], the monitoring algorithm

operation is satisfactory during the loading condition. However, its performance during

the ground faults is not dependable. Following, the results of performance analysis are

represented through a few tables that contain 50 scenarios to analyze the operation of

the algorithm for the same case studies investigated for the previous configurations.

The status of the NGR is properly monitored when a single fault or failure happens

as represented in Tables 3.6 and 3.7. In other words, the algorithm operates reliably

when the system is healthy and the NGR fails, or when the NGR is healthy and a fault

Table 3.6: Case 1 – Monitoring a healthy NGR during various system faults.
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happens. In fact, when the neutral voltage is low, and the system is not experiencing

any ground faults the monitoring method uses the impedance supervision scheme which

functions reliably. In Table 3.6, the dashed cases mean that the scenario is not practical.

The main reason is the zero sequence impedance of the zig-zag transformer which limits

the voltage across the NGR to 4 kV or 56% of the VLG.

Table 3.7: Case 2 – Monitoring the failed NGR during unfaulted condition.

This monitoring method fails to detect the precise status of the resistor in case the

NGR fails during a ground fault which is called double fault condition. In fact, the

neutral voltage is not available during this condition. Thereby, the monitoring method

relies on neutral current supervision logic which is not dependable. The weakness of this

logic is more highlighted while studying this configuration.

When the double faults happen, i.e., system fault followed by an NGR failure, the

algorithm mostly fails. The results of monitoring different NGR failures during a LG

fault at 12.47 kV busbar are demonstrated in Table 3.8. In these scenarios, the system

fault happens first, and then the NGR fails. The voltage across the NGR upon LG fault

incidence is 56% of the system phase-to-ground voltage, i.e., 4 kV. The NGR starts failing

short or open three power cycles after the ground fault occurrence.

The algorithm fails for all of the scenarios except one case. When NGR resistance

falls to very low values, scenarios 21 to 23, the NGR current does not grow noticeably.

For the same conditions of the previous configurations, the neutral current increased

strikingly. The algorithm reported the NGR failure because the CT sensed a current
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more than 100% of its rating. In this configuration, the neutral current is limited by the

zero sequence impedance of the zig-zag transformer even though the NGR is failed-short.

Hence, the current measured by CT remains less than 100% of the CT rating even when

the NGR becomes shorted. The inverse condition happens in scenarios 26-29, but, the

neutral current does not decrease enough to set the 5% threshold. Therefore, the failed-

open NGR condition remains undetected as well. The scenario 30 is detected correctly

because the neutral current is less than 5% of the CT rating.

The scenarios 22 and 29 have been investigated during different system faults as

demonstrated in Table 3.9 and Table 3.10. In scenarios 32-36, the algorithm faces the

same problem as scenario 22. Since the NGR current is sensed between 5% and 100%

of the CT rating, it is reported healthy while it is not. The failed-open NGR is securely

Table 3.8: Case 3 – Monitoring the failed NGR during a LG fault at 12.47 kV busbar.

Table 3.9: Case 4 – Monitoring a failed-short NGR during various system faults.
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monitored during different system faults as demonstrated in Table 3.10. The NGR current

declines to less than 5% of the CT rating and the NGR failure is detected. However, if

the NGR fails partially, e.g., 5 pu, it will be undetected due to higher level of the neutral

current which is higher than the 5% threshold. In fact, the partially failed-open NGR

remains unidentified for the same reason as the failed-short NGR condition.

Table 3.10: Case 5 –Monitoring a failed-open NGR during various system faults.

Lastly, it is concluded that the NGR is satisfactorily monitored during the load con-

dition. The algorithm does not function correctly when NGR fails during the faulted

condition specially if the grounding is performed using zig-zag grounding transformer.

Moreover, this monitoring method cannot function in de-energized operation condition

of any of the power systems. However, it is of interest since it guarantees a reliable

detection in unfaulted operation condition of the power system.

3.2 Method P5 - NGR Monitoring Using Resistive

Potential Divider (RPD) and Neutral CT

In this section, the performance of the fifth passive monitoring method, i.e., method

P5, is studied. This method has been implemented, verified and widely employed in

distribution systems during recent years [16, 17]. Hence, it will be worthwhile to study

and understand its performance. The main concepts and principles of this method have

been reviewed in chapter. This section conducts the detailed studies on modeling and
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behavior analysis of this method. It employs the Resistive Potential Divider (RPD),

and a neutral CT that to measure the neutral voltage and current respectively. As may

be realized, the RPD does not exist in most of the applications and is an additionally

required apparatus causing more expense compared to the monitoring methods that use

the existing measurement instruments.

Following, the detail principles and concepts of the algorithm are covered using an

extracted monitoring algorithm. The dead zones of the algorithm are also derived to

show the blind regions of its operation. Thereafter, the performance and functionality

of the method are investigated for three different power system configurations through

150 scenarios. Finally, learned lessons will be included summarizing the defects, issues,

advantages, and disadvantages of this method.

3.2.1 Monitoring Algorithm

Decision-Making Flowchart

In the same way as the previous monitoring method, the main principles of the monitoring

algorithm are divided into four major protection/monitoring elements. Two elements

provide ground fault protection. The other two elements monitor the status of the NGR.

The complete flowchart of the monitoring algorithm is shown in Figure 3.10. It should be

noted that the ground fault protection is not a focus of this research work; however, it is

believed that the NGR monitoring is very much connected to ground fault protection. As

such, the ground fault protection is investigated in parallel with the intended monitoring

practice as well.

In order to clearly introduce each part of the scheme, a different color is assigned to

each element. For example, the overcurrent ground fault protection element is differen-

tiated by green color and coded as 50G. The other element is the overvoltage ground

fault protection, represented in blue and coded as 59G. This element detects the ground

faults in case the system becomes ungrounded. The last element, shown in red, is the

main focus of the work which is the monitoring scheme. It itself consists of two separate

logics, as mentioned on top of the monitoring block. The right side functions during
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Figure 3.10: Decision making flowchart of the monitoring method P5.

the faulted condition while the left side element operates during the normal operation

condition where the voltage across the neutral grounding resistor is very low.

Since the main focus of the work is the monitoring part of the algorithm, the protection

elements are not discussed anymore. The main issue facing this method is the minimum

accuracy limit of the RPD that measures the neutral voltage. In MV systems, the

neutral voltage can be measured with less than 3% error over 0.1-125% using sampling

resolution of 4096. This means that the very weak voltage across the neutral system

that appears during the normal operation condition can be accurately measured if it is
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within this range. If this constraint gets satisfied, both of the voltage and current signals

of the NGR become available with an acceptable accuracy. Therefore, the impedance of

the NGR can be obtained using Ohm’s law. Following, a calibration margin is used to

identify the intact NGR considering ±10% measurement inaccuracy and 8% drift due to

temperature rise knowing that the temperature coefficient of the well-designed resistors

is about 200 PPM/◦C.

Rmeas1 =
(1 + 10%)VR/3

(1 − 10%)IN
= 1.22RNGR ⇒ +22% error (3.15)

Rmeas2 =
(1 − 10%)VR/3

(1 + 10%)IN
= 0.81RNGR ⇒ −19% error (3.16)

The maximum error of the obtained resistance of the NGR due 10% measurement inac-
curacy is 22%. Adding the 8% drift due to temperature impact, the calibration margin

should be set to ±30% drift form the rated value which is 70-100%. If the calculated

resistance goes out of this safe zone, the NGR alarm will be initiated considering 10 s

time delay.

When the neutral voltage is very weak and not measured accurately, the monitoring

algorithm relies on neutral current supervision. It supervises the magnitude of this

parameter. If it does not fall within a preset safe region, then the failed NGR is reported

considering 100 ms time delay to detect it before circuit breaker disconnects due to ground

fault trip. The current supervision logic is defined as follows.

Imin ≤ IN ≤ Imax (3.17)

Imin = 0.01% and Imax =
0.1% VLGPT

0.7 NGR
(3.18)

If the neutral current is less than Imin, the failed-open NGR will be reported. In

addition, the 0.1 % of VLGPT is the minimum accurately measured voltage at neutral.

This voltage causes the maximum current to be used by the current supervision element

of the algorithm. In other words, if the voltage is less than 0.1%, and the sensed current

is more than Imax, the failed-short NGR will be indicated.
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Dead Zones of The Algorithm

The dead zones of the monitoring algorithm are demonstrated as well. In fact, the

conditions that the algorithm fails to function correctly are shown. The complete set of

all of the failure conditions make the blind regions or the dead zones of the method. The

only way to extract these zones is to examine different conditions and practical levels

of the employed parameters. In this case, the voltage and current signals of the neutral

system are dominant. Hence, the operation of the algorithm is manually checked for

different levels of these parameters. Since the measured current signal is more reliable due

to acceptable accuracy of the used CT, the only parameter that remains determinative is

the neutral voltage. This means that if any full range voltage measurement mechanism

emerges in future, then this algorithm will not have any dead zones at all. Anyways,

different levels of the neutral voltage should be investigated for extracting the dead zones

of the algorithm.

As mentioned, any voltage greater than 0.1% is accurately measured. Under this

condition, the neutral current is also available with acceptable accuracy. Therefore, the

resistance of the NGR can be obtained with less than 30% error. Under this situation,

there will not be any dead zone for the monitoring algorithm since it functions exactly

like an ohmmeter. However, if the voltage level becomes less than 0.1%, the voltage

signal cannot be used due to inaccurate metering. But, the current signal is still reliable

because the current sensor operates with a very negligible error. In this case, the measured

current is supervised. It means that if the current magnitude goes beyond the maximum

expected value, a failed-short NGR will be reported. Moreover, a failed-open NGR will

be detected if the current declines to less than a minimum predefined value. These values

have been addressed as Imax and Imin in the previous subsection.

The obtained dead-zones characteristic of the algorithm for the chosen high-resistance

grounded system is demonstrated in Figure 3.11. In this case, the line-to-ground voltage

of the system is 7.2 kV which is the maximum voltage that appears across the neutral-

to-ground system. The neutral current is limited to 25 A using a 288 Ω NGR. As known,

the calibration margin is 201.6-374.4 Ω, i.e., 70-130% of the NGR resistance. It means
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Figure 3.11: The dead zones characteristic of the method P5.

that if the obtained resistance of the NGR falls within this interval, it should be reported

healthy. As shown, the dead zones happen only when the NGR voltage is less than 0.1%

of the 7200 V. In this case, a failed NGR is reported healthy if its current is within the

safe region obtained by 3.17. There are many conditions that although the NGR is not

healthy, but, since the measured current is within this region, its status is reported intact

or healthy. For example, when the voltage of the NGR is just 2 V, even a highly shorted

NGR, 30 Ω, is not detected. The same issue happens when the voltage is a little bit less

than 0.1% but the current of the highly open NGR is more than the minimum limit,

VN=6 V and IN=4 mA.



Chapter 3. Modeling and Behavior Analysis of Existing NGR ... 68

3.2.2 Performance Analysis

In this section, the performance of the monitoring method P5 is investigated for the same

case studies and configurations performed for the previous monitoring method.

Configuration 1 — High Resistance Grounded Generator

The connection diagram of the configuration is shown in Figure 3.12. It is basically the

same as the first configuration studied in the analysis of the previous monitoring method.

Further details of the system can be found from Section 3.1.2. The only difference is the

neutral voltage metering mechanism which is a RPD here. It consists of two series

resistors that are inserted between the neutral and earthing points of the generator. The

100 kΩ resistor provides protection and isolation from the high voltage system. The

neutral voltage is obtained by scaling up the sensed voltage by a factor equal to the ratio

of the resistors, i.e., 100.

Figure 3.12: High-resistance-grounded unit-connected generator.

Case 1 � Monitoring a Healthy NGR During Various System Faults: The

operation of the monitoring method will be investigated for five different cases. The first

case is the condition that the NGR is healthy, 288 Ω with less than 30% degradation, and

the neutral voltage can be any value. Different values of neutral voltage occur during
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different operation modes of system. For example, the very weak voltages appear during

the loading condition while the very high voltages are experienced during the terminal LG

fault. The voltage level during the faulted condition is dependent to fault resistance and

fault location. Hence, the fault resistance will be the key parameter to induce different

voltage levels across neutral system.

In order to monitor a healthy NGR during different operation modes of the system,

10 scenarios are simulated in PSCAD. The captured waveforms of the generator neutral

voltage, and neutral current are played back to Matlab-based model of the relay, and its

performance is observed as demonstrated in the following table.

Table 3.11: Case 1 - Monitoring a healthy NGR during various system faults.

As shown, 10 scenarios have been carried out. The level of the neutral voltage has

been shown per-unitized based on the system phase-to-ground voltage, i.e., 7.2 kV. The

NGR status is abbreviated by NF or F representing no failure or failure, respectively.

Besides, the ground fault protection has been implemented and tested. The ground

fault detection outcomes are also represented under GF Trip column. The GF Trip

equal 0 means absence of ground faults while GF Trip equal 1 means the ground fault

presence. For example, the first scenario shows that the residual voltage magnitude is just

0.0008 pu. This means that the voltage across the NGR is very weak and equal to 5.76 V.

This voltage level appears during the load condition and appears due to imbalance of the

system three-phase charging capacitors. Since the voltage is very weak, the protection

elements should not detect any fault. In addition, the NGR had been healthy, 1 pu or
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288 Ω. The monitoring algorithm reports NF meaning that the status of the NGR has

been correctly detected healthy. The main reason behind the accurate monitoring is the

magnitude of the current which is within the safe region, i.e., within the 3-36 mA interval.

In scenario 2, the voltage level is very high and equal to 0.2 pu. The NGR resistance

is 1 pu. The status of the NGR is reported correctly as well as the ground fault. The

0.2 pu voltage appears across neutral system due to LG fault with fault resistance equal

to 600 Ω. The main reason behind accurate NGR monitoring is the sufficient voltage and

current for accurate measurement. The resistance of the NGR is obtained and compared

with the 70% and 130% thresholds. The resistance was measured 288 Ω which falls

inside the safe region. The same behavior was observed for other scenarios. The only

difference is that the current and voltage levels become high enough to actuate both of

the protection elements. As a result, the ground fault is detected as well as the status

of the NGR. The level of the voltage and current rise in scenarios 3-6 because the fault

resistance is much lower compared to scenario 2.

Furthermore, the other types of faults have been investigated as well. It has been

observed that the Line-to-Line (LL) faults do not change the level of the neutral voltage

and neutral current. In fact, these kinds of faults do not impact on the zero sequence

of the network. In scenario 7, a LL fault was investigated. The fault was not detected

because the ground network did not interfere in the event. However, the magnitude of

the current behaved the same as scenario 1, and the NGR was reported NF or healthy.

If the Double-Line-to-Ground (LLG) fault happens, the ground network is affected and

the used parameters rise enough for a reliable protection and monitoring. This condition

was investigated in scenario 8. The same behavior as scenarios 2-6 was observed. In

addition, the three-phase and three-phase-to-ground faults were studied. In both cases,

shown in scenarios 9 and 10, the zero sequence experienced no voltage and no current.

Hence, the very weak current caused the monitoring algorithm to assume the NGR is

failed-open due to absence of the neutral current. Also, the fault was not detected. In

fact, these types of the faults are symmetric. In fact, the solid three-phase fault bypasses

the unbalanced capacitors at terminals of the generator. The neutral system does not

experience any energy flow resulting a totally wrong detection. These scenarios are the
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very prominent shortcomings of this monitoring method. In fact, this case shows that if

the neutral system becomes de-energized for any reason then the monitoring system will

fail. This issue faces all of the passive methods due to absence of the employed electrical

parameters.

Case 2 � Monitoring Various NGR Degradations in Healthy System: In the

second case, the performance of the monitoring algorithm is studied when the system is

healthy. This study shows how reliable the monitoring algorithm is during the system

normal operation condition. As mentioned previously, the neutral voltage is very low

in the absence of ground faults, the same as scenario 1 where the neutral voltage was

0.0008 pu or 5.76 V. Such a weak voltage appears due to system inherent imbalance.

While the system is healthy, the NGR resistance is changed to various levels, and the

performance of the monitoring algorithm is observed. As shown, the entirely failed-short

or disconnected NGR conditions are considered in software simulations as well as partial

failures. The observations are listed in the following table.

Table 3.12: Case 2 - Monitoring various NGR degradations in a healthy system.

As mentioned, the voltage across the NGR is 5.76 V which is less than 0.1% of the

PT rating meaning that the neutral voltage cannot be measured accurately. Therefore,

the monitoring algorithm relies on only the current supervision element. This issue

happens in all of scenarios 11 to 20. As explained in Section 3.2.1, the NGR status

will be reported failed if the current declines to less than 3 mA or goes beyond 36 mA
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considering a time delay of 10 s. For scenarios 11-16, the neutral current magnitude falls

inside the safe region, and the NGR is reported healthy. Since the NGR resistance is

not 288 Ω the algorithm has failed for all of these conditions. In scenarios 14 and 15,

the NGR resistance is something different than its rated value, 288 Ω, but, the algorithm

reports healthy NGR since its resistance is not very much drifted from the rated value.

In other words, less than 30% degradation is not assumed as NGR failure. The algorithm

operates securely for the other scenarios, 17 to 20. In these scenarios, the resistance of

the NGR is so high that the supervised current is less than 3 mA. As a result, the failed

NGR is reported meaning that NGR is open. Moreover, the ground fault protection

schemes function reliably not reporting any ground fault. The voltage and current of the

neutral system are so weak that the protection elements are not even actuated. As such,

the GF Trip securely remains off.

As observed, the algorithm mostly fails to detect the shorted NGR during the load

condition, highlighted in red. Monitoring the status of the NGR during the load condition

is very essential because the failed NGR should be maintained before any ground fault

incidence. A failed-short NGR replaces the advantages of a high impedance grounded

neutral with disadvantages of a solidly grounded system. As a very early conclusion, it

can be claimed that this method is not as secure as initially expected due to imperfection

of the neutral current supervision scheme.

Case 3 � Monitoring Various NGR Degradations During an LG Fault: The

next case is monitoring the failed NGR during a LG fault. This case is almost the same

as case 2. The difference is that the neutral voltage is very high caused by a bolted

LG fault at terminals of the generator, instead of the very weak voltage experienced in

the previous case. The operation of the monitoring algorithm is investigated through 10

scenarios, 21-30. The algorithm is expected to detect a ground fault and failed NGR for

all of the scenarios. As such, the NGR status and the GF Trip signals should be F and

1, respectively.

As shown in Table 3.13, the algorithm functions correctly for all of the scenarios. A

ground fault has been detected as well as a failed NGR. The ground fault is detected
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because the voltage and current measured in neutral system are high enough to actuate

the protection elements. Furthermore, since the measured current is valid, the NGR

resistance can be obtained. The calibration margins are used to detect the failed NGR. As

a conclusion, the monitoring algorithm functions reliably during the ground faults. The

main reason behind this behavior is the sufficient voltage and current for measurement

during this condition.

Table 3.13: Case 3 - Monitoring various NGR degradations during a LG fault.

