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Abstract 

Global changes are fundamentally changing terrestrial and aquatic ecosystems. Some 

of the highest rates of global change are in the north, where they are leading to the faster 

destabilization of forest soil carbon and its mobilization as dissolved organic matter and 

causing the brownification of lakes. This thesis investigated the causes of soil carbon 

destabilization and consequences of the mobilized soil carbon to lake food webs. The first 

finding was that global change increased carbon export from catchments. Increased 

temperatures and changes in hydrologic connectivity interacted with catchment topography 

to modulate the timing, magnitude, and fate of soil carbon export. Increased temperatures led 

to hydrologic disconnectivity that favoured export of soil carbon from carbon-rich wetlands 

to the atmosphere. However, extreme precipitation events saturated the soils and increased 

the frequency of periods of hydrologic connectivity from the catchment to the drainage 

network that led to higher export of carbon to streams, rivers, and lakes. The second finding 

was that increased carbon content in lakes with an associated shift towards more refractory 

carbon resulted in lower light availability and larger nutrient pools in lakes. Brownification 

of clear oligotrophic lakes increased pelagic primary productivity, but favoured 

cyanobacteria that could adapt to the browner conditions. The third finding was that changes 

in the biomass and composition of phytoplankton communities altered the carbon transfer 

and efficiency of lake food webs. The brownification-driven shift towards cyanobacteria 

prevalence was associated with a decline in phytoplankton quality due to cyanobacteria 

having a lower content of essential fatty acids. The decline in phytoplankton quality did not 

impact the essential fatty acid content of primary consumers, but it shifted their reliance from 

essential fatty acids transferred from phytoplankton, to essential fatty acids transferred 

through the less-efficient bacterial driven microbial loop. As global change proceeds, further 

destabilization of soil carbon is likely to stop having a stimulatory effect on lake production 

by alleviating nutrient limitation, to having an inhibitory effect by creating light limitation. 

Once lakes pass this threshold, the declines in the productivity and transfer of essential fatty 

acids to higher trophic levels will place food webs at great risk. 
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Chapter 1  

1 Introduction 

1.1 Problem Statement 

Carbon (C) is a defining element of the Anthropocene, an era characterized by 

global changes in atmospheric, climatic, and hydrologic conditions driven by human 

actions on Earth (Lewis & Maslin, 2015). These changes are triggering alterations in the 

stability of C pools and fluxes between ecosystems (Raupach & Canadell, 2010). 

Anthropocene-associated changes are being observed globally, but northern ecosystems 

are experiencing the fastest rates of change (Smith et al., 2015). Lakes in particular have 

been identified as sentinels of change as they integrate atmospheric, terrestrial, and 

aquatic processes (Adrian et al., 2009; Williamson et al., 2009). The destabilization of 

soil C pools is resulting in increases of terrestrial dissolved organic matter (DOM) loads 

from the surrounding catchments to lakes at northern latitudes (Monteith et al., 2007; 

Creed et al., 2018). This results in brownification of northern lakes (Kritzberg & 

Erkström, 2012). Brownification drives changes in phytoplankton community 

composition, favouring organisms that are able to thrive in low-light and low-nutrient 

availability conditions (Jones, 1998). In fact, brownification has been linked to declines 

in phytoplankton diversity and the formation of cyanobacteria harmful algal blooms 

(cyanoHABs) in oligotrophic systems (Sorichetti et al., 2014; Urrutia-Cordero et al., 

2017). Furthermore, these changes in phytoplankton community composition are 

changing C transfer and efficiency along aquatic food webs (Karlsson et al., 2009; 

Finstad et al., 2014), potentially altering the capacity of lakes to provide aquatic 

ecosystem functions and associated services. This thesis examines the drivers and 

consequences of brownification in northern lakes, linking brownification-associated 

changes in lakes to the increased prevalence of cyanobacteria, and the potential 

consequences of the increased prevalence of cyanobacteria on food webs. 
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1.2 Scientific Justification 

1.2.1 Carbon Cycling in the Anthropocene 

Carbon cycling alterations are driving changes in terrestrial and aquatic 

ecosystems (Walther et al., 2002). The lithosphere is the largest C pool on Earth 

(Falkowski et al., 2000; Figure 1.1), with over 75 million Pg C (1 Pg = 1 Gt = 109 tonnes 

= 1012 Kg). The extraction of hydrocarbons from the Earth’s crust and their combustion 

combined with emissions from deforestation and land use changes average 10.7 Pg C y-1 

during the last decade (Le Quéré et al., 2017). 

Oceans are the second largest C reservoirs, storing 38,200 Pg C (Cox et al., 2000) 

as inorganic C (CO2 and bicarbonate and carbonate ions), and dissolved and particulate 

organic C (DOC, POC; Post et al., 1990). From all three C fractions, the inorganic C is in 

equilibrium with atmospheric CO2 concentrations, and projected increases in atmospheric 

CO2 will result in further increases in oceanic C content (Cox et al., 2000).  

 

Figure 1.1. Global C pools in Pg C (data sources referenced in text). Box sizes are proportional to the (log-

scaled) content of C in each pool. 
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Forests store over 1,200 Pg C, and over two-thirds of their total C is contained in 

their soils (Cox et al., 2000; Dixon et al., 1994). Given that photosynthesis is the major C 

flux (estimated between 150 – 175 Pg C y-1; Welp et al., 2011), and greater than the total 

forest respiration (a flux approximately equal to 98 Pg C y-1), forests are considered C 

sinks (Bond-Lamberty & Thomson, 2010). However, increases in air temperatures are 

enhancing soil microbial metabolism at a fast rate, and studies suggests that the stability 

of forest soils may be compromised, shifting from C sinks to C sources by 2100 (Cox et 

al., 2000). The shift of forest soils from C sinks to sources will result in further increases 

of atmospheric concentrations of C greenhouse gases, intensifying the alterations in 

climatic and hydrologic patterns and consequently in global C cycling (Kirtman et al., 

2013). 

Soil respiration is the major C export flux from forest soils (Davidson et al., 

2006). Soil heterotrophic respiration is controlled by environmental conditions (soil 

temperature and moisture) and characteristics of the C pools (quantity and quality; 

Webster et al., 2014; Lecki & Creed, 2016). Both, soil conditions and C pools are further 

controlled by landscape topography (Webster et al., 2008). For example, wetlands and 

ecotones (i.e., transition zones that are intermittently wet) store large quantities of C, 

compared to uplands (Webster et al., 2008). Soil temperature and moisture directly 

influence soil microbial metabolism (Kang et al., 2003). While soil temperature is 

strongly correlated to air temperature, soil moisture is controlled by precipitation and the 

capacity of soil to retain water (Lohse et al., 2009), and can inhibit microbial respiration 

by inducing water limitation (low moisture) or air limitation (high moisture). In addition, 

the availability of soil C in the different landscape positions is modulated by the C 

sorption capacity of soils (Kaiser et al., 1996).  

Besides exporting C to the atmosphere, soils also export C to the aquatic network. 

However, this flux (estimated at 1.9 Pg C y-1 globally; Cole et al., 2007) is smaller than 

the atmospheric one, and is often neglected from global C budgets (Räike et al., 2012). 

Freshwaters have been considered ‘passive pipes’ that transport C from terrestrial 

ecosystems to oceans (Cole et al., 2007), even though it is estimated that lake sediments 

store 820 Pg C (Einsele et al., 2001). Despite being a relatively small flux, the export of 



4 

 

C from soils as POC and DOC plays a significant role on aquatic ecosystem functioning 

(Battin et al., 2008). C fluxes from terrestrial to aquatic ecosystems are increasingly 

driven by a combination of atmospheric, climatic, and hydrologic mechanisms (Solomon 

et al., 2015). The process of increasing terrestrial organic subsidies to aquatic systems is 

known as brownification and is characterized by changes in water colour associated to 

terrestrial DOC (Williamson et al., 2015). 

Hydrologic connectivity plays an important role in driving the partitioning of the 

total soil C export between its atmospheric or aquatic fates (Pacific et al., 2010; Riveros-

Iregui, 2012). Hydrologic connectivity is the transfer of matter and energy mediated by 

water fluxes between landscape positions (Turnbull et al., 2008; Bracken et al., 2013). 

There is a direct link between hydrologic connectivity and aquatic C export. Besides this, 

changes in hydrologic connectivity control atmospheric C export by regulating soil 

moisture (Bracken et al., 2013).  

Besides the intensification of hydrologic cycling (Huntington, 2006), the 

mobilization of terrestrial C to the northern aquatic ecosystem increases with the 

observed increases in temperature (Freeman et al., 2001; Kirtman et al., 2013) and longer 

growing seasons (Jeganathan et al., 2014; Creed et al., 2015). In addition, warmer and 

longer growing seasons enhance terrestrial net primary production (NPP), resulting in 

larger soil C pools (Jansson et al., 2008). Land cover influences DOM loads, which are 

higher from forested than agricultural lands (Kritzberg, 2017), and higher from 

coniferous than deciduous forests (although current trends are leading to greater 

deciduous than coniferous forest; Sittaro et al., 2017). Finally, the recovery from 

acidification reported in Europe and North America (Stoddard et al., 1996) further 

promotes brownification, as higher soil pH reduces soil C adsorption capacity and 

increasing its mobility (Monteith et al., 2007; Ekström et al., 2011). All these 

mechanisms have been identified as major drivers of brownification of freshwater 

systems (Creed et al., 2018; Figure 1.2).  

The shift from C sink to C source results in an increase in atmospheric C export 

and the associated increase in atmospheric CO2 that contributes to further warming (i.e., a 
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positive feedback) (Davidson & Janssens, 2006). It also results in an increase in aquatic C 

export that contributes to brownification of lakes, leading to alterations in aquatic 

primary production which in turn effect the stability and nutritional quality of aquatic 

food webs (Williamson et al., 2015; Creed et al., 2018). 

 

Figure 1.2. Drivers of brownification and associated changes in lake DOM quality (MW = molecular 

weight, PP = primary production) (Adapted from Creed et al., 2018). 

1.2.2 The brown new world: Consequences of brownification in northern 

lakes 

Dissolved organic matter is a mixture of heterogeneous compounds from 

biological origin defined as the fraction of organic particles that pass through a filter 

between 0.7 and 0.2 µm (being the most common reported fraction the one that passes 

through a 0.45µm filter; Xu & Guo, 2017). DOM composition depends on its origin and 
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the physical, chemical, and biological transformations it undergoes from source to lake 

(Kang & Mitchell, 2013). Both DOM quantity and quality are important in determining 

its role in aquatic ecosystems (Fellman et al., 2010). Generally, autochthonous (in-lake 

produced) DOM is labile (i.e., protein-like, aliphatic, low molecular weight) while 

allochthonous (externally produced) DOM is more refractory (i.e., humic-like, aromatic, 

high molecular weight). Allochthonous DOM is generally the dominant fraction in the 

DOM pool of lakes (Berggren et al., 2014). Quantification of DOM is measured as 

dissolved organic carbon (DOC) concentration, and its characterization has been 

traditionally based on fractionation by acidic functionality, hydrophobic character, and 

molecular weight (McKnight et al., 2003). Key advances in DOM characterization are 

substituting the traditional separation methods for more advanced separation and 

characterization techniques like  mass spectrometry (e.g., Fourier-transform ion cyclotron 

resonance-mass spectrometry; Woods et al., 2011) and chromatography (e.g., high-

performance liquid chromatography, high-performance size exclusion chromatography, 

and hydrophilic interaction chromatography; Woods et al., 2011) that provide greater 

chemical resolution (Woods et al., 2011). Among the new techniques, spectrophotometry 

and absorbance are frequently used for being relatively cheap and simple analyses that 

are highly sensitive and widely used (McKnight et al., 2001; Woods et al., 2011). 

Due to differences in composition between autochthonous and allochthonous 

DOM, an increase in terrestrial DOM subsidies is not only associated with increases in 

DOC, but also shifts in DOM quality towards more refractory DOM (Creed et al., 2018). 

Brownification takes its name from the changes in water colour driven by allochthonous 

DOM inputs, richer in chromophores than autochthonous DOM. In addition, iron (Fe) 

complexes DOM (especially in DOM originating in wetlands) increasing water colour 

(Kritzberg & Erkstrom, 2012). As a consequence of the increasing water colour, 

brownification is associated with decreases in light penetration and shallower euphotic 

zones (Karlsson et al., 2009; Figure 1.3). The reduction of light penetration in the water 

column decreases photosynthetic active radiation, potentially inducing light limitation to 

primary producers (Karlsson et al., 2009). In addition, the lower penetration of solar 

radiation creates a shallower and warmer epilimnion with a more stable thermocline (i.e., 

greater differences in the temperature between epilimnion and hypolimnion; Houser, 
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2006). The shallower epilimnion results in a greater proportion of nutrients stored in the 

hypolimnion, where most of primary producers cannot access them (Fee et al., 1996). 

Dissolved organic matter contains C and other macronutrients (nitrogen (N) and 

phosphorus (P)) and micronutrients (Fe) (Findlay, 2003). In addition to its role as a 

nutrient vector, DOM maintains P and Fe in solution preventing them from precipitating 

in the oxic conditions of the epilimnion (Jones, 1998). For this reason, the organic 

fraction of P and Fe can represent a major proportion of the total nutrient pool (Findlay, 

2003). DOM quality modulates nutrient speciation and bioavailability (Findlay, 2003), 

and consequently an increase in nutrient inputs is not always associated with an increase 

in the pool of available nutrients. Increasing DOM aromaticity is associated with lower 

nutrient bioavailability, but also with higher photolability (i.e., susceptibility to be photo-

mineralized; Moran & Zepp, 1997). Photo-mineralization of aromatic DOM results in the 

formation of aliphatic organic and inorganic C compounds, increasing nutrient 

availability (Bertilsson & Tranvik, 2000; Jones, 1998).  

Brownification induces changes in primary production due to changes in physical 

and chemical conditions of lakes (Finstad et al., 2014; Solomon et al., 2015; Creed et al., 

2018). In clear oligotrophic systems, allochthonous DOM inputs may induce shifts in the 

trophic status of lakes by supplying nutrients and supporting phytoplankton growth 

(Seekell et al., 2015). However, in dark humic lakes, increases in DOM inputs will limit 

primary production by reducing the availability of photosynthetic active radiation 

(Thrane et al., 2014). The composition of the phytoplankton community in lakes with low 

versus high allochthonous DOM inputs will be influenced by nutrient and light 

availability conditions and the species-specific strategies that enable them to adapt to 

these changes and outcompete other taxa.  



8 

 

 

Figure 1.3. Effects of DOM in freshwater systems (Adapted from Creed et al., 2018). 

1.2.3 Endless forms most beautiful: Adaptive strategies of cyanobacteria 

to brownification 

The combined effects of brownification and warming have in fact been associated 

with decreases in phytoplankton diversity and increases in cyanobacteria growth (Urrutia-

Cordero et al., 2017). Among all phytoplankton species, cyanobacteria often receive 

more attention due to their harmful effects on human health and well-being (Paerl et al., 

2001). Cyanobacteria, also referred to as blue-green algae, are a diverse group of 

prokaryotic autotrophs composed of over 3000 species (Guiry, 2012; Nabout et al., 

2013). Their characteristic blue-green coloration is given by their accessory pigments, the 

phycobiliproteins phycocyanin (PC) and phycoerythrin (PE), that allow them to 

photosynthesize in a broader wavelength range than those photoautotrophs with only 
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chlorophyll (chl). The dominant paradigm is that cyanobacteria blooms are triggered by 

excess macronutrients (P and N), a paradigm based on the ground-breaking experiments 

in the Ontario Experimental Lakes Area carried out in the 1970s (Schindler, 1977). In 

these experiments, cyanobacteria responded to whole-lake N and P additions by 

increasing their growth and forming a bloom despite low C concentrations (Schindler & 

Fee, 2011). A reduction in the formation of cyanoHABs in eutrophic (nutrient-rich) lakes 

has been associated with a reduction of P (and to a lesser extent N) loads from 

agricultural and residential areas to lakes (Sterner, 2008; Paerl et al., 2016). However, the 

formation of cyanoHABs in oligotrophic (nutrient-poor) lakes is an emerging problem. A 

new lens on the dominant macronutrient limitation paradigm is that macronutrients, 

rather than being externally loaded to lakes is being released from sediments (i.e., internal 

loading) (Paerl et al., 2011). An alternative to the macronutrient limitation paradigm is 

that micronutrients (like Fe) are also being released from the sediments and are 

promoting cyanobacteria growth (Molot et al., 2014).  

The rise in cyanoHABs may also be associated with climate change, including 

browner waters (Creed et al., 2018; Urrutia-Cordero et al., 2017), increases in water 

temperatures (Paerl & Huisman, 2008), and a lengthening of the ice-free season 

(Kanoshina et al., 2003). Accessory pigments give cyanobacteria a competitive advantage 

against other phytoplankton groups under low-light availability (Pattanaik et al., 2010). 

Besides their ability to adapt to low light conditions, other competitive advantages that 

cyanobacteria have include the following. Higher temperature optima confer them with 

faster growth rates in the warmer conditions of the epilimnion of a brownifying lake 

(Paerl & Huisman, 2008; O’Neil et al., 2012). Gas vesicles allow them to access deeper 

areas temporarily, away from the euphotic zone to areas with higher nutrient 

concentrations (e.g., Aphanizomenon sp.; Carey et al., 2012). Luxury P uptake and 

storage provides a P source under low P availability conditions (Paerl & Otten, 2013), a 

process that is enhanced due to their small surface area to volume ratio (Finkel et al., 

2010). Greater P loads that result in declines of N:P ratios favour those species able to fix 

N (Chaffin & Bridgeman, 2014). Production of organic ligands allows them to scavenge 

Fe from DOM complexes (e.g. Dolichospermum sp.; Wilhelm & Trick, 1994). Finally, 
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mixotrophy, allows them to access C under low-light conditions and macro- and micro-

nutrients adsorbed to DOM (Jones, 1998; Deininger et al., 2017). 

CyanoHABs can impact benthic primary production by increasing water turbidity 

and reducing light penetration. In addition, the rapid production of biomass enhances 

bacterial degradation, which can cause anoxia and in extreme cases fish kills (Smith et 

al., 1999; O’Neil et al., 2012). Of even greater concern is the role of cyanobacteria as 

neurotoxin and hepatotoxin producers (Paerl et al., 2001). Microcystins, the most 

common cyanotoxins in freshwaters, are hepatotoxins that target the liver and pose risk to 

animal and human health (Carmichael, 2001; O’Neil et al., 2012). 

The consequences of brownification, therefore, go beyond changes in physical 

and chemical characteristics of lakes (Creed et al., 2018). Changes in primary production 

(both biomass and composition) will likely translate into changes in the quantity and 

quality of basal resources for pelagic food webs. 

1.2.4 Consequences of brownification for lake food webs 

Dissolved organic matter is a nutrient source for primary producers, but also for 

heterotrophs and mixotrophs (Hessen et al., 1990). An increase in allochthonous DOM 

inputs provides basal resources for bacteria thereby promoting heterotrophic growth 

(Tranvik, 1992). The transfer of C to higher trophic levels through the heterotrophic 

pathway is less efficient than the autotrophic pathway due to the energy lost in the two 

additional trophic transfers (ciliates, flagellates) prior to reaching the zooplankton level 

(Jones, 1998). Despite this, the heterotrophic food web can constitute a major C transfer 

pathway in dystrophic or ultra-oligotrophic lakes where primary production is minimal 

(Craig et al., 2005; Premke et al., 2010). 

Increases in allochthonous DOM inputs can drive a shift from algal to bacterial 

production (Kissman et al., 2017). However, heterotrophic-based food webs may lack the 

essential nutrients to support secondary growth (Faithfull et al., 2011; Wenzel et al., 

2012). Autochthonous resources contain essential fatty acids (EFAs) that are necessary 

for consumers’ growth and reproduction and are only produced by phytoplankton (Lau et 
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al., 2014). EFAs determine energy transfer efficiency (Müller-Navarra et al., 2000), and 

are preferentially retained by consumers and progressively enriched (Persson & Vrede, 

2006). Among EFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid 

(DHA; 22:6n-3) are structurally vital for cell membranes functionally vital for 

reproduction and growth in consumers (Sargent et al., 1995; Parrish, 2009). Therefore, 

while it may constitute an alternative C source, the extent to which allochthonous DOM 

subsides can support aquatic food webs is debated (Brett et al., 2017). 

