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Abstract 

The two-spotted spider mite Tetranychus urticae Koch is a key agricultural pest that causes 

significant yield losses in a wide range of economically important crops. Rapid development 

of resistance to several classes of pesticides in T. urticae necessitates introduction of alternative 

management strategies to control this pest. Indole glucosinolates (IGs) are secondary 

metabolites found in Brassicaceae plants (including Arabidopsis thaliana) that have been 

shown to be effective against T. urticae and could be potential candidates to control spider 

mites. However, a laboratory population selected on IG-containing Arabidopsis was able to 

evolve adaptation to this plant. The overall objective of this thesis was to identify the 

mechanism of adaptation of two-spotted spider mites to Arabidopsis and IGs. Similar 

expression of marker genes and levels of plant defense-related metabolites after feeding of IG-

adapted and non-adapted adult spider mites indicated that plant suppression is not the strategy 

used by spider mites to adapt to Arabidopsis and IGs. On the other hand, higher activity of 

P450 monooxygenases in IG-adapted mites and the negative effect of inhibitors of these 

detoxification enzymes on fecundity of adapted spider mites suggested that spider mites use 

detoxification to overcome the effect of IGs. HPLC-mediated detection of conjugates of IG 

breakdown products in adapted compared to non-adapted mites supports the involvement of 

detoxification in the adaptation of T. urticae to IGs. In addition, RNA-seq analysis showed 

induction of detoxification enzyme genes upon mite feeding on IGs. Upregulation of genes 

associated with growth, development and fecundity in adapted spider mites suggests that T. 

urticae neutralizes the negative effect of IGs. Genes that were differentially upregulated in 

adapted compared to non-adapted spider mites likely capture gene sets associated with the 

adaptation to IGs, suggesting that these genes can be further used in manipulation of T. urticae 

to avoid development of adaptation or to succumb it.  
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Chapter 1 

Introduction 

 Herbivore adaptation to host plants 

The control of pests that attack our crops is a costly challenge that needs to be overcome 

in order to meet the global rising demand for food and fiber (Popp et al., 2013). Arthropod 

pests including insects and mites mediate an average of 35% of potential pre-harvest crop 

yield loss worldwide (Oerke, 2006). Populations of these pests are regularly exposed to 

potentially harmful compounds in their environment called xenobiotics (e.g. pesticides and 

plant defensive metabolites). Survival of arthropod pests depends on their ability to develop 

tolerance or resistance to xenobiotics (Popp et al., 2013; Van Leeuwen and Dermauw, 

2016). Also, pest adaptation to xenobiotics is of great importance to agriculture, the 

environment and human health since it could lead to more frequent application of 

pesticides. Recently, it has been suggested that the ability to adapt to various host plants 

could lead to rapid development of pesticide resistance in arthropod pests (Dermauw et al., 

2013; Van Leeuwen and Dermauw, 2016).  However, only a few studies have investigated 

the molecular mechanisms of herbivore adaptation to host plants (Feyereisen, 2005; 

Després et al., 2007; Díaz-Riquelme et al., 2016; Van Leeuwen and Dermauw, 2016). 

Understanding the mechanism of herbivore adaptation to plant hosts will enable 

development of novel strategies for pest control aimed at preventing herbivore adaptation 

to host plants and potentially blocking the cross-resistance between phytotoxins and 

pesticides (Dermauw et al., 2013; Díaz-Riquelme et al., 2016). In this thesis two-spotted 

spider mites were used to investigate mechanisms that enable this pest to evolve its 

adaptation to new plant hosts. Arabidopsis thaliana was used a model host plant to study 

the reciprocal responses in this plant-pest interaction. The availability of genome-wide 

transcriptomic platform for both interacting organisms (Halkier and Gershenzon, 2006; 

Sønderby et al., 2010 a; Grbić et al., 2011) provides valuable tools for molecular and 

biochemical analyses of plant-spider mite interactions. 
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 Two-spotted spider mites 

 Biology and effect on host plant 

The two-spotted spider mite, Tetranychus urticae Koch. (Acari: Tetranychidae), is a 

cosmopolitan generalist plant feeder and an important agricultural pest (van de Vrie et al., 

1972; Jeppson et al., 1975; Migeon et al., 2010). The ability of T. urticae to evade a wide 

variety of plant defenses has made it one of the most polyphagous herbivores (Grbić et al., 

2011; Attia et al., 2013; Van Leeuwen and Dermauw, 2016). Two-spotted spider mites 

feed on about 1200 plant species belonging to more than 140 different plant families, from 

which more than 150 species are economically important (Migeon et al., 2010) including 

field crops (e.g. corn, cotton and soybean), horticultural crops (e.g. apple, pear and peach), 

greenhouse crops (e.g. strawberries, tomato and cucumber) and ornamentals (e.g. rose and 

gerbera) (van de Vrie et al., 1972; Jeppson et al., 1975; Park and Lee, 2005; Migeon et al., 

2010; Meena et al., 2013; Scott et al., 2013; Warabieda, 2015; Liu et al., 2016).  

Two-spotted spider mites belong to the subclass Acari from the class Arachnida. The 

members of this subclass are unusual arachnids as they are the only group that includes 

plant-feeding mite species (Hoy, 2011). The phytophagous species of mites occur in five 

families: Tetranychidae, Tenuipalpidae, Eriophyidae, Tarsonemidae and Tuckerillidae 

(Hoy, 2011). Members of the Tetranychidae family are referred to as spider mites since 

they make silk fibers from silk glands at their mouthpart palps (Alberti and Crooker, 1985). 

Spider mites produce silk webs for a variety of different functions, including protection 

from natural enemies and environmental conditions, pheromone communication, dispersal 

and colony establishment (van de Vrie et al., 1972; Gerson, 1985).  

The life cycle of T. urticae have five developmental stages: egg, larva, protonymph, 

deutonymph, and adults (Alberti and Crooker, 1985). Adult spider mites are sexually 

dimorphic, so that females are larger with a rounded posterior compared to smaller males 

with a more tapered posterior end (Hoy, 2011). Eggs are deposited singly as translucent 

spheres that are 0.1 mm in diameter (Tehri, 2014). It takes from three days at 30º C to 13 

days at 15º C (Abd-El-Wahed and El-Halawany, 2012) for eggs to hatch into larvae. The 

six-legged larvae develop into eight-legged nymphs, protonymphs and then deutonymphs, 
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which are all active stages that feed on the host plant (Crooker, 1985; Hoy, 2011). Each of 

the developmental stages is followed by an inactive period of quiescence (Crooker, 1985; 

Hoy, 2011). The developmental time of each stage is dependent on temperature and 

humidity (Herbert, 1981; Abd-El-Wahed and El-Halawany, 2012). The life cycle of T. 

urticae from egg to adult can be completed in 30-34 days at 15º C or can be as short as six 

to seven days at high temperatures of about 30º C (Abd-El-Wahed and El-Halawany, 

2012). Males have a shorter developmental time compared to females (Mitchell, 1973) and 

wait around a female deutonymph in the quiescence state to mate immediately after the 

adult female emerges (Crooker, 1985). Eggs produced by a fertilized female can develop 

into offspring of both sexes with a ratio of 3:1 to 4:1 female:male (Overmeer and Harrison, 

1969; Modarres Najafabadi, 2012), while unfertilized females can produce eggs through 

arrhenotoky, resulting in haploid males (Crooker, 1985; Tehri, 2014). Oviposition begins 

as early as one or two days after maturity and continues for almost the whole life span of 

females, during which about 100 eggs might be laid by each female (Modarres Najafabadi, 

2012; Tehri, 2014). The haplodiploidy genetic system and arrhenotoky that enable a single 

female to develop a new colony and also the ability of females to lay a large number of 

eggs per day can cause a potential outbreak of spider mites in a short time after their 

occurrence in a new environment (Meena et al., 2013; Tehri, 2014). 

Spider mites cause damage on host plants during feeding as they penetrate the plant tissue 

using specialized piercing-sucking, stylet-like mouthparts. They pass their stylets through 

the epidermal cells and empty chlorophyll and other contents of parenchyma cells 

(Tomczyk and Kropczynska, 1985; Park and Lee, 2002; Bensoussan et al., 2016). The 

resulting damage and induction of plant wound/herbivory responses lead to discoloration 

of the feeding area, forming whitish to yellowish spots on the upper surface of the leaf 

(Park and Lee, 2002; Bensoussan et al., 2016). Spider mites penetrate their stylets into the 

leaf through a stomatal opening or in between epidermal cells mediating minimum damage 

to epidermal cells (Bensoussan et al., 2016). When the population is large, the chlorotic 

spots may join and become brownish, leading to defoliation and plant death. Spider mite 

feeding at lower intensity affects plants by reducing photosynthesis and transpiration rate 

(Sances et al., 1979; Park and Lee, 2002), which in turn leads to a decrease in the amount 

of harvestable material (Sances et al., 1979; Park and Lee, 2005; Warabieda, 2015). 
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 Control of spider mites and pesticide resistance 

Natural populations of T. urticae usually occur at low densities due to natural enemies, 

diseases and limited nutrients in the host plants (van de Vrie et al., 1972; Roush and Hoy, 

1978). In modern agricultural systems occurrence of T. urticae, as an agricultural pest 

happens due to the following reasons: 1) spider mites are hosted by high quality plants and 

are not limited by nutrients, water, diseases, pests or weed competition as a result of 

fertilizer and pesticide application (van de Vrie et al., 1972); 2) application of general 

pesticides affects non-target arthropods including spider mite natural enemies and 

competitors; and 3) monoculture of crops reduces population of natural enemies by 

eliminating their shelter (Roush and Hoy, 1978) . Although changes in agroecosystem and 

biological characteristics of spider mites (e.g. high fecundity and short generation time) 

contributed in the pest status of T. urticae, the fast growth of T. urticae population in 

agroecosystems results from its ability to develop quick resistance to pesticides (Cranham 

and Helle, 1985). 

Resistance happens when a previously susceptible population becomes less susceptible to 

a particular pesticide (Agrawal et al., 2002; Després et al., 2007). Resistance of T. urticae 

to pesticides is well-documented (Van Leeuwen et al., 2010; Grbić et al., 2011) so that T. 

urticae is identified as the most resistant plant pest: to date, the resistance of T. urticae to 

over 95 pesticide active ingredients has been reported in over 60 countries (DARP, 2015). 

Spider mites can develop tolerance to a new pesticide after a few applications while full 

resistance can be obtained within two to four years (Sato et al., 2005; Van Leeuwen et al., 

2009; Grbić et al., 2011). The reason behind this rapid development of resistance in spider 

mites is their high reproduction rate, short life cycle and, as a result, too many generations 

per year (Van Leeuwen et al., 2009). In addition to these factors, development of pesticide 

resistance is accelerated in T. urticae by arrhenotoky inbreeding and high mutation rate 

(Cranham and Helle, 1985; Van Leeuwen et al., 2009). 
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 Association between plant adaptation and insecticide 

resistance 

Plant secondary metabolites are defensive compounds (which are not involved in plant 

growth and development compared to primary metabolites) produced in plants 

constitutively or might be induced by herbivore feeding (Després et al., 2007; Heidel-

Fischer and Vogel, 2015; Kant et al., 2015). To neutralize these metabolites, a defensive 

response is activated in herbivores (Després et al., 2007; Alba et al., 2011; Van Leeuwen 

and Dermauw, 2016). Counter-adaptation to plant secondary metabolites can be achieved 

if herbivores are in contact with plant metabolites consistently (Després et al., 2007; Li et 

al., 2007; Simon et al., 2015; Van Leeuwen and Dermauw, 2016). It has been shown that 

the resulting activation of a herbivore’s defensive response could cause development of 

tolerance or resistance to pesticides in herbivores, including T. urticae (Grbić et al., 2011; 

Dermauw et al., 2013; Van Leeuwen and Dermauw, 2016). Castle et al. compared the 

effect of three different host plants on susceptibility of the whitefly, Bemisia tabaci, to 

insecticides and indicated that both field collected and greenhouse-reared populations of 

whiteflies on Brassica species, including broccoli and kale were more tolerant to 

insecticides compared to those on the less challenging host plant, cantaloupe (Castle et al., 

2009). Similarly, larvae of the tobacco caterpillar, Spodoptera litura, reared on an artificial 

diet were more susceptible to two insecticides, cypermethrin and profenophos, compared 

to those reared on cauliflower (Karuppaiah et al., 2016). Comparable results were reported 

for T. urticae: a population of two-spotted spider mites that were selected for resistance to 

a variety of cucumber were more resistant to organophosphate pesticides compared to the 

susceptible population from which it originated (Gould et al., 1982). When a susceptible 

population of T. urticae was transferred from beans to a challenging host plant (i.e., 

tomato), after five generations the adapted population showed a transcriptional profile 

resembling that of multipesticide resistant populations of T. urticae. Also, adapted spider 

mites were less susceptible to pesticides with different modes of action, suggesting a link 

between pesticide resistance and host plant adaptation in T. urticae (Dermauw et al., 2013). 

It has long been suggested, and supported through molecular analyses, that the enormous 

T. urticae host plant range leads to the development of resistance to pesticides (Dermauw 
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et al., 2013; Van Leeuwen and Dermauw, 2016). Therefore, determination of the 

mechanism of spider mite adaptation to plant secondary metabolites also provides insights 

into the potential further development of resistance to pesticides. Using this knowledge, 

adaptation of spider mites to tolerant host plants or resistance to pesticides can be avoided. 

Two-spotted spider mites cannot increase their populations on the model plant A. thaliana 

(Arabidopsis) like that on a less challenging host plant such as bean. It has recently been 

shown that a group of defensive metabolites in Arabidopsis, called glucosinolates are 

responsible for the poor performance of T. urticae on this plant (Zhurov et al., 2013). A 

strain of spider mites selected on Arabidopsis showed better performance on the wild type 

compared to mutants devoid of glucosinolates, suggesting a partial adaptation of spider 

mites to glucosinolates (Ratlamwala, 2014 c). To investigate the mechanism of adaptation 

of spider mites to glucosinolates, background on glucosinolate biochemistry, activation and 

the potential mechanisms of herbivore adaptation to glucosinolates is necessary. 

 Glucosinolates 

Glucosinolates are plant secondary metabolites that are characteristic of the order 

Brassicales and are primarily found in the Brassicaceae, including the model plant 

Arabidopsis and agriculturally important plants such as cabbage, broccoli and canola 

(Agerbirk and Olsen, 2012). These compounds, known for their negative influence on plant 

pests and pathogens, affect specialist and generalist herbivores differently so that they 

usually stimulate specialists whereas they most often act as a repellent to generalists 

(Lankau, 2007; Hopkins et al., 2009; Müller et al., 2010). The insecticidal effect of 

glucosinolates breakdown products is reported repeatedly for both specialists and 

generalists (Lichtenstein et al., 1962; Seo and Tang, 1982; Agrawal and Kurashige, 2003; 

Beekweelder et al., 2008; Hopkins et al., 2009; Müller et al., 2010; Bohinc et al., 2012; 

Schramm et al., 2012). Besides their agricultural importance, glucosinolates have been of 

interest for their cancer-prevention potential in different model animals through the 

activation of phase II detoxification enzymes (Zhang et al., 1992; Holst and Williamson, 

2004; Keum et al., 2004). A wide variety of glucosinolates are identified as having  

different structures and functions (Halkier and Gershenzon, 2006; Hopkins et al., 2009; 

Bohinc et al., 2012).  
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 Structure, classification and biosynthesis of glucosinolates 

Glucosinolates have a common core structure containing an oxime moiety with a sulfur-

linked thioglucose group and an oxygen-linked sulfate group attached to a variable amino-

acid derived side chain (Halkier and Gershenzon, 2006; Clarke, 2010; Sønderby et al., 

2010 a). Based on the structure of the side chain and the amino acid precursors, 

glucosinolates are divided into three classes: (1) aliphatic glucosinolates (AGs) derived 

from methionine, leucine, isoleucine or valine; (2) benzenic glucosinolated (BGs) also 

called aromatic glucosinolates derived from tyrosine or phenylalanine; and (3) indole 

glucosinolates (IGs) derived from tryptophan (Halkier and Gershenzon, 2006; Clarke, 

2010; Sønderby et al., 2010 a).  

 

 

Figure 1-1 General chemical structure of glucosinolates (A) and examples of side chains 

(R) of major glucosinolates present in Arabidopsis (B) (adapted from Halkier and 

Gershenzon, 2006). 

The biosynthesis of glucosinolates includes three phases: (a) amino acid chain elongation 

in which methylene groups are added into the side chain; (b) formation of glucosinolate 

core structure from the amino acid moiety; and (c) modifications of the side chain via 

hydroxylation, O-methylation, glycosylation, desaturation or acylation (Halkier and 

Gershenzon, 2006). The diversity of more than 130 glucosinolates identified up to date is 

mediated through the side chain elongation followed by the side chain modification phase 

(A) (B) 
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(Clarke, 2010; Agerbirk and Olsen, 2012). Diversion of IGs from AGs and BGs 

biosynthesis pathways occurs in the core structure formation phase where amino acid 

conversion to aldoximes is catalyzed by cytochrome P450 genes belonging to the CYP79 

family. CYP79B2 and CYP79B3 use tryptophan (the precursor amino acid for biosynthesis 

of IGs) as a substrate, CYP79F1 and CYP79F2 convert methionine (the precursor for AGs) 

and CYP 79A2 metabolizes phenylalanine (the precursor for BGs) (Sønderby et al., 2010 

a). A cyp79B2/cyp79B3 double knockout is completely devoid of IGs and so provides a 

useful tool in IGs studies (Halkier and Gershenzon, 2006).  

