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Abstract
The research presented in this thesis is aimed at development of new methods and tech-

niques for stability analysis and stabilization of interconnections of nonlinear systems, in par-

ticular, in the presence of communication delays. Based on the conic systems’ formalism, we

extend the notion of conicity for the non-planar case where the dimension of the cone’s central

subspace may be greater than one. One of the advantages of the notion of non-planar conicity

is that any dissipative system with a quadratic supply rate can be represented as a non-planar

conic system; specifically, its central subspace and radius can be calculated using an algorithm

developed in this thesis. For a feedback interconnection of two non-planar conic systems, a

graph separation condition for finite-gain L2-stability is established in terms of central sub-

spaces and radii of the subsystems’ non-planar cones. Subsequently, a generalized version of

the scattering transformation is developed which is applicable to non-planar conic systems.

The transformation allows for rendering the dynamics of a non-planar conic system into a pre-

scribed cone with compatible dimensions; the corresponding design algorithm is presented.

The ability of the generalized scattering transformation to change the parameters of a system’s

cone can be used for stabilization of interconnections of non-planar conic systems. For inter-

connections without communication delays, stabilization is achieved through the design of a

scattering transformation that guarantees the fulfilment of the graph separation stability con-

dition. For interconnected systems with communication delays, scattering transformations are

designed on both sides of communication channel in a way that guarantees the overall stability

through fulfilment of the small gain stability condition. Application to stabilization of bilateral

teleoperators with multiple heterogeneous communication delays is briefly discussed.

Next, the coupled stability problem is addressed based on the proposed scattering based

stabilization techniques. The coupled stability problem is one of the most fundamental prob-

lems in robotics. It requires to guarantee stability of a controlled manipulator in contact with

an environment whose dynamics are unknown, or at least not known precisely. We present a

scattering-based design procedure that guarantees coupled stability while at the same time does

not affect the robot’s trajectory tracking performance in free space. A detailed design example

is presented that demonstrates the capabilities of the scattering-based design approach, as well

as its advantages in comparison with more conventional passivity-based approaches.

Finally, the generalized scattering-based technique is applied to the problem of stabilization

of complex interconnections of dissipative systems with quadratic supply rates in the presence

of multiple heterogeneous constant time delays. Our approach is to design local scattering

transformations that guarantee the fulfilment of a multi-dimensional small-gain stability con-

dition for the interconnected system. A numerical example is presented that illustrates the

capabilities of the proposed design method.
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Chapter 1

Introduction

Numerous engineering applications deal with controlled interconnections of nonlinear systems.

Examples of such applications can be found in many industries, including space and terrestrial

exploration, mining, factory automation, power systems, medical robotics, and others. Devel-

opment of control algorithms that guarantee stable behavior of systems’ interconnections in

the presence of various external inputs such as noise or disturbances and possibly time delays

in the communication channels between subsystems is an important engineering problem.

One of the approaches commonly applicable to stability of nonlinear multi-input-multi-

output (MIMO) systems is based on the notion of input-output stability [39, 44, 45], which

describes system’s behavior as a mapping of admissible inputs into appropriately chosen out-

puts. The input-output stability approach is especially useful in the case where the system’s

dynamics are uncertain. For example, in the problem of robot-environment interaction, the

model of environment is usually not precisely known (or not known at all). The input-output

stability theory is applicable to many intensively developing areas including robotics, teleoper-

ation theory, and process control. It allows for solving the problems in the fields of robust and

optimal control. The input-output stability theory was largely introduced by George Zames. In

particular, in 1966, G. Zames [45] published theorems establishing input-output stability for

interconnections of passive and (planar) conic systems, as well as a small-gain stability condi-

tion. An extension of this approach for (Q,S,R)−dissipative systems (i.e., dissipative systems

with quadratic supply rates) has been developed by D.J. Hill and P.J. Moylan [14]. Afterwards,

graph separation stability condition for general interconnected dynamical systems has been de-

rived in [38]. However, among all these results, only the passivity and small-gain theorems are

widely used.

It is worth to mention that the passivity-based approach cannot be applied directly in the

case of time-delayed interconnections, since the communication block producing delays is not

passive [2]. To address this issue, the scattering-based (or wave variable) stabilization tech-

1



2 Chapter 1. Introduction

nique has been developed within the teleoperator systems theory [2,31]. The basic idea behind

the scattering-based approach is to render the communication channel passive by emulating

the behavior of a lossless electrical transmission line. An analogy between the communica-

tion channel producing time-delay and a lossless transmission line was originally revealed by

R.J. Anderson and M.W. Spong [2]. The fundamental result related to this analogy is formu-

lated in terms of the scattering operator S determined as the map
(
S : Ln

2(R+) 7→ Ln
2(R+)

)
of

effort F plus flow v into effort F minus flow v, i.e. F − v = S(s) · (F + v), where the flow v

is entering the system’s ports, and the effort F is measured across the system’s ports. It was

demonstrated in [2] that a system is passive if and only if the spectral norm of its scattering

operator is not greater than one, i.e. ‖S‖ 6 1. Using this criterion, a scattering transformation

can be designed that eliminates the delay-induced non-passivity of the communication channel

and, consequently, stabilizes a teleoperation system. The scattering-based technique provides

robust stabilizing control laws with respect to a wide variety of perturbations due to preserving

passivity of the subsystems (e.g. master and slave) included in the interconnection. Moreover,

this method can be partially extended to the case of time-varying delays [27]. In addition, it al-

lows for improving performance of the control algorithm by tuning stiffness and damping gains

involved into the control law. For example, an appropriate choice of control gains (impedance

matching) leads to avoiding wave-reflection phenomena [31].

There exists, however, a number of issues associated with the passivity-based design of

interconnected systems. Specifically, the passivity condition is often conservative and may be

violated for many reasons, for instance, due to existence of time delays, actuator and/or sensor

noise, or in the case where one of the subsystem behaves in a non-passive way. In particu-

lar, there is substantial evidence in the teleoperation literature indicating that the assumption

of passivity imposed on the behavior of the human operator(s) and the environment can be

violated. Examples include experimental evidence of non-passive behavior of the human op-

erators when performing certain tasks [13], non-passivity arising in teleoperation of wheeled

robots as a result of the wheel slippage [26], intrinsically non-passive behavior of the therapist

in tele-rehabilitation systems during assistive therapy [3, 4], etc. Moreover, the assumption of

passivity imposed on the behavior of the human operator(s) and the environment may be overly

conservative, which results in unnecessary restrictions on the design of the local masters’ and

slaves’ controllers. In particular, the requirement of passivity of the closed-loop master and

slave subsystems is apparently conflicting with the trajectory tracking performance, and the

rigorously proven results regarding the tracking properties of the passivity-based teleoperators

are relatively weak (see for example [33]).

In recent works [15,35], generalizations of the scattering transformation have been reported

which are applicable to classes of systems more general than passive. These generalizations
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are based on a representation of the scattering transformation as a rotation in the space of

input-output variables. In particular, the study [35] elaborates on the most general version of

the scattering transformation for stabilizing interconnections of arbitrary planar conic systems,

particularly in the presence of communication delays. Planar conic systems are systems whose

input-output characteristics belong to a dynamic conic sector on a plane [38, 44, 45]. Exam-

ples include passive systems, input-feedforward–output-feedback-passive (IF–OFP) nonlinear

systems studied in [15], as well as systems with finite L2-gain, which all are special cases of

the planar conic systems. However, the class of planar conic systems addressed in [35] is still

limited in some important aspects. The most essential limitations are the assumption of equal

number of input and outputs of a system, and the requirement that each input-output pair satis-

fies the uniform constraints imposed by the supply rate. Another limitation is that a feedback

interconnection of two planar conic systems is, generally speaking, not a planar conic system.

This circumstance complicates the analysis of complex interconnections within the framework

of planar conic systems. This thesis is aimed to overcome these limitations by extending the no-

tion of conicity to the non-planar case and generalize scattering-based stabilization approaches

for the interconnections of non-planar conic and (Q,S,R)−dissipative systems.

In comparison with earlier results developed for the class of planar conic systems, the re-

search presented in this thesis provides a natural way of expanding this notion to a more general

class of non-planar conic systems. We demonstrate that the notion of non-planar conicity elim-

inates the limitations inherent to the planar case. In regard to the stabilization methods, this

thesis develops the generalized version of the scattering transformation which is applicable to

non-planar conic systems. Combination of the above described developments allows for an

extension of the existing scattering-based stabilization methods to the case of interconnections

of nonlinear non-planar conic systems, in particular, in the presence of heterogeneous con-

stant delays in the communication channels between the subsystems. These new methods are

subsequently applied to the coupled stability problem and to the stabilization problem of the

complex interconnection of (Q,S,R)−dissipative systems, where they bring new results or im-

prove the existing results, especially in those cases where the currently existing passivity-based

approaches either are not applicable or result in overly conservative design methods.
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1.1 Literature review

Stabilization technique developed in this thesis is based on the scattering transformation that

has been extensively used in the teleoperator theory. Therefore, we start the literature review

from a survey of stabilization methods that have been conventionally applied to the teleoperator

systems, but extended to more general classes of nonlinear dynamic systems in the present

study.

1.1.1 Scattering transformation

In the context of nonlinear systems, the scattering transformation first appeared in 1972 [1],

where it was used to establish relationship between the passivity and the small gain theorems.

Specifically, it was shown in (see [2, 11]) that application of the scattering transformation to

inputs and outputs of a passive system turns it into a system with gain less than or equal to one.

Subsequently, the scattering-based approach was applied to solve the problem of stabiliza-

tion of bilateral teleoperators in the presence of communication delays under the assumption

of passivity of both the master and the slave subsystems (see [2]). To illustrate the approach,

Human 
operator Master Slave

Communi-
cation
block

Environ-
mentFh

xm xm xsd xs

Fmd Fs Fe

+ +++

— ———

Figure 1.1: Network representation of teleoperator

consider a teleoperator system shown in Figure 1.1, where the master manipulator, the com-

munication block, and the slave manipulator are represented by two-port networks, while the

human operator and the environment are represented by one-port networks [41]. In Figure 1.1,

symbols Fe, Fs, Fmd, and Fh denote the environmental force applied to the slave, the slave force

signal transmitted over the communication channel, the desired master force, and the interac-

tion force between the human operator and the master device, respectively. The symbols ẋm,

ẋsd, and ẋs denote the master velocity, the desired slave velocity, and the actual slave velocity,

respectively.

An n-port network is characterized by a relationship between n effort variables F1, F2, . . . ,

and Fn (F = [F1, . . . , Fn]T ) (force, voltage), and n flow variables ẋ = [ẋ1, . . . , ẋn] (velocity,

current). For a linear time invariant (LTI) one-port network, this relationship can be described

in the Laplace domain by the network’s impedance Z(s), according to the formula

F(s) = Z(s)ẋ(s),
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where F(s), ẋ(s) are the Laplace transforms of the effort F(t) and flow ẋ(t) respectively. In the

case of a two-port LTI network, different representations are possible; one particular represen-

tation describes relationship between the effort and flow variables in terms of hybrid matrix

H(s), according to the equation F1(s)

−ẋ2(s)

 =

h11(s) h21(s)

h12(s) h22(s)

  ẋ1(s)

F2(s)

 = H(s)

 ẋ1(s)

F2(s)

 . (1.1)

The sign of ẋ2 is reversed here since ẋ2 is assumed to exit the two-port network.

The definition of the scattering operator given in [2] goes as follows. The scattering

operator S : Ln
2 7→ Ln

2 is defined by the formula

F(t) − ẋ(t) = S (F(t) + ẋ(t)),

where ẋ is a flow entering the system’s ports, and F is the effort across the system’s ports. For

LTI systems, the scattering operator S can be expressed in the Laplace domain as a scattering

matrix S (s) such that

F(s) − ẋ(s) = S (s)
(
F(s) + ẋ(s)

)
.

Consequently, for a two-port network, the scattering matrix S (s) is related to the hybrid matrix

H(s) (1.1), according to the formula

S (s) =

1 0

0 −1

 (H(s) − I
)(

H(s) + I
)−1

. (1.2)

The following is a well-known definition of a passive n-port network. An n-port network

is passive if for any independent set of n-port flows ẋ = [ẋ1, . . . , ẋn]T ∈ Ln
2 injected into the

system and efforts F = [F1, . . . , Fn]T ∈ Ln
2 across the system, the following inequality holds

∞∫
0

FT (t)ẋ(t)dt > −β0,

where β0 ≥ 0 represents the initial energy stored inside the system. In terms of the scattering

operator, the following criteria for system passivity can be established.

Theorem 1.1.1. ( [11, Section VI.10], [2, Section III, Therem 3.1.]) A system is passive if and

only if the spectral norm 1 of its scattering operator is less than or equal to one.

Regarding the bilateral teleoperator system schematically shown in Figure 1.1, the con-

ventional approach to its design is based on passivity considerations. Specifically, the local
1The spectral norm of a scattering matrix S (s) is defined as ‖S ‖ := sup

ω
σmax (S ( jω)).
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controllers can be designed to make both the master and the slave manipulators passive [2,33].

There is also a widely adopted assumption of passivity of the human operator which is based

on the experimental results published in [20]. In addition, the environment can also frequently

be considered as a passive subsystem. Since the interconnection of any number of passive

networks is passive, one concludes that passivity of the communication block will result in

passivity (and, therefore, stability) of the overall teleoperator system.

An interesting and somewhat counter-intuitive fact is that the constant communication de-

lay block is not a passive system; in fact, it can generate energy and, as a result, destabilize

the overall teleoperator system. To show this, consider an idealized communication channel

characterized by a constant communication delay T > 0, described by the formulas

Fmd(t) = Fs(t − T ), ẋsd(t) = ẋm(t − T ). (1.3)

The hybrid matrix that describe the communication channel (1.3) has a form

H(s) =

 0 e−sT

−e−sT 0

 (1.4)

that provides the following scattering operator (1.2)

S (s) =

1 0

0 −1

  −1 e−sT

−e−sT −1

  1 e−sT

−e−sT 1

−1

=

− tanh (sT ) sech(sT )

sech(sT ) tanh (sT )

 ,
which is unbounded (‖S ‖ = +∞). Therefore, the pure delay block is not a passive system, and

the delayed communication channel may generate energy, which in turn may potentially desta-

bilize the teleoperator. A solution of this problem was proposed in [2]. It relies on application

of the following scattering-based stabilization algorithm

Fmd(t) = Fs(t − T ) + ẋm(t) − ẋsd(t − T ),

ẋsd(t) = ẋm(t − T ) + Fmd(t − T ) − Fs(t)
(1.5)

that provides hybrid matrix Hs(s) corresponding to the scattering-based communication chan-

nel (1.5) 1 −e−sT

e−sT 1

  Fmd(s)

−ẋsd(s)

 =

 1 e−sT

−e−sT 1

 ẋm(s)

Fs(s)

 ⇒ Hs(s) =
1

1 + e−2sT

1 − e−2sT 2e−sT

−2e−sT 1 − e−2sT

 .
Passivity of the communication block then follows from Theorem1.1.1, since the scattering

operator S (s) computed by (1.2) has the spectral norm equal to one, namely

S =

 0 e−sT

e−sT 0

 , ‖S ‖ = sup
ω

√
λ(S ∗( jω)S ( jω)) = sup

ω

√√
λ

1 0

0 1

 = 1.
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Thus, passivity of the scattering-based communication channel results in passivity of the over-

all teleoperation system, and guarantees its stability for all passive environments and passive

human operator behavior.

1.1.2 Wave variables

The idea behind the algorithm (1.5) is clarified by addressing a conceptually similar but slightly

more elaborated approach originally proposed in [31, 32]. Works [12, Section 2.8], [10, 31,

32, 34] show that the communication block in a teleoperator system can be considered as a

virtual lossless transmission line. As is well-known, a lossless transmission line has a passive

behavior [12, 31]. Consequently, within this approach, the communication channel inheriting

properties of the transmission line is passive.

A lossless transmission line consists of a series of an infinitesimally small components

comprised by inductances and capacitances between the two conductors (see Figure 1.2). Any

+ +

− −
v(t, x)

i(t, x)

v (t, x + ∆x)

i (t, x + ∆x)

L · ∆x

C · ∆x

∆x

Figure 1.2: An element of a lossless transmission line.

element represents an infinitesimally short segment ∆x of the transmission line of the length l.

Applying Kirchhoff’s current and voltage laws at the each segment of the line (see Figure 1.2),

the following equalities take place

i(t, x) − i(t, x + ∆x) = C∆x
∂v(t, x)
∂t

, v(t, x) − v(t, x + ∆x) = L∆x
∂i(t, x)
∂t

,

where v(t, x) and i(t, x) are the voltage and the current associated to the spatial variable x ∈ [0, l].

The passage to the limit as ∆x→ +0 in the last expressions leads to the Telegrapher’s equations

that describe the behavior of the transmission line

∂i(t, x)
∂x

= −C
∂v(t, x)
∂t

;
∂v(t, x)
∂x

= −L
∂i(t, x)
∂t

. (1.6)

Equalities (1.6) are equivalent to the system of the partial differential equations

∂2i(t, x)
∂x2 = CL

∂2i(t, x)
∂t2 ,

∂2v(t, x)
∂x2 = LC

∂2v(t, x)
∂t2 . (1.7)
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Solution of the system (1.7) has the structure (see [12])

i(t, x) = F2(x + νt) − F1(x − νt), v(t, x) = b (F2(x + νt) + F1(x − νt)) , (1.8)

where F1 and F2 are waveforms spreading in positive and negative directions respectively.

Parameter ν = 1/
√

LC is a wave propagation velocity, and b =
√

L/C is the impedance of

the transmission line. The derived representation (1.8) of the solution of the Telegrapher’s

equations allows for transferring to the new so-called wave or scattering variables

s+(t, x) =
√

2bF1(x − νt), s−(t, x) =
√

2bF2(x + νt), (1.9)

that are, in fact, scaled waves F1(·) and F2(·) traveling in positive and negative directions re-

spectively. The scattering variables have a useful property related to their delayed values.

Propagation delay Tp is the time for which a wave passes through the transmission line of the

length l with propagation speed ν = 1/
√

LC, i.e. Tp = l/ν = l
√

LC. Substitution of x = l = νTp

to the positive directed wave s+(t, x), and x = 0 to the opposite wave s−(t, x) (1.9) provides the

equalities

s+(t, l) =
√

2bF1(l − νt) =
√

2bF1(νTp − νt) =
√

2bF1(−ν(t − Tp)) = s+(t − Tp, 0)

s−(t, 0) =
√

2bF2(νt) =
√

2bF2(l − νTp + νt) =
√

2bF2(l + ν(t − Tp)) = s−(t − Tp, l)

s+(t, l) = s+(t − Tp, 0), s−(t, 0) = s−(t − Tp, l). (1.10)

The relationship between current i(t, x), voltage v(t, x) and scattering variables is determined

by the scattering transformation (or map) S (see [12])s+(t, x)

s−(t, x)

 = S

i(t, x)

v(t, x)

 , S =
1
√

2

 b1/2 b−1/2

−b1/2 b−1/2

 . (1.11)

Adopting this technique for the bilateral teleoperation, the standard analogy [33] is used,

i.e. current i(t, ·) is replaced with velocity ẋ(t), and voltage v(t, ·) is considered as force f (t).

Interconnections of the port variables now play role of the conroller and the terminations with

the master and slave subsystems. The scattering scheme in the teleoperator model assumes

transmition of the wave variables s+ and s− through the delayed communication channel rather

than original power variables (velocity ẋ and force f ). The corresponding scheme is depicted

at Figure 1.3. Furthermore, according to the property (1.10) of wave variables, at the opposite

site of the communication block, scattered signals s+(t, 0) and s−(t, l) take values s+(t − T, 0) =

s+(t, l) and s−(t − T, l) = s−(t, 0) respectively. Wave variables are standardly denoted as u j, v j

(index j ∈ {m, s} indicates a side (master or slave) of the teleoperator transmitting/receiving the



1.1. Literature review 9

Master S
T

T
S Slave

ẋm

fm

s+(t, 0)

s−(t, 0)

s+(t, l)

s−(t, l)

ẋs

fs

Figure 1.3: Application of the scattering approach for the teleoperator model [32]

scattering signals), i.e. um

vm

 =

s−(t, 0)

s+(t, 0)

 , us

vs

 =

s+(t, l)

s−(t, l)

 .
The power variables ẋ, f are related to the wave variables u, v through the scattering (wave)

transformation S (1.11), according to the formulasvm

um

 = S

ẋm

fm

 , us

vs

 = S

ẋs

fs

 . (1.12)

In the new variables, according to the formulae (1.10), master-slave interconnection obeys the

rule

us(t) = um(t − T ), vm(t) = vs(t − T ). (1.13)

The wave-based communication channel (1.13), (1.12) is passive (see [22, 31]). Indeed, as-

suming f j(t) = 0 and ẋ j(t) = 0 for all t 6 0 ( j ∈ {m, s}), we have

E(t) =

t∫
0

(
ẋT

m(τ) fm(τ) − ẋT
s (τ) fs(τ)

)
dτ =

1
2

t∫
0

(
|vm(τ)|2 − |uT

m(τ)| − |us(τ)|2 + |vT
s (τ)|

)
dτ =

1
2

t∫
0

(
|vm(τ)|2 − |vT

s (τ − T )| − |vm(τ − T )|2 + |vT
s (τ)|

)
dτ =

1
2


t∫

0

(
|vm(τ)|2 + |vT

s (τ)|
)

dτ −

t−T∫
−T

(
|vT

s (τ)| + |vm(τ)|2
)

dτ

 =
1
2

t∫
t−T

(
|vm(τ)|2 + |vs(τ)|2

)
dτ > 0.

This reveals passivity of the communication channel, that ensures passivity of the overall tele-

operator system as an interconnection of passive subsystems.

To establish connection of the wave-variable approach with the scattering-based scheme (1.5)

proposed in [2], the scattering operator S (1.11) of the form S =
1
√

2

1 1

1 −1

 provides an equiv-

alent control law (for b = 1) in terms of the wave-variables (1.12), (1.13).

Regardless the advantages of the scattering (or wave) variables approach that ensures robust

and delay independent stabilization of the interconnected systems, the aforesaid method is



10 Chapter 1. Introduction

limited to the passive systems only. As a consequence, it imposes strict or sometimes excessive

restrictions on the design of subsystems involved into the interconnection. This especially

evident in the stabilization problem of robot-environment interactions where the environment

may behave in a non-passive way. Similar problems occur in the teleoperator systems. In this

concern, the next subsection surveys some examples of passivity violation that are reflected in

the literature.

1.1.3 Examples of non-passive behavior

The assumption of passivity of the human operator can be traced back to the work of N. Hogan

[20], where it was experimentally demonstrated that the behavior of a human operator’s hand

is passive when interacting with a passive manipulandum. More precisely, it was established

in [20, 30] that, if a human operator holds a passive manipulandum at a fixed position in a

workspace, then the natural reaction force of the human hand to small perturbations applied to

manipulandum appears as if generated by a spatial spring with symmetrical apparent stiffness.

Such a response can be considered as generated by a potential force field and, therefore, is

passive. However, there are some evidence that the conventional assumption of passivity of

the human operator behavior may not hold in all situations. For example, it was shown in [13]

that, under some conditions, the behavior of the human operator can be non-passive; more

precisely, the human behavior may exhibit passive or non-passive characteristics depending on

the specific task performed by the human arm. In particular, positive energy can be produced

when the human operator blocks the disturbance forces, or returns the hand back to the initial

position.

On the other hand, numerous examples of non–passive environments can be found in the

literature. For example, in [3, 4], a telerehabilitation problem is addressed where the patient

plays the role of the human operator, while the therapist does the one of the environment. In

this case, the passivity/nonpassivity of the environment depends on the task performed by the

therapist. In the case of assistive therapy, the therapist (environment) applies assistive forces

to help patient perform a task, thus necessarily producing energy, which makes this subsystem

non–passive. Another example of non-passive environments can be found in the paper [26],

which deals with analysis of the wheel slippage problem in mobile robotics. In this work,

the slippage is modeled as the environment termination for the slave wheeled mobile robot.

Authors demonstrated that fluctuations of the slippage may cause the environment termination

to exhibit non-passive behavior; specifically, the slave can be non-passive when the rate of

change of slippage is negative.

In addition, the requirement of passivity imposes restrictions on the behavior of the slave
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subsystem which, in many cases, do not allow for achieving position tracking. This is due

to the fact that the classical passivity property imposes integral constraints on the relationship

between velocities and forces, which may be in contradiction with the requirement for the

slave device to follow the position and velocity of the master. For example, a substantial

number of known passivity-based results are summarized in the survey paper [33]; however,

in all these results, only boundedness of trajectories are guaranteed during free motion, while

the convergence of velocities to zero and the master/slave positions to each other is guaranteed

only when the operator releases the master device (more precisely, under the assumption that

the human force is equal to zero). Finally, in multi-master-multi-slave (MMMS) teleoperator

systems, where the slave manipulators differ in size, the scaled passivity can be violated by

direct physical contact between slaves’ arms.

Aforementioned difficulties can be partially overcome by revealing the nature of the scat-

tering transformation. The next subsection goes over the results devoted to the generalized

scattering-based methods that are applicable for nonlinear dynamic systems satisfying weaker

conditions compared to passivity constraints.

1.1.4 Generalization of the scattering-based approach and planar conic
systems

In 2006, stronger results on the stabilization of systems’ interconnections developed by S. Hirche

and co-authors [15, 28]. In the papers, authors study a nonlinear (Q,S,R)−dissipative systems

of the form

Σ :

 ẋ = f (x, η) ,

y = h(x, η),
(1.14)

where x ∈ Rn is the state, η, y ∈ Rm are the input and the output, respectively, and f (·, ·),

h(·, ·) are locally Lipschitz maps of the corresponding dimensions. A system (1.14) is said to

be dissipative with respect to supply rate w : Rm × Rm → R if there exists a storage function

V : Rn → R+ such that the inequality

V (x(t1)) − V (x(t0)) ≤

t1∫
t0

w (η(τ), y(τ)) dτ (1.15)

holds along the trajectories of the system (1.14) for any t1 ≥ t0, any initial state x(t0), and any

admissible control input η(τ), τ ∈ [t0, t). The notion of (Q,S,R)−dissipativity concerns the

systems whose supply rate is a quadratic form of input-output variables, i.e.

w(η, y) =

ηy
T R S T

S Q

 ηy
 . (1.16)
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Papers [15, 28] investigates a subclass of the (Q,S,R)−dissipative nonlinear systems. Specifi-

cally, an input-feedforward–output-feedback-passive (IF–OFP) system is a (Q,S,R)−dissipative

system with the supply rate of the form

w(η, y) = 2ν · ηT y − δ‖η‖2 − ε‖y‖2. (1.17)

The [QSR] matrix of the quadratic supply rate (1.17) has the structure

[QSR] =

R S T

S Q

 =

−δI νI

νI −εI

 . (1.18)

As was rightly noted [15], constraints imposed on the IF-OFP systems are less restrictive than

in the passive case. Indeed, a specific values of the constant parameters ε, δ, and ν determine

well-known classes of systems, for example,

• if δ = ε = 0, ν = 1/2, the system is passive;

• if δ = 0, ε > 0, ν = 1/2, the system is output-feedback strictly passive;

• if δ > 0, ε = 0, ν = 1/2, the system is input-feedforward strictly passive;

• if δ = −γ2, ε = 1, ν = 0, the system is finite gain L2 stable.

In addition, authors have established connection of the introduced class of IF-OFP systems

with the notion of conicity introduced by G. Zames [45].

For the stabilization of a networked control system composed by the IF-OFP subsystems,

the works [15, 28] elaborate a more general version of the scattering-based approach. Namely,

the authors have found out that the scattering transformation can be seen as the product of two

matrices which perform rotation and scaling, respectively. Practically, the developed transfor-

mation turns a IF–OFP system into the L2 stable system with a finite gain, what have been also

demonstrated graphically (see [15]) using analogy with conic systems. As a result, application

of the small-gain approach to a IF–OFP system with scatterred input-output signals allows for

deriving corresponding stability conditions in the presence of constant communication delays.

From this point of view, works [15, 28] extend the scattering-based stabilization approach to a

more general class of systems in comparison with passive systems.

The next step in the development of the scattering-based approach belongs to the work by

I.G. Polushin [35], where he gives a more precise and practically more convenient definition

of conic systems, establishes stability conditions for their interconnections, and elaborates a

scattering-based stabilization technique. Specifically, a system of the form (1.14) is said to
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be interior conic with respect to the cone with center ϕc ∈ R and radius ϕr ∈ (0, π/2) (see

Figure 1.4) if it is dissipative with the following supply rate

w(y, η) = [yT ηT ]W(ϕc, ϕr)

y
η

 , where

W(ϕc, ϕr) :=
λ

2

(cos 2ϕc − cos 2ϕr) sin 2ϕc

sin 2ϕc −(cos 2ϕc + cos 2ϕr)

 ⊗ Im.

(1.19)

Representations of the supply rate in the forms (1.17) and (1.19) are equivalent, more precisely,

for given parameters δ, ε and ν one can find corresponding center and radius of a cone in the

sense of definition (1.19), and vise-versa. However, new representation of the conic systems

reveals a geometrical structure of the supply rate, for example, a conic sector for a passive

system with supply rate w(y, η) = yTη has center φc = π/4 and radius φr = π/4 (Figure 1.5),

similarly, a conic sector of a finite gain L2-stable system with supply rate w(y, η) = γ2 · ηTη−

yT y has center φc = 0 and radius φr = arctan γ (Figure 1.6).

y

η

ϕr

ϕc

Figure 1.4: Example of planar

conic characteristics

y

η

ϕ r
=
45
o

ϕc = 45o

Figure 1.5: Conic characteris-

tics of a passive system

y

η

ϕr
: tg

ϕr
=
γ

ϕr

ϕc = 0o

Figure 1.6: Conic characteris-

tics of a finite L2–gain stable

system

Regarding the scattering-based stabilization approach, the definition of a planar conic sys-

tem in terms of center and radius allows to illustrate the effect of the scattering transformation

on the input-output characteristics of the system. As an example, consider the scattering (or

wave) transformation S (1.12) developed for passive systems [2], which maps the power vari-

ables ẋ, F into the wave variables u, v. For simplicity we suppose that the scale factor b = 1,

and then the scattering operator takes the form

S =
1
√

2

 1 1

−1 1

 =

 cos (π/4) sin (π/4)

− sin (π/4) cos (π/4)

 . (1.20)
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The obtained matrix in (1.20) is a rotation by the angle of Φ = π/4. Thus, the conventional

scattering/wave transformation S rotates the input-output characteristics of a passive system by

the angle of Φ = φr = π/4 and thereby turns it into a system with L2-gain less than or equal to

one; this is illustrated in Figure 1.7. Stability of interconnections of subsystems with L2-gains

less than or equal to one in the presence of constant communication delays then follows from an

appropriate version of the small-gain theorem (more precisely, the interconnection is robustly

stable if the product of gains < 1, and is marginally stable if the product of gains = 1). Based

⌘

y

u

v

S

passivity

gain  1
u

v

⇡/4

⇡/4

Figure 1.7: Scattering transformation as a rotation in the space of input-output variables [35]

on the nature of the scattering transformation as a rotational operator, the paper [35] proposes a

more general transformation that involves both a rotation by an arbitrary angle Φ ∈ (−π, π] with

respect to cone’s center φc (1.19), and change of cone’s radius by incorporating gains γs > 0

into the transformation. uv
 := S (Φ, γs)

ηy
 , (1.21)

where u, v are generalized scattering/wave variables, and

S (Φ, γs) :=

 γ−1/2
s cos Φ γ1/2

s sin Φ

−γ−1/2
s sin Φ γ1/2

s cos Φ

 · cosϕc − sinϕc

sinϕc cosϕc

 ⊗ I. (1.22)

In view of the “graph separation” condition for stability [36, 38], the ability to change

the center and the radius of a dynamic conic sector can be used for stabilization of the in-

terconnected systems. Specifically, a feedback interconnection of two planar conic systems

Σi ∈ Cone(ϕci, ϕri), i = 1, 2, is L2-gain stable if the corresponding cones are separated; the

latter condition can be written in the form

ϕr1 + ϕr2 < |ϕc1 − ϕc2|.
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Besides, the stabilization problem of conic systems interconnections in the presence of constant

delays has been also solved by the usage of the scattering-based algorithms elaborated in [35]

together with small-gain approach.

Therefore, the approaches developed in [15,28,35] extend the scattering-based stabilization

techniques to the class of planar conic (IF-OFP) nonlinear systems, and established stronger

stability results. Moreover, the definition of a planar conic systems in terms of center and radius

introduced in [35] gives a new look at the notion of conicity and reveals the way for expanding

it to the non-planar case developed in the present research.

1.1.5 Complex interconnection of the (Q,S,R)−dissipative systems

The paper [29] considers the stabilization problem of complex systems interconnections with-

out delays. In particular, the authors have studied a linear interconnection of dissipative subsys-

tems and derived a matrix condition (see [29, Theorem 1]) guaranteeing both input-output sta-

bility and Lyapunov stability. Specifically, let a linear interconnection of N (Q,S,R)−dissipative

systems with supply rates wi(ηi, yi) of the form (1.16) be determined by the equalities

ηi = δi −

N∑
j=1

Ai jy j, (1.23)

where ηi ∈ R
mi is the input to the subsystem i, y j ∈ R

p j is the output of the subsystem j, δi is an

external input, andAi j are constant matrices. Denoting ηT =
[
ηT

1 , . . . , η
T
N

]T
, yT =

[
yT

1 , . . . , y
T
N

]T

and δT =
[
δT

1 , . . . , δ
T
N

]T
, the interconnection (1.23) can be represented in the form

η = δ −Ay, (1.24)

where matrix A consists of the blocks Ai j. Using [QSR]i matrices (1.16) of the quadratic

supply rates w(ηi, yi) (i = 1, . . . ,N), introduce aggregated matrices Q = diag{Q1, . . . ,QN} ∈

Rp×p, S = diag{S 1, . . . , S N} ∈ R
p×m and R = diag{R1, . . . ,RN} ∈ R

m×m, where m =
∑N

i=1 mi

and p =
∑N

i=1 pi. As a result, the stability [29, Theorem 1] of the linearly interconnected

system (1.24) with respect to the input δ and output y is ensured by the positive definiteness of

the matrix Q̂, where

Q̂ = SA +AT S T −AT RA− Q.

Authors have adapted the obtained sufficient stability condition to the interconnections of pas-

sive, conic and finite gain systems without time delays.

A popular technique for stabilization of systems interconnection in the presence of constant

time delay is the small-gain approach [1, 44, 45]. This approach deals with the interconnection

of finite gain systems and ensures delay-independent stability [15, 32, 40]. Network version
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of the small-gain approach is represented in [40, Section 8.3] and uses results obtained in [9].

These works consider a feedback interconnection of finite gain L2 stable subsystems with the

gains not exceeding γi (i ∈ {1, . . . ,N}, where N is the number of subsystems). The intercon-

nection is determined by the network graph that is described by an adjacency matrix A. The

main result claims that a networked control system is finite gain L2 stable if the gain matrix

Γ := diag
{
γ2

1, . . . , γ
2
N

}
· A with nonnegative elements has the spectral radius less than or equal

to 1. Thus, this study have established the sufficient stability criterion for a feedback intercon-

nection of finite gain L2 stable systems in the presence of constant time delays.