While the EPA and DHA content in phytoplankton has proven to be essential to 

support zooplankton production (Brett et al., 2009), food webs studies based on stable 

isotope analyses identify high reliance (> 80%) of zooplankton on allochthonous DOM 

subsidies in low productivity lakes (Cole et al., 2006, 2011). Further research 

investigating C sources and aquatic food webs concluded that a combination of both 

autochthonous and allochthonous DOM support zooplankton production (Wilkinson et 

al., 2013) as long as sufficient EFAs from phytoplankton are available (Tanentzap et al., 

2017). In fact, it has been observed that an increase in autochthonous DOM may prompt 

the uptake of allochthonous DOM (Guillemette et al., 2016), or vice versa (Grieve et al., 

2018). However, when autochthonous DOM is in low supply, consumers may allocate 

EFA to anabolic, rather than catabolic processes, in order to survive periods of scarcity 

(Wetzel et al., 1995). 

Brownification can also alter the production and pools of EFA in autochthonous 

resources by driving changes in the composition of the phytoplankton community 

(Strandberg et al., 2015; Taipale et al., 2016). Among phytoplankton, most eukaryotes 

(except for green algae) produce relatively high concentrations of EPA and DHA (Lau et 

al., 2014). However, cyanobacteria are considered poor quality resources due to their low 

content in EPA and DHA. It is for this reason that brownification-driven changes in 

phytoplankton communities have been associated with a decrease in EFA pools in lakes 

(Taipale et al., 2014, 2016). In addition, increases in water temperature, CO2 

concentrations, and nutrient availability (all of them indirect consequences of 

brownification) have been associated with lower EFA production and content in 
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phytoplankton (Guschina & Hardwood, 2009; Hixson & Arts, 2016). However, 

brownification can also prevent EFA damage from light (Harwood, 1998).  

Brownification affects C transfer pathways, basal resource quantity, and basal 

resource quality, and therefore the nutritional quality of aquatic food webs. The shifts in 

EFA availability and transfer have direct consequences on the nutritional content of top 

predators (i.e., fish; Taipale et al., 2018), and their quality for human consumption 

(Hixson et al., 2015). 

1.3 Goals and Hypotheses  

Brownification has been suggested to promote cyanobacteria growth in 

oligotrophic lakes due to the ability of cyanobacteria species to adapt to brownification-

driven alterations in lakes. However, studies that integrate multiple stressors of 

brownification (e.g., light, nutrients, temperature) are not common, and often focus on 

DOM quantity while overlooking the effects of changing DOM quality (Creed et al., 

2018). The goal of this study is to identify drivers of brownification and the 

consequences of changing DOM quantity and quality for primary production and food 

webs in temperate oligotrophic lakes. The objectives of this thesis are: (1) to identify the 

hydrologic drivers of soil C mobilization and transport to aquatic systems; (2) to identify 

the effects of brownification on lake primary production; and (3) to describe the 

consequences of brownification-associated changes on the nutritional quality of pelagic 

food webs. I explore these objectives through three hypotheses: 

H1. Hydrologic connectivity drives the magnitude and partitioning of soil C export to 

the atmospheric and aquatic fates, favoring aquatic C export in wet years when the 

landscape becomes hydrologically connected. 

H2. Nutrient inputs associated with brownification drive the shift from oligo- to 

meso- and ultimately eutrophic conditions, increasing lake primary production, and 

favouring cyanobacteria through shifts towards more refractory DOM quality. 

H3. Brownification-driven shifts in primary producer biomass and community 

composition will result in larger fatty acid pools in oligotrophic lakes; however, the 
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proportion of EFAs will decrease due to EFA-poor cyanobacteria dominance. 

Consequently, the transfer of EFA to consumers will decrease, shifting their reliance 

from autotrophic to heterotrophic and terrestrial C sources. 

Findings from this thesis will improve our knowledge on the role of DOM quality 

(rather than just quantity) on modulating primary production and food web efficiency. In 

addition, this thesis will provide support for explanations for the rise in cyanobacteria 

growth and cyanoHABs formation alternative to the current paradigms of N and P 

triggered cyanoHABs. 

1.4 Thesis Organization 

The structure of this thesis follows the integrated article format and consists of 

three manuscripts (chapters 2 to 4) that explore each one of the three hypotheses. The 

introduction (Chapter 1) sets the theoretical background of brownification, its causes, 

consequences, and associated changes in DOM quantity and quality. The first manuscript 

(Chapter 2) investigates the role of hydrologic connectivity on the magnitude and 

partitioning of soil C export along a topographic gradient in a five-year time-series 

collected in a small temperate catchment in central Ontario. The second manuscript 

(Chapter 3) researches the effects of DOM quantity and quality in lake physical and 

chemical conditions, and consequently on phytoplankton and cyanobacteria biomass in 

71 lakes across central Ontario. The third manuscript (Chapter 4) investigates the 

brownification-associated changes in the pools and transfer of EFA from primary 

producers to zooplankton (cladocerans and copepods) in a subset of lakes studied in the 

previous chapter. Findings from the manuscripts are summarized in the last chapter 

(Chapter 5), which additionally identifies main conclusions, scientific significance of 

these conclusions, and future research directions. 
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Chapter 2  

2 Catchment-scale shifts in the magnitude and partitioning of 

carbon export in response to changing hydrologic 

connectivity in a northern hardwood forest 

2.1 Introduction 

 World forest soils are major carbon (C) pools storing 1255 Pg C (Cox et al., 

2000). While soils are considered C sinks, destabilization of soil organic carbon (SOC) 

stores due to a changing climate is occurring around the globe (Bellamy et al., 2005). A 

key question that arises is which fate of destabilized SOC, aquatic or atmospheric, will 

become more dominant under a new climate regime. Destabilized soil C mobilized in 

hydrologic flows transfers C to downstream aquatic ecosystems as particulate or 

dissolved forms of C. Destabilized C that is mineralized by soil microbes transfers C to 

the atmosphere as carbon dioxide (CO2) or methane (CH4). Acceleration of either or both 

of these export pathways decreases the C sequestration potential of forest soils, raising 

substantial doubts whether soils will continue to function as stable stores for C (Bellamy 

et al., 2005; Schulze & Freibauer, 2005). 

 Atmospheric export of SOC that is respired is considered to be the second most 

important C flux in forests, following gross primary production (Davidson et al., 2006a). 

Forests constitute a net sink of atmospheric CO2 given that CO2 emissions through 

respiration are more than offset by photosynthetic C fixation. However, respiration is 

thought to be more sensitive to changing temperatures than photosynthesis, resulting in 

predicted declines in forest sink strength (Davidson & Janssens, 2006). CO2 emissions 

through respiration includes autotrophic and heterotrophic sources and has been 

estimated at 98 ± 12 Pg C y-1 globally (Bond-Lamberty & Thomson, 2010). 

Heterotrophic sources are controlled by microbes influenced by environmental 

conditions, primarily soil temperature and moisture, C availability and C quality (Lecki & 

Creed, 2016; Webster et al., 2014). Climatic shifts towards warmer conditions enhance 

rates of heterotrophic respiration (Kirschbaum, 1995), but simultaneous changes in soil 

moisture can limit microbial respiration by reducing the diffusion of DOC (low soil 
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moisture) or oxygen (high soil moisture) to aerobic microbes (Lohse et al., 2009). The 

timing of these changes in environmental conditions is equally important. For example, 

an increase in temperature in winter may be more important than increases during the 

summer when heterotrophic activity is supported by freshly fallen litter (Baldrian et al., 

2013). Alternatively, a decrease in temperature in winter can create soil frost that 

promotes breakdown of SOC and, if the frost is followed by consistent snow cover that 

insulates soils, an increase in heterotrophic activity (Brooks et al., 1997; Brooks & 

Williams, 1999; Brooks et al., 2011). Similarly, a larger proportion of precipitation 

falling in summer can increase respiration by relieving microbial water-limitation, but is 

insufficient to alleviate plant water stress that suppresses plant productivity (Stielstra et 

al., 2015).  

 Aquatic C export represents a smaller proportion of total export compared to 

atmospheric C export; it has generally been neglected in global C stock and flow 

estimates (Räike et al., 2012), but is still an important C flux from forest ecosystems 

(Öquist et al., 2014). Aquatic organic C export can occur as particulate organic C (POC) 

or dissolved organic C (DOC), but DOC represents the major fraction of the total C 

export and the most important fraction for aquatic ecosystems (Battin et al., 2008). DOC 

from forests is a heterogeneous mixture of complex organic compounds of various 

origins such as root exudates, plant litter (e.g., leaves, woody debris), peat and 

recalcitrant soil organic matter (Kalbitz et al., 2000). Increases in DOC concentration and 

flux in streams have been observed in recent years, although the proposed mechanisms 

for this increase vary (e.g., Tranvik & Jansson, 2002; Roulet & Moore, 2006; Creed et al. 

2018). Shifts in forest cover (Kritzberg et al., 2017, Sittaro et al., 2010) and productivity 

(Lepistö et al., 2014) driven by rising temperatures and longer growing season 

(Jeganathan et al., 2014) could increase the SOC pools and its transformations. In 

addition, declines in atmospheric acid deposition (Evans et al., 2006; Monteith et al., 

2007; Sawicka et al., 2016) and changes in precipitation and soil moisture that influence 

the frequency, magnitude and timing of hydrologic events, increase soil DOC solubility 

and may result in mobilization or retention of DOC (de Wit et al., 2016; Raymond & 

Saiers, 2010). While the effects of individual factors on DOC production and 

mobilization have been described, the generalized increase in DOC subsidies in aquatic 
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system is most likely driven by complex interactions between these drivers (Creed et al., 

2018). 

 Changes in both temperature and precipitation influence hydrologic connectivity, 

the water-mediated transfer of matter and energy between different landscape positions 

(Bracken et al., 2013; Turnbull et al., 2008), which also plays a major role on SOC 

export. Within northern hardwood forests, there is spatial heterogeneity among 

topographic features in soil C stores (Creed et al., 2002; Webster et al., 2011), soil 

porewater DOC (Creed et al., 2013) and soil environmental factors (Webster et al., 

2008a, b), which in turn leads to spatial heterogeneity in source areas for the precursors 

of DOC and CO2 hotspots (Creed et al., 2013; Webster et al., 2008a, b). The potential C 

export from a catchment is determined by the diversity of landscape units, their slopes, 

and how they are spatially linked (Bracken et al., 2013; Turnbull et al., 2008). It is also 

determined by changes in discharge generating events (e.g., snowmelt, storms) that 

generate connections between the landscape units (Okin et al., 2015). During wet periods 

the areas further upslope in the catchment are more hydrologically connected to the 

stream and during dry periods source areas within the catchment are hydrologically 

isolated (Jencso et al., 2009). Inter-annual variability in meteorological conditions may 

alter these patterns in hydrologic connectivity, influencing DOC export (McGlynn et al., 

2003; Pacific et al., 2010).  

 This paper examines how inter-annual variability in meteorological conditions 

affects the magnitude and partitioning of C export pathways to aquatic or atmospheric 

fates. We hypothesize an overall similar magnitude of C export among years, but that 

hydrologic connectivity determines whether aquatic versus atmospheric C export 

pathways dominate. We predict that during wet years, landscapes become hydrologically 

connected, favoring aquatic fate over atmospheric fate, and that during dry years, 

landscapes become hydrologically disconnected, effectively trapping precursors of CO2 

(Holden, 2005) and thus favoring atmospheric fate. Temperature may further complicate 

the partitioning of C, as increased temperature raises the rate of biological reactions 

including decomposition of SOC. To test this hypothesis, we pose the following question: 

how do changes in meteorological conditions affect hydrologic connections within 

catchments and, in turn, the magnitude and partitioning between aquatic and atmospheric 
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fates of C export from the catchment? We test this hypothesis in a catchment within a 

long-term ecological monitoring watershed in the Great Lakes-St. Lawrence forest region 

(Rowe, 1972) of northeastern Ontario over a five-year period from 2006 to 2010 during 

which substantial variability in meteorological conditions were observed. 

2.2 Methods 

2.2.1 Study Area 

 The Turkey Lakes Watershed (TLW) is a 10.5 km2 experimental watershed 

centered at 47o03’N and 84o25’W approximately 60 km north of Sault Ste. Marie in the 

Algoma Highlands of northeastern Ontario in the Great Lakes-St. Lawrence forest region 

(Rowe, 1972; Figure 2.1). For over 35 years, federal government agencies (Natural 

Resources Canada and Environment and Climate Change Canada) have been monitoring 

TLW catchments, streams, and a chain of five lakes that drain into Norberg Creek, then 

Batchawana River, and ultimately Lake Superior. The focus of this study is on Catchment 

38 (c38), a 6.3 ha first order catchment within the TLW which contains uplands draining 

into a large swamp (representing 20% of the catchment area) which in turn drains into a 

stream (Figure 2.1).  
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Figure 2.1. The Turkey Lakes Watershed centered at 47°’03' N and 84°’25' W with the location of 

catchment C38 highlighted. C38 catchment (right) divided into topographic positions and two sampling 

transects. 

 The TLW is positioned leeward to Lake Superior and consequently the 

continental climate is strongly influenced by the lake. Over the climate record from 1982 

to 2010, average annual temperature from the Algoma station of the Canadian Air and 

Precipitation Monitoring Network (CAPMON) located just outside the watershed 

(47°02’06”N, 84°22’52”W) was 4.6 °C and average total annual precipitation was 1189 

mm y-1. A snowpack typically persists from late-November through to early April. Peak 

discharge events occur in late May following snowmelt and again in late September to 

early October, coinciding with autumn storms.  

 The TLW rests on Precambrian silicate greenstone formed from metamorphosed 

basalt, with small outcrops of felsic igneous rock near Batchawana Lake and Little 

Turkey Lake (Jeffries et al., 1988). The overall relief of the TLW is 390 m, from 630 m 

above sea level at the top of Batchawana Mountain to 240 m above sea level at the outlet 

to the Batchawana River. The topography is strongly influenced by the bedrock and 

contains rugged slopes which terminate in depressions that may be hydrologically 

connected or disconnected from the drainage systems. This has formed topographic 

features that can be classified as uplands (frequently dry), ecotone (intermittently wet) 

and wetlands (frequently wet). The overlaying soils are composed of a two-component 

till ranging in depth from < 1 m in uplands to 2 m in lowlands, and up to 70 m in bedrock 
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faults. Due to shallow soil depths and the low permeability of the lower basal tills, 

snowmelt and rainstorm water infiltrate the surface soils and move laterally along the 

interface between the upper ablation till and the lower basal till or bedrock. 

 The TLW is covered by an uneven-aged northern hardwood forest. This forest is 

dominated (90%) by sugar maple (Acer saccharum Marsh.) with occurrences of white 

pine (Pinus strobes L.), white spruce (Picea glauca Moench Voss.), ironwood (Ostrya 

virginiana (Mill.) K. Koch) and yellow birch (Betula alleghaniensis Britton) (Wickware 

& Cowell, 1985). Uplands have a relatively uniform stand density (904 stems ha-1), 

dominant height (20.5 m), diameter at breast height (15.3 cm) and mean basal area (25.1 

m2 ha-1) (Jeffries et al., 1988). In wetlands, stand density increases and dominant height 

decreases. The sparse understories of upland stands are dominated ( 95%) by saplings 

and seedlings of sugar maple as well as a variety of herbs and ferns. Wetland stands 

contain a mixture of black ash (Fraxinus nigra Marsh.), eastern white cedar (Thuja 

occidentalis L.), red maple (Acer rubrum L.), balsam fir (Abies balsamea (L.) Mill.), 

yellow birch (Betula alleghaniensis Britt.), and tamarack (Larix laricina (DuRoi) K. 

Koch.) (Wickware & Cowell, 1985). Wetland understories are composed of the seedlings 

and saplings of overstory trees and various ferns and herbs. 

 Digital terrain analyses on a LiDAR-derived digital elevation model (5 m 

resolution) were conducted to discretize c38 into seven topographic features along a 

hillslope gradient (Webster et al., 2011). Based on the map of the discretization of these 

topographic features (Figure 2.1), two transects, one shallow (T15) and one steep (T35) 

were established on northerly hillslopes. Plots were established along both transects in 

upland features [crest (CR), shoulder (SH), and backslope (BS)], ecotone features 

[footslope (FS), and toeslope (TS)] and wetland features [the perimeter of the wetland 

referred to as outer wetland (OW) and the centre of the wetland referred to as inner 

wetland (IW)]. At each plot, environmental conditions (soil temperature and moisture), 

atmospheric C fluxes and soil C pools were sampled. 
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2.2.2 Aquatic Carbon Export 

 Stream DOC samples were collected weekly to biweekly throughout the summers 

and winters and daily during spring melt and autumn storms from 2006 to 2010. Grab 

samples were collected in high density polyethylene bottles as water flowed over the V-

notch weir (Figure 2.1). These samples were filtered through 0.45 μm mixed cellulose 

ester membrane filters (GN-6, Pall Gelman Science, Ann Arbor, Michigan) and analyzed 

for DOC and dissolved inorganic C (DIC) within 48 hrs on an AA3 Autoanalyzer (Seal 

Analytical). DIC was excluded from the analysis as it represented a small proportion of 

the total annual dissolved C export during the study period (ranging from 6.48 kg DIC ha-

1 to 14.99 kg DIC ha-1 in 2006 and 2008, respectively). 

 Stream daily discharge (mm d-1) was measured at the c38 outlet from 1982 to 

2010. Discharge was determined from continuous recordings of stream stage at the V-

notch weir and converted to discharge from established stage-discharge relationships. 

Stream DOC flux was derived from measurements of discharge and the concentration of 

DOC in the discharge in samples collected throughout the year. Daily concentrations of 

DOC in discharge were generated by linear interpolation between sampling dates. Flux of 

total dissolved C (kg C ha-1) was calculated as the product of daily discharge and the 

daily concentration of DOC in discharge and summed for the water year before being 

normalized by catchment area (6.3 ha). Water table depth (WTD; cm) in the wetland was 

calculated as the average of the outer wetland WTD measurements collected in each 

transect using a water level logger (WT-HR Water Height Data Logger, TruTrack Inc.). 

Measurements were taken hourly and averaged to produce daily WTD.   

2.2.3 Atmospheric Carbon Export 

 Daily soil CO2 efflux (µmol m-2 d-1) was calculated for each of seven features on 

both the shallow (T15) and steep (T35) slope transects using the empirical model 

developed by Lecki & Creed (2016). Chamber-based measurements of CO2 fluxes 

collected during the same time period from the same study area were used to create this 

model. In order to predominantly capture heterotrophic soil respiration, chambers were 

located away from tree roots and vegetation was removed from the collars. CO2 was 
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sampled every 2-3 weeks during the summer period, at weekly intervals during the early 

and late growing season, and at daily intervals during the spring melt in April (Equation 

1, (adj. r2 = 0.72, p < 0.05): 

𝐷𝑎𝑖𝑙𝑦 𝐶𝑂2 𝑒𝑓𝑓𝑙𝑢𝑥

= exp(−1.5983 + 0.1603𝑇 + 0.0519𝑀 − 0.0008𝑀2

− 0.0019𝐶𝐹𝐹𝐿 − 0.0006𝐶𝐿𝐹𝐻 + 0.0006𝐶𝐴ℎ + 0.0001𝐶𝐴𝑒

− 0.05𝑆𝐶𝐴ℎ − 0.1001𝑆𝐶𝐴𝑒) 

[1] 

where T is soil temperature (˚C), M is soil moisture (%volume), C is carbon pool content 

(g C m-2) and SC is carbon sorption capacity (mol m-2), with subscripts referring to C 

pools within freshly fallen leaves (FFL) and the litter fibric-humic (LFH) soil layers, and 

the eluviated Ae and organic rich Ah horizons (as defined in the Canadian System of Soil 

Classification; Canadian Agricultural Services Coordinating Committee & Soil 

Classification Working Group, 1998). 

 Soil temperature and moisture were recorded using Campbell Scientific CR 10X 

data loggers as mean hourly values and then averaged for each day. Soil temperature was 

measured with a thermocouple wire (Type T Omega FF-T-24-TWSH) embedded into a 

copper tube with epoxy. Soil moisture was measured with a Campbell Scientific CS616 

Water Content Reflectometer (WCR, Campbell Scientific Canada Corp., Edmonton, AB). 

These sensors were placed at a depth of 5 cm below the surface of the mineral soil. Soil 

moisture was converted to volumetric water content through calibration equations 

provided by the manufacturer for measurements taken in upland positions, and by 

Yoshikawa et al. (2004) for measurements in wetland soils. Regressions between soil 

temperature and moisture data from the same topographic positions of the other transect 

were built to interpolate missing data in the snow-free season (April 1 to November 30). 