 

Figure 1-2 Biosynthesis pathway of aliphatic and indolic glucosinolates in Arabidopsis 

and enzymes involved in each step. Homologous enzymes catalyze similar steps in each 

pathway, except for GGP1 and SUR1 that are shared between the two pathways. ASA1, 

anthranilate synthase α1; BCAT4, branched chain amino acid transferase 4; CYP, 

cytochrome P450; GGP1, gamma glutamyl peptidase; GST, glutathione-Stransferase; 

MAM1-3, methylthioalkylmalate synthase1-3; SOT16-18, sulphotransferase 16-18; 

SUR1, C-S lyase; TSB1, tryptophan synthase β chain 1; UGT, UDP-glucosyl transferase 

(adapted from Sønderby et al., 2010). 
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 Glucosinolate breakdown 

Intact glucosinolates are not toxic but their enzymatic hydrolysis results in the production 

of an array of physiologically active breakdown products (Agerbirk et al., 2009; Hopkins 

et al., 2009; Winde and Wittstock, 2011; Wittstock, 2011). The hydrolysis of 

glucosinolates is catalyzed by a group of endogenous β-glucosidases named myrosinase or 

thioglucoside glucohydrolases (TGGs) (Wittstock, 2011). To avoid the toxic effect of 

glucosinolates, in plants, myrosinases are stored separately from glucosinolates in plant 

tissue and are only mixed with a substrate upon tissue damage (Bones and Rossiter, 1996; 

Andréasson et al., 2001). Myrosinases catalyze the cleavage of glucosinolate molecules to 

an unstable aglucone, which can be rearranged to isothiocyanates or be converted into 

nitriles, epithionitriles or organic thiocyanates depending on structure, pH and presence of 

specifier proteins (Uda et al., 1986; Wittstock, 2011). Under neutral conditions, the bond 

between sulfur and glucose is cleaved, and the aglycone moiety gives rise to sulfate and 

produces isothiocyanates. However, at lower pH, a sulfur loss from the molecule leads to 

formation of nitriles. The presence of Fe2+ or thiol compounds and epithio-specifier 

proteins increases the likelihood of nitrile formation  (Uda et al., 1986; Lambrix et al., 

2001; Burow and Wittstock, 2009). Epithionitrile formation requires the same conditions 

as those for nitriles plus the presence of terminal unsaturation of the R group. Another 

product, organic thiocyanate, is sometimes produced. Thiocyanate production is controlled 

by the presence of a specifier R group (Uda et al., 1986; Lambrix et al., 2001; Burow and 

Wittstock, 2009; Wittstock, 2011). Indole and 4-hydroxybenzyl glucosinolate yield 

thiocyanate (Agerbirk et al., 2009). The formation of thiocyanate from IGs occurs over a 

wide pH range, whereas 4-hydroxybenzyl glucosinolates yield thiocyanate only at a more 

basic pH (Agerbirk et al., 2009). Glucosinolates with β-hydroxylated side chains 

spontaneously cyclize to yield the oxazolidine-2-thiones (Wittstock, 2011). 

Among breakdown products of glucosinolates, isothiocyanates have been most frequently 

shown to be toxic to both generalist and specialist insects (Lichtenstein et al., 1962; Seo 

and Tang, 1982; Li et al., 2000; Agrawal and Kurashige, 2003). The toxicity of 

isothiocyanates results from their electrophilic nature, which leads to their interaction with 

proteins (Kawakishi and Kaneko, 1987; Hanschen et al., 2012). As isothiocyanates are 
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relatively lipophilic, they can cross cellular membranes and reach the intracellular 

environment where they react nonspecifically and irreversibly with nucleophiles such as 

glutathione (GSH) and/or proteins through interacting with sulfhydryl groups, disulfide 

bonds, and amines (Kawakishi and Kaneko, 1987).  Also, cyanide inactivates certain 

enzyme systems, especially those involved in cellular respiration such as cytochrome 

oxidase (Johnson, 1987). Although reactions of isothiocyanates with amino acids and 

proteins leading to inactivation of enzymes are demonstrated in vitro (Kawakishi and 

Kaneko, 1987), their mode of action in insects is not studied in vivo. Toxicity of organic 

thiocyanates and simple nitriles, likely mediated by the cyano group, is smaller than 

isothiocyanates and has occasionally been reported to be effective against insect herbivores 

(Wadleigh and Yu, 1988; Peterson et al., 1998), whereas to date the toxicity of 

epithionitriles on insects has not been documented. 

 

Figure 1-3 Hydrolysis of glucosinolates by myrosinases. Rearrangement and conversion 

of the unstable aglucone to the corresponding breakdown products affected by presence of 

specifier proteins, pH or presence of specific ions. ESP, epithiospecifier proteins (adapted 

from Halkier and Gershenzon, 2006).  
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 Spatial and temporal distribution of glucosinolates and 

myrosinases 

Since the distribution of glucosinolates in an individual plant relative to myrosinases 

significantly affects hydrolysis to bioactive products, determination of the accumulation 

sites of the glucosinolates in the plant is of great importance. Glucosinolates and 

myrosinases can be found in various plant organs and in all developmental stages (Bridges 

et al., 2002; Andréasson and Jørgensen, 2003; Brown et al., 2003). However, composition 

and concentration of glucosinolates varies significantly between plant organs and stages 

(Kliebenstein et al., 2001; Brown et al., 2003; Van Dam et al., 2009). In Arabidopsis 

seedlings, the highest concentration of glucosinolates is demonstrated in the cotyledons 

(Van Dam et al., 2009). The level of glucosinolates in vegetative plants is higher in roots 

compared to leaves (Van Dam et al., 2009). Brown et al. showed that, in the Columbia 

ecotype of Arabidopsis, the highest concentration of glucosinolates can be observed in 

reproductive organs, followed by young leaves, while the lowest concentration of 

glucosinolates could be found in senescing rosette leaves (Brown et al., 2003). The 

differences in glucosinolate level among stages is suggested to be due to adaptive allocation 

patterns to provide the optimal protection for the most valuable plant organs against 

herbivory (Van Dam et al., 1996; Brown et al., 2003). 

Distribution of the myrosinase-glucosinolate system in plant tissues is still unclear 

although it has been investigated for a long time (Thangstad et al., 1990; Bones and 

Rossiter, 1996; Andréasson et al., 2001; Bridges et al., 2002; Müller, 2009). To avoid the 

toxic effect of glucosinolate hydrolysis products in an intact plant, myrosinases should be 

kept separated from glucosinolates (Bones and Rossiter, 1996; Müller, 2009). 

Nevertheless, rapid and direct contact of glucosinolates and myrosinases should be allowed 

upon occurrence of damage to plant tissue. Myrosinases are synthesized at the rough 

endoplasmic reticulum and stored in vacuoles of single cells referred to as myrosin cells 

(Thangstad et al., 1990; Andréasson et al., 2001; Bridges et al., 2002; Andréasson and 

Jørgensen, 2003; Carter, 2004; Wittstock, 2011). Myrosin cells are specialized idioblast 

cells that are scattered within different tissues at low frequencies of 2-5% (Thangstad et 

al., 1990; Andréasson and Jørgensen, 2003). In the Arabidopsis, myrosin cells are found 
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in the phloem parenchyma in leaves, stem, inflorescences, and in guard cells (Andréasson 

et al., 2001; Husebye et al., 2002). These cells are localized separately but directly 

neighboring glucosinolate-containing cells (Husebye et al., 2002; Andréasson and 

Jørgensen, 2003). 

Although glucosinolates can be found throughout the tissue, they accumulate in vacuoles 

of specialized sulfur-rich cells called S-cells (Koroleva et al., 2000; Bridges et al., 2002; 

Andréasson and Jørgensen, 2003). Koroleva et al. described these cells for the first time in 

Arabidopsis flower stalks, where they were situated between vascular bundles and the 

endodermis (Koroleva et al., 2000).  Glucosinolates were estimated to account for 84% of 

the S-cell sulfur content with a high concentration of aliphatic and indole glucosinolates 

(more than 100 mM) (Koroleva et al., 2000). Glucosinolate-containing S-cells were later 

found in the epidermis, along the midvein of rosette leaves, the midvein and lateral veins 

of cauline leaves, outer margin of mature rosette leaves and all main veins of pedicle and 

siliques of Arabidopsis (Shroff et al., 2008; Koroleva et al., 2010). Glucosinolate 

biosynthesis occurs in the vascular tissues suggesting the involvement of transport 

processes (Du and Halkier, 1998; Reintanz et al., 2001; Chen et al., 2003; Redovniković 

et al., 2008). Biosynthetic enzymes, CYP79F2 and CYP79F1, are demonstrated to be 

localized in the endoplasmic reticulum, while side-chain elongation is suggested to be 

localized in chloroplasts (Reintanz et al., 2001; Falk et al., 2004; Textor et al., 2007). In 

some cases, myrosinases are detected in S-cells that are believed to be localized in a 

subcellular compartment different to that of glucosinolates (Koroleva and Cramer, 2011).  

 Effect of glucosinolates on plant-herbivore interaction 

Although the effect of glucosinolates and their breakdown products is documented on a 

wide range of herbivores (Hopkins et al., 2009; Winde and Wittstock, 2011), this effect 

depends on the class of glucosinolate and the type of herbivore (Halkier and Gershenzon, 

2006; Hopkins et al., 2009; Badenes-Perez et al., 2013).  Using transgenic plants devoid 

of one or more classes of glucosinolates, it has been demonstrated that the growth and 

development of chewing herbivores are affected by isothiocyanates derived from AGs, 

BGs and/or IGs (Beekweelder et al., 2008; Schlaeppi et al., 2008; Müller et al., 2010; 

Sarosh et al., 2010). All three classes of glucosinolates (AGs, BGs and IGs) affect two 
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generalist caterpillars, the African cotton leafworm, Spodoptera littoralis (Lepidoptera) 

and the beet armyworm, Spodoptera exigua (Lepidoptera) but to different extents, so that 

the effects of AGs and BGs are stronger than that of IGs (Schlaeppi et al., 2008; Müller et 

al., 2010). Both AGs (Beekweelder et al., 2008) and IGs (Schlaeppi et al., 2008) affect the 

cabbage moth, Mamestra brassicae (Lepidoptera) while the larvae of the cabbage looper, 

Trichoplusia ni (Lepidoptera) and the tobacco hornworm, Manduca sexta (Lepidoptera) 

are only affected by AGs. Despite the documents indicating the negative effect of 

glucosinolates on specialists, these herbivores can usually avoid the formation of 

isothiocyanates and dismantle the effect of plant glucosinolates (Müller et al., 2001; Ratzka 

et al., 2002). Some specialists even use glucosinolates as feeding or oviposition stimulants 

(Hilker and Meiners, 2002; Marazzi and Städler, 2004; Barker et al., 2006; Badenes-Perez 

et al., 2013). 

Compared to chewing herbivores, arthropods with piercing sucking mouthparts do not 

mediate as much tissue damage during feeding. Therefore, it is believed that they can avoid 

the hydrolysis and, consequently, the negative effect of glucosinolates. However, IGs are 

less stable than other glucosinolates and can be hydrolyzed independent of myrosinases 

(Agerbirk et al., 2009). Therefore, compared to AGs, IGs are suggested to be more 

involved in deterring the herbivory of sucking herbivores (Kim and Jander, 2007; Kim et 

al., 2008; De Vos and Jander, 2009). Kim et al. showed that although the generalist green 

peach aphid, Myzus persicae (Hemiptera), takes up intact glucosinolates while feeding on 

Arabidopsis, IGs are broken down in the aphid body (Kim et al., 2008). Hydrolysis 

products act as antifeedants while unchanged AGs are excreted in the honeydew with no 

significant negative effect on the aphid (Kim and Jander, 2007; Kim et al., 2008). Also, an 

IG-induced reduction in performance of T. urticae was reported (Zhurov et al., 2013) 

which demonstrates a shorter developmental time and lower mortality of T. urticae larvae 

on an IG-devoid genotype of Arabidopsis (Zhurov et al., 2013). 

Different responses to various types of glucosinolates due to the different feeding behaviors 

of chewing and sucking herbivores reflect the specific distribution and induction of classes 

of glucosinolates (Bones and Rossiter, 1996; Siemens and Mitchell-Olds, 1996; 

Kliebenstein et al., 2001; Shroff et al., 2008). The effectiveness of the glucosinolate 



14 

 

breakdown products has been shown in various bioassays using artificial diets 

supplemented with the breakdown products as well as by comparing performance of 

herbivores on wild-type and glucosinolate-deficient transgenic plants (Li et al., 2000; Kim 

and Jander, 2007; Müller et al., 2010; Schramm et al., 2012). Although numerous studies 

have been performed on the biosynthesis and biological activities of IGs in recent years, 

the modes of action of the toxic IGs breakdown products in herbivores remain to be 

identified. Also, our understanding of metabolic counter-adaptations of plants and 

herbivores, specifically neutralizing the glucosinolate-based defense of plants by 

herbivores, is very limited.   

 Indole glucosinolates and their breakdown products 

IGs are the second most abundant glucosinolates in nature after AGs. The biosynthesis and 

function of IGs have been of interest in recent years due to their abundance in the model 

plant Arabidopsis. The four most common IGs in Brassicaceae plants are indole-3-

ylmethyl glucosinolate (IMG), 1-methoxyIMG (1mIMG), 4-hydroxy IMG (4hIMG) and 

4-methoxy IMG (4mIMG) [(Figure 1-4 (Fahey et al., 2001; Kliebenstein et al., 2001; 

Windsor et al., 2005; Agerbirk and Olsen, 2012)]. These different groups of IGs are not 

distributed equally in different parts of plants (Windsor et al., 2005; Shroff et al., 2008; 

Van Dam et al., 2009). IMG is generally predominant in Arabidopsis leaves while 4hIMG 

and IMG are the main IGs in seeds (Bennett et al., 2004; Windsor et al., 2005).  

As in the case of other glucosinolates, IGs are degraded when they become in contact with 

myrosinases upon plant tissue disruption. Enzymatic hydrolysis of IGs leads to formation 

of an unstable aglucone (indole-3-ylacetothiohydroximate-O-sulfonate in the case of 

IMG), which in turn gives rise to the corresponding isothiocyanates and nitriles (Agerbirk 

et al., 2009). The prerequisites for rearrangement of the aglucone to isothiocyanates or 

conversion to nitriles are the same as those for other glucosinolates (Agerbirk et al., 2009). 

Formation of epithionitriles and organic thiocyanates are not reported for IGs (Agerbirk et 

al., 2009). 



15 

 

 

Figure 1-4 Structure of the R-group of the four common indole glucosinolates in 

Arabidopsis: indole-3-ylmethyl glucosinolate (IMG), 1-methoxyIMG (1mIMG), 4-

hydroxy IMG (4hIMG) and 4-methoxy IMG (4mIMG) (adapted from Agerbirk et al., 

2009).  

The breakdown of IGs in plants is partially different from that of AGs since the IG-derived 

isothiocyanates are unstable and react with nucleophiles with loss of a thiocyanate ion 

(SCN-) (Agerbirk et al., 2009; Wittstock, 2011). The IMG-derived isothiocyanate, indole-

3-ylmethyl isothiocyanate (IMI), has not been detected during IG hydrolysis due to its high 

reactivity (Bryan Hanley and Parsley, 1990; Agerbirk et al., 2009). The two main 

downstream products of IMI are ascorbigen and indole-3-carbinols (I3C), which may in 

turn react with nucleophiles (Tsagkarakou et al., 1998; Burow and Wittstock, 2009). 

Ascorbigen can be formed as a result of the immediate reaction of IMI or the slower 

reaction of I3C with ascorbate (Agerbirk et al., 1998). In leaf homogenates, ascorbigen is 

seven times more concentrated  than I3C, while in absence of ascorbic acid, the main end 

product of IGs hydrolysis is I3C (Agerbirk et al., 1998, 2009; Buskov et al., 2000). Pedras 

et al., showed that in turnip roots the main hydrolysis products of isotopically labeled IMG 

were indole-3-carboxaldehyde and indole-3-carboxylate, both of which can be formed 

through oxidation of I3C or oxidative chain shortening of IAN (Pedras et al., 2002; 

Agerbirk et al., 2009). In neutral conditions, I3C is slowly converted to 3,3՜-

diindolylmethane (DIM) (Agerbirk et al., 2009). I3C reaction with the thiols, cysteine and 

glutathione may lead to production of S-indol-3-ylmethylcysteine and S-indol-3-

ylmethylglutathione adducts independent of myrosinase activity (Buskov et al., 2000; 

Staub et al., 2002). Formation of ethers and reaction of I3C with amino acids and peptides 

are also reported (Agerbirk et al., 1998; Buskov et al., 2000; Kim et al., 2008). Unlike 

isothiocyanates, nitriles derived from IGs are relatively stable metabolites. The IMG-derive 
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nitrile, indole-3-acetonitrile (IAN), can also be produced independent of myrosinases e.g. 

via non-specific nitrilases (Vorwerk et al., 2001; Pedras et al., 2002).  

Although the negative effect of IGs on spider mite performance is reported (Zhurov et al., 

2013), the mode of action of IGs or their breakdown products on spider mites is not well 

understood. Moreover, the mechanism of T. urticae adaptation to Arabidopsis remains to 

be studied. Investigation of the mechanism of T. urticae adaptation to IGs can be guided 

by a background on the general strategies that insect herbivores employ to dismantle the 

plant defense. The documented evidence of adaptation of chewing insects to glucosinolates 

(mainly AGs) might provide insight into the potential mechanisms of T. urticae adaptation 

to IGs (Ratzka et al., 2002; Wittstock et al., 2004; Winde and Wittstock, 2011; Schramm 

et al., 2012).  

 Adaptation of herbivores to glucosinolates 

The selection pressure that chemical plant defenses impose on herbivores leads to the 

evolution of counter-adaptations through which herbivores dismantle plant defenses 

(Karban and Agrawal, 2002; Després et al., 2007; Alba et al., 2011; Van Leeuwen and 

Dermauw, 2016), e.g. cope with deterrent compounds or neutralize phytotoxins produced 

by plants (Alba et al., 2011). As suggested by Karban and Agrawal (Karban and Agrawal, 

2002) herbivores might bypass plant defenses using three different strategies. The first and 

the most aggressive one is manipulation of plant defense. The second strategy is 

development of morphological or physiological changes in herbivores, which help them to 

better overcome plant defenses. The third and the least aggressive strategy is the behavioral 

mechanism when herbivore’s feeding or oviposition choices of host plant results in an 

increase in the herbivore performance. These strategies are explained in more detail in the 

following sections. 
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 Mechanisms of adaptation of arthropods to plant defense 

 Suppression of plant defense 

To hamper herbivore feeding, plants employ different defense strategies, which can be 

constitutive and/or induced by the presence or feeding of herbivores (Walling, 2000; Wu 

and Baldwin, 2010; Kant et al., 2015). Constitutive defenses include morphological 

characteristics of plants and/or secondary metabolites that are synthesized by plants even 

in the absence of herbivore attack (Strauss et al., 2002; Alba et al., 2011). Induced defenses 

in plants may occur after sensing the presence of herbivores and through morphological 

changes, synthesis of toxins and antifeedants, hypersensitive responses or resource 

allocation (Kessler and Baldwin, 2002; Gómez et al., 2012).  

The defensive plant response occurs in three different steps: signaling, phytohormones and 

biosynthesis of secondary metabolites. The first step of plant defense against herbivores is 

signaling (Kessler and Baldwin, 2002; Zhu-Salzman et al., 2005; Wu and Baldwin, 2010; 

Kant et al., 2015), which happens through sensing the presence or feeding of herbivores 

by herbivore elicitors or their molecular patterns (Mithöfer et al., 2005; Howe and Jander, 

2008; Wu and Baldwin, 2010). The sensing of herbivore attack may lead to the biosynthesis 

of phytohormones that act as intermediates between the perception of herbivory and 

activation of plant defense (e.g. synthesis of secondary metabolites). The three most 

important phytohormones involved in induced plant defense against pathogens and 

herbivores are salicylic acid (SA), Jasmonic acid (JA) and ethylene (Et). JA, and 

specifically its bioactive form JA-isoleucine (JA-Il), plays a prominent role in plant 

defensive response to herbivores (Howe and Jander, 2008; Wu and Baldwin, 2010).  It has 

been shown that any interference with the biosynthesis of JA leads to defense deficiencies 

in plants and as a result to improvement of herbivore performance. For example, in the 

whitefly, B. tabaci, suppression of tomato JA-based defenses through salivary compounds 

of whiteflies leads to an increase in the whitefly’s survival and fecundity (Su et al., 2015). 