Small-gain approach together with the scattering-based stabilization technique allows for

achieving delay-independent stability of interconnections of passive systems [5,22,33] and pla-

nar conic (or IF-OFP) systems [15,28,35]. Application of the scattering transformation turns a

passive (or planar conic) subsystem into a finite gainL2 stable subsystem, which ensures stabil-

ity of the interconnected system if the product of the subsystems’ gains is less than 1. Moreover,

this technique allows for generalization to the case of time-variable delays [5,15,33]. Modified

version of the scattering transformation proposed in [5, 15, 27] incorporates time-dependent

gains for scaling the scattering variables transmitted through the communication channel in

the presence of time variable delays. The mentioned results have been mainly developed for

teleoperation systems, where the delayed interconnection of only two subsystems (master and

slave) must be stabilized. For more general networks of (Q,S,R)−dissipative systems, as men-

tioned above, the input-output stability results has been obtained only for interconnections

without time delays.

1.1.6 Coupled stability problem

Physical interaction of a robot with an environment affects the robot behavior and may lead to

instability even when a simple system contacting a simple environment. Illustrative examples

of this phenomenon are provided in [21, Chapter 19], and demonstrate that stable behavior of

the isolated subsystems does not guarantee the stability of the interaction.

In 1996 [21, Section 19.1.2], it was proposed to investigate an interaction within a dis-

turbance rejection approach that considers environment’s dynamics as an external disturbance

forces. This method imposes strong restrictions on bounding the disturbance forces, however,

in practice, the environment may generate the forces exceeding the robot’s nominal capacity;

moreover, environmental forces may depend on robot’s position and/or velocity. Therefore,

analysis of interaction as external disturbances independent of the robot and the environment

dynamics, in general, does not allow for solving the contact stability problem.

Another approach [21, Section 19.1.3] to the coupled stability problem proposes to model
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the environment as an uncertain part of the robot, and uses robust control algorithms. Ap-

plicability of this approach is restricted to the case where the interaction does not affect the

structure of the dynamical model. For example, if the effect of the interconnection changes

robot’s parameters (e.g. mass of the end-effector), then this approach can be successfully ap-

plied. However, if robot’s end-effector contacts an elastic objects, it may lead to new type of

behavior of the system due to the interaction between the robot inertia and the environment

elasticity; as a result, this method does not guarantee the stable contact.

Series of the papers [16–18] presents the so-called impedance control approach which con-

siders the contact between the robot and the environment as a dynamic bidirectional physical

phenomenon rather than an exogenous signal/disturbance. For instance, the manipulator inter-

acting with a soft obstacle may deform the latter, while the obstacle slows down the velocity

of the robot or even stops it. In other words, robot’s behavior is changed during the interaction

with the environment. Reaction of the robot to interaction with an environment determines its

response to a specific reference trajectory. Dynamic properties of the contact play significant

role in the controller design for coupled stability problem. The impedance control approach

became the starting point for the development of a port-Hamiltonian passivity-based technique

for the contact stability problem [37, Section 3]. The information passed through the interac-

tion ports can be expressed in terms of velocities and forces. In fact, velocity and force at the

interaction port depend on known manipulator dynamics and often poorly characterized envi-

ronment dynamics. The only thing which is independent of the environment dynamics is the

dynamic relation between the force and the velocity at the port. It allows for designing the in-

teraction port by means of a power port, and interpreting the interaction of the systems in terms

of energy exchange. From this point of view, for stability of interconnection, the controller

should regulate the energy exchange. Therefore, conventionally this problem is analyzed and

solved within the passivity-based framework [6–8,19,21,37] under the assumption of passivity

of the environment.

Nevertheless, the study presented in [6] shows that the passivity-based approach can be

partially extended to a limited class of active environments, specifically to those where the en-

vironmental behavior can be decomposed into passive dynamics and an active external force

independent on the robots/environments states. Further, in the papers [25, 26], authors inves-

tigated the slippage phenomenon for wheeled mobile robots remotely controlled by a human

operator. In these works, slippage is modelled as the environment termination for the wheeled-

mobile robot, and its fluctuations may cause passivity violation of the environment termination.

Specifically, contact force experiencing by the robot includes a negative damping term. To deal

with the problem, authors propose a decomposition of the non-passive contact into two com-

ponents: passive and active (see [23, 26]), and design a controller which compensates for the
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shortage of passivity induced by the slippage. This approach allows to make the contact passive

and, therefore, stabilizes the interaction of the wheeled-mobile robot with a soft terrain.

Although the passivity-based approach solves the coupled stability problem for passive

systems, an application of the scattering approach together with the graph separation stability

condition allows for stabilization of robot-environment interaction even in the case where the

behaviors of the environment and/or manipulator are essentially not passive. Corresponding

extensions of the conventional passivity-based approach are discussed in [35] for planar conic

systems. The paper provides a scattering transformation of the special form that changes the

cone of the manipulator in a such way that the graph separation stability condition elaborated

specifically for the planar conic systems is satisfied. It results in stability of the overall inter-

connected system. This approach deserves attention also because it allows to establish stability

conditions for interconnections of arbitrary planar conic (or IF-OFP) systems under less con-

servative assumptions on behavior of the subsystems than the passivity-based methods.

1.2 Thesis contribution

In this thesis, the scattering-based stabilization technique has been extended for classes of

systems which are more general than planar conic. Specifically, we address the class of

(Q,S,R)−dissipative systems [43], which include passive, planar conic (or input-feedforward–

output-feedback-passive, IF-OFP) [15, 28, 35, 45], finite gain L2 stable systems, and many

others. In contrast with the planar conicity, (Q,S,R)− dissipativity does not require a system

to have equal number of inputs and outputs, and does not impose uniform constraints on every

input–output pair in the supply rate. For stability analysis, the only condition that must be satis-

fied is that the number of nonnegative eigenvalues of the [QSR] matrix in the quadratic supply

rate coincides with the dimension of system’s input. We introduce a notion of non-planar

conicity which allows for parameterization of the quadratic supply rate in terms of a central

subspace Ω and a radius φr. For a given quadratic supply rate, an algorithm for constructing a

non-planar cone of a (Q,S,R)−dissipative system is presented. Using the notion of non-planar

conicity, we conduct the stability analysis of systems interconnections with and without time

delays. In both these cases, the stability conditions are established and expressed in terms of

the centers and radii of the cones of interconnected subsystems. Therefore, to achieve these

conditions, it might be necessary to transform cone(s) at least one of the subsystem(s). The

procedure that transforms a cone is a generalized scattering transformation which is a combi-

nation of elementary linear transformations applied to the input-output variables of the system.

This procedure can be geometrically interpreted using the concept of conic systems, as two of

these transformations rotates the center by means of an orthogonal operator, while the third
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one changes the radius using a diagonal scaling matrix. As a result, the developed scattering-

based approach allows for stabilization of interconnections of non-planar conic systems with

and without time delays.

It is worth to mention that a scattering transformation that separates the interconnected

systems’ cones is not unique. On the contrary, there exists a continuum of transformations

resolving this issue, for instance, the gap that separates the cones can be chosen arbitrary. This

fact can be used for improving performance of control algorithms. In particular, some blocks

in the scattering operator for solving the trajectory tracking problem can be predefined. If the

goal is to minimize the change of signals, one can select such a scattering transformation that

solves stabilization problem and, simultaneously, has the minimum possible deviation from

the identity operator, i.e., ‖S − I ‖ −→
S

min. In other words, non-uniqueness of the scattering

transformations creates a basis for implementing additional requirements imposed on these

transformations in order to improve performance of the control schemes.

As an application of the generalized scattering-based stabilization approach, a solution of

the coupled stability problem is developed. The contact (or coupled) stability problem [24,42]

is one of the fundamental problems in robotics, which is conventionally solved using the

passivity-based approach. However, the research presented in this thesis addresses the con-

tact stability problem under weaker assumptions on the dynamics of the robot manipulator and

the environment. Starting from general models of robot and environment dynamics determined

by Euler–Lagrange equations, we construct storage functions for both subsystems, derive cor-

responding quadratic supply rates, and then estimate the non-planar cones using the developed

algorithm. To guarantee stable contact, the graph separation stability condition requires sepa-

ration between the robot cone and the inverse environment cone. This problem is solved in this

thesis by means of the generalized scattering transformation. In addition, we pursue the goal to

preserve trajectory tracking performance in free space. This imposes constraints on the struc-

ture of the scattering operator, which generally speaking does not allow for direct application

of the approach developed in the theoretical part of the work. To solve the coupling stability

problem without jeopardizing the trajectory tracking performance in free space, we develop

a numerical algorithm for calculation of a scattering transformation from the prescribed class

that separates the cones with a prescribed gap. We present a detailed design example where a

manipulator controlled by a trajectory tracking control algorithm experiences non-passive con-

tact with an environment which results in coupled instability, while application of the proposed

scattering based methods stabilizes the robot-environment interaction.

Further generalization of the scattering-based stabilization approach developed in this the-

sis deals with complex interconnections of (Q,S,R)−dissipative systems with communication

delays. In this thesis, we introduce the notion of a finite L2-gain (A, B)-stable system and
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establish conditions forL2-gain (A, B)-stability for (Q,S,R)−dissipative systems. The conven-

tional L2 stable systems with the finite gain γ satisfy the new definition as a special case for

A = γ2Im and B = Ip, where m and p are dimensions of system’s input and output respectively.

We subsequently present a scattering-based design approach for stabilization of complex inter-

connections with communication delays. A numerical design example and simulation results

presented which illustrate the capabilities of the proposed method.
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1.4 Thesis outline

This thesis is organized as follows:

Chapter 2 presents the theoretical framework for the generalized scattering-based stabi-

lization approach. In this chapter, we introduce the notion of non-planar conicity and prove

that any (Q,S,R)−dissipative system also belongs to the class of non-planar conic systems.

Advantages of the introduced notion are also discussed in comparison with the existing classes

of passive and conic (planar conic) systems. Also in this chapter, the problem of stabilization of

interconnections of non-planar conic systems with and without time delays is addressed. For

interconnections without time delays, we develop the graph separation stability condition in

terms of centers and radii of the subsystems’ cones. In the case of interconnections with com-

munication delays, the delay-independent stability conditions are derived within the small gain

framework. To guarantee the fulfilment of these conditions, the generalized scattering-based

methods are proposed. Finally, applications of the developed scattering-based stabilization

technique to the problems of stable robot-environment interaction and bilateral teleoperation

with multiple heterogeneous communication delays are briefly discussed.

In Chapter 3, we investigate the coupled stability problem in robotics and propose its so-

lution using the generalized scattering-based techniques. In the beginning of the chapter, the

necessary theoretical background is provided, including results on stabilizing systems intercon-

nection without delays developed in Chapter 2. However, we found that direct application of

the theory developed in Chapter 2 to contact stability problem results in a scattering-based con-

troller which interferes with the manipulator’s tracking performance in free space. To avoid the

negative effect on the trajectory tracking performance, we restrict the admissible set of scatter-

ing transformations to those that do not result in such interference. Subsequently, we develop

a constrained optimization based numerical algorithm for calculating the parameters of the

scattering transformation that guarantees coupled stability through graph separation condition

while at the same time does not interfere with the free space tracking. A detailed design exam-

ple is presented, which begins with calculation of supply rates for the manipulator controlled

by a tracking control law and a non-passive environment. It is shown that the graph separation

stability condition is not satisfied, which is confirmed by simulation results which demonstrate

contact instability. Subsequently, a scattering transformation is designed that stabilizes the

robot-environment interconnection, which is confirmed by numerical simulations. All steps in

the scattering-based controller design are explained in details, and numerical implementation

of the algorithm is provided in the MATLAB scripts. Demonstration and analysis of simulation

results obtained with and without application of the generalized scattering-based stabilization

approach conclude the chapter.



Chapter 4 deals with stabilization of complex interconnections of (Q,S,R)−dissipative

systems with multiple communication delays. The chapter starts with the studies of properties

of (Q,S,R)−dissipative systems that play an important role in the problem of stabilization of

their interconnections. Specifically, we analyze the relationship between the input’s dimension

and the number of nonnegative eigenvalues or, equivalently, between the output’s dimension

and the number of negative eigenvalues of [QSR] matrix in the quadratic supply rate. Another

theoretical aspect of the chapter is a novel notion of finite L2-gain (A, B) stability that slightly

generalizes the notion of finite gain L2 stable systems. Subsequently, we design a scattering

transformation that transforms a given (Q,S,R)−dissipative system whose output’s dimension

coincides with the number of negative eigenvalues of [QSR] matrix in the quadratic supply rate

into a finite L2 gain (A, B) stable system. Using on the above described results, we prove the

main result of this chapter which contains a design procedure for delay-independent stabiliza-

tion of complex interconnections of (Q,S,R)−dissipative systems with communication delays.

At the end of the chapter, a numerical design example and simulation results are presented in

support of the theoretical developments.

Chapter 5 summarizes the main results of the thesis, and discusses future research direc-

tions.

Appendix A deals with a particular case where the robot dynamics are determined by

the Euler-Lagrange equations and locally controlled by the Lyapunov-based algorithm that

ensures solution of the trajectory tracking problem in the absence of external forces. As is

demonstrated, Euler-Lagrange dynamics together with the Lyapunov-based local controller

generate a (Q,S,R)−dissipative system, where the external forces play role of an input, and

the full state (robot’s position and velocity) is an output. In addition, we prove that inclusion

of the parameter adaptation mechanism in the Lyapunov-based local controller does not affect

the supply rate derived in the non-adaptive version of this algorithm.
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Chapter 2

Scattering-Based Stabilization of
Non-Planar Conic Systems

The material presented in this chapter is published in Automatica, vol. 93, 2018, pp. 1-11.

Parts of this work have also been published in

- the Proceeding of the 10th IFAC Symposium on Nonlinear Control Systems (NOLCOS),

pp. 945–950, Monterey, CA, USA, August 23-25, 2016;

- the Proceeding of the 20th IFAC World Congress, pp. 8808–8813, Toulouse, France,

9-14 July 2017.

Methods for scattering-based stabilization of interconnections of nonlinear systems are de-

veloped for the case where the subsystems are non-planar conic. The notion of non-planar

conicity is a generalization of the conicity notion to the case where the cone’s center is a sub-

space with dimension greater than one. For a feedback interconnection of non-planar conic

systems, a graph separation condition for finite-gain L2-stability is derived in terms of re-

lationship between the maximal singular value of the product of projection operators onto

the subsystems’ central subspaces and the radii of the corresponding cones. Furthermore, a

new generalized scattering transformation is developed that allows for rendering the dynamic

characteristics of a non-planar conic system into an arbitrary prescribed cone with compatible

dimensions. The new scattering transformation is subsequently applied to the problem of sta-

bilization of interconnections of non-planar conic systems, with and without communication

delays. Applications of the developed scattering-based stabilization methods to the problems

of stable robot-environment interaction and bilateral teleoperation with multiple heterogeneous

communication delays are discussed.

28
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2.1 Introduction

Scattering transformation techniques have been used in the theory of electric networks, partic-

ularly transmission lines and networks with delays, since the middle of twentieth century [41].

In the control systems area, applications of the scattering transformation can be traced back

to work [1] where a similar construction was used to establish relationship between passivity

and small-gain theorems. In [2], the scattering transformation was applied to the problem of

stabilization of force reflecting teleoperators in the presence of communication delays. The lat-

ter work, together with parallel developments presented in [23], have made a very substantial

impact on the bilateral teleoperation area, where the scattering-based stabilization is currently

among the most popular methods to deal with instabilities caused by force reflection in the

presence of communication delays [15, 24, 25, 29, 33, 34]. The stabilizing effect of the scat-

tering transformation is based on the fact that a conventional scattering operator transforms a

passive system into a system with L2-gain less than or equal to one [2, Theorem 3.1]. Assum-

ing all involved subsystems are passive, scattering transformations implemented on both sides

of a communication channel transform the corresponding subsystems into those with gain less

than or equal to one; stability of the overall system then follows from the small-gain arguments.

Extensions of the scattering transformation techniques to the case of interconnections of

not necessarily passive systems were recently proposed in [13,27]. These extensions are based

on the observation that the conventional scattering transformation is essentially an operator of

rotation by π/4 in the space of input-output variables. Introduction of more general scattering

operators that include arbitrary rotations and input-output gains results in substantial general-

izations of the scattering-based stabilization techniques. In particular, the methods developed

in [27] allow for stabilization of interconnections of arbitrary planar conic systems, with and

without communication delays. The notion of a conic system was introduced and originally

studied in 1960s by G. Zames [43]; extensions to the case of nonlinear conic sectors were

subsequently developed in [28, 35]. Conic systems are nonlinear dynamical systems whose

input-output behavior belongs to a dynamic cone. The notion of conicity studied in [43] was

essentially planar in the sense that the dynamic cones were characterized by two scalar pa-

rameters which represent a conic sector on a plane. Even in this planar case, the notion of

conicity is fairly general; in particular, it includes different versions of passivity, finite-gain

L2-stability, etc., as special cases. The stabilization methods developed in [27] were based on

a new generalized version of the scattering transformation which allows for rendering the dy-

namic input-output characteristics of an arbitrary planar conic system into a prescribed conic

sector. Stability of interconnections can consequently be achieved by designing scattering

transformation(s) that render the subsystems’s cones in such a way that an appropriate stability
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condition (i.e., a graph separation condition in the non-delayed case, or a small-gain condition

in the presence of communication delays) is satisfied.

The class of planar conic systems, however, is quite limited in certain aspects. One partic-

ularly significant limitation is that, with the exception of systems with finite L2-gain, planar

conic systems are required to have an equal number of inputs and outputs. The correspond-

ing methods, including scattering-based design, are therefore limited to those systems where

the number of inputs matches the number of outputs. Even in the latter case, description of

a multi-input-multi-output system’s cone in terms of two scalar parameters is typically overly

crude; as a result, the methods that use such a parameterization lack flexibility, which in turn

leads to limited applicability and analysis/design conservatism. Another substantial limitation

of the planar conicity is that a feedback interconnection of two planar conic systems is, gen-

erally speaking, not a planar conic system. The latter fact makes it difficult to use the notion

of planar conicity for analysis of complex interconnections. All the above, in turn, limits the

applicability of the existing scattering-based methods to stabilization of interconnections of

general nonlinear systems.

In this chapter, we develop an approach to scattering-based stabilization that removes all

the limitations described above. The approach is based on an extension of the conicity notion

to non-planar case, and subsequent development of a new generalized scattering transforma-

tion applicable to non-planar conic systems. The notion of non-planar conicity is based on

an appropriate generalization of the planar conicity to the case where the cone’s center is a

subspace with dimension that can be greater than one. This generalization is quite substan-

tial; in fact, the class of non-planar conic systems coincides with that of dissipative systems

with quadratic supply rates (or (Q, S ,R)-dissipative systems [12]). In particular, for a given

quadratic supply rate, the parameters of the corresponding non-planar cone can be calculated

using the procedure presented below in Section 2.2.1. For a feedback interconnection of two

non-planar conic systems, a graph separation condition for finite-gain L2-stability is derived in

terms of relationship between the maximal singular value of the product of projection operators

onto the subsystems’ central subspaces and the radii of the corresponding cones. Subsequently,

a new generalized scattering transformation is developed that allows for rendering the dynamic

characteristics of a non-planar conic system into an arbitrary prescribed cone with compatible

dimensions. This property of the new scattering transformation, in turn, allows for its effective

use in the problem of stabilization of interconnections of non-planar conic systems, with and

without communication delays. Applications of the developed scattering-based stabilization

methods to the problems of stable robot-environment interaction and bilateral teleoperation

with multiple heterogeneous communication delays are also described.

The chapter has the following structure. In Section 2.2, the notion of non-planar conicity
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is introduced, and a procedure for calculation of the parameters of the (non-planar) dynamic

cone for a dissipative system with a quadratic supply rate is described. In Section 2.3, a graph

separation condition for finite-gainL2-stability of interconnection of two non-planar conic sys-

tems is presented. In Section 2.4, a new generalized scattering transformation is developed that

allows for rendering the input-output dynamics of a non-planar conic system into an arbitrary

prescribed cone. The scattering-based stabilization of interconnections of non-planar conic sys-

tems in the absence of communication delays is addressed in Section 2.5; application of this

method to the problem of stable robot-environment interaction is discussed in Section 2.5.1.

In Section 2.6, a scattering-based method for stabilization of non-planar conic systems’ in-

terconnections in the presence of multiple heterogeneous communication delays is developed;

application of this method to bilateral teleoperation with communication delays is described

in Section 2.6.1. Concluding remarks are given in Section 2.7. Preliminary versions of some

of the results presented in Sections 2.2, 2.3 were reported in the conference paper [37], while

preliminary versions of some of the results in Sections 2.4, 2.5 were presented in [38].

2.2 Non-Planar Conicity

Consider a nonlinear system of the form

Σ :

 ẋ = f (x, η),

y = h(x, η),
(2.1)

where x ∈ Rn is the state, η ∈ Rm the input, and y ∈ Rp the output of system (2.1). The

functions f (·, ·), h(·, ·) are locally Lipschitz continuous in their arguments. A system (2.1) is

said to be dissipative with respect to supply rate w : Rp × Rm → R if there exists a storage

function V : Rn → R+ such that the inequality

V (x(t1)) − V (x(t0)) ≤

t1∫
t0

w (y(τ), η(τ)) dτ

holds along the trajectories of the system (2.1) for any t1 ≥ t0, any initial state x(t0), and an

arbitrary admissible control input η(t), t ∈ [t0, t1). In the definition below, R/π̃ denotes the

quotient set (i.e., the set of equivalence classes) of R with respect to equivalence relation π̃ :=

{φ1 ∼ φ2 iff φ1 − φ2 = kπ, k ∈ Z}, where Z := {. . . ,−1, 0, 1, . . .} is the set of integer numbers.

Definition 2.1. A system Σ of the form (2.1) with m = p is said to be (planar) interior conic

with respect to the cone with center φc ∈ R/π̃ and radius φr ∈ (0, π/2) if it is dissipative with
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supply rate

w (y, η) =

ηy
T

W (φc, φr)

ηy
 , (2.2)

where matrix W(φc, φr) is determined by the formula

W (φc, φr) :=
λ

2
·

cos 2φc − cos 2φr sin 2φc

sin 2φc − cos 2φc − cos 2φr

 ⊗ Im, (2.3)

where ⊗ denotes the Kronecker product, and λ > 0.

Representation (2.2), (2.3) of the supply rate of a conic system in terms of the cone’s center

φc and its radius φr is from [27]. There also exists a somewhat more conventional representation

of the supply rate in terms of the cone’s boundaries a, b ∈ R ∪ {±∞}, a ≤ b, which was used

for example in the classical work [43]. Specifically, a system of the form (2.1) with m = p is

interior [a, b]-conic if it is dissipative with respect to the supply rate

w(y, η) := (bη − y)T (y − aη) . (2.4)

For any finite parameters a, b ∈ R, a ≤ b, the supply rate (2.4) can be represented in the form

(2.2), (2.3) by choosing

λ =
√

(a2 + 1)(b2 + 1),

φc =
1
2

arg (1 − ab + j(a + b)) , and

φr =
1
2

cos−1

 1 + ab√
(a2 + 1)(b2 + 1)

 .
The matrix W (φc, φr) of the quadratic supply rate (2.2) can also be written in the form

W (φc, φr) := λ ·
[
lclT

c − cos2 φrI2
]
⊗ Im, (2.5)

where lc :=
[
cos φc sin φc

]T is the unit vector that belongs to a center of the cone. Representa-

tion (2.5) is of special interest for our work as it allows for an extension to a non-planar case,

as follows. For simplicity of exposition, consider the case λ = 1 and m = 1. Combining (2.2)

and (2.5), one can write the supply rate in the form

w (y, η) =
[
ηT yT

]
lclT

c

ηy
 − cos2 φr ·

∣∣∣∣∣∣∣ηy
∣∣∣∣∣∣∣
2

. (2.6)

Since lc is the unit vector that belongs to the center of the cone, the scalar product of lc and

[ηT yT ]T represents the length of the projection of the input-output vector [ηT yT ]T onto the
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center of the cone. Based on these considerations, the supply rate (2.6) can be equivalently

written in the form

w (y, η) =

ηy
T [

ΠT
c Πc − cos2 φrI2

] ηy
 , (2.7)

where

Πc :=

 cos2 φc sin φc cos φc

sin φc cos φc sin2 φc


is the matrix of projection onto the center of the cone. Since projection matrices are symmetric

(ΠT
c = Πc) and idempotent (Π2

c = Πc), we see that ΠT
c Πc = Πc, and the supply rate (2.7) can be

rewritten in the form

w (y, η) =

ηy
T [

Πc − cos2 φrI2
] ηy

 . (2.8)

The importance of the formula (2.8) stems from the fact that it allows for generalization in

at least two important directions: i) the case where the conic sector is no longer planar, in

particular, where the dimension of the center of the conic sector can be higher than one, and ii)

where the dimensions of the input and the output are not equal.

Consider now a system (2.1) where, generally speaking, m , p. The following is a gener-

alization of the notion of interior conicity to a non-planar case.

Definition 2.2. Given a subspace Ω ⊂ Rm+p, dim Ω = l ∈ {0, . . . ,m + p}, and φr ∈ [0, π/2), a

system Σ of the form (2.1) is said to be interior conic with respect to the cone with centre Ω

and radius φr (Σ ∈ Int (Ω, φr)) if it is dissipative with supply rate

w (y, η) =

ηy
T

W (Ω, φr)

ηy
 , (2.9)

where matrix W (Ω, φr) has the form

W (Ω, φr) := ΠΩ − cos2 φr Im+p, (2.10)

where ΠΩ is the matrix of projection onto the subspace Ω.

Remark To illustrate a substantially more general nature of the notion of conicity given by

Definition 2.2 in comparison with that of Definition 2.1, let us begin by pointing out that

the notion of planar conicity (Definition 2.1) is not well-defined if m , p. Moreover, even

in the case where m = p, the notion of conicity given by Definition 2.2 allows for much

higher flexibility in the choice of the central subspace in comparison with that of Definition 2.1.

Indeed, suppose a system Σ is (planar) interior conic in the sense of Definition 2.1 with center
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φc ∈ (−π/2, π/2]. In this case, it is also interior conic in the sense of Definition 2.2 with a

central subspace

Ω = span
{[

cos φc sin φc

]T
⊗ Im

}
. (2.11)

For any φc ∈ (−π/2, π/2], the central subspace (2.11) is an m-dimensional subspace in the

2m-dimensional space of input-output signals. In general, a set of m-dimensional subspaces in

an n-dimensional linear space forms a Grassmanian manifold Gr(m, n), which has a dimension

m(n − m). In our case, the set of all possible m-dimensional subspaces in the 2m-dimensional

space of input-output signals is a manifold with dimension m2. For planar conic systems (Defi-

nition 2.1), however, the set of all allowed central subspaces (2.11) is parameterized by a single

scalar parameter φc ∈ (−π/2, π/2] and, therefore, forms a one-dimensional submanifold in the

m2-dimensional manifold of all central subspaces allowed by Definition 2.2. Thus, even in the

case m = p, m > 1, Definition 2.2 allows for fundamentally higher flexibility in the choice of

central subspace in comparison with the planar case (Definition 2.1) and, consequently, poten-

tially much more precise description of system’s dynamics.

2.2.1 Relationship to (Q,S,R)−dissipativity

To further illustrate applicability and usefulness of the above defined notion of non-planar

conicity (Definition 2.2), it is beneficial to explore its relationship with a well-known notion

of (Q, S ,R)-dissipativity, see [12]. Given matrices Q = QT ∈ Rp×p, R = RT ∈ Rm×m, and

S ∈ Rp×m, a system of the form (2.1) is said to be (Q, S ,R)-dissipative if it is dissipative with

supply rate

w(y, η) = yT Qy + 2yT S η + ηT Rη.

An interior conic system is obviously (Q, S ,R)-dissipative. Conversely, if a system (2.1) is

(Q, S ,R)-dissipative, it is also interior conic in the sense of Definition 2.2. To show this, first

denote

[QSR] :=

R S T

S Q

 ∈ R(m+p)×(m+p).

Matrix [QSR] is real symmetric and, therefore, real orthogonal equivalent to a diagonal matrix;

specifically,

GT · [QSR] ·G = diag
[
µ1, . . . , µp+m

]
, (2.12)

where µ1, . . . , µm+p are eigenvalues (all real) of [QSR] written in an arbitrary prescribed order,

and G is a real orthogonal matrix such that i-th column of G is an eigenvector of [QSR] corre-

sponding to µi, i = 1, . . . ,m + p. Let λ(QS R) := {µ1, . . . , µm+p} denote the set of eigenvalues of

[QSR], λ−(QS R) ⊂ λ(QS R) denote the set of strictly negative (< 0) eigenvalues of [QSR], and
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λ+(QS R) := λ(QS R) \ λ−(QS R) be the set of nonnegative (≥ 0) eigenvalues of [QSR]. Let us

also introduce the following notation

l := card
{
λ+(QS R)

}
, (2.13)

µ− := min
{
|µi| : µi ∈ λ

−(QS R)
}
, (2.14)

µ+ := max
{
|µi| : µi ∈ λ

+(QS R)
}
. (2.15)

Expression (2.13) defines l ∈ {0, . . . ,m+p} as the number of nonnegative eigenvalues of [QSR].

The value of µ− is well-defined by expression (2.14) if λ−(QS R) , ∅ (equivalently, if l < m+p).

Similarly, µ+ is well-defined by expression (2.15) if λ+(QS R) , ∅ (equivalently, if l > 0). The

following statement is valid.

Lemma 2.2.1. Suppose the system (2.1) is (Q, S ,R)-dissipative. Then it is interior conic in the

sense of Definition 2.2 with center Ω ⊂ Rm+p, dim Ω = l, and radius φr ∈ [0, π/2). Specifically,

Ω := span
{
g+

1 , . . . , g
+
l

}
is the subspace spanned by those eigenvectors g+

1 , . . . , g+
l of matrix

[QSR] that correspond to its nonnegative eigenvalues µi ∈ λ
+(QS R). If 0 < l < m + p, then

φr := tan−1
( √

µ+/µ−
)
. (2.16)

Otherwise (i.e., if l = 0 or l = m + p), radius φr ∈ (0, π/2) can be chosen arbitrarily.

Proof Suppose the system (2.1) is (Q, S ,R)-dissipative with a storage function V . It is straight-

forward to check that, in this case, the system is also interior conic with central subspace

Ω ⊂ Rm+p and radius φr ∈ [0, π/2) if there exists ε > 0 such that the matrix

∆ := ΠΩ − cos2 φr I − ε · [QSR] (2.17)

is non-negative definite (∆ ≥ 0). Without loss of generality, let the eigenvalues in (2.12) be

ordered such that µ1 ≤ . . . ≤ µm+p. Consider first the case where 0 < l < m + p. In this case,

the projection matrix ΠΩ has a form

ΠΩ = G ·

O O

O Il

 ·GT .

Consider a matrix ∆̄ := GT ∆G, where ∆ is defined by (2.17). Taking into account (2.12), one

sees that

∆̄ =

O O

O Il

 − cos2 φr I − ε · diag
[
µ1, . . . , µp+m

]
.
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Thus, the matrix ∆̄ is diagonal; its diagonal elements δ1, . . ., δm+p are the eigenvalues of ∆. For

∆ ≥ 0, all eigenvalues must be nonnegative. We have

δ1 = − cos2 φr − εµ1 ≥ − cos2 φr + εµ−,

...
...

δm+p−l = − cos2 φr − εµm+p−l ≥ − cos2 φr + εµ−,

and

δm+p−l+1 = sin2 φr − εµm+p−l+1 ≥ sin2 φr − εµ
+,

...
...

δm+p = sin2 φr − εµm+p ≥ sin2 φr − εµ
+.

Choosing φr as in (2.16), and ε = 1/(µ+ + µ−), we see that δ1, . . . , δm+p ≥ 0, and the matrix ∆

is nonnegative definite. If l = 0, then ΠΩ = O, and

∆̄ = GT ∆G = − cos2 φrI − ε · diag
[
µ1, . . . , µp+m

]
,

where all µ1, . . . , µp+m < 0. The eigenvalues of ∆ are

δ1 = − cos2 φr − εµ1 ≥ − cos2 φr + εµ−,
...

...

δm+p = − cos2 φr − εµm+p] ≥ − cos2 φr + εµ−.

Therefore, choosing arbitrary ε ≥ 1/µ− guarantees that ∆ is nonnegative definite regardless of

the choice of φr ∈ (0, π/2). Similarly, if l = m + p, we have ΠΩ = I, and

∆̄ = GT ∆G = sin2 φrI − ε · diag
[
µ1, . . . , µp+m

]
,

where all µ1, . . . , µp+m ≥ 0. In this case, the eigenvalues of ∆ satisfy

δ1 = sin2 φr − εµ1 ≥ sin2 φr − εµ
+,

...
...

δm+p = sin2 φr − εµm+p ≥ sin2 φr − εµ
+.

Picking arbitrary φr ∈ (0, π/2] and choosing ε > 0 such that sin2 φr ≥ ε · µ
+ guarantees that ∆

is nonnegative definite. The proof of Lemma 2.2.1 is complete.
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2.3 Graph Separation Stability Condition

In this section, we present a graph separation condition for finite gainL2-stability of a feedback

interconnection of two non-planar conic subsystems. A system of the form (2.1) is said to be

finite gain L2-stable if it is dissipative with supply rate w(y, η) := γ2|η|2 − |y|2, where γ ≥ 0

is the L2-gain, see [39]. To formulate the graph separation condition, it is convenient to use a

notion similar to the one of inverse graph in [36]. Informally, we will call a system Σ inverse

interior conic (with some centre Ω and radius φr) if the same system with inverse causality (i.e.,

where y considered an input and η an output) is Int (Ω, φr). A more formal definition goes as

follows. Given a central subspace Ω ⊂ Rm+p, dim Ω = m, let vectors ω1, . . .ωm ∈ R
m+p form a

basis in Ω, i.e., span {ω1, . . . , ωm} = Ω. Define

Ω := span
{
P(m,p)ω1, . . . , P(m,p)ωm

}
, (2.18)

where P(m,p) ∈ R
m+p is a permutation matrix of the form

P(m,p) :=

O Ip

Im O

 . (2.19)

A system Σ of the form (2.1) is called inverse interior conic with respect to the cone with centre

Ω and radius φr (we will use notation Σ ∈ Int(Ω, φr)) iff Σ ∈ Int
(
Ω, φr

)
, where Ω is defined by

(2.18), (2.19). Clearly, left multiplication of the input-output vector by P(m,p) simply change

the order of inputs and outputs, P(m,p) ·
[
ηT yT

]T
=

[
yT ηT

]T
. Also, projection matrices ΠΩ, ΠΩ

are related according to the formula ΠΩ = P(m,p)ΠΩPT
(m,p).