Linear interpolation was used to infill temperature and moisture for those days in which 

neither transect had available data for certain features. Soil temperature and moisture for 

the snow season (December 1 to March 31) were assumed constant and the average 

between the last and first day of the preceding and following snow-free seasons. 
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Soil organic C pools were measured at each topographic feature along the 

hillslope transect by sampling the organic and mineral soil pools prior to the formation of 

the snowpack in 2006 and 2008 (see Appendix A, Table A1) (Webster et al., 2008a). FFL 

samples (n = 5) were collected prior to the development of a snowpack on 30 cm × 30 cm 

mesh placed on the surface of forest floor prior to leaf fall. LFH samples (n = 3) at each 

position were collected by cutting 15.5 cm × 15.5 cm blocks into the forest floor and 

measuring the height of the LFH block so that the total volume could be calculated. At 

the upland features, A horizon samples (n = 3) were collected for chemistry using an 

open-sided sampler (40 cm × 4.4 cm I.D.) and for bulk density using an AMS split core 

sampler (32 cm × 4.8 cm I.D.) with slide hammer attachment (AMS Inc., American Falls 

ID, USA). At the wetland features, peat (0-10 cm below LFH layer) samples (n = 3) were 

collected for chemistry and for bulk density using a Jeglum sampler (7.6 cm × 7.6 cm × 

50 cm) (Jeglum et al., 1992). All soil samples were placed in labelled plastic bags and 

transported from the field to the laboratory in coolers. Once in the laboratory, samples to 

estimate bulk density were oven dried at 60 °C (for FFL, LFH and peat) or 105 °C (for A 

horizon) until constant weight. Stones > 2 mm in diameter were removed and weighed to 

correct for coarse fragment content. Soil samples for chemistry were air dried at 25 °C 

and then sieved (2 mm). The samples were analyzed for total C using a Carlo-Erba 

NA2000 analyzer at the Great Lakes Forestry Centre. Some of the samples were analyzed 

for total organic C using loss on ignition at 500 °C (Kalra & Maynard, 1991), and these 

analyses indicated that there was little to no inorganic C in the samples as the 

concentration of total C and total organic C were not significantly different. This finding 

is supported by previous literature, which indicates that the content of calcium carbonate 

(CaCO3) in the TLW soil ranges from 0 to 2% (Jeffries et al., 1988). SOC pools in FFL 

were calculated by multiplying organic C concentrations by litter mass. SOC pools in 

LFH and the A horizon or peat were calculated by multiplying the organic C 

concentration by bulk density (g m-2) and then by depth of each horizon (m). 

 Soil DOC can be sorbed onto iron (Fe) and aluminum (Al) oxyhydroxides in 

mineral soils via ligand exchange (Kaiser et al., 1996). Sorption capacity was determined 

by the concentration of Fe oxyhydroxides from dithionite-citrate-bicarbonate (DCB) 

extraction and Al oxyhydroxides produced from ammonium oxalate (AO) extraction 



35 

 

(Shaw, 2001) as described in Creed et al. (2013). The concentrations of Fe and Al 

oxyhydroxides were determined using inductively coupled plasma atomic emission 

spectroscopy. Sorption capacity was calculated as the sum of AlAO (Al extracted using 

AO) and FeD (Fe extracted using DCB). Potential saturation of the sorption capacity was 

estimated by the atomic ratio of SOC to sorption capacity (after Kaiser & Zech, 1998) 

(see Appendix A, Table A2). 

 Carbon export from each topographic feature was calculated by averaging 

modeled CO2 values from both transects from each topographic feature and multiplying 

the averaged CO2 by its area within the catchment. The total area of each topographic 

feature within the catchment was 0.35 ha (5.5%) CR; 0.32 ha (5.0%) SH, 3.15 ha (49.7%) 

BS; 0.31 ha (4.9%) FS; 0.63 ha (9.9%) TS; 0.92 ha (1.6%) OW; and 0.66 ha (10.5%) IW. 

The topographic features were then grouped into three major positions of upland, ecotone 

and wetland. Atmospheric C export for upland was the sum CR, SH, and BS, for ecotone 

was the sum of FS and TS, and for wetland was the sum of OW and IW. The atmospheric 

C export for the catchment (kg C ha-1) was the sum of the seven topographic feature 

exports (or three position exports). 

2.2.4 Determination of hydrologic connectivity periods 

 Water years from June 1 to May 31 were defined for the analysis of C export 

fluxes in order to avoid splitting the spring snowmelt or fall storms hydrologic 

connectivity periods into two consecutive water years. WTD and discharge were used to 

determine periods of hydrologic connectivity (fall storms and spring snowmelt) and 

disconnectivity (summer and winter) within the catchment (Figure 2.2). Hydrologic 

connectivity was defined as snow-free periods during which WTD was greater than 0 cm 

(i.e., inundated) and discharge was greater than a low-flow threshold of 0.5 mm d-1 

(Figure 2.2a, 2.2b). The 0.5 mm d-1 discharge threshold was selected based on the 

relationship between discharge and WTD – a lower discharge threshold would include 

days in which WTD would be below the surface, while a higher discharge threshold 

would exclude days with WTD < 0 cm. The snow-free period was defined as the period 

between snowpack disappearance and appearance, estimated from snow cover data from 

National Aeronautics and Space Administration’s Northern Hemisphere EASE-Grid 2.0 
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Weekly Snow Cover and Sea Ice Extent dataset (version 4) (Creed et al., 2015). Seven-

day intervals that met the WTD and discharge criteria in each day were classified as 

hydrologically connected (Figure 2.2c). Hydrologically connected (fall storms and spring 

snowmelt) and disconnected (summer) periods were homogenized by removing trailing 

discontinuous periods (Figure 2.2.d). 

 

Figure 2.2. Definition of hydrologic connectivity periods in four steps. (a) Identification of days with WTD 

> 0 cm (black), low-flow days (discharge < 0.5 mm d-1) (grey bars), no-flow days (discharge = 0 mm d-1) 

(white bars), and snowpack period (grey area). (b) Days that met WTD and discharge hydrologic 

connectivity criteria. (c) Seven-day periods that met WTD and discharge hydrologic connectivity criteria in 
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each day. (d) Final hydrologic connectivity (fall storms and spring snowmelt) and disconnectivity (summer 

and winter) periods. 

 Determination of the timing and duration of hydrologic connectivity periods 

between the entire time series from 1982 to 2010 was based on the discharge criterion 

alone due to the lack of WTD data. However, using the discharge criterion alone 

classified 98% of the days in the 2006 to 2010 period compared to the combination of the 

WTD and discharge criteria. 

2.2.5 Statistical Analysis 

 One-way ANOVA on ranks followed by Dunn’s post hoc pairwise comparison 

tests were used to detect significant differences in temperature, discharge, and 

atmospheric and aquatic C export among seasons. Linear regression analyses were used 

to identify potential relationships between climatic parameters (annual and snow-free 

discharge, soil moisture, and air temperature) and annual and snow-free aquatic and 

atmospheric C export. All data in the regression analysis passed tests for normality and 

constant variance and did not require transformation. All ANOVA on ranks, post hoc 

pairwise comparison tests and regression analyses were performed in Sigma Plot 12.0 

(Systat Software, San Jose, CA). Long-term (1982-2010) temporal trends of temperature, 

discharge and duration of the hydrologic seasons (as defined by the state of hydrologic 

connectivity) were analyzed using the non-parametric Mann-Kendall trend test using the 

package ‘Kendall’ in R (v 3.3.1) (McLeod, 2011; R Core Team, 2017). 

2.3 Results 

2.3.1 Seasonal Trends 

 The division of the water year based on states of hydrologic connectivity resulted 

in four hydrologic periods in most of the years (Figure 2.2). There were two periods of 

hydrologic connectivity characterized by high discharge (fall storms and spring 

snowmelt), and two periods of hydrologic disconnectivity characterized by low discharge 

(summer and winter). While there were no significant differences between the median 

temperatures during the fall storms (7.3°C) and the spring snowmelt (7.1°C), median 

daily discharge during the spring snowmelt (1.69 mm d-1) was significantly larger than in 
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any other period, including fall storms (median discharge = 1.0 mm d-1; Table 2.1). 

Among hydrologic disconnected periods, the summer period was warmest (median daily 

temperature = 16.4°C) with lower flow (median discharge = 0.02 mm d-1) than any other 

hydrologic period, while the winter period was coldest (median temperature = -6.2°C), 

with slightly more discharge than the summer period (median discharge = 0.46 mm d-1). 

 The differences in temperature and discharge among seasons were coupled with 

differences in aquatic and atmospheric C export. Aquatic C export was highest during 

hydrologic connectivity periods during the fall storm period (median daily stream DOC 

concentration = 0.19 kg DOC ha-1 d-1) and spring snowmelt period (0.21 kg DOC ha-1 d-

1), and was lowest during the hydrologically disconnected periods during the summer 

(0.00 kg DOC ha-1 d-1) and winter (0.06 kg DOC ha-1 d-1) (Table 2.1). In contrast, 

atmospheric C export displayed an annual peak during the summer (42.8 kg C-CO2 ha-1 

d-1) and an annual low during the winter (6.6 kg CO2-C ha-1 d-1), with higher atmospheric 

C export during the fall storms (18.7 kg C-CO2 ha-1 d-1) compared to the spring snowmelt 

(9.9 kg C-CO2 ha-1 d-1; Table 2.1). Results from two-way ANOVA on ranks identified 

significant differences in atmospheric C export among seasons and positions, with the 

ecotone being the largest source of atmospheric C export among all seasons, and the 

wetland being the smallest source of atmospheric C export (Table 2.1). 
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Table 2.1. Summary results from (1) one-way ANOVA on ranks and post-hoc pairwise Dunn’s test for 

temperature, discharge, DOC export and catchment CO2 efflux between hydrological connectivity periods, 

and (2) two-way ANOVA on ranks and post-hoc pairwise Holm-Sidak test for CO2 efflux between 

hydrological periods and positions. Uppercase letters represent significant differences between hydrological 

connectivity periods, and lowercase letters represent significant differences between positions. 

  
Temperature 

(°C) 

Discharge 

(mm d-1) 

Aquatic C 

export 

(kg DOC 

ha-1 d-1) 

Atmospheric C export 

(kg CO2-C ha-1 d-1) 

Hydrologic 

connectivity periods  
Catchment Wetland Ecotone Upland 

Summer         

 Median 16.40 0.02 0.00 42.82 28.48 61.72 43.03 

 25% 12.80 0.00 0.00 31.78 18.79 44.46 31.31 

 75% 19.10 0.28 0.05 54.80 40.35 77.57 56.26 

 Sig. Dif A A A A Aa Ab Ac 

Fall Storms        

 Median 7.30 1.00 0.19 18.70 9.83 27.24 20.46 

 25% 3.20 0.16 0.03 10.85 5.48 16.51 11.73 

 75% 12.10 2.28 0.41 31.61 19.61 44.99 33.18 

 Sig. Dif B B B B Ba Bb Bc 

Winter  
       

 Median -6.24 0.46 0.06 6.56 3.29 10.76 6.72 

 25% -10.60 0.23 0.03 6.26 3.28 9.40 6.65 

 75% -1.50 0.90 0.12 6.62 4.07 11.38 6.95 

 Sig. Dif C C C C Ca Cb Cc 

Spring Snowmelt        

 Median 7.05 1.69 0.21 9.92 4.95 12.93 10.66 

 25% 3.20 0.89 0.11 7.08 3.28 10.31 7.93 

 75% 10.65 5.75 0.53 15.55 4.07 21.03 17.44 

 Sig. Dif B D D D Da Db Dc 

 

 

2.3.2 Annual Trends 

 Carbon export in the 5-year period (2006 to 2010) was dominated by atmospheric 

C export (Figure 2.3), approximately two orders of magnitude larger than aquatic C 
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export. Catchment atmospheric C export during the 2006 to 2010 period differed between 

positions: the ecotone presented the largest export and the smallest variability among 

years, whereas the upland and wetland positions showed an inverse relationship with 

increases in atmospheric C export in the wetland corresponding to decreases from the 

upland and vice versa. During this 5-year period, there was an increase in the contribution 

to catchment atmospheric C export from the upland (from 29% in 2006 to 38% in 2010) 

and a decrease from the wetland (shifting from 25% contribution in 2006 to 16% in 

2010). 

 

Figure 2.3. (a) Catchment-integrated annual C export (measured as kg C ha-1 y-1) into the aquatic (dashed 

line, right axis) and atmospheric fates (solid line, left axis), and (b) separation of the atmospheric C export 

according to topographic positions. Pie charts represent contributions of each topographic position in the 

whole-catchment atmospheric C export for 2006 and 2010. 

 Catchment aquatic C export was a function of discharge at both annual (r2 = 0.89, 

p = 0.02) and snow-free timescales (r2 = 0.84, p = 0.05; Figure 2.4a); as discharge was 

used in the calculation of this export flux. Annual atmospheric C export (from the 

catchment or any of the positions) was not significantly correlated to either discharge or 

air temperature (Figure 2.4a, 2.4c). However, snow-free season atmospheric C export 

(which represented between 86% and 90% of the annual atmospheric C export in the 

catchment) was linearly related to air temperature during the snow-free season in the 

wetland (r2 = 0.75, p = 0.05) (Figure 2.4c). Average soil moisture was negatively 

correlated to atmospheric C export from the ecotone at annual (r2 = 0.96, p = 0.03) and 
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snow-free timescales (r2 = 0.80, p = 0.40), and to atmospheric C export from the wetland 

annually (r2 = 0.66, p = 0.096; Figure 2.4b). 
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Figure 2.4. (a) Relationship between discharge and atmospheric C export (left axis) and aquatic C export (right axis), (b) relationship between soil moisture and 

atmospheric C export, and (c) relationship between air temperature and atmospheric C. Top panels display annual values and bottom panels display snow-free 

period values. Lines represent significant correlations.
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2.3.3 Long-Term Trends 

 Long-term trends in meteorological data showed a shift towards warmer (average 

annual temperature τ = 0.31, p = 0.02) and drier conditions (annual discharge τ = -0.41, p 

= 0.002). There were also changes to the timing, duration and magnitude of discharge of 

the hydrologic periods (Figure 2.5). While the snowpack disappeared earlier in the year (τ 

= -0.34, p = 0.01) without significant changes in its appearance or duration, the duration 

and discharge of the fall storms periods slightly declined (τ = -0.24, p = 0.07 and τ = -

0.25, p = 0.07 respectively). In addition, both the beginning and the end of the spring 

snowmelt shifted earlier in the year (τ = -0.32, p = 0.02 and τ = -0.24, p = 0.05 

respectively), without significant changes in its duration or discharge. The earlier spring 

and the shorter fall lead to a lengthening of the summer period (τ = 0.46, p < 0.01). 

 

Figure 2.5. Daily discharge (15-day moving average) from 1982 to 2010, and division of the water years 

into four hydrologic periods. 
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 Long-term trends in the environmental drivers of snow-free aquatic and 

atmospheric C export display opposite trends (Figure 2.6). While annual discharge 

(correlated with aquatic C export) presented a negative trend (τ = -0.23, p = 0.09), air 

temperature (correlated with atmospheric C export from the wetland) increased (τ = 0.23, 

p = 0.08). 

 

Figure 2.6. Annual average air temperature (°C; circles, left axis) from Algoma CAPMON station, and 

annual stream discharge (mm d-1) from c38 (solid line, right axis) from 1982 to 2010. Grey area represents 

2006 to 2010 study period. 

2.4 Discussion 

 Forests across the world are major C sinks, storing over two-thirds of their C pool 

in the soil (Dixon et al., 1994). Temperate forests account for approximately 30% of the 

global organic C sink, but SOC input and export fluxes may be compromised by changes 

in hydrologic patterns (Pan et al., 2011). In temperate forested catchments, hydrologic 

connectivity controls the magnitude and distribution of soil moisture, the depth of the 

water table in wetlands, and the discharge to the stream. These hydrologic characteristics 

interact with soil C pools and enhance or suppress soil microbial respiration, directly 

influencing the mobilization of C into the drainage network (Jencso et al., 2009, Lohse et 

al., 2009). This study considered the role of hydrologic connectivity, which controls soil 

moisture and is reflected by changes in stream discharge, in mediating the export of SOC, 
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identifying the extent to which hydrologic connectivity controls the magnitude and 

partitioning of C export to the atmosphere and aquatic network. 

2.4.1 Aquatic Carbon Export 

 Hydrologic connectivity is directly related to the export of SOC into the aquatic 

network (Eimers et al., 2008; Jencso et al., 2009; Stieglitz et al., 2003). In northern 

hardwood forests, the seasonal effects of hydrologic connectivity result in an annual 

discharge pattern with two peaks – one during spring melt and another during fall storms 

(Table 2.1). Aquatic C export is highest during these two peak flow periods when the 

catchment is hydrologically connected along the upland-ecotone-wetland-stream 

continuum, and lowest during periods of hydrologic disconnectivity when only the 

wetland contributes discharge to the stream (Table 2.1). 

 Seasonality does not only drive the hydrological export of soil organic 

compounds, but it also controls the breakdown of soil organic material and therefore the 

production of DOC precursors (Clark et al., 2010). Soil microbial respiration decreases 

after the fall storms responding to the decrease in temperatures but increases again after 

the formation of the snow pack, which insulates the soil (Dawson et al., 2008). The 

accumulation of dissolved organic compounds in soil resulting from winter breakdown of 

soil organic material and its subsequent mobilization could explain the spring peak in 

annual aquatic C export (Table 2.1). However, while the winter hydrologic 

disconnectivity period could contribute to the peak in spring snowmelt aquatic C export, 

the lower aquatic C export during the fall storms period (Table 2.1) could indicate that 

the summer disconnectivity period may not play a considerable role in aquatic C export. 

Even though increasing temperatures have been shown to enhance C cycling rates 

(Davidson & Janssens, 2006), the magnitude and partitioning of total C export could be 

further modulated by hydrologic connectivity. Results from c38 indicate that lower 

precipitation rates will lead to forests prone to more droughts and therefore to greater 

summer hydrologic disconnectivity and subsequently less aquatic C export. On the other 

hand, stable or higher precipitation rates will lead to forests prone to more saturated and 

inundated soils that hydrologically connect the uplands-ecotones-wetlands to the stream, 

potentially leading to larger aquatic C export (Dawson et al., 2008), as shown in the 
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strong correlation between discharge and aquatic C export (Figure 2.4a). Aquatic C 

export is therefore driven by “interruptions” in hydrologic connectivity, and these 

interruptions are expected to become more frequent due to changing hydrologic regimes 

(Jensen et al., 2003). An intensification of the hydrologic cycle contributes to prolonged 

periods of hydrologic disconnectivity during droughts interrupted with bursts of 

hydrologic connectivity during intense storms (Figure 2.5, Creed et al., 2015).  

 This interrupted hydrologic connectivity is likely to have consequences on the 

physical and chemical environments of downstream lakes. Increased DOC inputs into 

northern lakes have been observed in a process known as brownification (Monteith et al., 

2007), but an intensification of the hydrologic cycle may eventually lead to decreased 

DOC inputs into these lakes, with consequences to the sustainability of the lake food 

webs (Solomon et al., 2015). In aquatic systems, DOC acts as a light screen and a nutrient 

vector that supplies macro- (nitrogen and phosphorus) and micronutrients (e.g., Fe) that 

are essential for primary producers (Jones, 1998). Therefore, a reduction of aquatic C 

export from forest soils could also lead to a reduction in primary production in lakes by 

limiting the supply of nutrients to primary producers and inducing the oligotrophication 

process (Dillon & Molot, 1997). Therefore, although relatively small compared to 

atmospheric C export, shifts in aquatic C loads could have major impacts to primary 

production in downstream ecosystems (Creed et al., 2018). 

2.4.2 Atmospheric Carbon Export 

 Hydrologic connectivity also influences the spatial and temporal patterns of 

moisture within the landscape (Bracken et al., 2013), which further modulates soil 

microbial respiration by inducing water-limitation in low moisture retention areas and 

oxygen-limitation in water-saturated areas (Lohse et al., 2009). Soil temperature, soil 

moisture, and C supply are important determinants of soil microbial respiration 

(Davidson et al., 2006b, Lohse et al., 2009; Riveros-Iregui et al., 2012; Webster et al., 

2009). Among these determinants, soil temperature and moisture are more sensitive to 

changes in meteorological conditions at daily to annual time scales (Stielstra et al., 2015). 