Also, the feeding of S. exigua larvae with impaired salivary secretions resulted in less 

induction of JA defense in Arabidopsis compared to intact larvae (Weech et al., 2008). In 

addition, the aster leafhopper, Macrosteles quadrilineatus (Hemiptera), uses an effector 
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produced by a vectored phytoplasma to suppress JA defenses, which in turn increases the 

fecundity of the leafhopper (Sugio et al., 2011).  

Suppression of plant defenses is well-documented in plant-pathogen interactions [e.g., 

(Kasschau and Carrington, 1998; Voegele and Mendgen, 2003; Abramovitch et al., 2006; 

Kamoun, 2006)]. Herbivores can also develop the means to manipulate plant defensive 

responses so as to be able to overcome the defense (Ferry et al., 2004; Alba et al., 2011; 

Kant et al., 2015). This manipulation can occur at any step of the defensive pathway and 

can block or reduce the level of defensive response (Alba et al., 2011). Therefore, 

suppression of plant defense is characterized by reduction of biosynthesis of the defensive 

compound (Kant et al., 2015). Musser et al. (2002) suggest that, although insect saliva can 

be recognized by plants and induce the plant defensive response, the saliva of corn 

earworm, Helicoverpa zeae (Lepidoptera), contains a glucose oxide that catalyzes the 

oxidation of glucose to D-gluconic acid, and as a result generates hydrogen peroxide, which 

in turn suppresses biosynthesis of nicotine (a defensive compound in tobacco that is 

induced in response to herbivory). Treating tomato leaves with H. zea saliva resulted in the 

reduction of adenosine-5′-triphosphate (ATP) levels in tomato leaves related to the high 

level of ATPase activity in saliva. It has been shown that these ATPase enzymes decreased 

biosynthesis of terpenoids through interfering with the JA and ethylene pathways in tomato 

leaves (Bede et al., 2006; Wu et al., 2012). In S. littoralis, not only saliva but also their 

eggs contain compounds that mediate suppression of the JA-pathway in Arabidopsis. The 

newly hatched larvae of S. littoralis take advantage of the locally suppression of this plant 

defense (Bruessow et al., 2010). 

Manipulation of plant defense is called suppression only if it leads to an increase in 

performance of the herbivore, e.g. by increasing the reproduction or body weight, or by 

decreasing the developmental time or mortality of the herbivore (Kant et al., 2015). 

Suppression of Arabidopsis JA response by B. tabaci results in the shorter developmental 

time of the whitefly larvae (Zarate et al., 2006). Also, B. tabaci can interfere with the JA 

response of lima beans. Consequently, it reduces the biosynthesis of (E)-b-ocimene, which 

in turn decreases the fecundity of B. tabaci (Zhang et al., 2009). The larvae of the Colorado 

potato beetle, Leptinotarsa decemlineata (Coleoptera) gained more weight through 
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suppression of the tomato JA defense (Chung et al., 2013). The interference of the Cotton 

mealybug, Phenacoccus solenopsis (Homoptera), with JA defense response resulted in 

suppression of Gossypol production in cotton, which led to shorter developmental time of 

the nymphs and weight gain in the adults (Zhang et al., 2011). The green peach aphid, M. 

persicae, showed a higher fecundity after reducing the biosynthesis of indole 

glucosinolates in Arabidopsis through effector proteins in their saliva (Elzinga et al., 2014). 

Mites can also interfere with plant defenses. It has been shown that two species of spider 

mites, Tetranychus evansi and T. urticae, are able to suppress the induction of tomato 

defenses downstream of JA and SA and consequently increase their performance (Kant et 

al., 2008; Sarmento et al., 2011). Also, the tomato russet mite, Aculops lycopersici, showed 

population growth because of the suppression of the tomato JA defense (Glas et al., 2014). 

 Adaptation of herbivores to xenobiotics 

Due to the significant financial impact of pesticide resistance development in herbivores, 

a large part of the current knowledge of adaptations to plant secondary metabolites has 

originated from the pesticide resistance studies (Després et al., 2007; Van Leeuwen and 

Dermauw, 2016). Although the mode of action of plant secondary metabolites is generally 

different to that of agrochemicals, the mechanism of adaptation to these two groups of 

xenobiotics is assumed to be similar as plant responses to agrochemicals and plant 

secondary metabolites greatly overlap (Dermauw et al., 2013). 

The adaptation of herbivores to xenobiotics can be achieved through two general 

mechanisms: pharmacokinetic and pharmacodynamic responses. Pharmacokinetic 

responses allow herbivores to avoid or minimize exposure to xenobiotics through 

sequestration, and/or detoxification of xenobiotics. Pharmacodynamic responses make 

herbivores less sensitive to xenobiotics by affecting interactions between xenobiotics and 

their target site (Kennedy and Tierney, 2013). 
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 Pharmacokinetic responses  

Detoxification 

Three groups of detoxification enzymes have been shown to be involved in detoxification 

of xenobiotics by insects and mites: glutathione-S-transferases (GSTs), cytochrome P450 

monooxygenases and esterases (Van Leeuwen et al., 2010; Heckel, 2014; Heidel-Fischer 

and Vogel, 2015). The detoxification process of xenobiotics can be divided into three 

phases. In phase I, the xenobiotic is oxidized, hydrolyzed or reduced. In these reactions a 

nucleophilic functional group (a hydroxyl, carboxyl or amine group) is usually converted 

to a more hydrophilic side chain. P450s and esterases are the enzymes that are usually 

involved in phase I reactions. If the products of phase I reactions are not polar enough to 

be excreted, they will be modified by phase II reactions. In phase II, the polar products 

resulting from phase I are conjugated with a variety of endogenous molecules such as 

glutathione, sugar, sulfate, phosphate or amino acid. These conjugations increase the 

compound’s polarity, which facilitates excretion. Enzymes that usually operate in phase II 

include GSTs and uridine-diphosphate-glycosyltransferases (UGTs). In phase III, 

metabolites of phase II are transported out of the cell by ATP-binding cassette (ABC) and 

solute carrier (SLC) family proteins (Heckel, 2014; Heidel-Fischer and Vogel, 2015; Kant 

et al., 2015). 

Adaptations that improve detoxification activity of herbivores are often mediated by gene 

amplification, upregulation or coding sequence mutations that increase the production of 

specific detoxification enzymes or enhance their catalytic activities (Després et al., 2007; 

Li et al., 2007; Brattsten, 2012). P450-mediated adaptations of herbivores to xenobiotics 

usually result from overexpression, amplification or upregulation by mutation in trans-

regulatory loci (Li et al., 2007; Yu et al., 2015). The activity of P450s (expressed by the 

large family of CYP genes) against organic compounds through enhancing oxidative 

metabolism is rather nonspecific, which explains the observed cross-resistance to plant 

secondary metabolites and xenobiotics (Feyereisen, 2012; Schuler, 2012; Dermauw et al., 

2013). As one of the first documentations of the role of P450s in the adaptation of insects 

to xenobiotics, Krieger et al. suggested that higher activity of P450s in polyphagous 

compared to monophagous species is an indicator of the role of these enzymes in 



21 

 

detoxification of plant toxic products (Krieger et al., 1971). Earlier evidence of the 

involvement of P450s in the adaptation of insects to plant secondary metabolites was 

shown for the detoxification of furanocoumarin by the black swallowtail butterfly, Papilio 

polyxenes (Lepidoptera) (Berenbaum, 1983). A wide range of plant secondary metabolites, 

including flavonoids, terpenoids, alkaloids and glucosinolates, can be oxidized by P450s 

of insects and mites (Després et al., 2007; Feyereisen, 2012). Mao et al. (Mao et al., 2007) 

showed that the larvae of H. armigera cannot grow in the presence of gossypol (the 

secondary metabolite in cotton) without the induction of P450 activities. They also 

indicated that growth on gossypol is correlated with expression of CYP6AE14 in the 

midgut of H. armigera. Suppression of CYP6AE14 expression using RNAi (ribonucleic 

acid interference) leads to a delay in larval growth (Mao et al., 2007) and CYP6AE14 

dsRNA transgenic cotton impairs the growth of H. armigera larvae and decreases plant 

damage (Mao et al., 2011) consistent with the possibility that CYP6AE14 is required for 

gossypol detoxification. 

Esterases are involved in the detoxification of xenobiotics that contain the ester linkage in 

their chemical structure (Yu et al., 2015). This detoxification occurs through the hydrolysis 

of target substances. However, sometimes esterases have very limited catalytic properties 

and mediate resistance to xenobiotics through sequestration (Van Leeuwen et al., 2009; 

Kant et al., 2015). In this case, esterases are produced in large quantities, leading to the 

decreased availability of the xenobiotic, because esterases bind to it (Van Leeuwen et al., 

2009).  The increase in activity of esterases occurs most commonly as a result of gene 

amplification and, in some cases, through gene upregulation (Wheelock et al., 2005; Li et 

al., 2007). The overproduction of esterases mediated by gene amplification is well 

documented in aphids and mosquitoes that are resistant to organophosphates (Devonshire 

and Field, 1991; Hemingway et al., 1998). The resistance of the green peach aphid to 

organophosphate and carbamate pesticides was shown to be correlated to enhanced esterase 

activity in these aphids resulting from the gene amplification and overexpression of the 

coding gene (Srigiriraju et al., 2009), whereas, in the mosquito, Culex pipiens (Diptera), 

overproduction of esterases is due to upregulation rather than gene amplification 

(Raymond, 1987). Although, the involvement of esterase activity in the resistance of 

insects and mites to several pesticides is well-documented, its role in adaptation to plant 
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defense is studied in only a few cases and just at the biochemical level (Després et al., 

2007; Li et al., 2007). The inhibition of activity of detoxification enzymes in Papilio 

glaucus (Lepidoptera) showed involvement of esterases in the resistance of these insects 

to their host plants (Lindroth, 1989). In S. lituralis, exposure to rutin, a plant secondary 

metabolite, mediated a significant increase in the carboxylesterase activity of midgut 

(Ghumare et al., 1989). The survival rate of the gypsy moth, Lymantria dispar 

(Lepidoptera), larvae that were fed on glycosides-containing artificial diet was correlated 

with esterase activity, suggesting the potential role of esterases in detoxification of 

glycosides (Lindroth and Weisbrod, 1991).  

The GST superfamily is involved in phase II detoxification of various plant xenobiotics 

through substrate sequestration or by catalyzing the conjugation of glutathione to 

electrophilic toxic molecules. Conjugation to glutathione increases their solubility of the 

conjugated substrate, which in turn facilitates the excretion of the xenobiotic molecules 

from the insect body (Enayati et al., 2005). Increase in GST activity is often induced by 

ingestion of xenobiotics. It has been shown that increases in enzymatic activity can be a 

result of gene amplification or more commonly through increases in transcriptional rate 

(Grant and Hammock, 1992; Ranson et al., 2001). GST activity has been shown to be 

linked to the resistance of insects to all major classes of pesticides and in a number of cases 

to plant xenobiotics (Prapanthadara et al., 1993; Huang et al., 1998; VONTAS et al., 2001; 

Enayati et al., 2005). For example, detoxification of DDT as a result of dehydrochlorination 

is catalyzed by GSTs (Clark and Shamaan, 1984). Also, detoxification of other 

organochlorine pesticides mediated by GSTs is shown to be a result of conjugation to 

glutathione (Enayati et al., 2005). The conjugation of glutathione to organophosphate 

insecticides results in their detoxification through the O-dealkylation or the O-dearylation 

of organophosphates (Oppenoorth et al., 1979; Chiang and Sun, 1993). It is suggested that 

in B. tabaci and in the Drosophilid specialist fly, Scaptomyza nigrita (Diptera), GSTs are 

involved in developing tolerance to glucosinolates (Elbaz et al., 2012; Gloss et al., 2014).  

Another class of conjugation enzymes involved in phase II detoxification are UGTs. These 

enzymes can conjugate the xenobiotics with UDP-glucose and convert lipophilic aglycones 

of the substrate into more hydrophilic glycosides, which can more easily be eliminated 
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from the insect body (Kant et al., 2015). UGTs have been shown to be involved in the 

resistance of lepidopteran Helicoverpa species to the alkaloid capsaicin and in the 

detoxification of benzoxazinoids in the Spodoptera species (Ahn et al., 2011; Wouters et 

al., 2014). 

Phase III detoxification has been documented in far less detail compared to phases I and 

II. It is suggested that in M. sexta, excretion of nicotine and other alkaloids is mediated by 

an ABC transporter (Gaertner et al., 1998). Also, an ABC transporter is identified as a 

protector of lepidopteran nervous tissues by potentially acting as a cardenolide efflux 

carrier (Petschenka et al., 2013). Downregulation of the major facilitator superfamily 

(MFS) in M. sexta after feeding on tobacco mutants that lack JA and upregulation of the 

same superfamily in T. urticae after being transferred to a more challenging host plant are 

other evidence of the involvement of transporters in the detoxification of plant metabolites 

(Govind et al., 2010; De La Paz Celorio-Mancera et al., 2013; Dermauw et al., 2013).  

Sequestration 

Some herbivores can sequester ingested plant secondary metabolites in specialized tissues 

or in the integument (Willinger and Dobler, 2001) and subsequently use them for their own 

defense against their natural enemies (Ode, 2006), to protect themselves against UV light 

and photoactivated phytotoxins (Carroll et al., 1997) or as pheromones (Nishida, 2002). A 

variety of mechanisms are necessary to enable the selective import the appropriate plant 

metabolite and to also transport and store them without negatively interfering with the 

physiological processes of the herbivore (Després et al., 2007; Kant et al., 2015). Thus, 

this complex scenario of adaptation does not occur very frequently. However, the 

successful uptake and reuse of some xenobiotics include pyrrolizidines (Hartmann, 1999), 

cardenolides (Malcolm and Brower, 1989), iridoid glycosides (Dyer and Deane Bowers, 

1996), cyanogenic glycosides (Nahrstedt and Davis, 1986), and glucosinolates (Nishida, 

2002). Xenobiotics can be sequestered directly or after being converted to less toxic 

products [e.g. through oxidation or conjugation (Opitz and Müller, 2009; Kant et al., 

2015)]. A group of leaf beetle (chrysomelids) larvae degrade plant phenol glycosides and 

use the amino acid-conjugated aglycones to secrete as their chemical defense against their 

natural enemies (Kuhn et al., 2007).  The larvae of the monarch butterfly, Danaus 
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plexippus (Lepidoptera), sequester cardenolides, a secondary metabolite of milkweed, and 

retain it in their bodies until the adult stage to make themselves unpalatable for their 

predators (Nishida, 2002).  

 Pharmacodynamic responses  

Alteration in the structure of the xenobiotic target site in herbivores resulting from point 

mutation might reduce the affinity of the xenobiotic to the target site and lead to resistance 

of the herbivore to that xenobiotic (Van Leeuwen et al., 2010; Feyereisen et al., 2015). 

Although insensitivity of the pesticide target site is well-documented in the field of 

herbivore resistance to pesticides (Van Leeuwen et al., 2010; Ffrench-Constant, 2013; 

Feyereisen et al., 2015), few studies have shown this mechanism of adaptation in herbivore 

adaptation to phytochemicals. This lack of evidence of target-site resistance to plant 

metabolites likely arises due to multiple modes of action of phytochemicals and our limited 

knowledge about them (Després et al., 2007; Kant et al., 2015).  

An example of structural modification of a phytochemical target-site is the substitution of 

amino acids in the target site of ouabain, a secondary metabolite of Apocynaceae plants, 

that results in resistance in insect orders such as Lepidoptera, Coleoptera, Heteroptera and 

Diptera to ouabain (Zhang et al., 2009; Zhen et al., 2012). The same substitution is 

responsible for the insensitivity of the cardenolide target site in some other insect species 

that are specialized in plants containing this metabolite (Dobler et al., 2012; Dalla et al., 

2013). Also, the mechanism of adaptation of the bruchid beetle, Caryedes brasiliensis 

(Coleoptera), to L-canavanine, an amino acid found in leguminous plants, can be 

considered as an example of insensitivity of target site. L-canavanine acts by incorporating 

into proteins, resulting in the substitution with L-arginine. Beetles have evolved an arginyl-

tRNA (transfer RNA) synthetase that can distinguish L-canavanine from L-arginine and as 

a result avoid the effect of L-canavanine (Leisinger et al., 2013).  

 Adaptation to glucosinolates 

Although the complexity of the glucosinolate-myrosinase system limits the ability of 

herbivores to adapt to plants containing glucosinolates, some herbivores can feed and 

survive on these plants (Fahey et al., 2001; Brown et al., 2003; Heckel, 2014; Pentzold et 
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al., 2014). Herbivores can overcome a two-component activated defense, such as the 

glucosinolate-myrosinase system, at different stages of the activation process (Pentzold et 

al., 2014). They could either avoid the activation of the glucosides or decrease toxicity of 

the hydrolysis products (Pentzold et al., 2014). A potential strategy of preventing the toxic 

effect of glucosinolates is by adopting feeding strategies that avoid the uptake of 

myrosinases and thus the hydrolysis of glucosinolates (Francis et al., 2001; Müller et al., 

2001; Aliabadi et al., 2002; Nishida, 2002; Beran et al., 2014). Also, herbivores can change 

the core structure of the glucosinolates and, consequently, avoid their hydrolysis by 

myrosinases (Ratzka et al., 2002; Falk and Gershenzon, 2007; Malka et al., 2016). If 

glucosinolates are broken down, toxic hydrolysis products can be either neutralized (Kim 

et al., 2008; Schramm et al., 2012), or the hydrolysis reaction can be modified by insect to 

produce less toxic metabolites (Wittstock et al., 2004). These strategies will be discussed 

in this section, which is divided into general detoxification mechanisms and specialized 

adaptations. 

 General glucosinolate detoxification mechanisms 

Since generalist herbivores feed on a wide range of host plants and therefore are challenged 

with a diverse range of plant defense metabolites, they need efficient adaptation strategies 

that are effective against a variety of different xenobiotics (Després et al., 2007; Lankau, 

2007; Kant et al., 2015; Van Leeuwen and Dermauw, 2016; Rioja et al., 2017). Many plant 

secondary metabolites are lipophilic and can undergo a broad range of enzymatic 

xenobiotic detoxification reactions to increase their polarity for easier excretion (Kant et 

al., 2015; Van Leeuwen and Dermauw, 2016). The most common break down product that 

is produced as a result of feeding of generalist chewing herbivores is isothiocyanate formed 

from AGs and BGs (Yu, 1989; Schramm et al., 2012; Zou et al., 2016). Since 

isothiocyanates are very reactive, the general detoxification pathway that is reported for 

them is mostly phase II conjugation reactions (Brown and Hampton, 2011).  