Consider now two subsystems of the form

Σi :

 ẋi = fi (xi, ηi) ,

yi = hi(xi, ηi),
i ∈ {1, 2}, (2.20)

where y2, η1 ∈ R
m, y1, η2 ∈ R

p, interconnected according to the formulas

η1 = y2 + χ1, η2 = y1 + χ2, (2.21)

where χ1 ∈ R
m, χ2 ∈ R

p are external inputs, see Figure 2.1. The closed-loop system (2.20),

(2.21) has the input [χT
1 , χ

T
2 ]T ∈ Rm+p, and the output [yT

1 , y
T
2 ]T ∈ Rm+p. The following result is

valid.

Theorem 2.3.1. (Graph separation condition for stability). Consider an interconnected system

of the form (2.20), (2.21). Suppose Σ1 ∈ Int (Ω1, φr1), Σ2 ∈ Int (Ω2, φr2), where Ω1
⋂

Ω2 = {0},

dim Ω1 = m, dim Ω2 = p. If the following “graph separation” condition is satisfied

σmax

(
ΠΩ1

ΠΩ2

)
< cos (φr1 + φr2), (2.22)

then the interconnected system (2.20), (2.21) is finite gain L2-stable.
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Figure 2.1: Feedback interconnection of Σ1 and Σ2.

The proof of Theorem 2.3.1 can be found in the Appendix B (see Proof B.1).

Remark In Theorem 2.3.1, the dimensions of the central subspaces of subsystems Σ1, Σ2 are

equal to the corresponding inputs’ dimensions, i.e., dim Ω1 = dim η1 = m, dim Ω2 = dim η2 =

p. This requirement is apparently necessary to exclude meaningless and/or overly conservative

cases. Indeed, assumption dim Ω1 < dim η1 (dim Ω2 < dim η2) would impose restrictions on

instantaneous values of the input η1(t) (η2(t)), while any situation where dim Ω1 + dim Ω2 >

m + p makes graph separation impossible. These issues will be studied in detail in our future

research.

2.4 Scattering Transformation for Non-Planar Conic Systems

In [27], a general form of the scattering operator for planar conic systems was proposed. The

scattering operator defined in [27] is essentially a combination of a planar rotation and an input-

output scaling. When applied to the input-output pair of a planar conic system, the scattering

operator transforms the system’s input-output characteristics from the original cone into a new

cone. More specifically, given a planar conic system and a target (desired) cone, there exists

a scattering operator that renders the input-output characteristics of the system into the target

cone. In this section, an operator with similar properties is constructed for a general non-planar

conic system.

Consider a system Σ of the form (2.1). Suppose this system is interior conic with respect

to the cone with centre Ω ⊂ Rm+p, dim Ω = m, and radius φr ∈ (0, π/2) (i.e., Σ ∈ Int (Ω, φr)).

Given a desired centre subspace Ωd ⊂ R
m+p, dim Ωd = m, and desired radius φrd ∈ (0, π/2), we

are looking for a transformation of the input-output variables of the formuv
 := S (Ω,Ωd, φr, φrd)

ηy
 , (2.23)
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such that the transformed system (2.1), (2.23) with new input-output variables (u, v), u ∈ Rm,

v ∈ Rp, is interior conic w.r.t. the cone with centre Ωd and radius φrd (we will use notation

Σ(u,v) ∈ Int (Ωd, φrd)).

A scattering transformation with the above described properties can be constructed using

the following process. Let vectors g1, g2, . . . , gm form an orthonormal basis in Ω. The set of

vectors {g1, g2, . . . , gm} ∈ Ω can be augmented with additional vectors gm+1, . . . , gm+p ∈ Ω⊥

such that the columns of

G :=
[
g1 . . . gm gm+1 . . . gm+p

]
(2.24)

form an orthonormal basis in Rm+p. Similarly, a matrix Gd can be constructed such that its

first m columns form an orthonormal basis in Ωd, while the whole set of its columns forms an

orthonormal basis in Rm+p. Consider a scattering transformation

S (Ω,Ωd, φr, φrd) := Gd · Γ (φr, φrd) ·GT , (2.25)

where

Γ (φr, φrd) :=
(
cos φrd

cos φr

)α
·

(
sin φrd

sin φr

)−β
×


(
tan φrd

tan φr

)α
Im Omp

Opm

(
tan φrd

tan φr

)β
Ip

 , (2.26)

and α := −p/(m + p), β := m/(m + p). The following lemma is valid.

Lemma 2.4.1. Suppose a system Σ of the form (2.1) is such that Σ ∈ Int (Ω, φr), where Ω ⊂

Rm+p, dim Ω = m, and φr ∈ (0, π/2). Then the transformed system (2.1), (2.23), (2.25), (2.26)

with new input-output variables (u, v) satisfies Σ(u,v) ∈ Int (Ωd, φrd).

Proof By assumption, Σ ∈ Int (Ω, φr), i.e., it is dissipative with supply rate (2.9), (2.10). By

construction of the basis G (2.24), one has

ΠΩ = G

Im O

O Op

GT ,

and therefore, matrix W (Ω, φr) defined by (2.10) can be written in the form

W(Ω, φr) = G

sin2 φrIm Omp

Opm − cos2 φrIp

GT .

Taking into account (2.23), (2.25), we see that

GT

ηy
 = Γ−1 (φr, φrd) ·GT

d

uv
 ,
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and, therefore, in the new coordinates (u, v) the supply rate (2.9) becomes

w(u, v) =

uv
T

GdΓ−1

sin2 φrIm Omp

Opm − cos2 φrIp

 Γ−1GT
d

uv
 .

Taking into account that β − α = 1 and performing calculations, one obtains

Γ−1

sin2 φrIm Omp

Opm − cos2 φrIp

 Γ−1 =

sin2 φrd Im Omp

Opm − cos2 φrd Ip

 ,
which implies

w(u, v) =

uv
T

Gd

sin2 φrd Im Omp

Opm − cos2 φrd Ip

GT
d

uv


=

uv
T Gd

 Im Omp

Opm Op

GT
d − cos2 φrd Ip+m

 uv
 .

Finally, by construction of basis Gd,

w(u, v) =

uv
T (

ΠΩd − cos2 φrd Ip+m

) uv
 ,

i.e., Σ(u,v) ∈ Int (Ωd, φrd). The proof is complete.

One special case of Lemma 2.4.1, which is of particular interest for the problem of stabi-

lization of nonplanar conic systems interconnections in the presence of communication delays

(addressed below in Section 2.6), is where the transformed system Σ(u,v) is finite gain L2-

stable (see Section 2.3). Finite gain L2-stability can be obtained from a more general notion

of nonplanar conicity (Definition 2.2) by choosing the central subspace Ω to coincide with the

input spaceU := {(η, 0), η ∈ Rm, 0 ∈ Rp}. In this case, the projection matrix in (2.10) becomes

ΠΩ =

Im O

O Op

 ,
and straightforward calculations then show that the system is finite L2-gain stable with L2-

gain γ = tan φr. To construct a scattering transformation (2.23), (2.25), (2.26) that makes the

transformed system finite L2-gain stable, it is therefore sufficient to choose Gd = Im+p. The

following statement is a special case of Lemma 2.4.1.

Corollary 2.4.2. Suppose a system Σ of the form (2.1) is such that Σ ∈ Int (Ω, φr), where

Ω ⊂ Rm+p, dim Ω = m, and φr ∈ (0, π/2). Given γd > 0, consider a scattering transformation

(2.23), (2.25), (2.26) with Gd = Im+p and φrd = tan−1 γd. Then the transformed system (2.1),

(2.23), (2.25), (2.26) with input-output variables (u, v) is finite L2-gain stable with L2-gain

less than or equal to γd.
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Remark The above defined scattering transformation (2.25) depends on the choice of or-

thonormal bases G, Gd. Thus, generally speaking, there exist an infinite number of trans-

formations that render dynamics of a given system into a prescribed non-planar cone. The

specific choice of bases G, Gd may depend on the particular task.

2.5 Scattering-based stabilization of systems’
interconnection

A scattering-based approach to stabilization of feedback interconnections was introduced in

[27], where it was developed for the case of planar conic subsystems. The basic idea of this ap-

proach is to design a scattering transformation that transforms the input-output characteristics

(specifically, the dynamic cone) of one of the subsystems in a way that guarantees stability of

the overall interconnection. In this Section, the scattering-based stabilization method is gener-

alized to the case of non-planar conic systems interconnections. Consider two subsystems Σi,

i = 1, 2 of the form (2.20), where y2, η1 ∈ R
m, y1, η2 ∈ R

p. Suppose both these subsystems are

(non-planar) conic, i.e., Σi ∈ Int (Ωi, φri), where dim Ω1 = m, dim Ω2 = p, and φri ∈ (0, π/2),

i = 1, 2. Our goal is to find a scattering transformation S2d : Rm+p → Rm+p such that the

interconnection defined by the constraints y1

η1 − χ1

 = S2d

η2 − χ2

y2

 , (2.27)

is finite-gain L2-stable with respect to external disturbances [χT
1 (t), χT

2 (t)]T ∈ Rm+p.

The block diagram of the interconnected system (2.20), (2.27) is shown in Figure 2.2.

As can be seen, the scattering transformation is placed between the subsystems, and essen-

tially plays a role of a controller that stabilizes the interconnection. The interconnection con-

straints (2.27) can also be rewritten in the formu2

v2

 :=

 y1 + χ̂2

η1 − χ1 + χ̂1

 = S2d

η2

y2

 , (2.28)

where
[
χ̂T

2 χ̂
T
1

]T
:= S2d ·

[
χT

2 0 . . . 0
]T

. The expression (2.28) allows for an equivalent represen-

tation of the system’s block diagram as shown in Figure 2.3. The block diagram in Figure 2.3

makes it intuitively clear how one can design a scattering transformation S2d that stabilizes

the interconnection (2.20), (2.27). Specifically, using Lemma 2.4.1, the scattering transfor-

mation S2d should be designed to render the input-output characteristics of the system Σ
(u,v)
2

(see Figure 2.3) into a (non-planar) cone that satisfies the graph separation stability condition
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Figure 2.2: Scattering-based stabilization of interconnections
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Figure 2.3: An equivalent representation of the interconnection

given in Theorem 2.3.1. This can be done using the following procedure. By assumption,

Σi ∈ Int (Ωi, φri), where dim Ω1 = m, dim Ω2 = p, and φri ∈ (0, π/2), i = 1, 2. Let vec-

tors ω1
1, . . . , ω1

m form an orthonormal basis in Ω1, and vectors ω2
1, . . . , ω2

p an orthonormal

basis in Ω2 . The set of vectors {ω1
1, . . . , ω

1
m} ∈ Ω1 can be augmented with additional vectors

ω1
m+1, . . . , ω

1
m+p ∈ Ω⊥1 such that the columns of

G1 :=
[
ω1

1 . . . ω1
m ω1

m+1 . . . ω1
m+p

]
(2.29)

form an orthonormal basis in Rm+p. Similarly, the set {ω2
1, . . . , ω

2
p} ∈ Ω2 can be augmented with

additional vectors ω2
p+1, . . . , ω

2
p+m ∈ Ω⊥2 such that the columns of

G2 :=
[
ω2

1 . . . ω2
p ω2

p+1 . . . ω2
p+m

]
(2.30)

also form an orthonormal basis in Rm+p. Now, let Ω1 be defined as in (2.18). Since the permu-

tation matrix P(m,p) is nonsingular and unitary, we see that vectors P(m,p)ω
1
1, . . . , P(m,p)ω

1
m form

an orthonormal basis in Ω1, while the columns of

P(m,p)G1 :=
[
P(m,p)ω

1
1 . . . P(m,p)ω

1
m+p

]
(2.31)
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form an orthonormal basis in Rm+p. By construction, P(m,p)ω
1
m+1, . . . , P(m,p)ω

1
m+p ∈ Ω

⊥

1 . Choos-

ing

Ω2d := span
{
P(m,p)ω

1
m+1, . . . , P(m,p)ω

1
m+p

}
, (2.32)

one has Ω2d = Ω
⊥

1 and therefore

ΠΩ1
ΠΩ2d = O. (2.33)

Now, define G2d := P(m,p) ·
[
ω1

m+1 . . . ω1
m+p ω1

1 . . . ω1
m

]
= P(m,p)G1PT

(m,p), and consider the

scattering transformation of the form

S2d := G2d · Γ (φr2, φr2d) ·GT
2 , (2.34)

where Γ (φr2, φr2d) is defined according to (2.26), and φr2d ∈ (0, π/2) is such that

φr1 + φr2d < π/2. (2.35)

The following statement is valid.

Theorem 2.5.1. Consider an interconnected system (2.20), (2.27), where Σi ∈ Int (Ωi, φri),

dim Ω1 = m, dim Ω2 = p, and φri ∈ (0, π/2), i = 1, 2. Suppose S2d : Rm+p → Rm+p is

designed according to (2.34), and φr2d ∈ (0, π/2) is chosen such that (2.35) holds. Then the

interconnection (2.20), (2.27) is finite-gain L2-stable with respect to external disturbances

[χT
1 , χ

T
2 ]T ∈ Rm+p.

Proof By construction of the scattering transformation S2d, it follows from Lemma 2.4.1 that

Σ
(u,v)
2 ∈ Int (Ω2d, φr2d). Combining (2.33) and (2.35), one concludes that the graph separation

condition (2.22) is satisfied for the system (2.20), (2.27). The statement of Theorem 2.5.1 now

follows from Theorem 2.3.1.

2.5.1 Example: robot-environment interaction

In this subsection, an application of the scattering based control design to the problem of stable

robot-environment interaction is motivated and outlined. The problem of stability of robot-

environment interaction, also known as coupled stability, is one of the fundamental problems

in robotics [40]. A conventional approach to this problem is based on passivity considera-

tions [7, 14]. Specifically, a necessary and sufficient condition for stability of a robot when

coupled with an arbitrary passive environment is that the robot itself is passive. This ap-

proach, however, has a number of limitations. First, some environments demonstrate non-

passive behavior (examples of interaction with non-passive environments include robot per-

forming surgery on a beating heart [42], robotic rehabilitation systems [5], mobile robotics
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applications [20], haptic interaction with digitally implemented virtual environments [9, 21],

and others [16]), in which case the passivity-based approach is not applicable, at least di-

rectly. Second, behavior of some passive environments may actually form a small subset of all

possible passive behaviors, in which case the passivity-based design can be “arbitrarily con-

servative” [8]. In addition, passivity requirement imposed on the robot’s closed-loop dynamics

is frequently in contradiction with the trajectory tracking performance. Specifically, a conven-

tional mechanical environment without inner source of energy is passive with respect to the

velocity-force pair. For stable coupling with such an environment, the closed-loop robot’s dy-

namics must be passive with respect to the same velocity-force pair, which is not the case for

many existing tracking control algorithms, as demonstrated in the example below. Consider a

robot manipulator whose dynamics are described in the task space as follows:

Hx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = fenv + u, (2.36)

where q, q̇ ∈ Rn are the robot’s position and velocity, respectively, represented in the joint

space coordinates, x, ẋ, ẍ ∈ Rm are position, velocity, and acceleration, respectively, of the

robot’s end-effector represented in the task space coordinates, Hx, Cx(q, q̇), Gx(q) are matrices

of inertia, Coriolis/centrifugal forces, and a vector of gravitational forces represented in the

task-space coordinates, fenv is the environmental contact forces applied to the end-effector,

and u is the task-space control input (for more details of the task-space dynamic equations

(2.36) and their relationship to joint-space dynamics the reader is referred, for example, to [10,

Chapter 4]). Let the manipulator (2.36) be controlled by the following task-space algorithm:

u = Hx(q)ṙ + Cx(q, q̇)r + Gx(q) − Kσ + fr, (2.37)

where σ := ˙̃x + Λx̃, x̃ = x − xr, r := ẋ − σ = ẋr − Λ · x̃, and Λ = ΛT > 0, K = KT > 0

are matrices of feedback law parameters. Signals xr(t), ẋr(t) represent reference position and

velocity, respectively, while fr(t) represents a reference force trajectory ( fr(t) ≡ 0 in the case of

position tracking). The control algorithm (2.37) is an augmented version of the passivity-based

tracking control algorithm (see for example [10,30]). Substituting the control algorithm (2.37)

into the equations of the manipulator dynamics (2.36), the following closed-loop dynamics can

be obtained:

˙̃x = −Λx̃ + σ, (2.38)

σ̇ = H−1
x (q)

[
−Cx(q, q̇)σ − Kσ + fenv + fr

]
. (2.39)

A well-known fact (which can be checked directly by choosing a storage function of the form

V = 1
2σ

T Hx(q)σ and calculating its derivative along the trajectories of (2.38), (2.39) assum-

ing fr = 0) is that the closed-loop system is passive with respect to the pair ( fenv, σ) but not
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with respect to ( fenv, ẋ); coupled stability of the closed-loop robot (2.38), (2.39) with a passive

environment is therefore not guaranteed.

The problem of stability of a controlled manipulator (2.36), (2.37) coupled with an environ-

ment which is not necessarily passive but satisfies a more general assumption of (non-planar)

conicity can be solved using the scattering based design method developed above. Our ap-

proach to this problem is illustrated in Figure 2.4, where a generalized scattering transforma-

tion is placed between the robot and the environmental dynamics. As there is direct physical

interaction between the robot and the environment, the scattering transformation between them

cannot be implemented directly; however, it is implemented indirectly using appropriately de-

signed reference signals fr, xr, and ẋr, as shown in Figure 2.4. The notation used in this figure

is as follows: xd(t) and ẋd(t) represent the desired position and the desired velocity of the end-

effector, respectively, vx := x − xd, vẋ := ẋ − ẋd, and v f := fenv + fr. To design the scattering


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Figure 2.4: Scattering-based stabilization of robot-environment interaction

transformation, the parameters of the system’s (non-planar) cone can be determined as fol-

lows. First, the dynamical equations (2.38), (2.39) can be rewritten in terms of state variables

x̃ and ˙̃x = σ − Λx̃. Next, pick a storage function candidate V = 1
2σ

T Hx(q)σ + 1
2 x̃T Mx̃, where

M = MT > 0 is an arbitrary parameter matrix. The time derivative of V along the trajectories

of (2.38), (2.39) is

V̇ = −σKσ − σT
[
(1/2) · Ḣx(q) −Cx(q, q̇)

]
σ + σT v f − x̃T MΛx̃ + x̃T Mσ =


v f

x̃
˙̃x


T

W


v f

x̃
˙̃x


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where

W :=


O 1

2Λ 1
2 I

1
2Λ 1

2 (ΛM − MΛ) − ΛKΛ 1
2 M − ΛK

1
2 I

1
2 M − KΛ −K

 . (2.40)

From expression (2.40), one sees that the system (2.38), (2.39) with input v f and output[
x̃T , ˙̃xT

]T
is non-planar conic; the parameters of the system’s cone can be calculated using

the method described in Section 2.2.1.

Now, suppose the environmental dynamics is dissipative with a quadratic supply rate. Us-

ing the method of Section 2.2.1, the environmental (non-planar) cone can be calculated. Given

(non-planar) cones of the controlled manipulator and the environment, a scattering transfor-

mation S that stabilizes the robot-environment interaction can be designed using the method

described above in Section 2.5. Once designed, such transformation can be implemented using

the following line of reasoning. As shown in Figure 2.4 (right), the scattering transformation S

defines the following relationship between signals:
v f

x̃
˙̃x

 := S−1


fenv

vx

vẋ

 . (2.41)

The signals that form the vector in the right-hand side of (2.41) are all known: fenv is the

environmental contact force applied to the end-effector which is assumed to either be measured

directly or estimated using an input/disturbance observer [22,32], while the error signals vx̃ :=

x−xd, v ˙̃x := ẋ− ẋd are directly calculated from the position x and velocity ẋ of the end-effector

and known desired trajectory xd, ẋd. Therefore, the signals v f , x̃, ˙̃x can be determined from

fenv, vx̃, v ˙̃x according to (2.41). From here, it follows that the scattering transformation can be

realized by the following choice of reference signals: xr := x− x̃, ẋr := ẋ− ˙̃x, and fr := v f − fenv.

Finally, signal ẍr (which is required for implementation of the control algorithm (2.37)) can

be obtained from xr, ẋr using, for example, an exact sliding mode differentiator [3, 18]. A

more detailed development of the scattering-based approach to robot-environment interaction

outlined here is a topic for future research.

2.6 Interconnections with heterogeneous communication
delays

The scattering-based stabilization method developed above can also be extended to the case

of interconnections of non-planar conic systems in the presence of constant heterogeneous
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Figure 2.5: Block diagram of the scattering-based interconnected system with heterogeneous

communication delays

communication delays. Consider an interconnected system shown in Figure 2.5. The system

consists of subsystems Σ1, Σ2 of the form (2.20) which are interconnected according to the

formulas ũi

ṽi

 = Sid

(ηi − χi)

yi

 , i = 1, 2, (2.42)

ũ2 = ṽd
1 + δ1, ũ1 = ṽd

2 + δ2, (2.43)

where ṽd
1, ṽd

2 are signals ṽ1, ṽ2 subjected to heterogeneous constant communication delays,

specifically

ṽd
1(t) :=

[
ṽT

11
(t − T (1)

1 ) . . . ṽT
1p

(t − T (p)
1 )

]T
, (2.44)

ṽd
2(t) :=

[
ṽT

21
(t − T (1)

2 ) . . . ṽT
2m

(t − T (m)
2 )

]T
, (2.45)

T (1)
1 , . . . T (p)

1 ≥ 0 are communication delays in the communication channels from Σ1 to Σ2, and

T (1)
2 , . . . T (m)

2 ≥ 0 are the communication delays in the communication channels from Σ2 to Σ1.

Signals δ1(t) ∈ Rp, δ2(t) ∈ Rm represent communication errors in their respective communi-

cation channels, and χ1(t) ∈ Rm, χ2(t) ∈ Rp are external additive disturbances applied to the

inputs of Σ1 and Σ2, respectively.

Suppose the subsystems Σ1, Σ2 are arbitrary non-planar conic. Our goal is to design scatter-

ing transformations S1d, S2d such that the overall interconnection is finite gain L2-stable with

respect to inputs δ1, δ2, χ1, χ2. Note that, since the system under consideration contains com-

munication delays, the definition of finite gain L2-stability used above in Sections 2.3-2.5 is

no longer directly applicable. We will instead use the notion of weak finite gain L2-stability

defined as follows: system with input η and output y is weakly finite gain L2-stable if there
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exists γ > 0 such that
t1∫

t0

|y(s)|2 ds ≤ γ2

t1∫
t0

|η(s)|2 ds + β0,

holds for all t1 ≥ t0, where β0 ≥ 0 may depend on system’s trajectories before t0 (i.e., for

t ≤ t0). Clearly, the notion of weak finite gain L2-stability includes the finite gain L2-stability

as a special case where β0 = V (t0).

In order to approach the above described stabilization problem, let us first define a new set

of scattering variables ui, vi, i = 1, 2, according to the formulasui

vi

 = Sid

ηi

yi

 , i = 1, 2. (2.46)

Comparing (2.46) with (2.42), one concludes thatui

vi

 =

 ũi + χ̂i1

ṽi + χ̂i2,

 , i = 1, 2, (2.47)

where
[
χ̂T

i1 χ̂T
i2,

]T
:= Sid

[
χT

i 0 . . . 0
]T

, i = 1, 2. Using (2.47), the interconnection con-

straints (2.43), (2.44) can be rewritten in the form

u2 = vd
1 + δ̄1, u1 = vd

2 + δ̄2, (2.48)

where

vd
1(t) :=

[
v11(t − T (1)

1 ) . . . v1p(t − T (p)
1 )

]T
,

vd
2(t) :=

[
v21(t − T (1)

2 ) . . . v2m(t − T (m)
2 )

]T

and δ̄1, δ̄2 are new external signals which are related to δ1, δ2, χ1, χ2 according to the formulas

δ̄1 := δ1 + χ̂21 − χ̂
d
11, δ̄2 := δ2 + χ̂12 − χ̂

d
22, (2.49)

where

χ̂d
11(t) :=

[
χ̂111(t − T (1)

1 ) . . . χ̂11p(t − T (p)
1 )

]T
, and

χ̂d
22(t) :=

[
χ̂221(t − T (1)

2 ) . . . χ̂22m(t − T (m)
2 )

]T
.

Formulas (2.46)-(2.49) define an equivalent representation of the interconnection (2.42)-(2.44);

the corresponding block diagram is shown in Figure 2.6. Weak finite gain L2-stability of the

system (2.20), (2.42)-(2.44) with respect to external signals δ1, δ2, χ1, χ2 is equivalent to that of

the system (2.20), (2.46), (2.48) with respect to the signals δ̄1, δ̄2. Weak finite gain L2-stability

of the system (2.20), (2.46), (2.48), on the other hand, can be guaranteed by the small gain

arguments. Specifically, the following lemma is valid.
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Figure 2.6: An equivalent block diagram of the scattering-based interconnection with commu-

nication delays

Lemma 2.6.1. Suppose each subsystem Σ
(u,v)
i defined by (2.20), (2.46) with input ui and output

vi, i = 1, 2, is finite gain L2-stable, and the corresponding L2-gains satisfy the small gain

condition γ1 · γ2 < 1. Then the interconnected system (2.20), (2.46), (2.48) with input
[
δ̄T

1 , δ̄
T
2

]T

and output
[
yT

1 , y
T
2

]T
is weakly finite gain L2-stable.

The proof of Lemma 2.6.1 follows the same line of reasoning as the proof of Lemma 4

in [27] and can be found in the Appendix B (see Proof B.2).

Lemma 2.6.1 together with Corollary 2.4.2 of Section 2.4 provide a recipe for scattering-

based stabilization of interconnections of non-planar conic systems with communication de-

lays (2.20), (2.42)-(2.44). Specifically, using Corollary 2.4.2, the scattering transformations

S1d, S2d in (2.46) should be designed to make the subsystems Σ
(u,v)
1 , Σ

(u,v)
2 finite gain L2-stable

with gains that satisfy the small-gain condition of Lemma 2.6.1. The weak finite gain L2-

stability of the system (2.20), (2.46), (2.48) (and, therefore, that of the equivalent system (2.20),

(2.42)-(2.44)) then follows from Lemma 2.6.1. The design procedure is as follows. Let the

systems Σ1, Σ2 be arbitrary nonplanar conic, Σi ∈ Int (Ωi, φri), dim Ω1 = m, dim Ω2 = p, and

φri ∈ (0, π/2), i = 1, 2. Similarly to the procedure described in Section 2.5, let vectors ω1
1, . . . ,

ω1
m form an orthonormal basis in Ω1, vectors ω2

1, . . . , ω2
p form an orthonormal basis in Ω2, and

consider the matrices

G1 :=
[
ω1

1 . . . ω1
m ω1

m+1 . . . ω1
m+p

]
,

G2 :=
[
ω2

1 . . . ω2
p ω2

p+1 . . . ω2
p+m

]
,

whose columns form orthonormal bases in Rm+p. Consider the scattering transformations of
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the form

S1d := Γ (φr1, φrd1) GT
1 , S2d := Γ (φr2, φrd2) GT

2 , (2.50)

where Γ (φri, φrdi), i = 1, 2, are defined by (2.26), and the desired radii φrdi ∈ (0, π/2) are chosen

to satisfy

φrd1 + φrd2 < π/2. (2.51)

The following statement summarizes the developed stabilization method.

Theorem 2.6.2. Consider a scattering-based interconnection with delays (2.20), (2.42)-(2.44).

Suppose the subsystems Σ1, Σ2 are arbitrary non-planar conic, Σi ∈ Int (Ωi, φri), dim Ω1 = m,

dim Ω2 = p, φri ∈ (0, π/2), i = 1, 2. Suppose the scattering transformations S1d, S2d are

designed according to (2.50), where φrd1, φrd2 ∈ (0, π/2) are chosen to satisfy (2.51). Then the

interconnection (2.20), (2.42)-(2.44) is weakly finite gain L2-stable.

Proof According to Corollary 2.4.2, scattering transformations (2.50) make the subsystems

Σ
(u,v)
1 , Σ

(u,v)
2 finite gain L2-stable with gains γ1 := tan(φrd1), γ2 := tan(φrd2), respectively. Since

φrd1, φrd2 ∈ (0, π/2), the condition (2.51) is equivalent to tan(φrd1) · tan(φrd2) < 1. Lemma 2.6.1

then implies that the system (2.20), (2.46), (2.48) is weakly finite gain L2-stable. The latter is

equivalent to the weak finite-gain L2-stability of the interconnection (2.20), (2.42)-(2.44). The

proof is complete.

2.6.1 Example: bilateral teleoperation with communication delays

In this subsection, an application of the generalized scattering-based stabilization technique to

bilateral teleoperators with communication delays is motivated, and one possible design ap-

proach is outlined. A teleoperator system consists of master and slave manipulators, where the

master is controlled by the human operator’s hand, while the slave executes a task in contact

with the remote environment. The master and the slave sites exchange position, velocity, and

force information, which allows for coordination of the motions of the master and the slave

manipulators, as well as for providing the human operator with the haptic information which

represents the slave-environment interaction. In the conventional approach to scattering-based

master-slave teleoperator systems [2, 24], behaviors of both the environment and the human

operator are assumed passive, and the local master and slave control laws must be chosen to

guarantee/preserve passivity of the closed-loop master and slave subsystems. Under these con-

ditions, the conventional scattering transformations on both sides of communication channel

stabilize the system in the presence of constant communication delays. In practice, behavior

of the human operator is not always passive [11], and so are the dynamics of the environ-

ment [4,19]. The choice of local master and slave control laws, on the other hand, is drastically
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limited by the requirement of passivity imposed on the closed-loop master/slave dynamics. In

addition, mechanical systems such as robots are naturally passive with respect to “velocity-

force” input-output pair; adding position information to the vector of input-output signals is

typically not possible, particularly because passivity requires equal number of inputs and out-

puts. The absence of position information in the signals transmitted between the master and

the slave leads to well-documented problems with position tracking in the scattering-based

teleoperation, where only partial results exist [6, 26].

All the above mentioned difficulties, however, can be avoided by using the framework of

non-planar conicity and generalized scattering developed in our work. One possible design

approach can be outlined as follows. The scattering-based bilateral teleoperator system has

a structure shown in Figure 2.7. The leftmost block of the diagram in Figure 2.7 represents
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+
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ũ1

ũ2
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Figure 2.7: Block diagram of the scattering-based bilateral teleoperator system with commu-

nication delays

an interconnection of the controlled master manipulator and the human operator dynamics.

Similarly to the example in Section 2.5.1, the dynamics of the master manipulator in the task

space are described by Euler-Lagrange equations of the form:

Hm(qm)ẍm + Cm(qm, q̇m)ẋm + Gm(qm) = um − fh + f̂r, (2.52)

where xm, ẋm, ẍm ∈ R
m are position, velocity, and acceleration, respectively, of the master’s

end-effector in the task space coordinates, qm, q̇m ∈ R
n are position and velocity of the master’s

joints, Hm(qm), Cm(qm, q̇m) are matrices of inertia and Coriolis/centrifugal forces of the master

manipulator, Gm(qm) is the vector of potential forces, um is the control input, fh is the human

operator force applied to the end-effector of the master, and f̂r is the force reflection signal. Let

the master control algorithm have a simple “damping+gravity compensation” form:

um = Gm(qm) − Kd
mẋm, (2.53)
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where Kd
m =

(
Kd

m

)T
> 0 is a matrix of control (damping) gains. The dynamics of the human

operator in contact with the master are assumed to have the form:

Hh(qh)ẍm +
[
Ch(qh, q̇h) + Kd

h

]
ẋm + K s

hxm + f v
h = fh, (2.54)

where Hh(qh), Ch(qh, q̇h) are the matrices of inertia and Coriolis/centrifugal forces experienced

by the human arm, which are functions of the human arm configuration qh and its joint velocity

q̇h. Also, Kd
h , K s

h are symmetric positive definite matrices that represent damping and stiffness

of the human hand, and f v
h are additional forces that are voluntarily generated by the human

muscles. Model (2.54) represents the dynamics of a human hand in the form of Euler-Lagrange

equations similar to those used for the dynamics of a manipulator, with gravity forces assumed

to be compensated by the human muscular system. The damping and particularly the end-point

stiffness terms are known to play substantial and, in many cases, dominant role in the human

hand dynamics [17, 31]. Substituting (2.53) into (2.52) and combining with (2.54), one gets[
Hm(qm) + Hh(qh)

]
ẍm +

[
Cm(qm, q̇m) + Ch(qh, q̇h)

]
ẋm +

[
Kd

m + Kd
h

]
ẋm + K s

hxm = f̂r − f v
h . (2.55)

The above equation (2.55) describes the dynamics of the controlled master device in contact

with the human hand. To determine the parameters of a (non-planar) cone that represents the

dynamics (2.55), one can proceed as follows. Consider a storage function candidate

V =
1
2

ẋT
m
[
Hm(qm) + Hh(qh)

]
ẋm +

1
2

xT
mMxm,

where M = MT > 0 is a matrix of constant design parameters. The derivative of V along the

trajectories of (2.55) can be calculated as

V̇ =


f ∗

xm

ẋm


T 
O O 1

2 I

O O 1
2

[
M − K s

h

]
1
2 I

1
2

[
M − K s

h

] [
Kd

m + Kd
h

]



f ∗

xm

ẋm

 , (2.56)

where f ∗ := f̂r − f v
h . The parameters of a non-planar cone that represents the closed-loop

master-human dynamics (2.55) can be calculated from (2.56) using the procedure described

in Section 2.2.1. Note that some of the parameters in the quadratic form (2.56) (specifically,

matrices M and Kd
m) are design parameters which can be chosen freely. This already provides

the designer with certain control over the parameters of the corresponding dynamic cone even

before the scattering-based design is applied. The rightmost block in Figure 2.7 represents the

dynamics of a controlled slave manipulator in contact with the environment. The stability of

such an interconnection can be guaranteed, and the parameters of the corresponding cone can

be calculated using the method described in Section 2.5.1. Once the parameters of the dy-

namic cones of both master-human and slave-environment interconnections are obtained, the
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scattering transformations Sm and Ss can be designed using the method presented earlier in this

section which is summarized in Theorem 2.6.2. As a result, stability of the bilateral teleop-

erator system in the presence of multiple communication delays can be guaranteed. Detailed

development of this approach is a topic for future research.