Since no differences in soil temperature among positions were detected in c38 (Lecki & 

Creed, 2016), spatial differences in atmospheric C export could be explained by 
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topography-driven differences in soil moisture retention (Webster et al., 2008a). Previous 

studies have identified the role of topography on soil microbial respiration (Lecki & 

Creed, 2016). Even though soil temperature and moisture were identified as the major 

drivers of atmospheric C export, both soil C distribution and temperature were identified 

to be more relevant predictors of soil microbial respiration in steeper slopes compared to 

gentle slopes. 

 The ecotone is the major atmospheric C export source and the least variable 

atmospheric C export source among years of varying water availability (soil moisture) 

(Table 2.1, Figure 2.4b). While the efficiency of the ecotone as a CO2 source has already 

been described (Webster et al., 2008a), this study provides evidence of the effects of 

changing hydrologic conditions on atmospheric export from this area. During the snow-

free period, atmospheric C export from the ecotone is suppressed with higher soil 

moisture (Figure 2.4b, bottom). The same effect of increasing soil moisture suppressing 

atmospheric C export is observed during the snow-free period in the ecotone and wetland 

(Figure 2.4b, top). This process reflects rises in the water table, which saturates surface 

soils in lowlands (ecotone and wetland), leading to reducing conditions that limit aerobic 

respiration (Lecki & Creed, 2016; Smith et al., 2003). While the ecotone presents a more 

diverse microbial community (Du et al., 2015), with different microbial populations 

thriving during drier and wetter conditions (Goldman et al., 2017), increasing soil 

moisture could induce oxygen limitation and suppress overall atmospheric C export from 

this area (Figure 2.4c). 

 Even though temperature is a major driver of soil respiration in the wetland 

(Figure 2.4c), soil moisture could explain the divergent trends in atmospheric C export 

from the upland and wetland over the 2006 to 2010 period (Figure 2.3b) and the changes 

in the contribution of each position to whole catchment atmospheric C export from year 

to year (Figure 2.3a). An increase in soil moisture, caused by the rise of the water table 

during wet years, could induce oxygen limitation in the aerobic microbial communities in 

the wetland, reducing atmospheric C export from this position. It is for this reason that, 

while temperature is a major driver of annual atmospheric C export, soil moisture 

conditions, especially in the lower areas of the catchment (ecotone and wetland), could 
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act as an escalating/supressing factor on the potential effect of temperature on soil 

microbial respiration at the catchment level. 

 Changes in the character of hydrologic connectivity (i.e., decreasing magnitude 

during spring melt, increasing length of summer drought, and intensification of fall 

storms) increase the complexity in predicting the magnitude and partitioning of C export, 

especially due to the diverse effects on the mechanisms that drive soil microbial 

respiration.  

2.4.3 Long-Term Trends in Carbon Cycling 

The relationship between soil environmental conditions and soil microbial 

respiration has been previously described (e.g., Pacific et al., 2009; Chang et al., 2014). 

However, the study of this relationship at larger spatial and temporal scales is essential to 

understand implications of climate change on catchment C budgets. Historical trends in 

c38 displayed a decrease in stream discharge and an increase in snow-free cumulative 

temperature (Figure 2.6). These changes are expected to have contrasting effects on 

aquatic and atmospheric C export from different landscape positions. In addition to these 

changes, the lengthening of the summer hydrologic disconnectivity period and the shift to 

more dynamic periods of hydrologic connectivity characterized by earlier spring melt and 

more frequent and intense fall storms (Creed et al., 2015) will further influence C 

budgets. The lengthening of the summer hydrologic disconnectivity period combined 

with the decrease in annual discharge (Figure 2.5, Figure 2.6) suggest a greater likelihood 

of longer and more intense droughts, with implications for soil moisture availability. 

Changes in the timing and intensity of droughts, snowmelts, and storms directly 

influenced the timing, magnitude and partitioning of C export. Even though the decrease 

in stream discharge could have resulted in a reduction of aquatic C export, the 

lengthening of the summer hydrologic disconnectivity period and the increase of 

temperatures could have promoted microbial respiration and subsequently atmospheric C 

export during this period, especially from the wetland, increasing overall C export. The 

decrease in aquatic C export associated with longer droughts and disconnectivity of the 

landscape from the drainage network (Figure 2.5) has been observed in other forested 

catchments experiencing drought (Savage & Davidson, 2001; Schindler et al., 1997). The 
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study area was more prone to droughts, subsequently hydrologically disconnecting the 

uplands from the drainage network. However, the increase in temperatures compensated 

for the effect of droughts by increasing atmospheric C export, especially from the 

wetlands. In catchments dominated by lowlands, droughts could increase atmospheric C 

export from the wetlands due to a deepening of the water table (Smith et al., 2003) by 

relieving the oxygen-limited respiration in these saturated soils (Figure 2.5). A shift in 

landscape atmospheric C sources could be expected at a longer term if droughts continue 

lengthening, potentially locking soil C in the upland while releasing it from the wetland. 

However, in the TLW, the large organic deposits in the wetlands are characterized by a 

low C to nitrogen ratio indicating low organic matter quality that could hinder the 

increase in atmospheric C export when water table depth is lowered (Webster et al., 

2014). 

In the TLW, soil inputs of plant biomass through leaf turnover have been reported 

to be relatively constant at 3817 kg phytomass ha-1 y-1 (Morrison and Foster, 2001) or 

1832 kg C ha-1 y-1, assuming a 48 % C content in leaf biomass (Morrison, 1990). The 

belowground inputs through fine root biomass are estimated to be 1253 kg C ha-1 y-1, 

resulting from the attributed 2506 kg C ha-1 y-1 fixation rate (Morrison et al., 1993) and 

the 50 % y-1 fine root turnover rate (Majdi et al., 2005). Therefore, total C inputs to soil 

through leaf and fine root turnover are 3085 kg C ha-1 y-1. Given that our modelled 

atmospheric C export includes both autotrophic and heterotrophic respiration, and that the 

ratio between these CO2 sources has been estimated to be 50:50 (Hanson et al., 2000), 

atmospheric C export from degradation of leaf and fine root inputs ranges in the 5-year 

study period between 3718 kg C ha-1 y-1 in 2007 and 4581 in 2008 kg C ha-1 y-1. These 

results indicate that c38 is a C source exporting between 121 and 148 % of the soil C 

inputs (see Appendix B). With long-term trends indicating an increase in temperatures, 

we hypothesize that atmospheric C export from the wetland will increase. In addition to 

this increase in C export, droughts will induce a shift in landscape C sources, as export in 

the upland decreases due to the lengthening of summer droughts that will reduce soil 

moisture, limiting microbial respiration. 

In the future, other factors that influence soil C pools will interact with the effects 

of changing hydrologic connectivity and soil moisture, and the trends in C export may 
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not hold. Lengthening of the growing season (Zhou et al., 2003) together with increasing 

atmospheric CO2 concentrations (Huntington, 2006) will stimulate forest primary 

production and increase soil C inputs (Guay et al., 2014). In addition, further reductions 

in acidic atmospheric pollutants and recovery from acidification will mobilize SOC, 

favoring its transport into aquatic systems (Evans et al., 2005; Evans et al., 2012; Roulet 

& Moore, 2006). 

2.5 Conclusions 

Hydrologic connectivity plays a major role in controlling the magnitude and 

partitioning of C export to aquatic versus atmospheric fates within northern hardwood 

forests. The efficiency of different topographic positions at exporting C into the 

atmosphere varies, being highest (and least variable) in the ecotone, intermediate in the 

upland, and lowest in the wetland. Interruptions in hydrologic connectivity suppress 

catchment aquatic C export and the associated decrease in soil moisture promotes 

atmospheric C export from the wetland and ecotone. In contrast, more continuous 

hydrologic connectivity simultaneously promotes aquatic C export and suppresses 

atmospheric C export from ecotones and wetlands. Climate change-driven alterations in 

hydrologic patterns (i.e., timing, duration and intensity of droughts and storms) will 

define future trends in the magnitude and fate of C export from each topographic 

position. Long-term trends suggest a continued increase in temperature coupled with 

prolonged periods of hydrologic disconnectivity interrupted by bursts of hydrologic 

connectivity. These changes will induce an initial increase in catchment C export driven 

by greater atmospheric C export from the ecotones and wetlands, but an eventual 

decrease in atmospheric C export as the forest becomes water limited. Throughout, there 

will be a decrease in aquatic C export that will have consequences for downstream 

surface waters. 
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Chapter 3  

3 Catchments fuel cyanobacteria growth in shallow lakes on 

forested landscapes 

3.1 Introduction 

Northern ecosystems, of all global ecosystems, are the most sensitive to the 

accelerating rates of global change (Smith et al., 2015). Changes in temperature, 

hydrology, and atmospheric deposition are altering the terrestrial-aquatic linkages and 

disturbing major carbon (C) pools (Creed et al., 2018) in forest soils, wetlands (including 

cryptic wetlands, Creed et al., 2003), and streams (including streams incognito, Bishop et 

al., 2008). Due to their capacity to integrate atmospheric, terrestrial, and aquatic 

processes, lakes have been described as sentinels of change (Williamson et al., 2008; 

Williamson et al., 2016), and may provide early warning signs of alterations to C cycling. 

Even though C fluxes from soils to the atmosphere are generally larger, inputs of 

terrestrially-produced organic C to aquatic systems as dissolved organic matter (DOM) 

function as a major source of energy and nutrients (Jones et al., 1998; Cole et al., 2007). 

Increases in DOM loads into lakes, a process known as brownification, have been 

observed in the boreal and temperate regions of Europe and North America, and are 

driven by changes in the pools and mobilization of soil organic C (Monteith et al., 2007; 

Kritzberg & Erkström, 2012). Current trends of increasing atmospheric carbon dioxide, 

the associated rise in air temperature, and the lengthening of the growing season are 

contributing to increased forest net primary production (Jansson et al., 2008; Kirtman et 

al., 2013; Jeganathan et al., 2014), and therefore inputs of C into the soil (Finstad et al., 

2016). These alterations, coupled with a decrease in atmospheric acid deposition that 

reduces soil C adsorption capacity (Stoddard et al., 1999; Kalbitz et al., 2000; 

SanClements et al., 2012), and changes in hydrologic connectivity (Huntington, 2006; 

Creed et al., 2015; Senar et al., 2018), are contributing to the increased transport of soil 

organic C into lakes as DOM (deWit et al., 2016). Besides changes in DOM quantity, 

brownification is also associated with shifts in the quality of DOM, as allochthonous (i.e., 

externally produced) DOM is generally more refractory and characterized by higher 
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molecular weight aromatic compounds (McKnight et al., 2003), compared to the more 

labile autochthonous DOM (i.e., produced in-lake) derived from the decay of aquatic 

biomass (mostly phytoplankton) (Bertilsson & Jones, 2003). 

Reports of cyanobacteria harmful algal blooms (cyanoHABs) have been on the 

rise (Winter et al., 2011; Pick, 2016) and are occurring simultaneously to the 

brownification of northern lakes (Dillon & Molot, 1997; Keller et al., 2008). An algal 

bloom is generally defined as an episode of phytoplankton growth characterized by the 

dominance (> 50%) of a single species (Molot et al., 2014). However, there is no general 

agreement on what constitutes an algal bloom (Carvalho et al., 2013), especially given 

that even small numbers of cells of toxin-producing phytoplankton can have harmful 

effects on aquatic ecosystems (Smayda, 1997). Even without forming blooms, 

cyanobacteria can have negative effects on ecosystems, as they are nutritionally poor – 

lacking essential fatty acids – and therefore constitute low-quality resources for 

consumers (Brett & Müller-Navarra, 1997). In addition, many species of cyanobacteria 

can produce toxins that affect water supplies, accumulate in food webs, and affect the 

human health and well-being of communities that depend on these resources (Rantala et 

al., 2004; Calteau et al., 2014). 

While cyanobacteria growth and dominance have been associated with nutrient-

rich eutrophic waters, many nutrient poor oligotrophic temperate lakes are now 

experiencing a rise in cyanobacteria growth and bloom reports, suggesting other drivers 

may be behind these episodes (LeBlanc et al., 2008; Callieri et al., 2014). Widespread 

increases in temperature and changes in solar irradiance have been described as major 

drivers of phytoplankton growth and bloom formation (Davis et al., 2009; Paerl & 

Huisman, 2008; Paerl & Paul, 2012. However, these trends do not explain differences 

among blooming and non-blooming neighboring systems. Changes associated with 

brownification—which are ultimately dependent on catchment and lake characteristics—

have been linked to shifts in phytoplankton community structure (Sterner et al., 1992), 

reduced phytoplankton diversity (Urrutia-Cordero et al., 2017), and greater cyanobacteria 

growth and dominance in lakes (Sorichetti et al., 2014, 2016; Creed et al., 2018). 
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Brownification-driven changes in aquatic ecosystems are complex. High 

concentrations of allochthonous DOM entering aquatic systems alter the underwater light 

environment (Jones, 1998). The resulting decrease in visible and UV light penetration in 

the water column (Jones, 1992) contributes to the formation of shallower and warmer 

epilimnion and euphotic zone (Houser, 2006; Porcal et al., 2009). In shallow, non-

stratified lakes, this reduction in light availability limits benthic primary production and 

prompts a shift from benthic (macrophytes and periphyton) to pelagic (phytoplankton) 

primary production (Brothers et al., 2014; Vasconcelos et al., 2018). In deeper, stratified 

lakes, a shallower thermocline could result in a greater loss of nutrients to the 

hypolimnion, which are inaccessible to most pelagic primary producers (Fee et al., 1996). 

Allochthonous DOM inputs also drive changes in the total and bioavailable pools of 

nutrients (Findlay, 2003). In addition to containing C, an energetic resource for 

heterotrophic and mixotrophic organisms (Battin et al., 2008), allochthonous DOM is a 

vector of macronutrients (nitrogen (N) and phosphorus (P)), micronutrients (e.g., iron 

(Fe)) (Maranger & Pullin, 2003; Qualls & Richardson, 2003; Ged & Boyer, 2013). 

However, even though DOM may serve as a nutrient vector, the bioavailable fraction of 

these nutrients may not increase, as refractory DOM binds more strongly to them 

(Findlay, 2003; Creed et al., 2018). In addition to the DOM-bound allochthonous 

nutrients, P, Fe, manganese (Mn), and sulphur (S) stored in the sediments may be 

mobilized in stratified lakes, given that additional organic inputs support hypolimnetic 

bacterial respiration leading to hypoxia (Nürnberg & Shaw, 1999; Wetzel, 2001; 

Matthews et al., 2008). 

These brownification-driven changes in light and nutrient availability may cause 

shifts in phytoplankton biomass and community composition (Sterner et al., 1992), 

benefiting those species that can adapt to browning conditions. In early brownification 

stages, moderate inputs of allochthonous DOM (up to about 10 mg dissolved organic C L 

-1) could increase primary production in clear oligotrophic lakes through the supply of 

nutrients (Seekell et al., 2015). However, the reduction of light at larger DOM 

concentrations could limit productivity in shallow and deeper lakes (Brothers et al., 2014; 

Seekell et al., 2015). Relative to the eukaryotic counterparts, cyanobacteria are equipped 

with numerous adaptations that confer them with a competitive advantage under the low 
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light and nutrient conditions associated with brownification (Creed et al., 2018). For 

example, in addition to chlorophyll, a major photosynthetic pigment found in all major 

phytoplankton classes, cyanobacteria possess phycobiliproteins—accessory pigments that 

absorb in the orange spectrum (Oliver & Ganf, 2000). The presence of phycobiliproteins 

is advantageous under browning conditions, as DOM more strongly absorbs blue and 

green wavelengths as opposed to longer wavelengths (i.e., orange and red). Apart from 

this adaptation, specific cyanobacteria groups have gas vesicles that allow them to 

regulate their buoyancy, allowing them to lower themselves to more nutrient-rich areas 

below the euphotic zone (Carey et al., 2012), that other photoautotrophs cannot access. 

Given the aromatic nature of allochthonous DOM, nutrients (like N, P, and Fe) bound to 

organic complexes may not be readily available to primary producers (Jones, 1998). 

Inputs of N-rich DOM may initially trigger primary production, but subsequently limit it 

after depletion of the organic N pools, favoring N-fixing cyanobacteria (Rolff et al., 

2007). Certain cyanobacteria groups (e.g., Dolichospermum sp.) can scavenge Fe from 

DOM complexes by synthesizing siderophores (Fe-binding ligands) (Sorichetti et al., 

2014, 2016; Molot et al., 2014). Furthermore, cyanobacteria with mixotrophic capacities 

(e.g., Cyanothece sp.) have been observed to consume organic compounds (Jones, 1998), 

or small heterotrophs (Jones, 2000; Bergström et al., 2003; Deininger et al., 2017), not 

only as a C source under light-limiting conditions, but also to incorporate N and P when 

their bioavailable inorganic forms are scarce. 

In this paper, we examine the link between the observed trends of brownification 

and cyanobacteria growth in lakes in central Ontario. Given that human development in 

the forested landscapes of the northern temperate zone in eastern Canada is restricted to 

sparse and low-impact activities, we hypothesized that global change-driven shifts in 

DOM quantity and quality in the northern temperate biome are contributing to the 

increasing cyanobacteria growth. We predicted that brownification-driven nutrient inputs 

will induce the shift from oligo- to meso- and eutrophic conditions increasing lake 

primary production. However, the shift to more refractory DOM will select for 

cyanobacteria that can adapt to the reduced light and nutrient availability conditions. We 

tested this hypothesis in a comparative study by sampling a set of 71 lakes in central 

Ontario that represented gradients of lake depth, DOM quantity and quality, and nutrient 
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concentrations. The sampled ranges in DOM quantity and quality allowed us to swap 

time for space to describe the consequences of brownification on lake environmental 

conditions and phytoplankton growth. 

3.2 Methods 

3.2.1 Study lakes 

Lakes (71) were selected in the Ontario northern temperate biome on the 

Precambrian Shield. The lakes are underlain with metasedimentary rocks and the soils are 

generally shallow tills and acidic podzolic soils (Chapman & Putnam, 1973; Figure 3.1). 

All lakes are located in the north temperate climatic zone (Palmer et al., 2011), with a 

mean annual temperature of 5.2 °C and a mean annual precipitation 832 mm (based on 

data collected between 1981 and 2010 from the Muskoka Airport meteorological; 

weatheroffice.gc.ca.). The landscape is forested, dominated by mixed hardwoods, 

including sugar maple (Acer saccharum Marsh.), yellow birch (Betula lutea F. Michx.), 

and beech (Fagus grandifolia Ehrh.) with a sparse presence of white pine (Pinus strobus 

L.), balsam fir (Abies balsamea (L.) Mill.), and eastern hemlock (Tsuga canadensis (L.) 

Carr.) (Perera et al., 2011). Lakes were selected to represent gradients of dissolved 

organic carbon (DOC) and total phosphorus (TP).  
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Figure 3.1. Map of study sites in the Ontario temperate forest. Lakes were selected to represent gradients 

of DOM quantity and quality. 

3.2.2 Chemical characteristics 

Lakes were sampled within a period of one month during the phytoplankton peak 

growing season (end of August to beginning of October) in 2015 and 2016. Temperature 

and dissolved oxygen were recorded in one-meter intervals using a YSI EXO-2 

multiparameter sonde (WSI Incorporated, Yellow Springs, Ohio, USA). Thermocline 

depth in each lake was identified as the depth of highest temperature change. In stratified 

lakes, dissolved oxygen (DO) concentrations (mg L-1) were calculated as the average of 

all measurements recorded in the hypolimnion recorded with the YSI multiparameter 

sonde. In non-stratified lakes, DO concentrations were calculated as the average of all the 

records taken within the water column. Standard protocols for Secchi depth were used to 

estimate the depth of the euphotic zone.  
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Composite epilimnion water samples were collected by mixing samples taken at 

three depths in the epilimnion using a Van Dorn sampler. Sampling depths were 

determined as the 25th, 50th, and 75th percentiles of the total epilimnion depth (from 

surface to thermocline). Composite samples collected for the analysis of DOM quantity, 

DOM quality, and phytoplankton and cyanobacteria biomass were collected in dark 1 L 

Nalgene bottles (air-tight). Composite samples that were collected for the analysis of 

nutrients were filtered through an 80 μm mesh on-site and collected in polyethylene 

terephthalate bottles (for DOC and color), borosilicate tubes (N and P), and 

polypropylene bottles (Fe). All samples were kept refrigerated at 4 °C until processed 

within 24 h from sampling, except subsamples collected for Fe, which were preserved 

with HNO3 (0.20 mL per 85 mL of sample). 