It should be added that the NGR failure affects the operation of the ground fault

protection functions. As observed in this study, the over-voltage ground protection fails

in scenarios 21 and 22. In fact, the very low resistance of the NGR implies the solidly

grounded neutral situation where the neutral voltage cannot rise very much. In these

two scenarios, the residual voltage rises to phase-to-ground voltage of the system, 1 pu.

However, it declines to less than 20% once the NGR resistance decreases remarkably as

seen in these scenarios. Under this situation, the activated ground overvoltage function

is deactivated causing maloperation or disoperation of this protective function. The

inverse of this condition happens to overcurrent ground protection, observed in scenarios

28-30, when the NGR resistance increases strikingly. However, the two ground protection

functions compliment each other, and the ground fault detection is performed reliably.

Case 4 � Monitoring a Failed-Short NGR During Various System Faults.

In this case, the functionality of the monitoring method P5 is investigated for a shorted
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NGR during different system faults. In this case, the profile of the neutral voltage is

assumed the same as the first case. The controlled value of the fault resistance causes

desired amount of voltage across the neutral system. The specific difference of this case

to the other cases is the resistance of the NGR which is assumed very low for all of the

considered scenarios, 31-40. The observations are listed in Table 3.14.

Table 3.14: Case 4 - Monitoring a shorted NGR during the ground faults.

As shown, the monitoring algorithm functions accurately during the faulted condition

even if the residual voltage is very low. The main reason behind this fact is nothing but

the sufficient voltage and current causing accurate resistance calculation. The same has

happened in scenarios 21-30. The same analysis as Case 3 are applicable to this case.

It should be noted that scenario 31 results in a wrong detection because the voltage is

very low meaning that there is not any ground fault. The voltage is not sufficient to be

safely measured. The current magnitude is identified less than 36 mA and a healthy NGR

is reported incorrectly, the same as scenario 11. In scenario 37, the LL fault does not

cause very high voltage causing the same situation as scenario 31. In scenarios 39 and

40, the correct detection has happened due to absence of the parameters which applies

to failed-open NGR. As mentioned, the NGR is shorted which means that the correct

detection in scenarios 39 and 40 is not the result of valid functionality.

Again, the conclusion is the better operation during the ground faults. It securely

monitors the shorted NGR and reports F as a failed NGR. However, the NGR failure

during LL faults is not guaranteed.
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Case 5 � Monitoring a Failed-Open NGR During Various System Faults:

The last case is regarding monitoring a failed-open NGR during various system faults.

This study is the same as the previous case except that the NGR is open or disconnected

instead of being shorted. The open NGR impedance is assumed 20 pu or 5.760 kΩ.

The observed operation of the ground fault protection and the monitoring elements are

represented in Table 3.15.

Table 3.15: Case 5 - Monitoring a failed-open NGR during various system faults.

As shown, the monitoring algorithm securely detects the ground faults and the sta-

tus of the NGR. A failed NGR has been reported for all of the scenarios as expected.

Again, the sufficient voltage and current magnitude support a safe metering providing

the possibility of resistance calculation. The calibration margins are then checked, and

since the calculated resistance falls outside the safe region, the failed NGR is reported.

Furthermore, the Line-to-Line faults in scenarios 47-50 do not cause noticeable rise of

neutral parameters, but since the NGR resistance is very high the supervised current is

lower than Imin = 3 mA. Thereby, the monitoring algorithm reports a failed NGR for all

of these scenarios which is a correct detection. However, the slightly failed-open NGR

condition is not detected as shown in scenario 16.

Following, the most important scenarios are discussed using dead zones characteristic

of the algorithm. This analysis shows how and why the algorithm fails under specific

conditions while it operates securely for the others. The dead zones characteristic of the

algorithm itself has been demonstrated in Figure 3.11. In the following figures, the most
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important scenarios are plotted on top of this characteristic.

The shorted NGR conditions investigated in case 2, scenarios 11-14, are demonstrated

in Figure 3.13. As shown, the actual and obtained VN-RNGR trajectories are not the

same. The main reason is unavailability of voltage metering under these conditions.

Since the voltage is not available, the resistance of the NGR cannot be monitored. It

should be mentioned that the more the trajectories match, the safer and more reliable

the algorithm becomes. In fact, when the obtained trajectory does not match the actual

one, an estimation of the NGR status is used for monitoring. In this case, the trajectories

are completely different, and the operation of the algorithm is expected to be unreliable

as it is. The NGR resistance is assumed equal to a predefined value, 288 Ω, where the IN
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is supervised. The obtained trajectory for these conditions, shown in blue, moves inside

the NGR calibration margins, and through the safe limits of current. As a result, a

healthy NGR is reported for all of scenarios 11 to 14. As represented, scenarios 11 to 13

are marked in yellow to show that the monitoring algorithm functions inaccurately while

scenario 14 is marked in green since the NGR is still healthy if its resistance is within

the 70-130% zone.

The failed-open NGR conditions investigated in case 2, scenarios 15-20, are demon-

strated in Figure 3.14. As shown, both the actual and obtained trajectories are the same.

This means that the resistance of the NGR can be obtained if the NGR is becoming open

during the loading condition. The only scenario that the algorithm fails to detect the
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failed NGR is scenario 16. The voltage of NGR is less than 0.1% and the current su-

pervision element operates which reports a healthy NGR while its resistance is 2 pu. As

shown, the NGR voltage grows as its resistance increases, as experienced in scenarios 17

to 20. Again, the resistance of NGR is calculated, and since it is out of 70-130%, the

failed NGR is securely reported for all of the scenarios 17 to 20.

The NGR status during various system faults, scenario 1-5, and 21-24, are shown in

Figure 3.15. In these scenarios, NGR becomes shorted during a ground fault at terminals

of the generator. As known, the fault resistance is the key parameter to induce the specific

levels of voltage across the neutral system. The more the fault resistance grows, the more

the neutral voltage becomes. As shown, both the actual and obtained trajectories are

exactly the same meaning that precise NGR monitoring is expected as performed in these
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scenarios.

Configuration 2 — High Resistance Grounded DYg Distribution Transformer.

In the second configuration, a high resistance grounded utility supplier is studied in the

same way as the previous configuration. There is a minor but very important difference,

and that is the higher system charging capacitance in distribution networks compared to

generators. Typically, the system charging capacitance of a generator is very low and less

than 5 µF, while the system charging capacitance of a distribution system is very high

with the maximum of 500 µF. Moreover, the distribution networks are more unbalanced

in contrast to generators due to distributed loads across the wide area of the distribution

system. As known, higher imbalance of the system will cause more voltage across the

NGR specially if the system charging capacitance is high as seen in distribution networks.

As such, higher voltage and current is expected in the new configuration demonstrated in

Figure 3.16. The NGR can be inserted either directly between the neutral and earthing

points, or at the secondary of the NGT. The NGR and NGT are designed based on a

step by step procedure provided in [3].

Figure 3.16: High-resistance-grounded DYg distribution transformer.
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As shown, the voltage level and measurement instruments are identical to the previous

configuration to only focus on the performance of the monitoring method.

The same analysis as the previous configuration was carried out for this configuration.

With the system charging capacitance of only three times the previous configuration,

higher voltage was observed at neutral. As may be realized, higher voltage at neutral

during the unfaulted operation condition is a winning situation for the monitoring method

P5 since the higher voltage can be more than the minimum accuracy limit of the RPD.

Thereby, the neutral voltage can be measured accurately. Consequently, the NGR at

the neutral of a distribution level transformer is monitored better compared to the NGR

installed at the neutral of a generator. As a conclusion, this monitoring method is an

interesting solution when it comes to monitoring of the NGRs installed at distribution

systems.

Configuration 3 — High Resistance Grounded YD Distribution Transformer.

The third studied configuration is the NGR installed at the neutral provided by a zig-zag

grounding transformer which grounds the delta side of a wye-delta distribution trans-

former. The detail explanation and design of this configuration can be found from Section

3.1.2.

In contrast to the previous configuration, the zig-zag connection prevents the appear-

ance of the same voltage at neutral experienced in the previous configuration. In fact, the

zero sequence impedance of the zig-zag transformer is in series with the NGR. Therefore,

the residual voltage that appears due to system imbalance is divided among the zero

sequence impedance of the zig-zag and the NGR with lower contribution of the NGR.

However, the system charging capacitance of the distribution system is so high that even

0.1% inherent imbalance of these capacitances causes enough voltage across the NGR.

Therefore, the monitoring method mostly relies on NGR impedance supervision which

functions reliably. It should be added that if the distribution system is very small, and

the system charging capacitances are small, then the probability that the monitoring

method relies on neutral current supervision exists. Lastly, the performance of the mon-

itoring method for the delta-delta connected distribution transformer will be the same
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Figure 3.17: High resistance grounded YD distribution transformer.

as presented here.

3.3 Summary

In this chapter, the fundamentals and principles of two existing NGR monitoring methods

were used to derive their potential monitoring algorithm. The performance of the meth-

ods was investigated under various conditions of the NGR considering three well-known

power system configurations that employ the NGRs. The observations were presented

through scenario-based tables followed by further analysis using the dead-zones charac-

teristic of the monitoring methods.

The first studied method was the monitoring method P6 which uses a sensing resistor

and a sensitive CT. This technique shows reliable performance in loading condition where

the neutral voltage is very low. Under this condition, it obtains the NGR resistance and

detects any kind of NGR degradation. However, it cannot guarantee a reliable monitoring

in the presence of ground fault of any kind. Under this situation, the neutral voltage is

not available, and this monitoring method supervises the presence of the neutral current.

This kind of monitoring cannot detect the exact status of the NGR and fails in most of
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the cases. Moreover, if the NGR is installed at the neutral of the zig-zag connection, the

performance of the neutral current supervision monitoring logic is unacceptable. The

second analyzed monitoring scheme was the method P5 which uses a resistive potential

divider to measure the neutral voltage, and a CT for neutral current measurement. The

performance of this monitoring method is the inverse of the monitoring method P6. It

cannot function reliably in loading condition except when the neutral voltage is high

enough to be measured accurately. However, it guarantees the status of the NGR during

the ground faults. As may be realized, the simultaneous use of the monitoring methods

P5 and P6 provides a continuous monitor which functions reliably in both unfaulted and

faulted operation conditions. That is why these methods were analyzed.



Chapter 4

An Improved NGR and NGL

Monitoring Method With Hardware

Validation

In this chapter, a new passive and comprehensive monitoring will be proposed. The

most prominent advantage of this method is that its functionality is not limited to a

specific NGD or power system configuration. The proposed method relies on neutral

current measured by a sensitive CT, and neutral voltage measured by a novel wide range

voltage measurement instrument. The invented mechanism is actually an enhanced type

of the SR which not only clamps and limits the measured voltage to a desired level, but

also functions similar to a RPD while clamping the neutral voltage. In other words, it

combines the features of the SR and RPD into one instrument that provides accurate

measurement of neutral voltage in both normal and faulted conditions of the system.

The monitoring method will be presented in Section 4.1 followed by the fundamentals

and concepts of the invented voltage measurement instrument. Thereafter, the perfor-

mance of the neutral voltage metering instrument will be verified using software studies,

and validated using a fabricated prototype. Moreover, the invented voltage measurement

mechanism will be employed to monitor the NGDs at neutral of a common configuration

of the distribution networks considering various NGDs and different operation modes of

the power system. Finally, conclusions will be presented in Section 4.4.

83
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4.1 Proposed Monitoring Method

4.1.1 Monitoring Scheme

A well-designed monitoring technique should continuously check the integrity and intact-

ness of the NGD. As known, the impedance of an element is the most reliable parameter

to judge about its integrity and continuity of service. Any change in the physical condi-

tion of a component is directly reflected in its impedance. Hence, the more a monitoring

technique relies on the impedance of the NGD, the more secure it becomes. However,

measuring the impedance of the NGD is not an effortless task. It needs sensitive meter-

ing in a high voltage power system which is not supported by conventional measurement

instruments.

Using a sensitive CT, full range measurement of neutral current is accomplished.

The neutral voltage is measured by a new mechanism which will be explained in next

section. Since the current and voltage of the neutral-to-ground circuit are available over

their whole possible range, the impedance of the NGD is always obtainable. The normal

impedance is the first logic of the monitoring scheme. In fact, if the impedance of the

NGD varies significantly, the NGD failure will be reported with a time delay. The NGD

failure detection in the presence of ground faults should be as fast as possible which could

be achieved using a 100 ms time delay. However, it could be delayed during the normal

operation condition, e.g., using a 10 s time delay. On the basis of [19], ±30% change in

NGD impedance is sustainable. In fact, the following constraint is the first and the main

logic of the monitoring scheme.

Logic 1 : 70% <
∣∣∣ZNGD

∣∣∣ < 130% (4.1)

It should be mentioned that the ±30% margin is obtained considering ±10% inaccu-

racy of voltage and current measurement, and temperature impact. The second logic is

called neutral current supervision. It consists of two sub-logics. The first sub-logic, Logic

2, reports NGD failure in 10s if the neutral current becomes absent, i.e., less than 0.01%

of neutral let through current (Ilet). The other sub-logic, Logic 3, reports NGD failure

immediately when the neutral current becomes greater than 120% of Ilet.
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The NGD failure is reported if any of the aforementioned logics is satisfied. In other

words, the three logics are ORed, and the outcome identifies NGD Status (NGDS).

4.1.2 Neutral Voltage Measurement

In order to understand how the proposed voltage metering mechanism functions, first

two existing voltage metering techniques are explained. The first technique is the Resis-

tive Potential Divider (RPD). It divides the voltage into two portions across two series

resistors, as shown in Fig. 4.1(a). The neutral and measured voltages are related as

follows:

u(t) =
R1 + R2

R2
v(t) = Kv(t) (4.2)

where u and v are the neutral and measured voltages, respectively. Obviously, the neutral

voltage can be obtained by scaling-up the v(t) by a factor equal to K.

The only issue with this technique is the need for a very high sampling resolution.

Indeed, the maximum system voltage cannot be very high if measuring very weak voltage

of the neutral is intended.

The second technique, shown in Fig. 4.1(b), is called Sensing Resistor (SR). It bene-

fits from a diode called Transient Voltage Suppressor (TVS). It is actually a bidirectional

Figure 4.1: Neutral voltage metering techniques. a) Resistive Potential Divider (RPD),
b) Sensing Resistor (SR), and c) Advanced Sensing Resistor (ASR).
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back-to-back Zener diode. When the u is less than the Breaking Voltage of the diode

(VBR), the diode represents a very high impedance so that almost all of the neutral volt-

age appears across the TVS. This feature provides error-less measurement of the neutral

voltage during the load condition where the neutral voltage is less than the VBR. Other-

wise, the TVS clamps and limits the v to its clamping level which means falsifying the

signal. The altered signal cannot be used under any condition. Hence, the measurement

is valid only during the unfaulted condition. The clamping level is considered greater

than the maximum voltage that the neutral-to-ground circuit is expected to experience

during the unfaulted condition.

Finally, the proposed technique is explained. The main goals behind this technique

are: 1) very accurate measurement in unfaulted power system, and 2) acceptable accuracy

during the faulted condition. It is, indeed, the combination of the RPD and SR, hereafter

referred to as Proposed Method (PM) which is shown in Fig. 4.1(c). It has two modes of

operation. The first mode happens when the neutral voltage is weak. The TVS is open,

and the neutral voltage is completely delivered to the TVS. The measurement is equal to

the neutral voltage with minimum possible error. The second mode of operation occurs

when the neutral voltage becomes greater than the breaking voltage of the TVS. Under

this condition, the TVS clamps the voltage and represents a constant voltage equal to

VBR. The TVS does have an internal resistance , known as dynamic resistance, which

is neglected since it is ineffective when being in series with R2. Thereby, the following

relation is established between the neutral and measured voltage.

u(t) =
v(t) − VBR

R2
R1 + v(t) = Kv(t) − (K − 1)VBR (4.3)

As may be realized, the original voltage of the neutral is recoverable from the measured

voltage. It should be reminded that if the v is less than VBR, the TVS is off, representing

infinite impedance which means that the u is equal to v with no modifications. Otherwise,

the Equation (4.3) relates the v to u. However, a few practical issues face this technique.

The first issue is the internal resistance of the TVS. As mentioned earlier, the R2

is designed to be enormously greater than this resistance to eliminate its impact. The
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other issue is the nonlinearity of the TVS diode. In fact, the transition from open mode

to shorted mode or vice versa of the TVS is not a discrete phenomenon and represents

a varying resistance. The very high resistance achieved by R1 in series to R2 noticeably

attenuates this nonlinearity, as shown in Fig. 4.2.

Figure 4.2: I-V characteristics of voltage metering mechanisms.

The last issue is the temperature impact which influences two very critical parameters.

The first one is the K. The resistance of resistors R1 and R2 changes due to temperature

variation. It is believed that choosing the resistors with equal temperature coefficients

resolves this issue. Moreover, a common heat sink must be used to keep them operating at

equal temperature. Temperature causes the VBR to change too. Digital signal processing

is employed for extracting this parameter from the measured signal, v[t], as explained

below.

To extract the breaking voltage from the measured voltage, the transition moment

between two modes of operation, hereafter called breaking point, is used. As shown in

Fig. 4.3, the measured voltage accelerates once the TVS transits from shorted mode to

open mode. The detail presented in this figure apply to negative half cycle as well. Using

Equation (4.3), it is shown that the v accelerates K-times after the breaking point, i.e.,

sample n − 1.

∆vn−1 = vn−1 − vn−2 = VBR −
un−2 + (K − 1)VBR

K
=

VBR − un−2

K
=

un−1 − un−2

K
=

∆un−1

K
=

∆un

K
=

∆vn

K
(4.4)

where the parameters used in this calculation can be found in Fig. 4.3. Hence, the

sudden acceleration of the waveform is a key parameter that should be used.
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Figure 4.3: Characteristic and operation of the proposed technique.

It is expected that the K-times change in variation rate will not be detected in the

positive edge of the sinusoid (0-π/2 or π-3π/2). The main reason is the anti-aliasing filter

effect. It falsifies the breaking point that happens during these intervals. This issue is

not expected in negative edges (π/2-π and 3π/2-2π). Therefore, the breaking voltage will

be obtained from negative edges as shown in Fig. 4.3. This portion of the sinusoidal

waveform is detected by comparing the consequent samples as follows:

|vn| < |vn−1| < |vn−2| (4.5)

If this constraint is satisfied and waveform accelerates, the value of sample n − 1 will

be used as the new breaking voltage. A corresponding algorithm is also provided as

demonstrated in Fig. 4.4. This flowchart calculates different clamping levels for positive

and negative half cycles. It also shows how the neutral voltage is recovered from the
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measured signal using the Equation (4.3).

Figure 4.4: Breaking voltage extraction and neutral voltage recovery.

4.2 Modeling and Behavior Analysis of The Pro-

posed Voltage Metering Method

4.2.1 Software Verification

The studies are conducted for NGDs installed at neutral of a 110/12.47 kV DYn dis-

tribution transformer. The proposed voltage metering mechanism should be designed

considering line-to-ground voltage rating of the wye side which is equal to 7.2 kV RMS

or 10.182 kV peak. The breaking voltage of the TVS for such a system is well-designed if

set to 100 V. Lastly, the voltage rating of the monitoring equipment is considered 240 V.