The feeding of piercing-sucking herbivores on plants does not mediate severe damage in 

plant tissue like in the case of chewing insect herbivory. Therefore, it might be expected 

that piercing-sucking herbivores evade the toxic effects of glucosinolates (Kim and Jander, 
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2007). However, it has been shown that in green peach aphids, M. persicae, IGs are 

hydrolyzed independently of myrosinases, which results in a strong antifeedant effect on 

aphids, whereas AGs are excreted intact in their honeydew (Kim and Jander, 2007; Kim et 

al., 2008). Therefore, it is suggested that IGs are more important for plant defense against 

piercing-sucking herbivores compared to AGs and BGs (De Vos and Jander, 2009). The 

general mechanism of detoxification of glucosinolates by chewing and piercing-sucking 

herbivores is discussed in more detail below. 

 Chewing Insects and Conjugation of Isothiocyanate 

Isothiocyanates that are produced from the breakdown of glucosinolate are lipophilic and 

very reactive electrophiles (Enayati et al., 2005; Brown and Hampton, 2011). They can 

enter cells through passive diffusion and their central electrophilic carbon can react with 

biological nucleophiles of the cell, such as the amine group of lysine residues of proteins 

and the thiol groups of cysteine and glutathione (Brown and Hampton, 2011). The 

produced electrophilic metabolites can be detoxified via conjugation with glutathione 

(Enayati et al., 2005).  Glutathione is an important reducing agent and a biological 

nucleophile in cells and a tripeptide (Glu-Cys-Gly) with a g-peptide bond between the 

amine of the Cys-side chain and carboxyl group of the Glu-side chain (Habig et al., 1974; 

Brown and Hampton, 2011). The conjugation of glutathione happens due to the addition 

of the thiol at the Cys-side chain to the electrophilic center of isothiocyanates (Figure 1-5). 

This conjugation can occur spontaneously or be catalyzed by GSTs. The formed conjugates 

then undergo hydrolysis by the mercapturic acid pathway to produce the Gly-Cys- and Cys-

conjugates. Cys-conjugates might be further N-acetylated (Habig et al., 1974). The 

resulting conjugates and derivatives of the mercapturic acid pathway are more polar 

compared to the original isothiocyanates and as a result can be excreted more easily from 

the cell. The transporters involved in this process are not currently known. Nitriles formed 

from glucosinolates hydrolysis are not as electrophilic as isothiocyanates and are 

metabolized differently. Feeding on glucosinolates also leads to the induction of genes 

encoding phase I and II detoxification enzymes, including UGTs and cytochrome P450s 

(Deng et al., 2009; Huang et al., 2011). 
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The glutathione conjugation of isothiocyanates has been shown in several arthropod 

species, mollusks and mammals including humans (Wadleigh and Yu, 1988; Kassahun et 

al., 1997; Janobi et al., 2006; Schramm et al., 2012; Falk et al., 2014; Gloss et al., 2014). 

Although involvement of insect GSTs in the detoxification of isothiocyanated was first 

reported almost 30 years ago (Yu, 1989), the identification of the products formed 

(Schramm et al., 2012) and their function in vivo (Zou et al., 2016) have been reported 

only recently. Analysis of cDNA sequences of the midgut tissue of S. litura showed higher 

expression of eight GSTs (Deng et al., 2009; Huang et al., 2011). RNA-mediated silencing 

of a GST gene in S. litura larvae impaired the consumption of brown mustard leaves, 

Brassica juncea, resulting in decreased bodyweight compared to a control group. It 

demonstrated the involvement of the encoded enzyme in the detoxification of 

isothiocyanates. 

 Piercing-Sucking Insects and Indolic Glucosinolates 

Compared to chewing herbivores, piercing-sucking arthropods cause only minimal tissue 

damage during feeding as they guide their stylets through an apoplast towards the phloem 

in the case of aphids feeding  (Tjallingii and Esch, 1993). Therefore, piercing-sucking 

insects are expected to avoid the negative effects of glucosinolate hydrolysis by 

myrosinases. However, in aphids, IGs undergo hydrolysis in the aphid gut independently 

of myrosinase activity and form nitriles, alcohols and unstable isothiocyanates that can be 

metabolized further by both phase I and phase II detoxification reactions (Agerbirk et al., 

2009). Also, feeding of M. persicae induced the biosynthesis of IGs, supporting the 

defensive role of IGs against aphids (Bodnaryk, 1994; Kim and Jander, 2007; Agerbirk et 

al., 2009). 

The degradation of IGs results in the formation of indole acetonitriles (IAN) or the 

corresponding isothiocyanates, which are unstable and react with nucleophiles to form 

conjugates or I3C in aqueous conditions (Figure 1-6). I3C itself undergoes several further 

alterations, e.g. it can be oxidized to the related aldehyde and carboxylic acid, dimerized, 

or conjugated with amino acids, glutathione or ascorbate (Agerbirk et al., 2009). In M. 

persicae, there is myrosinase activity in the gut that could be involved in the degradation 

of indole glucosinolates (Ramsey et al., 2010). The breakdown products detected in the 
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honeydew include amino acid and glutathione conjugates, which could illustrate active 

detoxification products. GST-like genes were identified in the gut of M. persicae and the 

pea aphid, Acyrthosiphon pisum, a Fabaceae specialist, suggesting that GSTs play a role in 

the metabolism of IGs (Ramsey et al., 2010). Also, the activity of GSTs is increased in M. 

persicae in response to feeding on glucosinolate- or isothiocyanate-containing diets 

(Francis et al., 2001). However, some indolic-derived detoxification products of I3C, 

specifically its conjugates with glutathione and cysteine, resulted in a significant decrease 

in aphid reproduction (Kim et al., 2008). Our understanding of modes of action and 

biological targets of the IGs breakdown products, as well as any metabolic counter-

adaptations on the part of herbivores, is very limited.  

 

Figure 1-5 Conjugation of glutathione (GSH) to isothiocyanates (ITC) (adapted from 

Brown and Hampton, 2011; Kim et al., 2008). 
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Figure 1-6 Hydrolysis of indole-3-ylmethyl glucosinolate and its breakdown products. 

(adapted from Kim et al., 2008). 

 

 Specialized detoxification strategies for glucosinolates 

Specialized strategies to dismantle plant glucosinolates are expected to be found in 

oligophagous or monophagous feeders that are adapted to one plant family or species, and 

so are challenged with a limited range of plant defenses (Müller et al., 2001; Ratzka et al., 

2002; Wittstock et al., 2004). However, there is evidence that some polyphagous insects 

employ some of the strategies found in specialist feeders to neutralize the plant defense 

(Falk and Gershenzon, 2007; Malka et al., 2016).  

Compared to generalists, the performance of Brassicaceae-specialized insects usually is 

not severely affected after feeding on glucosinolate-containing plants (Li et al., 2000; 

Harvey et al., 2007; Gols et al., 2008; Müller et al., 2010; van Geem et al., 2014). Some 

even take advantage of glucosinolates to find food or choose oviposition sites (Hilker and 

Meiners, 2002; Barker et al., 2006; Badenes-Perez et al., 2013). The adaptation of 

specialists to glucosinolates allows them to feed successfully on plants containing this 
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metabolite, which leads to major damage to agriculturally important Brassicaceae plants 

such as cabbage and broccoli (Ahuja et al., 2009).  

Three specialized processes of the metabolism of glucosinolates have been well 

characterized: 1) redirection of glucosinolate breakdown towards formation of less toxic 

products via specifier protins; 2) Modification of the core structure of glucosinolates using 

sulfatases; and 3) sequestration of glucosinolates (Müller et al., 2001; Aliabadi et al., 2002; 

Francis et al., 2002; Ratzka et al., 2002; Wittstock et al., 2004; Beran et al., 2014). To date, 

the first strategy is only found in the Pieris species (Wheat et al., 2007), while the other 

two have been reported in some generalist herbivores as well (Falk and Gershenzon, 2007; 

Malka et al., 2016). These processes are explained in more detail in the following sections. 

 Specifier Proteins 

The adaptation mechanism that enables Pierid butterflies to feed on Brassicaceae plants 

was the evolution of a nitrile-specifier protein (NSP) in the gut of larvae. This protein 

allows Pierid larvae to overcome the glucosinolate-myrosinase system of the Brassicaceae 

plants by redirecting the hydrolysis of glucosinolates to produce nitriles, which are less 

toxic and reactive compared to noxious isothiocyanates (Wittstock et al., 2004). These 

nitriles may be excreted either unchanged or after further metabolism. To date, NSP 

proteins have only been found in Pierid species while generalist insects usually do not 

harbor any NSP activity (Wheat et al., 2007; Winde and Wittstock, 2011; Edger et al., 

2015). 

It has been shown that aliphatic nitriles are excreted unchanged in P. rapae larval feces, 

whereas nitriles formed from benzenic glucosinolates may be excreted after further 

metabolism of the nitrile group and/or the benzenic side chain (Wittstock et al., 2004; 

Agerbirk et al., 2010; Winde and Wittstock, 2011). In P. rapae feces, the glycine and 

isoserine conjugates of indole-3-carboxylic acid are found, and are thought to be derived 

from I3M mediated by a nitrilase action rather than NSPs (Vergara et al., 2006).  

Although Pierid larvae evidently have an efficient strategy to avoid toxic ITCs, the 

formation of cyanide (‘cyanide bomb’) during the metabolism of benzenic GLS could also 

result in toxicity (Stauber et al., 2012). However, P. rapae larvae can effectively detoxify 
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cyanide to nontoxic b-cyanoalanine and thiocyanate using cyanoalanine synthase and 

rhodanese, respectively (Stauber et al., 2012).  

 Glucosinolate Sulfatases 

Another strategy in evading the negative effect of glucosinolates is to modify them so that 

they are unrecognizable as substrates for myrosinases. In this strategy, intact glucosinolates 

are converted to desulfo-glucosinolates by the enzyme, glucosinolate sulfatase (GSS) 

(Figure 1-7). Plant myrosinases bind the sulfate moiety of glucosinolates in their active 

site, but do not recognize desulfo-glucosinolates as substrates (Matile, 1980). Moreover, 

the free sulfate that is released as a result of GSS activity inhibits myrosinase activity 

(Shikita et al., 1999). 

 

Figure 1-7 Conversion of glucosinolates to desulfo-glucosinolates catalyzed by 

glucosinolate sulfatase (adapted from Jeschke et al., 2015). 

The desulfation of glucosinolates has been reported both in vivo and in vitro in different 

orders of insects (Ratzka et al., 2002; Falk and Gershenzon, 2007; Wheat et al., 2007; Opitz 

et al., 2010). However, the only insects shown to elude the glucosinolate-myrosinase 

system using GSS are the diamondback moth, P. xylostella and the desert locust, 

Schistocerca gregaria (Orthoptera) (Falk and Gershenzon, 2007; Wheat et al., 2007). 

Desulfo-glucosinolates were found in feces of P. xylostella (Ratzka et al., 2002). The 

constitutive expression of GSS gene has been shown only in larval stages of P. xylostella 

that actively feed on glucosinolate-containing plants but not in other stages. As GSS affects 

glucosinolates with widely different structures, P. xylostella larvae are not affected by 

changes in the glucosinolate content (Li et al., 2000; Sarosh et al., 2010). The polyphagous 

locust, S. gregaria, that feeds on the West African plant, Schouwia purpurea, (containing 

high amounts of glucosinolates) without detrimental effects, was shown to have GSS 
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activity as well (Mainguet et al., 2000; Falk and Gershenzon, 2007). Almost all the 

glucosinolate ingested by S. gregaria is excreted in feces as desulfo-glucosinolate. Also, 

upon feeding on glucosinolate, levels of GSS in S. gregaria increased 10 times (Falk and 

Gershenzon, 2007). To date, GSS activity has not been reported in any glucosinolate-

specialist arthropod species. No GSS activity was identified in gut extracts of thirteen 

Pierid species that are specialized on the glucosinolate-containing plants (Wheat et al., 

2007).  

 Sequestration  

Some insects have evolved means to sequester intact glucosinolates and efficiently exploit 

them for their own defense against natural enemies (Müller et al., 2001; Aliabadi et al., 

2002; Francis et al., 2002; Beran et al., 2014; Heckel, 2014). The sequestration of 

glucosinolates has been reported in insect species of different orders, including the 

piercing-sucking specialist cabbage aphid, Brevicoryne brassicae (Hemiptera), (Francis et 

al., 2001), the chewing specialist feeder turnip sawfly, A. rosae (Hymenoptera) (Müller et 

al., 2001), the striped flea beetle, Phyllotreta striolata (Coleoptera) (Beran et al., 2014) 

and the harlequin cabbage bug Murgantia histrionica (Hemiptera) (Aliabadi et al., 2002).  

Arthropods that adapt to plant glucosinolates through sequestration should have an efficient 

system to avoid autotoxicity via: 1) uptaking glucosinolates before being degraded by 

myrosinases, and/or 2) obtaining a storage site in which breakdown of glucosinolate is 

prevented until this is required for defense (Müller, 2009). Larvae of the sawfly A. rosae 

store glucosinolates exclusively in their hemolymph and upon the predator attack release 

it as droplets on the integument (Boevé and Schaffner, 2003; Müller and Wittstock, 2005 

a; Opitz et al., 2010). Larvae of A. rosae are tolerant to a wide range of glucosinolate and 

myrosinase concentrations (Abdalsamee et al., 2014). The fact that glucosinolate uptake 

happens in the front part of the A. rosae  gut, where the lowest myrosinase activity is 

observed, suggests that A. rosae larvae have a fast glucosinolate uptake mechanism, as well 

as a strategy to inhibit myrosinases (Müller and Sieling, 2006; Abdalsamee et al., 2014). 

Different glucosinolates are not sequestered in a similar proportion so that AGs and BGs 

are found in higher concentrations compared to that in the host plant, while IGs are detected 

in minute amounts (Müller and Wittstock, 2005 a; Opitz et al., 2010; Abdalsamee and 
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Müller, 2012). It is suggested that IGs might undergo the spontaneous breakdown before 

uptake (Kim et al., 2008).  

Some herbivores including the specialist aphid, B. brassicae, and the striped flea beetle P. 

striolata, harbor their own specific myrosinases that convert glucosinolates into their toxic 

breakdown products (Beran et al., 2014). However, insect myrosinases, which are different 

from the Brassicaceae myrosinases, should be kept separately from glucosinolates to avoid 

autotoxicity (Husebye et al., 2005; Beran et al., 2014). In aphids, the myrosinase is stored 

in a non-flight muscle, while glucosinolates are sequestered in the hemolymph (Jones et 

al., 2001; Pontoppidan et al., 2001; Bridges et al., 2002; Francis et al., 2002; Husebye et 

al., 2005). The processes that are involved in glucosinolate uptake, accumulation and 

excretion are poorly described in the literature related to glucosinolate-sequestering insects, 

which necessitates their further study. 

 Adaptation of T. urticae to indole glucosinolates 

Numerous studies have been performed on the biosynthesis and biological activities of IGs 

recently, demonstrating the negative effect of IGs on herbivores, mostly piercing-sucking 

insects [reviewed in (Halkier and Gershenzon, 2006; Hopkins et al., 2009)]. Two-spotted 

spider mites, similar to piercing-sucking insects, use their stylets to feed from the plant. 

Therefore, they are expected to be affected by IGs more than AGs or BGs. It is shown that 

spider mites cannot increase their population on Arabidopsis. IGs are responsible for the 

poor performance of T. urticae on Arabidopsis, shown by a significant increase in mortality 

and developmental time of T. urticae larvae (Zhurov et al., 2013). However, the modes of 

action of IGs and their breakdown products that are toxic for T. urticae are not known. 

Since spider mite feeding leads to a minimal disruption of one or two cells around the 

feeding area (Bensoussan et al., 2016), involvement of myrosinases in IGs toxicity to 

spider mites is less likely. The mode of action of IGs can be shown using artificial diets 

supplemented with the breakdown products, as well as by comparing performance of T. 

urticae on wild-type, glucosinolate-deficient and myrosinase-deficient transgenic plants 

(Agrawal and Kurashige, 2003; Kim et al., 2008). 
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Not all populations of T. urticae perform well on all host plants (Díaz-Riquelme et al., 

2016; Rioja et al., 2017). Although adaptation of T. urticae to plant secondary metabolites 

is a well-known phenomenon, only a few studies have been performed on the mechanism 

of adaptation (Dermauw et al., 2013; Wybouw et al., 2015; Van Leeuwen and Dermauw, 

2016). Selection of a T. urticae population on Arabidopsis led to development of a 

population that performed significantly better on Arabidopsis compared to the original non-

adapted population (Ratlamwala, 2014 c). Using an IG-deficient mutant of Arabidopsis 

and also a population of spider mites that were selected on these transgenic plants, it was 

shown that spider mites have potentially developed adaptation to IGs (Ratlamwala, 2014 

c). The IGs dose-dependent expression was observed in the number of differentially 

expressed spider mite (non-adapted) genes that were related to detoxification of 

xenobiotics (Zhurov et al., 2013). This indicates that T. urticae may be able to detoxify IG-

associated metabolites. In the current thesis, I investigated the mode of action of IGs and 

the mechanism of two-spotted spider mite adaptation to IGs.  

 Objectives 

Studying the interaction between T. urticae and plants provides an insight into the capacity 

and the mechanism of adaptation in spider mites, as well as development of strategies to 

avoid adaptation to plants and potentially cross-resistance between phytotoxins and 

pesticides. The recent genome sequencing of T. urticae (Grbić et al., 2011), together with 

the development of functional genomic techniques (e.g. RAN-Seq) and high throughput 

genomic technologies provide an opportunity to study adaptation of T. urticae to 

Arabidopsis IGs (Després et al., 2007). The overall objective of this project was to 

determine the mechanism of T. urticae resistance to Arabidopsis IGs. It was hypothesized 

that spider mites could develop adaptation to Arabidopsis IGs through detoxification of 

IGs breakdown products. Experiments were conducted to elucidate the adaptation 

mechanism through fulfilling three more specific objectives: 

1- To characterize the effect of IGs on T. urticae performance. To determine the 

most sensitive parameters of T. urticae to IGs, life table experiments, larval 

development assays and fecundity assays were performed, comparing performance 

of adapted and non-adapted spider mites on wild type and IGs-devoid genotypes of 
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Arabidopsis. The sensitive parameter identified could be used as the adaptation 

readout for following experiments.  

2- To determine the mode of IGs action against T. urticae. To investigate whether 

myrosinases are involved in the negative effect of IGs on spider mites, life table 

parameters, developmental time of larvae and fecundity of spider mites were 

compared on wild-type and myrosinase-devoid genotypes of Arabidopsis. It was 

expected that due to the minimal tissue damage mediated by spider mites during 

feeding, myrosinases could not be involved in hydrolysis of IGs upon spider mite 

feeding. Also, the breakdown products of Arabidopsis IGs were detected in IG-

adapted and non-adapted spider mites after feeding on Arabidopsis using HPLC-

MS to determine the IGs break down products that were differentially modified in 

IG-adapted and non-adapted spider mites and potentially were responsible for the 

negative effect of IGs on spider mites.  