Composite epilimnion water samples were analyzed for DOM quantity (DOC), 

DOM quality (Specific UV Absorbance; SUVA), DOM source (Fluorescence Index; FI), 

total nitrogen (TN), total phosphorus (TP), and dissolved iron (Fe). 

Dissolved organic matter concentration, measured as DOC concentration (mg L-1) 

from water samples filtered through a GF/F glass fiber filter (Pall Life Sciences, 

Mississauga, ON, Canada), was determined by colorimetry in a Technicon AutoAnalyzer 

II (Seal Analytics, Mequon, Wisconsin, USA). DOM quality was determined as Specific 

UV Absorbance (SUVA; L mg C-1 m-1), a measurement of absorbance at 254 nm and 

indicator of aromaticity (Weishaar et al., 2003). Absorbance measurements on 0.45 m 

filtered water samples were performed on a Cary 300 Bio UV-Visible spectrophotometer 

(Agilent Technologies, Santa Clara, CA, USA) in a 1 cm path quartz cuvette. Absorbance 

measurements were corrected for DOC concentrations to calculate the SUVA index. 

DOM source was assessed by FI, an indicator of DOM precursor material (McKnight et 

al., 2001; Cory & McKnight, 2005). FI was calculated as the ratio of the intensity of the 

emissions at 470 to 520 nm at excitation 370 nm, measured in a Cary Eclipse 

spectrofluorometer (Agilent Technologies, Santa Clara, CA, USA) with a 75 Hz Zenon 

lamp as the excitation source. All samples with absorbance higher than 0.2 m-1 at 254 nm 

were diluted to avoid interferences during the reading and dilution factors were applied to 

the calculation of SUVA and FI. Water color was measured as the absorbance at 410 nm 
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in a Shimadzu UVmini-1240 spectrophotometer (Shimadzu, Kyoto, Japan). Absorbance 

measurements were then converted into true color units (TCU) using a calibration 

regression built with Hazen’s Cobalt-Platinate Standards (1 mg Pt L-1 = 1 TCU). 

Total nitrogen concentration (μg L-1) was measured by oxidative pyrolysis and 

chemiluminescence in a Shimadzu TOC-VCPH with TNM-1 and ASI-V autosampler 

(Shimadzu, Kyoto, Japan). TP was measured by colorimetry in a Skalar San++ 

Continuous Flow Analyzer (Skalar Analytical, Breda, The Netherlands) after converting 

all P to orthophosphate in sulfuric acid-persulfate medium at 121 °C in an autoclave for 

30 min. Fe was measured as total dissolved Fe (TDFe) through Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) at pH < 2 in a Perkin Elmer SCIEX ELAN ICP-

MS (Perkin Elmer, Waltham, Massachusetts, US.A). Minimum detection limits for DOC, 

TN, TP, and Fe were 4, 100, 0.32, and 0.83 μg L-1, respectively. 

3.2.3 Phytoplankton and cyanobacteria biomass 

Chlorophyll-a (chl-a) and phycocyanin (PC) concentrations were used as proxies 

of phytoplankton and cyanobacteria biomass, respectively. Chl-a and PC are often used 

as proxies (Steele, 1962; Gregor et al., 2007; Brient et al., 2008), even though the 

correlation between pigment concentration and biomass can be influenced by 

environmental factors and community composition (Kasprzak et al., 2008; Boyer et al., 

2009). For each lake, two samples of 500 mL epilimnion water were filtered through 0.7 

μm GF/F glass fiber filters (GE Healthcare Life sciences) with the filters subsequently 

preserved at -80 °C until assessment for pigment content. Chl-a was quantified following 

methods described in Jeffrey & Humphrey (1975), whereas PC was quantified following 

methods described in Lawrenz et al. (2011). Chl-a was extracted in 90% (v/v) acetone 

over 24h at -20 °C and measured via fluorometry on a Trilogy fluorometer (Turner 

Designs, Sunnyvale, Ca, USA). PC samples were suspended in 1 mL of phosphate buffer 

solution (0.1 M) adjusted to pH 6. Samples were then disrupted to ensure cell lysis, 

freeze-thawed (3x) in liquid nitrogen followed by sonication (5 sec pulses in 2 min 

cycles). Following sonication, 3 mL of phosphate buffer was added and samples were 

incubated for 24h at 4 °C. Prior to measuring absorbance in Cary 3000 spectrophotometer 
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(Agilent Technologies, Santa Clara, CA, USA) in a 1 cm path-length quartz cuvette, the 

extracts were centrifuged (6000 g for 5 min) and the supernatant was filtered through 

0.22 µm glass fiber syringe filters (Acrodisc Supor Membrane, Pall Life Sciences, Port 

Washington, NY, USA).  

3.2.4 Statistical analyses 

Brownification-driven changes in the trophic status of lakes were assessed 

through a linear model between DOC (indicator of brownification) and TP (indicator of 

eutrophication) was assessed using a linear regression in R (Venables & Ripley, 2002). 

Boundaries between trophic status were identified as TP thresholds (oligotrophic-

mesotrophic threshold = 10µg TP L-1; mesotrophic-eutrophic threshold = 35 µg TP L-1, 

Dodds et al., 1998). 

Lakes were classified based on their mixing regime (i.e., presence or absence of a 

thermocline) and DOM source using the following FI thresholds: allochthonous = FI < 

1.3; mixed = 1.3 < FI < 1.45; autochthonous = FI > 1.45 based on Gabor et al. (2014). 

Differences in chl-a and PC between lake classes were assessed through two-way 

ANOVA in SigmaPlot 12.0 (Systat Software, San Jose, CA). In addition, differences in 

chl-a and PC between stratified lakes with anoxic (DO < 2 mg L-1) and oxic 

hypolimnion were determined through one-way ANOVA, followed by post-hoc Holm-

Sidak paired test.  

Correlations among environmental variables (depth, hypolimnion DO, DOC, 

SUVA, FI, water colour, TN, TP, and Fe) in non-stratified and stratified lakes were 

assessed through principal component analysis (PCA) using the package ‘FactoMineR’ 

(Lê & Husson, 2008) in R. Variable loadings were scaled from -1 to +1, and chl-a and 

PC were input in the PCA as supplementary variables (i.e., they were not considered for 

the determination of the principal components, but their coordinates were calculated 

afterwards). 

Models to predict chl-a and PC from lake characteristics, DOM quantity and 

quality, and nutrient concentrations (depth, hypolimnion DO, DOC, SUVA, FI, water 
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color, TN, TP, and Fe) were performed through random forest analyses using the ‘party’ 

package (Hothorn et al., 2006) in R. Random forest analysis is a recursive partitioning 

method that consists of building multiple regression (or classification) trees and is suited 

to small n (observations) and large p (predicting variables) studies (Strobl et al., 2009). 

To ensure robust results, 1000 iterations were performed and five variables were 

considered for each node. Predicting variables were ranked according to their importance. 

Results from the random forest models were compared to results from partial least 

squares regression (PLSR) models using the package ‘caret’ (Kuhn, 2008) in R. PLSR is 

a multiple regression method that identifies the most important predictors and is a 

suitable method for studies with few observations and many related variables (Carrascal 

et al., 2009). Similar to PCA, PLSR reduces the number input variables to a lower 

number of ‘latent factors’ (or components) that are then used to predict the response 

variable. Accuracy of the PLSR models was ensured by using repeated k-fold cross 

validation. 

3.3 Results 

Classification of lakes based on their mixing regime (i.e., presence/absence of 

thermocline) resulted in two classes: non-stratified lakes (n = 14) and stratified lakes (n = 

57; Table 1). Non-stratified lakes were generally shallower (average depth = 5.63 m), 

darker (average water color = 62.61 TCU), and presented higher DOC concentration 

(average DOC = 7.79 mg L-1) than stratified lakes (average depth = 20.75 m; average 

water color = 25.39 TCU; average DOC = 4.75 mg L-1). Nutrient concentrations were 

larger in non-stratified (541.00, 22.17, and 582.86 µg L-1 for TN, TP, and Fe, 

respectively) than in stratified lakes (351.91, 10.58, 92.98 µg L--1 for TN, TP, and Fe, 

respectively), however, they presented large variability among systems in both classes. 

Both, chl-a and PC concentrations were higher and presented lower standard deviation in 

non-stratified (6.92 ± 0.70 and 27.54 ± 2.04 µg L-1, for chl-a and PC) than stratified lakes 

(3.16 ± 1.74, and 9.77 ± 4.79 µg L-1, for chl-a and PC, respectively). 
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Table 3.1 Descriptive statistics for lake characteristics (depth and hypolimnion DO), DOM quantity 

(DOC), source (FI), and quality (SUVA), water colour, major nutrients (TN, TP, Fe), and pigment 

concentrations (chl-a,PC) for non-stratified and stratified lakes. 

 Non-stratified (n=14) Stratified (n=57) 
 Average ± SD Min Max Average ± SD Min Max 
Depth (m) 5.63 ± 2.27 2.30 10.00 20.75 ± 7.78 7.50 65.00 
HypoDO (mg L-1)  - - - 4.75 ± 3.16 0.02 11.3 
DOC (mg L-1) 7.79 ± 2.22 4.40 12.40 4.96 ± 1.50 2.00 9.00 
FI 1.35 ± 0.16 1.18 1.80 1.33 ± 0.16 1.08 1.98 
SUVA (L mgC-1 

m-1) 3.20 ± 1.20 1.23 5.00 2.79 ± 0.78 1.14 5.22 

Colour (TCU) 62.61 ± 54.33 10.30 201.00 25.59 ± 18.58 8.35 88.60 
TN (μg L-1) 541.00 ± 123.56 371.00 790.00 351.91 ± 89.04 200.00 601.00 
TP (μg L-1) 22.17 ± 11.85 10.70 48.50 10.58 ± 5.94 4.30 32.20 
Fe (μg L-1) 582.86 ± 1019.84 10.00 3750.00 92.98 ± 176.49 0.00 1180.00 
Chl-a (μg L-1) 6.92 ± 0.70 0.37 1.26 3.16 ± 1.74 -0.01 1.27 
PC (μg L-1) 27.54 ± 2.04 0.96 1.91 9.77 ± 4.79 -0.94 1.87 

 

Dissolved organic carbon was significantly correlated with TP (r2 = 0.36, p < 

0.01; Figure 3.2). All lakes classified as oligotrophic (TP < 10 µg L-1) were stratified 

lakes and the only two eutrophic lakes (TP > 35 µg L-1) in our dataset were non-stratified. 
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Figure 3.2 Correlation between DOC and TP concentrations in the study sites, classified according to their 

mixing regime. Trophic states determined as per Dodds et al. (1998). 

Further classification of lakes based on their DOM source (allochthonous, mixed, 

and autochthonous DOM, based on FI), resulted into six classes (Figure 3.3a). In non-

stratified lakes, chl-a was significantly larger in lakes with DOM from allochthonous 

(log(chl-a) = 0.90 µg L-1) and mixed sources (1.08 µg L-1) than those with autochthonous 

DOM (0.51 µg L-1). No significant differences in chl-a concentration were identified 

among stratified lakes with different DOM sources. However, non-stratified lakes with 

DOM from allochthonous and mixed sources presented higher chl-a than stratified lakes 

with the same DOM sources (0.52 and 0.54 µg L-1, for stratified lakes with allochthonous 

and mixed DOM sources, respectively). No significant differences in PC concentrations 

were identified between lakes with different stratification regimes or DOM sources; 

however, lowest PC values were typically observed in stratified lakes. In stratified lakes, 

chl-a concentration was significantly larger in lakes with an anoxic hypolimnion (0.70 µg 

L-1), compared to lakes with an oxic hypolimnion (0.43 µg L-1), but no significant 

differences were detected in PC concentrations (Figure 3.3b). 
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Figure 3.3(a) Effects of mixing regime and DOM source classes on chl-a (top) and PC (bottom). (b) 

Effects of hypolimnion anoxia on chl-a and PC in stratified lakes. Differences among depth and DOM 

source classes were tested using two-way ANOVA analyses followed by Holm-Sidak post-hoc test. 

Uppercase letters represent differences within stratification state; lowercase letters represent differences 

within DOM sources. Numbers represent number of samples (n) in each group. 

In non-stratified lakes, the first two PCA components explained 82.38% of the 

total variance (Figure 3.4a). The loadings of the input variables indicated that the first 

component increased with increasing water color (r2 = 0.97, p < 0.01), DOC (r2 = 0.90, p 
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< 0.01), TP (r2 = 0.90, p < 0.01), TN (r2 = 0.86, p < 0.01), Fe (r2 = 0.86, p < 0.01), and 

SUVA (r2 = 0.85, p < 0.01), and with decreasing depth (r2 = 0.61, p < 0.01) and FI (lower 

FI associated with allochthonous DOM; r2 = 0.61, p < 0.01). The second component was 

significantly correlated to FI (r2 = 0.72, p < 0.01). Chl-a and PC were associated with 

increases in the first component (r2 = 0.67 and 0.58, respectively, p < 0.01). 

In stratified lakes, the first two PCA components explained 62.11% of the total 

variance (Figure 3.4b). Similar to non-stratified lakes, the first component was driven by 

water color (r2 = 0.84, p < 0.01), Fe (r2 = 0.79, p < 0.01), DOC (r2 = 0.69, p < 0.01), TP 

(r2 = 0.60, p < 0.01), TN (r2 = 0.57, p < 0.01), and SUVA (r2 = 0.55, p < 0.01), and 

negatively correlated to hypolimnion DO (r2 = 0.68, p < 0.01) and depth (r2 = 0.67, p < 

0.01). The second component was correlated directly to FI (r2 = 0.65, p < 0.01), TN (r2 = 

0.54, p < 0.01) and TP (r2 = 0.49 p < 0.01), and negatively to SUVA (r2 = 0.73, p < 0.01), 

water color (r2 = 0.43, p < 0.01), and hypolimnion DO (r2 = 0.33, p < 0.01). In stratified 

lakes, chl-a and PC were associated with increases in the first component (r2 = 0.53, 0.27, 

respectively, p < 0.01). 
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Figure 3.4 Results from principal component analysis on lake, DOM, and nutrient characteristics in non-

stratified (n=14; top) and stratified (n=57; bottom) lakes. Chl-a and PC are included as supplementary 

variables (i.e., they were not included in the determination of the principal components, instead their 

coordinates were calculated afterwards). 
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Results from the random forest analyses using all continuous predicting variables 

(depth, hypolimnion DO, DOC, SUVA, FI, water color, TN, TP, and Fe), identified 

depth, water color, and DOC as the three variables with highest relative importance in 

terms of explaining the variation of chl-a among systems (Figure 3.5a). Comparing 

observed chl-a concentrations with modelled values resulted in a significant correlation 

(r2 = 0.63; p < 0.01). The top three most important variables predicting PC concentration 

according to the random forest model were depth, water color, and TN (Figure 3.5b). 

There was a statistically significant correlation between observed and modelled PC 

values (r2 = 0.34, p < 0.01). 
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Figure 3.5 Results from random forest analysis to predict chl-a (left) and PC (right). Top panels represent 

variable importance, bottom panels represent correlations between pigment concentration values (μg L-1) 

predicted from the models (mod; x-axis) and observed values. 

The results of the random forest models generally coincided with results from the 

PLSR models (Table 3.2). The PLSR model for chl-a explained 51.42 % of the variance 

in the data in the first two components, and identified depth, water colour, and DOC as 

the most important predictors (r2 = 0.50). The PLSR model predicting PC explained 

51.34 % of the variance in one component (r2 = 0.17), and identified depth, water colour, 

DOC, and TN as the most important predictors. 
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Table 3.2 Comparison of results from the random forest and PLSR models predicting chl-a and PC. 

Accuracy of random forest models tested as the correlation between observed and modeled values. 

 Random Forest PLSR 

Chl-a   

Accuracy r2 = 0.63 

p < 0.01 

# components = 2 

% variance = 51.42 

RMSE = 0.21 

r2 = 0.50 

Variable importance 

(ranked) 

1. TCU 

2. Depth 

3. DOC 

4. TP 

5. TN 

6. Fe 

7. Hypolimnion DO 

8. SUVA 

1. Depth 

2. DOC 

3. TCU 

4. TP 

5. TN 

6. Fe 

7. SUVA 

8. Hypolimnion DO 

PC   

Accuracy r2 = 0.34 

p < 0.01 

# components = 1 

% variance = 51.34 

RMSE = 0.61 

r2 = 0.17 

Variable importance 

(ranked) 

1. Depth 

2. TN 

3. TCU 

4. TP 

5. DOC 

1. DOC 

2. Depth 

3. TN 

4. TCU 

5. TP 

6. SUVA 

7. Fe 

8. FI 

 

3.4 Discussion  

Nutrients can enter lakes in their inorganic forms through weathering of soils and 

lithology (e.g., P, Fe; Dillon & Kirchner, 1975), atmospheric deposition (e.g., N, Sulphur; 

Dupont et al., 2005), or as part of organic compounds (e.g., N, P, Fe; Findlay, 2003). 

Once in lakes, nutrients may be deposited on the sediments, where they can be stored, or 

re-mobilized through changes in redox conditions (e.g., P, Fe, sulphur, manganese; 

Wetzel, 2001), a process known as internal loading (Søndergaard et al., 2003). Our 

results indicate that brownification (using DOC as a proxy) is associated with 

eutrophication (using TP as a proxy) of temperate lakes (Figure 3.2), emphasizing the 

role of DOM as a nutrient vector in temperate lakes (Jones, 1998). This finding suggests 
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that lakes in areas prone to the mobilization of soil organic compounds are also at risk of 

experiencing eutrophication. However, lake characteristics, like depth and mixing 

regime, can modulate total lake nutrient pools, productivity, and therefore their sensitivity 

to brownification. 

Non-stratified lakes were generally shallower, darker, more nutrient-rich, and 

more productive than deeper stratified lakes. Among non-stratified lakes, those with 

DOM from allochthonous and mixed sources presented higher chl-a concentrations. In 

these lakes, DOM acts as a nutrient vector, supplying macro- (TN, TP) and micro-

nutrients (Fe) to lake primary producers, and also by reducing light availability. The 

increasing nutrient concentrations, water color, and DOC result in increasing 

phytoplankton biomass (chl-a). Previous research suggests that the brownification of 

shallow lakes reduces light penetration, limiting benthic primary production, and 

prompting the shift from benthic to pelagic production (Brothers et al., 2014; Rivera-

Vasconcelos et al., 2018). In addition to limiting benthic production, allochthonous 

nutrient supplies can favor phytoplankton growth, as DOM maintains in solution 

nutrients that otherwise would precipitate under oxic conditions (e.g., P, Fe; Jones, 1998). 

However, allochthonous DOM is generally more refractory than autochthonous DOM 

(McKnight et al., 2003; Xiao et al., 2018). This shift towards more refractory DOM is 

represented by the increase in SUVA with a shift from autochthonous (high FI) to 

allochthonous (low FI) DOM. Refractory DOM is associated with decreased nutrient 

availability, as nutrients are more strongly bound to DOM complexes (Maranger & 

Pullin, 2003). Therefore, even though brownification may result in larger nutrient pools, 

the bioavailable nutrient pool may not significantly increase (Findlay, 2003). Despite this, 

shifts towards more refractory DOM (i.e., higher SUVA) are associated with increases in 

PC, suggesting that cyanobacteria have competitive advantages as allochtonous DOM 

increases in non-stratified lakes. 

In brown waters, some cyanobacteria are able to access nutrients from DOM 

complexes or by adapting to darker conditions (Ekvall et al., 2013; Urrutia-Cordero et al., 

2017). Mixotrophic cyanobacteria (e.g., Cyanothece sp.) can uptake macronutrients (N 

and P) bound to DOM (Maranger & Pullin, 2003). Certain cyanobacteria (e.g., 
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Dolichospermum) may be able to obtain Fe from DOM complexes by producing Fe-

scavenging compounds (i.e., siderophores) that confer them an advantage under Fe-

limiting conditions (Trick & Kerry, 1992; Sorichetti et al., 2014, 2016). Furthermore, 

accessory pigments (phycobiliproteins), present in all cyanobacteria, allowing them to 

grow in light-limiting environments (Zevenboom et al., 1981). Brownification may not 

only benefit cyanobacteria growth, but also promote toxin production (Ekvall et al., 

2013), as microcystin (a common cyanotoxin) has been suggested to function as a 

siderophore (Saito et al., 2008; Li, 2011). Furthermore, reduced light availability can 

abate photosynthesis, reducing cellular C:N ratios, and inducing the storage of N in N-

rich compounds like microcystin (van de Waal, 2009). 