Using the mentioned specifications and (4.3), the parameter K is obtained as follows:

K =
R1 + R2

R2
=

up − VBR

vp − VBR
=

10182 − 100

240
√

2 − 100
= 42.11 (4.6)

where up and vp are the peak values of u(t) and v(t), respectively. The R1 equal to 100 kΩ

provides acceptable electrical isolation from neutral node [20]. As a result, the R2 is

obtained equal to 2.375 kΩ. However, the R2 equal 2 kΩ is chosen since it provides 120%

voltage rating for monitoring equipment. Accordingly, the K becomes equal 51.
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The PSCAD software was used to perform the software simulations. This software

does not provide any model for the TVS diode, and thorough simulations have been

performed to obtain an acceptable model of this element. The TVS is nothing but a

back-to-back Zener diode. Therefore, first a macro-model of a Zener diode was simulated

in this software. It was used for modeling the Thyrector diode based on [33]. Finally,

the 100 V TVS diode was obtained by the series combination of 10 Thyrector cells.

The behavior of the simulated voltage metering mechanism was studied for various

conditions. A sample case of the thorough performed studies is demonstrated here. The

calculated breaking voltage during a sample event is shown in Fig. 4.5. It actually shows

the impact of the temperature variation on breaking voltage and its extraction by the

algorithm.

Figure 4.5: Neutral voltage measurement: a) Devised measurement circuit, and
b) Temperature impact on breaking voltage and its extraction.

At the beginning of the event, the temperature is 25◦C where the breaking voltage

is constant and equal to 96.2 V. The TVS is open since the system is operating at its

normal condition. Hence, the measured and sensed signals are identical. At t = 0.3 s, the

system experiences load imbalance causing the neutral voltage to become greater than the

clamping level. The TVS starts conducting and heating up. The temperature increases

resulting change in breaking voltage. As shown, the proposed algorithm successfully

tracks and updates the VBR without using any information of the temperature.

After breaking voltage being updated, the algorithm recovers the neutral voltage.

The voltage waveforms of the aforementioned event are shown in Fig. 4.6. The clamped

region of the waveform has been magnified to highlight the effect of the R2, as well. As
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shown, the clamping level is not constant. It carries information about the main signal.

The sensed voltage, i.e., v(t), is scaled up resulting the recovered voltage. The recovered

voltage is an acceptable approximation of the neutral voltage and the negligible difference

is due to sampling resolution which is 12 bits.

Figure 4.6: A sample neutral voltage recovery.

Lastly, the measurement error of the proposed and existing voltage metering tech-

niques are compared with each other. Fig. 4.7 shows that the measurement error of the

proposed voltage metering method is never more than 10% guaranteeing full range 60 Hz

measurement. As seen, the RPD operates very accurately when the neutral voltage is

more than 1%. However, its error grows exponentially for voltage levels less than 1%. It

means that if the neutral voltage is less than 1%, the RPD-based method will not guar-

antee an accurate voltage and impedance measurement. Performance of SR is exactly

inverse of the RPD. Combination of the SR and RPD results in the best performance

which is the proposed technique. However, it cannot behave the same as RPD for 1-10%

Figure 4.7: Measurement error of the proposed voltage metering technique compared to
the other methods, considering 12-bit resolution.
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range due to the impact of indefinite sampling resolution and sampling rate that are

considered 12 bits and 3840 samples per second, respectively.

4.2.2 Hardware Validation

In this section, the performance of the proposed voltage metering mechanism is validated

using a fabricated prototype. The voltage rating of the prototype is 720 V. The electrical

isolation at this voltage level was well-achieved by a 10 kΩ resistance, i.e., R1. Consider-

ing the transformation factor K equal to 51, the R2 was chosen 200 Ω. The temperature

coefficient of both the resistors are equal. Moreover, a common heat sink was used to

equalize their temperature. The breaking voltage of the TVS is 7.5 V. As such, the fabri-

cated device is actually the 10% prototype of the designed voltage metering instrument

studied in the previous section. The peak value of the measured voltage is 30 V. Since the

voltage rating of used DSP board is ±3 V, the measured voltage was scaled-down once

more using a conventional RPD. The electrical decoupling was also considered when de-

signing the RPD using operational amplifiers with negligible bias current. The hardware

test is shown in Fig. 4.8.

Figure 4.8: Hardware test setup.
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The profile of the neutral voltage, u[t], is designed using a software called Wavy.

The power source supplies the u(t) to the prototype based on the data received from

Wavy. The prototype transforms the u(t) to v(t). The v(t) is scaled-down 10 times

by RPD to a new voltage named e(t). The e(t) is sampled by an analog input of the

used Digital Signal Processor (DSP) which continuously runs the algorithm presented in

Fig. 4.4. The performance of the fabricated prototype and DSP-based algorithm were

observed and investigated for various cases. The measurement accuracy obtained from

the experimental studies is the same as the characteristic presented in Fig. 4.7 meaning

accurate voltage metering. A sample case is shown in Fig.4.9. The obtained breaking

voltage is updated at the negative edge of the sinusoidal waveform. Since the TVS

diode consists of two back-to-back Zener diodes, the breaking voltage for the positive

and negative half-cycles are not equal.

Figure 4.9: Experimental results (150 V across the prototype).

4.3 Performance of The Monitoring Scheme

The proposed monitoring technique is applied to a sample configuration of the distribu-

tion system. The DYg distribution transformer is very popular in this field [16, 17]. The
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system containing the main details is shown in Fig. 4.10. It supplies an ungrounded

12.47 kV system. As such, the ratings of the neutral voltage measurement instruments

are the same as chosen in Section 4.2.1. The only consideration is the second TVS which

limits the measured voltage to the rating of the relay which is 240 V RMS or 340 V peak.

Figure 4.10: Study power system equipped with high or low resistance grounding appa-
ratuses, and the proposed voltage metering mechanism.

The employed grounding methods for this configuration are low-resistance grounding,

high-resistance grounding and tuned reactance. The Low resistance Neutral Grounding

Resistor (LNGR) and High resistance Neutral Grounding Resistor (HNGR) are so de-

signed that the neutral let through current, Ilet, is limited to 150 A and 25 A, respectively

[3]. In fact, the resistance of the LNGR and HNGR are equal to 50 Ω and 288 Ω, respec-

tively. The other type of grounding for this configuration is the tuned reactance which

is obtained by a High reactance Neutral Grounding Inductor (HNGL). Using the proce-

dure provided by [5], the HNGL is achieved using a small inductor, i.e., 0.72 mH with

quality factor equal to 20, at secondary of a 50 kVA, 12.47 kV/240 V Neutral Grounding

Transformer (NGT). It should be mentioned that the total capacitive charging current of

the 12.47 kV system has been considered 3 A resulting the three phase-to-ground capaci-
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tances of 1.1 µF. The tuned reactance is supposed to neutralize the parallel equivalent of

these phase-to-ground capacitances. To have the minimal current in the neutral during

the load condition, some imbalance of these capacitors has been considered, as shown in

Fig. 4.10.

Performance of the proposed monitoring technique has been studied during both

normal and faulted conditions considering different levels of neutral voltage and NGD

degradations. The proposed voltage metering mechanism functions satisfyingly as well.

Since the neutral current was also available, the impedance of the NGD helped to identify

its status. The failed NGD is reported if its impedance drifts at least ±30%. Also, many

other events were investigated where the neutral voltage became less than the minimum

accuracy limit of the proposed voltage metering mechanism. The minimum voltage that

the proposed metering technique can measure, with less than 10% error, is 1.4 V which

depends on the selected resolution, here 4096 or 12 bits. Under this condition, the neutral

current supervision logic reports the failed-open NGR due to the absence of the neutral

current.

To have a better understanding of the performance of the proposed technique, a few

most important sample cases of the performed studies are demonstrated and discussed

with more details. It should be noted that the measurements might be very low during

normal condition, and they shall not be interpreted as secondary level measurements.

Case 1 — The first case is regarding a failed-short LNGR during the load condition,

as shown in Fig. 4.11. In this case, a slight imbalance of the system charging capacitances

causes the appearance of about 10 V across LNGR and the neutral current less than 1 A.

Moreover, the saturation of the DYn transformer generates the third and fifth harmonics

that appear in the waveforms. While the voltage is still very low, the LNGR starts failing

short. Its resistance decreases to 50%, i.e., 25Ω, over 100 ms. The voltage and current

waveforms are filtered and recorded using COMTRADE 91 in PSCAD domain with the

sampling rate and resolution of the recorder set to 3840 samples per second and 4096,

respectively.

In the next step, the waveforms are applied to monitoring algorithm that is imple-

mented in MATLAB. The resistance of the NGR obtained by all three methods is shown
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Figure 4.11: Failed-short LNGR during unfaulted condition. a) Neutral voltage, b)
Neutral current, c) NGR resistance, d) Measurement error of NGR resistance, e) NGR
failure detection by SR-based monitoring method, f) NGR failure detection by RPD-
based monitoring method, and g) NGR failure detection by proposed monitoring method.

in Fig. 4.11(c). Since, the neutral voltage is very low, the RPD-based monitoring method

experiences a very high error in calculating the NGR resistance, while the other moni-

toring methods provide an acceptable measurement with less than 10% error. Since the

RPD-based method cannot measure the neutral voltage accurately, it relies on neutral

current which is present. Thereby, it cannot detect the NGR failure even when the NGR

resistance decreases to 50% starting at t = 0.4 s. However, the SR-based and proposed

monitoring methods calculate the NGR resistance accurately and provide precise status

of the NGR during this event. A time delay of 100 ms activated by the 70% thresh-

old safely detects the failed-short NGR. Therefore, the SR-based and proposed method

function reliably during the unfaulted condition where the neutral electrical parameters
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are very low. However, the RPD-based method cannot function correctly since it cannot

measure the very weak voltage of the neutral and relies on the presence of the neutral

current. The neutral current supervision logic only detects the entirely failed-open NGR

condition.

Case 2 — The failed-open NGR during the unfaulted condition is detected in the

same way as demonstrated for this case based on the waveforms shown in Fig. 4.12.

Figure 4.12: Failed-open LNGR during unfaulted condition. a) Neutral voltage, b) Neu-
tral current, c) NGR resistance, d) Measurement error of NGR resistance, e) NGR failure
detection by SR-based monitoring method, f) NGR failure detection by RPD-based mon-
itoring method, and g) NGR failure detection by proposed monitoring method.

Case 3 — The third case is regarding a failed-short LNGR during a single-line-to-

ground fault, as shown in Fig. 4.13. As a result, the neutral voltage rises to about

the line-to-ground voltage of the system, i.e., 7.2 kV. The SR-based monitoring method
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cannot measure such a neutral voltage and relies on the presence of the neutral current

which is very high but limited to 150 A. Hence, the SR-based monitoring method does not

detect the NGR failure since the neutral current is present. However, the RPD-based and

proposed monitoring methods provide accurate measurement of the NGR resistance. A

time delay of 100 ms activated by the 70% threshold safely detects the failed-short NGR.

As such, the RPD-based and proposed monitoring methods monitor reliably during the

ground faults while the SR-based monitoring method fails to do so.

Figure 4.13: Failed-short LNGR during single-line-to-ground fault at terminals of the
transformer. a) Neutral voltage, b) Neutral current, c) NGR resistance, d) Measurement
error of NGR resistance, e) NGR failure detection by SR-based monitoring method, f)
NGR failure detection by RPD-based monitoring method, and g) NGR failure detection
by proposed monitoring method.

Case 4 — The failed-open NGR during the faulted condition is detected in the same
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way as demonstrated for the previous case, as shown in Fig. 4.14.

As observed, the proposed monitoring method provides accurate monitoring in both

normal and faulted conditions while the other methods fail to cover both conditions.

Figure 4.14: Failed-open LNGR during single-line-to-ground fault at terminals of the
transformer. a) Neutral voltage, b) Neutral current, c) NGR resistance, d) Measurement
error of NGR resistance, e) NGR failure detection by SR-based monitoring method, f)
NGR failure detection by RPD-based monitoring method, and g) NGR failure detection
by proposed monitoring method.

Case 5 — The fifth case represents a failed-short HNGL during the normal operation

condition where the neutral voltage is less than the TVS breaking voltage, as shown in

Fig. 4.15. In the same way as shown for the first case, the RPD-based monitoring

method relies on neutral current supervision logic since the neutral voltage is very low

and cannot be measured by the RPD. The neutral current is present and the NGR
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Figure 4.15: Failed-short HNGL during unfaulted condition. a) Neutral voltage, b)
Neutral current, c) NGL reactance, d) Measurement error of NGL reactance, e) NGL
failure detection by SR-based monitoring method, f) NGL failure detection by RPD-based
monitoring method, and g) NGL failure detection by proposed monitoring method.

failure alarm remains off. The RPD-based monitoring method experiences about 35%

error in the calculated reactance of the HNGL, as shown in Fig. 4.15(c) and Fig. 4.15(d).

However, the SR-based and proposed monitoring methods accurately measure the neutral

voltage and current, and calculate the HNGL reactance with less than 10% error. Once

the HNGL reactance drifts outside the green region, less than 70% threshold for this case,

the NGL failure is detected in 100 ms, as shown in Fig. 4.15. The failed-open HNGL

during the unfaulted condition is detected in the same way as demonstrated for this case.

As a conclusion, the SR-based and proposed monitoring methods function satisfyingly

during the unfaulted condition while the RPD-based monitoring method is not reliable.
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It should be added that the very high measurement error of the proposed method, 60%

at t = 0.5 s in Fig. 4.15(d), is due to DFT filter dynamic which occurs when the neutral

voltage and current change due to variation of the HNGL reactance. The resettable time

delay resolves the issue of the oscillations seen in the calculated reactance.

Case 6 — The failed-open HNGL during the unfaulted condition is detected in the

same way as demonstrated for the previous case, as shown in Fig. 4.16.

Figure 4.16: Failed-open HNGL during unfaulted condition. a) Neutral voltage, b) Neu-
tral current, c) NGL reactance, d) Measurement error of NGL reactance, e) NGL failure
detection by SR-based monitoring method, f) NGL failure detection by RPD-based mon-
itoring method, and g) NGL failure detection by proposed monitoring method.

Case 7 — The seventh case demonstrates a failed-short HNGL during a single-

line-to-ground fault, as shown in Fig. 4.17. The neutral voltage grows to about the

phase-to-ground voltage level, i.e., 7.2 kV or 100%. In the same way as shown for the
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second case, the SR-based monitoring method cannot measure the neutral voltage and

relies on the presence of the neutral current which is very high but limited to 5 A. Hence,

the SR-based monitoring method does not detect the NGR failure since the neutral

current is present. However, the RPD-based and proposed monitoring methods provide

accurate measurement of the HNGL reactance. A time delay of 100 ms activated by

the 70% threshold safely detects the failed-open NGL. As such, the RPD-based and

proposed monitoring methods monitor reliably during the ground faults while the SR-

based monitoring method fails to do so. Moreover, the failed-short HNGL during the

Figure 4.17: Failed-short HNGL during single-line-to-ground fault at terminals of the
transformer. a) Neutral voltage, b) Neutral current, c) NGL reactance, d) Measurement
error of NGL reactance, e) NGL failure detection by SR-based monitoring method, f)
NGL failure detection by RPD-based monitoring method, and g) NGL failure detection
by proposed monitoring method.
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faulted condition is detected in the same way as demonstrated for this case. Again, the

proposed monitoring method provides accurate monitoring in both normal and faulted

conditions while the other methods fail to cover both conditions.

Case 8 — The failed-open HNGL during the single-line-to-ground fault at terminals

of the transformer is detected in the same way as demonstrated for the previous case, as

shown in Fig. 4.18.

Figure 4.18: Failed-open HNGL during single-line-to-ground fault at terminals of the
transformer. a) Neutral voltage, b) Neutral current, c) NGL reactance, d) Measurement
error of NGL reactance, e) NGL failure detection by SR-based monitoring method, f)
NGL failure detection by RPD-based monitoring method, and g) NGL failure detection
by proposed monitoring method.

The demonstrated eight case studies are just a few samples of a comprehensive analysis

that has been performed considering different NGDs and system operation modes listed in

Table 4.1. This study shows that the functionality of the proposed continuous monitoring
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method is not limited to a specific NGD or system operation mode. The monitoring is

guaranteed once the neutral node experiences a minimum level of voltage and current.

All of these advantages make the proposed monitoring method an advanced passive

monitoring method that not only stands with a better performance than the existing

passive monitoring method but also proposes monitoring of the other types of the NGDs

as well.

Table 4.1: NGD status detection: Normal (NM), Failed-short (SH), or Failed-open (OP)

Furthermore, another type of neutral grounding devices which is applicable to this

configuration is the Low reactance Neutral Grounding Reactor (LNGL). Such a reactor

was also designed for this configuration which is 0.4 mH without NGT to limit the single-

phase-to-ground fault current to less than that of the three-phase-to-ground fault. The

voltage that appears across the LNGL is so weak that the selected resolution is not

sufficient. The only solution is demanding a better resolution, 20 bits instead of 12 bits.

Lastly, it should be added that for three-phase-to-ground fault, the system charging

capacitors aree bypassed by the fault impedance. Thereby, the asymmetry of these capac-

itors which normally causes the minimal current in neutral wire is no longer functional.

The three-phase system becomes balanced, and the neutral-to-ground circuit does not

experience any energy flow.

Further simulation results can be found in Appendix C.
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4.4 Summary

A new and comprehensive method for monitoring neutral grounding devices was proposed

which benefits from a novel neutral voltage metering mechanism that guarantees full

range voltage and impedance measurement.

The performance of the proposed voltage metering technique was validated using

software analysis and a fabricated prototype. It provides full range measurement, 0.01-

120%, with the measurement error that is never more than 8%. As a result, the neutral

voltage is available during both normal and faulted operation conditions, which cannot

happen with existing voltage metering instruments such as neutral PT, line PTs, resistive

potential divider and sensing resistor.

Furthermore, the devised voltage metering mechanism was used to monitor the NGDs

located at neutral of a distribution transformer. The studies showed that the impedance

of the NGDs is available in both normal and faulted conditions regardless of the type

of the NGD and the system configuration. Any physical change of the NGD is directly

reflected in its impedance which is reliably monitored using its calculated impedance. As

such, the proposed monitoring method barely employs the neutral current supervision

scheme which is used by existing methods making them imperfect in failure detection.

The proposed monitoring method is continuous and comprehensive since it functions in

both normal and faulted conditions regardless of the type of the NGD or the system

configuration.



Chapter 5

A Passive NGR Monitoring Method

for Unit-Connected Generators

In this chapter, a new passive method for monitoring the high-resistance NGR at the

neutral of unit-connected generators will be proposed. This configuration is very popular

due to third harmonic and zero-sequence isolation. The proposed method relies on the

third harmonic (180 Hz) of the neutral and residual voltages that are measured by neutral

PT and three-phase terminal PTs, respectively. The residual voltage is obtained by the

vector sum of the three-phase voltages measured by terminal PTs that are wye-wye- or

wye-broken-delta-connected.