2.7 Conclusions

In this chapter, the notion of non-planar conicity is introduced, and scattering-based methods

for stabilization of interconnections of non-planar conic systems are developed. The notion

of non-planar conicity extends the conventional (planar) conicity notion to the case where the

dimension of the central subspace is, generally speaking, greater than one. This extension al-

lows for capturing a substantially larger class of systems as compared to the case of planar

conicity, including systems with non-equal number of inputs and outputs, and also for more

precise description of system’s dynamics due to higher flexibility in the choice of the cen-

tral subspace. A procedure for calculation of the parameters of the (non-planar) cone for an

arbitrary system dissipative with a quadratic supply rate is presented. Furthermore, a general-

ized scattering transformation is developed that allows for rendering the input-output dynamic

characteristics of a non-planar conic system into an arbitrary prescribed cone of compatible

dimensions. Consequently, scattering-based methods for stabilization of interconnections of

non-planar conic systems are developed, including the case of interconnections with multiple

heterogeneous communication delays. Applications of the developed scattering-based tech-

niques to coupled stability problem in robotics and bilateral teleoperation with communication

delays are outlined. Overall, the approach developed in the chapter offers direct extension of

the existing scattering-based stabilization methods to a fundamentally larger class of dynami-

cal systems, while the new scattering transformation makes these methods substantially more

flexible and powerful as compared to the existing methods. Future research directions, in par-

ticular, include detailed development of performance-oriented design procedures for coupled

stability and bilateral teleoperation with communication delays along the lines described in

Sections 2.5.1 and 2.6.1, respectively. One particularly important issue is related to the choice

of bases G and Gd in the expression for the scattering transformation (2.25). There is obviously

a continuum of possible choices of G and Gd and, while stability is guaranteed for any G and

Gd, however performance would drastically depend on the specific choice of these bases. Since

the definition of performance may substantially depend on the particular task, any recipe for

the choice of G, Gd would also be task-dependent. Development of performance-oriented de-

sign procedures for scattering-based stabilization in different applications is an important issue

for future research.
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Chapter 3

Stabilization of Robot-Environment
Interaction Through Generalized
Scattering Techniques

The material presented in this chapter is submitted for the publication in The IEEE Transac-

tions on Robotics (T-RO) (Submission number: 18-0373), 2018.

A framework for the coupled stability problem is presented which is based on the non-

planar conic systems formalism and generalized scattering-based stabilization methods. The

proposed framework fundamentally generalizes the conventional passivity-based approaches

to the coupled stability problem. In particular, it allows for stabilization of not necessarily pas-

sive robot-environment interaction where both the manipulator and the environment are general

dissipative systems with quadratic supply rates. Also, it can be used in combination with an

arbitrary robot’s tracking control algorithm and does not affect the trajectory tracking perfor-

mance in free space. A detailed design example is presented which illustrates the capabilities

of the proposed method.

3.1 Introduction

The problem of stability of robot environment interaction, also known as contact or coupled

stability, is a fundamental problem in robotics [14,17,34]. Conventional results in this area are

based on the passivity framework [4,6,7,13]. Essentially, in order to form a stable contact with

a passive environment, the closed-loop manipulator dynamics must be passive. The passivity-

based approach can be partially extended to a limited class of active environments, specifically
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to those where the environmental behavior can be decomposed into passive dynamics and an

active external force independent of the robot’s/environment’s states [4]. The approaches based

on passivity, however, suffer from at least two limitations. First, examples of non-passive envi-

ronmental dynamics do exist [3, 18], to which passivity-based design is not applicable, at least

directly. Second, even for passive environments, a more detailed description of the environ-

mental behavior can frequently be obtained which forms a (possibly small) subset of a general

passive behavior. In these cases, design based solely on passivity considerations can be overly

conservative and may impose unnecessary constraints on the interaction control algorithms. In

particular, the requirement of passivity imposed on the closed-loop manipulator dynamics ap-

pears to be in contradiction with the manipulator’s position tracking performance. Extensions

of coupled stability criteria that go beyond the passivity framework are pursued in [5,8]. In fact,

the latter works implement loop transformations that, for linear time-invariant systems, expand

the passivity and the small-gain criteria to more general cases of graph separation stability

conditions.

In this work, we propose a comprehensive approach to the problems of coupled stability

and stabilization of robot-environment interaction. The approach is based on the non-planar

conic systems formalism as well as the generalized version of the scattering transformation

applicable to non-planar conic systems, which were recently developed by the authors [30–32].

The notion of non-planar conicity is an extension of the conventional (planar) conicity [35] to

the case where the cone’s center is a subspace of dimension, generally speaking, higher than

1. As shown in [30, 32], the class of non-planar conic systems essentially coincides with that

of dissipative systems with quadratic supply rate; the method for calculation of parameters

of a non-planar cone for an arbitrary (Q,S,R)-dissipative system is given in [30, Lemma 3]

(see also [32, Lemma 4]). The generalized version of the scattering transformation pursued

in [31, 32], on the other hand, allows for rendering of input-output characteristics of a non-

planar conic system into a prescribed cone of compatible dimensions. In view of the graph

separation stability condition [30, 32], the ability to change the parameters of a system’s cone

can be used for stabilization of interconnections of systems; the corresponding methods were

developed in [31, 32], including the case of interconnections with communication delays.

When it comes to the problem of coupled stability, the use of the non-planar conic systems

framework and generalized scattering transformations may lead to fundamental extensions of

the existing coupled stability criteria and methods for stabilization of robot-environment inter-

action. Direct application of the methods developed in [30–32] to the coupled stability problem,

however, is not preferable, partially because straightforward design based on the methods from

the above cited works would interfere with a robot’s tracking performance in free space. In this

chapter, we present a design framework for coupled stability problem which is compatible with
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an arbitrary trajectory tracking control algorithm and does not affect the trajectory tracking per-

formance. The framework is based on the non-planar conic systems formalism and scattering

based stabilization, where the scattering transformation is designed to guarantee coupled sta-

bility while satisfying specially formulated constraints that preclude its interference with free

space tracking. A detailed design example is presented where a manipulator controlled by a tra-

jectory tracking control algorithm experiences non-passive contact with an environment which

results in coupled instability, while the application of the proposed scattering based methods

stabilizes the robot-environment interaction.

The chapter is organized as follows. In Section 3.2, the necessary background material re-

lated to recent developments of non-planar conicity and generalized scattering transformations

is described following [32]. The scattering-based design approach to the coupled stability

problem is presented in Section 3.3. A procedure for constrained scattering-based design is

described in Section 3.4. An example of scattering-based design for coupled stability is pre-

sented in detail in Section 3.5, including a theoretical rationale as well as results of simulations.

Conclusions are given in Section 3.6.

3.2 Non-planar conicity and scattering-based stabilization

In this section, a brief overview of some recent developments related to the notion of non-

planar conicity and generalized scattering transformations is presented. Further details can be

found in [30–32].

3.2.1 Non-planar conicity

Consider a nonlinear system of the form

Σ :

 ẋ = f (x, η),

y = h(x, η),
(3.1)

where x ∈ Rn is the state, η ∈ Rm the input, and y ∈ Rp the output of system (3.1), respectively.

The functions f (·, ·), h(·, ·) are locally Lipschitz continuous in their arguments. A system (3.1)

is said to be dissipative with respect to supply rate w : Rp × Rm → R if there exists a storage

function V : Rn → R+ such that the inequality

V (x(t1)) − V (x(t0)) ≤

t1∫
t0

w (y(τ), η(τ)) dτ

holds along the trajectories of the system (3.1) for any t1 ≥ t0, any initial state x(t0), and an

arbitrary admissible control input η(t), t ∈ [t0, t1).
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Definition 3.1. [30] Given a subspace Ω ⊂ Rm+p, dim Ω = l ∈ {0, . . . ,m+ p}, and φr ∈ [0, π/2),

a system Σ of the form (3.1) is said to be interior conic with respect to the cone with centre Ω

and radius φr (Σ ∈ Int (Ω, φr)) if it is dissipative with supply rate

w (y, η) =
[
ηT yT

]
W (Ω, φr)

ηy
 , (3.2)

where matrix W (Ω, φr) has the form

W (Ω, φr) := ΠΩ − cos2 φr · Im+p, (3.3)

where ΠΩ is the matrix of projection onto subspace Ω.

For a dissipative system with a given quadratic supply rate, a parametrization in terms of

the cone’s center Ω and radius φr can be obtained as follows. Given matrices Q = QT ∈ Rp×p,

R = RT ∈ Rm×m, and S ∈ Rp×m, a system of the form (3.1) is said to be (Q, S ,R)-dissipative [11]

if it is dissipative with supply rate

w(y, η) := yT Qy + 2yT S η + ηT Rη =
[
ηT yT

]
[QSR]

ηy
 ,

where

[QSR] :=

R S T

S Q

 ∈ R(m+p)×(m+p).

Matrix [QSR] is real symmetric and, therefore, its eigenvalues µ1, . . . , µm+p are all real. Let

λ(QS R) := {µ1, . . . , µm+p} denote the set of eigenvalues of [QSR], λ−(QS R) ⊂ λ(QS R) the

set of strictly negative (< 0) eigenvalues of [QS R], and λ+(QS R) := λ(QS R) \ λ−(QS R) the

set of nonnegative (≥ 0) eigenvalues of [QSR]. Let l := card {λ+(QS R)} be the number of

nonnegative eigenvalues of [QSR], and

µ− := min
{
|µi| : µi ∈ λ

−(QS R)
}
, (3.4)

µ+ := max
{
|µi| : µi ∈ λ

+(QS R)
}
. (3.5)

The value of µ− is well-defined if λ−(QS R) , ∅ (equivalently, if l < m + p). Similarly, µ+ is

well-defined if λ+(QS R) , ∅ (equivalently, if l > 0). The following statement is valid.

Lemma 3.2.1. [30] Suppose the system (3.1) is (Q, S ,R)-dissipative. Then it is interior conic

in the sense of Definition 3.1 with center Ω ⊂ Rm+p, dim Ω = l, and radius φr ∈ [0, π/2).

Specifically,

Ω := span
{
g+

1 , . . . , g
+
l
}
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is the subspace spanned by those eigenvectors g+
1 , . . . , g+

l of matrix [QSR] that correspond to

its nonnegative eigenvalues µi ∈ λ
+(QS R). If 0 < l < m + p, then

φr := tan−1


√
µ+

µ−

 .
Otherwise (i.e., if l = 0 or l = m + p), radius φr ∈ (0, π/2) can be chosen arbitrarily.

Lemma 3.2.1 gives a method for calculation of the dynamic cone’s parameters (i.e., the

central subspace and the radius) of a system of the form (3.1) dissipative with a given quadratic

supply rate. Conditions for finite gain L2-stability of a feedback interconnection of two non-

planar conic systems based on the parameters of their dynamic cones were developed in [30,

32]. A system of the form (3.1) is said to be finite gain L2-stable if it is dissipative with

supply rate w(y, η) := γ2|η|2 − |y|2, where γ ≥ 0 is the L2-gain, see [33]. Finite gain L2-

stability of a feedback interconnection of two non-planar conic subsystems shown in Figure 3.1

can be guaranteed by a “graph separation” condition given below in Theorem 3.2.2. To for-

⌃1

⌃2
y2

y1�1

�2

⌘1

⌘2
+

+

Figure 3.1: Feedback interconnection of Σ1 and Σ2.

mulate the graph separation condition, it is convenient to use a notion similar to the one of

the inverse graph in [27]. Informally, a system Σ is inverse interior conic (with some centre

Ω and radius φr) if the same system with inverse causality (i.e., with y considered an input

and η an output) is Int (Ω, φr). Formally, given a central subspace Ω ⊂ Rm+p, dim Ω = m,

let vectors ω1, . . .ωm ∈ Rm+p form a basis in Ω, i.e., span
[
ω1 . . . ωm

]
= Ω. Define

Ω := span
(
P(m,p) ·

[
ω1 . . . ωm

])
, where P(m,p) ∈ R

m+p is a permutation matrix of the form

P(m,p) :=

O Ip

Im O

 . (3.6)

A system Σ of the form (3.1) is called inverse interior conic with respect to the cone with centre

Ω and radius φr (we will use notation Σ ∈ Int(Ω, φr)) iff Σ ∈ Int
(
Ω, φr

)
.

Consider now two subsystems of the form

Σi :

 ẋi = fi (xi, ηi) ,

yi = hi(xi, ηi),
i ∈ {1, 2}, (3.7)
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where y2, η1 ∈ R
m, y1, η2 ∈ R

p, interconnected as follows

η1 = y2 + χ1, η2 = y1 + χ2, (3.8)

where χ1 ∈ R
m, χ2 ∈ R

p are external inputs, as shown in Figure 3.1. The closed-loop sys-

tem (3.7), (3.8) has the input [χT
1 , χ

T
2 ]T ∈ Rm+p, and the output [yT

1 , y
T
2 ]T ∈ Rm+p. The following

result is valid.

Theorem 3.2.2. [30] Consider an interconnected system of the form (3.7), (3.8). Suppose

Σ1 ∈ Int (Ω1, φr1), Σ2 ∈ Int (Ω2, φr2), where Ω1
⋂

Ω2 = {0}, dim Ω1 = m, dim Ω2 = p. If the

following “graph separation” condition is satisfied

σmax

(
ΠΩ1
· ΠΩ2

)
< cos (φr1 + φr2), (3.9)

then the interconnected system (3.7), (3.8) is finite gain L2-stable.

Remark Condition (3.9) is equivalent to the existence of a constant δ0 > 0 such that

cos−1
(
σmax

(
ΠΩ1
· ΠΩ2

))
− φr1 − φr2 = δ0. (3.10)

Since cos−1
(
σmax

(
ΠΩ1

ΠΩ2

))
represents the angle between subspaces Ω1 and Ω2, condition (3.10)

(equivalently, (3.9)) implies that the subsystems’ cones are separated by a gap δ0. The size of

gap δ0, in particular, represents the amount of robustness of stability in an interconnected sys-

tem [10].

3.2.2 Scattering-based stabilization of interconnections of non-planar
conic systems

The scattering (wave) transformation was first used for stabilization purposes in [1, 2, 21],

where it was implemented to overcome delay induced instability in force reflecting teleoperator

systems. Since then, scattering/wave based stabilization has become one of the most popular

techniques in bilateral teleoperation with communication delays [15, 20, 22, 26]. One possible

interpretation of the effect of the scattering transformation used in the above cited works is

that it transforms a passive system into a system with gain less than or equal to one [1]. In

recent years, progressively more powerful scattering transformation techniques were developed

in [12, 24, 31, 32]. In particular, the scattering transformation presented in [31, 32] allows for

rendering of the input-output characteristics of a non-planar conic system into an arbitrary

prescribed cone with equal dimension of the central subspace. Specifically, suppose a system

Σ ∈ Int (Ω, φr), where Ω ⊂ Rm+p is the central subspace, dim Ω = m, and φr ∈ (0, π/2)



64Chapter 3. Stabilization ofRobot-Environment Interaction ThroughGeneralized Scattering Techniques

is a radius. Given a desired central subspace Ωd ⊂ Rm+p, dim Ωd = m, and desired radius

φrd ∈ (0, π/2), one would like to construct a transformation of the formuv
 := S (Ω,Ωd, φr, φrd)

ηy
 , (3.11)

such that the transformed system Σ(u,v) with new input-output variables (u, v), u ∈ Rm, v ∈
Rp, is interior conic with central subspace Ωd and radius φrd (i.e., Σ(u,v) ∈ Int (Ωd, φrd)). A

transformation with the above described properties can be constructed as follows. Let vectors

g1, g2, . . . , gm form an orthonormal basis in Ω. The set of vectors {g1, g2, . . . , gm} ∈ Ω can be

augmented with additional vectors gm+1, . . . , gm+p ∈ Ω⊥ such that the columns of

G :=
[
g1 . . . gm gm+1 . . . gm+p

]
(3.12)

form an orthonormal basis in Rm+p. Similarly, a matrix Gd can be constructed such that its

first m columns form an orthonormal basis in Ωd, while the whole set of its columns forms an

orthonormal basis in Rm+p. Consider a scattering transformation

S (Ω,Ωd, φr, φrd) := Gd · Γ (φr, φrd) ·GT , (3.13)

where

Γ (φr, φrd) :=
(
cos φrd

cos φr

)α
·

(
sin φrd

sin φr

)−β
· diag


(
tan φrd

tan φr

)α
Im,

(
tan φrd

tan φr

)β
Ip

 , (3.14)

and α := −p/(m + p), β := m/(m + p). The following lemma is valid.

Lemma 3.2.3. [31,32] Suppose a system Σ of the form (3.1) is such that Σ ∈ Int (Ω, φr), where

Ω ⊂ Rm+p, dim Ω = m, and φr ∈ (0, π/2). Then the transformed system (3.1), (3.11), (3.13),

(3.14) with new input-output variables (u, v) satisfies Σ(u,v) ∈ Int (Ωd, φrd).

One important application of Lemma 3.2.3 is for stabilization of interconnections of non-

planar conic systems. Suppose subsystems Σi, i = 1, 2 are non-planar conic. To guarantee

stability of the feedback interconnection of (Σ1,Σ2), one can implement a scattering transfor-

mation for one of the subsystem which renders its input-output characteristics into a desired

dynamic cone. If the parameters of the desired cone are chosen in a way that guarantees the

fulfilment of the graph separation stability condition (Theorem 3.2.2), then the interconnection

is guaranteed to be finite gain L2-stable. A detailed description of the design methods that use

scattering transformation of the form (3.13), (3.14), including the case of interconnections with

multiple communication delays, can be found in [32].
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3.3 Scattering-based approach to the coupled stability
problem

The purpose of this work is to develop a scattering-based technique for stabilization of robot-

environment interactions. We assume that the robot is controlled such that the trajectory of its

end-effector Ψ(t) :=
[
xT (t), ẋT (t)

]T
follows some sufficiently smooth desired trajectory Ψd(t) :=[

xT
d (t), ẋT

d (t)
]T

, where x and xd represent the actual and the desired positions of the end-effector,

respectively, while ẋ and ẋd represent the actual and the desired velocities of the end-effector.

When the robot’s end-effector encounters an environment, an interaction force fe is generated

which is applied to the robot’s end-effector, thus forming the closed-loop robot-environment

dynamics. The problem of stability of this closed-loop system is known as the coupled stability

problem [8].

Our approach to the coupled stability problem is illustrated in Figure 3.2. In order to

guarantee stability of the robot-environment interaction, a scattering transformation is inserted

between the robot and the environment subsystems, as shown in the left side of Figure 3.2.

The scattering transformation is designed in a way that guarantees the fulfilment of the graph

separation stability condition (described by Theorem 3.2.2) between the robot’s and the en-

vironment dynamics. As can be seen in Figure 3.2, the scattering transformation defines a

relationship between the contact force fe, the tracking errorV := Ψ−Ψd, and two new “inner”

signals v f and E, according to the formula fe

V

 = S

v f

E

 , (3.15)

where S is the matrix of scattering transformation. The new signals v f and E represent the robot

force input and a new tracking error, respectively. Obviously, scattering transformation (3.15)

cannot be directly implemented between the robot and the environment as there is mechanical

interaction with energy exchange between these rather than simply an exchange of information

signals. However, the scattering transformation can be implemented indirectly through intro-

duction of auxiliary reference signals fr := v f − fe, Ψ̃r := V − E, as shown in the right part of

Figure 3.2.

One additional design consideration, which is specific for the coupled stability problem,

is that one does not wish the designed scattering transformation to affect the robot’s tracking

performance in free space. More precisely, in the absence of contact between the robot and

the environment, i.e., when fe = 0, it makes sense to require that the transformed force v is

also equal to zero and the transformed tracking error E is equal to the actual tracking error

V. This requirement imposes constraints on the structure of the scattering matrix S in (3.15);
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specifically, its inverse S−1 must be of the form

S−1 =

S1 O

S2 I

 , (3.16)

where O, I are zero and unit matrices of appropriate dimensions, and the matrices S1, S2 are

arbitrary with nonsingular S1. It is worth mentioning that, in this case, the transform S has a

structure similar to that of its inverse (3.16), specifically,

S =

 S−1
1 O

−S2 S
−1
1 I

 . (3.17)

From implementation point of view, however, it is more convenient to work with the inverse

transform S−1 rather than with S, partially because the signals in the left-hand side of (3.15)

(i.e., fe, V) are readily available, while the signals in the right-hand side of (3.15) (i.e., v f

and E) are to be determined. The requirement for the scattering transformation to satisfy con-

straints (3.16) (equivalently, (3.17)) effectively makes the design methods developed in [31,32]

(i.e., those based on the scattering transformation of the form (3.13), (3.14)) inapplicable to the

coupled stability problem. In the next section, we describe a procedure for the design of a

scattering transformation that guarantees stability through graph separation while satisfying

the constraints (3.16).

Robot

Environment +

Scattering Transformation
Robot

Environment +

+

 d

E

V
 

vf vf E

 

fr

+

 d
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fe
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Figure 3.2: Scattering-based stabilization of robot-environment interaction

3.4 A procedure for constrained scattering-based design

Consider a scattering based robot-environment interconnection shown in Figure 3.2. Sup-

pose the environment with input V ∈ Rm and output fe ∈ R
p is a non-planar conic system

with a central subspace Ωe, dim Ωe = m, and radius φe ∈ (0, π/2), which is denoted by
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Σe
(V, fe) ∈ Int (Ωe, φe). Suppose the robot with input v f ∈ R

p and output E ∈ Rm is also non-planar

conic with central subspace Ωr, dim Ωr = p and radius φr ∈ (0, π/2), i.e., Σr
(v f ,E) ∈ Int (Ωr, φr).

Our goal is to find a scattering transformation S ∈ R(p+m)×(p+m) of the form (3.15) that renders

the dynamic characteristics of the robot with new input-output pair ( fe,V) into a dynamic cone

Int
(
Ωs

r, φ
s
r
)
, where Ωs

r and φs
r ∈ (0, π/2) are the transformed center and radius, respectively, with

the following property: Σr
( fe,V) ∈ Int

(
Ωs

r, φ
s
r
)

and Σe
(V, fe) ∈ Int (Ωe, φe) satisfy the graph separa-

tion stability condition of Theorem 3.2.2 with a prescribed gap δ0 > 0 (see Remark 3.2.1). In

addition, thus designed scattering transformation S must satisfy the constraints (3.16), (3.17).

Since there may exist many (generally speaking, a continuum of) transformations with the

above described properties, one may like to choose a transformation that results in the min-

imum deviation from the tracking control law that controls the manipulator’s motion in free

space. Such a deviation can be measured as a norm of a (possibly weighted) difference be-

tween the inverse scattering transformation matrix S−1 and the unit matrix I. One particular

way to describe a difference between S−1 and I, which is utilized in our work, is to consider a

functional of the form

F∆ (S) := tr
[[
S−1 − I

]T
· ∆ ·

[
S−1 − I

]]
, (3.18)

where ∆ is a diagonal weighting matrix with positive diagonal elements such that tr∆ = 1.

Different diagonal elements in ∆ assign different weights to rows of
[
S−1 − I

]
. Based on the

above description, our goal is to solve an optimization problem of the form:

S∗ = arg min
S−1of the form (3.16)

F∆ (S) (3.19)

subject to constraint

cos−1
(
σmax

(
ΠΩs

r
· ΠΩe

))
− φe − φ

s
r − δ0 ≥ 0. (3.20)

The transformed center Ωs
r and radius φs

r that enter the constraint (3.20) can be calculated by

applying Lemma 3.2.1 to the transformed supply rate matrix W s
r := S−T ·

[
ΠΩr − cos2 φrI

]
·

S−1. The Matlab code that solves the optimization problem (3.19), (3.20) for a specific robot-

environment interaction task addressed below in Section 3.5 can be downloaded from [29].

3.5 Example of scattering-based design for coupled stability

3.5.1 Mathematical models of the controlled manipulator and
the environment

We address a problem of coupled stability between a robot manipulator controlled by a trajec-

tory tracking control algorithm and an environment where the interaction between the two is
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characterized by a damping matrix with some negative eigenvalues and therefore non-passive.

The problem is illustrated in Figure 3.3. Consider a robot manipulator whose dynamics are

Dse
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Figure 3.3: Coupled stability problem

described in the task space as follows:

Hx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = fe + u, (3.21)

where q, q̇ ∈ Rn are robot’s position and velocity vectors represented in the joint space co-

ordinates, x, ẋ, ẍ ∈ Rm are position, velocity, and acceleration, respectively, of the robot’s

end-effector represented in the task space coordinates, Hx(q), Cx(q, q̇), Gx(q) are matrices of

inertia, Coriolis/centrifugal forces, and a vector of gravitational forces represented in the task-

space coordinates, fe denotes the environmental contact forces applied to the end-effector, and u

is the task-space control input (for more details of the task-space dynamic equations (3.21) and

their relationship to the joint-space dynamics the reader is referred, for example, to [9, Chapter

4]). Consider a control algorithm

u = Hx(q)ṙ + Cx(q, q̇)r + Gx(q) − Kσ + fr, (3.22)

where σ := ˙̃x+Λx̃, x̃ = x−xr, r := ẋ−σ = ẋr−Λ·x̃, and Λ = ΛT > 0, K = KT > 0 are matrices

of feedback law parameters. Signals xr(t), ẋr(t) represent the reference position and velocity,

respectively. When fr(t) ≡ 0 and xr(t), ẋr(t) are equal to the desired position xd(t) and velocity

ẋd(t) of the end-effector in task space, respectively, the control algorithm (3.22) becomes a non-

adaptive task space version of the Slotine-Li tracking control algorithm [16], see also [9,25]. It
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can be readily established that in this case the controlled manipulator (3.21), (3.22) is strictly

output passive with respect to the input-output pair ( fe, σ); specifically, the time derivative of

a storage function candidate V = (1/2)σT Hx(q)σ along the trajectories of (3.21), (3.22) with

fre f ≡ 0 is V̇ = −σKσ − σT fe (this fact is originally due to [23]). It is worth emphasizing,

however, that the system (3.21), (3.22) is not passive with respect to the conventional pair

of power variables ( fe, ẋ). Indeed, the passive output σ := ẋ − ẋr + Λx − Λxr in this case

contains three other terms in addition to ẋ, including terms that depend on reference trajectory

and the end-effector position. The situation is typical for tracking control algorithms where

the necessity to force the robot to converge to the desired trajectory is in contradiction with

(conventional) passivity. Therefore, contact stability of the controlled robot (3.21), (3.22) with

even a passive environment is not automatically guaranteed.

On the other hand, consider the environmental dynamics described by an Euler-Lagrange

equation of the form:

He(qe)ẍe + Ce(qe, q̇e)ẋe +
∂P(qe)
∂xe

+ Deẋe + fe = 0, (3.23)

where xe, ẋe, ẍe ∈ R
m are the environmental position, velocity, and acceleration, respectively,

He(qe), Ce(qe, q̇e), De are matrices of inertia, Coriolis/centrifugal forces, and environmental

damping, respectively, and P(qe) is the potential energy. Denote x̃e := xe − x. Let the robot-

environment interaction be described by equation of the form

fe :=

0 if eT
sex̃e ≤ 0,

Ksex̃e + Dse ˙̃xe if eT
sex̃e > 0,

(3.24)

where Kse = KT
se ≥ 0 is a stiffness matrix of rank 1, ese is a fixed eigenvector of Kse that cor-

responds to its positive eigenvalue, and Dse = DT
se is a damping matrix. Nonnegative definite

damping matrix Dse would result in a passive environment. To make the problem more inter-

esting, let’s assume that Dse is not sign definite, i.e., some of its eigenvalues may be strictly

negative, which implies negative damping in certain directions. Negative contact damping,

which may describe different mechanical phenomena such as slippage [19], results in non-

passivity of robot-environment interaction.

In our simulations presented below, we use a mathematical model of a 3-DOF manipulator

described in detail in Appendix 3.7. For modeling an environment, we use a 2-DOF manipu-

landum whose mathematical model together with its parameters is presented in Appendix 3.8.
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3.5.2 Quadratic supply rates for the controlled manipulator and
the environment

We begin by analyzing the dissipativity properties of the controlled manipulator (3.21), (3.22)

and the environment (3.23), (3.24). Substituting (3.22) into (3.21), the following closed-loop

dynamics of the controlled manipulator can be obtained

˙̃x = −Λx̃ + σ, (3.25)

σ̇ = H−1
x (q)

[
−Cx(q, q̇)σ − Kσ + fe + fr

]
. (3.26)

The dynamical equations (3.25), (3.26) represent the dynamics in terms of state variables x̃, σ;

they can be rewritten in terms of state variables x̃, ˙̃x using the following coordinate transfor-

mation: x̃˙̃x
 = T−1

Λ

 x̃
σ

 , where TΛ :=

 I O

Λ I

 ∈ R2m×2m. (3.27)

Pick a storage function candidate for the robot of the form

Vr =
1
2
σT Hx(q)σ +

µ

2
x̃T x̃ =

x̃˙̃x
T

TT
Λ ·

1
2µ O

O 1
2 Hx(q)

 · TΛ

x̃˙̃x
 ,

where µ > 0 is a parameter. Using notation v f := fe + fr, the time derivative of Vr along the

trajectories of (3.25), (3.26), (3.27) is

V̇r = −σKσ − σT

[
1
2

Ḣx(q) −Cx(q, q̇)
]
σ + σT v f − µ · x̃T Λx̃ + µ · x̃Tσ =


v f

x̃
˙̃x


T

Wr


v f

x̃
˙̃x

 ,
where the matrix of the quadratic supply rate of the controlled robot has a form

Wr :=

 I O

O TT
Λ

 ·

O O 1

2 I

O −µΛ 1
2µI

1
2 I

1
2µI −K

 ·
 I O

O TΛ

 . (3.28)

On the other hand, consider the environmental dynamics (3.23), (3.24). Pick a storage function

candidate of the form

Ve =
1
2

ẋT
e He(qe)ẋe + P(qe) +

1
2

x̃T
e Ksex̃e.

The time derivative of Ve along the trajectories of (3.23), (3.24) is

V̇e = −ẋT
e Deẋe − ẋT

e fe + ˙̃xT
e Ksex̃e = −ẋT

e Deẋe − ẋT fe − ˙̃xT
e Dse ˙̃xe ≤ −ẋT

e Deẋe − ẋT fe + ˙̃xT
e D∗se

˙̃xe,



3.5. Example of scattering-based design for coupled stability 71

where D∗se = D∗se
T ≥ 0 is the nonnegative definite component of −Dse. Picking an arbitrary

ε > 0 such that

Dε := De − (1 + ε)D∗se ≥ 0, (3.29)

and using Young’s quadratic inequality, one can write

V̇e ≤ −ẋT
e Dε ẋe − ẋT fe +

(
ε + 1
ε

)
ẋT D∗seẋ ≤ −ẋT fe +

(
ε + 1
ε

)
ẋT D∗seẋ =


fe

x
ẋ


T

We


fe

x
ẋ

 ,
where

We :=


O O −1

2 I

O O O

−1
2 I O

(
ε+1
ε

)
D∗se

 (3.30)

is the matrix of quadratic supply rate of the environment.

3.5.3 Dynamic cone analysis

As the next step, the parameters of (non-planar) cones that characterize the dynamics of the

controlled manipulator (3.21), (3.22) and the environment (3.23), (3.24) are to be determined.

This can be done based on the corresponding expressions for [QSR]-matrices (i.e., matrices of

the quadratic supply rates (3.28) and (3.30)) using the algorithm described in Lemma 3.2.1.

The Matlab code that implements the algorithm of Lemma 3.2.1 can be downloaded from [28].

In order to determine the parameters of the robot’s cone, we pick specific values of the design

coefficients that comprise the matrix of the quadratic supply rate (3.28). For the 3-DOF manip-

ulator described in Appendix 3.7, the matrices Λ, K of the feedback coefficients in the tracking

control algorithm (3.22) are chosen as follows:

Λ =


2.25 0 0

0 2 0

0 0 2

 , K =


1 0 0

0 1 0

0 0 1

 . (3.31)

This choice of feedback matrices ensures that the controlled manipulator demonstrates accept-

able tracking performance in free space. The value of the weighting coefficient µ > 0 in the

storage function (3.5.2) is then chosen to minimize the dynamic cone radius φr. The cone ra-

dius φr as a function of µ > 0 is shown in Figure 3.4; the minimum value of φr ≈ 0.54 rad

(φr = 30.97◦) is achieved at µ ≈ 3.6. Finally, the center of the robot’s cone is calculated to be
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Figure 3.4: Radius φr of the manipulator’s dynamic cone as a function of µ > 0.

a three-dimensional subspace spanned by the following vectors

Ωr = span





0

0.9303

0

0

0.1984

0

0

0.3085

0



,



0

0

0.9303

0

0

0.1984

0

0

0.3085



,



−0.9416

0

0

−0.1714

0

0

−0.2898

0

0





. (3.32)

For the environment (3.23), (3.24), in our design example the values of environmental

damping in (3.23) and the contact damping in (3.24) are chosen as follows

De :=


10 0 0

0 0 0

0 0 0

 , Dse :=


−2 0 0

0 0 0

0 0 0

 (N · s/m). (3.33)

For the above choice of contact damping matrix Dse, the matrix D∗se (i.e, the nonnegative defi-
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nite component of −Dse) is

D∗se :=


2 0 0

0 0 0

0 0 0

 (N · s/m). (3.34)

Taking into account the specific structure of the matrix D∗se, it is easy to see that the set of

eigenvalues of We consists of the following subsets:

λ+ (We) =

0, 0, 0,
1
2
,

1
2
,

1
2

2 (1 + ε)
ε

+

√(
2 (1 + ε)

ε

)2

+ 1


 , and

λ− (We) =

−1
2
,−

1
2
,

1
2

2 (1 + ε)
ε

−

√(
2 (1 + ε)

ε

)2

+ 1


 .

Therefore, parameters µ− and µ+ defined by (3.4), (3.5), can be calculated as follows:

µ+ := max{|µi| : µi ∈ λ
+ (We)} =

1
2


√(

2 (1 + ε)
ε

)2

+ 1 +
2 (1 + ε)

ε

 ,
µ− := min{|µi| : µi ∈ λ

− (We)} =
1
2


√(

2 (1 + ε)
ε

)2

+ 1 −
2 (1 + ε)

ε

 .
Applying Lemma 3.2.1, we conclude that the environmental cone’s radius φe satisfies

tan φe :=

√
µ+

µ−
=

√
4 (1 + ε)2

ε2 + 1 +
2 (1 + ε)

ε
.

From (3.5.3), it is easy to see that tan φe (and therefore radius φe ∈ (0, π/2)) is a decreasing

function of ε > 0. Taking into account the choice of De and D∗se as in (3.33) and (3.34),

respectively, the maximum value of ε > 0 such that (3.29) holds is ε = 4. In order to achieve

the minimum possible upper bound for φe, we should therefore choose ε = 4, which results in

tan φe|ε=4 ≈ 5.1926,

which corresponds to φe = 1.38 rad or φe = 79.0993◦. Finally, at ε = 4, the center of the
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environmental cone is calculated as a 6-dimensional subspace as follows:

Ωe = span





0.189

0

0

0

0

0

−0.982

0

0



,



0

0

0.707

0

0

0

0

0

−0.707



,



0

−0.707

0

0

0

0

0

0.707

0



,



0

0

0

1

0

0

0

0

0



,



0

0

0

0

1

0

0

0

0



,



0

0

0

0

0

1

0

0

0





. (3.35)

Once the dynamic cones of the controlled manipulators and the environment are determined,

the next step is to check the fulfilment of the graph separation stability condition (3.9). Ma-

trices of projections onto the central subspaces ΠΩr and ΠΩe can be calculated in a straight-

forward manner from (3.32) and (3.35), respectively (specifically, let Ω̂r denote the matrix

whose columns are the unit vectors that span Ωr in (3.32), then ΠΩr := Ω̂rΩ̂
T
r ; ΠΩe is calcu-

lated similarly). Further calculations indicate that σ
(
ΠΩr

ΠΩe

)
≈ 0.4823, while cos (φr + φe) =

cos(0.54 + 1.38) ≈ −0.342. We see that σ
(
ΠΩr

ΠΩe

)
≮ cos (φr + φe), i.e., the interconnection of

the controlled manipulator (3.21), (3.22) and the environment (3.23), (3.24) fails to satisfy the

graph separation stability condition (3.9). This theoretical result is in complete accordance with

our simulations (Section 3.5.5) that demonstrate contact instability of the robot-environment

interaction. Below the problem is solved using scattering-based stabilization methods.