In stratified lakes, the shift from autochthonous to allochthonous DOM does not 

significantly influence chl-a or PC. Instead, hypolimnion anoxia may be a driver of 

phytoplankton biomass (but not cyanobacteria biomass), as decreases in hypolimnion DO 

in stratified lakes were associated with increasing macronutrients (TN and TP). Reduced 

forms of P (PO4-) and Fe (Fe2+) are soluble in anoxic/hypoxic conditions (Curtis, 1993; 

Molot & Dillon, 2003). Internal nutrient loading driven by hypolimnion anoxia/hypoxia 

has been described as a major driver of phytoplankton and cyanobacteria growth by 

relieving P- and Fe-limitation (Søndergaard et al., 2003; Molot et al., 2010; Nürnberg et 

al., 2013; Molot et al., 2014; Orihel et al., 2017). Internal loading of TP and Fe benefits 

picocyanobacteria species living in the thermocline (Gervais et al., 1997; Drakare et al., 

2003) and cyanobacteria species that use buoyancy to descend to the nutrient-rich, 

hypolimnetic waters (Carey et al., 2012). Results from the PCA analysis indicated that, in 

stratified lakes, DOM quantity (DOC) and quality (SUVA) are associated with changes in 

water color. In addition, DOC was directly correlated with Fe, and inversely correlated 

with hypolimnion DO. Therefore, brownification will result in decreased light, higher Fe, 

and hypolimnion anoxia, which will in turn result in the resuspension of sediment P. 

Results from the random forest models identified depth and water color as major 

predictors of both chl-a and PC. This finding suggests that physical, rather than chemical, 

characteristics control primary production (Figure 3.5). However, the correlation between 

water color and phytoplankton pigment concentrations could reflect increased cellular 
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pigment content per unit phytoplankton biomass rather than increased phytoplankton 

biomass, as primary producers favor pigment production to compensate for decreased 

light availability (Felip & Catalan, 2000). Nonetheless, our results support the idea that 

phytoplankton communities successfully adapt to the browning conditions in the 

observed DOC, SUVA, and water color ranges. In addition, phytoplankton may benefit 

from a decrease in harmful UV light penetration associated with increased water color 

(Williamson et al., 2016). 

The importance of TN and TP as predictors of both chl-a and PC was higher than 

Fe. This finding suggests that macronutrient availability (rather than micronutrient 

availability) limited phytoplankton and cyanobacteria growth in the study lakes. FI 

(indicator of DOM source), SUVA (indicator of DOM quality), and hypolimnion DO 

(indicator of hypolimnion redox conditions) were often identified as the least important 

predictors of chl-a and PC. While not being identified as important predictors, they 

provide valuable insight on the mechanisms, internal (hypolimnion DO) or external 

(SUVA, FI), that drive primary production in lakes. 

Brownification-driven changes in light and nutrient availability can increase 

primary production in the observed ranges (DOC = 2 – 12 mg L-1). Shallow lakes will be 

more sensitive to changes in DOM loads, as DOM quantity and quality directly control 

nutrient concentrations and light penetration. In deeper stratified lakes, brownification 

will result in increases in water color, Fe concentration, and hypolimnion anoxia, which 

in turn will induce the resuspension of sediment P. Changes in light and macronutrients 

driven by moderate inputs of allochthonous DOM will promote the growth of 

phytoplankton and specifically cyanobacteria in temperate lakes. 

3.5 Conclusions 

Global changes, including increasing temperatures, shifts in hydrologic 

connectivity, and decreases in atmospheric acid deposition, are causing the 

brownification of northern lakes. Shifts in DOM quantity and quality cause alterations in 

the physical and chemical characteristics of lakes and could induce a shift from oligo- to 
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eutrophic conditions. As current brownification trends are expected to continue, shallow 

lakes are likely to experience greater cyanobacteria growth and be at risk of developing 

potentially harmful cyanobacteria blooms, altering ecosystem function, and putting 

aquatic ecosystem services at risk. This risk will continue until a threshold in browning is 

exceeded, and the benefits of more nutrients are offset by the costs of less light, reducing 

lake production. 
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Chapter 4  

4 Brownification, primary production, and the transfer of 

essential fatty acids in temperate oligotrophic lakes 

4.1 Introduction 

The current trend of climate-change-driven increases in allochthonous dissolved 

organic matter (DOM) loads supplied to northern lakes (Kritzberg & Erkström, 2012; 

Creed et al., 2018), a process known as brownification, is altering the biomass and 

nutritional quality of primary producers (Urrutia-Cordero et al., 2016) available to 

primary consumers (Sterner et al., 1992, Karlsson et al., 2009; Kissman et al., 2017). 

Allochthonous DOM is composed of darker, more refractory, compounds (i.e., aromatic 

and with a high molecular weight) than autochthonous DOM and thereby alters the 

physico-chemical environments of freshwater lakes (McKnight et al., 2003). For 

example, allochthonous DOM reduces light penetration (Karlsson et al., 2009) that results 

in increased heat retention and a shallower, warmer, and more stable epilimnion (Houser, 

2006; Porcal et al., 2009). Allochthonous DOM can function as an energy (C) and 

nutrient (nitrogen (N), phosphorus (P), iron (Fe)) source for primary producers (Ged & 

Boyer, 2013); however, the bioavailability of the increased nutrient pool declines with 

shifts to more refractory DOM (Findlay, 2003; Sorichetti et al. 2016; Soares et al., 2017). 

Low to moderate increases in allochthonous DOM supplies in clear oligotrophic lakes 

can enhance primary production by supplying additional energy and nutrients to 

phytoplankton (Seekell et al., 2015; Tanentzap et al., 2014), but high contents of 

allochthonous DOM in brown oligotrophic lakes have been associated with low primary 

production due to light limitation (Ask et al., 2009).  

Brownification induces changes in phytoplankton communities (Finstad et al., 

2014; Solomon et al., 2015). Specific phytoplankton groups, including cyanobacteria, 

have developed adaptations to brownification-driven changes in light and nutrient 

conditions that allow them to outcompete eukaryotic algae (Jones, 1998; Urrutia-Cordero 

et al., 2016). For example, cyanobacteria have phycobiliproteins, accessory pigments that 

allow them to photosynthesize under lower-light conditions (Oliver & Ganf, 2000). Some 

cyanobacteria (e.g., Aphanizomenon sp.) are able to regulate their buoyancy and thus 
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their position in the water column especially with respect to being positioned in the 

metalimnion and hypolimnion where nutrients accumulate (Carey et al., 2012). Some 

cyanobacteria (e.g., Dolichospermum sp.) are able to synthesize organic ligands (i.e., 

siderophores) that scavenge Fe from DOM and transport it into the cell (Trick & Kerry, 

1992, Sorichetti et al., 2014). Finally, some cyanobacteria (e.g., Cyanothece sp.) resort to 

mixotrophy to access C and other nutrients (including P and Fe) from DOM (Jones, 1998; 

Deininger et al., 2017) when light and nutrients are limiting. In addition to cyanobacteria, 

mixotrophic flagellates, including cryptophytes, dinoflagellates, and raphydophytes, are 

typically found in highly-colored lakes, as they can also adjust their position in the water 

column thereby benefitting from spatially discrete organic nutrient pools (Arvola, 1984). 

The cascading effects of brownification translated up the food web have been 

debated (Brett et al., 2017). The debate has focused on the essential fatty acid (EFA) 

composition of basal resources (Kelly et al., 2014; Galloway et al., 2014). EFAs are 

polyunsaturated fatty acids (PUFAs; i.e., fatty acids with multiple double bonds in their C 

chain) that are involved in maintaining cell structure, metabolism, growth and 

reproduction. EFAs generally cannot be synthesized de novo by consumers in sufficient 

quantities to meet their needs (Brett & Mülller-Navarra, 1997; Vance & Vance, 2008); 

however, recent studies have observed the presence of specific desaturases that support 

the synthesis of omega-3 (n-3) unsaturated fatty acids from saturated ones in several 

lineages of invertebrates (Kabeya et al., 2018). Allochthonous DOM is enriched in long-

chain saturated fatty acids (LC-SFA), fatty acids without double bonds and with 20 or 

more atoms in their chains, but its PUFA content is restricted to mostly omega-6 (n-6) 

PUFAs (Hixson et al., 2015; Taipale et al., 2014). In contrast, phytoplankton synthesize 

higher concentrations of both n-3 and n-6 PUFAs, although there are exceptions among 

taxa (Strandberg et al., 2015a). Having an obligate requirement for both n-3 and n-6 

PUFAs, consumers must rely on autochthonous resources to meet their n-3 requirements 

(Hixson et al., 2015). Among n-3 PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and 

docosahexaenoic acid (DHA; 22:6n-3) are primarily synthesized by phytoplankton and 

are essential for consumer’s growth, reproductive success and neural development (Ravet 

et al., 2003; Brett et al., 2006). 
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Essential fatty acid content and composition in phytoplankton vary. Some 

phytoplankton (e.g., chrysophytes, cryptophytes, diatoms, dinoflagellates, and 

raphydophytes) are considered high quality resources due to their ability to synthesize 

significant amounts of EPA, DHA, and other n-3 PUFAs. Other phytoplankton (e.g., 

chlorophytes and cyanobacteria) are considered low quality resources due to the low 

content of EPA and DHA (Brett & Müller-Navarra, 1997; Brett et al., 2000; Strandberg 

et al., 2015a); however, chlorophytes, in particular, can contain appreciable quantities of 

short chain n-3 PUFAs (Napolitano, 1999), -linoleic acid (ALA; 18:3n-3) and 

stearidonic acid (SDA; 18:4n-3) that are precursors of EPA and DHA. While differences 

in PUFA content among phytoplankton taxa are greater than differences within each taxa 

(Galloway & Winder 2015; Taipale et al., 2016), environmental conditions (e.g., light or 

nutrient availability) can influence PUFA content in phytoplankton (Guschina & 

Harwood, 2009; Fuschino et al., 2011). In fact, shifts in phytoplankton community 

composition driven by major changes in environmental conditions (e.g., brownification 

and eutrophication) may lead to changes in the production and subsequent transfer of 

PUFAs in lake pelagic food webs (Strandberg et al., 2015b; Taipale et al., 2016, 2018). 

Both autochthonous and allochthonous C is transferred from the base of the food 

web to zooplankton and, from there, to higher trophic levels (fish), by bacteria that 

assimilate decomposing phytoplankton and extracellular substances from living 

phytoplankton (i.e., the microbial loop; Tranvik, 1992), or by zooplankton that graze 

phytoplankton and particulate organic matter (Cole et al., 2011). Heterotrophic bacteria 

are typically poor-quality resources that contain little or no PUFAs; rather, they contain 

odd-chain and branched-chain SFAs and mono-unsaturated fatty acids (Ratledge & 

Wilkinson, 1988; Hiltunen et al., 2015). However, heterotrophic flagellates can 

trophically-upgrade fatty acids with each trophic transfer through the microbial loop 

where they are then preferentially retained by consumers (Bec et al., 2006; Desvilletes & 

Bec, 2009). Consequently, the microbial loop can improve the quality of the C transfer 

pathway despite the loss of energy due to the upgrade of PUFAs. The transfer of PUFAs 

to higher trophic levels is further dependent on the feeding modes, life histories, 

reproduction cycles and PUFA requirements of primary consumers (Persson & Vrede, 

2006; Perhar et al., 2013). For example, cladocerans are generalist filter-feeders 
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(although they exhibit some selectivity, particularly regarding particle size, DeMott, 

1982), with greater EPA content (Persson & Vrede, 2006; Hiltunen et al., 2014, 2016), 

and faster growth and reproduction rates relative to copepods. Copepods are more 

selective, with greater DHA content than cladocerans (Persson & Vrede, 2006; Hiltunen 

et al., 2014, 2016). However, there is also evidence that zooplankton actively retro-

convert dietary DHA back to EPA (in the case of cladocerans; Fink & Windisch, 2018) 

and EPA to DHA (in the case of copepods; Sargent et al., 1995), although this process is 

considered to be energetically expensive. 

Brownification-driven changes in phytoplankton production and community 

composition could reduce the production and transfer of PUFAs in lakes (Hessen et al., 

1990). Brownification may influence the PUFA pool size and transfer by: (1) supplying 

additional terrestrial resources (rich in LC-SFA); (2) favoring heterotrophic bacteria 

growth (resulting in enriched odd-chain and branched-chain SFA); (3) enhancing the 

microbial loop and subsequently the fatty acid transfer through this pathway; and (4) 

provoking shifts phytoplankton composition, from higher-quality autotrophic eukaryotes 

(resulting in enriched n-3 PUFAs, EPA and DHA) to lower-quality cyanobacteria (Figure 

4.1). Here, we hypothesized that brownification of lakes enhances primary production but 

selects for cyanobacteria, and as primary production and associated fatty acid pools 

increase, cyanobacteria will shift the fatty acid pool to lower PUFA (especially n-3) in 

phytoplankton, which in turn will lower PUFA in consumers. We tested these hypotheses 

in a comparative, space-for-time substitution study (Carpenter, 1991), representing the 

effects of the process of brownification on content and composition of DOM in lakes in 

the temperate biome. 
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Figure 4.1. Diagram of a pelagic food web identifying main diet sources for consumers and their fatty acid 

indicators. Dashed arrows represent microbial loop. 

4.2 Methods 

4.2.1 Study lakes  

Lakes were situated in the Ontario temperate biome, a region where the average 

annual temperature is 5.2°C and the average annual precipitation is 832 mm 

(weatheroffice.gc.ca). Lakes were situated on the Precambrian Shied, composed of 

metasedimentary rocks and soils dominated by acidic podzols (Chapman & Putnam, 

1973). Contributed catchments to lakes were generated in ArcMap 10.2 (ESRI, 2014); 
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lake polygons (Ontario Hydrographic Network; waterbodies) were used as pour points on 

a 20 m digital elevation model (Ontario Digital Elevation Model, version 2.0.0) that was 

hydrologically conditions using depression filling algorithm (Tarboton et al., 1991). 

Contributing catchments were covered by forests and wetlands. The forest was dominated 

by sugar maple (Acer saccharum Marsh), yellow birch (Betula lutea F. Michx), and 

beech (Fagus grandifolia Ehrh), but with some white pine (Pinus strobus L.), balsam fir 

(Abies balsamea L.) Mill) and eastern hemlock (Tsuga canadensis L. Carr) (Perera et al., 

2011). The wetlands ranged from 0.5 to 50% of the catchment area, based on the Ontario 

Wetland Inventory (revised 2013; Ontario Ministry of Natural Resources). As wetlands 

are an important source of organic C (Creed et al., 2008, Creed et al., 2013), lakes were 

selected to represent the range of proportion of wetlands.  

4.2.2 Lake samples 

A total of 30 lakes were selected to represent a range in proportion of wetlands 

(Figure 4.2). Each lake was sampled during the peak growing season for phytoplankton 

(August-September) in 2016 at its deepest point. Temperature measurements were taken 

in 1 m intervals down the water column using a YSI EXO-2 multiparameter sonde (YSI 

Incorporated, Yellow Springs, Ohio, USA). Thermocline depth was estimated as the 

depth of greatest change in temperature in the water column. Composite epilimnion water 

samples were collected by combining three water samples collected at equal intervals, 

from surface to thermocline depth, using a Van Dorn sampler. The three depths at which 

water was collected were equally spaced, and the shallowest and deepest sample were at 

the same distance from the surface and the thermocline, respectively.  
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Figure 4.2. Study lakes in central Ontario. 

 

Lake trophic status was assigned based on total P (TP; μg L-1). Oligotrophic lakes 

had a TP concentration < 10 μg L-1 and eutrophic lakes had a TP > 35 μg L-1 (OECD, 

1982; Dodds et al., 1998). A 50 mL subsample from the composite epilimnion sample 

was collected in a borosilicate tube and used to measure TP. All subsamples were kept on 

ice in coolers during transport and then at 4 °C prior to analysis in the laboratory. P in the 

water sample was converted to orthophosphate in sulphuric acid-persulfate medium in an 

autoclave at 121 °C for 30 min and then measured by colorimetry in a Skalar San++ 

Continuous Flow Analyzer (Skalar Analytical, Breda, The Netherlands). 

Lake browning indicators included dissolved organic carbon (DOC; mg L-1) as a 

proxy for DOM quantity, and Specific UV Absorbance (SUVA; L mg C-1 m-1), the ratio 

of absorbance at 254 nm to DOC concentration, as a proxy for DOM quality (Weishaar et 

al., 2003). Subsamples for DOM quantity and quality were collected from the composite 

epilimnion samples. A composite epilimnion sample (1.5 L) for water chemistry analysis 

was filtered through a nylon filter (Nitex) of 80 μm porosity. A 500 mL subsample was 
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collected in a polyethylene terephthalate bottle for analysis of DOC. A 500 mL 

subsample was collected in a dark Nalgene bottle for determination of SUVA. DOC 

was measured from pre-ashed GF/F-filtered water samples by colorimetry using a 

Technicon AutoAnalyzer II (Seal Analytics, Mequon, Wisconsin, USA). Absorbance 

measurements were performed on a Cary 300 Bio UV-Visible spectrophotometer 

(Agilent Technologies, Santa Clara, CA, USA) in a 1 cm path quartz cuvette.  

Chlorophyll-a (chl-a, μg L-1) was measured as a proxy for phytoplankton biomass 

and phycocyanin (PC, μg L-1) was measured as a proxy for cyanobacteria biomass. Two 

500 mL subsamples of the composite epilimnion sample were sampled, one for chl-a and 

the other for PC. The 500 mL subsamples were filtered through pre-ashed GF/F glass-

fiber filters (GE Healthcare Life Sciences) within 24 h after sample collection. Filters 

were preserved at -80 °C until pigment extraction and quantification. Chl-a was extracted 

by submerging the filters in 90% acetone solution at -20 °C for 24 h. Chl-a determination 

was performed by fluorometry on a Trilogy fluorometer (Turner Designs, Sunnyvale, 

CA, USA) and quantified as per Jeffrey & Humphrey (1975). PC was extracted by 

placing filters in tubes with 1 mL of phosphate buffer solution (0.1 M, pH 6) and then 

freeze-thawing then 3 using liquid nitrogen. To ensure cell lysis, filters were further 

sonicated (5 sec pulses in 2 min cycles) and 3 mL of the phosphate buffer was added 

prior to PC extraction at 4 °C for 24 h. The supernatant was separated from the filter by 

centrifugation (6000 g for 5 min), filtered through 0.22 μm glass fiber syringe filters 

(Acrodisc Supor Membrane, Pall Life Sciences, Port Washington, NY, USA), and PC 

was determined by absorbance in a Cary 3000 spectrophotometer (Agilent Technologies, 

Santa Clara, CA, USA) in a 1 cm path-length quartz cuvette. 

Fatty acid content was measured in seston and zooplankton. Seston and 

zooplankton samples were collected for fatty acid analysis by towing 60 μm (seston) and 

156 μm (zooplankton) mesh-size plankton nets from thermocline to the lake surface in 

each of the 30 study lakes. Nets were towed until enough biomass was collected. Seston 

samples were subsequently filtered, on-site, through an 80 μm mesh-size filter on site to 

remove zooplankton and other suspended particles. Seston samples were filtered through 

0.45 μm nitrocellulose filters (Sigma Aldrich, USA) then backwashed with 2 mL of lake 

water. The filtered seston samples were stored in Falcon tubes at -80 °C. Zooplankton 
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samples were collected in Whirl-Pak bags and kept frozen on dry-ice during transport 

and in an ultra-low temperature freezer (set to -80 °C) prior to laboratory analysis. 

Zooplankton samples were thawed and then sorted into cladocerans and copepods while 

ensuring that no phytoplankton remained on them. Seston, cladocerans and copepod 

samples were freeze-dried prior to fatty acid extraction and quantification. Lipids were 

extracted from the freeze-dried samples with chloroform-methanol (2:1 by volume); 

methanolic sulfuric acid was added as a catalyst and samples were heated at 90 °C for 90 

min to transmethylate the fatty acids. Fatty acids were then extracted to n-hexane, 

concentrated, and analyzed through gas chromatography on a Shimadzu GC-210 plus 

with flame ionization detector using a SP-2560 column (Supelco Inc.). Helium was used 

as carrier gas (average flow of 20 cm sec-1) and a splitless injection technique was used. 