The fundamentals and concepts of the proposed method will be explained in Section

5.1. The monitoring function will be presented in Section 5.2 followed by probable chal-

lenges and how the proposed technique is restrained against them. Lastly, the behavior

analysis and performance of the monitor method will be shown for different conditions

using PSCAD in conjunction with Matlab, and further hardware validations using an

available industrial generator protection relay.

5.1 Fundamentals and Concepts

The proposed technique monitors the NGR located at neutral of unit-connected genera-

tors as shown in Fig. 5.1. The cg and cs are generator and generation-side-system phase-

106
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to-ground capacitances, respectively. The cww is the inter-winding or primary-secondary

capacitance of the step-up transformer.

Figure 5.1: High-resistance-grounded unit-connected generator.

As known, generators are often connected to the system through a delta-wye trans-

former. This configuration, called unit-connection, provides a unique feature which is the

third harmonic and zero sequence isolation. It means that the ground faults in transmis-

sion system will not have any effect on neutral and residual third harmonic voltages of the

generator. Moreover, if the ground fault occurs at generator side, the high voltage system

will not feed the third harmonic into the ground fault except through the transformer

interwinding capacitance which is very small. Since the proposed technique employs the

third harmonic of the neutral and residual voltages, the third harmonic model of the

Figure 5.2: Simplified third harmonic model of the system.
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system is needed, as depicted in Fig. 5.2.

In this figure, − jXCG, − jXCS and − jXCWW are impedances related to cg, cs and cww,

respectively. The − jXCG is divided between two ends of the generator stator. Moreover,

E3 and e3 are phasor quantities that refer to third harmonic voltages generated by the

generator and step-up transformer, respectively. The e3 is generated at star side of the

step-up transformer and affects the delta side through − jXCWW . Lastly, the RN is the

total grounding resistance seen from the primary of the neutral grounding transformer.

Using superposition theorem, the third harmonic of neutral-to-ground voltage phasor,

VN3, and that of the residual voltage phasor, VR3, are derived as below.

VN3 =
ZN

ZN + ZT
E3 +

ZN ||ZT

ZN ||ZT − jXCWW
e3 (5.1)

VR3 =
ZT

ZN + ZT
E3 −

ZN ||ZT

ZN ||ZT − jXCWW
e3 (5.2)

These parameters are normalized with respect to E3 considering that the magnitude

of − jXCWW is remarkably greater than that of the ZN ||ZT , based on data presented in [40]:

VN3 =
VN3
E3

=
ZN

ZN + ZT
−

ZN ||ZT

jXCWW

e3
E3

= A − B (5.3)

VR3 =
VR3
E3

=
ZT

ZN + ZT
+

ZN ||ZT

jXCWW

e3
E3

= C + B (5.4)

where the bar symbol indicates the normalization in respect to E3. In the next section,

these parameters are analyzed to derive NGR monitoring function, taking into consider-

ation issues such as load and temperature variation, step-up transformer saturation, and

generator stator winding internal and external ground faults.

5.2 Proposed Monitoring Technique and Challenges

5.2.1 NGR Monitoring Logics

The impact of NGR failure on VN3 and VR3 is investigated to derive criteria for detecting

NGR failure and distinguish it from other phenomena. If e3 is ignored, it is clear that
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the RN variation causes an opposite change in the normalized voltages, increasing one

while decreasing the other. However, e3 is not neglected. To show the opposite behavior

of the parameters in case of NGR defect, Equation (5.3) is rewritten as follows:

VN3 =
ZN

ZN + ZT︸    ︷︷    ︸
term I

(
1 −

ZT

jXCWW

e3
E3︸            ︷︷            ︸

term II

) (5.5)

Term II is independent of NGR resistance, while term I is directly proportional to

it. Thus, if the NGR resistance increases, the magnitude of VN3 will also grow and vice

versa. On the other hand, the following relations are derived by vector sum of Equation

(5.3) and Equation (5.4), and the cosine rule.

VN3 + VR3 = 1 |VN3|2 + |VR3|2 + 2|VN3||VR3|cosϕ = 1 (5.6)

where ϕ is the angle between the VN3 and VR3 phasors. When NGR is healthy and

system does not experience any ground faults, these two phasor quantities are approxi-

mately in phase [41]. Hence, the ϕ is always less than 90◦ meaning that cosϕ is positive.

Since all terms of (7) are positive, and the right side of (7) is constant, the |VR3| must

decrease when the |VN3| grows due to increase in NGR resistance. In other words, the

|VR3| is inversely proportionate to NGR resistance. As a result, when the parameters

change in opposite directions it suggests NGR failure. A failed-open NGR is expected

when |VN3| increases and |VR3| decreases, and vice versa for a failed-short NGR. This

logic is only one criterion for NGR failure detection. However, more specific criteria are

needed for reliable detection. Here, the variation rate of the magnitude of the normal-

ized parameters is employed. For intact NGR condition, the following relation is achieved

through mathematical work.

The sensitivity of |VR3| to NGR resistance variation is proven to be greater than that

of the |VN3| for intact NGR condition neglecting the e3, as proved below.

˙
|VR3| =

∂ |VR3|
∂RN

∂|RN |

∂t

∣∣∣∣∣∣
E3,e3

=

( RN/
√

R2
N + X2

N√
(1 + K)2R2

N + X2
N

−

RN(1 + K)2
√

R2
N + X2

N

(
√

(1 + K)2R2
N + X2

N )3

)
∂RN

∂t
(5.7)
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˙
|VN3| =

∂ |VN3|
∂RN

∂|RN |

∂t

∣∣∣∣∣∣
E3,e3

=

(
K√

(1 + K)2R2
N + X2

N

−
K(1 + K)2R2

N

(
√

(1 + K)2R2
N + X2

N)3

)
∂RN

∂t
(5.8)

where XN and XT are the total neutral-to-ground and terminal-to-ground capacitive reac-

tances, respectively.Moreover, |V̇ | is the rate of change of the magnitude of the normalized

voltage phasor due to change in NGR resistance while e3 and E3 remain unchanged. Also,

K is defined as follows:

K =
XN

XT
=

(2π f cg/2)(−1)

(2π f (cs + cg/2))(−1) =
cs + cg/2

cg/2
(5.9)

The ratio of the ˙
|VR3| to ˙

|VN3| is achieved through basic mathematical work, as below:

Ratio =
˙
|VR3|

/ ˙
|VN3| =

−RN (K + 2)√
R2

N + X2
N

(5.10)

On the other hand, the high resistance NGR for unit-connected generators is chosen

equal to total system phase-to-ground capacitive reactance [5].

RN =
∣∣∣XN ||XT

∣∣∣ =
XN XT

XN + XT
=

XN
XN
XT

+ 1
=

XN

K + 1
(5.11)

Substituting the Equation (5.11) in Equation (5.10) results:

Ratio =
−

XN
K+1 (K + 2)√
( XN

K+1 )2 + X2
N

=
−(K + 2)√
1 + (K + 1)2

(5.12)

(
|

˙VR3|

|
˙VN3|

)2

= 1 +
2(1 + K)

1 + (1 + K)2 (5.13)

The K is always positive and greater than 1. Thus, the right side of Equation (5.13) is

greater than one. As such, the absolute value of ˙
|VR3| is always greater than that of ˙

|VN3|

in case of NGR defect. Therefore, the criteria for NGR failure detection is enhanced to

an opposite change of the |VR3| and |VN3| while the | ˙VR3| is greater than | ˙VN3| by a

factor greater than 1, e.g., 1.5. These criteria are combined into one logic referred to as

LOGIC12 in the final algorithm.
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As further clarifications, if the total charging capacitances at neutral and terminal

were equal, and NGR resistance was infinite, the |VR3| and |VN3| should be equal in mag-

nitude forming a balanced system with equal contribution in E3. Under this condition,

any change in the NGR would cause an equal change or variation in both parameters.

But, the capacitances are not equal in real life practice. In fact, the terminal side capaci-

tance is higher than that of neutral side [41]. Moreover, the NGR resistance is indefinite.

Thereby, the impedance of the terminal side is smaller than the neutral impedance at

180Hz specially when the normal resistance of the NGR is considered. As a result, the

|VR3| becomes smaller than |VN3| holding a lower contribution in the mentioned bal-

ance. Conceptually, the less-contributing vector shall change or vary more compared

to the higher contributing vector upon NGR failure which changes the balance between

the parameters. In this case, the |VR3| is subjected to higher variation due to its lower

contribution in E3.

5.2.2 Monitoring Challenges

Load Variation

The generated third harmonic voltage E3 depends on the loading condition (P+ jQ) [40].

Thus, its effect on NGR failure detection logics should be investigated. As understood

from [42], terms A, B, and C of Equation (5.3) and Equation (5.4) are almost in the same

direction. Thereby, their vector and scalar summations are assumed equal. Terms A and

C do not depend on E3. Hence, the rate of change of the normalized third harmonic

voltages depend on the term B. The magnitude of this term is easily obtained. The

sensitivity of the parameters to E3 is obtained as follows:

∂ |VN3|
∂|E3|

∣∣∣∣∣∣
RN ,e3

=
∂(|A − B|)
∂|E3|

=
∂(|A| − |B|)
∂|E3|

=
∂|A|
∂|E3|

−
∂|B|
∂|E3|

=

0 −
∂|B|
∂|E3|

=

∣∣∣∣∣ ZN ||ZT

jXCWW

∣∣∣∣∣ |e3|
|E3|2

∂|E3|
∂t

(5.14)
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∂ |VR3|
∂|E3|

∣∣∣∣∣∣
RN ,e3

=
∂(|C + B|)
∂|E3|

=
∂(|C| + |B|)
∂|E3|

=
∂|C|
∂|E3|

+
∂|B|
∂|E3|

=

0 +
∂|B|
∂|E3|

= −

∣∣∣∣∣ ZN ||ZT

jXCWW

∣∣∣∣∣ |e3|
|E3|2

∂|E3|
∂t

(5.15)

The variation rates are equal in magnitude but opposite in sign. As such, the previ-

ously established criteria prevents reporting NGR failure in case of E3 variation because

the variation rates are equal in magnitude. A predefined threshold for variation rates

will be considered that provides further security.

It should be mentioned that the assumptions made in this section will not be con-

sidered in software analysis. The assumptions and simplifications do not impact the

opposite sign of the variation rates. However, it is expected that the magnitude of the

variation rates will not be precisely equal. There will be some difference in these values

that are supposed to be avoided by the second logic.

Step-up Transformer Bank Saturation

The third harmonic voltage e3 affects the parameters as shown in Equation (5.3) and

Equation (5.4). This impact is formulated below:

∂ |VN3|
∂|e3|

∣∣∣∣∣∣
RN ,E3

=
∂(|A − B|)
∂|e3|

=
∂(|A| − |B|)

∂|e3|
=
∂|A|
∂|e3|

−
∂|B|
∂|e3|

=

0 −
∂|B|
∂|e3|

= −

∣∣∣∣∣ ZN ||ZT

jXCWW

∣∣∣∣∣ 1
|E3|

∂|e3|
∂t

(5.16)

∂ |VR3|
∂|e3|

∣∣∣∣∣∣
RN ,E3

=
∂(|C + B|)
∂|e3|

=
∂(|C| + |B|)

∂|e3|
=
∂|C|
∂|e3|

+
∂|B|
∂|e3|

=

0 +
∂|B|
∂|e3|

=

∣∣∣∣∣ ZN ||ZT

jXCWW

∣∣∣∣∣ 1
|E3|

∂|e3|
∂t

(5.17)

The variation rates are equal in magnitude, but opposite in sign, and thus cannot

cause NGR failure detection for the same reasons provided for the load variation.
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Ground Faults

A failed-short NGR behaves like a generator stator ground fault near the neutral and

causes maloperation of the generator stator ground protection functions such as the

third harmonic voltage comparator (59D) [3, 41]. The only difference between a ground

fault right at neutral and an entirely failed-short NGR is the initiation speed of the

two phenomena; ground faults are catastrophic while resistor failure is a mechanical or

thermal incident that takes time [10]. Hence, the only criterion for discriminating ground

faults from NGR failure is the rate of change of the employed parameters. The blinders

concept, which is well-known in power swing detection field, is employed to capture the

initiation speed of the phenomena. When a ground fault occurs, the parameters move

through the blinders quickly, while they are expected to pass slowly in the case of NGR

failure. Once the first group of blinders are set, a timer starts counting. The timer is

held once the second group of blinders, which are the threshold of the 59D, are set. The

ground fault is detected if the elapsed time is very low, e.g., less than 5 ms. Otherwise,

NGR failure is reported. According to [41], |VR3| and |VN3| are ideally equal to 0.5 pu

but practically vary from 0.2-0.8 pu. Therefore, the first group of blinders are set to 30%

deviation from the ideal condition which means 0.2 pu and 0.8 pu. In other words, if |VR3|

goes beyond 0.8 pu and |VN3| declines to less than 0.2 pu, the first blinders are set. The

second group of blinders are chosen equal to pickup setting of the generator stator ground

protection, i.e., 35% deviation [3]. In other words, the second group of blinders are set

when |VR3| grows beyond 0.85 pu while |VN3| becomes less than 0.15 pu. Since the failed-

short NGR can cause ground fault trip, the result of this discrimination is interlocked

with the stator ground protection function outcome to prevent its maloperation in case

of NGR failure. The blinders build the third logic that is referred to as LOGIC3 in the

final monitoring algorithm.

5.2.3 Monitoring Algorithm

Based on the derived monitoring logics and further considerations, a complete monitoring

algorithm has been established as shown in Fig. 5.3. It benefits from three elements and
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results in two outcomes. NGRS stands for NGR State which identifies whether the NGR

is failing short or open. The other outcome is NGR Failure (NGRF).

The first element employs impedance measurement logic which functions only during

ground faults where the magnitude of fundamental harmonic of neutral current and

voltage, i.e., IN1 and VN1, are greater than 5% of neutral PT and CT ratings. In fact,

neutral CT cannot provide accurate measurement of 60 Hz neutral current in unfaulted

condition. This element reports NGR failure if the obtained resistance changes by at

least ±30%. This function is indicated by LOGIC4 in the comprehensive monitoring

Figure 5.3: Comprehensive algorithm for monitoring the NGR at neutral of the unit-
connected generator restrained against ground faults, load and temperature variation,
and step-up transformer saturation.
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algorithm that is shown in Fig. 5.3. If neutral parameters become less than 5%, the

other monitoring elements function.

The second element is the combination of the logics mentioned in Section 5.2.1 and

is indicated by LOGIC12. It is activated only if the rate of change of |VR3| and |VN3|

are noticeable, i.e., more than 0.05. This threshold avoids the impact of temperature

drifts and signal pollution. If the threshold is activated, LOGIC12 is satisfied only if the

parameters change oppositely, and the rate of change of |VR3| is at least 1.5 times greater

than that of |VN3|. If LOGIC12 is both activated and satisfied, a digital timer, TC, is

set. Once the timer reaches 100 ms, the NGRS and NGRF signals are updated. NGRS

is equal to NM by default representing normal or intact NGR condition. It is set to SH

if the rate of change of |VR3| is positive indicating the failed-short NGR, and is changed

to OP otherwise. NGRF is equal to 0 by default and becomes 1 if the overcurrent and

overvoltage ground protection elements of the generator remain off or 0.

Finally, the last element, demonstrated as LOGIC3, employs two groups of blinders

as described in the previous section. Group 1 is set if |VR3| is more than 0.8 pu and |VN3|

is less than 0.2 pu. If group 1 is set, the time is counted by the Timer. Thereafter, the

second group is checked. There is always a time gap between the two groups of blinders

which means first the group 1 becomes set and then after a time interval, the group 2.

When group 2 of blinders is picked up, the Timer stops counting and the elapsed time

is compared to a predefined setting that is 5 ms. This setting has been obtained based

on comprehensive software and hardware analysis presented in the next section. If the

counted time is less than 5 ms the algorithm does not update NGRS which means the

NGR is still intact. Otherwise, NGRS is updated to SH since this logic only detects

the failed-short NGR. Additionally, the NGRF signal is triggered to 1 which blocks the

0-15% generator stator ground protection.

It should be added that the designed 5 ms time threshold should be studied to detect

the arcing and intermittent ground faults as well. These ground faults show slower evo-

lution than the bolted ground faults. Therefore, a higher threshold should be considered

when detecting these kinds of faults is performed using the mentioned 0-15% generator

stator ground protection function.
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5.3 Validation

In this section, the studied system is introduced. Thereafter, the performance of the

proposed algorithm is investigated for various kinds of NGR degradation, considering

different conditions of generator loading and step-up transformer saturation. In addition,

LOGIC3 is added to an industrial generator protection relay, and its performance is

observed.

5.3.1 Study System Specifications and Modeling

The studied configuration, represented in Fig. 5.1, has been simulated in PSCAD. The

most important ratings and specifications of the generator and transformer are presented

in Table 5.1.

Table 5.1: Power system specifications.

The employed grounding configuration limits the neutral current to 5 A since the

achieved resistance at the primary side of the Neutral Grounding Transformer (NGT) is

2.4 kΩ. The distributed model of the generator stator winding has been accomplished

using the model presented in [40]. The relation of E3 to generator loading has been

modeled based on practical data presented in [40]. The parameter K is around 2 for

this system. The absolute value of the rate of change of the normalized voltages with

respect to the NGR resistance is demonstrated in Fig. 5.4. As shown, the ˙
|VR3| is always

securely more than ˙
|VN3| for an intact NGR, as expected and as proven in the previous

section. This fact remains valid for a wide range of NGR resistance, i.e., 1.5-5 kΩ. In

other words, if the intact NGR fails, the monitoring logic can reliably depend on LOGIC3
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of the algorithm shown in Fig. 5.3, where it has been assumed that ˙
|VR3| must be at

least 1.5 times the ˙
|VN3|.
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Figure 5.4: Rate of change of magnitude of the third harmonic of neutral and residual
normalized voltage phasors in respect to NGR resistance (absolute values).

In the next step, the waveforms are recorded using COMTRADE 91, and the captured

data is played back to the monitoring algorithm implemented in MATLAB, and an

available industrial generator protection relay.

5.3.2 NGR Failure Detection In Unfaulted Condition

Performance of the algorithm has been investigated for intact, partially failed-short,

and partially failed-open NGR conditions considering different loading and saturation

conditions as demonstrated in Table 5.2. The proposed algorithm detects the precise

status of the NGR for all the cases addressed by SH, NM or OP for failed-short, normal

and failed-open NGR, respectively, disregarding the generator loading condition and step-

up transformer saturation level. It has also been observed that LOGIC12 detects the

slight partial degradation of the NGR, i.e., ±20%. In fact, this element of the monitoring

algorithm detects all kinds of NGR degradation except when the NGR fails very quickly,

completely shorted or disconnected in less than 50 ms , or extremely slowly (which is

unlikely). However, the blinder-based monitoring logic detects any slowly failing-short

NGR where the resistance of the NGR eventually becomes less than 7%. This study



Chapter 5. A Passive NGR Monitoring Method for ... 118

shows that the proposed technique is well-restrained against the generator loading and

saturation of the step-up transformer. These issues will be analyzed independently in

following sections.

Table 5.2: NGR failure detection in unfaulted condition. (NGR Status: NM=Normal,
SH=Failed-Short, and OP=Failed-Open).