3.5.4 Design of scattering transformation

The dynamic cone analysis presented above corresponds to the case where xr(t) ≡ xd(t) and

fr(t) ≡ 0. In this subsection, we design scattering transformation(s) that solve the coupled

stability problem through generation of new reference signals xr(t), ẋr(t), and fr(t). Based

on the general description given in Section 3.3, the scattering transformation S establishes

relationship between the system’s variables according to the formula


fe + fr

x − xr

ẋ − ẋr

 = S−1


fe

x − xd

ẋ − ẋd

 . (3.36)
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Equation (3.36) is equivalent to 
fr

xd − xr

ẋd − ẋr

 :=
[
S−1 − I

] 
fe

x − xd

ẋ − ẋd

 ,
the latter gives an explicit formula for the reference force and the correction to the desired tra-

jectory that implement the designed scattering transformation S. As described in Section 3.3,

we are looking for a scattering transformation of the form (3.16), which result in a control law

that does not affect the system’s trajectory tracking performance in free space. More specifi-

cally, we restrict our search to the scattering transformations (3.16) where S1 is diagonal, and

S2 double-diagonal, i.e.,

S−1 :=


S1 O O

S21 I3 O

S22 O I3

 ∈ R9×9, (3.37)

where S1 := diag {a1, a2, a3}, S21 := diag {a4, a5, a6}, S22 := diag {a7, a8, a9}. The scattering

transformation (3.37) therefore is a function of nine parameters which comprise a vector a :=

[a1 . . . a9]T ∈ R9. In this case, the functional (3.18) becomes

F∆ (S (a)) := [a − a0]T · ∆ · [a − a0] , (3.38)

where a0 := [1 1 1 0 . . . 0]T ∈ R9, and ∆ := diag{δ1, . . . , δ9} ∈ R
9×9 is a diagonal matrix with

δi > 0, i = 1, . . . 9, such that tr∆ =
∑
δi = 1. Consequently, the optimization problem (3.19)

becomes

a∗ := arg min
a∈R9

F∆ (S (a)) (3.39)

subject to the same constraints (3.20). The Matlab code that solves the problem (3.39), (3.20)

can be obtained from [29].

In our design example, we set the minimum gap δ0 = 4◦, and consider four different sets of

weighting coefficients ∆, as follows:

• Case 1: ∆ = ∆1 := (1/9) · I9.

• Case 2: ∆ = ∆2 := (1/6.3) · diag{0.1 · I3, I3, I3}.

• Case 3: ∆ = ∆3 := (1/6.3) · diag{I3, 0.1 · I3, I3}.

• Case 4: ∆ = ∆4 := (1/6.3) · diag{I3, I3, 0.1 · I3}.

It is easy to see that the Case 1 corresponds to a uniform assignment of weighting coefficients.

In Case 2, the weighting coefficients corresponding to the force component are decreased 10
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times, which essentially decrease penalty for the reference force component. Cases 3 and 4

correspond to decreased penalties for position and velocity correction components, respec-

tively. The optimization problem (3.39), (3.20) for the above Cases 1-4 are then solved using

the Matlab code which can be downloaded at [28]. The results are summarized in Table 3.1.

In this table, the columns correspond to the minimum gap δ0, the choice of weighting coef-

ficients ∆, the parameters a∗ of the resulting scattering transformation (3.37), the parameter

Φre := cos−1
(
σmax

(
ΠΩs

r
· ΠΩe

))
which represents the angle between the inverse transformed

center subspace of the robot dynamics Ωs
r and the center subspace of the environmental dy-

namics Ωe, the radius φs
r of the transformed robot’s cone, and the actual gap between the trans-

formed robot and the environment cones. As can be seen from this table, the design procedure

is successful in all four cases; in particular, the actual gap achieved is always greater than the

minimum required gap δ0.

Case 1 Case 2 Case 3 Case 4

δ0 4◦ 4◦ 4◦ 4◦

∆ ∆1 ∆2 ∆3 ∆4

a∗



0.1630

0.2231

0.2231

0.0421

0.0674

0.0674

−0.1234

−0.9060

−0.9060





0.0019

0.0028

0.0028

0.0015

0.0164

−0.0029

−0.0918

−0.8152

−0.814





0.1632

0.2234

0.2234

0.0422

0.0675

0.0675

−0.1233

−0.9059

−0.9059





0.1621

0.2219

0.2219

0.0419

0.0671

0.0671

−0.1238

−0.9064

−0.9064


Φre ≈ 90◦ ≈ 84.19◦ ≈ 90◦ ≈ 90◦

φs
r ≈ 6.4◦ ≈ 0.09◦ ≈ 6.4◦ ≈ 6.36◦

Gap ≈ 4.5◦ ≈ 5◦ ≈ 4.49◦ ≈ 4.54◦

Table 3.1: Design of the scattering transformations for Cases 1-4.

3.5.5 Simulation results

In this subsection, we present examples of simulations of the robot-environment interaction

problem. In every simulation presented below, the feedback matrices K, Λ of the robot’s

tracking control algorithm are given by (3.31), and the environmental damping matrices De, Dse
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are as in (3.33). We present simulation results for 2 different sets of environmental parameters,

specifically the environmental stiffness matrix Ke, and the contact stiffness matrix Kse. For

each of these two sets of environmental parameters, we simulate the contact stability problem

for five different robot control/stabilization algorithms: the tracking control algorithm (3.22)

without scattering-based component (i.e., with xr(t) ≡ xd(t) and fr(t) ≡ 0), as well as the four

cases of algorithm (3.22) with scattering-based stabilization component (3.5.4) designed above

in Section 3.5.4 and summarized in Table 3.1.

Parameter set 1. In this set, the environment matrices Ke and Kse are chosen as follows:

Ke =


100 0 0

0 0 0

0 0 1

 (N/m), Kse =


20 0 0

0 0 0

0 0 0

 (N/m).

This choice corresponds to environment with relatively low stiffness. Simulation results of the

five control algorithms are shown in Figures 3.5-3.9.
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Figure 3.5: Parameter set 1, tracking control algorithm (3.22) without a scattering-based com-

ponent: x-coordinates of the robot’s end-effector and the environment (left), contact forces

(right).

Parameter set 2. In this set, the environment matrices Ke and Kse are increased 10 times

as compared to Case 1, specifically:

Ke =


1000 0 0

0 0 0

0 0 1

 (N/m), Kse =


200 0 0

0 0 0

0 0 0

 (N/m).

This choice of Ke, Kse corresponds to environment with high stiffness. Simulation results of

the five control algorithms are shown in Figures 3.10-3.14.
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Figure 3.6: Parameter set 1, scattering-based design (case 1): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).
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Figure 3.7: Parameter set 1, scattering-based design (case 2): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).
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Figure 3.8: Parameter set 1, scattering-based design (case 3): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).



3.5. Example of scattering-based design for coupled stability 79

0 2 4 6 8 10 12 14 16 18 20
Time (s)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

X-
co

or
di

na
te

 (m
)

X-coordinates

Robot
Environment

0 2 4 6 8 10 12 14 16 18 20
Time (s)

-0.5

0

0.5

1

X-
Fo

rc
e 

(N
)

Contact Force

Contact Force

Figure 3.9: Parameter set 1, scattering-based design (case 4): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).
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Figure 3.10: Parameter set 2, tracking control algorithm (3.22) without a scattering-based com-

ponent: x-coordinates of the robot’s end-effector and the environment (left), contact forces

(right).

It can be seen from the results of simulations that, in both cases of the environment with

relatively low stiffness (parameter set 1) and the environment with high stiffness (parameter set

2), the tracking control algorithm without a scattering-based component results in contact in-

stability when coupled with the environment. All four cases of scattering-based design, on the

other hand, successfully stabilize the robot-environment interaction. Among these four cases,

case 2 (which corresponds to decreased penalty for the reference force component) seems to

demonstrate lower performance and, in particular, results in higher contact forces as compared

to the other three cases of scattering-based design (cases 1, 3, and 4).
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Figure 3.11: Parameter set 2, scattering-based design (case 1): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).
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Figure 3.12: Parameter set 2, scattering-based design (case 2): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).
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Figure 3.13: Parameter set 2, scattering-based design (case 3): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).
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Figure 3.14: Parameter set 2, scattering-based design (case 4): x-coordinates of the robot’s

end-effector and the environment (left), contact forces (right).

3.6 Conclusion

In this work, a non-planar conic system formalism and generalized scattering transformation

techniques developed previously in [32] were applied to the problem of stable robot environ-

ment interaction. The conventional passivity-based approaches to the coupled stability problem

are limited to the case of passive interaction and not compatible with majority of the trajectory

tracking control algorithms. Following the general approach of [32], we develop a design

method for coupled stability applicable to arbitrary (Q, S ,R)-dissipative environments, which

can be used in combination with an arbitrary robot’s tracking control algorithm and does not

affect the trajectory tracking performance in free space. A detailed design example is presented

that illustrates the capabilities of the proposed design method. A complete analytical solution

of the scattering-based design problem for coupled stability subject to constraints such as (3.16)

is a topic for future research.

3.7 Appendix: Mathematical model of the manipulator

In our simulations, we use a mathematical model of a 3-DOF manipulator whose kinematic

structure and frames are shown in Figure 3.15. The following physical parameters were chosen

for our simulations: l1 = 0.6731 m, l2 = 0.432 m, l3 = 0.434 m, lc1 = 0.216 m, lc2 = 0.164 m,

m2 = 3.092 kg, m3 = 1.91 kg, J = 0.0151 kg ·m2. The Denavit-Hartenberg (DH) parameters

of the robot are shown in the Table 3.2. The forward kinematics are given by

x = c1 (l2c2 + l3s23) ,

y = s1 (l2c2 + l3s23) ,

z = l1 − l2s2 + l3c23,
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Figure 3.15: Manipulator structure

where we use notation si := sin (qi), ci := cos (qi), si j := sin
(
qi + q j

)
, and ci j := cos

(
qi + q j

)
,

i, j = 1, 2, 3. Based on the forward kinematics, the following inverse kinematics were obtained

q1 = atan2 (y; x) ,

q2 = ±α − atan2
(
R2 + l2

2 − l2
3;±

√(
(l2 + l3)2 − R2) (R2 − (l2 − l3)2))

q3 = atan2
(
R2 − (l2

2 + l2
3);±

√(
(l2 + l3)2 − R2) (R2 − (l2 − l3)2)) , where

α = atan2 (r; z − l1) , R2 := r2 + (z − l1)2, r2 := x2 + y2.

# αi−1 ai−1 di qi

1 0 0 l1 q1

2 −π/2 0 0 q2

3 0 l2 0 q3

4 π/2 0 l3 0

Table 3.2: The Denavit-Hartenberg parameters
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The manipulator’s Jacobian is

J =


−s1(l2c2 + l3s23) c1(−l2s2 + l3c23) l3c1c23

c1(l2c2 + l3s23) s1(−l2s2 + l3c23) l3s1c23

0 −l2c2 − l3s23 −l3s23

 .
The manipulator’s dynamics are described by the Euler-Lagrange equations of the form

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τe,

where τe is an external torque due to interaction with environment, H(·) is the inertia matrix of

the form

H =


J + J1s2

23 + J12c2
2 + 2J13c2s23 0 0

0 J1 + J12 + 2J13s3 J1 + J13s3

0 J1 + J13s3 J1

 ,
where J1 = l2

c3
m3, J12 = l2

c2
m2 + l2

2m3, J13 = l2lc3m3, C(·) is the matrix of Coriolis and centrifugal

forces,

C(q, q̇)q̇ =


0 c(1)

12 q̇1 c(1)
13 q̇3

c(2)
11 q̇1 0 (c(2)

22 q̇2 + c(2)
23 q̇3)

c(3)
11 q̇1 c(3)

22 q̇2 0



q̇1

q̇2

q̇3

 ,
where

c(1)
12 = J1 sin 2(q1 + q2) − J12 sin 2q2 + 2J13 cos (2q2 + q3),

c(1)
13 = J1 sin 2(q2 + q3) + 2J13c2c23,

c(2)
11 =

1
2

(−J1 sin 2(q2 + q3) + J12 sin 2q2 − 2J13 cos (2q2 + q3)) ,

c(2)
22 = 2J13c3, c(2)

33 = J13c3, c(3)
22 = −J13c3q̇2,

c(3)
11 = −

1
2

(J1 sin 2(q2 + q3) + J13c2c23) ,

and G(·) is the vector of potential (gravity) forces,

G(q) = −


0

lc3m3s23 + lc2m2c2 + l2m3c2

lc3m3s23

 · g,
where g = 9.81 m/s2 is the acceleration due to gravity. The dynamic equations in the Cartesian

space are

Hx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = u + fe,
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where
Hx(q) = J−T (q)H(q)J−1(q),

Cx(q, q̇) = J−T
(
C(q, q̇) − H(q)J−1(q)J̇(q)

)
J−1(q)

Gx(q) = J−T (q)G(q)

u = J−T (q)τ, fe = J−T (q)τe.

3.8 Mathematical Model of the Environment
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Figure 3.16: Environment model

The environment is a manipulandum with the kinematic structure shown in Figure 3.16.

The forward kinematics of the environment are described by the following equations

xe =


xe

ye

ze

 =


xebase − l1es1 − l2ec12

0

l1ec1 − l2es12

 ,
where si = sin θi, ci = cos θi (i = 1, 2) and s12 = sin (θ1 + θ2), c12 = cos (θ1 + θ2). The dynamics

of the environment in the joint space are given by

He(θ)θ̈ + Ce(θ, θ̇)θ̇ +
∂Ps(θ)
∂θ

+ D∗e(θ)θ̇ + τenv = 0,
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where the inertia matrix He(·) is

He(θ) =

m2el2
2e − 2m2el1el2es2 + (m1e + m2e)l2

1e m2el2e(l2e − l1es2)

m2el2e(l2e − l1es2) m2el2
2e

 .
The matrix of Coriolis and centrifugal forces are described by the equation

Ce(θ, θ̇) = m2el1el2ec2

−2θ̇2 −θ̇2

θ̇1 0

 .
The stiffness term ∂Ps(θ)/∂θ is the gradient of a quadratic potential function

Ps(θ) :=
(
xe − xe0

)T Ke
(
xe − xe0

)
, xe0 =


xebase − l2e

0

l1e

 ,
which gives in the following components of the stiffness vector

∂Ps(θ)
∂θ1

= 2
(
xe − xe0

)T Ke


l2es12 − l1ec1

0

−l1es1 − l2ec12

 ,
∂Ps(θ)
∂θ2

= 2l2e
(
xe − xe0

)T Ke


s12

0

−c12

 ,
where the stiffness matrix Ke has the following diagonal form

Ke =


ke1 0 0

0 0 0

0 0 10

 (N/m).

In our simulations, the parameter ke1 was varied. The damping term D∗e(θ) of the environment

dynamics has the structure

D∗e(θ) = JT
e (θ)DeJe(θ), De =


de1 0 0

0 0 0

0 0 0

 (N · s/m)

In our simulations, we used de1 = 10 (N · s/m). The matrix Je in the representation of D∗e is the

Jacobian matrix

Je(θ) =


−l1ec1 + l2es12 l2es12

0 0

−l1es1 − l2ec12 −l2ec12


The remaining parameters of the environment were chosen as le1 = 0.8901 m, le2 = 0.4320 m,

xebase = 1.0810 m, me1 = me2 = 2.5 kg.
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Chapter 4

Scattering-based stabilization of complex
interconnections of (Q,S,R)−dissipative
systems with time delays

The material presented in this chapter is submitted for the publication in The IEEE Control

Systems Letters (Submission number: 18-0351), 2018.

A method for scattering-based stabilization of networks of (Q,S,R)−dissipative systems in

the presence of multiple heterogeneous communication delays is presented. It is demonstrated

that, for a wide class of dissipative systems with quadratic supply rates, the finite-gain stability

of complex interconnections with multiple time delays can be achieved through an appropriate

design of local scattering transformations. A numerical example and simulation results are

presented in support of the theoretical developments.

4.1 Introduction

Stability and stabilization of networks of dynamical systems, particularly in the presence of

communication constraints, is a topic of long-standing research interest for the control com-

munity [2–5, 8, 10, 13]. One specific approach to stabilization of systems interconnected with

communication delays is based on implementation of the so-called scattering or wave trans-

formations. The approach was originally developed for interconnections of passive systems,

and was particularly successful in applications to bilateral teleoperators with communication

delays [1, 11, 14]. The stabilizing effect of the scattering transformations in the presence of

communication delays is based on the fact that it transforms a passive system into a system

90
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with gain less than or equal to one, which allows for eliminating the destabilizing effect of the

phase shift in the delayed communication channel. Extensions of this approach to intercon-

nections of not necessarily passive systems were pursued in [6, 12, 15]. In [15], a general form

of the scattering transformation was developed which is applicable to a class of so-called non-

planar conic systems and, in particular, allows for rendering the input-output characteristics of

a system into a prescribed non-planar cone of compatible dimensions. This is subsequently

used for stabilization of system’s feedback interconnections, with and without communication

delays.

In this chapter, we develop a scattering-based approach to stabilization of interconnections

of nonlinear dissipative systems with communication delays that, in particular, does not re-

fer to any kind of conicity notion. Essentially, the approach developed in this chapter allows

for stabilization of arbitrarily complex interconnections of (Q,S,R)−dissipative systems (i.e.,

systems dissipative with quadratic supply rates) with communication delays through an appro-

priate design of local input-output transformations. Specifically, following some preliminary

developments, the main result of the chapter (Theorem 4.4.1) presents a construction of local

scattering transformations that guarantee finite L2-gain stabilization of complex interconnec-

tions of (Q,S,R)−dissipative systems with respect to external disturbances in the presence of

multiple heterogeneous communication delays, which fundamentally generalizes the existing

results in this area [1, 6, 15].A numerical example and results of simulations are presented in

support of the theory developed. The chapter is organized as follows. In Section 4.2, we give

definitions and discuss some preliminary considerations regarding the eigenvalues of the ma-

trix of quadratic supply rate in dissipative systems. In Section 4.3, we introduce the scattering

transformation and present basic results that describe its effect on (Q,S,R)−dissipative sys-

tems. The main result of the chapter is presented in Section 4.4. A numerical example and the

results of simulations are described in Section 4.5.

4.2 (Q,S,R)−Dissipativity

Consider a nonlinear system of the form

Σ :

 ẋ = f (x, η),

y = h(x, η),
(4.1)

where x ∈ Rn is the state, η ∈ Rm the input, and y ∈ Rp the output of system (4.1), respectively.

Functions f (·, ·), h(·, ·) are locally Lipschitz continuous in their arguments. A system (4.1) is

said to be dissipative with respect to supply rate w : Rp × Rm → R if there exists a storage
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function V : Rn → R+ := [0,+∞) such that the inequality

V (x(t1)) − V (x(t0)) ≤
∫ t1

t0
w (y(τ), η(τ)) dτ (4.2)

holds along the trajectories of the system (4.1) for any t1 ≥ t0, any initial state x(t0), and any

input η(t), t ∈ [t0, t1) such that x(t) is well-defined for t ∈ [t0, t1].

Definition 4.1. [10] The system (4.1) is called (Q,S,R)−dissipative if it is dissipative with a

quadratic supply rate of the form

w(η, y) =

ηy
T

[QSR]

ηy
 , [QSR] :=

R S T

S Q

 , (4.3)

where Q = QT ∈ Rp×p, R = RT ∈ Rm×m, S ∈ Rp×m.

4.2.1 A note on eigenvalues of [QSR]

Matrix [QSR] is real symmetric therefore its eigenvalues are real. As noticed for example

in [9], not all [QSR] matrices result in meaningful dissipativity properties. For example, if

all eigenvalues of [QSR] are nonnegative then (Q,S,R)−dissipativity property becomes trivial.

Indeed, in this case w(η, y) ≥ 0 and choosing V(x) ≡ const we see that inequality (4.2) always

holds, which means that any system is (Q,S,R)−dissipative for this choice of supply rate. On

the other hand, if all eigenvalues of [QSR] are negative then applying any constant nonzero

input η(t) ≡ η0 , 0 results in supply rate w(η0, y) ≤ −ε0 for some ε0 > 0. Since a storage

function is by definition bounded from below, it is easy to see that under very mild technical

assumptions dissipation inequality (4.2) is impossible to satisfy. Below, we use similar con-

siderations to establish a somewhat more refined result of this type. Consider a system of the

form

Σa :

 ẋ = f (x, η),

y = ha(x),
(4.4)

which is a special case of (4.1) where the output map is independent of the input η, h(x, η) ≡

ha(x). The following result is valid.

Lemma 4.2.1. Suppose a system of the form (4.4) is (Q,S,R)−dissipative and its storage func-

tion V(·) achieves a local (non-strict) minima at some point x0 ∈ R
n, i.e., there exists a neigh-

bourhood B (x0) such that V (x0) ≤ V (x) for all x ∈ B (x0). Then the number of nonnegative

eigenvalues of [QSR] is greater than or equal to the number of inputs m.
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Proof Denote ω :=
[
ηT , yT

]T
∈ Rm+p. It is known (see for example [7, Corollary 4.2.12]) that

a symmetric matrix [QSR] has at least m nonnegative eigenvalues if there exists a subspace

S ⊂ Rm+p, dim S = m, such that

ωT [QSR]ω ≥ 0 for all ω ∈ S . (4.5)

To prove the lemma, assume the converse, i.e., no such a subspace exists. More precisely,

for any m-dimensional subspace S there exists a vector ω∗ ∈ S such that ωT
∗ [QSR]ω∗ < 0.

Without loss of generality, assume that |ω∗| = 1. Let S η be a subspace spanned by inputs

ω :=
[
ηT , 0T

]T
(satisfying y = 0). By assumption, there exists η∗ ∈ Rm, |η∗| = 1 such that

η∗0
T

[QSR]

η∗0
 = ηT

∗Rη∗ = −ε∗ < 0.

Let η0 := κ1κ2η∗, where κ2 :=

√
1
ε∗

hT (x0)Qh(x0) + 1, and κ1 ∈ {±1} be such that κ1η
T
∗ S T h(x0) ≤

0. It follows that
[
ηT

0 , h
T (x0)

]
[QSR]

[
ηT

0 , h
T (x0)

]T
≤ −ε∗. Now suppose x(t0) = x0, and consider

the corresponding trajectory x(t) of the system (4.4) under the constant input η(t) ≡ η0. Such a

trajectory is well-defined at least on an interval [t0, t0 + τ) for some τ > 0. Choosing τ1 ∈ (0, τ)

sufficiently small, by continuity of trajectories, we guarantee that

x(t) ∈ B (x0) and

 η0

h(x(t))

T

[QSR]

 η0

h(x(t))

 ≤ −ε∗/2 hold for all t ∈ [t0, t0 + τ1] .

Since the system is (Q,S,R)−dissipative, one has V (x(t0 + τ1)) − V (x0) ≤ −ε∗τ/2 < 0, which

implies V (x(t0 + τ1)) < V (x0). However, x(t0 + τ1) ∈ B (x0), and therefore by assumption

V (x(t0 + τ1)) ≥ V (x0). This contradiction proves (4.5). The statement of lemma follows.

Corollary 4.2.2. Suppose a system of the form (4.4) is (Q,S,R)−dissipative and its storage

function satisfies V (x0) = 0 for some x0 ∈ R
n. Then the number of nonnegative eigenvalues of

[QSR] is greater than or equal to the number of inputs m.

Proof The statement follows from Lemma 4.2.1 due to the fact that a storage function is by

definition nonnegative, and therefore achieves its (global) minima at x0.

Lemma 4.2.1 and Corollary 4.2.2 indicate that for (Q,S,R)−dissipative systems the number

of nonnegative eigenvalues of [QSR] matrix is typically equal to or greater than the number

of inputs. In the developments below, we address the case where the number of nonnegative

eigenvalues of [QSR] matrix is equal to the number of system’s inputs m.



94Chapter 4. Scattering-based stabilization of complex interconnections of (Q,S,R)−dissipative systems with time delays

4.3 Scattering transformation for finite-gain stability

Consider a system of the form (4.1). The following definition is a specification of the notion of

finite gain L2-stability in the case of systems with multiple inputs and/or outputs.

Definition 4.2. Given A = AT ∈ Rm×m, A ≥ 0, B = BT ∈ Rp×p, B > 0, the system (4.1) is said

to be finite L2-gain (A, B)-stable if it is dissipative with supply rate

w (η, y) := ηT Aη − yT By. (4.6)

Suppose a system (4.1) is (Q,S,R)−dissipative. Since [QSR] is symmetric, its eigenvalues

are all real, and there exists a basis in Rm+p that consists of orthonormal eigenvectors of QSR.

Write the eigenvalues of [QSR] in the descending order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λm+p, and define

G :=
[
g1 g2 . . . gm+p

]
∈ R(m+p)×(m+p), (4.7)

where g1, . . . , gm+p ∈ R
m+p are the orthonormal eigenvectors of [QSR] such that [QSR] · gi =

λigi, i = 1, . . . ,m + p. Let Γ := diag{γ1, . . . , γm+p} > 0 be a diagonal positive definite matrix.

Consider an input-output transformationuv
 = Γ · GT

ηy
 , (4.8)

where u ∈ Rm and v ∈ Rp are new input and output signals, respectively. The following result

is valid.

Lemma 4.3.1. Suppose a system (4.1) is (Q,S,R)−dissipative, and its [QSR] matrix has exactly

p negative eigenvalues, i.e., the eigenvalues of [QSR] are such that λ1 ≥ . . . ≥ λm ≥ 0 > λm+1 ≥

λm+p. Then the transformed system (4.1), (4.8) with input u and output v is finiteL2-gain (Â, B̂)-

stable, where Â := diag{λ1/γ
2
1, . . . , λm/γ

2
m} ≥ 0, and B̂ := diag{−λm+1/γ

2
m+1, . . . ,−λm+p/γ

2
m+p} >

0.

Proof Using (4.8), and taking into account that G is orthogonal (G−1 = GT ), one gets

w =

ηy
T

[QSR]

ηy
 =

uv
T

Γ−1GT [QSR]GΓ−1

uv


=

uv
T

Γ−2diag{λ1, . . . , λm+p}

uv
 = uT Âu − vT B̂v.

The following result is a direct consequence of Lemma 4.3.1.
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Corollary 4.3.2. Suppose a system (4.1) is (Q,S,R)−dissipative, and matrix [QSR] ∈ R(m+p)×(m+p)

has exactly p negative eigenvalues. Given diagonal matrices Ad := diag{ad
1, . . . a

d
m} > 0, and

Bd := diag{bd
1, . . . b

d
p} > 0, there exists a transformation of the form (4.8), such that the trans-

formed system (4.1), (4.8) with input u and output v is finite L2-gain (Ad, Bd)-stable. Specifi-

cally, the finite L2-gain (Ad, Bd)-stability of the transformed system (4.1), (4.8) is achieved by

choosing diagonal elements of Γ := diag{γ1, . . . , γm+p} positive and such that γi ≥

√
λi/ad

i for

i = 1, . . . ,m, and γi ≤

√
−λi/bd

i for i = m + 1, . . . ,m + p.

4.4 Stabilization of complex interconnections with delays

⌃1
<latexit sha1_base64="kjk5W3YE2edo3l25lDfwjnjwt4w="></latexit><latexit sha1_base64="N9Pg52FGd2f+x6PUu9LkCh/2he0="></latexit><latexit sha1_base64="N9Pg52FGd2f+x6PUu9LkCh/2he0=">AAAECnichVPLahRBFK1kfMTxlSi4cVMYBkTCMB0U3QRC3LgzwTwG0kOorr49XaReVN0xGZv5A1du9RfcuBO3+Qk3foEfYdV0RqYnggUFl3vr3Dr31KnMSuGx1/u5tNy6dv3GzZVb7dt37t67v7r24NCbkeNwwI00rp8xD1JoOECBEvrWAVOZhKPs9HWsH70H54XR+zi2MFBsqEUhOMOQ6qfvxFCxk+Rkdb3X7U0XvRokl8H69qO9X+LrzsXuydry7zQ3fKRAI5fM++OkZ3FQMYeCS5i0U4RzPBM5llvJ8xdKtVMHGs64UYrpvEpnpD06QF5OqqSbTBYPFUwJOc6hYCOJkypFnMXtdOTBMn7KhnAcQs0U+EE1FWRCOyGT08K4sDXSaXYeUTHl/Vhl4aRiWPrFWkz+szZ0zJaC+1Cctrd5sUEzgYpZG26clWkhJDSRYH0hhn9xxqPnTlhcxHTmQZGARXUeYUHjoLanQZ96qqAf8PiK1PMSFFChPTIpIW9cjCKg/tOgAch9rC4ojMWrQSW0HSFoXgtcjCRFQ6OraC5caCXHIWBhrOABykvmGMfgvUYnz1lguBUttWGdscZFBkxuSDEskRudgw6PN6g+SIW44IhnTUfMG4J2OvStDgxEQbEEGv1Vj2nqxMytVPhIO4Mp87NAFhz1OJbQ4LmfDKoIj+O22+F/JIu/4WpwuNlNet1kL3yUHVKvFfKYPCFPSUJekm3yhuySA8KJJJ/IZ/Kl9bH1rfW99aM+urx0iXlIGqt18QfuDWAn</latexit><latexit sha1_base64="3qA01IiIMkXaiCMDScKeAd4xxGk="></latexit>

⌃N
<latexit sha1_base64="WLX24fu5zmxxXHcMiIO8ClrcgN8=">AAAECnichVPLbhMxFHUTHiW8WpDYsLGoIiEURRkEgk2lCjasoBV9SZ2oeDx3Zqz6JfuGNIzyB6zYwlewQ2z5CTZ8AR+BnTSokyJhydLVvT7X5x4fZ1YKj4PBz5VW+9LlK1dXr3Wu37h56/ba+p19b0aOwx430rjDjHmQQsMeCpRwaB0wlUk4yE5exvrBe3BeGL2LEwtDxUotCsEZhtRh+laUih2/Pl7bGPQHs0UvBslZsLF1b+fXO0LI9vF663eaGz5SoJFL5v1RMrA4rJlDwSVMOynCKY5FjtVm8uSpUp3UgYYxN0oxndfpgrRHB8iraZ30k+nyoYIpISc5FGwkcVqniIu4k448WMZPWAlHIdRMgR/WM0GmtBsyOS2MC1sjnWXPI2qmvJ+oLJxUDCu/XIvJf9ZKx2wluA/FWXubFz2aCVTM2nDjokwLIaGJBOsLUf7FGY+eO2FxGdM9D4oELKrTCAsaB7U9DfrMpwr6AY+vSD2vQAEV2iOTEvLGxSgC6j8NGoDcx+qSwlg8H9ZC2xGC5nOBi5GkaGh0Fc2FC63kJAQsjBU8QHnFHOMYvNfo5DkLDDejpXrWGWtcZMBkT4qyQm50Djo83rD+IBXikiMeNR1x3hC026VvdGAgCooV0Oiv+Zhmnli4lQofaWcwYz4OZMFRjxMJDZ67ybCO8DhupxP+R7L8Gy4G+4/7yaCf7ISP8oLM1yq5Tx6QhyQhz8gWeUW2yR7hRJJP5DP50v7Y/tr+1v4+P9paOcPcJY3V/vEHXs5eiA==</latexit><latexit sha1_base64="uPBbHtefd4bjaCAQzBitaoKjymE="></latexit><latexit sha1_base64="uPBbHtefd4bjaCAQzBitaoKjymE="></latexit><latexit sha1_base64="H4bJwmqdexkGHxCJWY5hv/TqrfE="></latexit>

S1
<latexit sha1_base64="fRdL2TIi4BBOyVrCfypusYoGar4="></latexit><latexit sha1_base64="nwmyEqoIsIkB4QUGop7Bkdu/IH4="></latexit><latexit sha1_base64="nwmyEqoIsIkB4QUGop7Bkdu/IH4="></latexit><latexit sha1_base64="ux2VQ6fsF6wB9nidTOZyLxP/fGw="></latexit>

SN
<latexit sha1_base64="IvoPCOWbiFn59bfSdRgK2yewdS0="></latexit><latexit sha1_base64="QSgOZsFCJ5CRnaLCHNrjIlInwOo="></latexit><latexit sha1_base64="QSgOZsFCJ5CRnaLCHNrjIlInwOo="></latexit><latexit sha1_base64="evc71jQ8DcwsCRosI69dFnrcge4="></latexit>

u1
<latexit sha1_base64="jESYh+F2rLgVUyC2OqBrBFXAINk="></latexit><latexit sha1_base64="UIT4k7IcWmXz1pisUS0IytO3CD8="></latexit><latexit sha1_base64="UIT4k7IcWmXz1pisUS0IytO3CD8="></latexit><latexit sha1_base64="tizlGVgfx/EUxsNgZpIbsqHT/jA="></latexit>

uN
<latexit sha1_base64="p+lYkurRTSkApaQtkJM5dTzErJA="></latexit><latexit sha1_base64="wcPjin7qhiLabW2H6D/Z1W/HgWo="></latexit><latexit sha1_base64="wcPjin7qhiLabW2H6D/Z1W/HgWo="></latexit><latexit sha1_base64="TqDHH9WpT6PopoxNnntwz2L2/MU="></latexit>

vN
<latexit sha1_base64="9aLyAq50bnObOgMJMsmg/TVOm7U="></latexit><latexit sha1_base64="TMCQWAheQ8gh1rp4v7G/YBWc3nk="></latexit><latexit sha1_base64="TMCQWAheQ8gh1rp4v7G/YBWc3nk="></latexit><latexit sha1_base64="lJwjsQopARCpnoF/tuBLnYZeXNg="></latexit>v1

<latexit sha1_base64="yQ3MHTEoDIfUbZWV+6mw/JKDOkE=">AAAEC3ichVPLahRBFK1M+4jjK9Glm8IwIDIM3aLoJhBw484IeUlmCNXVt6eL1IuqO5mMzXyCK7f6Fe7EhRt/QfAf/Aetmk4kPREsKLjcW+fWuadO5VYKj2n6c6WTXLl67frqje7NW7fv3F1bv7fnzcRx2OVGGneQMw9SaNhFgRIOrAOmcgn7+fHLWN8/AeeF0Ts4szBSbKxFKTjDkHpbD/OSnsyPsqO1jXSQLha9HGRnwcZW8uP3N0LI9tF659ewMHyiQCOXzPvDLLU4qplDwSXMu0OEU5yKAqvN7OkzpbpDBxqm3CjFdBEuPmPt0QHyal5ng2y+fKhkSshZASWbSJzXQ8TzuDuceLCMH7MxHIZQMwV+VC8UmdNeyBS0NC5sjXSRvYiomfJ+pvJwUjGs/HItJv9ZGztmK8F9KC7a26Ls01ygYtaGG8/LtBQS2kiwvhTjvzjj0XMnLC5jehdBkYBFdRphQeOgtqdBn2aqoB/w+IzU8woUUKE9MimhaF2MIqD+06AFKHysLimM5YtRLbSdIGjeCFxOJEVDo61oIVxoJWchYGGs4AHKK+YYx2C+VifPWWC4GS3Vt85Y4yIDJvtSjCvkRhegw+ON6ndSIS454nHbERcNQXs9+loHBqKkWAGN/mrGNE3i3K1U+Eg7hwXzaSALjnqcSWjx3MlGdYTHcbvd8D+y5d9wOdh7MsjSQfYmfJSUNGuVPCAPySOSkedki7wi22SXcKLIB/KRfEreJ5+TL8nX5mhn5Qxzn7RW8v0Pz9pfuw==</latexit><latexit sha1_base64="8ZsXvrFbdyHz5bwWTQMgEeXDWQ0="></latexit><latexit sha1_base64="8ZsXvrFbdyHz5bwWTQMgEeXDWQ0="></latexit><latexit sha1_base64="0BCAsU95vyEnSpb9ToGMZZ4iJ5c="></latexit>