The temperature was maintained at 50 °C for 1 min, then increased to 180 °C at the rate 

of 15°C min-1, then increased to 240 °C at a rate of 2 °C min-1, where it was maintained 

for 23 min. The standard fatty acids methyl ester mix GLC68F (Nu-Chek Prep.) was used 

for peak identification and quantification. Fatty acid concentrations were converted from 

dry weight to C ratios (μg FA mg C-1). Seston and zooplankton C content was measured 

from freeze-dried samples through mass spectrometry by dry combustion using an EA 

(Costech Analytical Technologies, Valencia, CA, USA). Fatty acid retention by 

consumers was calculated as the ratio between consumer fatty acid content (in μg FA mg 

C-1) to seston fatty acid content (μg FA mg C-1).  

4.2.3 Statistical analyses 

Significance of correlations of DOC vs. chl-a and PC were performed using linear 

and logarithmic regression models in Sigma Plot 12.0 (Systat Software, San Jose, CA). 

Significant differences in fatty acid composition between seston, cladocerans and 

copepods (as μg FA mg C-1) were assessed through one-way ANOVA in Sigma Plot 

12.0. Significance of correlations of brownification indicators (DOC, SUVA), lake 

trophic status (TP), chl-a and PC vs. fatty acid composition (µg FA mg C-1) of seston, 

cladocerans and copepods) and fatty acid retention by consumers (i.e., the ratio of 

consumer fatty acid content to seston fatty acid content) were performed using linear 

regression models. All statistical analyses were performed using SigmaPlot 12.0 at a 
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significance level p <0.05. To ensure that changes in specific fatty acid fractions were 

independent from each other, correlations between predictor variables and fatty acid 

composition were also run on the percentage of each fatty acid fraction over 

corresponding total fatty acid content in seston, cladocerans or copepods. 

4.3 Results 

There was a range in environmental conditions (DOC, SUVA, TP) among the study 

lakes. DOC ranged from 2.60 to 9.80 mg L-1, and SUVA ranged from 1.22 to 5.00 L mg 

C-1 m-1. There was a weak correlation between DOC and SUVA (r2 = 0.13; p = 0.06). TP 

in the lakes ranged from 6.00 to 48.50 μg L-1 (average TP = 12.85 ± 8.92 μg L-1); 14 

lakes were oligotrophic (TP between 0 and 10 μg L-1), 15 lakes were mesotrophic (TP 

between 10 and 35 μg L-1), and one lake (Brandy Lake) was eutrophic (48.50 μg L-1) 

(Table 4.1). 
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Table 4.1. Brownification drivers (DOC and SUVA), trophic status (TP) and responses (chl-a and PC) for 

all study sites. 

ID 

DOC 

(mg L-1) 

SUVA 

(L mg C-1 m-1) 

TP 

(μg L-1) 

Chl-a 

(μg L-1) 

PC 

(μg L-1) 

BAS 5.80 2.76 10.70 2.36 9.13 

BEL 2.60 1.98 6.50 2.00 15.23 

BRA 9.50 5.00 48.50 7.89 50.90 

COU 5.30 1.23 12.60 3.47 15.23 

CRY 4.90 2.40 21.30 1.67 6.23 

DAV 5.30 2.33 8.10 1.73 8.09 

DEP 9.10 2.78 20.40 12.52 26.45 

DEV 4.20 2.69 11.80 3.87 1.46 

FOU 5.60 1.58 6.80 0.97 0.12 

FOX 7.10 4.01 11.10 7.33 21.28 

HEA 4.40 1.69 11.30 3.80 14.63 

KAS 4.20 2.61 7.80 1.91 4.23 

KOS 3.80 3.01 6.60 2.38 7.13 

LON 5.20 2.78 9.30 3.57 7.76 

LOM 5.90 2.05 7.40 2.86 9.13 

MAC 7.40 2.32 18.70 11.45 50.15 

MAP 3.70 2.91 7.50 1.24 0.50 

MAR 5.10 3.39 12.40 2.15 13.02 

MEN 7.10 3.93 11.40 3.44 26.36 

MIN 9.80 2.85 18.40 11.98 24.22 

MOR 5.50 2.91 9.00 2.91 9.50 

OXB 4.00 2.75 7.20 1.58 11.50 

PAI 3.90 2.52 10.40 3.62 0.50 

RAV 3.50 2.59 6.00 3.37 7.36 

RIL 4.10 4.83 10.90 4.04 25.12 

SPA 4.90 2.32 13.40 2.63 13.23 

TEA 6.30 2.82 7.50 3.89 15.23 

TWE 3.20 2.39 8.10 2.77 0.23 

WAS 7.90 3.34 31.80 6.31 32.38 
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Environmental conditions (DOC, SUVA, TP) had an effect on phytoplankton (and 

cyanobacteria) biomass (i.e., seston). DOC was correlated to both chl-a (r2 = 0.53) and 

PC (r2 = 0.28) (Figure 4.3). SUVA was correlated with PC only (r2 = 012). TP was 

correlated to DOC (r2 = 0.45) and SUVA (r2 = 0.19). In addition, TP was positively 

correlated to chl-a (r2 = 0.27) and PC (r2 = 0.16).  

 

Figure 4.3. Correlation between DOM concentration (DOC) and phytoplankton (chl-a) and cyanobacteria 

(PC) biomass. Lines represent significant correlations (p < 0.05). 

 

We examined the effect of environmental conditions (DOC, SUVA, TP) on the 

content of each fatty acid fraction (n-3 PUFA, n-6PUFA, EPA, DHA, LC-SFA, odd-

chain and branched-chain SFA) in seston and consumers (Table 4.2). DOC was not 

correlated to the content of any of the assessed fatty acids in seston. However, SUVA 

was negatively correlated with n-6 PUFA (r2 = 0.12), DHA (r2 = 0.12), odd-chain and 

branched-chain SFA (r2 = 0.16), and long-chain SFA (r2 = 0.12) in seston (Table 4.1). 

Neither DOC nor SUVA were correlated with any of the assessed PUFA content (n-3, n-

6, EPA, or DHA) in consumers. TP was negatively correlated with DHA (r2 = 0.19) in 

seston. 
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Table 4.2. Slopes of significant (p < 0.05) correlations between (z-scored standardized) brownification 

drivers and fatty acid composition (in μg FA mg C-1) in seston, cladocerans, and copepods, and fatty acid 

retention in cladocerans and copepods. 

  DOC SUVA TP Chl-a PC Seston FA 

  slope r2 slope r2 slope r2 slope r2 slope r2 slope r2 

Seston                         

n-3 
      -1.33 0.13 -1.3 0.12     

n-6 
  -1.54 0.12     -1.58 0.17     

EPA 
      -1.63 0.33 -1.46 0.25     

DHA 
  -0.96 0.12 -1.05 0.19 -1.22 0.29 -1.33 0.33     

Odd/branched 
  -1.78 0.16           

LC-SFA     -2.69 0.33     -1.57 0.16 -1.46 0.13     

Cladocerans                         

n-3 
            

n-6 
          -4.42 0.40 

EPA 
            

DHA 
    1.67 0.14     -2.74 0.23 

Odd/branched 
      2.33 0.16 2.95 0.22   

LC-SFA                         

Copepods                         

n-3 
            

n-6 
            

EPA 
            

DHA 
            

Odd/branched 3.41 0.15   3.07 0.12 4.59 0.29 4.20 0.26   

LC-SFA                         

Cladocerans 

Retention 
                        

n-3 
              

n-6 
              

EPA 
      1.03 0.15       

DHA 
  1.03 0.21 1.04 0.25 0.9 0.22 0.89 0.25     

Odd/branched 
  1.60 0.15     1.15 0.18     

LC-SFA     2.08 0.30     1.43 0.19 1.26 0.17     

Copepods 

Retention 
                        

n-3 
              

n-6 
              

EPA 
      1.33 0.22       

DHA 
    0.86 0.27 1.99 0.19 0.77 0.13     

Odd/branched 
  1.37 0.18   1.07 0.13 1.77 0.16     

LC-SFA     1.8 0.21     1.27 0.16         
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The fatty acid content was significantly smaller (but more variable) in seston than 

in cladocerans and copepods, except for LC-SFA which was in low concentration in all 

three groups (average log (LC-SFA) = 0.26 μg mg C-1 in seston, 0.38 μg mg C-1 in 

cladocerans and 0.47 μg mg C-1 in copepods) (Figure 4.4). Furthermore, DHA content 

was lower in cladocerans (average log (DHA) = 1.58 μg mg C-1) than copepods (1.72 μg 

mg C-1), but there were no significant differences in the other fatty acids among 

zooplankton groups. 

 

Figure 4.4. Fatty acid concentration in seston, copepods, and cladocerans. Letters represent significant 

differences between organism fatty acid content calculated from one-way ANOVA and post-hoc Holm-

Sidak test. 

We examined the effect of ecological conditions (chl-a, PC) on the content of 

each fatty acid fraction (n-3 PUFA, n-6PUFA, EPA, DHA, LC-SFA, odd-chain and 

branched-chain SFA) in seston (Figure 4.5) and consumers (Table 4.2). Phytoplankton 

biomass (chl-a) was negatively correlated with n-3 PUFA (r2 = 0.13), EPA (r2 = 0.33) 
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and DHA (r2 = 0.29) in seston; and cyanobacteria biomass (PC) was negatively correlated 

with n-3 PUFA (r2 = 0.12), n-6 PUFA (r2 = 0.17), EPA (r2 = 0.25) and DHA (r2 = 0.33) in 

seston. Both chl-a and PC were negatively correlated with LC-SFA (r2 = 0.16 for chl-a 

and 0.13 for PC) in seston, but positively correlated with LC-SFA in cladocerans (r2 = 

0.16 for chl-a and r2 = 0.22 for PC) and copepods (r2 = 0.29 for chl-a and r2 = 0.26 for 

PC). DHA content in seston correlated negatively with DHA content in cladocerans (r2 = 

0.23), and n-6 PUFA in seston correlated negatively with n-6 PUFA in cladocerans (r2 = 

0.40). None of the fatty acid fractions in seston correlated with fatty acid content in 

copepods. When the percentage of each fatty acid fraction over total fatty acid content 

was assessed (rather than the concentration), all predictors (DOC, SUVA, TP, chl-a, and 

PC) were significantly correlated with the percentage of odd-chain and branched-chain 

SFA over total fatty acid content (rather than their concentration) in copepods but only 

chl-a and PC were correlated with the percentage of odd-chain and branched-chain SFA 

in cladocerans (Table 4.3). 
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Figure 4.5. Correlation between seston PUFA and chl-a (left column) and PC (right column). Lines 

represent significant correlations (p < 0.05); r2 values and slopes can be found in Table 4.1 
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Table 4.3. Significant (p < 0.05) correlations between (z-score transformed) indicators of brownification 

(DOC, SUVA), trophic status (TP), and responses of brownification (chl-a, PC), and seston and consumers 

fatty acid content measured as the percentage of each fatty acid fraction over the total fatty acid content. 

  DOC SUVA TP Chl-a PC Seston FA  

  slope r2 slope r2 slope r2 slope r2 slope r2 slope r2 

Seston                         

n-3               

n-6               

EPA       -0.50 0.17       

DHA       -0.49 0.17       

Odd/branched               

LC-SAFA                         

Cladocerans                         

n-3             

n-6             

EPA -1.23 0.18 -0.99 0.14   -1.09 0.14   1.25 0.3 

DHA     1.02 0.14       

Odd/branched       0.62 0.27 0.64 0.33 0.48 0.17 

LC-SAFA                     0.09 0.18 

Copepods                         

n-3             

n-6             

EPA           0.95 0.34 

DHA             

Odd/branched 0.63 0.4 0.41 0.17 0.55 0.3 0.67 0.44 0.75 0.51   

LC-SAFA                     0.13 0.21 

 

We examined the environmental (DOC, SUVA, TP) and ecological (chl-a, PC) 

controls on the fatty acid retention in consumers (measured as the ratio of consumer to 

seston fatty acid content) (Table 4.2). DOC did not correlate to any of the fatty acid 

retention in consumers, however, SUVA was positively correlated to odd chain and 

branched-chain SFA and LC-SFA retention in both cladocerans (r2 = 0.15 for odd-chain 

SFA and r2 = 0.30 for LC-SFA) and copepods (r2 = 0.18 for odd-chain and r2 = 0.21 for 

branched-chain SFA and LC-SFA). SUVA was also positively correlated to DHA 

retention in cladocerans (r2 = 0.21). Chl-a was correlated with retention of PUFA (EPA 

and DHA) in both cladocerans and copepods, and it was correlated with retention of LC-

SFA in cladocerans (r2 = 0.19) and retention of odd-chain and branched-chain SFA (r2 = 

0.13) and LC-SFA in copepods (r2 = 0.16). PC was correlated with retention of DHA in 

both cladocerans (r2 = 0.25) and copepods (r2 = 0.13), with retention of odd-chain and 
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branched-chain SFA and LC-SFA in cladocerans (r2 = 0.18 and 0.17, respectively), and 

retention of odd-chain and branched-chain SFA in copepods (r2 = 0.16).  

The transfer of PUFA to consumers through the microbial loop was further 

assessed through correlations between seston PUFA content (EPA and DHA) and the 

ratio of PUFA to bacterial fatty acids (odd-chain and branched-chain SFA) in consumers 

(Figure 4.6). Correlations existed between seston EPA and the ratio of EPA to bacterial 

fatty acids in cladocerans (r2 = 0.22) and copepods (r2 = 0.31). In addition, a correlation 

existed between DHA content in seston and the ratio of DHA to bacterial fatty acids ratio 

in copepods (r2 = 0.20), but not in cladocerans. 



111 

 

 

Figure 4.6. Seston, cladocerans, and copepod EPA (top left) and DHA (top right) content in all the study 

lakes. Seston circle sizes represent phytoplankton biomass (chl-a). Bottom panels represent consumers’ 

EPA:odd-chain and branched-chain SFA (bottom left) and DHA:odd-chain and branched-chain SFA 

(bottom right) ratios as a function of seston EPA and DHA content. Lines represent significant correlations 

(p<0.05). 
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4.4 Discussion 

Brownification alters the pathways and efficiency of energy and nutrient transfers 

in lake food webs (Karlsson et al., 2009; Finstad et al., 2014). This alteration may occur 

directly, by increasing the availability of low-quality terrestrial resources (Karlsson et al., 

2009), changing the phytoplankton community composition (Jones, 1998), or promoting 

the microbial loop because of additional C resources (Tranvik, 1992). Alternatively, this 

alteration may occur indirectly, by changing lake environmental conditions (Solomon et 

al., 2015) that in turn alter the production of PUFA by phytoplankton (Guschina and 

Hardwood, 2009). We hypothesized that brownification directly affects the 

phytoplankton community, increasing biomass and favoring cyanobacteria, consequently 

resulting in a reduction in the availability and transfer of PUFA to primary consumers. 

We found that brownification led to increased DOM and shifts towards more 

refractory DOM (higher SUVA, associated with darker water color (McKnight et al., 

2003)) in the lakes. The additional DOM inputs led to an increase in phytoplankton 

biomass (i.e., chl-a) and a shift in the phytoplankton community to a greater prevalence 

of cyanobacteria (i.e., PC). We also found that brownification-driven changes in the 

phytoplankton community were associated with a decline in PUFA in seston; specifically, 

increases in PC were correlated to decreases in seston n-3 PUFA (including EPA and 

DHA) and seston n-6 PUFA. Shifts towards more refractory DOM (i.e., larger SUVA), 

rather than more DOM (i.e., larger DOC), drove the decline in seston DHA and n-6 

PUFA. Cyanobacteria have competitive advantages in lakes with more refractory DOM. 

Cyanobacteria have accessory pigments that allow them to photosynthesize under lower 

light conditions (Oliver & Ganf, 2000), some species can scavenge Fe from DOM-Fe 

complexes (Sorichetti et al., 2014, 2016), and some species can shift from autotrophy to 

mixotrophy to consume DOM (Poerschmann et al. 2004; Wilken et al., 2018) in these 

nutrient-poor lake waters. Irrespective of the strategy, the increase in the cyanobacteria 

could drive declines in the content of PUFA of seston (Müller-Navarra et al., 2004).  

However, changes in environmental conditions driven by brownification may 

have further impacted PUFA production. For example, increases in temperature and CO2 

concentrations (Mayorga et al., 2005; Porcal et al., 2009) can decrease PUFA production 

in phytoplankton, as unsaturation of fatty acids is typically highest at low temperature 
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and CO2 concentrations (Thompson, 1996, Fuschino et al. 2011). Furthermore, changes 

in nutrient conditions can decrease PUFA pools. Nutrient limitation can lead to slower 

growth and reduced cellular division resulting in greater cellular fatty acid stores 

(Thompson, 1996; Guschina & Harwood, 2009). Therefore, brownification and 

associated increased nutrient loads (Jones, 1998) can decrease in PUFA pools by 

favoring faster and larger growth and therefore reducing the cellular fatty acid storage. 

Alternatively, decreases in the penetration of UV radiation (Williamson et al., 1996) can 

increase PUFA pools by reducing PUFA oxidative damage (Harwood, 1998).  

Despite the observed difference in PUFA content in phytoplankton (lower in 

cyanobacteria), we found no difference in PUFA content in zooplankton. Compared to 

seston, consumers had a larger content of PUFA (and odd-chain and branched-chain 

SFA, but not LC-SFA), reflecting the preferential retention of these fatty acids. Increases 

in PUFA content from seston to herbivores, and from herbivores to carnivores, have been 

previously observed, as these compounds are preferentially retained to maintain somatic 

growth and reproduction (Persson & Vrede, 2006). Greater classification (to the species 

level) within zooplankton taxa could help unravel differences between feeding types 

(Hessen & Leu, 2006; Guschina & Harwood, 2009). However, differences in EPA and 

DHA were observed even at the class level, with cladocerans (filter-feeders) having a 

larger average EPA content and copepods (selective-feeders) having a larger DHA 

content. The DHA content in copepods makes them the major DHA transfer pathway to 

top predators (Strandberg et al., 2015b). Importantly, there was no decrease in 

zooplankton PUFA content associated with brownification. Instead, the PUFA content in 

zooplankton was relatively homogenous among lakes irrespective of DOM properties. 

The PUFA content of consumers is defined, in part, by phylogenetic origin and life 

history (Persson & Vrede, 2006), making them quasi-homeostatic (i.e., their nutritional 

characteristics are, to an extent, independent of their diet) to fatty acid variability in 

seston (Brett et al., 2009). The quasi-homeostatic PUFA content in consumers is also 

reflected by the lack of correlation between environmental (DOC, SUVA, TP) and 

ecological (chl-a, PC) controls vs. consumer PUFA (except for the negative correlations 

in n-6 PUFA and DHA content between seston and cladocerans). Both, the enrichment 

and the consumers’ quasi-homeostatic PUFA content suggest that zooplankton have 



114 

 

strategies (e.g., greater consumption of –PUFA-poor resources or reliance on the 

microbial loop) to compensate for the decline in seston quality. 

We found an association between chl-a and PC and bacterial fatty acids (odd-

chain and branched-chain SFA) in cladocerans and copepods, indicating greater reliance 

on fatty acid transfer through the microbial loop with increasing phytoplankton and 

cyanobacteria biomass (Hiltunen et al., 2015). These findings are further supported by the 

percentage of odd-chain and branched-chain SFA (rather than concentration), especially 

in copepods, confirming the brownification-driven increase in the uptake of bacterially-

derived fatty acids. In the microbial loop, autochthonous and allochthonous C is 

assimilated by bacteria and transferred to zooplankton via two additional trophic transfers 

(bacteria-ciliates-heterotrophic flagellates-zooplankton; Berglund et al., 2007). Since 

each trophic transfer results in PUFA enrichment, heterotrophic flagellates can have 

significantly higher PUFA content than the original resource; a phenomenon known as 

‘trophic upgrading’ (Bec et al., 2006, 2010). Under PUFA-poor phytoplankton 

conditions, heterotrophic flagellates might be a greater quality resource for zooplankton 

(Desvilletes & Bec, 2009). In our study lakes, the ratios of EPA and DHA to bacterial 

fatty acids (odd-chain and branched-chain SFA) in copepods decline with increasing EPA 

and DHA seston content. This correlation is observed only when considering the ratio of 

EPA (and not DHA) to bacterial fatty acids in cladocerans. These correlations further 

suggest that, when brownification drive declines in seston quality, consumers supplement 

their diet with PUFA transferred through the microbial loop to meet their requirements. 