In order to gain a better understanding of behavior of the algorithm, a few case

studies are presented in detail. It should be noted that the measurements might be

very low during normal condition, and they shall not be interpreted as secondary level

measurements.

Case 1 — The scenario B5 of Table 5.2 is represented using recorded waveforms. In

this case, the NGR resistance decreases from 100% to 5% in two steps, as shown in Fig.

5.5(e). The loading is 0.94 + j0.2 pu and the step-up transformer saturation is around

0.5%. The NGR starts failing at t = 0.1 s and, the failure takes 700 ms. As shown in Fig.

5.5(c), the |VR3| and |VN3| are initially equal to 0.51 pu and 0.69 pu, respectively. The

saturation of the step-up transformer causes these parameters to not be equal to 0.5 pu.

However, they are almost constant with derivatives near zero, as shown in Fig. 5.5(d).

Once the NGR starts failing, |VR3| grows and |VN3| declines. The opposite sign of the

derivatives is the first detected sign of failure. As the failure persists, |VR3| changes more

quickly, confirming that ˙
|VR3| is greater than ˙

|VN3|. This behavior persists for more

than 100 ms and consequently, NGR failure is reported at t = 0.235 s. As shown in Fig.

5.5(c), the blinders of the LOGIC3 are active for this case, as well. The elapsed time
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between activation of the two groups of the blinders is 11.8 ms indicating NGR failure.

As a result, the ground fault detection, GF, is blocked causing no ground fault detection.

Lastly, the status of NGR is updated to SH indicating that the NGR has failed short,

as shown in Fig. 5.5(h). This detection is performed based on the direction of change in

|VR3| and |VN3|. As demonstrated in Fig. 5.5(c), |VR3| increases while |VN3| decreases.

This behavior occurs only when the NGR resistance declines.
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Figure 5.5: Failed-short NGR case ( scenario number B5, r = 1→ 0.05 pu, Load = 0.94 +

j0.2 pu, and e3 = 0.5%): (a) Residual voltage, (b) Neutral voltage, (c) Normalized
neutral and residual third harmonic voltages, (d) Rate of change of the normalized third
harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR failure
detection, and (h) NGRS State.

Case 2 — Another sort of failure similar to previous case is a single step failure

where the NGR resistance decreases to a final value in less than a second, e.g., 100% to
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60% in 200 ms as shown in Fig. 5.6. In this figure, the |VR3| and |VN3| vary slightly

so that none of the blinders are set. However, the LOGIC12 is activated and satisfied

since the |VR3| and |VN3| change oppositely, while |VR3| varies quicker than the |VN3|

as observed from Fig. 5.6(d). The NGRF signal is enabled by LOGIC12, and NGRS is

updated to SH meaning that the NGR is failed-short.
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Figure 5.6: Failed-short NGR case (r = 1→ 0.6 pu, Load = 0.94+ j0.2 pu, and e3 = 0.5%):
(a) Residual voltage, (b) Neutral voltage, (c) Normalized neutral and residual third
harmonic voltages, (d) Rate of change of the normalized third harmonic voltages, (e) NGR
resistance, (f) Ground fault detection, (g) NGR failure detection, and (h) NGRS State.

In this scenario, the LOGIC4 does not function since the neutral voltage and current

are less than 5% of the system line-to-ground voltage and neutral let through current,

respectively.

Case 3 — Scenario number G5 of the Table 5.2 is discussed which is regarding a
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failed-open NGR in unfaulted condition where the NGR resistance increases to 200% in

200 ms, as shown in Fig. 5.7. Again, the |VR3| and |VN3| vary slightly so that none of

the blinders are set. In fact, the blinders are not supposed to be activated for failed-open

NGR condition. However, the LOGIC12 is activated and satisfied since the |VR3| and

|VN3| change oppositely while |VR3| varies quicker than the |VN3| as observed from the

waveforms. The NGRF signal is enabled by LOGIC12, and NGRS is updated to OP

meaning that the NGR is failed-open.

Similar to the previous case, the LOGIC4 does not function since the neutral voltage

and current are less than 5% of the system line-to-ground voltage and neutral let through
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Figure 5.7: Failed-open NGR case (scenario G5, r = 1→ 2 pu, Load = 0.94 + j0.2 pu,
and e3 = 0.5%): (a) Residual voltage, (b) Neutral voltage, (c) Normalized neutral and
residual third harmonic voltages, (d) Rate of change of the normalized third harmonic
voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR failure detection, and
(h) NGRS State.



Chapter 5. A Passive NGR Monitoring Method for ... 122

current, respectively. In this scenario, the LOGIC4 does not function since the the neutral

voltage and current are less than 5% of the system line-to-ground voltage and neutral let

through current, respectively.

Case 4 — Scenario number H5 of the Table 5.2 is very similar to the previous case,

i.e., scenario G5, except a few differences. The NGR fails open in two steps, 100% to

200% and after some time 200% to 500%, as shown in Fig. 5.8(e). The NGR failure is

detected in the first step. This study shows that the number of the consequent failures

is not important since the proposed technique functions in the first failure.

Similar to the previous case, the LOGIC4 does not function since the the neutral

-0.3

-0.15

0

0.15

0.3

-0.3

-0.15

0

0.15

0.3

0

0.5

1.0

0
2.4
4.8

12

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SH

NM

OP

0

0.2

0.4

0.6

0.8

1

0

1

0.15
0.20

0.85

70%
130%

Figure 5.8: Failed-open NGR case (scenario H5, r = 1→ 5 pu, Load = 0.94 + j0.2 pu,
and e3 = 0.5%): (a) Residual voltage, (b) Neutral voltage, (c) Normalized neutral and
residual third harmonic voltages, (d) Rate of change of the normalized third harmonic
voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR failure detection, and
(h) NGRS State.
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voltage and current are less than 5% of the system line-to-ground voltage and neutral let

through current, respectively.

The effect of the e3 on LOGIC12 was neglected during the mathematical proof result-

ing the Equation (5.13). However, it was considered when performing software analysis.

As observed, the e3 is 0.5% of the transmission system line-to-ground voltage, i.e., 0.5%

of 345 kV/
√

3 or 1 kV. However, it does not affect the proven concept. The system faults

cause very high saturation levels of the step-up transformer. However, the third harmonic

resulted from these phenomena is avoided by 100 ms time delay since the transients last

in less than five power cycles.

As mentioned earlier, the shorted NGR behaves similar to ground faults near the

neutral of the generator stator. Therefore, the generator stator ground protection might

maloperate under this condition. This situation has been observed for the dark gray

highlighted cases of Table 5.2. Besides, a hardware test setup was prepared to verify

this finding, as shown in Fig. 5.9 and Fig. 5.10. The neutral and three-phase voltage

waveforms obtained in PSCAD simulation were recorded using COMTRADE 91. The

recorded signals were scaled down to 5V and 1A peak-to-peak using Matlab to comply

with digital relay ratings. The captured data was played back to an available indus-

trial generator protection relay utilizing LabVIEW and NI-cDAQ. The adaptive third

harmonic level detector protection function provided by the relay trips if the NGR resis-

Figure 5.9: Hardware test setup.



Chapter 5. A Passive NGR Monitoring Method for ... 124

Figure 5.10: Schematics of the hardware test setup.

tance declines to less than 7%.

The blinder-based NGR failure detection logic, LOGIC3, was retrofit to the existing

protection relay to detect NGR failure. The enhanced protection function no longer trips

in case of NGR failure except when the NGR is shorted very quickly, i.e., completely

shorted in less than 50 ms which is unexpected in a real system. The monitored signals

by the relay itself and the state of internal variables such as the implemented blinders,

enhanced ground fault trip, and NGR failure detection were extracted using the HMI

relay software. The performance of the relay for scenario number B5 and another case

of a ground fault at 5% of the generator stator winding is demonstrated using the relay

measurements and detections.
The first case shows a single-phase-to-ground fault at 5% of the generator stator

winding near the neutral. The relay detections are shown in Fig. 5.11. The three-

phase voltages at terminals of the generator and neutral voltage are played back to the

relay. The magnitude of the total generated third harmonic by the generator, i.e. E3, is

calculated by vector sum of the three phase-to-ground voltages applied to the relay. As

shown, the three phase-to-ground voltages remain unchanged during the single-phase-to-

ground fault since the employed high resistance NGR limits the fault current to maximum
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of 5 A and suppresses the ground fault.

Figure 5.11: Relay detections for LG fault at 5% of the generator stator winding.

On the other hand, the neutral voltage oscillates with 180 Hz frequency before the

ground fault incidence where the magnitude of the VN3 and total generated third harmonic

voltage by the generator, i.e., E3, are 208 V and 314 V, respectively. Once the ground fault

occurs, the vn shows oscillations in 60 Hz meaning that its third harmonic has decreased

very much, as shown by its magnitude. Since the magnitude of the total generated third

harmonic is constant, the |VR3| increases. As a result, the two 100% generator stator

ground protection functions are activated. The time duration between activation of the

thresholds of the protection functions is very low, i.e., 4.17 ms, as shown in the figure.

The red trigger shows the moment that the first 100% stator ground protection function

is picked up. There are two other pointers in blue and green. They are mostly used

to show the information of specific moments of the waveforms and also the difference
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between two moments in volts or time. In this figure, the blue pointer is set on the

red trigger which shows the moment that the first blinder, i.e., primary 100% generator

stator ground protection, is picked up. It is not visible due to the red trigger. The

green pointer is set at the moment that the second blinder, i.e., secondary 100% stator

ground protection function, is activated. The time difference between the two pointers,

i.e., 4.17 ms, is calculated by the relay and is shown in yellow at the top section of the

figure. The relay detects the ground fault, and the NGR failure signal remains off since

this time difference is less than the predefined threshold, i.e., 5 ms. This 5 ms setting has

been obtained though comprehensive studies of ground faults and NGR failure conditions

for the chosen relay.

The second case, shown in Fig. 5.12, is regarding a failed-short NGR in the absence

Figure 5.12: Relay detections for failed-short NGR in unfaulted condition.
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of the ground faults. In this case, NGR resistance fails short in the same way as shown

in Fig. 5.5, i.e., 100-5% in two steps. The neutral voltage remains low during the entire

event, and only contains the 180 Hz oscillation. The phase-to-ground voltages behave the

same as the previous case even during the NGR failure. Once the NGR starts failing, the

neutral voltage starts decreasing. At the same time, the residual voltage starts increasing.

As a result, the primary 100% stator ground protection function, with the pickup settings

set to 20% and 80%, is activated. After a time delay, the secondary 100% stator ground

protection function with the thresholds set to 15% and 85%, is enabled, as well. The

time delay between operation of the two protection functions is 9.9 ms. The monitoring

scheme reports NGR failure since this time difference is higher than 5 ms. Additionally,

the ground fault trip signal remains off.

5.3.3 Distinguishing Ground Faults from NGR Failure

As mentioned, the shorted NGR, and ground faults very close to behave similarly. There-

fore, a ground fault in the generator stator could cause undesired NGR failure detection.

The performance of the proposed technique for various ground faults has been investi-

gated as well. The proposed algorithm distinguishes the ground faults from NGR failure

in two ways. Firstly, ground fault initiation is very faster than NGR failure. In fact, the

parameters pass through the blinders in under 5 ms which blocks LOGIC3. Secondly,
˙

|VN3| is greater than ˙
|VR3| which blocks the LOGIC12. A sample case that is regarding

a line-to-ground fault at 5% of the generator stator is shown in Fig. 5.13.

Furthermore, NGR can fail during the ground faults as well. Hence, a partially-

shorted NGR condition has been considered during the ground fault case represented in

Fig. 5.13. The main aim of this case is to show that if the neutral current grows to

more than 5% due to ground faults, it is still possible to monitor the NGR status using

the impedance measurement, i.e., LOGIC4. Otherwise, the status of the NGR cannot be

monitored with the proposed scheme during the ground faults since the ground fault by-

passes the NGR. As shown in Fig. 5.13(e), the resistance of the NGR is initially assumed

equal to the intact NGR condition and can only be calculated when the fundamental

harmonic of the neutral current becomes greater than 5% of the neutral let-through cur-
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rent, i.e., 5 A. The resistance decreases to less than 70% at t = 0.523 ms and NGR failure

is reported 20 ms later.
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Figure 5.13: Ground fault case followed by NGR failure (r=1→ 0.5 pu, Load = 1.0 + j0.0
pu, and e3 = 0.5%): (a) Neutral and residual voltages, (b) Neutral current (c) Normalized
neutral and residual third harmonic voltages, (d) Rate of change of the normalized third
harmonic voltages, (e) NGR resistance, (f) Ground fault detection, and (g) NGR failure
detection.

The external ground faults, outside the generator stator winding, also need to be

investigated since they impact on the employed parameters. A study was conducted to

investigate the performance of the monitoring algorithm in the presence of ground faults

close to the terminal end of the generator stator. The single phase-to-ground and double

phase-to-ground faults satisfy LOGIC12. To solve this issue, the ground overcurrent or
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overvoltage protection trip is interlocked with the outcome of LOGIC12. Thus, if ground

faults in 10-100% of the generator stator occur, LOGIC12 is blocked. This logic has been

added to the monitoring algorithm presented in Fig. 5.3. A sample case is represented

using the data recorded for an AG fault at terminals of the generator. The results are

shown in Fig. 5.14. As shown, LOGIC12 is satisfied, but the ground fault trip has

blocked the monitoring algorithm.
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Figure 5.14: Single-phase-to-ground fault at terminal of the generator for intact NGR
condition, E3 = 1%, and e3 = 0.5%: (a) Neutral and residual voltages, (b) Neutral current
(c) Normalized neutral and residual third harmonic voltages, (d) Rate of change of the
normalized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, and
(g) NGR failure detection.
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Furthermore, the performance of the proposed method during other kinds of system

faults have been studied as well. The system line-to-line and three-phase faults do not

change the |VR3| and |VN3| causing no undesired NGR failure detection. In fact, the third

harmonic currents of the three phases are in phase meaning that all system phases are

at the same 180 Hz electrical potential. Therefore, the phase-phase faults do not change

the third harmonic equivalent network presented in Fig. 5.2 meaning no fault or NGR

failure detection. However, the three-phase-to-ground fault changes these parameters.

This fault causes the |VR3| to decrease noticeably while the |VN3| becomes equal to total

generated third harmonic. In fact, the ground fault of any type will short the terminal

to ground bypassing the ZT .

5.3.4 Load Variation and Step-up Transformer Saturation

The last case study includes the effect of load variation and step-up transformer satura-

tion on the proposed scheme. On the basis of the analysis presented in Section 5.2.2, the

rate of change of the normalized third harmonic voltages is expected to be equal in the

case of load variation and step-up transformer saturation. The same has been observed

during software analysis. A sample case is shown in Fig. 5.15 which contains 50 ms of

load variation starting at t = 0.54 s, and 50 ms of step-up transformer saturation starting

at t = 0.66 s.

As shown, ˙
|VN3| is greater than or equal to ˙

|VR3| for both events, which does not

satisfy the LOGIC12. Thus, the algorithm reports neither the ground fault nor the NGR

failure. Moreover, the load variation and step-up transformer saturation are very slow

phenomena in practice. The 10% change in generator loading takes at least 10 s [41].

Accordingly, the shown variation rates should be scaled-down by a factor of at least 0.1.

As such, the threshold block of the monitoring algorithm, i.e., set to 0.05, rejects these

phenomena in most of the cases. These variation rates might activate the 0.05 threshold

due to sudden disturbances. However, the 100 ms time delay will reject this situation

safely. For example, the transformer saturation that happens right after the ground faults

lasts in five power cycles. Even though the threshold might be set, but the 100 ms time

delay and LOGIC12 will not be satisfied.
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Figure 5.15: Load variation (1.0+ j0.0)→ (0.6+ j0.35) pu, and step-up transformer satura-
tion (e3 = 0→ 0.5%) case for intact NGR: (a) Neutral and residual voltages, (b) Neutral
current (c) Normalized neutral and residual third harmonic voltages, (d) Rate of change
of the normalized third harmonic voltages, (e) NGR resistance, (f) Ground fault detec-
tion, and (g) NGR failure detection.

5.4 Discussion

The following principles should be considered when adapting the proposed method into

an actual generator protection system:

• The proposed method can be incorporated into digital protection of generators that

are: 1) high-resistance grounded, 2) unit-connected which means that the generator

step-up transformer is delta-wye, and 3) equipped with line PTs and neutral PT.
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• The blinders employed by LOGIC3 are the simplest possible way to calculate the

variation rate. Further, calculation of the rate of change of power system electrical

parameters is not a challenge these days , e.g., ROCOF function which calculates

the rate of change of frequency. The rest of the proposed technique is just simple

and straight forward logics that most logic engine softwares can easily implement.

• The only protection function that is disabled upon NGR failure detection is the

0-15% generator stator ground protection where the NGR is highly shorted. One

possible scenario is that the NGR fails completely shorted representing very low

resistance. This situation should be behaved as a ground fault at neutral while the

proposed method blocks the 0-15% generator stator ground protection function.

This situation can be controlled by defining a minimum acceptable level of the

third harmonic voltage at neutral, e.g., 1% of E3. In fact, the neutral voltage will

fade if the NGR becomes entirely shorted.

• Lastly, it should be mentioned that the proposed technique guarantees monitoring

only if the employed parameters exist. In fact, this technique only functions in an

energized system. The other issue facing this proposed technique is the very severe

saturation condition of the step-up transformer. Also, power system parameters

do not remain unchanged due to temperature. However, it is expected that the

considered threshold and timers will avoid these issues. These limitations need

extensive work and are next steps of the studies.

Further simulation results can be found in Appendix D.

5.5 Summary

A new technique was proposed to monitor the high-resistance neutral grounding resistor

located at neutral of unit-connected generators. Performance of the technique was studied

and discussed for various conditions of the system, resistor, generator loading, step-up

transformer saturation, and ground faults. The following conclusions could be derived

based on software and hardware observations.
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The proposed monitoring logics reliably detect NGR status, including the partially

failed-short, partially failed-open and intact conditions, while existing techniques need

additional instruments to detect the partial failure of the NGR. In addition, it shows

sufficient restraint against load variation and step-up transformer saturation.

Generator stator ground faults were distinguished from the failed-short NGR. Thereby,

the conventional generator stator ground protection function was restrained against NGR

failure. In addition, an available generator protection relay was enhanced by retrofitting

this element. As a result, it no longer maloperates when NGR fails. Since the pro-

posed technique was embedded as part of the generator stator ground protection, it is

an economical solution.

As further applications, the proposed method has the potential for use in the delta

to high-resistance-grounded-wye distribution transformers that supply the ungrounded

or delta-connected loads which are common in industries such as oil and coal. Further

analysis and performance evaluation of the proposed technique for this configuration is

suggested, with expected results similar to the findings presented in this chapter.



Chapter 6

NGR and NGL Monitoring based on

Sub-Harmonic Signal Injection

In this chapter, a new monitoring technique is proposed that benefits from the exist-

ing sub-harmonic injection infrastructures that are used to detect the ground faults in

0-15% of the generator stator winding. This technique monitors the generator winding-

to-ground impedance and detects the ground faults if the real part of the seen impedance

declines to below a very low preset threshold. The available measurements by this tech-

nique are the neutral voltage and current. The proposed technique only needs an addi-

tional current sensor which can be easily incorporated into digital relays that include the

mentioned protection function. Thereby, generators with injection based stator ground

protection function can utilize this technique by installing only the additional CT.