3- To determine the mechanism of adaptation of T. urticae to IGs-related 

metabolites. To investigate whether adaptation of spider mites to IGs is due to 

suppression of plant defense, expression of IGs-related marker genes and levels of 

Arabidopsis defense-related metabolites after feeding of IG-adapted and non-

adapted adult spider mites was measured. Moreover, to test involvement of 

detoxification in adaptation of spider mites to IGs, activity of spider mite 

detoxification enzymes was compared in adapted and non-adapted spider mites 

upon feeding on bean, wild-type and IG-devoid genotypes of Arabidopsis. Also, 

the influence of detoxification enzyme inhibition on fecundity of IG-adapted and 

non-adapted spider mites was assessed. Furthermore, potential IGs modifications 

in spider mites body were investigated by detection of the known IGs breakdown 

products and their synthesized conjugates in adapted and non-adapted spider mites 

using HPLC-MS. Finally, RNA-seq analysis of adapted and non-adapted spider 

mites after 24 h feeding on bean, wild-type and IG-devoid genotypes of Arabidopsis 

was performed to identify the genes involved in adaptation of spider mites to IGs.  
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Chapter 2  

Methods 

 Live materials used for experiments 

Plants. Four genotypes of Arabidopsis thaliana (Arabidopsis) were used for experiments: 

a wild type Columbia-0 (Col-0), cyp79b2 cyp79b3 double mutant which lacks IGs, tgg1 

tgg2 double mutant that lacks TGG1 and TGG2 myrosinases and atr1-D in which IGs over-

accumulate. Seeds for Col-0 were acquired from P. Morandini (University of Milan) and 

atr-1D from J. Bender (Brown University), while those for cyp79b2 cyp79b3 and tgg1 tgg2 

were obtained from the Arabidopsis Biological Resource Center. Plants were reared in a 

growth chamber at 22°C with a relative humidity of 55% and a short-day photoperiod (10 

h light: 14 h dark) using cool-white fluorescent lights. Plants were grown from seed with a 

light intensity of 120 μE m-2 sec-1. Seeds were stratified for three days at 4°C in the dark 

before being sewn into 2.5 cm x 2.5 cm pots filled with moist soil. After sowing seeds, the 

tray of pots was covered with a transparent lid for approximately one week, after which the 

lid was removed, and plants were watered regularly. Whole plants or detached rosette 

leaves of five to six-weeks old plants were used for experiments ( 

Figure 2-1). 

 

Figure 2-1 Size and stage of plants used for experiments. Five to six-week old plants of 

different Arabidopsis genotypes were employed for experiments.  
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Spider mites. The London strain of Tetranychus urticae (Koch) was originally collected 

from apple orchards near London, Ontario, Canada in 2006, and was reared on bean plants 

(Phaseolus vulgaris, cultivar “California Red Kidney”, Stokes, Thorold, Ontario, Canada) 

in growth chambers at 24 °C, 60 % relative humidity and with a 16 h light: 8 h dark 

photoperiod for more than 200 generations. 

Three independent populations of the London strain spider mites were experimentally 

adapted to and reared on Col-0 (referred to as Col-adapted) and three populations on 

cyp79b2 cyp79b3 (referred to as cyp-adapted) for more than 25 generations by Huzefa 

Ratlamwala (Ratlamwala, 2014).  Populations selected on each plant genotype were pooled 

together after they displayed no significant difference in their performance on their host 

plant genotypes. Col- and cyp-adapted spider mites were kept on Col-0 and cyp 79b2 

cyp79b3 plants, respectively, at 24 °C, 60 % relative humidity and with a 16 h light: 8 h 

dark photoperiod. To remove any maternal effects of selected spider mites and to obtain 

enough mites of selected T. urticae for experiments, selected spider mites were reared on 

bean leaves for two generations and used as the second generation of females (2G spider 

mites) on beans for each experiment. 

 Life table experiment 

The set up designed by Kristie Bruinsma (Bruinsma, 2014) was used for the life table 

experiment (Figure 2-2). The top of a small petri dish (3 cm diameter) was covered with a 

layer of Parafilm and the petri dish was filled with water using a syringe. The hole made 

by the syringe was expanded in the Parafilm so that the petiole of an Arabidopsis detached 

leaf could be fit into the hole. After putting a leaf in the water-filled petri plate (through 

the hole made in the Parafilm) a lid was put on the leaf. The lid was a petri plate of the 

same size as the water-filled petri plate with a hole in center for ventilation and a 0.1 mm 

mesh sieve glued over the hole to prevent spider mite escape. Using a strip of Parafilm, the 

set up was sealed so that even larvae of spider mites could not escape. For beans, leaves of 

about 7 cm diameter were cut and put in petri dishes with wet filter paper beneath and wet 

napkins around the leaves. Three holes of one cm diameter were made in the petri plate lid 

for ventilation and petri plates were sealed using Parafilm. 
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Spider mite adult females from London strain, Col-adapted and cyp-adapted colonies were 

placed on detached leaves of three genotypes of Arabidopsis, Col-0, cyp79B2 cyp79B3 and 

tgg1 tgg2, and on bean leaves as controls. One rosette leaf of a five to six-weeks old plant 

from a desired genotype was put in each set-up. Then a five- to seven-day old female spider 

mite was put on each leaf and the set-up was sealed. After four hours, females and all eggs 

laid by them were removed except one egg per each set-up. The day that eggs were laid 

was reported as day zero and from that date on, each set-up was checked daily. Mortality, 

progression of spider mite developmental life stages and number of eggs laid by each 

female were followed every day until death of the last adult. Each treatment had 20 

replicates and I repeated the experiment three times.   

            

Figure 2-2 Cage-like set-up for maintaining Tetranychus urticae. 

 Calculation of life table parameters 

The number of eggs produced per surviving female at each age (x) is shown by (mx) or 

individual fecundity. The total number of eggs produced by a cohort is called Gross 

reproductive rate (GRR), the total number of eggs produced by all females of the 

experimental population for each treatment: 

GRR= ∑mx 

The number of eggs produced per original individual at each age (lxmx; where lx is the 

proportion of females alive at the beginning of age x) is an important value to consider in 

population studies. By summing lxmx across all ages, the population replacement rate (R0) 

can be obtained in units of female/female/generation.  

R0= ∑lxmx 
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R0 reflects the number of females produced by living females of the population. R0 of 1.0 

means the population is just replacing itself each generation, R0 < 1.0 indicates the 

population is declining, and R0 > 1.0 shows the population is increasing. 

Besides R0, the basic reproductive rate, several other population characteristics can be 

determined from life tables. Two other common features are the cohort generation time (T) 

and the intrinsic growth rate (rm). Generation time is defined as the average time between 

the birth of an individual and the birth of its offspring. Therefore, it can be calculated by 

summing all the lengths of time to offspring production for the entire cohort divided by the 

total offspring produced by the survivors (Carey, 1982): 

T= 
∑ lxmxx

∑ lxmx
= 
∑ lxmxx

R0
 

If R0 remains constant from generation to generation, then it can also be used to predict 

population size several generations in the future. To predict the population size at any 

future time, the intrinsic rate of natural increase (rm: rate of population growth when there 

is no density-dependent force regulating the population) is calculated by the following 

equation (Birch, 1948): 

rm= 
log

e
(R0)

T
 

To statistically analyze the data related to biological parameters of the three strains of 

spider mites (London strain, cyp- and Col-adapted) on bean and the three Arabidopsis 

genotypes (Col-0, cyp79B2 cyp79B3 and tgg1 tgg2), incubation time of eggs (time needed 

for eggs to hatch), developmental time of different stages and longevity of adults were 

compared using one-way ANOVA analysis followed by Tuckey’s test. Also, a one-way 

ANOVA followed by Tuckey’s test was performed between three replicates of the 

experiments to compare life table parameters of T. urticae strains on different host plants. 

SPSS version 19.0 (IBM Corp., 2010) was employed for statistical analysis of the life table 

experiment data. 
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 Spider mite larvae developmental time and mortality 

The effect of different genotypes of Arabidopsis on developmental time and mortality of 

T. urticae larvae were investigated with a sample size larger than that in the life table 

experiment for a robust statistical analysis of larval mortality and development time. To 

synchronize T. urticae larvae, a method introduced by Suzuki et al. (2017) was used. A 

Total of 150 adult spider mite females were placed on a petri plate with its inner wall 

covered with a strip of wet cotton to limit the females to the bottom of the petri plate. After 

24 h, the cotton and female spider mites were removed, leaving eggs at the bottom of the 

petri plate. Water was added to the petri plate to a level that just covered all eggs. After 

four days, the water was removed. Eggs were hatched within two hours of water removal. 

To isolate spider mite larvae in a cage-like system, the same set-up employed for the life 

table experiment was used. To each set-up, one detached leaf of either Col-0 or cyp79B2 

cyp79B3 plants were added. Ten larvae of London, Col-adapted or cyp-adapted strains of 

spider mites were transferred to each detached leaf and the set-up was sealed using Parafilm 

(on a total of ten detached leaves for each treatment). All cages were checked every day 

and the number of larvae alive as well as number of larvae molted into protonymph were 

reported. To assure that larvae are exposed to good quality leaves during the experiment, a 

fresh detached leaf was added to each set-up every other day until the last larvae molted 

into protonymph or died.  

Three replications of the assay were performed using different batches of each Arabidopsis 

genotype. I analyzed the results using two-way ANOVA followed by Tukey test in SPSS 

version 19.0 (IBM Corp., 2010) to determine if there were significant differences between 

the conditions of genotype and/or replication (separate batches of plants) and whether there 

was an interaction between the experimental conditions.  Data from the three replications 

that did not show significant interactions were pooled. A one-way ANOVA followed by 

Tukey test was performed to analyze data. The same assay was carried out to compare the 

larval development and mortality for London strain, Col-adapted and cyp-adapted spider 

mite larvae on detached leaves of Col-0 and tgg1 tgg2 genotypes of Arabidopsis. Data were 

analyzed as described above. 
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 Fecundity 

In the life table experiment, the effect of different Arabidopsis genotypes was observed on 

reproduction rate of T. urticae females. Also, a difference was shown between fecundity 

of adapted and non-adapted spider mite populations. To ensure that the observed effect on 

fecundity is not due to different feeding source of the females during their development 

from egg to adult, a fecundity assay was performed using females that had spent their 

immature stages on bean. Fecundity of London strain, Col-adapted and cyp-adapted adult 

females of spider mites on detached leaves of Col-0 and cyp79B2 cyp79B3 plants. To 

perform the experiment, a cage-like set-up similar to that described in the life table 

experiment was used. To synchronize females, 50 individual 1G females (adapted or non-

adapted spider mites that were reared on bean detached leaves for 1 generation) were placed 

on a detached bean leaf for 24 h and then all females were removed leaving only 

synchronized eggs on the leaf. One to two days after emergence of the adult females, they 

were used for the experiment. A one- to two-days old 2G female was put on each detached 

leaf. Every other day, the number of eggs laid by each female were counted and detached 

leaves were replaced with fresh ones. The total number of eggs laid by each female in six 

days was recorded.  

The experiment included ten replicates for each treatment and each experiment was 

repeated three times using different batches of plants. Statistical analysis was the same as 

that for larval development/mortality assay and it was performed using SPSS version 19.0 

(IBM Corp., 2010). To investigate the role of myrosinases on the observed effect of IGs on 

the spider mite reproduction, the fecundity of London strain, Col-adapted and cyp-adapted 

spider mite larvae was compared on detached leaves of Col-0 and tgg1 tgg2 genotypes of 

Arabidopsis. 
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 Adaptation of T. urticae to the Arabidopsis defense 

 Suppression of plant defense 

If tolerance of Col-adapted T. urticae to Arabidopsis is due to suppression of plant defense, 

a reduction in expression of genes involved in biosynthesis of IGs and/or a decrease in 

level of IGs in plants upon feeding of adapted spider mites on the plant is expected.  

 Expression of genes related to biosynthesis of IGs  

To determine whether adaptation of Col-adapted spider mites is due to suppression of plant 

defense, expression of genes in Col-0 plants associated with biosynthesis of IGs was 

measured. It has been previously shown that a functional jasmonic acid (JA) biosynthesis 

pathway is necessary for an effective IGs-related defense response of Arabidopsis to spider 

mites (Zhurov et al., 2014; Figure 2-3). Also, two enzymes, CYP79B2 and CYP79B3, are 

required for the biosynthesis of the indole class of glucosinolates (Hull et al., 2000; 

Mikkelsen et al., 2000; Sønderby et al., 2010 a). Thus, the expression of three genes was 

measured: CYP79B2 and CYP79B3 that are related to biosynthesis of IGs in Col-0 plants 

and AOS (allene oxide suynthase), the JA pathway marker gene (Figure 2-3). Col-0 plants 

(four to five weeks-old) were infested with 10 adult females of either London strain, cyp-

adapted or Col-adapted spider mites. After 24 h, the whole rosettes were cut and immersed 

in liquid nitrogen for RNA isolation. The experiment was performed in two independent 

replicates with similar outcomes. 
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Figure 2-3 Simplified schematic of jasmonic acid (A) and indole glucosinolate (B) 

biosynthesis pathways in Arabidopsis. Biosynthesis starts by conversion of linolenic acid 

to (9S,13S)-12-oxo-phytodienoic acid (OPDA) through different steps catalyzed by 13- 

lipoxygenase (LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC) 

enzymes. Jasmonic acid (JA) is generated from OPDA through different steps of reduction 

and β-oxidations. JA is converted to jasmonic acid-isoleucine (JA-Ile) which is the active 

form of JA that induces the transcription of genes associated with response to wounding 

and defense against herbivores including indole glucosinolates biosynthesis genes. Indole 

glucosinolates are derived from the amino acid tryptophan through conversion of 

tryptophan to aldoxime by cytochrome P450 (CYP) gene products CYP79B2 and 

CYP79B3. Aldoximes are then metabolized by CYP83A1 and/or CYP83B, SUR1, S-

glucosyltransferases S-GT, and CYP81F2 monooxygenase to form indole glucosinolates.  

Using the RNeasy Plant Mini Kit, including DNase treatment (Qiagen, Venlo, Limburg, 

Netherlands), RNA was extracted from approximately 100 μl of grounded rosette tissue of 

four- to five-weeks old Col-0 Arabidopsis plants that were treated with Col-adapted, cyp-

adapted, London strain or no mites. Two micrograms of total RNA was reverse transcribed 

using the Maxima First Strand cDNA Synthesis Kit for qRT-PCR (Thermo Fisher 

Scientific, Waltham, MA). There were three biological replicates for each treatment and 

reactions were performed in triplicates for each biological replicate, using Maxima SYBR 

Green/ROX qPCR Master Mix (Thermo Fisher Scientific, Waltham, MA). An Agilent 

Mx3005P qPCR instrument (Agilent Technologies, Santa Clara, CA) was used to perform 

qRT-PCR. Primer sequences and amplification efficiencies (E) are listed in Table 2-1. For 

(A) (B) 
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Arabidopsis marker gene normalization, a ubiquitin conjugation enzyme, PEROXIN4 or 

PEX4 (AT5G25760) was used as the reference gene (Czechowski, 2005) which is found to 

be transcribed at similar amounts in all samples as indicated by Ct values within ± 1 cycle. 

To obtain a Ct value for each biological replicate, mean Ct values of three technical 

replicates were used. Expression values were normalized for each target gene (T) relative 

to the reference gene (R) to calculate the normalized relative quantity (NRQ) using the 

formula below: 

NRQ= 
(1+ER)CtR

(1+ET)CtT
 

Where: 

ER = efficiency of reference gene, and 

ET = efficiency of target gene. 

The Log2-transformed NRQs were analyzed using 3×2 factorial ANOVA analysis to 

determine the significance of main effect of spider mite strain and experimental replication 

(Rieu and Powers, 2009). ANOVA analysis and the following Tukey’s HSD test were 

performed using R. 

Table 2-1 List of primer sequences used in qRT-PCR and associated efficiencies 

Gene ID Description Primers Efficiency 

AT5G25760 PEX4 
Forward GCTCTTATCAAAGGACCTTCGG 

0.992 
Reverse CGAACTTGAGGAGGTTGCAAAG 

AT5G42650 AOS 
Forward AAATCCAACGGCGGAGAACT 

0.984 
Reverse TCGTCGCCAACGGTTGATAA 

AT4G39950 CYP79B2 
Forward GAAAAGAGGTTGTGCGGCTC 

0.994 
Reverse TCTCACTTCACCGTCGGGTA 

AT2G22330 CYP79B3 
Forward TCTACCGATGCTTACGGGATTG 

0.973 
Reverse TACAAGTTCCTTAATGGTTGGTTTG 
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 Plant metabolites related to IGs 

The same plant material used for the analysis of plant marker gene expression was used to 

determine levels of JA and JA-Ile phytohormones, and I3M, the main IGs in Arabidopsis 

leaves. The level of phytohormones, JA and JA-Ile, were quantified by isotopic dilution 

mass spectrometry. Isotope-labeled standards were added to plant samples (approximately 

0.1 g) before extraction as described by Durgbanshi et al. (2005). Ultra-performance liquid 

chromatography (UPLC)-electrospray ionization-tandem mass spectrometry analyses were 

carried out on an Acquity SDS system (Waters, Milford, Massachusetts, United States) 

coupled to a triple quadrupole mass spectrometer (MicroMass, North Carolina, United 

States). An external calibration was performed for quantification. Levels of Arabidopsis 

JA and JA-Ile in untreated control and upon feeding of non-, cyp- and Col-adapted mites 

were compared through one-way ANOVA analysis using R (R Core Team, 2014). 

Level of I3M was quantified using an UPLC-electrospray ionization-Quadrupole Time-Of-

Flight-mass spectrometry system operated in negative or positive electrospray mode as 

described previously (Malitsky et al., 2008; Böttcher et al., 2009). Each sample included 

six rosettes of Col-0 plants (about 50 mg). Metabolites were extracted in 70% (v/v) 

methanol:water (supplemented with biochanin A) by ultrasonication for 10 min. 

Myrosinases were deactivated by incubation of samples  at 80°C for 15 min in a water bath. 