⌘1
<latexit sha1_base64="1Y3NJ++NGEpxGS/vZ9OHHo4kLb8=">AAAECHichVNNa1NBFJ02frTxq9Wlm8ESEAnhvaLoplBw484KbVroC2HevPvyxs4XMze28ZG14MqtrvwJ7sSt/8L/4I9wJmkkLxUcGLjcO+fOuWfO5FYKj0nya229de36jZsbm+1bt+/cvbe1fb/vzdhxOOJGGneSMw9SaDhCgRJOrAOmcgnH+dnLWD9+B84Low9xYmGg2EiLUnCGIdXPANkwHW7tJL1ktujVIL0MdvY3PxRfCSEHw+3131lh+FiBRi6Z96dpYnFQM4eCS5i2M4QLPBcFVnvp02dKtTMHGs65UYrpos4WlD06QF5N67SXTlcPlUwJOSmgZGOJ0zpDXMTtbOzBMn7GRnAaQs0U+EE9k2NKOyFT0NK4sDXSWXYZUTPl/UTl4aRiWPnVWkz+szZyzFaC+1CctbdF2aW5QMWsDTcuyrQUEppIsL4Uo78449FzJyyuYjrLoEjAorqIsKBxUNvToM98qqAf8PiG1PMKFFChPTIpoWhcjCKg/tOgASh8rK4ojOWLQS20HSNoPhe4HEuKhkZP0UK40EpOQsDCWMEDlFfMMY7BeY1OnrPAcC9aqmudscZFBkx2pRhVyI0uQIfHG9TvpUJcccSTpiOWDUE7HfpaBwaipFgBjf6aj2nmiYVbqfCRdg4z5ueBLDjqcSKhwfMwHdQRHsdtt8P/SFd/w9Wgv9tLk176JnyUhMzXBnlIHpHHJCXPyT55RQ7IEeHkLflEPpMvrY+tb63vrR/zo+trl5gHpLFaP/8Ay+ZdfQ==</latexit><latexit sha1_base64="a8BZBkmZn9ETbuRo7/mmOrCU2K0="></latexit><latexit sha1_base64="a8BZBkmZn9ETbuRo7/mmOrCU2K0="></latexit><latexit sha1_base64="Dt1rjmiryQekzQpT4qmTvxLRwNg="></latexit>

⌘N
<latexit sha1_base64="u1Hf8bu10fj12vpK1k0YZoTvb8w="></latexit><latexit sha1_base64="BS64zoviddOhnnaAL0/u+ZihsMw="></latexit><latexit sha1_base64="BS64zoviddOhnnaAL0/u+ZihsMw=">AAAECHichVPLahRBFK1kfCTjK9Glm8IwIDIM3aLoJhBw40oj5AXpYaiuvj1dpl5U3TEZm9m4EVy51X8Q3Ilb/8J/8B+0aiYj0xPBgoLLvXVunXvqVG6l8JgkP1dWW5cuX7m6tt6+dv3GzVsbm7cPvBk5DvvcSOOOcuZBCg37KFDCkXXAVC7hMD95FuuHb8B5YfQeji30FRtqUQrOMKQOMkA2eDHY2Ep6yXTRi0F6HmztrL8vvvx+190dbK7+ygrDRwo0csm8P04Ti/2aORRcwqSdIZzhqSiw2k4fPVaqnTnQcMqNUkwXdTan7NEB8mpSp710snyoZErIcQElG0mc1BniPG5nIw+W8RM2hOMQaqbA9+upHBPaCZmClsaFrZFOs4uIminvxyoPJxXDyi/XYvKftaFjthLch+K0vS3KLs0FKmZtuHFepqWQ0ESC9aUY/sUZj547YXEZ01kERQIW1VmEBY2D2p4GfWZTBf2AxzeknleggArtkUkJReNiFAH1nwYNQOFjdUlhLJ/2a6HtCEHzmcDlSFI0NHqKFsKFVnIcAhbGCh6gvGKOcQzOa3TynAWG29FSXeuMNS4yYLIrxbBCbnQBOjxev34rFeKSIx40HbFoCNrp0Jc6MBAlxQpo9NdsTDNLzN1KhY+0c5gyPw1kwVGPYwkNnntpv47wOG67Hf5HuvwbLgYHD3tp0ktfhY+SkNlaI3fJPXKfpOQJ2SHPyS7ZJ5y8Jh/JJ/K59aH1tfWt9X12dHXlHHOHNFbrxx8nWV9U</latexit><latexit sha1_base64="2ZgqVNi/SZDPxbbA6+062Ioy1cE="></latexit>

yN
<latexit sha1_base64="gBVS6hBvfDTPG+W5DRgv+K8lkAM=">AAAEBXichVPLbhMxFHUTHm14tbBkY1FFQiiKZhAINpUqsWEFRTRtpSaKPJ47Gat+yb4hDaOsu2ILW36AHWLLd/APfAR20qBMioQlS1f3+lyfe3ycWSk8JsmvjUbz2vUbNze3Wrdu37l7b3vn/pE3Y8ehx4007iRjHqTQ0EOBEk6sA6YyCcfZ2atYP/4AzgujD3FqYaDYSItCcIYh9X46fDPc3k26yXzRq0F6Gezub13kXwkhB8Odxu9+bvhYgUYumfenaWJxUDGHgkuYtfoI5zgROZZ76bPnSrX6DjRMuFGK6bzqL/l6dIC8nFVpN52tHyqYEnKaQ8HGEmdVH3EZt/pjD5bxMzaC0xBqpsAPqrkWM9oOmZwWxoWtkc6zq4iKKe+nKgsnFcPSr9di8p+1kWO2FNyH4ry9zYsOzQQqZm24cVmmhZBQR4L1hRj9xRmPnjthcR3TXgVFAhbVeYQFjYPangZ9FlMF/YDHB6Sel6CACu2RSQl57WIUAfWfBjVA7mN1TWEsXg4qoe0YQfOFwMVYUjQ0GormwoVWchoCFsYKHqC8ZI5xDLardfKcBYZ70VId64w1LjJgsiPFqERudA46PN6g+igV4pojntQdsWoI2m7TtzowEAXFEmj012JMs0gs3UqFj7QzmDOfBLLgqMephBrPw3RQRXgct9UK/yNd/w1Xg6On3TTppu/CR0nIYm2Sh+QReUxS8oLsk9fkgPQIJyPyiXwmX5oXzW/N780fi6ONjUvMA1JbzZ9/ALMPXF8=</latexit><latexit sha1_base64="QX4wBuLqqba184A83L7FUhHMD3o=">AAAEBXichVPLbhMxFHUbHm14tbBkY1FFQiiKZhAINpUqsWEFRTRtpSaKPJ47Gat+yb4hDaNs2HTFFr6iO8SW7+Af+AewkwZlUiQsWbq61+f63OPjzErhMUl+rq03rl2/cXNjs3nr9p2797a27x96M3IcutxI444z5kEKDV0UKOHYOmAqk3CUnb6K9aMP4Lww+gAnFvqKDbUoBGcYUu8ngzeDrZ2kk8wWvRqkl8HO3uZ5fvH7U3t/sL3+q5cbPlKgkUvm/UmaWOxXzKHgEqbNHsIZjkWO5W767LlSzZ4DDWNulGI6r3oLvh4dIC+nVdpJp6uHCqaEnORQsJHEadVDXMTN3siDZfyUDeEkhJop8P1qpsWUtkImp4VxYWuks+wyomLK+4nKwknFsPSrtZj8Z23omC0F96E4a2/zok0zgYpZG25clGkhJNSRYH0hhn9xxqPnTlhcxbSWQZGARXUWYUHjoLanQZ/5VEE/4PEBqeclKKBCe2RSQl67GEVA/adBDZD7WF1RGIuX/UpoO0LQfC5wMZIUDY2GorlwoZWchICFsYIHKC+ZYxyD7WqdPGeB4W60VNs6Y42LDJhsSzEskRudgw6P168+SoW44ogndUcsG4K2WvStDgxEQbEEGv01H9PMEwu3UuEj7QxmzMeBLDjqcSKhxvMg7VcRHsdtNsP/SFd/w9Xg8GknTTrpu/BREjJfG+QheUQek5S8IHvkNdknXcLJkHwmX8jXxnnjovGt8X1+dH3tEvOA1Fbjxx+lcF4Z</latexit><latexit sha1_base64="QX4wBuLqqba184A83L7FUhHMD3o=">AAAEBXichVPLbhMxFHUbHm14tbBkY1FFQiiKZhAINpUqsWEFRTRtpSaKPJ47Gat+yb4hDaNs2HTFFr6iO8SW7+Af+AewkwZlUiQsWbq61+f63OPjzErhMUl+rq03rl2/cXNjs3nr9p2797a27x96M3IcutxI444z5kEKDV0UKOHYOmAqk3CUnb6K9aMP4Lww+gAnFvqKDbUoBGcYUu8ngzeDrZ2kk8wWvRqkl8HO3uZ5fvH7U3t/sL3+q5cbPlKgkUvm/UmaWOxXzKHgEqbNHsIZjkWO5W767LlSzZ4DDWNulGI6r3oLvh4dIC+nVdpJp6uHCqaEnORQsJHEadVDXMTN3siDZfyUDeEkhJop8P1qpsWUtkImp4VxYWuks+wyomLK+4nKwknFsPSrtZj8Z23omC0F96E4a2/zok0zgYpZG25clGkhJNSRYH0hhn9xxqPnTlhcxbSWQZGARXUWYUHjoLanQZ/5VEE/4PEBqeclKKBCe2RSQl67GEVA/adBDZD7WF1RGIuX/UpoO0LQfC5wMZIUDY2GorlwoZWchICFsYIHKC+ZYxyD7WqdPGeB4W60VNs6Y42LDJhsSzEskRudgw6P168+SoW44ogndUcsG4K2WvStDgxEQbEEGv01H9PMEwu3UuEj7QxmzMeBLDjqcSKhxvMg7VcRHsdtNsP/SFd/w9Xg8GknTTrpu/BREjJfG+QheUQek5S8IHvkNdknXcLJkHwmX8jXxnnjovGt8X1+dH3tEvOA1Fbjxx+lcF4Z</latexit><latexit sha1_base64="/bLIaJr8cz6tODwFv8LTZtaySms="></latexit>

y1
<latexit sha1_base64="xXWclsB2up2nVDXrU+uL/sDDr9s="></latexit><latexit sha1_base64="vh4aZ1c6F0k+VLT7sqJxfdAVOmM="></latexit><latexit sha1_base64="vh4aZ1c6F0k+VLT7sqJxfdAVOmM="></latexit><latexit sha1_base64="6bfRhJczSbrR2mAjh579YlVscus="></latexit>

�(t)
<latexit sha1_base64="TMl1BxUMhDzbpWLJzCOcUXO9cjw="></latexit><latexit sha1_base64="hYy6to3BOes6grpAORSAb9iu83A="></latexit><latexit sha1_base64="hYy6to3BOes6grpAORSAb9iu83A="></latexit><latexit sha1_base64="VDs4P/Ni0Wx5xF4ul1wUzv4QoHw="></latexit>M ( , T, D)

<latexit sha1_base64="ZnpnaHRvJU3EpfqBeRmEZdUqJDg="></latexit><latexit sha1_base64="7oK4dn0bxzKpVP987q+sUH/IL48="></latexit><latexit sha1_base64="7oK4dn0bxzKpVP987q+sUH/IL48=">AAAEOHichVNLaxRBEO5kfcT1kUSPgjSGhSjLsiMRvUQCevAiRsgLMkvo6anZadIvumtN1mF+iPkpnrzqP/DmTQRP/gK7d7OS2QgWNBRV9VVXff11ZqXw2O9/W1hsXbl67frSjfbNW7fvLK+s3t3zZuQ47HIjjTvImAcpNOyiQAkH1gFTmYT97PhlzO+/B+eF0Ts4tjBQbKhFITjDEDpa2ahSxbDkTNI3dSqhwPV024surVKn6E4dnVnBqzp1Yljio6OVtX6vPzF62UnOnbWtBx+jnW0frS7+SnPDRwo0csm8P0z6FgcVcyi4hLqdIpziicix3Ew2nirVTh1oOOFGKabzKp2t6NEB8rKukl5SzxcVTAk5zqFgI4l1lSLO/HY68mAZP2ZDOAyuZgr8oJrQV9NOiOS0MC4cjXQSvYiomPJ+rLJQGanw87kY/Gdu6JgtBfchOWlv86JLM4GKWRtunKVpISQ0kWB9IYZ/ccaj505YnMd0LoLiABbVaYQFjgPbngZ+plsF/oDHN6eel6CACu2RSQl542IUAfWfBg1A7mN2jmEsng8qoe0IQfMpwcVIUjQ0apDmwoVWchwcFtYKGqC8ZI5xDEptdPJBd5BvRkl1rTPWuDgBk10ZhciNzkGHxxtUH6RCnFPE46YiLgqCdjr0rQ4TiIJiCTTqa7qmmQZmaqXCx7EzmEx+EoYFRz2OJTTm3EkGVYTHddvt8D+S+d9w2dl70kv6veRd+CgvyNSWyH3ykKyThDwjW+Q12Sa7hJMz8pl8IV9bn1rfWz9aP6eliwvnmHukYa3ffwAEpHJJ</latexit><latexit sha1_base64="BFhZeA2wDHO+gc0dQYfXWg7l8+Y="></latexit>

Figure 4.1: A network of dissipative systems with input-output transformations and communi-

cation constraints.

In this section, we present the main result of this chapter which deals with scattering-based

stabilization of networked (Q,S,R)−dissipative systems with communication delays as shown

in Figure 4.1. Consider a set of nonlinear systems of the form

Σi :

 ẋi = fi(xi, ηi),

yi = hi(xi, ηi),
i = 1, . . . ,N, (4.9)

where xi ∈ R
ni , ηi ∈ R

mi , yi ∈ R
pi . The systems Σ1, . . . , ΣN are interconnected through a set of

input-output transformations and an interconnection network with communication constraints

as illustrated in Figure 4.1 and mathematically described as follows. The local input-output

scattering transformations have the formui

vi

 = Si

ηi

yi

 , i = 1, . . . ,N, (4.10)
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where ui ∈ R
mi , vi ∈ R

pi are the transformed input and output, respectively. To formulate the

constraints imposed by a network of communication channels between the subsystems (4.9),

(4.10), let us denote U :=
[
uT

1 , . . . ,u
T
N

]
∈ Rm, V :=

[
vT

1 . . . v
T
N

]
∈ Rp, where m :=

∑N
i=1 mi,

and p :=
∑N

i=1 pi. The communication constraints are described in terms of a gain matrix

Ψ ∈ Rm×p
+ and a matrix of communication delays T ∈ Rm×p

+ , where Rm×p
+ denotes the set of

m×p matrices with nonnegative elements. In particular, an element Ti j of matrix T describes a

(constant) communication delay inside the network between the signals v j and ui. In addition,

all disturbances acting on signals in the communication network are aggregated in an external

signal ∆(t) ∈ Rq, and its effect on signals in the network is described by a matrix D ∈ Rm×q
+ .

Overall, the interconnection and communication constraintsM (Ψ,T,D) imposed by the net-

work of communication channels between the subsystems (4.9), (4.10) are described by a set

of inequalities of the following form: for i = 1, . . . ,m,

|Ui(t)| ≤ max
{

max
j∈{1,...,p}

Ψi j ·

∣∣∣∣V j

(
t − T ji

)∣∣∣∣, max
k∈{1,...,q}

Dik · |∆k(t)|
}
. (4.11)

Also, denote x :=
[
xT

1 . . . x
T
N

]
∈ Rp, where p :=

∑N
i=1 ni. Assuming each subsystem Σi, i =

1, . . . ,N is (Q,S,R)−dissipative, our goal is to find scattering transformations Si, i = 1, . . . ,N,

such that the interconnection (4.9)-(4.11) is finite-gain L2-stable with respect to the distur-

bance input ∆(t) for any set of constant communication delays T. Since the interconnected

system (4.9)-(4.11) contains multiple communication delays, the definition of finite gain L2-

stability (Definition 4.2) needs to be adjusted, as follows.

Definition 4.3. Given A = AT ∈ Rm×m, A ≥ 0, B = BT ∈ Rp×p, B > 0, a system with

delays (4.9)-(4.11) is said to be weakly finite L2-gain (A, B)-stable if there exists a storage

functionV : Rn → R+ such that the inequality

V (x (t)) −V (x (t0)) ≤
∫ t

t0

(
∆T (τ)A∆(τ) − VT (τ)BV(τ)

)
dτ + a (t0)

holds along the trajectories of (4.9)-(4.11), where a (t0) ≥ 0 may depend on the system’s

trajectories during the time interval [t0 − Tmax, t0], where Tmax := max
i∈{1,...,m}, j∈{1,...,p}

T ji.

Finite L2-gain stability (Definition 4.2) is a special case of weak finite L2-gain stability

(Definition 4.3) where a (t0) ≡ 0. Nonzero a (t0) summarizes the effect of previous trajectories

on the current value of the storage function which may exist due to communication delays in

the interconnected system.

Suppose now each subsystem Σ1, . . . , ΣN is (Q,S,R)−dissipative, and the corresponding

supply rate matrices are denoted by [QSR]i, i = 1, . . . ,N. For each Σi, let the eigenvalues

of [QSR]i be written in descending order, i.e., λi
1 ≥ λi

2 ≥ . . . ≥ λi
mi+pi

, and define Gi :=
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[
gi

1 gi
2 . . . gi

mi+pi

]
∈ R(mi+pi)×(mi+pi), where gi

1, . . . , g
i
mi+pi

∈ Rmi+pi are the orthonormal eigenvec-

tors of [QSR]i such that [QSR]i·gi
j = λi

jg
i
j, i = 1, . . . ,mi+pi. Furthermore, for each i = 1, . . . ,N,

denote Ai := diag{λi
1, . . . , λ

i
mi
} ∈ Rmi×mi , and Bi := diag{−λi

mi+1, . . . ,−λ
i
mi+pi
} ∈ Rpi×pi . Also,

define diagonal positive definite matrices of coefficients Γi
1 ∈ R

mi×mi , Γi
2 ∈ R

pi×pi , Γi
1 > 0,

Γi
2 > 0. Finally, define A := diag{A1, . . . , AN} ∈ Rm×m, B := diag{B1, . . . , BN} ∈ Rp×p,

Γ1 := diag{Γ1
1, . . . ,Γ

N
1 } ∈ R

m×m, and Γ2 := diag{Γ1
2, . . . ,Γ

N
2 } ∈ R

p×p. The following theorem is

the main result of this work.

Theorem 4.4.1. Suppose each subsystem Σ1, . . . , ΣN is (Q,S,R)−dissipative, and each matrix

[QSR]i has exactly pi negative eigenvalues. If the matrices of coefficients Γ1 and Γ2 are chosen

such that

σmax

(
Γ−1

1 A1/2ΨB−1/2Γ2

)
< 1, (4.12)

then the scattering transformations of the form (4.10), where

Si :=

Γi
1 O

O Γi
2

 ·GT
i , i = 1, . . . ,N, (4.13)

make the interconnected system (4.9), (4.10), (4.11) weakly finite-gain L2-stable with respect

to the disturbance input ∆(t).

Proof By assumption, each subsystem Σ1, . . . , ΣN is (Q,S,R)−dissipative, and each matrix

[QSR]i, i = 1, . . . ,N, has exactly pi negative eigenvalues. Applying Lemma 4.3.1, one con-

cludes that, for each i = 1, . . . ,N, the i-th transformed subsystem (4.9), (4.10), (4.13) with

input ui and output vi is finite L2-gain (Âi, B̂i)-stable, where Âi =
(
Γi

1

)−1
Ai

(
Γi

1

)−1
≥ 0 and

B̂i =
(
Γi

2

)−1
Bi

(
Γi

2

)−1
> 0 are diagonal matrices. Using notation Â := diag{Â1, . . . , ÂN} ∈ Rm×m,

B̂ := diag{B̂1, . . . , B̂N} ∈ Rp×p, one has

Â = Γ−1
1 AΓ−1

1 , and B̂ = Γ−1
2 BΓ−1

2 .

Furthermore, taking into account that matrices A, B, Γ1, Γ2 are all diagonal with nonnegative

elements, one can write

Â1/2 = Γ−1
1 A1/2, and B̂−1/2 = B−1/2Γ2,

and therefore

Γ−1
1 A1/2ΨB−1/2Γ2 = Â1/2ΨB̂−1/2.

Using the last equality, condition (4.12) can be rewritten in the form

Ip −
(
Â1/2ΨB̂−1/2

)T (
Â1/2ΨB̂−1/2

)
> 0, or Ip − B̂−1/2ΨT ÂΨB̂−1/2 > 0, (4.14)
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and taking into account that B̂ is positive definite, (4.12) becomes B̂ − ΨT ÂΨ > 0. Finally, by

continuity, the last inequality implies that

B̂ − (1 + ε)ΨT ÂΨ > 0 (4.15)

holds for sufficiently small ε > 0.

Now, for each i = 1, . . . ,N, let Vi (xi) be a storage function of the i-th subsystem (4.9).

Consider the function V (x) :=
∑N

i=1 Vi (xi), which is a storage function candidate for the in-

terconnection (4.9), (4.10), (4.11), (4.13). Since each i-th transformed subsystem (4.9), (4.10),

(4.13) with input ui and output vi is finite L2-gain (Âi, B̂i)-stable, it follows that the dissipation

inequality

V (x(t)) −V (x(t0)) ≤
∫ t

t0

(
UT ÂU − VT B̂V

)
dτ (4.16)

holds along the trajectories of the aggregated system which consists of N subsystems (4.9),

(4.10), (4.13) in parallel. Consider the first term under the integral in the right-hand side

of (4.16). Since the matrix Â is diagonal with nonnegative elements, we have

UT ÂU =

m∑
i=1

ÂiiU2
i .

Taking into account the communication constraints (4.11), one obtains

UT (t)ÂU(t) ≤
m∑

i=1

Âii max
j∈{1,...,p}

Ψ2
i j · V

2
j

(
t − T ji

)
+

m∑
i=1

Âii max
k∈{1,...,q}

D2
ik∆

2
k(t). (4.17)

We have

m∑
i=1

Âii max
k∈{1,...,q}

D2
ik∆

2
k ≤

m∑
i=1

Âii

 q∑
k=1

D2
ik∆

2
k

 =

q∑
k=1

 m∑
i=1

ÂiiD
2
ik

 ∆2
k = ∆T D̂∆, (4.18)

where D̂ ∈ Rq×q is a diagonal matrix with nonnegative elements D̂kk :=
∑m

i=1 ÂiiD
2
ik ≥ 0. On

the other hand,

m∑
i=1

Âii max
j∈{1,...,p}

Ψ2
i j · V

2
j ≤

m∑
i=1

Âii

( p∑
j=1

Ψi j ·
∣∣∣V j

∣∣∣ )2

=
[
|V1| . . .

∣∣∣Vp
∣∣∣] · ΨT ÂΨ ·

[
|V1| . . .

∣∣∣Vp
∣∣∣]T
. (4.19)

Now, substituting (4.17) into the dissipation inequality (4.16) and using (4.18), one obtains

V (x(t)) −V (x(t0)) ≤
∫ t

t0

(
∆T D̂∆ − VT B̂V

)
dτ +

∫ t

t0

m∑
i=1

Âii max
j∈{1,...,p}

Ψ2
i jV

2
j

(
τ − T ji

)
dτ. (4.20)
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However,∫ t

t0

m∑
i=1

Âii max
j∈{1,...,p}

Ψ2
i jV

2
j

(
τ − T ji

)
dτ ≤

∫ t

t0−Tmax

m∑
i=1

Âii max
j∈{1,...,p}

Ψ2
i jV

2
j (τ) dτ

≤

∫ t

t0−Tmax


|V1(τ)|
...∣∣∣Vp(τ)

∣∣∣


T

ΨT ÂΨ


|V1(τ)|
...∣∣∣Vp(τ)

∣∣∣
 dτ, (4.21)

where the first inequality is valid because the term under the integral is non-negative and all

delays T ji are bounded by Tmax, and second inequality is due to (4.19). Denote

a0 (t0) :=

t0∫
t0−Tmax


|V1|

...∣∣∣Vp
∣∣∣


T

ΨT ÂΨ


|V1|

...∣∣∣Vp
∣∣∣
 dτ. (4.22)

Also, 
|V1|

...∣∣∣Vp
∣∣∣


T

ΨT ÂΨ


|V1|

...∣∣∣Vp
∣∣∣
 ≤ 1

1 + ε
VT B̂V, (4.23)

which follows from the small gain condition (4.15) and the fact that B̂ is diagonal and positive

definite. Substituting (4.21)-(4.23) into (4.20), one gets

V (x(t)) −V (x(t0)) ≤
∫ t

t0

(
−

ε

1 + ε
VT B̂V + ∆T D̂∆

)
dτ + a0 (t0) .

The statement of Theorem 4.4.1 then follows.

4.5 Numerical example

In this section, we present a numerical design example and the results of simulations that

support the theoretical developments presented above. Consider an interconnected system of

the general structure shown in Figure 4.1, which consists of three subsystems Σi, i = 1, 2, 3,

described as follows. Subsystem Σ1 has a form

Σ1 :

ẏ11 = −
(
2 + cos2 y12

)
y12 − η1,

ẏ12 =
(
cos2 y12

)
y11 − y12 + 2η1,

(4.24)

where η1 ∈ R
1 is the input, and y1 :=

[
y11 y12

]T
∈ R2 is the output of Σ1. Subsystem Σ2 is

described as follows:

Σ2 : ẏ2 = −y2 + η21 − η22. (4.25)
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Its output is y2 ∈ R
1, and the input is η2 := [η21 η22]T ∈ R2. The third subsystem is

Σ3 :

ẏ31 =
(
1 + e−|y31 |

)
y32 + η31,

ẏ32 = −
(
1 + e−|y31 |

)
y31 − 0.5 y32 − η32.

(4.26)

The input of Σ3 is η3 := [η31 η32]T ∈ R2, and the output is y3 :=
[
y31 y32

]T
∈ R2. Each

subsystem Σi, i ∈ {1, 2, 3}, is equipped with a scattering transformation of the form (4.10),

where S1,S2 ∈ R
3×3, S3 ∈ R

4×4, and u1, v2 ∈ R
1, u2 := [u21,u22] ∈ R2, u3 := [u31,u32] ∈ R2,

v1 := [v11, v12] ∈ R2, v3 := [v31, v32] ∈ R2. The subsystems are subsequently interconnected

through a network with communication delays described as follows



u1(t)

u21(t)

u22(t)

u31(t)

u32(t)


=

1
4



0 0 +1 −1 +1 +1

+1 +1 0 −1 0 +1

−1 −1 0 +1 0 −1

+1 +1 −1 0 0 +1

+1 +1 −1 0 0 +1





v11 (t − T1)

v12 (t − T2)

v2 (t − T3)

v31 (t − T4)

v32 (t − T5)

∆(t)


(4.27)

where T1, . . . ,T5 are communication delays, and ∆(t) is an external input signal. In our simula-

tions, we use T1 = 0.5 s, T2 = 0.3 s, T3 = 0.4 s, T4 = 0.6 s, T5 = 0.7 s, and ∆(t) = 10·sin(t). Our

simulation results indicate that without scattering-based design (i.e., where S1, S2, S3 are all

unit matrices of the corresponding dimensions) the interconnected system (4.10), (4.24)-(4.27)

is unstable; specifically, it exhibits an unbounded response to the input ∆(t). The corresponding

plots are shown in Figure 4.2 (top).

In order to stabilize the interconnection (4.10), (4.24)-(4.27), we proceed with the scattering-

based design as developed above. We begin by establishing (Q,S,R)−dissipativity properties

of each of the subsystems Σi, i = 1, 2, 3. For subsystem Σ1, choosing a storage function candi-

date V1 =
(
y2

11 + y2
12

)
/2, and calculating its time derivative along the trajectories of (4.24), one

obtains

V̇1 =

η1

y1

T

· [QSR]1 ·

η1

y1

 , where [QSR]1 =


0 −1/2 1

−1/2 0 −1

1 −1 −1

 .
The eigenvalues of [QSR]1 in descending order are λ1 = 1.3508, λ2 = −0.5, and λ3 = −1.8508,

and

G1 =


0.6059 0.7071 0.3645

−0.6059 0.7071 −0.3645

0.5155 0 −0.8569


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is a matrix whose columns are orthonormal eigenvectors of [QSR]1 corresponding to the above

eigenvalues. For subsystem Σ2, we choose V2 = y2
2/2, which results in dissipation equality

V̇2 =

η2

y2

T

· [QSR]2 ·

η2

y2

 , where [QSR]2 =


0 0 0.5

0 0 −0.5

0.5 −0.5 −1

 .
The eigenvalues of [QSR]2 in descending order are λ1 = 0.366, λ2 = 0, λ3 = −1.366, and the

corresponding matrix of orthonormal eigenvectors is

G2 =


−0.6280 0.7071 −0.3251

0.6280 0.7071 0.3251

−0.4597 0 0.8881

 .
Finally, for subsystem Σ3, one can choose a storage function candidate of the form V3 :=(
y2

31 + y2
32

)
/2, whose derivative along the trajectories of (4.26) is

V̇3 =

η3

y3

T

· [QSR]3 ·

η3

y3

 , where [QSR]3 :=


0 0 0.5 0

0 0 0 −0.5

0.5 0 0 0

0 −0.5 0 −0.5

 .
The eigenvalues of [QSR]3 are λ1 = 0.5, λ2 = 0.309, λ3 = −0.5, λ4 = −0.809, and the matrix

of orthonormal eigenvectors corresponding to these eigenvalues is

G3 =


0.7071 0 −0.7071 0

0 −0.8507 0 0.5257

0.7071 0 0.7071 0

0 0.5257 0 0.8507

 .

The next step is to design the gain matrices Γi
1, Γi

2, i = 1, 2, 3. This can be done by choosing

the aggregate matrices Γ1 := diag{Γ1
1,Γ

2
1,Γ

3
1}, Γ2 := diag{Γ1

2,Γ
2
2,Γ

3
2} such that the small-gain

condition (4.12) is satisfied with a prescribed margin. From (4.27), it is straightforward to

evaluate the matrix Ψ ∈ R5×5 in (4.11) as follows

Ψ =



0 0 1 1 1

1 1 0 1 0

1 1 0 1 0

1 1 1 0 0

1 1 1 0 0


. (4.28)
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Matrices A and B are formed from the eigenvalues of [QSR]i, i = 1, 2, 3, as follows:

A := diag {1.3508, 0.366, 0, 0.5, 0.309} ,

B := diag {0.5, 1.8508, 1.366, 0.5, 0.809} .

One would like to choose diagonal matrices Γ1, Γ2 such that the closed-loop gain satisfies

gmin ≤ σmax

(
Γ−1

1 A1/2ΨB−1/2Γ2

)
≤ gmax, (4.29)

for some 0 < gmin < gmax < 1. For our design example, we choose gmin = 0.9, gmax = 0.95.

Additionally, we would like to guarantee the fulfilment of (4.29) such that Γ1, Γ2 are as close

to unit matrices as possible; specifically, we would like to achieve that

max {‖Γ1 − I‖∞ , ‖Γ2 − I‖∞} → min .

This is a constrained optimization problem, which we solved using fmincon function of Mat-

lab. The obtained set of gain matrices Γi
1, Γi

2, i = 1, 2, 3 is as follows:

Γ1
1 =

[
1.2802

]
, Γ1

2 =

0.4672 0

0 0.4651

 , (4.30)

Γ2
1 =

1.5141 0

0 0.7263

 , Γ2
2 =

[
0.4655

]
, (4.31)

Γ3
1 =

1.0122 0

0 1.0098

 , Γ3
2 =

0.4580 0

0 0.4678

 . (4.32)

This choice of gain matrices results in the closed-loop gain σmax

(
Γ−1

1 A1/2ΨB−1/2Γ2

)
= 0.925.

Now, using the obtained values of Gi, Γi
1, Γi

2, i = 1, 2, 3, the matrices of scattering transforma-

tions are calculated based on (4.13), as follows:

S1 =

Γ1
1 O

O Γ1
2

GT
1 =


0.7757 −0.7757 0.6599

0.3304 0.3304 0

0.1695 −0.1695 −0.3985

 , (4.33)

S2 =

Γ2
1 O

O Γ2
2

GT
2 =


−0.9509 0.9509 −0.6960

0.5136 0.5136 0

−0.1513 0.1513 0.4134

 , (4.34)

S3 =

Γ3
1 O

O Γ3
2

GT
3 =


0.7157 0 0.7157 0

0 −0.8590 0 0.5309

−0.3239 0 0.3239 0

0 0.2459 0 0.3980

 . (4.35)
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Finally, matrices of scattering transformations (4.33)-(4.35) allow for calculations of ui, vi

based on ηi, yi according to the formula (4.10). For implementation purposes, however, we

need to calculate ηi, vi based on known ui, yi. It is straightforward to see thatuv
 =

S11 S12

S21 S22

 ηy
 ⇔

ηv
 =

 S−1
11 −S−1

11 S12

S21S−1
11 S22 − S21S−1

11 S12

 uy
 , (4.36)

provided that S11 is full rank. Based on (4.36), the following relationships follow from (4.33)-

(4.35): 
η1

v11

v12

 =


1.2892 1 −0.8507

0.4259 0.6608 −0.2811

0.2185 0 −0.5427



u1

y11

y12

 , (4.37)


η21

η22

v21

 =


−0.5258 0.9735 −0.3660

0.5258 0.9735 0.3660

0.1591 0 0.5241



u21

u22

y2

 , (4.38)


η31

η32

v31

v32

 =


1.397 0 −1 0

0 −1.164 0 0.618

−0.453 0 0.648 0

0 −0.286 0 0.55




u31

u32

y31

y32

 . (4.39)

The above formulas (4.37)-(4.39) are used for implementation of the scattering-based stabiliza-

tion scheme in our simulations. Examples of simulations of the interconnected system (4.10),

(4.24)-(4.27) with scattering transformations (4.37)-(4.39) are shown in Figure 4.2 (bottom).