The fundamentals and concepts of the sub-harmonic injection based generator stator

ground protection will be explained in Section 6.1 followed by the proposed monitoring

function. In the next step, the behavior of the proposed monitoring method will be inves-

tigated and presented using PSCAD in conjunction with Matlab. The performance of the

proposed method will be shown for failed-open and failed-short NGR conditions during

both unfaulted and faulted operation modes of the generator. Besides, the performance

of the sub-harmonic injection based 0-15% generator stator ground protection will be

demonstrated as well. Additionally, the validity of the proposed monitoring method for

a resonant grounded unit-connected generator configuration will be studied as well.

134
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6.1 Configuration 1 — High Resistance Grounding

The target configuration is shown in Fig. 6.1 which is actually a high resistance grounded

unit-connected generator. The NGR is installed at the secondary of a Neutral Ground-

ing Transformer (NGT) to meet the required current and voltage ratings using a small

resistor. The obtained grounding resistor limits the neutral current to 5 A.

Figure 6.1: Connection diagram of the high resistance grounded unit-connected generator
equipped with sub-harmonic signal injection based generator stator ground protection.

Recently, many techniques have emerged towards detecting the internal ground faults

of this type of generator. The conventional ground protection functions do not secure

the near neutral ground faults and there has been an effort to detect this issue via in-

jecting sub-harmonics or inter-harmonics to neutral and monitoring the stator-to-ground

resistance, hereafter referred to as RS G , obtained as follows [34, 35, 31]:

RS G =
(N/n)2

Real
(

IN
Vin j

) (6.1)

where (N/n) is the turn ratio of the NGT which is 13280/240 or 55.33. Also, the Vin j

is the injection voltage, and the In is the neutral current at the secondary of the NGT.

The 20 Hz components of the neutral voltage and current are used in this calculation. If

the generator stator does not experience any ground faults, then the RS G should be very
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high, i.e., in the order of 100 kΩ. Once a ground fault occurs, the RS G is expected to

decline to fault resistance. A threshold set to 1 kΩ detects the ground faults in 0-15% of

the generator stator winding near the neutral. Moreover, the overvoltage ground fault

protection function detects the ground faults in 5-100% of the generator stator winding

if VN > 5%. The 10% overlap of the two protection functions makes the simultaneous

use of them a perfect protective scheme.

6.1.1 Proposed Monitoring Method

In order to be able to monitor the resistance of the NGR, an additional measurement

instrument is needed to measure the injected current, shown by Iin j in Fig. 6.1. As

known, the current through the NGR is equal to vector subtraction of the In and Iin j.

Since the voltage and current of the NGR are available, its resistance is obtained using

the following equations:

RNGR (20 Hz) =
(N/n)2

Real
(
Y
) =

(N/n)2

Real
( Iin j−IN

Vin j

) (6.2)

RNGR (60 Hz) = Real
( 3V0

(n/N)IN

)
(6.3)

where the Iin j is the injected current. The 20 Hz or 60 Hz components of neutral voltage

and current can be used depending on the operation mode of the system. During the

unfaulted condition, the 20 Hz component is dominant, and it is recommended to employ

the 20 Hz admittance. However, when the ground faults occur, the 60 Hz component

grows remarkably and filtration of the 20 Hz component becomes challenging. Hence,

the 60 Hz impedance is used during the ground faults. Indeed, the sub-harmonic injec-

tion based generator stator ground protection alarms and indicates the near-the-neutral

ground fault in 100 ms, and just after that the 60 Hz neutral impedance is employed.

The failed NGR is detected if the calculated NGR resistance changes 30% either

failed-short or failed-open considering a time delay of 10 s. The complete logic for NGR

monitoring is shown in Fig. 6.2. In the shown decision making flowchart, first the total

stator-to-ground resistance (RS G) is calculated using Equation (6.1). This resistance is
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Figure 6.2: NGR monitoring logic and ground fault detection scheme.

used to alarm on ground faults in 0-15% of the generator stator winding. If this resistance

is less than 1 kΩ, the Ground Fault (GF) signal will be triggered, and the 60 Hz component

of the measurements will be used by the monitoring logic. Otherwise, the ground faults

in 5-100% of the generator stator will be investigated using the overvoltage ground fault

protection scheme, i.e. VN > 10%. If any ground fault is detected by this scheme a alarm

signal will be initiated in 100 ms, and the 60 Hz component of the measurements will

be employed for monitoring. It should be added that the overvoltage ground protection

trips immediately and most probably there will not be enough time to monitor the NGR

during such ground faults. If no ground fault is detected (GF=0), the NGR resistance

will be calculated using the 20 Hz component of the measurements, and NGR failure will

be detected in case of abnormal resistance, i.e., ±30% from the rated value.

6.1.2 Simulation Verification

In this section, the proposed monitoring technique is studied using PSCAD in conjunction

with Matlab. The studies are conducted for an NGR which grounds the neutral of a wye-

connected 975 MW,22 kV generator that is connected to 345 kV transmission system via

a 975 MVA,20.9/345 kV DYg transformer which is chosen from [5], as shown in Fig. 6.1.

The NGR has been designed based on instructions provided in [5]. Its resistance is
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0.784 Ω which provides high resistance grounding, i.e. 2400 Ω at primary, when installed

at the secondary of a 50 kVA,13280/240 V single phase NGT. The generator has been

modeled using the 6 segment per phase pi-model presented in [40]. This model pro-

vides the opportunity to distribute the generator phase-to-ground capacitances along the

winding and also to simulate the internal ground faults.

The proposed monitoring technique successfully detects the NGR resistance varia-

tions, reports NGR failure and the type of the defection during both normal and faulted

operation conditions. Performance of the monitoring scheme for each condition is pre-

sented by a few sample cases, referred to as cases 1 and 2 for normal operation condition

and cases 3 and 4 for faulted condition.

During the normal operation condition, the neutral system experiences very weak

60 Hz voltage and current. Hence, the resistance of the NGR is calculated using the

injected 20 Hz signals as shown in the proposed monitoring logic. On the basis of the

performed software analysis, the proposed technique detects any change of the NGR

structure by monitoring its resistance. Few sample cases are presented with more details.

It should be noted that the measurements might be very low during normal condition,

and they shall not be interpreted as secondary level measurements.

Case 1 — The first case is regarding a failing short NGR, i.e. 50%-shorted over

200 ms, as shown in Fig. 6.3. The neutral voltage and current and also the injected

current are shown. The stator-to-ground resistance of the generator winding, RS G, is

also represented to demonstrate the protection function. Normally, it is very high in the

order of 100 kΩ which means absence of stator to ground faults. It remains high during

the event and no ground fault is detected (GF=0). Hence, the NGR resistance, RNGR,

is obtained only using the 20 Hz component of the signals as shown in Fig. 6.3(e). As

represented, the NGR resistance starts declining at t = 1.4 s and decreases to 50% over

200 ms. Once the NGR resistance goes out of the 70-130% region the NGR failure is

expected as reported after 200 ms. The failure type is also easily detected since the NGR

resistance is in hand. In this case, the NGR state is updated from NM to SH meaning that

it was normal and has failed-short. It should be noted that the NGR failure is supposed

to be reported after 10 s, but the waveforms are better-represented if a lower time delay,



Chapter 6. NGR Monitoring Method based on Sub-Harmonic ... 139

here 200 ms, is used. Further, the mighty oscillations in the calculated impedance are

due to dynamic of the DFT filter used for phasor estimation. This issue is easily solved

by using the moving average of the calculated resistance or reactance.

Figure 6.3: Case – 1: Failed-short NGR in unfaulted condition: a) Neutral voltage, b)
Neutral current, c) Injected 20 Hz current, d) Generator stator winding insulation re-
sistance, e) NGR resistance, f) Ground Fault (GF), g) Resistor Failure (RF), and h)
Resistor Status (RS).

Case 2 — The second case, shown in Fig. 6.4, represents the same behavior as

the case 1 but for a fail-open NGR. Again, the NGR failure and status are detected

correctly using only the 20 Hz component of the measurements. The NGR failure, RF,

is reported 200 ms after that the obtained 20 Hz resistance of the NGR rises above the

130% threshold, i.e. 3120 Ω. The NGR status is updated from NM to OP meaning that

the NGR was normal and is failed-open.

The proposed technique is intended to monitor the NGR even during the ground
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Figure 6.4: Case – 2: Failed-open NGR in unfaulted condition: a) Neutral voltage, b)
Neutral current, c) Injected 20 Hz current, d) Generator stator winding insulation re-
sistance, e) NGR resistance, f) Ground Fault (GF), g) Resistor Failure (RF), and h)
Resistor Status (RS).

faults. The penetration of the 60 Hz fault current into the injection source due to imper-

fection of the coupling filters is challenging. In fact, the designed filters conduct a very

negligible portion of the neutral current during the ground faults near the terminal of the

generator stator. Since the 60 Hz component of the neutral voltage and ground current

is strikingly greater than the injected 20 Hz signal, the very negligible penetrating 60 Hz

current and voltage become comparable to the injected 20 Hz signal. This causes many

issues in phasor estimation of the 20 Hz component of the neutral voltage and current

yielding completely wrong calculation of the NGR resistance using the 20 Hz component.

Hence, the NGR resistance is obtained using the 60 Hz components of the neutral current

and voltage during the ground faults. As such, once the ground fault is detected, the
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monitoring logic switches to the 60 Hz admittance of the NGR as shown in Fig. 6.2.

Observations show that the performance of the proposed method during ground faults

is satisfactory as well. Two sample cases are discussed to illustrate the performance of

this technique during the ground faults, shown in Fig. 6.5 and Fig. 6.6, referred to as

case 3 and case 4, respectively.

Case 3 — This case shows a failing short NGR during an internal single-line-to-

ground fault at 5% of the generator stator winding. The ground fault occurs at t = 1.2 s.

The calculated resistance of the NGR becomes invalid right after the fault initiation due

to adversely affected 20 Hz phasor estimation. Once the ground fault is detected, at

t = 1.34 s, the monitoring technique switches to 60 Hz phasor estimation and calculates

Figure 6.5: Case – 3: Failed-short NGR during an internal single-line-to-ground fault:
a) Neutral voltage, b) Neutral current, c) Injected 20 Hz current, d) Generator stator
winding insulation resistance, e) NGR resistance, f) Ground Fault (GF), g) Resistor
Failure (RF), and h) Resistor Status (RS).
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the resistance of the NGR using the 60 Hz component of the measurements. As shown

in Fig. 6.5(e), the NGR resistance remains in the safe region after the ground fault

initiation. Thereafter, the NGR starts failing short at t = 1.4 s and the monitoring

technique reports the NGR failure in 200 ms after the NGR resistance goes out of the

safe region, i.e., less than 70% threshold. Furthermore, the performance of the 20 Hz

signal injection based 0-15% generator stator ground protection function is shown as

well. The stator-to-ground resistance of the generator is very high before the ground

fault incidence and fades to just a few hundred ohms once the ground fault occurs as

shown in Fig. 6.5(d).

Case 4 — The fourth case, shown in Fig. 6.6, demonstrates the performance of

Figure 6.6: Case – 4: Failed-open NGR during an internal single-line-to-ground fault:
a) Neutral voltage, b) Neutral current, c) Injected 20 Hz current, d) Generator stator
winding insulation resistance, e) NGR resistance, f) Ground Fault (GF), g) Resistor
Failure (RF), and h) Resistor Status (RS).
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the monitoring technique for a failing-open NGR during an internal single-line-to-ground

fault at 5% of the generator stator winding. Again, the resistance of the NGR is accu-

rately obtained before ground fault incidence using the 20 Hz component of the measured

parameters. However, the 20 Hz impedance of the NGR becomes unreliable once the

ground fault occurs. As such, the monitoring logic switches to NGR resistance obtained

using the 60 Hz component of measurements detecting intact NGR during fault initia-

tion. However, the NGR fails open and its resistance is detected growing 200 ms after

fault incidence resulted in NGR failure detection.

6.2 Configuration 2 — Resonant Grounding

Another type of neutral grounding method applicable to the previously studied configura-

tion is the resonant grounding, as shown in Fig. 6.7. The resonant grounding is achieved

using a low inductance reactor at the secondary of a NGT. In fact, this configuration is

the same as the configuration 1, but resonantly grounded. The reactor has been designed

using the procedure provided by [5], which is 2 mH with the quality factor equal to 20.

The leakage impedance of the NGT has been considered when designing the reactor. The

combination of the reactor and NGT, hereafter called high reactance Neutral Grounding

Figure 6.7: Connection diagram of the resonant grounded unit-connected generator
equipped with 20 Hz signal injection based generator stator winding ground protection.
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Inductor (NGL), limits the neutral current to a very low level, 3.75-5 A since the ob-

tained inductive reactance at the primary of the NGT is equal to and resonates with the

capacitive reactance of the total system charging capacitance lumped at neutral point.

In the unfaulted condition, a very low voltage and current appears at neutral system

which cannot be used for monitoring the NGL. As such, the same sub-harmonic injection

based generator stator ground protection infrastructures are used for monitoring in the

same way as described for the previous configuration.

6.2.1 Proposed Monitoring Method

The NGl monitoring method employs the same logics and algorithm used for the config-

uration 1. It only uses the imaginary part of the inverse of the admittance seen from the

injection point as formulated below:

XNGL (20 Hz) = 3 ×
1

Imag
(
Y20 Hz

) = 3 ×
(N/n)2

Imag
( Iin j−IN

Vin j

) (6.4)

XNGL (60 Hz) = Imag
( 3V0

(n/N)IN

)
(6.5)

The Monitoring algorithm is updated considering the new equations as shown in the

Figure 6.8: NGL monitoring logic and ground fault detection scheme.
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following figure.

6.2.2 Simulation Verification

The performance of the proposed monitoring method for configuration 2 is investigated

in the same way as the previous configuration. In fact, the failed-short and failed-open

NGL conditions during both unfaulted and faulted operation modes of the generator are

simulated in PSCAD and the captured data is used to assess the performance of the mon-

itoring algorithm implemented in Matlab. Following, four sample cases are represented

using waveforms. It should be noted that the measurements might be very low during

normal condition, and they shall not be interpreted as secondary level measurements.

Figure 6.9: Case – 5: Failed-short HNGL in unfaulted condition: a) Neutral voltage,
b) Neutral current, c) Injected 20 Hz current, d) Generator stator winding insulation
resistance, e) HNGL reactance, f) Ground fault, g) Reactor Failure (RF), and h) Reactor
Status (RS).
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Case 5 — This event is regarding a failed-short NGL, i.e. 50%-shorted over 200 ms,

as shown in Fig. 6.9. The neutral voltage and current and also the injected current are

shown. The stator-to-ground resistance of the generator winding, RS G, is also represented

to demonstrate the protection function. It remains high during this event and no ground

fault is detected (GF=0). Hence, the NGL reactance, XNGL, is obtained only using

the 20 Hz component of the signals as shown in Fig. 6.9(e). As represented, the NGL

reactance starts declining at t = 1.4 s and decreases to 50% over 200 ms. Once the NGL

reactance declines to less than 70%, the Reactor Failure (RF) is expected as reported

after 200 ms. The failure type is also easily detected since the NGL reactance is in hand.

In this case, the Reactor Status (RS) is updated from NM to SH meaning that it was

normal and has failed short.

Figure 6.10: Case – 6: Failed-open HNGL in unfaulted condition: a) Neutral voltage,
b) Neutral current, c) Injected 20 Hz current, d) Generator stator winding insulation
resistance, e) HNGL reactance, f) Ground fault, g) Reactor Failure (RF), and h) Reactor
Status (RS).



Chapter 6. NGR Monitoring Method based on Sub-Harmonic ... 147

Case 6 — This case, shown in Fig. 6.10, represents the same behavior as the case 5,

but for a fail-open NGL. Again, the NGL failure and status are detected correctly using

only the 20 Hz component of the measurements. The reactor failure is reported 200 ms

after that the obtained reactance of the NGL rises above the 130% threshold, i.e. 3120 Ω.

The NGL status is updated from NM to OP meaning that it was normal and has failed

open.

Case 7 — This case shows a failing short NGL during an internal single-line-to-

ground fault at 5% of the generator stator winding. The ground fault occurs at t = 1.2 s.

The calculated reactance of the reactor becomes invalid right after the fault initiation

due to adversely affected 20 Hz phasor estimation. Once the ground fault is detected, at

Figure 6.11: Case – 7: Failed-short HNGL during an internal single-line-to-ground fault:
a) Neutral voltage, b) Neutral current, c) Injected 20 Hz current, d) Generator stator
winding insulation resistance, e) HNGL reactance, f) Ground fault, g) Reactor Failure
(RF), and h) Reactor Status (RS).
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t = 1.34 s, the monitoring technique switches to 60 Hz phasor estimation and calculates

the reactance of the NGR using the 60 Hz component of the measurements. As shown

in Fig. 6.11(e), the reactance remains in the safe region after the ground fault initiation.

Thereafter, the NGL starts failing short at t = 1.4 s and the monitoring technique reports

the NGL failure in 200 ms after its reactance goes out of the safe region, i.e., less than

70% threshold.

Case 8 — The last case shows the performance of the monitoring technique for a

failing-open NGL during an internal single-line-to-ground fault at 5% of the generator

stator winding, as depicted in Fig. 6.12. Again, the reactance of the NGL is accurately

obtained before ground fault incidence using the 20 Hz component of the measured pa-

Figure 6.12: Case – 8: Failed-open HNGL during an internal single-line-to-ground fault:
a) Neutral voltage, b) Neutral current, c) Injected 20 Hz current, d) Generator stator
winding insulation resistance, e) HNGL reactance, f) Ground fault, g) Reactor Failure
(RF), and h) Reactor Status (RS).
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rameters. However, the 20 Hz impedance of the NGL becomes unreliable once the ground

fault occurs. As such, the monitoring logic switches to NGL reactance obtained using the

60 Hz component of measurements detecting intact NGL during fault initiation. However,

the reactor fails open and its reactance is detected growing 200 ms after fault incidence,

as shown in Fig. 6.12(e) resulting reactor failure detection.

Further simulation results can be found in Appendix E.

6.3 Summary

A new NGR monitoring technique was proposed which benefits from the available sub-

harmonic injection based generator stator winding ground protection infrastructures.

Its performance was further studied for monitoring the status of the neutral grounding

reactor used for resonant grounding of the same configuration.

In unfaulted condition, the resistance of the NGR is monitored based the NGR resis-

tance obtained using 20 Hz neutral voltage and current. Any changes in NGR structure

are securely detected. However, in case of ground faults, the filtration of the 20 Hz sig-

nals is challenging; hence, the 60 Hz component of the neutral voltage and current are

employed to monitor the resistance of the NGR. This logic functions satisfyingly, as well.

Furthermore, the failed-short NGR is no more counted as a solid ground fault at neutral

which prevents ground fault trip. However, an alarm could alert about the issue with

the NGR, and switch to a reserved NGR or accelerated ground fault tripping.