Afterward, each sample was centrifuged, and the supernatant was filtered through a 0.2-

mm polytetrafluoroethylene membrane filter (GE Healthcare, Little Chalfont, United 

Kingdom). From each sample, a 10-µL aliquot was directly injected into the UPLC system 

interfaced to a MicroMass QTOF Premier mass spectrometer. Extraction of mass data was 

achieved with XCMS software (Smith et al., 2006; Arbona et al., 2010). Relative 

quantification was performed by assessing the recovery of internal standard and dividing 

corrected peak areas by actual tissue weight (normalized peak area). An external calibration 

was performed for quantification. Levels of Arabidopsis I3M, JA and JA-Ile in untreated 

control and upon feeding of non-, cyp- and Col-adapted mites were compared through one-

way ANOVA analysis using R (R Core Team, 2014). 
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 Detoxification of plant metabolites 

 Enzymatic activity assays 

To perform the enzymatic activity assays, one or two days-old females of each Col-

adapted, cyp-adapted and London strains were placed on bean, Col-0 or cyp79B2 cyp79B3 

plants. After 24 hours, 200 females from each treatment were collected in Eppendorf tubes 

and kept in -80 ˚C for further experiments. The spider mites were homogenized in liquid 

nitrogen and the homogenate was centrifuged at 10000 g for five minutes at 4 ˚C. The 

supernatant (as the enzyme solution) was transferred to another tube and its protein 

concentration was determined using the Bradford assay (Bradford, 1976). Each sample was 

diluted to appropriate protein concentrations of 200, 200 and 100 µg/mL to be used for 

measuring enzymatic activity of glutathione-S-transferases (GSTs), P450 monooxygenases 

and esterases, respectively. 

 GSTs activity 

The GST activity was assessed spectrophotometrically using 1-chloro-2,4-dinitrobenzene 

(CDNB) as the substrate based on the Habig and Jakoby method (Habig and Jakoby, 1981). 

GSTs catalyze the conjugation of L-glutathione (GSH) to CDNB through the thiol group 

of the glutathione.  

GSH + CDNB          GS-DNB Conjugate + HCl 

In each well of a 96-well plate, 100 µL of each mite extract, glutathione (4mM) and CDNB 

(0.4 mM, containing 0.1% (v/v) ethanol) were added. Absorbance of contents of each well 

was measured at 340 nm at 23 ˚C during a five-minute period at 30 s intervals by 

Spectramax M2 (Molecular Devices, San Jose, California, United States). Using the 

extinction coefficient of 9.6 mM-1cm-1, the amount of conjugated CDNB formed in five 

minutes was calculated. The assays were performed in four independent biological and 

three technical replicates. 

The increase in absorbance (ΔA340/min) is directly proportional to the GST activity. The 

linearity of the reaction was determined by plotting the absorbance values against time. 

ΔA340/min was calculated in the linear range of the plot using the following equation: 

GST 
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∆A����� min⁄ =
A�����(final read)− A�����(initial read)

Reaction time (min)
 

The ΔA340/min of the blank was subtracted from the ΔA340/min of the sample and this rate 

was used for the calculation of the GST specific activity. Equation for the GST specific 

activity is as below: 

GST specific activity=
(ΔA���/min )× V(mL )× dil

ε�� × V������(mL )
= µmol/mL /min 

Where: 

εmM (mM-1cm-1): The extinction coefficient for CDNB conjugate at 340 nm: 5.3 mM-1 

(path length of 0.552 cm)  

V: the reaction volume  

Dil: the dilution factor of the original sample 

VSample: the volume of the enzyme sample tested 

All assays were corrected for occurrence of non-enzymatic conjugation in blank samples 

in which the enzyme solution was replaced by buffer. 

 P450s activity 

To measure the activity of P450s, 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) was used 

as the substrate in a fluorometric assay in which the O-deethylation of 7-EFC occurs and 

is converted into the fluorescent 7-hydroxy-4-trifluoromethylcoumarin (7-HFC) by P450 

enzymes (Buters et al., 1993; Figure 9).  

 

Figure 2-4 Conversion of 7-ethoxy-4-trifluoromethylcoumarin to 7-hydroxy-4-

trifluoromethylcoumarin catalyzed by P450 monooxygenases. 

P450 activity of samples was measured according to the method of Van Leeuwen et al. 

(Van Leeuwen et al., 2005) which was originally adapted from Buters’ method (Buters et 
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al., 1993). In each well of a black 96-well microtitre plate, 50 µL of the enzyme source 

(mite extract samples diluted to 200 µg/mL) was added to 50 µL of a reaction mixture 

containing 7-EFC 0.4mM, glucose-6-phosphate 1mM, NADP+ 0.2 mM and glucose-6-

phosphate dehydrogenase 0.014 U in sodium phosphate buffer, pH 7.4. The plate was 

incubated at 37 °C in the dark for 30 min while shaking and the reaction was stopped by 

adding 100 µL of TRIZMA base buffer (0.05 M, pH 10) and acetonitrile (50+50 by 

volume) to each well. 

To provide a standard curve of absorbance of 7-HFC at each concentration, 7-HFC was 

diluted in sodium phosphate buffer (0.1 M, pH 7.5) to reach the following concentrations: 

0.12, 0.1, 0.08, 0.06, 0.04, 0.02 and 0 µM. For non-enzymatic control, 50 µL sodium 

phosphate buffer (0.1 M, pH 7.4) was added to 50 µL reaction mixture. A microtitre plate 

spectrophotometer was used to detect 7-HFC fluorescence at 510 nm while exciting at 410 

nm. To determine the specific activity of 7-EFC-O-deethylation, the standard curve of 

absorbance of different concentrations of 7-HFC was used. 

 Esterase activity 

To measure esterase activity in spider mite extracts, p-nitrophenyl acetate (pNPA) was 

employed as the substrate to measure the increase in production of p-nitrophenol (pNP) as 

a result of hydrolysis of pNPA by esterases in spider mite extract samples (Stumpf and 

Nauen, 2002).  

Spider mite extracts were diluted to 100 µg/mL, before adding (to each well of a 96-well 

plate) 100 µL of each sample to 80 µL of sodium phosphate buffer (0.1 M, pH 7.5) and 20 

µL p-nitrophenyl acetate solution prepared in acetone + buffer (10 + 90 by volume) at 40 

°C. All samples were normalized by being compared with a blank containing 180 µL buffer 

and 20 µL pNPA. To provide a standard curve of p-nitrophenol concentration against 

absorbance, pNP was diluted in sodium phosphate buffer (0.1 M, pH 7.5) to reach to the 

following concentrations: 25, 20, 15, 10, 5 and 0 nM.  

The absorbance of the formed p-NP at 405 nm and 30 °C was measured using a microtitre 

plate spectrophotometer for five minutes, every 15 sec. The increase in absorbance 

(ΔA405/min) is directly proportional to the esterase activity. The linearity of the reaction 
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was determined by plotting the absorbance values against time and calculation of 

ΔA405/min in the linear range of the plot using the following equation: 

∆A����� min⁄ =
A�����(final read)− A�����(initial read)

Reaction time (min)
 

The standard curve of ΔA405/min of different pNA concentrations was used to convert 

ΔA405/min values of samples into specific esterase activity values (units reported as 

nmol/min/µg protein). 

For all enzymatic activity assays, enzymatic activity of adapted and non-adapted T. urticae 

on different host plants was compared through one-way ANOVA using SPSS (IBM Corp., 

2010).  

 Synergism assay 

A synergism assay was performed to determine if glutathione-S-transferases (GSTs), P450 

monoxygenases (P450s) and esterases are involved in adaptation of Col-adapted spider 

mites to Arabidopsis. Detached leaves from four to five weeks old Col-0 and cyp79B2 

cyp79B3 plants were dipped in either DEM (diethyl maleate), PBO (piperonyl butoxide) 

or DEF (S,S,S tributyl-phosphorotrithioate) to inhibit activity of GSTs, P450s and esterases 

respectively.  

To determine the appropriate concentrations of inhibitors to be applied in the assay, the 

range of inhibitor concentrations used against spider mites in literature was extracted 

(Khalighi et al 2009; Khalighi et al 2014; Van Pottelberge et al., 2008; Van Pottelberge et 

al 2009) and the highest concentrations that caused less than 10% mortality in mites and 

no phytotoxicity on Arabidopsis detached leaves were chosen. To detect phytotoxicity, 

solutions of different concentrations of DEM (100, 200, 500, 1000 and 2000 mg/L), PBO 

(30, 100, 500, 1000 and 2000 mg/L) and DEF (10, 20, 100, 200 and 500 mg/L) were made 

by dissolving inhibitors in acetone (1:1 by volume) and diluting the solutions by distilled 

water to reach the desired concentration. Total of 20 detached leaves of four- to five-weeks 

old Col-0 plants was dipped in each solution. After 24 h any deformation or color change 

of leaves was recorded as phytotoxicity. Bean detached leaves were treated with the highest 
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concentrations of DEM, PBO and DEF that did not cause any phytotoxicity on Col-0 

leaves. Five bean detached leaves were treated with each inhibitor or a solution of water 

and acetone as the control. Total of 50 spider mite females of London strain was placed on 

each detached leaf. After 24 h, number of live spider mites was recorded and mortality was 

calculated using the Abbott’s formula (Abbott, 1925): 

Corrected % = (1 −
n�
n�
)× 100, 

Where: 

nT = number of inhibitor-treated mites 

nC = number of control (water-treated) mites 

To ensure that the applied concentrations of inhibitors are effective on mites, enzymatic 

activity was determined after treatment of spider mites with inhibitors. To perform the 

enzymatic activity assay, for each inhibitor three samples of 100 inhibitor-treated female 

spider mites and three samples of 100 spider mites that were treated with water and acetone 

(as described below) were used. For each sample, ten detached leaves of Col-0 Arabidopsis 

were treated with the chosen concentration of each inhibitor or water and each of the 

detached leaves was placed in a water-containing set-up as described in section 2.2 for the 

life table experiment. After the solution on leaves dried, ten adult females of Col-adapted 

spider mites were put on each detached leaf and the set-up was closed and sealed with 

Parafilm. After 24 h, 100 spider mites were pooled for each sample of mites treated with 

each inhibitor or water. GST, P450 and esterase activity of DEM-, PBO- and DEF-treated 

spider mites were measured respectively as described in section 2.5.2.1. Means of 

enzymatic activity of inhibitor-treated with water-treated samples were compared using t-

test in SPSS (IBM Corp., 2010). 

 

Inhibitor solutions of 2000 mg/L, 1000 mg/L and 100 mg/L concentration were made for 

DEM, PBO and DEF, respectively. Since PBO is not a universal inhibitor of P450s, 15 

mg/L of TCPPE was also used to investigate the potential effect of P450 enzymes that have 

low affinity to PBO on adaptation of spider mites to glucosinolates. Leaves dipped in the 

water-acetone solution served as controls. Leaves were allowed to dry in the fume hood 

before a one to two-day-old adult female of London strain or Col-adapted spider mite was 
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added to each detached leaf. The number of eggs laid by each female per day was recorded 

for six days. To provide spider mites with fresh food, the leaves were changed every other 

day. Each experiment included ten replicates of each treatment and was repeated three 

times to confirm the reproducibility of results. To analyze the data, a Mann-Whitney U test 

was performed between control and inhibitor-treated treatments using SPSS (IBM Corp., 

2010). 

 RNA-Seq and transcriptome analysis 

To identify genes that are potentially involved in adaptation of spider mites to IGs, 

differences in the expression of genes in adapted compared to non-adapted spider mites 

upon feeding on different host plants was determined using RNA-seq and transcriptome 

analysis.  

Sample preparation: beans (one week old), cyp79B2 cyp 79B3 and Col-0 plants (four to 

five-weeks old) were infested with London strain, cyp-adapted and Col-adapted spider mite 

females. After 24h, three samples of 100 spider mites were collected for each treatment, 

frozen in liquid nitrogen and stored at -80 ˚C before RNA extraction. Total RNA was 

extracted from each sample of spider mites using RNeasy Plant Mini Kit, including DNase 

treatment (Qiagen,Venlo, Limburg, Netherlands) following the guideline of the 

manufacturer. To avoid DNA contamination, on column DNase I digestion was performed 

according to manufacturer’s protocol. The quality and quantity of the extracted RNA was 

determined using a Nanodrop ND-2000c spectrophotometer (Thermo Scientific, Waltham, 

Massachusetts, United States). 

RNA-Seq analysis: RNA samples were sequenced at The Center for Applied Genomics 

(TCAG) sequencing facility operated by The Hospital of Sick Children (Toronto, ON). 

Strand specific paired-end (2 × 150 bp) sequencing was conducted according to Illumina 

TruSeq protocol (Illumina, San Diego, CA). The transcriptome sequencing of all 27 

libraries was performed on a single sequencing lane on an Illumina HiSeq2500 Genome 

Analyzer (Illumina, San Diego, CA) platform yielding 8-17 million mapped fragments per 

library. Quality control measures including filtering high quality reads based on the fastq 

score and trimming the read lengths were performed at TCAG. Reads were mapped to the 
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reference T. urticae genome [assembly 2009-09-29; Grbic et al. (2011)] using STAR 

aligner (Dobin et al., 2013) v.2.5.2b in a single-pass mode allowing only unique mapping, 

up to five mismatches per read mapped, a minimum intron size of 20bp, a maximum intron 

size of 15000 bp and outFilterMatchNminOverLread and outFilterScoreMinOverLread of 

0.5. Read counts were generated at the level of gene locus using HTSeq v.0.6.0 in “union” 

mode (Anders et al., 2015) against T. urticae genome annotation version 2016-06. Analysis 

of differential gene expression was performed using voom/limma workflow for genes that 

demonstrated expression level of at least 1 count per million (CPM) in at least 3 samples 

(Law et al., 2014). Additional analysis and figures were performed and generated using R 

(R Core Team , 2014) and BioConductor (Gentleman et al., 2004). 

 Spider mite IGs-related metabolites 

To determine IGs-related metabolites in spider mites and consequently the potential 

conversion of plant IGs by spider mites, London and Col-adapted 2G spider mite females 

were allowed feeding on either Col-0, cyp79B2 cyp79B3 or atr1-D (a mutant of Col-0 

Arabidopsis in which IGs over-accumulate) plants for three days. Then, samples from each 

mite strain on each plant genotype were collected in Eppendorf tubes and flash frozen in 

liquid nitrogen. Spider mites collected from different batches of plants were pooled to reach 

1000 females for each sample. 

Each frozen sample was weighed and grounded using a cold pestle before extraction of 

mite metabolites in ice-cold methanol (1mL per 100 mg of mite), containing 80 µg/mL 

sinigrin (Sigma-Aldrich) which served as an internal standard. After ten minutes of 

sonication, samples were centrifuged for five minutes at 4000 g. Commercially available 

IMG breakdown products were resolubilized in the extraction solvent as the internal 

standard. The protocol to synthesize indole-3-carbinol (I3C) conjugates was adapted from 

Kim et al. (2008) with the following modifications. Indole‐3‐carbinol (5 mg) was mixed 

with an amino acid, glutathione or ascorbic acid in a 1:1 (w/w) ratio in a 10 mL glass vial, 

followed by adding 5 mL of 80% methanol (analytical grade). The vial was incubated at 

85 °C for 30 min in a water bath, vortexed for 5 min and was then left at room temperature 

overnight. The mixtures were filtered using a 0.22 um PTFE membrane syringe-tip filter 

and each mixture was injected into the HPLC-TOF. Conjugates were analyzed as a mixture 
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and peaks were tentatively identified on the basis matching the peak mass spectrum with 

the mass spectrum of predicted conjugates also identified by Kim et al. (2008).  

Samples were analyzed by HPLC-TOF-MS (Agilent, Santa Clara, USA; Dr. Mark 

Bernard’s lab at Western University, London, Canada) consisting of a solvent degasser 

(Agilent 1260), a binary pump (Agilent 1260), a high-performance autosampler (Agilent 

1260) and a temperature-controlled column compartment (Agilent 1290).  A 1 µL injection 

of standards and plant extracts and a 10 µL injection of mite extract was separated on a 

C18 reversed-phase column, 3 mm x 100 mm, 1.8 µm pore size (ZORBAZ Eclipse Plus 

C18, Agilent) using a two-solvent gradient (solvent A, water + 0.1% formic acid; solvent 

B, acetonitrile + 0.1% formic acid) at a flow rate of 0.3 mL/min at a column temperature 

of 25°C. The 30-min total run consisted of 5% B (2 min), 5–80% B (22 min), 80–100% B 

(0.01 min), a 3 min hold at 100% B. The column was returned to initial conditions of 100–

5% B over 1 min followed by a 4 min post-time held at 5% B to return column to 

equilibrium. Eluent was monitored by time of flight mass spectrometry (Aglient 6230 TOF-

MS). The TOF-MS used electrospray ionization as a source (325°C drying gas temperature 

at 8 L/min with a pressure of 35 psi and a capillary voltage of 3500 V) operated in the 

negative polarity (fragmentor at 175 V and skimmer at 65 V), with a maximum m/z of 

1700, in high resolution mode. 

Data was processed using Agilent’s Masshunter Workstation Qualitative Analysis 

Software (Version B.05.00, September 2011). Peak areas for compounds of interest were 

generated using extracted ion chromatograms (IMG at 447.0537 m/z; 4hIMG at 463.0487 

m/z; 4mIMG and 1mIMG at 477.0643) with a mass tolerance of 0.005 m/z, and the elution 

order of the intact IGs was predicted based on previously published methods (Bennett et 

al., 2004; Glauser et al., 2012). Extracted ion chromatograms were smoothed using a 

Gaussian smoothing function with a function width of 15 points and a gaussian width of 

five points. Peak areas were normalized to the intensity of the internal standard and a ten-

point sinigrin calibration curve was used to determine the concentration of each intact IG 

in 358 m/z sinigrin equivalents. The normalized concentrations of different compounds 

were compared in adapted and non-adapted spider mites through one-way ANOVA using 

SPSS (IBM Corp., 2010).  
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Chapter 3 

Results 

 Characterization of the effect of indole glucosinolates on 

Tetranuchus urticae performance 

 Life table experiment 

To characterize the effect of indole glucosinolates (IGs) on Tetranychus urticae 

performance, a life table experiment was conducted by daily recording the survival and the 

fecundity of London, cyp-adapted and Col-adapted spider mite strains on Col-0, cyp79B2 

cyp79B3 and tgg1 tgg2 Arabidopsis plants, as well as on bean. Survival, developmental 

time and rate of population growth of the three spider mite strains on different host plants 

are compared and described in the three following sub-sections, survivorship curves, 

biological parameters and life table parameters. 

Survivorship curves 

Survival of individual spider mites of London, cyp- and Col-adapted spider mite strains 

were followed on different host plants every day from their egg stage until death of the last 

adult. Distribution of the age-specific survival rate of adult females is presented in Figure 

3-1. Survival curves of London strain, cyp- and Col-adapted spider mites were significantly 

different on each of the Arabidopsis genotypes including Col-0 (R2=6.38; P= 0.041), tgg1 

tgg2 (R2=7.40; P= 0.025) and cyp79B2 cyp79B3 (R2=6.91; P= 0.032). However, on bean, 

no significant difference was observed among the survivorship curves of these mite strains.   