These simulations have been performed for the same set of communication delays (T1 = 0.5

s, T2 = 0.3 s, T3 = 0.4 s, T4 = 0.6 s, T5 = 0.7 s) and the same external input signal

(∆(t) = 10 sin(t)) as those in the case without scattering-based stabilization (shown in Fig-

ure 4.2 (top)). It can be seen that the scattering-based design successfully stabilizes the inter-

connection, which is in accordance with the theory developed above.
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Figure 4.2: Response of the interconnected system (4.10), (4.24)-(4.27) with communication

delays to the input signal ∆(t) = 10 · sin(t).
Trajectories v11 (t), v12 (t), v2 (t), v31 (t), v32 (t) are shown. Top plot: without scattering-

based design, i.e., i.e., S1, S2, S3 are unit matrices. Bottom plot: with scattering transfor-

mations (4.37)-(4.39). Notice the substantially different scales along y-axes of the two figures.
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Chapter 5

Conclusion

5.1 Summary

This dissertation focuses on generalization of the scattering-based approach to stabilization

of interconnections of non-planar conic systems. Chapter 1 describes research objectives and

outlines existing results to date.

Chapter 2 presents a novel notion of non-planar conic systems. The proposed class of non-

linear systems involves the (Q,S,R)−dissipative systems and, consequently, the conventional

passive and conic [18] (planar conic [13]) systems. In order to represent a (Q,S,R)−dissipative

system as a non-planar conic system, we have developed the cone construction algorithm. The

main advantages of the non-planar conic systems are as follows: dimensions of system’s input

and output can be different, restrictions on any input-output pair are not required to be uniform,

and an interconnection of non-planar conic systems is a non-planar conic system. Therefore

the class of non-planar conic systems allows to overcome limitations imposed by the notion(-s)

of passivity and/or planar conicity.

Next, we have specified stability conditions for the interconnections with and without time

delay of (Q,S,R)−dissipative systems whose dimension of the output coincides with the num-

ber of negative eigenvalues of the [QSR] matrix in the quadratic supply rate. The intercon-

nected systems can be represented as non-planar conic systems by estimating their centers and

radii using the developed algorithm. In the case of non-delayed interconnection, we have estab-

lished a graph separation stability condition in terms of the radii and the angle between centers

of subsystems’ cones. In the presence of time delay, stability results were obtained within the

small-gain framework. To satisfy these stability conditions, we propose scattering-based con-

troller design. A scattering transformation is essentially a combination of rotational and scale

operators that allows for rendering the dynamics of a non-planar conic system into a prescribed

107
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cone of compatible dimensions. For interconnections without delays, the generalized scattering

transformation is designed to separate the cones of the interacted subsystems. An advantage

of the scattering transformation is its relatively flexible structure that potentially may stabi-

lize an interconnected system and simultaneously improve performance of the interconnected

system. Regarding the delay independent stability, it can be achieved by applying appropriate

scattering transformations at the both sides of the communication channel. In particular, the

rotational operator aligns the center of the system’s cone along the input subspace, whereas the

scaling operator allows for tuning the gain of the system. As a result, the designed scattering

transformation transforms a non-planar conic system into a finite gain L2 stable system with

an appropriate gain. Overall, the proposed technique expands scattering-based stabilization

approach to the class of non-planar conic systems.

Chapter 3 is devoted to the coupled stability problem which is solved within the gener-

alized scattering-based approach developed in Chaper 2. The main goal of this chapter is

to demonstrate that the proposed technique can be applied to stabilization of an interconnec-

tion of essentially non-passive systems. Conventional results on the coupled stability problem

have been dominantly developed under the assumption of passivity of the systems involved

in the interaction. However, there are examples of robot-environment interaction where the

requirement of passivity is violated, for example, in the presence of the so-called slippage

phenomena [7, 8]. In addition, passivity-based methods do not allow for solving the stability

problem without affecting the robot’s trajectory tracking performance in free space. The design

example presented in Chapter 3 illustrates the main advantages of the developed stabilization

approach. In this example, stabilization is achieved under rather general assumptions on the

robot and the environment subsystems. The example outlines an approach that can be applied

for many other coupled stability problems. In particular, the robot manipulator dynamics are

described by Euler-Lagrange equation and controlled by the Lyapunov-based algorithm that

provides convergence of the robot trajectory to a reference trajectory. The Euler-Lagrange dy-

namic equations of the environment also include positive definite stiffness and damping terms.

The contact force is represented as a linear combination of stiffness and damping components,

where the damping term is not sign definite, which results in non-passivity of the contact be-

tween the robot and the environment. In order to satisfy the graph separation stability condition,

we designed the scattering-based controller that does not interfere the trajectory tracking in free

space. In the considered model, the existence of such a controller is guaranteed by the specially

developed scattering transformation that is constructed using numerical algorithms. As a result,

we have demonstrated that for any positive stiffness of the environment, and for the environ-

mental and contact damping terms, whose components satisfy some reasonable constraints,

the designed controller provides the stable interaction and does not affect the trajectory track-
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ing performance in free space. Thus, the developed approach successfully solves the coupled

stability problem.

Chapter 4 presents an extension of the scattering-based stabilization technique to the case of

complex interconnections of (Q,S,R)−dissipative systems in the presence of multiple commu-

nication delays. The problem of stability of complex interconnections of (Q,S,R)−dissipative

systems has been addressed in [10] in the absence of time delay. The existing scattering-based

stabilization results are largely limited to the case of feedback interconnections of passive sys-

tems with time delays [1, 3, 6, 11]. In this thesis, the aforementioned results have been sub-

stantially expanded using the generalized scattering-based stabilization technique. First, we

show that under mild technical assumptions [QSR] matrix in the quadratic supply rate of a

(Q,S,R)−dissipative system with m-dimensional input must have the number of nonnegative

eigenvalues greater than or equal to m. This motivates the assumption made in this chapter

where we address (Q,S,R)−dissipative systems whose [QSR] matrix has exactly m nonnega-

tive eigenvalues, or, equivalently, whose output dimension coincides with the number of nega-

tive eigenvalues of the [QSR] matrix. Next, we introduced the notion of finite L2-gain (A, B)-

stability that is a specification of the notion of finite gainL2 stability in the case of systems with

multiple inputs and/or outputs. We then present a scattering transformation that transforms a

(Q,S,R)−dissipative system into a finite L2-gain (A, B)-stable system, where A (A ≥ 0) and B

(B > 0) are any predefined diagonal gain matrices of admissible orders, specifically, the orders

of matrices A and B coincide with the number of system’s inputs and outputs, respectively. The

algorithm uses the generalized version of the scattering transformation which is a combination

of two linear transformations. The first transformation is an orthogonal operator that maps the

subspace generated by the eigenvectors corresponding to nonnegative eigenvalues into the in-

put subspace. The second transformation performs scaling and is used fora assigning arbitrary

admissible gains (A, B). The main result of the chapter describes the stabilization procedure

for complex interconnections of (Q,S,R)−dissipative systems which guarantees a delay in-

dependent weak finite L2-gain (A, B)-stability of the overall system with respect to external

disturbances in the presence of multiple heterogeneous communication delays. The developed

technique substantially generalizes the existing results in this area [1, 5, 15].

5.2 Future work

The final section discusses possible improvements, extensions and development directions of

the presented results. Throughout the work, we dealt with the notion of (Q,S,R)−dissipativity

that requires an existence of a quadratic supply rate where the system’s output dimension is

equal to the number of negative eigenvalues of the [QSR] matrix. However, it is known that



110 Chapter 5. Conclusion

a storage function is generally not unique [2, 4, 17]. Instead, the set of storage functions is

bounded from below by the available storage Va(·) and from above by the required supply

Vr(·) [2, Section 4.4.3]. In many applications, a storage function represents total energy stored

in the system and may depend on wide range of model parameters and the system’s control

algorithm. Varying these components of the model may result in different storage functions.

Therefore, one possible direction is the development of methods for constructing a storage

function with a quadratic supply rate whose [QSR] matrix has the same number of negative

eigenvalues as the dimension of the system’s output.

Next, in Chapter 3, the coupled stability problem has been investigated. As we have demon-

strated, the scattering-based controller allows for achieving the stable interaction of the manip-

ulator and the environment while at the same time does not affect the robot’s trajectory tracking

performance in free space. However, the theoretical methods developed in Chapter 2 for the

generalized scattering-based technique do not guarantee, at least directly, the desired structure

of the scattering transformation. Thus, a complete analytical solution of the scattering-based

design problem for coupled stability subject to constraints is the topic for future research.

Another direction for future work is an application of the proposed technique to teleoper-

ator systems. Theoretical methods for systems of this type were developed in the Chapter 2.

However in practice, as mentioned above, there can be additional design requirements imposed

on the scattering-based controller in order to guarantee the control scheme performance. An

example is a requirement imposed on the slave tracking performance in free space; i.e., the

slave manipulator must follow the trajectory generated by the master. Another example is the

requirement of avoiding “wave-reflection” phenomena. It is expected that these requirements

can be fulfilled by a special choice of scattering transformations applied on the both sides of the

communication channel. Therefore, development of the analytical and numerical algorithms

that are capable to perform both stabilization and improvement of performance issues is one of

the most important questions for future research.

Also, some extensions of the conventional scattering-based approach to stabilization of the

teleoperator systems in the presence of time-variable delays have been reported [9, 11]. The

idea behind this extension is to implement time-variable gains at the local and remote sides

of the teleoperator. This approach can potentially be combined with the proposed generalized

scattering-based controller design.

Finally, one more possible direction for future research is related to the extension of the

generalized scattering-based stabilization methods to the case of systems modeled within the

so-called behavioral framework. The behavioral approach to modeling of interactive systems

was developed in the works of J.C. Willems and summarized in [16]; its application to control

of geometrically nontrivial interactive robot behavior is described in [14]. According to [12], a



dynamical system is defined within the behavioral framework as a triple Σ = (T,W,B), where

T is the set of time instants, W is a set called the signal space, and B a subset of T → W

called the behavior. It is worth to mention that the conventional “input–output” description of

system’s behavior is a special case in the above definition, where W is a direct product of two

sets: the set of inputs U and the set of outputs Y, i.e., W := U ×Y. For interactive applications

such as teleoperator systems, the partition of the external signals into inputs and outputs is

frequently unnatural and may lead to difficulties related to the fact that such a partition imposes

a causality structure (inputs are “cause”, the outputs are “effect”) that does not hold in physical

reality. For example, in mechanical systems, “force” is related to “motion”, but neither of them

necessarily causes the other. In the case of linear time invariant systems, the multi-port network

modeling of teleoperators does not impose such a causality structure; however, in the nonlinear

case, the existing theory is based on the “input-state-output” paradigm. Therefore, a possible

future direction of research is development of a nonlinear counterpart to multi-port network

description of teleoperator systems within the behavioral framework.

Bibliography

[1] R.J. Anderson and M.W. Spong. Bilateral control of teleoperators with time delay. IEEE

Transactions on Automatic Control, 34(5):494–501, 1989.

[2] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland. Dissipative Systems. Analysis and

Control. Theory and Applications. Springer, 2nd edition, 2007.

[3] N. Chopra and M.W. Spong. Delay-independent stability for interconnected nonlinear

systems with finite L2 gain. In Proceedings of the 46th IEEE Conference on Decision

and Control, pages 3847–3852, New Orleans, LA, USA, Dec., 12–14 2007.

[4] D. J. Hill and P. J. Moylan. The stability of nonlinear dissipative systems. IEEE Trans-

actions on Automatic Control, 21(5):708–711, Oct 1976.

[5] S. Hirche, T. Matiakis, and M. Buss. A distributed controller approach for delay–

independent stability of networked control systems. Automatica, 45(8):1828–1836, Aug.

2009.

111



112 BIBLIOGRAPHY

[6] P. F. Hokayem and M. W. Spong. Bilateral teleoperation: A historical survey. Automatica,

42(12):2035–2057, 2006.

[7] W. Li, L. Ding, Z. Liu, W. Wang, H. Gao, and M. Tavakoli. Kinematic bilateral teledriv-

ing of wheeled mobile robots coupled with slippage. IEEE Transactions on industrial

electronics, 64(3):2147–2157, March 2017.

[8] W. Li, H. Gao, L. Ding, and M. Tavakoli. Kinematic bilateral teleoperation of wheeled

mobile robots subject to longitudinal slippage. IET Control Theory & Applications,

10(2):111–118, Jan. 2016.

[9] R. Lozano, N. Chopra, and M.W. Spong. Passivation of force reflecting bilateral tele-

operators with time varying delay. In Proceedings of the 8. Mechatronics Forum, pages

954–962, Enstschede, Netherlands, 2002.

[10] P. Moylan and D. Hill. Stability criteria for large-scale systems. IEEE Transactions on

Automatic Control, 23(2):143–149, Apr 1978.
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Appendix A

Adaptive schemes

Appendix A considers a dynamic system that is described by the Euler-Lagrange equations

and locally controlled by the Lyapunov-based control algorithm. In this case, we show that

the system is (Q,S,R)−dissipative, and furthermore, application of the adaptive version of the

Lyapunov-based controller does not change the [QSR] matrix in the supply rate constructed

for the non-adaptive version of the controller. As a result, it implies that the parameter ad-

justment algorithm in the adaptive Lyapunov-based controller does not affect the scattering

transformation constructed by the [QSR] matrix of the (Q,S,R)−dissipative system.

This development is motivated by the adaptive control schemes proposed within the con-

ventional passivity-based approach. Particularly, an inclusion of the parameter adaptation

mechanism into the local passivity-based control algorithm does not interfere with the sta-

bilization procedure1. Therefore, this analysis is aimed at establishing similar results for the

more general case of (Q,S,R)−dissipative and non-planar conic systems.

Let the robot manipulator dynamics be determined by the Euler-Lagrange equations in the

task space

ΣR : Hx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = f + u, (A.1)

where f is an external force, vectors x, ẋ and q, q̇ are position and velocity of the manipulator in

the task and joint space, respectively. The control u in (A.1) realizes the Lyapunov-based con-

trol algorithm that solves the trajectory tracking problem in free space. Namely, this controller

ensures the convergence of the robot trajectory to a reference trajectory xr.

u = Hx(q)ṙ + Cx(q, q̇)r + Gx(q) − Kσ, K = KT > 0, (A.2)

r = ẋr − Λx̃, σ = ˙̃x + Λx̃, x̃ = x − xr, Λ = ΛT > 0, (A.3)

1Nuno, E., Basanez, L. and Ortega, R. Passivity-based control for bilateral teleoperation: A tutorial, Auto-
matica 47(3), 485–495, 2011
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where positive definite matrices K and Λ are control gains. Substituting the control u (A.2) to

the system (A.1), we derive the following dynamics ˙̃x = −Λx̃ + σ

σ̇ =
[
Hx(q)

]−1 (−Cx(q, q̇)σ − Kσ + f )
(A.4)

Proposition A.1. The dynamic system (A.4) is (Q,S,R)−dissipative with respect to a quadratic

supply rate depending on the external force f as an input and position-velocity error
[̃
xT , ˙̃x

T ]T

(A.3) as an output.

Proof In order to prove (Q,S,R)−dissipativity of the system (A.4), we need to find a nonneg-

ative storage function V(x) and a quadratic supply rate w( f ; x̃, ˙̃x), such that the inequality

V(x(t1)) − V(x(t0)) 6

t1∫
t0

w
(

f (t); x̃(t), ˙̃x(t)
)

dt (A.5)

holds along the trajectories of the system (A.4) for any t1 > t0, any initial state x(t0).

Consider a storage function V of the form

V =
1
2

(
σT Hx(q)σ + x̃T Mx̃

)
, (A.6)

where M is a symmetric positive definite matrix that can be chosen freely. The function V(·) is

nonnegative, since the inertia matrix Hx(·) is positive definite.

The next series of equalities computes the time derivative of the storage function V (A.6)

along the trajectories of the system (A.4), using the fact that
[
Ḣx(q) − 2Cx(q, q̇)

]
is a skew-

symmetric matrix.

V̇ = σT Hx(q)σ̇ +
1
2
σT Ḣx(q)σ + x̃T M ˙̃x =

σT

(
1
2

Ḣx(q) −Cx(q, q̇)
)
σ + σT (−Kσ + f ) + x̃T M ˙̃x = −σT Kσ + σT f + x̃T M ˙̃x =

f T Λx̃ + f T ˙̃x − x̃T ΛKΛx̃ + x̃T

(
1
2

M − ΛK
)

˙̃x + ˙̃x
T
(
1
2

M − KΛ

)
x̃ − ˙̃x

T
K ˙̃x.

Finally, the derivative of the storage function V (A.6) can be represented as a quadratic form in

variables f , x̃ and ˙̃x, namely

V̇ =


f

x̃
˙̃x


T

[QSR]


f

x̃
˙̃x

 =: w
(

f ; x̃, ˙̃x
)
, where (A.7)

[QSR] =


O 1/2Λ 1/2I

1/2Λ −ΛKΛ 1/2M − ΛK

1/2I 1/2M − KΛ −K

 . (A.8)
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Obtained quadratic supply rate w
(

f ; x̃, ˙̃x
)

(A.7) together with the storage function (A.6) sat-

isfies the dissipation inequality (A.5), that proves (Q,S,R)−dissipativity of the system (A.4).

Further, we consider an adaptive version of the Lyapunov-based controller and show that

the application of the adaptive control algorithm to the system (A.1) results in the same [QSR]

matrix (A.8) as obtained in Proposition A.1.

According the adaptive control approach, the left-hand part of the dynamic equation (A.1)

can be equivalently rewritten using the regressor Y(q, q̇, q̈), i.e.

Hx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = Y(q, q̇, q̈)θ, (A.9)

where θ is a vector of unknown parameters of the manipulator. Substitution in the equation

(A.9) of a specific admissible value θ̂ of the model parameters θ provides the following equality

Ĥx(q)ẍ + Ĉx(q, q̇)ẋ + Ĝx(q) = Y(q, q̇, q̈)̂θ, (A.10)

where inertia matrix Ĥx(·), Coriolis and centrifugal forces Ĉx(·), and gravitation term Ĝx(·) are

computed for θ = θ̂.

Using the adaptive Lyapunov-based control law, we establish a local manipulator controller

u in the following way

u = Ĥx(q)ṙ + Ĉx(q, q̇)r + Ĝx(q) − Kσ, K = KT > 0, (A.11)

where variable x̃, r, and σ are determined in (A.3), and gain matrix K is the same as in the

non-adaptive controller (A.2).

An equivalent representation of the controller u (A.11) reveals the connection between this

controller and the regressor Y(·)(A.10), specifically

u =Ĥx(q) (ẋ − σ̇) + Ĉx(q, q̇) (ẋ − σ) + Ĝx(q) − Kσ =

Y(q, q̇, q̈)̂θ −
(
Ĥx(q)σ̇ + Ĉx(q, q̇)σ + Kσ

)
.

(A.12)

Returning to the original dynamic relations (A.1)-(A.9), we have

Y(q, q̇, q̈) = f + u ⇒ u = Y(q, q̇, q̈) − f . (A.13)

Obtained equalities (A.12)-(A.13) provides the following dynamics

Ĥx(q)σ̇ + Ĉx(q, q̇)σ + Kσ = Y(q, q̇, ṙ, σ̇)̃θ + f , (A.14)

where θ̃ is the parameter estimation error, i.e. θ̃ = θ̂ − θ, and Y(q, q̇, ṙ, σ̇) is the regressor

Y(q, q̇, q̈), where acceleration q̈ is expressed through the new variables (A.3). The following
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chain of equalities explains the transfer from Y(q, q̇, q̈) to Y(q, q̇, ṙ, σ̇) in details using manip-

ulator Jacobian J. First, formulae (A.3) imply that ẍ = σ̇ + ṙ, and then we express q̈ through

mentioned variables q, q̇, ṙ, and σ̇

ẋ = J(q)q̇ ⇒ ẍ = J̇(q)q̇ + J(q)q̈ ⇒ q̈ = J−1(q)
(
ẍ − J̇(q)q̇

)
= J−1(q)

(
σ̇ + ṙ − J̇(q)q̇

)
.

A parameter adaptation algorithm is borrowed from the adaptive control scheme

˙̃θ =
˙̂
θ = −ΓY

T
(q, q̇, ṙ, σ̇)σ, (A.15)

where Γ is a symmetric positive definite matrix, i.e. Γ = ΓT > 0. Combining robot dynamics

(A.14) and the parameter adaptation algorithm(A.15), we derive the dynamic system of the

form 
˙̃x = −Λx̃ + σ

σ̇ =
[
Ĥx(q)

]−1 (
−Ĉx(q, q̇)σ − Kσ + Y(qR, q̇R, ṙ, σ̇)̃θ + fenv + fr

)
˙̃θ = −ΓY

T
(q, q̇, ṙ, σ̇)σ.

(A.16)

The next proposition constructs the [QSR] matrix of the dynamic system (A.16) and estab-

lishes its connection with the [QSR] matrix (A.8) derived in the non-adaptive case.

Proposition A.2. The dynamic system (A.16) is (Q,S,R)−dissipative with respect to the input

f and output
[̃
xT , ˙̃x

T ]T
. Moreover, its quadratic supply rate coincides with the supply rate (A.7)

computed within the application of the non-adaptive Lyapunov-based controller to the sys-

tem (A.1). Here we suppose that the control gains K, Λ are the same in both controllers (A.2)

and (A.11).

Proof Consider a storage function candidate of the form

VA =
1
2

(
σT Ĥx(q)σ + x̃T Mx̃ + θ̃T Γ−1θ̃

)
, (A.17)

where M is a symmetric positive definite matrix that can be chosen freely. Here we use the

same matrix M as in the storage function (A.6) for the non-adaptive case.

Computation of the time derivative of the storage function VA (A.17) along the trajectories

of the system (A.16) provides the following

V̇A = σT Ĥx(q)σ̇ +
1
2
σT ˙̂Hx(q)σ + x̃T M ˙̃x + θ̃T Γ−1 ˙̃θ = σT

(
1
2

˙̂Hx(q) − Ĉx(q, q̇)
)
σ+

σT
(
−Kσ + Y(q, q̇, ṙ, σ̇)̃θ + f

)
+ x̃T M ˙̃x + θ̃T Γ−1

(
−ΓY

T
(q, q̇, ṙ, σ̇)σ

)
=

− σT Kσ + σT Y(q, q̇, ṙ, σ̇)̃θ + σT f + x̃T M ˙̃x − θ̃T Y
T
(q, q̇, ṙ, σ̇)σ =

− σT Kσ + σT f + x̃T M ˙̃x =

( f ∗)T
Λx̃ + ( f ∗)T ˙̃x − x̃T ΛKΛx̃ + x̃T

(
1
2

M − ΛK
)

˙̃x + ˙̃x
T
(
1
2

M − KΛ

)
x̃ − ˙̃x

T
K ˙̃x.
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The obtained derivative of the storage function VA (A.17) is a quadratic form in variables f ∗, x̃
and ˙̃x that can be expressed through the matrix as follows

V̇A =


f

x̃
˙̃x


T

[QSR]A


f

x̃
˙̃x

 =: wA

(
f ; x̃, ˙̃x

)
, where (A.18)

[QSR]A =


O 1/2Λ 1/2I

1/2Λ −ΛKΛ 1/2M − ΛK

1/2I 1/2M − KΛ −K

 (A.19)

Obviously, non-adaptive and adaptive versions of the Lyapunov-based controller applied to the

system (A.1) result in the same [QSR] matrices (A.8) and (A.19). Consequently, the supply

rates w(·) (A.7) and wA(·) (A.18) coincide with each other.

The present proposition reveals that both the Lyapunov-based controller and the adap-

tive Lyapunov-based control algorithm implemented as the local manipulator controller re-

sult in the same supply rate. Regarding the scattering-based approach, this implies that in-

clusion of the parameter adjustment algorithm into the Lyapunov-based local controller does

not affect the scattering transformation constructed by the[QSR] matrices (or cones) of the

(Q,S,R)−dissipative (non-planar conic) systems involved into the interconnections.



Appendix B

Proofs of Theorems and Lemmas

B.1 Proof of Theorem 2.3.1

Consider the system (2.20), (2.21), where Σ1 ∈ Int (Ω1, φr1), Σ2 ∈ Int (Ω2, φr2). For brevity,

throughout the proof we denote W1 := W (Ω1, φr1), W2 := W (Ω2, φr2). Let vectors g1, g2, . . . , gm

form an orthonormal basis in Ω1, and e1, e2, . . . , ep form an orthonormal basis in Ω2. Since

Ω1 ∩ Ω2 = {0}, the vectors g1, . . . , gm, e1, . . . , ep are linearly independent and therefore form a

basis in Rm+p. Define

P :=
[
g1 . . . gm e1 . . . ep

]
∈ R(m+p)×(m+p),

Q :=
[
e1 . . . ep g1 . . . gm

]
∈ R(m+p)×(m+p).

One sees that columns of both P and Q form bases in Rm+p. In the following, we will identify

ordered bases in Rm+p with the corresponding (m + p) × (m + p)-matrices whose columns are

the vectors of these bases. Clearly, P and Q are related according to the following formulas

Q = P ·

Omp Im

Ip Opm

 , P = Q ·

Opm Ip

Im Omp

 . (B.1)

Both bases P and Q consist of unit vectors, however, they are not necessarily orthonormal.

For our purposes, it is convenient to introduce another two bases, denoted by G and E, which

are orthonormal. Specifically, the set of vectors {g1, g2, . . . , gm} ∈ Ω1 can be augmented with

additional vectors gm+1, . . . , gm+p ∈ Ω⊥1 such that the columns of

G :=
[
g1 . . . gm gm+1 . . . gm+p

]
form an orthonormal basis in Rm+p. Similarly, the set {e1, e2, . . . , ep} ∈ Ω2 can be augmented

with additional vectors ep+1, . . . , ep+m ∈ Ω⊥2 such that the columns of

E :=
[
e1 . . . ep ep+1 . . . ep+m

]
118
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form another orthonormal basis in Rm+p. Since both G and E are orthonormal bases, one can

find an orthogonal transformation that relates these two bases. Note that, by construction,

P = G ·

 Im A

Opm C

 , (B.2)

where

A :=


eT

1 g1 eT
2 g1 · · · eT

p g1

eT
1 g2 eT

2 g2 · · · eT
p g2

...
...

. . .
...

eT
1 gm eT

2 gm · · · eT
p gm


∈ Rm×p, C :=


eT

1 gm+1 eT
2 gm+1 · · · eT

p gm+1

eT
1 gm+2 eT

2 gm+2 · · · eT
p gm+2

...
...

. . .
...

eT
1 gm+p eT

2 gm+p · · · eT
p gm+p


∈ Rp×p.

Similarly,

Q = E ·

 Ip AT

Omp D

 , (B.3)

where

D :=


eT

p+1g1 eT
p+1g2 · · · eT

p+1gm

eT
p+2g1 eT

p+2g2 · · · eT
p+2gm

...
...

. . .
...

eT
p+mg1 eT

p+mg2 · · · eT
p+mgm


∈ Rm×m.

Substituting (B.3) and (B.2) into (B.1), one obtains G = E · TEG, where

TEG =

 Ip AT

Omp D

 Opm Ip

Im Omp

  Im −AC−1

Opm C−1

 =

AT
(
Ip − AT A

)
C−1

D −DAC−1

 .
Similarly,

E = G · TGE, where TGE =

Amp

(
Im − AAT

)
D−1

C −CAT D−1

 .
Since both E and G are orthonormal bases, we see that TEG, TGE are real orthogonal, and

TEG = T T
GE, or AT

(
Ip − AT A

)
C−1

D −DAC−1

 =

 AT CT

D−T
(
Im − AAT

)
−D−T ACT

 . (B.4)

From (B.4), it follows that

Ip − AT A = CTC, and (B.5)

Im − AAT = DT D. (B.6)
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Taking into account (B.5), (B.6), the expressions for TEG, TGE can be simplified, as follows,

TEG =

AT CT

D −DAC−1

 , TGE =

A DT

C −CAT D−1

 .
Now note that, by construction of the basis G, the expression for projection matrix ΠΩ1

in

this basis has a particularly simple form, as follows:

(
ΠΩ1

)
G

=

 Im Omp

Opm Opp

 .
Therefore,

(W1)G =

 Im Omp

Opm Opp

 − cos2 φr1Im+p. (B.7)

Similarly, the expression for projection matrix ΠΩ2 has a particularly simple form in the basis

E, that implies the canonical form (W2)E of W2, namely

(
ΠΩ2

)
E =

 Ip Opm

Omp Opp

 ⇒ (W2)E =

 Ip Opm

Omp Opp

 − cos2 φr2 · Im+p.

For the purposes of our subsequent analysis, however, it is convenient to represent both W1 and

W2 in the basis Q. Combining (B.1) and (B.2), one obtains Q = G · TGQ, where

TGQ =

 Im A

Opm C

 Omp Im

Ip Opm

 =

A Im

C Opm

 . (B.8)

Using (B.7) and (B.8), one obtains the expression for W1 in basis Q, as follows:

(W1)Q = T T
GQ · (W1)G · TGQ =

A Im

C Opm

T  Im Omp

Opm Opp

 − cos2 φr1I

 A Im

C Opm


=

AT A AT

A Im

 − cos2 φr1

Ip AT

A Im

 =

(AT A − cos2 φr1Ip) sin2 φr1AT

sin2 φr1A sin2 φr1Im

 . (B.9)

On the other hand, using (B.3), one can obtain the following expression for W2 in basis Q:

(W2)Q = T T
EQ · (W2)E · TEQ =

 Ip AT

Omp D

T  Ip Opm

Omp Opp

 − cos2 φr2I

  Ip AT

Omp D


=

Ip AT

A AAT

 − Ip AT

A Im

 cos2 φr2 =

sin2 φr2Ip sin2 φr2AT

sin2 φr2A (AAT − cos2 φr2Im)

 . (B.10)

By means of the obtained representation of W1 (B.9) and W2 (B.10) in the basis Q, the following

lemma calculates the maximum singular values of the product of projectors ΠΩ1
and ΠΩ2 .
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Lemma B.1.1. The maximum singular value of ΠΩ1
ΠΩ2 satisfies

σmax

(
ΠΩ1

ΠΩ2

)
= σmax (A) :=

√
max

i=1,...,k
λi (AT A),

where λi

(
AT A

)
, i = 1, . . . , k denote the eigenvalues of AT A.

Proof The product of projection matrices ΠΩ1
ΠΩ2 in the basis E has a form(

ΠΩ1
ΠΩ2

)
E

= TEG · (ΠΩ1
)G · TGE · (ΠΩ2)E

=

AT CT

D −DAC−1

 ·  Im Omp

Opm Opp

 · A DT

C −CAT D−1

 ·  Ip Opm

Omp Omm


=

AT A Opm

DA Omm

 (B.11)

The singular values of ΠΩ1
ΠΩ2 are square roots of the eigenvalues of the (symmetric and non-

negative definite) matrix
(
ΠΩ1

ΠΩ2

)T (
ΠΩ1

ΠΩ2

)
. Using (B.11), one obtains

(
ΠΩ1

ΠΩ2

)T (
ΠΩ1

ΠΩ2

)
=

AT A AT DT

Omp Omm

 · AT A Opm

DA Omm

 =

(AT A)2 + AT DT DA Opm

Omp Omm


=

(AT A)2 + AT (Im − AAT )A Opm

Omp Omm

 =

AT A Opm

Omp Omm


The statement of Lemma B.1.1 follows.

The next lemma establishes that the setsW1 =
{
v1 : vT

1 W1v1 ≥ 0, v1 ∈ R
m+p, |v1| , 0

}
and

W2 =
{
v2 : vT

2 W2v2 ≥ 0, v2 ∈ R
m+p, |v2| , 0

}
are separated.

Lemma B.1.2. Suppose condition (2.22) holds. If some v ∈ Rm+p is such that v ∈ W1, then

v <W2, or in other words, if vT W1v ≥ 0 (|v| , 0), then vT W2v < 0.

Proof Suppose vT W1v ≥ 0 for some v ∈ Rm+p, |v| , 0. Without loss of generality, assume

|v| = 1. Consider the representation of the quadratic form vT W1v in the basis Q:

(
vT W1v

)
Q

=

vp

vm

T (AT A − cos2 φr1Ip) sin2 φr1AT

sin2 φr1A sin2 φr1Im

 vp

vm


= vT

p AT Avp − cos2 φr1|vp|
2 + sin2 φr1|vm|

2 + 2 sin2 φr1vT
mAvp ≥ 0, (B.12)

where, by definition of basis Q, [vT
p , 0

T
m]T ∈ Ω2 and [0T

p , v
T
m]T ∈ Ω1. Taking into account that

1 = |v|2 = |vp|
2 + |vm|

2 + 2vT
mAvp, (B.13)
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one obtains from (B.12) that

0 ≤ vT W1v ≤ sin2 φr1 − (1 − σ2
max)|vp|

2. (B.14)

Similarly, the quadratic form vT W2v in the in the basis Q has a form(
vT W2v

)
Q

=

vp

vm

T sin2 φr2Ip sin2 φr2AT

sin2 φr2A (AAT − cos2 φr2Im)

 vp

vm


= sin2 φr2|vp|

2 + vT
mAT Avm − cos2 φr2|vm|

2 + 2 sin2 φr2vT
mAvp,

and taking (B.13) into account, one obtains

vT W2v ≤ sin2 φr2 − (1 − σ2
max)|vm|

2.

Further, we will show that

sin2 φr2 − (1 − σ2
max)|vm|

2 < 0 (B.15)

and therefore vT W2v < 0. Inequality (B.15) will follow from the following sequence of in-

equalities

|vm| ≥ cos φr1 − σmax ·
sin φr1
√

1 − σ2
>

sin φr2
√

1 − σ2
. (B.16)

To prove the first inequality in (B.16), one can use (B.13) and (B.14) to obtain

1 = |vp|
2 + |vm|

2 + 2vT
mAvp ≤ |vp|

2 + |vm|
2 + 2σmax|vm||vp|

≤
sin2 φr1

1 − σ2
max

+ |vm|
2 + 2σmax|vm|

sin φr1√
1 − σ2

max

, or

|vm|
2 + 2σmax|vm|

sin φr1√
1 − σ2

max

+
sin2 φr1

1 − σ2
max

+ 1 ≥ 0.

Factoring the left-hand side of the above inequality, one gets|vm| + σmax|vm|
sin φr1√
1 − σ2

max

− cos φr1

 · |vm| + σmax|vm|
sin φr1√
1 − σ2

max

+ cos φr1

 ≥ 0.

The expression inside the second bracket in the left hand side of the above inequality is positive

(> 0), therefore the first bracket is non-negative, which implies that the first inequality in (B.16)

is valid. To prove the second inequality in (B.16), note that it is equivalent to the following

σ2
max sin2 φr1 + 2σmax sin φr1 sin φr2 + sin2 φr2 − cos2 φr1(1 − σ2

max) < 0. (B.17)

To prove (B.17) (equivalently, the second inequality in (B.16)), one can factor the left hand

side of the above inequality and use some basic trigonometric formulae to obtain

σ2
max sin2 φr1 + 2σmax sin φr1 sin φr2 + sin2 φr2 − cos2 φr1(1 − σ2

max)

= σ2
max + 2σmax sin φr1 sin φr2 − cos (φr1 + φr2) cos (φr1 − φr2)

= σ2
max + σmax (cos (φr1 − φr2) − cos (φr1 + φr2)) − cos (φr1 + φr2) cos (φr1 − φr2)

= (σmax − cos (φr1 + φr2)) (σmax + cos (φr1 + φr2))
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Condition (2.22), however, implies that

(σmax − cos (φr1 + φr2)) (σmax + cos (φr1 + φr2)) < 0.