Lastly, it should be noted that the proposed monitoring technique is continuous since

it monitors in normal, faulted and de-energized operation conditions. Generators with

existing injection based stator ground protection function can utilize this technique by

installing only an additional CT. The proposed technique does not require any new or

additional protection/control infrastructure meaning that it can be incorporated into

digital protective relays, which will monitor and alarm in case of the NGR failure.



Chapter 7

Summary, Conclusions, and Future

Works

Power system neutral grounding resistors and reactors are used to control transient over-

voltages, and limit ground overcurrents to ride through the first ground fault, mitigate

the arc-flash hazard, and minimize the ground fault damage to power system equip-

ment. The continuity of service and integrity of the neutral-to-ground circuit, which

contains the aforementioned apparatuses, is necessary to ensure the expected advantages

of resistance or reactance grounding and avoid false sense of security. That is why the

Canadian Electric Code (CEC or CSA C22.1) 2018 mandates the continuous monitoring

of the neutral-to-ground path in all applications. Furthermore, the National Electric

Code (NEC) mandates neutral-to-ground path monitoring in mining systems.

7.1 Summary

In this research work, first all the existing monitoring methods were reviewed to under-

stand the current recommended practices and avoid intellectual property infringement.

These methods were classified into three different categories based on their concepts and

principles of operation.

The first category is the passive monitoring methods which rely on existing neutral

voltage and current that exist due to inherent asymmetry of the power system compo-
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nents. The most prominent advantage of these methods is their cost-efficiency since they

mostly employ the available measurement instruments, and control/protection infras-

tructures for monitoring. However, they cannot function when the neutral voltage and

current are very low unless the very sensitive measurement is employed which causes extra

cost. Moreover, if these parameters disappear due to any reason such as de-energization

or power outage, the passive methods will be disabled.

The second category of existing NGR monitoring methods is active methods which

inject a DC/AC signal to neutral. These methods emerged due to aforementioned dis-

advantages of the passive methods. In fact, the active methods guarantee monitoring

in de-energized and unfaulted conditions. However, they fail to monitor in presence of

the ground faults. Monitoring the NGRs during the ground faults is only required for

high-resistance NGRs that limit the ground fault current to maximum of 10 A to ride

through the first ground fault.

The third category, which is called passive-active methods, is actually the combination

or simultaneous use of passive and active methods to guarantee a continuous monitor in

all de-energized, unfaulted, and faulted conditions of the impedance grounded system.

Although these methods cost more than the other two categories, however, they are the

emerging generation of the existing methods that offer the best performance.

The performance of the existing methods were compared based on the employed

measurement instruments, and the degree of the monitoring that they provide during

different system operation modes. The passive methods are of interest due to their

lower implementation cost. The active methods provide a well-designed monitor, but

expensive. The passive-active methods guarantee 100% and continuous monitoring so

that the commissioning cost becomes reasonable. In the next step, the performance of

two existing passive methods was investigated through comprehensive analysis since the

most advantageous proposal of this research work relies on the principals and concepts

of these two methods. The shortcomings and issues facing the methods were identified

as well.

On the basis of the understood history and literature of the neutral-to-ground mon-

itoring art, three new or innovative methods were achieved that are mentioned in the
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next section.

7.2 Contributions and Conclusions

This research work resulted in three new or enhanced monitoring methods apart from

the comprehensively carried-out literature survey.

The first proposed monitoring technique was achieved based on efficient combination

of two existing passive monitoring methods. One of the existing methods operates reli-

ably in unfaulted condition, whereas the other one functions satisfactorily in the presence

of the ground faults. Therefore, this research work came across the proposal of combin-

ing these methods by a minor change of one the techniques, so it can be cost-effective

and interesting solution. The proposed method adds a small resistor to the voltage mea-

surement mechanism of an existing passive monitoring method, and performs a reliable

monitoring in both unfaulted and faulted operation conditions. Furthermore, it provides

continuous monitoring regardless of the type of the neutral grounding device. In other

words, it can monitor any kind of neutral grounding apparatuses since it benefits from

sensitive, and full-range measurement. However, it still cannot monitor in de-energized

condition since it does not utilize the injection technique.

The second and third proposed methods focus on monitoring the high-resistance NGR

installed at the neutral of unit-connected generators. The second method is a passive

technique which employs the third harmonic of the neutral and residual voltages of the

generator. The inverse variation of the mentioned quantities with different rates of change

were the main logics of NGR failure detection. The proposed concept was proved math-

ematically, verified using software analysis, and validated using an available industrial

generator protective relay. This method detects any kind of degradation of the NGR

using existing measurement instruments and control/protection infrastructures meaning

that it is a money-saving alternative. Furthermore, it can be easily incorporated into

digital relays using their available logic engine tool and HIM softwares.

The third proposed method, which is a passive-active method, employs the exist-

ing sub-harmonic injection based generator stator ground protection infrastructures for
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monitoring the same NGR mentioned in the previous paragraph. It guarantees NGR

monitoring in all de-energized, unfaulted, and faulted operation conditions meaning that

the proposed method offers continuous performance. This method only needs an addi-

tional current sensor to equip the signal injection based generator protective relays with

a continuous and reliable NGR monitoring scheme. The understood trend of evolution of

the monitoring methods implies that the passive-active concept results in the most advan-

tageous solution due to its continuous functionality. Although this concept needs more

budget to implement, however, most of the demanding industries perform critical services

that deserve such an investment. For examples, the data centers, hospitals, and mines

save millions of dolors once they employ high-resistance grounding using NGRs whereas

the cost of such a monitoring system is not even higher than $10,000.00. To such indus-

tries, integrity of the NGR ensures operation continuation upon the first ground fault,

and mitigating the reconnection cost. All of these benefits show the advantages of the

third proposed method. Furthermore, the performance of this method for monitoring the

high reactance neutral grounding reactor was studied as well. Observations show that

this proposed method can reliably monitor any type of neutral grounding devices.

7.3 Future Works

There exists potential use of the gained knowledge and outcomes of this research work

in other fields of power system engineering such as insulation resistance monitoring and

equipment internal ground fault detection. Additionally, further improvements of the

proposed methods are possible as mentioned below:

• As the next stage of the performed research work, it would be worthwhile to incor-

porate/retrofit the proposed techniques to available digital protective relays, and

study their performance in real life practice, e.g., actual generators or distribution

transformers. The results of this study will help to modify or improve the proposed

methods. It should be noted that the proposed methods will just alarm on NGR

failure and will not trip or disconnect any part of the system meaning that this

study is safe and practical.
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• Furthermore, the first proposed method, which combines two existing passive meth-

ods, provides a reliable monitoring in both unfaulted and faulted operation con-

ditions. The next step of this research work is to make the proposed method

continuous through adding the signal injection means in an efficient way. There-

fore, the enhanced method will be able to monitor the neutral-to-ground circuit in

de-energized condition as well.

• Last but not least, the neutral-to-ground path monitoring art supervises the in-

tactness of an inserted impedance between the neutral and earthing points of the

power system. Basically, such an impedance exists between every hot part of the

system and the earth potential which is known as insulation resistance. Most of the

power system ground faults happen due to defection or degradation of the insulation

which isolates the high voltage parts of the system from the earth potential. The

insulation is usually modeled by a resistance in parallel with a capacitance. The

resistance is normally higher than 1 MΩ which declines over time due to aging or

environmental incidents. A threshold set to 500 kΩ safely detects the degradation

of the insulation before it becomes a ground fault. As a result, the ground faults

are detected or predicted ahead of time. The neutral-to-ground path monitoring

performs the same but for a lower rated impedance, e.g., NGR. This research work

will try to find applications were the proposed methods can be applied for insu-

lation resistance monitoring. It should be added that the third proposed method

is basically the enhancement of an existing insulation resistance monitor. How-

ever, the first and second methods can be elaborated towards insulation resistance

monitoring.
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Appendix A

Simulation Settings

Throughout the entire simulation and modeling carried out with PSCAD, the time step

was set to 10 µs. Using the waveform recorder provided by this power system simula-

tion software, i.e., COMTRADE 91, with the recording time step of 50 µs, the required

electrical signals were captured and transfered to Matlab [43]. As known, PSCAD uses

interpolation to synchronize between the two samples [44]. It should be added that the

high frequency rejection was performed using PSCAD Butterworth low pass filter set to

1536 Hz, which is equal to 80% of half of the sampling rate or 0.8×0.5×(60×64).

The PSCAD recorder samples discretely over every 50 µs, while the Matlab based

modeled monitoring relay uses the sampling rate of 3840 samples/sec. As such, a Matlab

function should be employed for synchronization between the re-sampled data and the

original records from PSCAD. But, the PSCAD simulation time step cannot be adjusted

to be an integer multiple of the final 64×60=3840 samples/sec data sampling rate. There-

fore, the Matlab interpolation function, called interp1, is employed which resolves this

issue.
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Appendix B

Sensing Resistor Modeling and

Verification

The sensing resistor which is a voltage metering instrument consists of a series resistor

for overcurrent protection purposes, and a voltage clamper set to 100 V for over-voltage

protection at the input gates of the monitoring equipment. This circuit accurately mea-

sures the voltage of the neutral point during the normal operation condition. During

the faulted condition, the neutral voltage increases to some percents of phase-to-ground

voltage. Since the voltage clamper limits the voltage to 100 V, the measured voltage be-

comes invalid. The resistance of sensing resistor is in the order of kilo-Ohms which limits

the measuring circuit current to a few hundred milliamperes, which is a safe current at

the input terminals of the monitoring equipment. On the basis of [19], an appropriate

sensing resistor for measuring the neutral voltage of a 12.47 kV generator or transformer

is ER-15KV with the isolation resistance of 100 kΩ. If a single-line-to-ground (LG) fault

happens at terminals of the wye-connected generator or transformer, the phase-to-ground

voltage 7.2 kV will appear across the neutral grounding system. This is the maximum

electrical potential that appears across the sensing resistor neglecting the transient state.

It causes a 72 mA current in the sensing resistor. This is the maximum current that can

flow through the voltage sensing circuit which finally could penetrate into the monitoring

equipment.

The other element of the neutral voltage measuring system is the voltage clamper that
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clamps or limits the voltage to 100 V. This element which is known as Transient Voltage

Suppressor (TVS) consists of a few series Thyrector diodes. The Thyrector diode itself

is a power electronic device that is nothing but two face-to-face or back-to-back Zener

diodes. The power system simulations are carried out in PSCAD; but, this software does

not provide any model for Zener diode, which is the main element required for modeling

the Thyrector diode and so on for TVS simulation. Hence, the first challenge is to model

the Zener diode. The PSCAD is an electrical power systems modeling and analysis

software. Whereas the Zener diode is an electronic device that has been implemented in

softwares such as Simulink, SPISE, PSPISE, etc. Although the PSCAD does not provide

any model for the Zener diode; But, it provides a standard model for other essential

electrical elements. Furthermore, its powerful coding library which is based on Fortran

programming language makes it possible to simulate any required electrical element like

the Zener diode. Hence, there are two alternatives for simulating the Zener diode, and

then the TVS.

B.1 Implementation of Zener Diode In PSCAD

The first alternative for modeling the Zener diode in PSCAD is the curve fit model. This

way of modeling the Zener diode is also used by SPICE. This method uses the current

versus voltage (I-V) characteristic of the Zener diode. The slope of this characteristic is

the conductance (Bz) Zener diode. As such, a variable resistance Rz = 1/Bz controlled

by a lookup table or a Fortran codded signal can be used to simulate the Zener diode in

PSCAD. The disadvantage of this method is that it models the Zener diode mathematical

which cannot properly operate with PSCAD electrical elements. However, the second

alternative for modeling the Zener diode provides an equivalent electrical circuit for

modeling the dynamics of the Zener diode. The I-V characteristic of the Zener diode

is simulated by using standard electrical elements which is more of interest] [45]. This

method is known as macro-model, which is well-addressed in [45] and [46].

The procedure provided in [46] is used for Zener diode simulation and verification.

This document is a technical paper which simulates the Zener diode based on macro-

model using standard electrical and electronic devices such as resistors, dependent voltage
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sources, and diodes, which are available in PSCAD. There are few differences between the

way that softwares model the diodes. For example, SPICE uses the mathematic equations

of diodes while PSCAD uses the statement-based model (on or off). However, as the

operating frequency in power system is very low in contrast to electronic applications,

the PSCAD model for standard diode works properly. The operation equations used for

simulating the diode by SPICE have been mentioned in [46]. The statement-based model

of diode in PSCAD is as depicted in Figure B.1.

Figure B.1: PSCAD statement-based model of diode.

The macro-model of the Zener diode is shown in Figure B.2. It simulates the I-V

characteristic of the Zener diode that is shown in Figure B.3. The definitions of all of

the specifications of this circuit are available in [45].

Since the isolation resistor limits the TVS current to a certain limit, simulating the

reveres region is not required. Hence, D3, IZG, and RZG are not considered in PSCAD

Figure B.2: Zener diode SPICE macro-model[45].
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Figure B.3: Zener diode I-V characteristic [45].

model. Therefore, the simplified model is used as represented in Figure B.4.

Figure B.4: Zener diode SPICE simplified macro-model[46].

The I-V characteristic achieved by this model is depicted in Figure B.5 which does

not model the current limit region. It should be added that when the isolation resistor

is added in series with this Zener diode it creates the same characteristic represented in

Figure B.3.
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Figure B.5: I-V characteristic of an avalanche Zener diode[46].

The electrical specifications of the utilized elements are listed in Table B.1 and Table

B.2, including all the resistive, inductive elements and diodes.

Table B.1: Electrical specifications of the Zener diode [33].

element symbol value unit
Leakage Resistance RL 432.244 MΩ

Dynamic Resistance RZ 1.28 Ω

Series Inductance L 1.24 nH
Breakdown Voltage VBR or EV1 26.3571 V

Table B.2: Default specifications of the SPICE diode [46].
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The simulated macro-model of the Zener diode in PSCAD using the above-mentioned

specifications is shown in Figure B.6 accompanied with the current surge testing source.

Figure B.6: Macro-model of the Zener diode simulated in PSCAD.

The simulated model is verified with three scenarios based on analysis performed in

[46]. The first event is a 8A×20µs current waveform. This signal models the sudden

interruption of the current in a load that is connected in parallel with TVS [46]. In this

scenario, the current waveform starts at t=10µs, rises in 6µs, reaches its peak of 8A at

t=16 µs, damps in 30µs, and finally disappears at 45µs as represented with blue color in

Figure B.7. The resulted voltage across the TVS is depicted in green as well.

Figure B.7: PSCAD simulation result for 8×20µs current waveform scenario.
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In order to show both the current and voltage in one figure, the voltage is divided

by 10. As shown in this figure, the voltage is clamped at 40.8 V. This voltage is highly

matching with the result that the authors of the used reference paper have presented, as

shown in Figure B.8. The difference is only +0.1 V which is 0.2%.

Figure B.8: SPICE simulation result of 8×20µs waveform scenario [46].

The authors also have carried out the bench test measurement for this scenario.

The bench test and PSCAD results are represented in Figure B.9 and Figure B.10,

respectively.

Figure B.9: Bench test measurement result of 8A×20µs scenario [46].
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Figure B.10: PSCAD simulation result for 8×20µs scenario.

The next scenario is the 1A×1000µs current waveform which occurs when power is

removed from an inductive load and the device under test simultaneously. The device

remains connected in parallel with the inductance, which produces a negative surge

voltage. DC motors, solenoids and relays are common examples of inductive loads that

can produce this surge pulse [46]. The results of SPICE simulation, and bench test

measurement are presented in Figure B.11.

Figure B.11: 1A×1000µs current waveform scenario a)bench test measurement and b)
SPICE [46].

This scenario has been simulated in PSCAD for both SPICE and bench test current

waveforms as well as for different dynamic resistances of the Zener diode mentioned in
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upper figure. The results are represented in Figure B.12 and Figure B.13. Figure B.12

shows the clamped voltage when the dynamic resistance of the Zener diode is 1.28Ω. In

this case, the Zener diode clamps the voltage at 29.04V. The difference with the SPIE

simulation result, 28.9V, is only 0.14V or 0.5%.

Figure B.12: PSCAD results for 1A×1000µs current waveform scenario when Rz=1.28 Ω.

In the next case study, the dynamic resistance of the Zener diode is considered 8Ω.

Based on PSCAD simulations, the Zener diode clamps the voltage at 35.76V. Compar-

ing to SPICE simulation, the difference is 0.34 V, as represented in Figure B.13. The

difference with the SPIE simulation result, 35.4 V, is only 0.34 V or 1%.

Figure B.13: PSCAD results for 1A×1000µs current waveform scenario when Rz = 8Ω.

The last verification using the 1A×1000µs waveform is the bench test measurement.

This case is also simulated in PASCAD, and the result is shown in Figure B.14. The
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voltage is clamped at 35.65V which is 0.05V more than the result that the reference

paper presented for this case study. This difference is only 0.1%.

Figure B.14: PSCAD results for 1×1000µ s current waveform bench test when Rz = 8Ω.

In addition, the current versus voltage characteristic of the simulated Zener diode in

PSCAD is represented in Figure B.15. All of the obtained above-mentioned results can

Figure B.15: I-V characteristic of the PSCAD based Zener diode.
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be investigated based on this curve as well.

It should be mentioned that the Zener diode is now available in PSCAD. In the next

step, the obtained model of the Zener diode is used for developing the Thyrector diode.

B.2 Implementation of A Single Cell TVS DIODE

(Thyrector diode)

A Transient Voltage Suppression (TVS) is a diode which is used to protect a circuit

against spikes, and transient over-voltages that appear due to switching, lightning strikes,

and faults in the circuit. The single cell TVS is called Thyrector diode. The symbolical

representation of this element is depicted in Figure B.16.

Figure B.16: Symbolical representation of Thyrector diode.

The I-V characteristic of the Thyrector s similar to the Zener diode. However, the

Zener is designed to regulate the voltage while the TVS diode is used to protect against

over-voltage by clamping the voltage appeared at the input gates of the DC circuit as

shown in Figure B.17 [45].

Figure B.17: Voltage clamping by TVS [45].

In [47], first the Thyrector diode model, and then a simple circuit to monitor its
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AC performance under DCI High-Power Microwave (HPM) pulses are demonstrated, as

depicted in Figures B.18 and B.19, respectively.

Figure B.18: Thyrector diode macro-model [47].

Figure B.19: Test circuit for performance investigation of the Thyrector diode [47].

This Thyrector has been simulated in PSCAD using the specifications provided by

[47] supported by following simulation results. First, its dynamic resistance decreases

drastically when the power increases to a certain level. In fact, the AC dynamic resistance

at high frequency is larger than that at low frequency at a high input power level, as

shown in the inset of Figure B.20. This resistance approaches a constant value as the

input power continues increasing. For example, the AC dynamic resistance of the TVS

diode at 4 GHz is about 9.5Ω, while the DC dynamic resistance is about 2.5 Ω at the

highest pulse power which is 60dBm.
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Figure B.20: AC dynamic resistance of the TVS diode versus HPM pulse power at
different operating frequencies [47].