At the first half of their lives, mortality of spider mites was faster on Col-0 and tgg1 tgg2 

plants compared to that on bean and cyp79B2 cyp79B3 so that on the 10th day of their lives, 

less than 70% of spider mites were alive on Col-0 and tgg1 tgg2 plants (Figures 3-1 A and 

B), while at the same time, more that 70% of mites were alive on bean and cyp79B2 

cyp79B3 plants (Figures 3-1 C and D). 
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Figure 3-1 Kaplan-Meier estimate of age-specific survival rate (lx) for three strains of 

Tetranychus urticae including London strain, cyp-adapted and Col-adapted on A) Col-0, 

B) tgg1 tgg2, C) cyp79B2 cyp79B3 and D) bean (one-way ANOVA; * p,<0.05). 

 

 

 

(A) (B) 

(C) (D) 

Col-adapted 
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Table of biological parameters  

The developmental time was calculated for egg, larva, protonymph and deutonymph stages 

of the three T. urticae strains on Col-0, cyp79B2 cyp79B3 and tgg1 tgg2 Arabidopsis plants 

and bean for the following reasons: 1) to determine the developmental stage of T. urticae 

that is sensitive to IGs; 2) to determine which stage(s) of Col-adapted spider mites show 

adaptation to IGs; 3) to investigate involvement of myrosinases in the negative effect of 

IGs on T. urticae. 

The mean developmental time of eggs, larvae, protonymphs and deutonymphs, as well as 

mean longevity of London strain, cyp-adapted and Col-adapted T. urticae on bean and 

different Arabidopsis genotypes including Col-0, cyp79B2 cyp79B3 and tgg1 tgg2 is shown 

in Table 3-1. The incubation time of eggs (the number of days between oviposition and 

hatching of eggs) was not significantly different between any of the treatments. 

Developmental time of the London strain, cyp-adapted and Col-adapted larvae did not 

show any significant difference on bean and cyp79B2 cyp79B3, whereas on Col-0, Col-

adapted larvae developed to protonymph significantly faster than the London strain 

(F2,89=15.034, P <0.001) and cyp-adapted larvae (F2,89=15.034, P =0.012). Also, cyp-

adapted larvae had a significantly shorter developmental time compared to London 

(F2,89=15.034, P =0.033). Larvae of all the three strains of T. urticae had a significantly 

shorter developmental time on bean compared to that on Col-0 (London: F3,119=35.766, P 

<0.001; cyp-adapted: F3,119=10.298, P <0.001; Col-adapted: F3,119=2.384, P =0.046) but 

just the London strain showed a significant difference in developmental time of larvae on 

cyp79B2 cyp79B3 compared to Col-0 plants (F3,119=35.766, P <0.001). Among the three 

spider mite strains, only the London strain showed a significantly shorter larval 

development time on tgg1 tgg2 compared to that on Col-0 (F3,119=35.766, P <0.001).  

Protonymphs of T. urticae did not show any significant difference in developmental time 

on different plant genotypes. On each type of host plant, different strains of T. urticae spent 

comparable amounts of time to develop into the adult. However, each spider mite strain 

showed a significantly different developmental time on different types of host plant. 

Deutonymphs of all spider mite strains developed significantly faster on bean compared to 
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Arabidopsis genotypes but only deutonymphs of the London strain showed a significant 

difference in developmental time on the three Arabidopsis genotypes, which had a 

significantly longer developmental time on Col-0 compared to that on cyp79B2 cyp79B3 

(F3,119=35.766, P <0.001). 

Adding up the developmental time of all the pre-adult stages, the premature developmental 

time was calculated and did not vary significantly among the three strains of T. urticae on 

each of the plant hosts. However, all the three strains showed a significantly longer 

premature developmental time on Col-0 compared to either bean (London: F3,119=26.883, 

P <0.001; cyp-adapted: F3,119=20.893, P <0.001; Col-adapted: F3,119=20.274, P =0.046) or 

cyp79B2 cyp79B3 (London: F3,119=26.883, P <0.001; cyp-adapted: F3,119=20.893, P 

=0.001; Col-adapted: F3,119=20.274, P =0.010). The premature developmental time of all 

the strains was similar on Col-0 and tgg1 tgg2. 

Longevity (spider mite’s age at the time of death) of the three spider mite strains was not 

significantly different on bean, whereas on cyp79B2 cyp79B3, the London strain lived 

significantly shorter than cyp-adapted spider mites (F2,89=4.804, P =0.007). On Col-0, the 

London strain and cyp-adapted spider mites showed a similar longevity, while both lived 

significantly shorter than Col-adapted spider mites (London: F2,89=9.373, P <0.001; cyp-

adapted: F2,89=9.373, P =0.006). Comparing the effect of host plant on longevity of each 

of the spider mite strains, both the London strain and cyp-adapted spider mites lived 

significantly longer on bean (London: F2,89=14.193, P =0.003; cyp-adapted: F2,89=15.891, 

P =0.005) and cyp79B2 cyp79B3 (London: F2,89=14.193, P =0.001; cyp-adapted: 

F2,89=15,891, P <0.001) compared to that on Col-0, while their longevity on bean and 

cyp79B2 cyp79B3 was not significantly different. Col-adapted spider mites did not show 

any significant difference in longevity on different types of host plant. 
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Table 3-1 Developmental time (mean±SEM) of London strain, cyp-adapted and Col-

adapted Tetranychus urticae at different developmental stages on four host plants, Bean, 

cyp79B2 cyp79B3, tgg1 tgg2 and Col-0. Data were analyzed using one-way ANOVA, P 

<0.05, n=20. Different letters in capital orange show a significant difference in each row 

and different small purple letters indicate a significant difference in each column related to 

each spider mite strain. 

 London cyp-adapted Col-adapted 

Egg 

Bean 2.933+0.106 Aa 3.000+0.107 Aa 3.033+0.058 Aa 

cyp79B2 cyp79B3 3.000+0.107 Aa 3.000+0.117 Aa 2.967+0.112 Aa 

tgg1 tgg2 3.100+0.074 Aa 3.233+0.114 Aa 3.000+0.096 Aa 

Col-0 3.033+0.122 Aa 3.100+0.100 Aa 2.967+0.102 Aa 

Larva 

Bean 1.633+0.102 Aa 1.567+0.104 Aa 1.567+0.114 Aa 

cyp79B2 cyp79B3 2.033+0.089 Ab 1.833+0.108 Aab 1.833+0.112 Aab 

tgg1 tgg2 2.167+0.108 Ab 2.167+0.128 Ab 1.767+0.114 Bab 

Col-0 3.000+0.083 Ac 2.533+0.171 Bb 2.000+0.117 Cb 

Protonymph 

Bean 1.100+0.102 Aa 1.100+0.056 Aa 1.067+0.114 Aa 

cyp79B2 cyp79B3 1.200+0.074 Aa 1.200+0.074 Aa 1.133+0.063 Aa 

tgg1 tgg2 1.233+0.078 Aa 1.300+0.098 Aa 1.267+0.082 Aa 

Col-0 1.067+0.046 Aa 1.233+0.078 Aa 1.133+0.063 Aa 

Deutonymph 

Bean 1.267+0.082 Aa 1.133+0.063 Aa 1.067+0.046 Aa 

cyp79B2 cyp79B3 1.733+0.106 Ab 1.733+0.095 Ab 1.800+0.121 Ab 

tgg1 tgg2 2.300+0.109 Ac 1.733+0.106 Bb 1.833+0.108 Bb 

Col-0 2.133+0.115 Ac 2.033+0.089 Ab 1.833+0.128 Ab 

Premature 

Bean 6.933+0.197 Aa 6.800+0.139 Aa 6.733+0.126 Aa 

cyp79B2 cyp79B3 7.967+0.195 Ab 7.767+0.095 Ab 7.733+0.214 Ab 

tgg1 tgg2 8.800+0.194 Abc 8.433+0.233 ABbc 7.867+0.171 Bbc 

Col-0 9.233+0.196 Ac 8.900+0.227 Ac 7.933+0.151 Bc 

Longevity 

Bean 30.200+0.769 Aa 31.567+0.826 Aa 31.867+0.764 Aa 

cyp79B2 cyp79B3 30.600+0.720 Aa 34.200+0.810 Ba 32.567+0.924 ABa 

tgg1 tgg2 25.533+0.683 Ab 27.567+0.890 Ab 30.833+0.888 Ba 

Col-0 26.867+0.414 Ab 27.667+0.699 Ab 30.233+0.575 Ba 
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Life table parameters 

Daily tracking survival and fecundity of the three strains of T. urticae (London strain, cyp-

adapted and Col-adapted) on bean and the three genotypes of Arabidopsis (Col-0, cyp79B2 

cyp79B3 and tgg1 tgg2), allowed calculation of the life table parameters of T. urticae 

strains, pointing to the effect of IGs on population growth of spider mites and involvement 

of myrosinases in the effect of IGs on T. urticae. 

Table 3-2 Life table parameters (mean±SEM) of London strain, cyp-adapted and Col-

adapted Tetranychus urticae on Bean and the three Arabidopsis genotypes, Col-0, cyp79B2 

cyp79B3 and tgg1 tgg2; starting population of 20 eggs. Data were analyzed using one-way 

ANOVA, P <0.05, n=3. Different capital letters in orange show a significant difference in 

each row and different small purple letters indicate a significant difference in each column 

related to each spider mite strain. 

 London cyp-adapted Col-adapted 

GRR (♀) 

Bean 2118.667±306.44 Aa 2615.333±493.51 Aa 2126.667±295.98 Aa 

cyp79B2 cyp79B3 1436.778±213.55 Aa 2150.667±377.14 Aa 1696.000±167.16 Aab 

tgg1 tgg2 391.137±21.65 Ab 602.333±49.77 Ab 1074.333±87.72 Bb 

Col-0 473.417±34.22 Ab 693.000±81.46 ABb 956.333±78.49 Bb 

R0 (♀/♀) 

Bean 1738.969±310.19 Aa 2219.234±399.25 Aa 1614.037±232.55 Aa 

cyp79B2 cyp79B3 1159.561±169.01 Aa 1674.172±267.76 Aa 1273.563±216.83 Aab 

tgg1 tgg2 240.381±25.83 Ab 392.556±34.02 Ab 673.617±76.36 Bb 

Col-0 311.839±33.09 Ab 461.350±51.23 ABb 644.117±58.73 Bb 

rm (♀/♀/day) 

Bean 0.4546±0.032 Aa 0.4501±0.013 Aa 0.4438±0.011 Aa 

cyp79B2 cyp79B3 0.3955±0.011 Aa 0.3866±0.009 Ab 0.3895±0.014 Ab 

tgg1 tgg2 0.3523±0.011 Ab 0.3785±0.006 ABb 0.3846±0.009 Bb 

Col-0 0.3509±0.009 Ab 0.3752±0.007 ABb 0.3963±0.006 Bb 
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The life table parameters of the three strains of spider mites on different host plants are 

listed in Table 3-2, including gross reproductive rate (GRR; the total number of eggs 

produced by all females of the experimental population for each treatment), net 

reproductive rate (R0; population’s rate of replacement or the number of females produced 

by living females of the population) and intrinsic rate of population increase (rm); the rate 

of population growth when there is no density-dependent force regulating the population, 

in other words,  number of females produced by living females per day).  

On the Col-0 plant, Col-adapted spider mites showed the highest GRR, R0 and rm compared 

to the other two strains of spider mites with a significant difference between GRR, R0 and 

rm for the London strain compared to Col-adapted spider mites (GRR: F2,8=12.557, P 

=0.006; R0: F2,8=11.588, P =0.007; rm: F2,8= 9.524, P =0.011). A similar pattern was 

observed in spider mites that fed on tgg1 tgg2 Arabidopsis (GRR: F2,8=47.648, P <0.001; 

R0: F2,8= 18.930, P =0.002; rm: F2,8=9.524, P =0.011). On bean and cyp79B2 cyp79B3 

plants, no significant difference was observed in GRR, R0 and rm between the London 

strain, cyp-adapted and Col-adapted spider mites. 

All the three strains of T. urticae showed the highest GRR and R0 on bean while the lowest 

value of these parameters was on IGs-containing genotypes of Arabidopsis, Col-0 and tgg1 

tgg2. For the London strain and cyp-adapted spider mites, significantly higher GRR 

(London: F3,11= 19.329, P =0.028; cyp-adapted: F3,11=10.546, P =0.045) and R0 (London: 

F3,11=13.968, P =0.040; cyp-adapted: F3,11=16.297, P =0.031) on cyp79B2 cyp79B3 

compared to that on Col-0 was observed, whereas the difference between GRR and R0 of 

Col-adapted spider mites on cyp79B2 cyp79B3 and Col-0 plants was not significant. For 

all the three strains of T. urticae, rm was significantly higher on bean compared to that on 

cyp79B2 cyp79B3 (London: F3,11= 6.994, P =0.026; cyp-adapted: F3,11= 15.563, P =0.005; 

Col-adapted: F3,11= 6.753, P =0.026) and Col-0 (London: F3,11= 6.994, P =0.017; cyp-

adapted: F3,11= 15.563, P =0.002; Col-adapted: F3,11= 6.753, P =0.050) plants. The 

difference in rm of any of the spider mite strains was not statistically significant on cyp79B2 

cyp79B3 and Col-0. Neither of the three T. urticae strains demonstrated a significant 

difference in GRR, R0 and rm on Col-0 and tgg1 tgg2 plants. 
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 Larval development/mortality 

In order to better understand the effect of IGs on performance of adapted and non-adapted 

T. urticae larvae through employment of larger sample sizes, an assay was performed to 

determine developmental time and mortality of London, cyp- and Col-adapted strains 

larvae on Col-0 and cyp79B2 cyp79B3 genotypes of Arabidopsis (Figure 3-2 A). On 

cyp79B2 cyp79B3 plants, the number of days from larva to nymph (larval development 

time) was not significantly different between the London strain, cyp- and Col-adapted 

mites. However, on Col-0, the London strain larvae showed a significantly longer 

developmental time compared to cyp- and Col-adapted larvae (F5,179=17.486, P =0.001; 

F5,179=17.486, P <0.001) while no significant difference was observed between 

developmental time of cyp- and Col-adapted spider mite larvae. There was no significant 

effect of plant genotype on developmental time of cyp- and Col-adapted larvae, whereas, 

London strain larvae needed significantly more time to develop to the nymph stage on Col-

0 plants compared to that on the cyp79B2 cyp79B3 genotype (F5,179=17.486, P <0.001). 

The London strain showed higher mortality compared to cyp- and Col-adapted larvae on 

both cyp79B2 cyp79B3 (F5,179=46.136, P =0.013; F5,179=46.136, P =0.001) and Col-0 plants 

(F5,179=46.136, P <0.001; F5,179=46.136, P <0.001; Figure 3-2 B). On either of the 

Arabidopsis genotypes mortality of cyp-adapted larvae was not significantly different to 

that of Col-adapted larvae. All three strains of mites, London strain (F5,179=46.136, P 

<0.001), cyp-adapted (F5,179=46.136, P <0.001) and Col-adapted (F5,179=46.136, P =0.002) 

demonstrated significantly higher mortality on Col-0 plants compared to that on cyp79B2 

cyp79B3. 
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Figure 3-2 Developmental time (A) and mortality (B) (mean±SEM) of London strain, cyp- 

and Col-adapted Tetranychus urticae larvae on two Arabidopsis genotypes, Col-0 and 

cyp79B2 cyp79B3 (cyp 79B2,3). Data were analyzed using one-way ANOVA, P <0.05, 

n=20. Difference in capital letters shows a significant difference among spider mite strains 

on each plant genotype while different small letters are indicators of significant difference 

of each spider mite strain on different plant genotypes. 

To determine whether myrosinases are involved in the negative effect of IGs on T. urticae, 

the development of T. urticae (London strain) larvae was followed on Col-0 and tgg1 tgg2 

plants. The latter Arabidopsis genotype, is a mutant of Col-0 that lacks enzymes necessary 

for biosynthesis of myrosinases in Arabidopsis. Spider mites completed their larval stages 

faster on tgg1 tgg2 compared to that on Col-0 (t1,52 =2.773, P =0.008; Figure 3-3 A). 

However, mortality of spider mite larvae on tgg1 tgg2 and Col-0 plants was not 

significantly different (Figure 3-3 B). 
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Figure 3-3 Developmental time (A) and mortality (B) (mean±SEM) of London strain 

Tetranychus urticae larvae on two Arabidopsis genotypes, Col-0 and tgg1 tgg2. Data were 

analyzed using one-way ANOVA, P <0.05, n=20. Difference in capital letters shows a 

significant difference among spider mite strains on each plant genotype. 

 Fecundity 

Fecundity is one of the biological parameters of T. urticae that is affected by IGs and is 

enhanced in IGs-adapted spider mites as shown in life table experiments (section 3-1-1). 

However, in life table experiments, the premature stages of spider mites fed from different 

host plants. Therefore, it is not clear if the observed effect was a direct impact of IGs on 

fecundity or it resulted from different food source or feeding behavior of preadult stages. 

In order to eliminate the effect of preadult feeding on the fecundity, a six-day fecundity 

assay was performed using adult females of London strain, cyp- and Col-adapted spider 

mites that all spent one generation and the preadult stages of the second generation on 

detached bean leaves before being transferred to Col-0 and cyp79B2 cyp79B3 detached 

leaves for the fecundity assay. Col-adapted females laid significantly higher number of 

eggs in six days compared to London strain and cyp-adapted mites on both Col-0 

(F5,119=65.975, P <0.001; F5,119=65.975, P <0.001) and cyp79B2 cyp79B3 (F5,119=65.975, 

P <0.001; F5,119=65.975, P <0.001; Figure 3-4). The number of eggs laid by London strain 

and cyp-adapted spider mites were not significantly different. A lower fecundity was 

shown on Col-0 compared to cyp79B2 cyp79B3 in all the three strains of spider mites, 

London strain (F5,119=65.975, P <0.001), cyp-adapted (F5,119=65.975, P <0.001) and Col-

adapted (F5,119=65.975, P <0.001). 
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Figure 3-4 Fecundity (mean±SEM) of London strain, cyp- and Col-adapted Tetranychus 

urticae larvae on two Arabidopsis genotypes, Col-0 and cyp79B2 cyp79B3 (cyp 79B2,B3). 

Data were analyzed using one-way ANOVA, P <0.05, n=20. Difference in capital letters 

shows a significant difference among spider mite strains on each plant genotype while 

different small letters are indicators of significant difference of each spider mite strain on 

different plant genotypes. 

To determine if myrosinase-mediated enzymatic hydrolysis of IGs is necessary for the 

effect of IGs on T. urticae fecundity, the number of eggs laid by females of London strain 

mites in six days was compared on Col-0 and tgg1 tgg2 plants. Fecundity of spider mites 

on tgg1 tgg2 was not significantly different to that on Col-0 plants (t1,54 =0.599, P =0.552; 

Figure 3-5).  

 

Figure 3-5 Fecundity (mean±SEM) of London strain Tetranychus urticae larvae on two 

Arabidopsis genotypes, Col-0 and tgg1 tgg2. Data were analyzed using one-way ANOVA, 

P <0.05, n=20. Difference in capital letters shows a significant difference among spider 

mite strains on each plant genotype. 
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 Adaptation of T. urticae to the Arabidopsis defense 

To determine if Col-adapted spider mites can evade Arabidopsis defense through 

suppression of plant defense (i.e. synthesis of IGs), the following were measured: 1) 

expression of Arabidopsis genes related to biosynthesis of IGs; and 2) Level of IGs and JA 

after feeding of Col-adapted spider mites on them. 