Therefore, the second inequality in (B.16) holds, and so does (B.15). Thus, vT W2v < 0, or

v <W2.

Lemma B.1.3. Suppose condition (2.22) holds. Then there exists ρ ≥ 0 such that W :=

ρW1 + W2 is negative definite.

Proof The statement of Lemma B.1.3 follows immediately from Lemma B.1.2 by application

of the seminal theorem on the losslessness of S-procedure for two quadratic forms originally

proven in [1] (see also [2, Theorem 12]).

Using Lemma B.1.3, the proof of Theorem 2.3.1 is conducted as follows.

Proof of Theorem 2.3.1 Consider the interconnection (2.20), (2.21), where Σ1 ∈ Int (Ω1, φr1),

Σ2 ∈ Int (Ω2, φr2). For this interconnection, consider a storage function candidate

V := ρ · V1 + V2,

where V1, V2 are storage functions of Σ1, Σ2, and ρ ≥ 0 is a constant given by Lemma B.1.3.

Then the following inequality holds along the trajectories of Σ1, Σ2:

V (t1) − V (t0) ≤

t1∫
t0


y1

η1

T

ρW1

y1

η1

 +

η2

y2

T

W2

η2

y2


 dτ. (B.18)

Taking into account the formulae (2.21) describing the systems’ interconnection, the integrand

in (B.18) can be represented in the formy1

η1

T

ρW1

y1

η1

 +

η2

y2

T

W2

η2

y2

 =

y1

y2

T

W

y1

y2

 +

y1

y2

T

2ρW1

 0

χ1

 +

 0

χ1

T

ρW1

 0

χ1


+

y1

y2

T

2 ·W2

χ2

0

 +

χ2

0

T

W2

χ2

0

 , (B.19)

where W := ρW1 + W2. According to Lemma B.1.3, W is negative definite; from here, com-

bining (B.18) and (B.19) and using some simple matrix estimates as well as applying Young’s

quadratic inequality, one sees that

V (t1) − V (t0) ≤

t∫
t0

−δ
∣∣∣∣∣∣∣y1

y2

∣∣∣∣∣∣∣
2

+ σ

∣∣∣∣∣∣∣χ1

χ2

∣∣∣∣∣∣∣
2 dτ,

where δ > 0, σ ≥ 0. The statement of Theorem 2.3.1 follows.
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B.2 Proof of Lemma 2.6.1

Proof Due to the s,all-gain condition γ1 · γ2 < 1, there exists a small ε such that

(1 + ε) · γ1 · γ2 < 1.

Consider inputs of the interconnected system

u1i(t) = v2i

(
t − T (i)

2

)
+ δ1i(t), u2 j(t) = v1 j

(
t − T ( j)

1

)
+ δ2 j(t), i = 1, . . . ,m, j = 1, . . . , p.

Using Young’s quadratic inequality, the following estimates can be written for the norms of the

input components

|u1(t)|2 =

m∑
i=1

|u1i(t)|2 6 (1 + ε)
m∑

i=1

∣∣∣∣v2i

(
t − T (i)

2

)∣∣∣∣2 +

(
1 +

1
ε

)
‖δ1(t)‖2

|u2(t)|2 =

p∑
j=1

|u1 j(t)|2 ≤ (1 + ε)
p∑

j=1

∣∣∣∣v1 j

(
t − T ( j)

1

)∣∣∣∣2 +

(
1 +

1
ε

)
|δ2(t)|2.

Consider a function V(x1, x2) := V1(x1) + V2(x2), where V1(x1), V2(x2) are the storage functions

of Σ1, Σ2, respectively. The change of V(t) := V(x1(t), x2(t)) along the trajectories of the

interconnected system can be estimated as follows

V(x(t1)) − V(x(t0)) ≤

t1∫
t0

[
−

1
γ1
|v1(τ)|2 + γ1|u1(τ)|2 −

1
γ2
|v2(τ)|2 + γ2|u)2(τ)|2

]

≤

t1∫
t0

− 1
γ1
|v1(τ)|2 −

1
γ2
|v2(τ)|2 + γ1(1 + ε)

m∑
i=1

∣∣∣∣v2

(
τ − T (i)

2

)∣∣∣∣2
+ γ1

(
1 +

1
ε

)
|δ1(τ)|2 + γ2(1 + ε)

p∑
j=1

∣∣∣∣v1

(
τ − T ( j)

1

)∣∣∣∣2
+ γ2

(
1 +

1
ε

)
|δ2(τ)|2

]
dτ.

(B.20)

Let T1 and T2 denote the maximal delays in the forward and the return path, respectively, i.e.

T1 := max
j=1,...,p

T ( j)
1 , T2 := max

i=1,...,m
T (i)

2 .



We have

t1∫
t0

∣∣∣∣v1

(
τ − T ( j)

1

)∣∣∣∣2 dτ =

t1−T ( j)
1∫

t0−T ( j)
1

|v1(τ)|2 dτ ≤

t1∫
t0−T ( j)

1

|v1(τ)|2 dτ

=

t0∫
t0−T ( j)

1

|v1(τ)|2 dτ +

t1∫
t0

|v1(τ)|2 dτ

≤

t0∫
t0−T1

|v1(τ)|2 dτ +

t1∫
t0

|v1(τ)|2 dτ, j = 1, . . . , p.

(B.21)

Similarly, one can estimate the second output vector v2(·)
t1∫

t0

∣∣∣∣v2

(
τ − T (i)

2

)∣∣∣∣2 dτ ≤

t0∫
t0−T2

|v2(τ)|2 dτ +

t1∫
t0

|v2(τ)|2 dτ, i = 1, . . . ,m. (B.22)

Define parameters αε, β and γε

αε := min
{

1
γ2
− γ1(1 + ε);

1
γ1
− γ2(1 + ε)

}
, γε := max{γ1; γ2} ·

(
1 +

1
ε

)
,

β = β(t0,T1,T2) :=

t0∫
t0−T1

|v1(τ)|2 dτ +

t0∫
t0−T2

|v2(τ)|2 dτ
(B.23)

Substituting (B.21), (B.22) into (B.20), and using (B.23), we obtain

V(x(t1)) − V(x(t0)) ≤

t1∫
t0

(
−αε‖v‖2 + γε‖δ‖

2
)

dτ + β(t0,T1,T2).

The inequality implies that the interconnected system is weakly L2-gain stable with finite gain

γ :=
√
γε/αε.
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Appendix C

MATLAB scripts for the coupled stability
problem

In the appendix the program realization of the Robot-Environment interaction model is repre-

sented, using the numerical computing environment MATLAB.

C.1 Algorithm for computation of the dynamic cone’s
parameters

classdef Cone < handle

properties
Basis

Center

Radius

Projector

end

methods
function obj = Cone(*)(QSR)

[obj.Basis, obj.Center, obj.Radius, obj.Projector] =...

ConeConstruction(0)(QSR);

end

end

end
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Function: ConeConstruction(0)

function [Basis, Center, Radius, Projector] = ...

ConeConstructionWithSort(QSR)

W = QSR;

[BG, V] = eig(W);

[BG, r1] = qr(BG, 0);

[V, I] = sort(diag(V), ’descend’);

n = size(V,1);

G1 = BG;

% number of nonnegative eigenvalues >= 0

m = 0;

% number negative eigenvalues < 0;

p = 0;

mp = max(V);

mm = Inf;

% Eigenvectors corresponding to negative eigenvalues

NB = zeros(size(BG));

% Eigenvectors corresponding to non-negative eigenvalues

PB = zeros(size(BG));

for i=1:n

BG(:, i) = G1(:, I(i));

if V(i) >= 0

m = m + 1;

PB(:, m) = BG(:, i);

else

p = p + 1;

NB(:, p) = BG(:, i);

if abs(V(i)) < mm

mm = abs(V(i));
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end

end

end

if nargout > 1

Center = PB(:, 1:m);

end

if nargout > 2

Radius = atan(sqrt(mp/mm));

end

if nargout > 3

Projector = PB(:, 1:m)*PB(:, 1:m)’;

end

Basis = BG;

end

C.2 Robot manipulator model

classdef Robot < handle

properties

TimeSpan

% Physical parameters

Mass

LinkLen

CMLen

InertiaMoment

% Model Properties

QSR

Mu

Lambda

Stiffness
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rCone

ContactPos

DesiredPath

end

methods

function obj = Robot(T)

obj.TimeSpan = T;

obj.setLinkLen;

obj.setMass;

obj.setCenterMassLen;

obj.setInertiaMoment;

obj.setLambda;

obj.setStiffness;

obj.setMu;

obj.setQSR;

obj.setCone;

obj.setDesiredPath;

end

function [] = setMass(obj)

% In kg

obj.Mass = [0; 3.092; 1.910];

end

function [] = setLinkLen(obj)

% In meters

obj.LinkLen = [0.6731; 0.432; 0.434];

obj.ContactPos = [obj.LinkLen(2) + 0.5*obj.LinkLen(3); ...

0; ...

obj.LinkLen(1) + 0.5*obj.LinkLen(3)];

end

function [] = setCenterMassLen(obj)

% In meters
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obj.CMLen = [0; 0.216; 0.164];

end

function [] = setInertiaMoment(obj)

% In kg*mˆ2

I0 = 0.0151;

l = obj.LinkLen;

lc = obj.CMLen;

m = obj.Mass;

obj.InertiaMoment(1:4, 1) = [I0; ...% J

lc(3)ˆ2*m(3); ... % J1

lc(2)ˆ2*m(2) + l(2)ˆ2*m(3);... % J12

l(2)*lc(3)*m(3)]; % J13

end

function [] = setMu(obj)

obj.Mu = GetMu(1)(obj.Lambda, obj.Stiffness, 100);

end

function [] = setLambda(obj)

obj.Lambda = diag([2.25; 2; 2]);

end

function [] = setStiffness(obj)

obj.Stiffness = diag([1; 1; 1]);

end

function [] = setQSR(obj)

I3 = eye(3);

O3 = zeros(3,3);

TLm = [I3 O3; obj.Lambda I3];

T = [I3, O3, O3; [O3; O3], TLm];

obj.QSR = T’*[O3, O3, 0.5*I3; ...
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O3, -obj.Mu*obj.Lambda, 0.5*obj.Mu*I3; ...

0.5*I3, 0.5*obj.Mu*I3, -obj.Stiffness]*T;

RobQSR = obj.QSR

end

function [] = setCone(obj)

obj.rCone = Cone(*)(obj.QSR);

(∗) MATLAB script for Cone() in Section C.1

end

function [] = setDesiredPath(obj)

l = obj.LinkLen;

Pc = obj.ContactPos;

P0 = [l(2); 0; Pc(3)];

Tc = 2; % seconds

Offset = 0.07; % meters.

[tx, x] = SmoothDesiredPath(2)(obj.TimeSpan, P0, Pc, Tc, Offset);

function [p, dp, d2p] = Path(t)

p = zeros(length(t), 3);

if nargout > 1

dp = zeros(length(t), 3);

if nargout > 2

d2p = zeros(length(t), 3);

end

end

p(:, 1) = interp1(tx, x(:, 1), t, ’spline’);

p(:, 3) = Pc(3)*ones(length(t),1);

if nargout > 1

dp(:, 1) = interp1(tx, x(:, 2), t, ’spline’);

if nargout > 2

d2p(:, 1) = interp1(tx, x(:, 3), t, ’spline’);

end

end
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end

obj.DesiredPath = @Path;

end

% Dynamic methods

function [X] = FwdKin(obj, Q)

s1 = sin(Q(1, :));

c1 = cos(Q(1, :));

s2 = sin(Q(2, :));

c2 = cos(Q(2, :));

s23 = sin(Q(2, :) + Q(3, :));

c23 = cos(Q(2, :) + Q(3, :));

l = obj.LinkLen;

X(1, :) = c1.*(l(2)*c2 + l(3)*s23);

X(2, :) = s1.*(l(2)*c2 + l(3)*s23);

X(3, :) = l(1) - l(2)*s2 + l(3)*c23;

end

function [Q] = InvKin(obj, X)

function F = SysQ(q)

F(:) = obj.FwdKin(q) - X;

end

Q = fsolve(@SysQ, zeros(3,1));

end

function [J] = Jacobian(obj, Q)

l = obj.LinkLen;

s1 = sin(Q(1));

c1 = cos(Q(1));

s2 = sin(Q(2));

c2 = cos(Q(2));

s23 = sin(Q(2) + Q(3));

c23 = cos(Q(2) + Q(3));

J = zeros(3,3);
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J(1, 1) = -s1*( l(2)*c2 + l(3)*s23);

J(1, 2) = c1*(-l(2)*s2 + l(3)*c23);

J(1, 3) = l(3)*c1*c23;

J(2, 1) = c1*( l(2)*c2 + l(3)*s23);

J(2, 2) = s1*(-l(2)*s2 + l(3)*c23);

J(2, 3) = l(3)*s1*c23;

J(3, 2) = -l(2)*c2 - l(3)*s23;

J(3, 3) = -l(3)*s23;

end

function H = InertiaMatrix(obj, Q)

I = obj.InertiaMoment;

s3 = sin(Q(3));

c2 = cos(Q(2));

s23 = sin(Q(2) + Q(3));

H = zeros(3,3);

H(1, 1) = I(1) + I(2)*s23ˆ2 + I(3)*c2ˆ2 + 2*I(4)*c2*s23;

H(2, 2) = I(2) + I(3) + 2*I(4)*s3;

H(2, 3) = I(2) + I(4)*s3;

H(3, 2) = H(2, 3);

H(3, 3) = I(2);

end

function C = CoriolisMatrix(obj, Q, dQ)

I = obj.InertiaMoment;

c2 = cos(Q(2));

c3 = cos(Q(3));

c23 = cos(Q(2) + Q(3));
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C = zeros(3,3);

C(1, 2) = (I(2)*sin(2*(Q(1) + Q(2))) - I(3)*sin(2*Q(2)) + ...

2*I(4)*cos(2*Q(2) + Q(3)))*dQ(1);

C(1, 3) = (I(2)*sin(2*(Q(1) + Q(2))) + 2*I(4)*c2*c23)*dQ(3);

C(2, 1) = 0.5*(-I(2)*sin(2*(Q(1) + Q(2))) + I(3)*sin(2*Q(2)) -...

2*I(4)*cos(2*Q(2) + Q(3)))*dQ(1);

C(2, 3) = 2*I(4)*c3*dQ(2) + I(4)*c3*dQ(3);

C(3, 1) = -0.5*(I(2)*sin(2*(Q(2) + Q(3))) + I(4)*c2*c23)*dQ(1);

C(3, 2) = -I(4)*c3*dQ(2);

end

function G = Gravity(obj, Q)

l = obj.LinkLen;

lc = obj.CMLen;

m = obj.Mass;

g = 9.81;

c2 = cos(Q(2));

s23 = sin(Q(2) + Q(3));

G = zeros(3, 1);

G(2) = -(lc(3)*m(3)*s23 + lc(2)*m(2)*c2 + l(2)*m(3)*c2)*g;

G(3) = -lc(3)*m(3)*s23*g;

end

function dJ = dJacobian(obj, Q, dQ)

l = obj.LinkLen;

s1 = sin(Q(1));

c1 = cos(Q(1));

s2 = sin(Q(2));

c2 = cos(Q(2));

s23 = sin(Q(2) + Q(3));

c23 = cos(Q(2) + Q(3));
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% dJi derivative of each element of Jacobian wrt i-th variable

%--- 1 ---

dJ1 = [-c1*(l(2)*c2 + l(3)*s23), ...

-s1*(-l(2)*s2 + l(3)*c23), ...

-l(3)*s1*c23; ...

-s1*(l(2)*c2 + l(3)*s23), ...

c1*(-l(2)*s2 + l(3)*c23), ...

l(3)*c1*c23;...

0, 0, 0];

%--- 2 ---

dJ2 = [-s1*(-l(2)*s2 + l(3)*c23), ...

-c1*(l(2)*c2 + l(3)*s23), ...

-l(3)*c1*s23;...

c1*(-l(2)*s2 + l(3)*c23), ...

-s1*(l(2)*c2 + l(3)*s23), ...

-l(3)*s1*s23;...

0, l(2)*s2 - l(3)*c23, -l(3)*c23];

%--- 3 ---

dJ3 = -l(3)*[ s1*c23, c1*s23, c1*s23;...

-c1*c23, s1*s23, s1*s23;...

0, c23, c23];

%--- dJ ---

dJ = dJ1*dQ(1) + dJ2*dQ(2) + dJ3*dQ(3);

end

end

end

Function: GetMu(1)

function Mu = GetMu(Lambda, Stiffness, MuMax)

% Set up such value of parameter mu

% that ensures the minimal radius of the robot’s cone

if nargin < 0

MuMax = 100;

end
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L = Lambda;

K = Stiffness;

I3 = eye(3);

O3 = zeros(3,3);

TLm = [I3 O3; L I3];

T = [I3, O3, O3; [O3; O3], TLm];

N = 1000;

mu = linspace(0.01, MuMax, N)’;

phi = zeros(N, 1);

vmin = phi;

vmax = phi;

for i = 1:N

QSR = T’*[O3, O3, 0.5*I3; ...

O3, -mu(i)*L, 0.5*mu(i)*I3; ...

0.5*I3, 0.5*mu(i)*I3, -K]*T;

C = Cone(*)(QSR);

(∗) MATLAB script for Cone() in Section C.1

phi(i) = C.Radius;

end

[Phi, I] = min(phi);

Mu = mu(I(1));

end

Function: SmoothDesiredPath(2)

function [tx, x] = SmoothDesiredPath(T, InitialPos, ContactPos, ...

ContactTime, Offset)

% Desired path has the following structure

% x(t) = at + b, if 0 <= t <= Toffset;

% x(t) = ContactPos(1) + Offset, if t > Toffset;

% a and b are found by the conditions:

% x(0) = InitialPos(1), x(ContactTime) = ContactPos(1)
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% y(t) = ContactPos(2);

% z(t) = ContactPos(3);

% Tc in seconds

Tc = ContactTime;

% Offset in meters

eps = Offset;

x0 = InitialPos(1);

xc = ContactPos(1);

b = x0;

a = (xc - x0)/Tc;

Teps = (1 + eps/(xc - x0))*Tc;

% Construct an observer

A = [0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1; 0 0 0 0 0];

C = [1 0 0 0 0];

pls = linspace(-3, -2, 5);

L = place(A’, C’, pls);

L = L’;

function [x, dx] = xRefSignal(t)

N = length(t);

x = zeros(1, N);

dx = zeros(1, N);

for i=1:N

if t(i) <= Teps

x(i) = a*t(i) + b;

dx(i) = a;

else

x(i) = xc + eps;

dx(i) = 0;

end

end

end
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function dx = xSys(t, x)

xr = xRefSignal(t);

A1 = A - L*C;

dx(1:5, 1) = A1*x + L*[xr];

end

[x0, dx0] = xRefSignal(0);

[tx, x] = ode45(@xSys, [0, T], [x0;dx0;0;0;0]);

end

C.3 Environment model

classdef Environment < handle

properties
Base

ContactPos

LinkLen

Mass

Stiffness

Damping

QSR

eCone

end

methods
function obj = Environment(LinkLength, ContactPosition,...

ContactDamping)

% ContactPos - coordinates of the conact position

% in the robot base frame

% Base - coordinates of the environment base

% in the robot base frame
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obj.ContactPos = ContactPosition;

obj.LinkLen = LinkLength;

obj.Base = [ContactPosition(1) + LinkLength(2); 0; 0];

obj.setMass;

obj.setStiffness;

obj.setDamping;

obj.setQSR(ContactDamping);

obj.setCone;

end

function [] = setMass(obj)

% In kg

obj.Mass = [2.5; 2.5];

end

function [] = setStiffness(obj)

% In N/m

% Parameter set 2

obj.Stiffness = [1000 0 0; 0 0 0; 0 0 1];

% Parameters set 1

% obj.Stiffness = [100 0 0; 0 0 0; 0 0 1];

end

function [] = setDamping(obj)

obj.Damping = [10 0 0; 0 0 0; 0 0 0];

end

function [] = setQSR(obj, ContactDamping)

%-------------------------------------------------------

% Compute contact damping term satisfying requirements

% De - (1+eps)*cDse >= 0 (1)

% cDse - for the environmental cone;

%-------------------------------------------------------
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I3 = eye(3);

O3 = zeros(3,3);

cDse = diag([max(-ContactDamping(1,1), 0);...

max(-ContactDamping(2,2), 0);...

max(-ContactDamping(3,3), 0)]);

dc = cDse(1,1);

de = obj.Damping(1,1);

if dc > 0

eps = de/dc - 1;

cDse = (1 + eps)*cDse/eps;

else

cDse = zeros(3,3);

end

QSRenv = [ O3, O3, -0.5*I3; ...

O3, O3, O3; ...

-0.5*I3, O3, cDse];

obj.QSR = QSRenv;

end

function [] = setCone(obj)

obj.eCone = Cone(*)(obj.QSR);

(∗) MATLAB script for Cone() in Section C.1

end

% Dynamic methods

function X = FwdKin(obj, Q)

l = obj.LinkLen;

s1 = sin(Q(1, :));

c1 = cos(Q(1, :));

s12 = sin(Q(1, :) + Q(2, :));

c12 = cos(Q(1, :) + Q(2, :));

X(1, :) = obj.Base(1) - l(1)*s1 - l(2)*c12;
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X(2, :) = 0*c1;

X(3, :) = l(1)*c1 - l(2)*s12;

end

function J = Jacobian(obj, Q)

J = zeros(3, 2);

s1 = sin(Q(1));

c1 = cos(Q(1));

s12 = sin(Q(1) + Q(2));

c12 = cos(Q(1) + Q(2));

l = obj.LinkLen;

J(1, 1) = -l(1)*c1 + l(2)*s12;

J(1, 2) = l(2)*s12;

J(3, 1) = -l(1)*s1 - l(2)*c12;

J(3, 2) = -l(2)*c12;

end

function dJ = dJacobian(obj, Q, dQ)

s1 = sin(Q(1));

c1 = cos(Q(1));

s12 = sin(Q(1) + Q(2));

c12 = cos(Q(1) + Q(2));

l = obj.LinkLen;

% dJi derivative of each element of Jacobian wrt i-th variable

%--- 1 ---

dJ1 = zeros(3, 2);

dJ1(1,1) = l(1)*s1 + l(2)*c12;

dJ1(1,2) = l(2)*c12;

dJ1(3,1) = -l(1)*c1 + l(2)*s12;

dJ1(3,2) = l(2)*s12;

%--- 2 ---

dJ2 = zeros(3, 2);
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dJ2(1,1) = l(2)*c12;

dJ2(1,2) = l(2)*c12;

dJ2(3,1) = l(2)*s12;

dJ2(3,2) = l(2)*s12;

dJ = dJ1*dQ(1) + dJ2*dQ(2);

end

function H = InertiaMatrix(obj, Q)

l = obj.LinkLen;

m = obj.Mass;

s2 = sin(Q(2));

H = zeros(2, 2);

H(1, 1) = l(1)ˆ2*(m(1) + m(2)) + l(2)ˆ2*m(2) - ...

2*l(1)*l(2)*m(2)*s2;

H(1, 2) = l(2)*m(2)*(l(2) - l(1)*s2);

H(2, 1) = H(1, 2);

H(2, 2) = l(2)ˆ2*m(2);

end

function C = CoriolisMatrix(obj, Q, dQ)

l = obj.LinkLen;

m = obj.Mass;

c2 = cos(Q(2));

C = l(1)*l(2)*m(2)*c2*[-2*dQ(2) -dQ(2); dQ(1) 0];

end

function G = Gravity(obj, Q)

l = obj.LinkLen;

m = obj.Mass;
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s1 = sin(Q(1));

c12 = cos(Q(1) + Q(2));

g = 9.81;

G = -g*[l(1)*(m(1) + m(2))*s1 + l(2)*m(2)*c12; l(2)*m(2)*c12];

end

function dP = StiffnessTerm(obj, Q)

%Returns stiffness term in Joint space

K = obj.Stiffness;

X = obj.FwdKin(Q);

J = obj.Jacobian(Q);

Xs0 = [obj.ContactPos(1); 0; obj.ContactPos(3)];

dP = 2*J’*K*(X - Xs0);

end

function D = DampingTerm(obj, Q)

J = obj.Jacobian(Q);

D = J’*obj.Damping*J;

end

end

end

C.4 Scattering Transformation

In this section, we represent MATLAB code that solves the optimization problem (3.19)-(3.20).

Function: ScatteringTransformation(s)

function S = ScatteringTransformation(Rob, Env, Gap, Weights)

% Original cone of the robot subsystem

Cr = Rob.rCone;
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% Original cone of the environment subsystem

Ce = Env.eCone;

O = zeros(3, 3);

I3 = eye(3);

I6 = eye(6);

s = sin(Cr.Radius);

c = cos(Cr.Radius);

Wr = Cr.Basis*[[sˆ2*I3, O, O]; [[O; O], -cˆ2*I6]]*Cr.Basis’;

function F = Functional(a)

S1 = diag(a(1:3));

S21 = diag(a(4:6));

S22 = diag(a(7:9));

W1 = Weights(1)*I3;

W2 = Weights(2)*I3;

W3 = Weights(3)*I3;

F = trace(W1*(S1 - I3)ˆ2 + W2*S21ˆ2 + W3*S22ˆ2);

end

function [c, ceq] = NonLinCond(a)

S0 = [[diag(a(1:3)); diag(a(4:6)); diag(a(7:9))]...

[[O O]; I6]...

];

QSRd = S0’*Wr*S0;

% Construct a cone for the derived matrix QSRd

C = Cone(QSRd);

M = C.Projector*Ce.Projector;

sigma = sqrt(max(eig(M*M’)));

% Cone separation condition with desired Gap between cones

c = [sigma - cos(Ce.Radius + C.Radius + Gap)];

ceq = [];
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end

options = optimoptions(@fmincon, ’MaxFunctionEvaluations’, 30000,...

’MaxIterations’, 10000);

% Starting guess

a0(1:3) = ones(3, 1);

a0(4:9) = zeros(6, 1);

[a,fval,exitflag,output] = fmincon(@OptFun, a0, [], [], [], [], ...

[], [], @NonLinCond, options);

% Scattering transformation

S = [[diag(a(1:3)); diag(a(4:6)); diag(a(7:9))]...

[[O O]; I6]...

];

end

C.5 Main unit

C.5.1 Contact forces

function Fenv = ContactForces(q)

global Rob Env g_ContactDamping g_ContactStiffness

% Compute a vector column of the contact force fenv

% based on current state of the robot Pqr and

% the environment Pqe in their joint space

% q is a 10-th dimensional vector

% q(1,2,3) = qr (robot joint coordinates)

% q(4,5,6) = dqr (robot joint velocities)

% q(7,8) = qe (environment joint coordinates)

% q(9,10) = dqe (environment joint velocities)

Pr = Rob.FwdKin(4)(q(1:3));

dPr = Rob.Jacobian(4)(q(1:3))*q(4:6);
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(4) MATLAB scripts in Section C.2

Pe = Env.FwdKin(5)(q(7:8));

dPe = Env.Jacobian(5)(q(7:8))*q(9:10);

(5) MATLAB scripts in Section C.3

P = Pe - Pr;

dP = dPe - dPr;

Fenv = zeros(3,1);

if Pe(1) - Pr(1) < 0

Fenv = (g_ContactStiffness*P + g_ContactDamping*dP);

end

end

C.5.2 Reference signals

function Ref = ReferenceSignals(Fenv, Des, X)

global g_ScatteringTransformation

% Compute reference signals Ref = [Fref, Pref, dPref]:

% reference force Fref,

% reference position and velocity [Pref, dPref]

% using desired position, velocity (Des) and contact force (Fenv)

% Here q is a 10-th dimensional vector

% q(1,2,3) = qr (robot joint coordinates)

% q(4,5,6) = dqr (robot joint velocities)

% q(7,8) = qe (environment joint coordinates)

% q(9,10) = dqe (environment joint velocities)

Xd = Des(:, 1);

dXd = Des(:, 2);

S = g_ScatteringTransformation;

S1 = S(1:3, 1:3);

S21 = S(4:6, 1:3);
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S22 = S(7:9, 1:3);

S3 = S(7:9, 4:6);

Ref(:, 1) = S1*Fenv - Fenv;

Ref(:, 2) = Xd - S21*Fenv;

Ref(:, 3) = dXd - S22*Fenv - S3*(X - Xd);

end

C.5.3 Local controller

function Utau = Controller(q, Xr, dXr, d2Xr)

global Rob

% Compute the controller in the joint space: tau = J’*u

% u = Hx(q)*dr + Cx(q, dq)*r - K*sigma;

% Gravity term is omitted from the dynamics and the controller,

% since it is cancelled.

% Reference force is added directly to the dynamic equation,

% not in the controller.

% q(1..6) - vector of joint variables for the robot:

% q(1..3) - position, q(4..6) - velocity.

% q(7..10) - vector of joint variables for the environment:

% q(7..8) - position, q(9..10) - velocity,

% q(11..19) - estimates of the reference signal in the task space:

% q(11..13) = Pref, q(14..16) = dPref, q(17..19) = d2Pref)

% Robot Jacobian

J = Rob.Jacobian(6)(q(1:3));

iJ = eye(3)/J;

dJ = Rob.dJacobian(6)(q(1:3), q(4:6));

Hr = Rob.InertiaMatrix(6)(q(1:3));

Cr = Rob.CoriolisMatrix(6)(q(1:3), q(4:6));

X = Rob.FwdKin(6)(q(1:3));

(6) MATLAB scripts in Section C.2

% In Cartesian space
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Hx = iJ’*Hr*iJ;

Cx = (iJ’*Cr - Hx*dJ)*iJ;

dX = J*q(4:6);

sigma = (dX - dXr) + Rob.Lambda*(X - Xr);

r = dX - sigma;

dr = d2Xr - Rob.Lambda*(dX - dXr);

U = Hx*dr + Cx*r - Rob.Stiffness*sigma;

Utau = J’*U;

end

C.5.4 Closed-loop dynamics

function dq = System(t, q)

global Rob Env g_RefSysA g_RefSysB

% q(1,2,3) - qr (robot joint coordinates)

% q(4,5,6) - dqr (robot joint velocities)

% q(7,8) - qe (environment joint coordinates)

% q(9,10) - dqe (environment joint velocities)

% q(11,22) - estimates for reference trajectory and its derivatives

% Contact force

Fenv = ContactForces(7)(q(1:10));

(7) MATLAB script in Section C.5.1

% Current robot information

[Pdes, dPdes] = Rob.DesiredPath(8)(t);

Pdes = Pdes’;

dPdes = dPdes’;

X = Rob.FwdKin(8)(q(1:3));

dX = Rob.Jacobian(8)(q(1:3))*q(4:6);

Hr = Rob.InertiaMatrix(8)(q(1:3));
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Cr = Rob.CoriolisMatrix(8)(q(1:3), q(4:6));

Jr = Rob.Jacobian(8)(q(1:3));

iHr = eye(3)/Hr;

(8) MATLAB script in Section C.2

% Reference sigmals

Ref = ReferenceSignals(9)(Fenv, [Pdes, dPdes], X);

Fref = Ref(:, 1);

Xr = Ref(:, 2);

dXr = Ref(:, 3);

d2Xr = q(17:19);

(9) MATLAB script in Section C.5.2

% Local manipulator controller

tau = Controller(10)(q(1:19), Xr, dXr, d2Xr);

(10) MATLAB script in Section C.5.3

% Current information about environment

He = Env.InertiaMatrix(11)(q(7:8));

Ce = Env.CoriolisMatrix(11)(q(7:8), q(9:10));

Se = Env.StiffnessTerm(11)(q(7:8));

De = Env.DampingTerm(11)(q(7:8));

Je = Env.Jacobian(11)(q(7:8));

iHe = eye(2)/He;

(11) MATLAB script in Section C.3

dq = zeros(22, 1);

% Closed-loop dynamics

dq(1:3) = q(4:6);

dq(4:6) = iHr*(-Cr*q(4:6) + tau + Jr’*(Fenv + Fref));

dq(7:8) = q(9:10);

dq(9:10) = iHe*(-Ce*q(9:10) - Se - De*q(9:10) - Je’*(Fenv));

dq(11:22) = g_RefSysA*q(11:22) + g_RefSysB*[Xr; dXr];

end
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C.5.5 Function: main.m

function main(Tend, ApplyScattering, Gap, xWeights)

clear global;

clc;

global g_ContactStiffness g_ContactDamping g_Tend ...

g_ScatteringTransformation ...

Rob Env ...

g_RefSysA g_RefSysB...

g_Initial

% Set global contact parameters

g_ContactStiffness = zeros(3,3);

% If Parameter set 1: g_ContactStiffness(1,1) = 20;

% If Parameter set 2: g_ContactStiffness(1,1) = 200;

g_ContactStiffness(1,1) = 200;

g_ContactDamping = diag([-2; 0; 0]);

% Set intergartion time interval [0, Tend]

g_Tend = Tend;

% Robot initialization

Rob = Robot(12)(Tend);

(12) MATLAB script in Section C.2

% Initialize parameters for Environment:

% ContactPosition = [Xe(0), Ye(0), Ze(0)]

% Links length of the environment:

% LinkLength = [Rob.ContactPos(3), Rob.LinkLen(2)];

% Environment initialization

Env = Environment(13)(LinkLength, Rob.ContactPos, g_ContactDamping);

(13) MATLAB script in Section C.3

% Scattering operator

if ApplyScattering == 0

g_ScatteringTransformation = eye(9);

else
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g_ScatteringTransformation = ScatteringTransformation(s)(...

Rob, Env, Gap, xWeights);

(s) MATLAB script for ScatteringTransformation() in Section C.4

end

% System for the restoration of 2nd derivative of the reference signals.

[g_RefSysA, g_RefSysB] = d2RefSignal;

function [RefSysA, RefSysB] = d2RefSignal

O3 = zeros(3,3); I3 = eye(3);

rA = [O3 I3 O3 O3; O3 O3 I3 O3; O3 O3 O3 I3; O3 O3 O3 O3];

rC = [I3 O3 O3 O3; O3 I3 O3 O3];

pls = linspace(-1.75, -1, 12);

RefSysB = place(rA’, rC’, pls);

RefSysB = RefSysB’;

RefSysA = (rA - RefSysB*rC);

end

% Setup initial state

g_Initial = zeros(22, 1);

[Xd, dXd, d2Xd] = Rob.DesiredPath(14)(0);

g_Initial(11:19) = [Xd, dXd, d2Xd]’;

Qr0 = Rob.InvKin(14)(Xd’);

g_Initial(1:3) = Qr0;

(14) MATLAB script in Section C.2

% Solve the system

options = odeset(’MaxStep’, 10ˆ(-3));

S = @System;

[t, q] = ode15s(S, [0, g_Tend], g_Initial, options);

end
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