Figure B.21 shows the current versus clamping voltage of the TVS diode for different

profiles of the HPM pulses. It is seen that the TVS diode exhibits a breakdown char-

acteristic with snap-back effects at higher frequencies. On the other hand, there is no

snap-back effect in the DC regime which implies the 60 Hz as well.

Figure B.21: I-V characteristic of the Thyrector diode at different operating frequencies
[47].
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Understanding these characteristics, the Thyrector diode has been implemented in

PSCAD using the simulated and verified Zener diode model. Its model based on standard

electrical elements was shown in Figure B.18. The Thyrector diode mainly consists of two

face-to-face Zener diodes. In addition, it includes some other parallel branches modeling

the behavior of this element in ultra-frequencies. In the implemented model, the impact

of these leakage capacitors on the analysis is negligible because of their significantly high

impedance in low frequencies such as the power system frequency, i.e, 60 Hz. The Zener

diode is considered to be the same as previously simulated except that the breakdown

voltage is considered 7.5 V. Additionally, the forward voltage-drop of the diodes is 0.7 V

instead of 1 V. The value of these parameters is chosen based on specifications provided

in [47]. Moreover, the dynamic resistance of the Zener diodes has to be investigated. As

the RS UB of the Thyrector diode is 0.65 Ω, and the slope of the I-V characteristic of the

simulated Thyrector diode per [47] is around 1.28 Ω, the dynamic resistance of the Zener

diode is considered 0.63 Ω, as calculated in Equation B.1, as below:

S lopeI−V − RS UB = Rz = 0.63 Ω (B.1)

The simulated test circuit for the analysis of the Thyrector diode is depicted in Figure

B.22. The reference paper [47] investigates both the DC and ultra-frequency AC behavior

of the simulated Thyrector diode. But, this research work focuses on monitoring an

Figure B.22: PSCAD test circuit for analysis of the Thyrector diode.
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equipment of the power system that does not experience harmonics oscillating faster

than a few kHz. Hence, it is not worthwhile to investigate the simulated model for

ultra-frequencies. The DC analysis of this publication is more valid for power systems

analysis. On the other hand, the characteristics of all of the electrical elements change

dependent to frequency. Even, each resistor has to be modeled as a combination of

resistors, capacitors and inductors in ultra-high frequencies. Thus, it is not possible to

model the Thyrector in high frequencies using PSCAD standard models.

In Figure B.22, the power profile of the the High Power Microwave source is shown.

This signal is a current that the test circuit experiences for 100 ns. As the amplitude of

this surge current increases, it is expected that the Thyrector diode clamps the voltage

across the 50 Ω load at approximately 10 V.

Figure B.23: HPM current profile for DC pulse test.

The macro-model of the PSCAD implementation of the Thyrector is represented in

Figure B.23. The capacitive branches have not been considered because they are open

at power system frequency. Even if the 10th harmonic of the power system frequency

is investigated, the impedance of this branch is so higher than its parallel paths that it

could be neglected. Thereby, it will not effect the simulation results.
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Figure B.24: PSCAD model of the Thyrector diode.

The I-V characteristic of the simulated Thyrector diode is depicted in Figure B.25. In

order to obtain this characteristic, the injected power by HPM source has been increased

from 25 dBm (316 mW) to 60 dBm (1 kW). The same test has been carried out in [47],

and the result has been presented in Figure B.21. As shown , an immeasurable current

flows through the Thyrector when the voltage is less than 9.6 V. But, when the voltage

becomes greater than 9.6V, the breakdown region of the reverse Zener diode operates
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and creates an I-V characteristic which represents a resistance equal to 1.28 Ω. This

resistance is the dynamic resistance of the Thyrector diode.

Figure B.25: I-V characteristic of the Thyrector diode in PSCAD.

The other characteristic of the simulated Thyrector diode by [47] is the RDYN versus

the power of the HPM pulses. This characteristic has been shown in Figure B.20. It

shows that for low power HPMs, the dynamic resistance of the Thyrector diode is very

high, i.e., in the order of kilo-Ohms. In fact, the breakdown region of the reverse Zener

diode is not activated. However, the forward Zener diode conducts through its forward

diode which only needs 0.7 V to conduct the current. This dynamic is valid for voltages

less than 9.6 V. This voltage is calculated as follows:

VBR = EV1 + 3 × 0.7 V + RDYN × Ipp = 7.5 V + 2.1 V + 1.28 Ω × 0 = 9.6 V (B.2)

For voltages more than 9.6 V, the breakdown region of the reverse Zener diode of the

Thyrector diode operates. In this region, the Thyrector diode is modeled by RDYN=1.28 Ω
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in series with the EV1=7.5 V and 3 × 0.7 V = 2.1 V. The 2.1 V voltage-drop is because

in this region of operation, three forward and series diodes also conduct the current.

The first one is the forward diode of the forward Zener diode. The second one is the

voltage-drop of a diode which models the breakdown region of the reverse Zener diode.

Finally, the third one is a diode in series with the reverse Zener diode considered in the

model of the Thyrector diode. The RDYN versus the power of the HPM characteristic for

DC pulse in PSCAD is represented in Figure B.26.

Figure B.26: RDYN versus the power of the HPM DC pulse characteristic of the Thyrector
diode in PSCAD.

As shown, when the injected power is low, the resistance of the Thyrector diode is in

the order of kΩs. When the injected power rises over approximately 2 W which means

that the voltage across the load is 9.6 V, the breakdown region of the reverse Zener diode

operates and the resistance of the Thyrector diode decreases suddenly to a few ohms

as shown in Figure B.26. The resistance of the Thyrector diode in breakdown region is

1.28 Ω as marked with red pointer.



APPENDIX B. SENSING RESISTOR MODELING AND VERIFICATION 180

B.3 Implementation of TVS in PSCAD

The next step is adopting the simulated Thyrector diode to the NGR monitoring

equipment. This TVS is used for over-voltage protection of the monitoring equipment.

It clamps the voltage at 100 V, while the voltages less than the clamping voltage are

delivered to input gates of monitoring equipment without any clamping effect. The

simulated Thyrector diode clamps the voltage at 9.6 V. In order to provide the clamping

at 100 V, 10 Thyrectors are connected in series. The resulted circuit is referred as 100 V

TVS. The clamping voltage provided by the simulated TVS, i.e., 96 V, is 10 times greater

than that of the Thyrector diode. The simulated test circuit in PSCAD is depicted in

Figure B.27.

Figure B.27: The TVS simulated test circuit in PSCAD.

The isolation resistor of the sensing resistor, which is 100 kΩ, is selected based on data

provided by [19] considering that the system voltage is 12.47 kV. It limits the current

through the neutral voltage metering system to 72 mA. This current appears when a LG

fault happens at the terminals of the generator, and the TVS is considered short. The

neutral grounding resistor is 288 Ω and is chosen so that the neutral current is limited

to 25 A. Initially, the neutral voltage is considered to be around 10 V to generate 30 mA

current in the neutral wire modeling the normal operation condition. Once the LG fault

occurs, the voltage magnitude rises to a significant level. Such a condition is represented

in Figure B.28 and Figure B.29 where initially, the neutral point experiences low voltage
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and suddenly its voltage jumps to 7.2 kV.

Figure B.28: TVS operation during normal and faulted conditions.

Figure B.29: TVS operation clamping sensed voltage during
transition from normal to faulted conditions.

At time equal to 0.1 s, the LG fault happens and the neutral voltage increases sud-

denly. The TVS clamps the voltage at 97.28 V as soon as the voltage hits the clamping

level. The [19] mentions that the clamping voltage is 100 V. The difference between

this value and the resulted clamping voltage is because of the difference in the selected

Thyrector diode. The resulted clamping voltage can be set to exactly 100 V by modify-

ing the breakdown voltage of the Zener diodes used in the simulation. But, the authors

preferred to use the resulted outcome since it is achieved based on the simulation of the

previously presented literature of the TVS and technical data of the simulated elements

in PSCAD.



Appendix C

Additional Results for Chapter 4

In this chapter, additional simulation results for the first proposed method, presented in

Chapter 4, are demonstrated. The performance of the proposed method for monitoring

the High resistance Neutral Grounding Resistor (HNRG), designed 288Ω, is investigated.

The failed-short and failed-open HNGR during both faulted and unfaulted conditions are

just a few represented case studies selected from Table 4.1. Additionally, the performance

of the method for disconnected LNGR and HNGL during both unfaulted and faulted

conditions are shown as well.

On the basis of the presented results and further performed observations, it is con-

cluded that:

• The neutral-to-ground circuit experiences higher voltage in high resistance grounded

systems. In fact, the HNGR has considerable impedance compared to system charg-

ing capacitances. But, the LNGR has less impedance than the system charging

capacitances causing less voltage across the LNGR. As such, the RPD-based moni-

toring method performs better when monitoring the HNGR since the neutral volt-

age is higher. The more the neutral voltage becomes the less its error is due to less

impact of the sampling resolution on voltage measurement.

• The proposed method reliably detects the disconnected LNGR, HNGR, and HNGL

in both normal and faulted conditions. The other existing methods cannot detect

the NGD failure in both mentioned conditions.

182
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Figure C.1: Failed-short HNGR (288 Ω→ 144 Ω) during unfaulted condition. a) Neutral
voltage, b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance,
e) NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.2: Failed-open HNGR (288 Ω→ 576 Ω) during unfaulted condition. a) Neutral
voltage, b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance,
e) NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.3: Failed-open HNGR (288 Ω→ 1440 Ω) during unfaulted condition. a) Neutral
voltage, b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance,
e) NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.4: Failed-short HNGR (288 Ω→ 144 Ω) during LG fault. a) Neutral voltage,
b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance, e)
NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.5: Failed-open HNGR (288 Ω→ 576 Ω) during LG fault. a) Neutral voltage,
b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance, e)
NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.6: Failed-open HNGR (288 Ω→ 1440 Ω) during LG fault. a) Neutral voltage,
b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance, e)
NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 189

Figure C.7: Failed-open LNGR (50 Ω→ 250 Ω) during unfaulted condition. a) Neutral
voltage, b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance,
e) NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.8: Failed-open LNGR (50 Ω→ 250 Ω) during LG fault condition. a) Neutral
voltage, b) Neutral current, c) NGR resistance, d) Measurement error of NGR resistance,
e) NGR failure detection by SR-based monitoring method, f) NGR failure detection by
RPD-based monitoring method, and g) NGR failure detection by proposed monitoring
method.
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Figure C.9: Failed-open HNGL (784 Ω→ 4 kΩ) during unfaulted condition. a) Neutral
voltage, b) Neutral current, c) NGL resistance, d) Measurement error of NGL reactance,
e) NGL failure detection by SR-based monitoring method, f) NGL failure detection by
RPD-based monitoring method, and g) NGL failure detection by proposed monitoring
method.
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Figure C.10: Failed-open HNGL (784 Ω→ 4 kΩ) during during LG fault condition. a)
Neutral voltage, b) Neutral current, c) NGL resistance, d) Measurement error of NGL
reactance, e) NGL failure detection by SR-based monitoring method, f) NGL failure
detection by RPD-based monitoring method, and g) NGL failure detection by proposed
monitoring method.



Appendix D

Additional Results for Chapter 5

In this chapter, additional simulation results for the second proposed method, presented

in Chapter 5, are demonstrated. The impact of step-up transformer saturation, and

very high reactive loading on performance of the proposed method are investigated.

Furthermore, it will be shown that the catastrophic failure of the NGR elements can be

detected as well. In fact, the sudden disconnection of the NGR is possible which can

be identified using the proposed method. Lastly, the operation of the proposed method

in the presence of different system faults will be examined to show that it distinguishes

between system faults and NGR failure. Each of the following figures includes a set of

the captured waveforms from PSCAD, and detection made by Matlab-based relay model.

On the basis of the presented results and further performed observations, it is con-

cluded that:

1. Step-up transformer saturation impacts on the neutral and residual 180 Hz voltages.

As a result, these two parameters, which should normally be equal to 50% of the

total generated third harmonic, deviate from 50% and cause unbalance. However,

the NGR failure is detected with the same proposed monitoring algorithm.

2. Loading condition changes the neutral and residual third harmonic voltages, but,

it does not affect the proposed method due to normalization.

3. The proposed method is well-restrained against system faults as it distinguishes

between system faults and NGR failure.

193
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Figure D.1: Failed-short NGR case ( scenario number B6, r = 1→ 0.05 pu,
Load=0.94+j0.2 pu, and e3 = 1%). (a) Residual voltage, (b) Neutral voltage, (c) Normal-
ized neutral and residual third harmonic voltages, (d) Rate of change of the normalized
third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR failure
detection, and (h) NGRS State.
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Figure D.2: Failed-short NGR case ( scenario number B8, r = 1→ 0.5→ 0.05 pu,
Load=0.85+j0.4 pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage, (c) Nor-
malized neutral and residual third harmonic voltages, (d) Rate of change of the normal-
ized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR
failure detection, and (h) NGRS State.
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Figure D.3: Failed-short NGR case ( scenario number B5 with catastrophic dynamic,
r = 1→ 0.5→ 0.05 pu, Load=0.94+j0.2 pu, and e3 = 0.5%). (a) Residual volt-
age, (b) Neutral voltage, (c) Normalized neutral and residual third harmonic voltages,
(d) Rate of change of the normalized third harmonic voltages, (e) NGR resistance,
(f) Ground fault detection, (g) NGR failure detection, and (h) NGRS State.
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Figure D.4: Failed-open NGR case (scenario number G6, r = 1→ 2 pu, Load=0.94+j0.2
pu, and e3 = 1%). (a) Residual voltage, (b) Neutral voltage, (c) Normalized neutral and
residual third harmonic voltages, (d) Rate of change of the normalized third harmonic
voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR failure detection, and
(h) NGRS State.
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Figure D.5: Failed-open NGR case (scenario number G8, r = 1→ 2 pu, Load=0.85+j0.4
pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage, (c) Normalized neutral and
residual third harmonic voltages, (d) Rate of change of the normalized third harmonic
voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR failure detection, and
(h) NGRS State.
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Figure D.6: Failed-open NGR case (scenario number G5 with catastrophic dynamic, r =

1→ 5 pu, Load=0.94+j0.2 pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage,
(c) Normalized neutral and residual third harmonic voltages, (d) Rate of change of the
normalized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g)
NGR failure detection, and (h) NGRS State.
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Figure D.7: External double-line-to-ground fault at generator terminals, (RNGR = 2.4 kΩ,
RF=10 Ω, Load=0.94+j0.2 pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage,
(c) Normalized neutral and residual third harmonic voltages, (d) Rate of change of the
normalized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g)
NGR failure detection, and (h) NGRS State.
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Figure D.8: External line-to-line and three-phase fault in generator terminals, (RNGR =

2.4 kΩ, Load=0.94+j0.2 pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage,
(c) Normalized neutral and residual third harmonic voltages, (d) Rate of change of the
normalized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g)
NGR failure detection, and (h) NGRS State.
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Figure D.9: External three-phase-to-ground fault at generator terminals, (RNGR = 2.4 kΩ,
RF=10 Ω, Load=0.94+j0.2 pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage,
(c) Normalized neutral and residual third harmonic voltages, (d) Rate of change of the
normalized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g)
NGR failure detection, and (h) NGRS State.
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Figure D.10: External line-to-ground fault in 345 kV system, (RNGR = 2.4 kΩ, RF=10 Ω,
Load=0.94+j0.2 pu, and e3 = 0.5%). (a) Residual voltage, (b) Neutral voltage, (c) Nor-
malized neutral and residual third harmonic voltages, (d) Rate of change of the normal-
ized third harmonic voltages, (e) NGR resistance, (f) Ground fault detection, (g) NGR
failure detection, and (h) NGRS State.



Appendix E

Additional Results For Chapter 6

In this chapter, additional simulation results for the third proposed method, presented in

Chapter 6, are demonstrated. The performance of the proposed method in de-energized

operation condition is examined. The studied generator operates de-energized before

being connected to network meaning that the neutral voltage and current might not be

sufficient to perform a reliable monitor. Therefore, the injection system comes to the

picture injecting a 20 Hz signal to measure the NGR and generator insulation resistance.

It is shown that the proposed method reliably detects the NGR failure and generator

insulation fault. Thereafter, it is shown that the proposed method can detect the NGR

failure during the ground faults beyond the generator terminals.

On the basis of the presented results and further performed observations, it is con-

cluded that:

1. The performance of the proposed method in de-energized condition is as strong

as during the faulted and unfaulted operation conditions. In fact, if the NGR

fails during generator star-up or shut-down procedure, it will be detected using the

injected voltage and current to the neutral.

2. The NGR failure during the external ground faults, in 22 kV or 345 kV systems,

is detected as well. In fact, these ground faults not only do not impact on the

proposed method but also provide sufficient neutral voltage and current for NGR

monitoring.
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Figure E.1: Failed-short NGR in de-energized condition: a) Neutral voltage, b) Neutral
current, c) Injected current, d) Generator stator winding insulation resistance, e) NGR
resistance, f) Ground Fault (GF), g) Resistor Failure (RF), and h) Resistor Status (RS).
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Figure E.2: Failed-open NGR in de-energized condition: a) Neutral voltage, b) Neutral
current, c) Injected current, d) Generator stator winding insulation resistance, e) NGR
resistance, f) Ground Fault (GF), g) Resistor Failure (RF), and h) Resistor Status (RS).
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Figure E.3: Failed-open NGR during LG fault at 12.47 kV busbar: a) Neutral voltage, b)
Neutral current, c) Injected current, d) Generator stator winding insulation resistance, e)
NGR resistance, f) Ground Fault (GF), g) Resistor Failure (RF), and h) Resistor Status
(RS).
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Figure E.4: Failed-open NGR during LG fault in 345 kV system: a) Neutral voltage, b)
Neutral current, c) Injected current, d) Generator stator winding insulation resistance, e)
NGR resistance, f) Ground Fault (GF), g) Resistor Failure (RF), and h) Resistor Status
(RS).
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Figure E.5: Failed-short NGL in de-energized condition: a) Neutral voltage, b) Neutral
current, c) Injected current, d) Generator stator winding insulation resistance, e) NGL
reactance, f) Ground Fault (GF), g) Reactor Failure (RF), and h) Reactor Status (RS).
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Figure E.6: Failed-open NGL in de-energized condition: a) Neutral voltage, b) Neutral
current, c) Injected current, d) Generator stator winding insulation resistance, e) NGL
reactance, f) Ground Fault (GF), g) Reactor Failure (RF), and h) Reactor Status (RS).
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Figure E.7: Failed-open NGL during LG fault at 12.47 kV busbar: a) Neutral voltage, b)
Neutral current, c) Injected current, d) Generator stator winding insulation resistance, e)
NGL reactance, f) Ground Fault (GF), g) Reactor Failure (RF), and h) Reactor Status
(RS).
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Figure E.8: Failed-open NGL during LG fault in 345 kV system: a) Neutral voltage, b)
Neutral current, c) Injected current, d) Generator stator winding insulation resistance, e)
NGL reactance, f) Ground Fault (GF), g) Reactor Failure (RF), and h) Reactor Status
(RS).
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