The decline in seston PUFA quality and consumers’ reliance on supplementary PUFA 

sources result in greater differences between seston and consumer PUFA and greater 

PUFA retention by consumers.  

4.5 Conclusions 

This study did a space-for-time substitution for brownification. The degree of 

browning in our lakes was relatively low, as DOM concentrations ranged from 2 to 10 

mg DOC L-1, and changes in DOM composition from SUVA of 1 L mg C-1 m-1 (labile 

DOM) to 5 L mg C-1 m-1 (refractory DOM). This degree of browning resulted in declines 

in seston PUFA (despite the increase in phytoplankton biomass, due to the increasing 
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prevalence of PUFA-poor cyanobacteria), but not in consumers’ PUFA content. 

Furthermore, under PUFA-poor seston conditions, consumers did not experience major 

changes in their PUFA composition, nor did they present an increasing reliance on 

terrestrial fatty acids (LC-SFA). These results suggest that brownification could increase 

the transfer of PUFAs through the microbial loop, allowing primary consumers to adapt 

to the lower quality of phytoplankton (i.e., consumers find alternative pathway for 

PUFA). In contrast, in other studies, where the degree of browning in the lakes was 

higher (i.e., DOM concentrations that are more typical in boreal lakes (> 15 mg L-1); 

Taipale et al., 2015, 2017), resulted in decreases in zooplankton PUFA content. Even 

though phytoplankton communities are typically dominated by PUFA-rich raphydophytes 

in these darker systems (Taipale et al., 2016), primary production is low (Kelly et al., 

2014), and raphydophytes are too large to be directly consumed by zooplankton, 

therefore limiting the transfer of PUFA to consumers (i.e., consumers have a lower 

biomass) and eventually to top predators. 
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Chapter 5  

5 Conclusions 

5.1 Research Findings 

The planet has entered an era of major global atmospheric changes. Alterations in 

terrestrial-aquatic linkages are consequences of these global changes, including increased 

temperatures (Kirtman et al., 2013), intensification of hydrologic cycle (Huntington, 

2006), and atmospheric pollution (Evans et al., 2012; SanClements et al., 2012). One 

such alteration is the browning of northern lakes (Monteith et al., 2007; Creed et al., 

2018). However, the susceptibility of a lake to experience brownification and the 

consequences for food webs are largely unknown. This thesis aimed to provide scientific 

knowledge to improve predictability of which lakes are susceptible to brownification and 

its consequences on food webs.  

The first finding is that DOM loads to lakes are driven by atmospheric and 

hydrologic changes that in turn lead to the destabilization of soil C (Kritzberg & 

Erkstrom, 2012; Williamson et al., 2015). Hydrologic connectivity (i.e., the water-

mediated transfer of matter across the landscape; Bracken et al., 2013; Turnbull et al., 

2008) promotes aquatic C export. Aquatic C export peaks during the spring snowmelt and 

fall storm hydrologic connectivity periods. In addition to droughts, extreme events are 

projected to increase, with wet areas becoming wetter, and dry areas becoming drier 

(Trenberth, 2011). While declines in hydrologic connectivity reduce the transfer of C 

from terrestrial to aquatic systems as dissolved organic matter (DOM), extreme 

precipitation events concentrated in the hydrologic connectivity seasons may promote its 

export. Temperature acts as an enhancer that promotes atmospheric export during the dry 

periods (Kirschbaum, 1995; Webster et al., 2008). Therefore, a large proportion of the 

annual atmospheric C export occurs during the hydrologic disconnectivity summer 

period. Ecotones, the transition zones between wetlands and uplands, are major C stores 

(Webster et al., 2008) and hotspots of atmospheric C export as CO2 (Creed et al., 2013). 

Decreases in hydrologic connectivity contribute to greater C export to the atmosphere 

from the ecotone and the wetland, where microbial respiration is often suppressed by 
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oxygen limitation (Lohse et al., 2009). Thus, prolonged and more intense droughts will 

favour the export of soil C to the atmosphere, especially in lowland-dominated 

catchments where there are deeper deposits of C. With climate predictions suggesting 

warmer temperatures and longer droughts, the increase in soil respiration could 

potentially prompt the shift of forest soil from C sink to C source (Bellamy et al., 2005; 

Schulze & Freibauer, 2005). In addition, the greater export of stored C will further 

contribute to climate warming, resulting in a positive feedback that will increase the risk 

of greater destabilization of C stores (Davidson & Janssens, 2006). Since the rate of 

atmospheric change is greater in northern systems (Smith et al., 2015), northern lakes are 

more susceptible to experience brownification (Creed et al., 2018).  

The second finding from this thesis is that moderate increases in allochthonous 

DOM inputs alter the physical and chemical environment of lakes and enhance lake 

primary production. Brownification is not only associated to changes in DOM quantity, 

but also shifts in DOM quality towards refractory (i.e., more aromatic, higher molecular 

weight) compounds (McKnight et al., 2003). Shifts in DOM quality are caused by the 

more refractory compounds in allochthonous (externally derived) DOM compared to the 

more labile (i.e., more aliphatic, lower molecular weight) autochthonous (in-lake 

produced) DOM (Bertilsson & Jones, 2003). Allochthonous DOM inputs increase water 

colour and supply nutrients to aquatic systems, subsequently reducing light penetration  

and inducing the shift from oligotrophic to eutrophic conditions (Jones, 1992; Findlay, 

2003), inducing the shift from oligotrophic to eutrophic conditions. Shallow non-

stratified lakes are more susceptible to experience brownification. In these shallow 

systems, allochthonous DOM inputs increase lake nutrient concentrations and decrease 

light availability, prompting the shift from benthic to pelagic production (Brothers et al., 

2014). In addition, alterations in nutrient availability favour cyanobacteria that can access 

the nutrients in DOM complexes (i.e., mixotrophy, siderophore production). In contrast, 

in deeper stratified lakes, allochthonous DOM creates darker conditions, acts as a supply 

of micronutrients (iron), and promotes hypolimnion anoxia. Changes in the hypolimnion 

redox conditions mobilize sediment nutrient, specially phosphorus, soluble in anoxic 

conditions. Changes in light availability, and the increase in nutrient concentration by 

direct supply from allochthonous DOM and indirectly through internal loading (Molot & 
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Dillon, 2003) favour primary producers. An increase in nutrients in the hypolimnion 

water benefits cyanobacteria living in the thermocline (Gervais et al., 1997; Drakare et 

al., 2003), or those that are able to regulate their buoyancy (Carey et al., 2012). 

Both, phytoplankton and cyanobacteria (using chl-a and PC concentrations as 

biomass proxies) responded to lake physical characteristics, being highest in shallower 

and darker lakes. After physical conditions, macronutrients (nitrogen and phosphorus) 

were major indicators of phytoplankton and cyanobacteria growth, suggesting that these 

systems are limited by macronutrient (and not micronutrient) availability. Phytoplankton, 

and cyanobacteria specifically, adapted to the changes in light driven by the moderate 

allochthonous DOM inputs (2-12 mg dissolved organic C L-1). However, larger inputs of 

allochthonous DOM could induce light-limiting conditions, constraining phytoplankton 

growth, and reducing overall ecosystem productivity (Karlsson et al., 2009). 

The third finding is that the brownification-driven changes in phytoplankton alter 

the pathways and efficiency of C transfer. DOM and phytoplankton constitute the basal 

resources for pelagic food webs (Ask et al., 2009; Brett et al., 2017). Brownification can 

change the quantity and quality of basal resources (Karlsson et al., 2009). Differences in 

quality refer to the content of essential fatty acids (EFA) in the basal resources. 

Eukaryotic autotrophs are generally considered better-quality resources than prokaryotic 

autotrophs (i.e., cyanobacteria) and allochthonous DOM (Kelly et al., 2014; Galloway & 

Winder, 2015). Eukaryotic autotrophs (except for green algae) contain high 

concentrations of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid 

(DHA; 22:6n-3), which are lacking or in low concentrations in cyanobacteria or 

terrestrial plants (Brett & Muller-Navarra, 1997; Brett et al., 2000). The brownification-

driven promotion of cyanobacteria in clear oligotrophic lakes is associated with a decline 

in the EPA and DHA content of basal resources. However, the decline in quality does not 

have significant consequences in the EPA and DHA content in primary consumers. 

Under poor-quality resource circumstances, zooplankton rely on PUFA transferred from 

heterotrophic bacteria to heterotrophic flagellates through the microbial loop. The 

degradation of autochthonous and allochthonous resources by heterotrophic bacteria 

results in PUFA enrichment, as PUFA are preferentially retained in each trophic transfer 
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(Persson & Vrede, 2006, Bec et al., 2006). Thus, under poor-quality resource conditions, 

heterotrophic flagellates may be a better resource for zooplankton (Desvilettes & Bec, 

2009). However, reliance on microbial loop may not be enough to sustain secondary 

production under greater DOM loads (Strandberg et al., 2015; Taipale et al., 2016). 

If current atmospheric and hydrologic trends persist, allochthonous DOM inputs 

into temperate lakes will continue to rise (Solomon et al., 2015). While the moderate 

increases in DOM (2 – 10 mg dissolved organic C L-1) promote primary production and 

cyanobacteria growth, reducing the production (but not the transfer) of EFAs, larger 

allochthonous DOM inputs could suppress lake primary production due to light limitation 

(Ask et al., 2009). This will result in further declines in resource quantity and quality 

(Strandberg et al., 2015; Taipale et al., 2016) due to smaller primary production, shifts 

towards greater reliance on allochthonous resources (Karlsson et al., 2009), and 

consequently reduction in overall ecosystem production (Finstad et al., 2014). 

5.2 Significance 

 This study contributes to improve our understanding on the multiple factors and 

complex interactions at play in brownification. The three manuscripts sequentially 

identify landscape sources of C, track its transfer from terrestrial to aquatic ecosystems, 

and then its transfer from primary producers to consumers. Key findings of this thesis 

include: (1) identification of the drivers of soil C destabilization and export to the 

atmospheric and aquatic fates; (2) the consequences of shifts in lake DOM quantity and 

quality on primary production and cyanobacteria dominance; and (3) the implications of 

changes in basal resource quantity and quality for aquatic consumers. These findings 

motivate future research that investigates terrestrial and aquatic linkages and the 

consequences of catchment processes for aquatic ecosystem function (Figure 5.1). 
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Figure 5.1. Causes and consequences of soil carbon mobilization (top left) and lake brownification 

(bottom) in northern forested landscape 

In addition, this study establishes the baseline to understand how brownification-

driven changes in aquatic ecosystem functions can result in losses of aquatic ecosystem 

services that pose risks to human health. Brownification-driven increases in 

cyanobacteria can restrict the capacity of lakes to provide cultural and recreational 

services (Tuvendal & Elmqvist, 2011). In addition, brownification-linked changes colour, 

odour, taste and toxin content of water may lead to its restriction as a drinking water 

source (Weyhenmeyer et al., 2014). Finally, declines in the production and transfer of 
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essential fatty acids and potentially reducing lake secondary production could pose a 

health risk for communities that rely in these aquatic resources.  

5.3 Recommendations for Future Research 

The drivers and consequences of brownification are diverse and often result of 

interacting factors and synergistic effects. Future studies should consider all C fractions 

(including inorganic C and particulate organic C), precursors of DOC, and the 

transformations they undergo during hydrologic connectivity and disconnectivity periods. 

These studies should be performed in comparable catchments in different biomes (e.g., 

tropical vs. temperate vs. boreal); especially since boreal systems store large amounts of 

C, susceptible to destabilization after permafrost melt. These studies should also focus on 

the characterization of the composition, molecular structure, reactivity, and degradability 

of DOM compounds. Elemental and molecular composition analyses based on 

chromatography and spectrometry provide detailed information of DOM composition 

(Creed et al., 2015). Besides these, optical measurements (based on absorbance and 

fluorescent spectroscopy, like the ones used in this study), provide inexpensive and 

reliable information on DOM source and characteristics (Cory & McKnight, 2005). DOM 

characterization should be combined with its ecological role on physical and chemical 

conditions of lakes and its effects on aquatic organisms. Large spatial scale studies are 

necessary to cover the diversity of DOM composition and catchment and lake 

characteristics. Complementary laboratory and mesocosm experiments would help 

explore the effect of single or synergistic drivers (e.g., temperature, light, nutrient access) 

on phytoplankton communities and cyanobacteria dominance. Cyanobacteria are a 

diverse group of organisms with different adaptations to brownification.  

A limitation of this study was the focus on indirect measurements of 

phytoplankton and cyanobacteria biomass (i.e., chlorophyll-a and phycocyanin 

concentrations) to assess the implications of brownification on lake primary production. 

Future studies should expand the focus on cellular pigment concentrations - that may 

vary as a function of environmental conditions and community composition (e.g., 

phytoplankton may increase pigment production in order to maintain photosynthetic 

performance when light availability is low; Kasprzak et al., 2008; Boyer et al., 2009) – to 
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other indicators of phytoplankton biomass (e.g., cell counts or biovolume in bulk 

phytoplankton samples and species or genera specific) should be considered to improve 

our understanding on shifts in phytoplankton community composition. 

 A potential of this study was to examine the consequences of brownification for 

the nutritional quality of aquatic food webs through the analysis of the availability and 

transfer of essential fatty acids. Future studies should include stable isotope analysis to 

identify the main dietary sources (allochthonous vs. autochthonous; Solomon et al., 2015; 

Karlsson et al., 2009) for consumers, and the C transfer pathways within aquatic systems. 

In addition to essential fatty acids, the quality of aquatic food webs can be assessed 

through other nutritional compounds (e.g., essential amino acids; Taipale et al., 2017), or 

pollutants (e.g., mercury; French et al., 2014). Future trophic studies should incorporate 

these analysis to better identify C sources and pathways and, when including top 

predators (i.e., piscivorous fish) they provide a better understanding of the role of bottom-

up controls on overall ecosystem productivity.  
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Appendices 

Appendix A: Soil carbon characteristics in c38 

Table A1. Average organic carbon pool (g C m-2) in soils collected from each of the 

topographic positions. FFL = freshly fallen litter; LFH = forest floor layer composed of > 1 

year old litter, fibric and hemic layers; and A horizon in uplands to a maximum depth of 5 

cm or the top 10 cm of peat in wetlands. Data include average values from triplicate 

samples. 

Transect Position Point FFL LFH Ah Ae Total 

T15 

Wetland 
IW 135.50 3216.80 4441.14  7793.50 

OW 88.39 3413.14 4442.20  7943.73 

Ecotone 
TS 165.94 978.48 5491.84 3078.52 9714.78 

FS 164.36 902.54 2734.92 2470.47 6272.28 

Upland 

BS 134.83 792.18 1578.32 1565.47 4070.80 

CR 141.68 1267.10 2552.18 3070.18 7031.12 

SH 119.43 791.71 1707.36 3720.28 6338.79 

T35 

Wetland 
IW 89.38 3237.61 4042.65  7369.64 

OW 127.24 2805.07 4402.57  7334.87 

Ecotone 
TS 158.28 1492.36 6471.74 1136.43 9258.82 

FS 185.85 1737.39 5844.32 2295.86 10063.42 

Upland 

BS 112.03 1843.56 3868.59 1891.94 7716.11 

CR 124.21 1084.42 3257.07 2284.59 6750.29 

SH 108.24 2200.36 3289.66 1768.13 7366.39 
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Table A2. Average SOC sorption capacity (mol m-2) in soils collected from each of the 

topographic positions. FFL = freshly fallen litter; LFH = forest floor layer composed of > 1 

year old litter, fibric and hemic layers; and A horizon in uplands to a maximum depth of 5 

cm or the top 10 cm of peat in wetlands. Data include average values from triplicate 

samples. 

Transect Position Point FFL LFH Ah Ae 

T15 

Wetland 
IW  1.30 2.59  

OW  1.50 5.80  

Ecotone 
TS  0.09 12.35 18.15 

FS  0.17 5.72 17.24 

Upland 

BS  0.08 3.50 5.57 

CR  0.13 4.57 10.25 

SH  0.14 3.01 14.93 

T35 

Wetland 
IW  0.31 0.72  

OW  0.27 0.63  

Ecotone 
TS  0.07 30.13 3.41 

FS  0.05 7.128 6.92 

Upland 

BS  0.08 1.21 4.61 

CR  0.12 6.20 6.13 

SH  0.24 4.68 3.92 
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Appendix B: Carbon Budget in c38 

Although the present study focuses on the export of SOC from c38 to the aquatic 

and terrestrial fates, the forest ecosystem in TLW, where c38 is located, has been 

extensively studied for over 30 years. We rely on previous work in done in c38 in order 

to give a broader view of C cycling in the catchment. The annual net C fixation (Net 

Primary Production; NPP) in the TLW was estimated at 5580 kg C ha-1 y-1 by Morrison et 

al. (1993) by measuring C content in all three components (foliage, fruit, branches, stem 

bark, stem wood, and roots) and extrapolated through logarithmic regressions to calculate 

above- and below-ground biomass per hectare. Soil C inputs were derived from the 

abovementioned values, assuming a 100% leaf turnover rate and 48% C content in leaf 

phytomass (Morrison, 1990); and a 50% root turnover rate for belowground biomass. 

SOC pools were measured along hillslope transects in the FFL, LFH, Ah, and Ae 

horizons across different topographic features as indicated in the Methods section (see 

results in Table A1). SOC pools were found to be relatively stable at long term, with no 

significant differences in SOC content between 1981 and 1996 (Morrison and Foster, 

2001). In addition to SOC content, soil C sorption capacity was estimated by measuring 

Fe and Al oxyhydroxide concentrations in the same positions and horizons (Table S1). 

These compounds can bind to soil DOC, increasing C residence time in soil and limiting 

microbes’ accessibility to it (Kalbitz et al., 2000). While the present study does not 

include soil DOC quantity and quality in different positions due to discontinuity in the 

data, a previous study identified its spatial variability in the catchment and its role in 

microbial respiration. Creed et al. (2013) identified the role of topography at regulating 

the concentration and sorption of DOC to soil and defined the ecotone as CO2 hotspot, as 

this landscape position acts as a trap of DOC. 

Despite not including DOC in our analysis, the model used to estimate 

atmospheric C export as a function of soil temperature and moisture, SOC concentration, 

and soil sorption capacity, developed for the same study area and time period has been 

proven to accurately predict CO2 efflux (adj. r2 = 0.72, p < 0.05). This model was applied 

using daily values of soil temperature and moisture and constant SOC and sorption 

capacity to calculate daily atmospheric C export. During the winter period, soil 
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temperature and moisture were considered constant, however empirical measurements 

from early spring reported low soil CO2 efflux values. 

The modelled atmospheric C export was considered to represent both soil 

autotrophic and heterotrophic respiration. The ratio of soil autotrophic to heterotrophic 

respiration was considered to be 50:50 (Hanson et al., 2000) and kept constant throughout 

the seasons in order to estimate a catchment C balance (Figure A1). 

Aquatic C export was measured at the catchment outlet (see Methods section) and 

missing data was interpolated using regression models with discharge as the explanatory 

variable. 

In the C balance (Figure A1), Gross Primary Production (GPP) has been 

calculated as the sum of NPP, aboveground autotrophic respiration, and soil autotrophic 

respiration. Therefore, the Net Ecosystem Exchange (NEE) can be calculated as NPP – 

Soil Heterotrophic Respiration, which ranges between 3719 and 4581 kg C ha-1 y-1 (or 

66.6 % to 82.1 % of the annual NPP) in 2007 and 2008 respectively. However, if 

accounting only SOC inputs (assumed constant at 3085 kg C ha-1 y-1) and outputs (annual 

soil heterotrophic respiration), SOC export exceeds the inputs between 120.5 % and 

148.5 % in 2007 and 2008 respectively (see section 2.4). 
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Figure A1. C cycling in c38. Boxes represent C pools and circles represent catchment C 

export; their sizes are proportional to the C pool/flux. Dashed boxes represent values 

taken from literature (1Morrison et al., 1993, 2Hanson et al., 2000) or inferred from 

literature and results from the study *Fine root turnover rate estimated to be 50% as per 

Majdi et al., 2005; **calculated from the reported atmospheric C export and the ratio of 

autotrophic to heterotrophic respiration estimated to be 50:50 as per Hanson et al., 2000). 

C export is divided into two hydrologic disconnectivity (summer and winter; white) and 

two connectivity (fall storms and spring snowmelt; black) periods. The proportion of 

each season within the circle represents its duration (averaged for the five years in the 

2006-2010 period) and its thickness represents the median daily C export (in Table 2.1). 
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