 Suppression of plant defense 

 Expression of genes related to biosynthesis of IGs 

After 24 h feeding of London strain, cyp-adapted and Col-adapted spider mites, the 

expression levels of two genes related to biosynthesis of IGs in Col-0 plants were 

measured, including CYP79B2 and CYP79B3 that catalyze conversion of tryptophan to the 

precursor of IGs biosynthesis, indole-3-acetoaldoxime (Sønderby et al., 2010 b). Also, the 

expression of JA-biosynthesis gene, allene oxide synthase, AOS was measured. Feeding of 

all strains of spider mites induced expression of AOS (London: F3,8= 27.85, P =0.001; cyp-

adapted: F3,8= 40.90, P <0.001; Col-adapted: F3,8= 27.85, P <0.001; Figure 3-6 A), 

CYP79B2 (London: F3,8= 40.77, P <0.001; cyp-adapted: F3,8= 75.08, P <0.001; Col-

adapted: F3,8= 40.77, P <0.001; Figure 3-6 B) and CYP79B3 (London: F3,8= 71.03, P 

<0.001; cyp-adapted: F3,8= 95.68, P <0.001; Col-adapted: F3,8= 71.03, P <0.001; Figure 3-

6 C). However, there was no significant difference in induction of marker genes between 

the three strains of spider mites.  
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Figure 3-6 Expression levels (mean±SEM) of the indole glucosinolate genes encoding (A) 

jasmonic acid (JA) biosynthetic enzyme (AOS) and enzymes required for the biosynthesis 

of indole glucosinolates, CYP79B2 (B) and CYP79B3 (C), in Col-0 Arabidopsis, in 

untreated control (No mites) and upon feeding of non-, cyp- and Col-adapted Tetranychus 

urticae (n = 3). NRQ=Normalized related quantity. Different letters show significant 

differences in one-way ANOVA (Tukey test). 
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 Levels of JA and IGs-related metabolites in mite-infested plants 

To investigate whether spider mite feeding can interfere with the synthesis of defensive 

signaling or toxic metabolites, using HPLC-MS, levels of jasmonic acid (JA), jasmonic 

acid-isoleucin (JA-Ile), the bioactive form of JA and indole-3-ylmethyl glucosinolate 

(I3M; the major IG in Arabidopsis) were measured in Col-0 plants infested with Col-, cyp- 

and non-adapted (London Strain) mites as well as no mites.  

Upon feeding of the three different spider mite strains, JA and JA-Ile were induced to the 

same extent in Col-0 plants: significantly higher levels of JA (F3,11= 12.957; London: P 

=0.002; cyp-adapted: P =0.003; Col-adapted: P =0.032; Figure 3-7 A) and JA-Ile (F3,11= 

14.358; London: P =0.001; cyp-adapted: P =0.005; Col-adapted: P =0.007; Figure 3-7 B) 

were observed in plants that were infested with either of the three strains of spider mites 

compared to non-treated plants. Although not significant, feeding of all strains of spider 

mites on Col-0 plants led to higher levels of I3M on these plants compared to those with 

no mite on them. Levels of JA, JA-Ile and I3M were not significantly different between 

Col-0 plants treated with different strains of mites. (Figure 3-7 C). 
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Figure 3-7 Levels of Arabidopsis defense-related metabolites (mean±SEM) in 3-week-old 

Col-0 plants, in untreated control (No mites) and upon feeding of London strain, cyp- (cyp-

a) and Col-adapted (Col-a) Tetranychus urticae. A) JA, jasmonic acid; B) JA-Ile, the 

bioactive jasmonate; C) I3M, indol-3-ylmethyl glucosinolate. Different letters show 

significant differences in one-way ANOVA (Tukey test). These experiments were done in 

two independent replicas, each with three biological replicas. 
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 Detoxification as a mechanism of adaptation in spider mites 

 Enzymatic activity assays 

To determine if detoxification is a mechanism of adaptation of spider mites to IGs, 

activities of the three classes of detoxification enzymes including GSTs, P450s and 

esterases were measured in London strain, cyp-adapted and Col-adapted spider mites after 

24 h of feeding on beans, cyp79B2 cyp79B3 and Col-0 plants.  

The activity of GSTs was not statistically different between the three strains of spider mites 

when fed on beans (F2,11=0.010, P=0.990) (Figure 3-8). London strain spider mites did not 

show any significant difference in GSTs activity upon feeding on beans, cyp79B2 cyp79B3 

or Col-0 plants (F2,11=0.476, P=0.636). Although not statistically significant, cyp-adapted 

and Col-adapted mites had higher activity of GSTs on cyp79B2 cyp79B3 and Col-0 plants 

compared to beans (cyp-adapted: F2,11=1.765, P=0.226; Col-adapted: F2,11=3.902, 

P=0.060). GSTs activity of Col-adapted spider mites was not statistically different from 

cyp-adapted or London strain mites (Col-0: F2,11=0.535, P=0.603; cyp79B2 cyp79B3: 

F2,11=0.713, P=0.516). 

 

Figure 3-8 Glutathione-S-transferases (GSTs) activity of London strain, cyp- (cyp-a), and 

Col-adapted (Col-a) Tetranychus urticae  after 24 h feeding on bean, Col-0 and cyp79B2 

cyp79B3 plants. Data (specific GST activity) were analyzed using one-way ANOVA, P 

<0.05. Specific GST activity data are presented as mean (nmol per mL per min) ±SEM, 

n=4. 
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Esterase activity increased in London strain spider mites upon switching host plant from 

bean to either cyp79B2 cyp79B3 or Col-0 plants (cyp79B2 cyp79B3: F2,11=3.781, P= 0.018; 

Col-0: F2,11=3.781, P=006; Figure 3-9). However, induction of esterase activity was not 

significantly different between London strain spider mites feeding on cyp79B2 cyp79B3 or 

Col-0 (F2,11=3.781, P=0.772). A similar increase in cyp-adapted spider mite esterase 

activity in response to cyp79B2 cyp79B3 and Col-0 plants was observed (F2,11=18.458, 

P=0.102). There was no statistically significant difference in esterase activity of London 

strain, cyp- and Col-adapted spider mites feeding on Col-0 plants. 

 

Figure 3-9 Esterase activity of London strain, cyp-, and Col-adapted Tetranychus urticae 

after 24 h feeding on bean, Col-0 and cyp79B2 cyp79B3 plants. Data (esterase activity) was 

analyzed using one-way ANOVA, P <0.05. Esterase activity data are presented as mean 

(nmol per min per µg protein) ±SEM, n=4. Different small letters show a significant 

difference in esterase activity of each spider mite strain on different host plants. 

The activity of P450 enzymes increased in all three strains of spider mites upon changing 

host plant from beans to Arabidopsis (London strain: F2,11=121.638, P<0.001; cyp-a: 

F2,11=1145.492, P<0.001; Col-a: F2,11=331.212, P<0.001; Figure 3-10). In all strains of 

spider mites P450 activity was significantly higher upon feeding on Col-0 compared to that 

on cyp79B2 cyp79B3 plants (London strain: F2,11=121.638, P<0.001; cyp-a: 

F2,11=1145.492, P<0.001; Col-a: F2,11=331.212, P<0.001). On Col-0 plants P450 activity 

was significantly higher in Col-adapted compared to London strain and cyp-adapted spider 
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mites (F2,11=637.284, P<0.001). Also, significant difference was observed in activity of 

P450s on Col-0 in comparison with cyp79B2 cyp79B3 plants (F2,11=637.284, P<0.001).  

 

Figure 3-10 P450 activity of London strain, cyp-, and Col-adapted Tetranychus urticae 

after 24 h feeding on bean, Col-0 and cyp79B2 cyp79B3 plants. Data (P450 activity) were 

analyzed using one-way ANOVA, P <0.05. P450 activity data are presented as mean (pmol 

per 30 min per µg protein) ±SEM, n=4. Different small letters show a significant difference 

in P450 activity of each spider mite strain on different host plants, while different capital 

letters are representative of significant difference in P450 activity of different spider mite 

strains on the same host plant. 

 

 Synergism assays 

To determine the role of detoxification enzymes in adaptation of spider mites to IGs, 

synergism assays were performed by treating London and Col-adapted spider mite strains 

with DEM, PBO and DEF which are inhibitors of GSTs, P450s, and esterases, respectively. 

Inhibition of GSTs did not significantly affect fecundity of non- or Col-adapted spider 

mites on either cyp79b2 cyp79b3 or Col-0 plants (Figure 3-11 A). Also, on either cyp79b2 

cyp79b3 or Col-0 plants, fecundity of non- and Col-adapted spider mites was not changed  
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Figure 3-11 Effect of detoxification enzyme inhibitors on fecundity of non- and Col-

adapted spider mites upon feeding on Col-0 and cyp79b2/cyp79b3 plants (n = 30). (A) 

GSTs (diethyl maleate, DEM), (B) esterases (Tributyl phosphorotrithioat, DEF) and (C) 

P450s (Piperonyl butoxide, PBO). Error bars are ±SEM (t-test; * p<0.05, ***p<0.001). 
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upon treatment of them with esterase inhibitor (DEF; Figure 3-11 B). However, fecundity 

of Col-adapted spider mites on both cyp79b2 cyp79b3 and Col-0 plants decreased 

significantly after being treated by P450 inhibitor (PBO) compared to the same mite strains 

that were not treated with the inhibitor (Figure 3-11 C). Reduction of performance in Col-

adapted mites was not to the same extent on cyp79B2 cyp79B3 and Col-0 plants so that 

these mites showed a more significant reduction on Col-0 (U= 305.5, p= 0.032) compared 

to cyp79b2 cyp79b3 plants (U= 35.0, p<0.0010). Trichlorophenylpropynyl ether (TCPPE) 

was also used as an alternative inhibitor of P450s that inhibits a range of P450 enzymes 

different to that inhibited by PBO. Upon treatment with TCPPE, fecundity of Col-adapted 

spider mites decreased significantly on both cyp79b2 cyp79b3 (t= 8.788, p <0.001) and 

Col-0 (t= 8.386, p < 0.001; Figure 3-12). 

 

Figure 3-12 Effect of P450s inhibitor (trichlorophenylpropynyl ether, TCPPE) on 

fecundity of non- and Col-adapted spider mites upon feeding on Col-0 and 

cyp79b2/cyp79b3 plants (n = 30). Error bars are ±SEM (t-test; ***p<0.001). 
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 RNA-Seq and transcriptome analysis 

An RNA-Seq study was performed to determine the effect of IGs adaptation on spider mite 

transcriptomic response as well as to assess the genome-wide effect of feeding on IGs. 

Samples of three strains of spider mite females including the London strain, cyp-adapted 

and Col-adapted that fed on either bean, cyp79B2 cyp79B3 or Col-0 plants for 24 h were 

collected. RNA was extracted from each sample, and RNA samples were sent for RNA-

seq analysis.  

Comparative gene expression profiles between adapted and non-adapted spider mites 

The overall pattern of expression was considerably different between adapted and non-

adapted spider mites. When fed on Col-0 plants, the transcriptomic response was 

considerably different compared to that on bean and cyp79B2 cyp79B3; there were 666 

differentially expressed genes (DEGs) between Col-adapted and London strain, 290 DEGs 

between cyp-adapted and London strain and 230 DEGs between cyp-adapted and Col-

adapted spider mites irrespective of host plant (Figure 3-13 A). Also, host plant switch 

could change expression of genes in spider mites. Shifting from bean to Col-0 plants, 612 

DEGs were detected in T. urticae compared to 282 DEGs upon shifting from bean to 

cyp79B2 cyp79B3 plants. Only five DEGs were detected due to a host shift between Col-0 

and cyp79B2 cyp79B3 (Figure 3-13B). The number of genes upregulated was 3-4 time 

more than those downregulated as a result of host plant shift (Figure 3-13B). 
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Figure 3-13 Number of differentially expressed genes between (A) different strains of 

Tetranychus urticae including London stain, cyp- and Col-adapted regardless of their host 

plant; and (B) spider mites that were fed on different genotypes of host plant including 

bean, cyp79B2 cyp79B3, Col-0. 

In a principle component analysis, the first three principle components are responsible for 

67.4% of the total variation in gene expression (Figure 3-14). The majority of variance in 

gene expression was due to an interaction between the effect of adaptation status and host 

plant on spider mite gene expression (PC1, 30.6% of total variation). PC2 which is 

associated with constitutive gene expression of different strains of spider mite, accounts 

for 22.5% of the total variation in the gene expression. An obvious separation between 

expression of genes in mites of different strains on each host plant can be observed (Figure 

3-14). Expression of genes in Col- and cyp-adapted spider mites is more similar compared 

to that between London strain and each of the adapted strains.  

Another 14% (PC3) of the total variation in the data is mediated by the effect of host plant 

on spider mite gene expression (Figure 3-14). Gene expression of mites on Col-0 and 

cyp79B2 cyp79B3 plants are more similar compared to that on beans. The difference 

between mite gene expression on Col-0 and bean is greater than that between cyp79B2 

cyp79B3 and bean. 
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Figure 3-14 Principle component analysis of expression measures for London strain, cyp- 

and Col-adapted Tetranychus urticae on bean, cyp and Col-0 plants. LB- London strain on 

bean; LY- London strain on cyp79B2 cyp79B3; LO- London strain on Col-0; YB- cyp-

adapted mite on bean; YY- cyp-adapted mite on cyp79B2 cyp79B3; YO- cyp-adapted mite 

on Col-0; OB- Col-adapted mite on bean; OY- Col-adapted mite on cyp79B2 cyp79B3; 

OO- Col-adapted mite on Col-0. 
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Regardless of the strain of spider mites, 304 genes were differentially upregulated in mites 

upon feeding on Col-0 Arabidopsis compared to that on bean. About 30 % of the induced 

genes on Col-0 were associated with detoxification enzymes including, cytochrome P450 

monooxygenases (34 genes), UDP- glycosyltransferase (18 genes), glutathione-S-

transferases (15 genes), esterases (12 genes), ABC-transporters (8 genes) and major 

facilitator superfamily (2 genes). Among the 304 induced genes on Col-0, only 18 genes 

were differentially upregulated in mites upon feeding on Col-0 compared to that on 

cyp79B2 cyp79B3 plants. Compared to the 89 detoxification genes induced in spider mites 

upon feeding on Col-0 compared to that on bean, only four detoxification genes are 

differentially upregulated between Col-0 and cyp79B2 cyp79B3 plants including one gene 

of each cytochrome P450s, UDP- glycosyltransferase, esterases and major facilitator 

superfamily. 

 

Figure 3-15 Analysis of differentially expressed genes from London strain (Lnd), cyp- 

(cyp) and Col-adapted (Col) Tetranychus urticae upon feeding on Col-0, cyp79B2 cyp79B3 

and bean plants.  

The comparison between differentially expressed genes (DEGs) of the three strains of 

spider mites regardless of the host plant showed 664 DEGs between the London strain and 

Col-adapted mites, while there was less than half of that between the London strain and 

cyp-adapted mites (288 DEGs) and between cyp- and Col-adapted mites (237 DEGs; 
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Figure 3-15). Comparisons of transcriptional responses between different mite-plant 

combinations is shown in three heat maps related to DEGs between London strain and Col-

adapted (Figure 3-16), London strain and cyp-adapted (Figure 3-17) as well as Col- and 

cyp adapted spider mites (Figure 3-18). A total of 18 comparisons can be observed in each 

heat map: same mite strain on three host plants, as well as three mite strains compared on 

the same plant. The dendrogram of heat maps related to DEGs between the London strain 

and adapted mites shows that regardless of their host plant, the transcriptomic response of 

Col-adapted and cyp-adapted spider mites are more similar compared to the London strain. 

Constitutive expression of genes in cyp-adapted mites is more comparable to that in 

London strain mites rather than Col-adapted mites. There is a subset of DEGs strongly 

upregulated in Col-adapted mites, while in cyp-adapted and London strain mites, these 

genes either do not show strong changes in expression or are down-regulated. 

In heat maps related to DEGs between adapted and non-adapted mites, gene expression of 

spider mites on Col-0 and cyp79B2 cyp79B3 was more similar in comparison with that on 

bean. However, the heat map of DEGs between cyp- and Col-adapted spider mites (Figure 

3-18) shows more similarity in gene expression of mites on bean and cyp79B2 cyp79B3 

compared to that on Col-0 plants.   
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Figure 3-16 Expression of DEGs between Col-adapted and non-adapted (London) 

Tetranychus urticae in different strains of spider mites feeding on bean, cyp79B2 cyp79B3 

and Col-0 plants. Hierarchical clustering analysis of log2 RPKM exhibited by DEGs P, 

0.05 detected between Col-adapted and London stain spider mites. The distance metric was 

Pearson’s r, and the clustering method was average distance clustering (FC>2, FDR 

adjusted p-value <0.05). 
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Figure 3-17 Expression of DEGs between cyp-adapted and non-adapted (London) 

Tetranychus urticae in different strains of spider mites feeding on bean, cyp79B2 cyp79B3 

and Col-0 plants. Hierarchical clustering analysis of log2 RPKM exhibited by DEGs P, 

0.05 detected between Col-adapted and London stain spider mites. The distance metric was 

Pearson’s r, and the clustering method was average distance clustering (FC>2, FDR 

adjusted p-value <0.05). 
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Figure 3-18 Expression of DEGs between Col-adapted and cyp-adapted Tetranychus 

urticae in different strains of spider mites feeding on bean, cyp79B2 cyp79B3 and Col-0 

plants. Hierarchical clustering analysis of log2 RPKM exhibited by DEGs P, 0.05 detected 

between Col-adapted and London stain spider mites. The distance metric was Pearson’s r, 

and the clustering method was average distance clustering (FC>2, FDR adjusted p-value 

<0.05). 
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In all three comparisons, about half of the DEGs were upregulated and the other half 

downregulated. Analysis of DEGs showed different sets of biological functions. A large 

fraction of DEGs between the three spider mite strains (30-40%) were not related to any 

GO term. Genes associated with sulfatase or specifier proteins were not differentially 

expressed between adapted and non-adapted spider mites. The highest number of up-

regulated and down-regulated genes was associated with “Leucin-rich repeat domain, L 

domain-like” followed by detoxification enzymes. Among the DEGs between Col-adapted 

and London strain mites, 11.2% of the upregulated genes were associated with 

detoxification enzymes and transporters including genes that regulate synthesis of P450s, 

GSTs and esterases, ABC-transporters, UDP-glycosyltransferases and major facilitator 

superfamily transporters (MFS). 

To determine the genes that are potentially responsible for adaptation of Col-adapted spider 

mites to IGs, constitutive DEGs between cyp- and Col-adapted mites were filtered for 

genes that were only upregulated in Col-adapted mites. A total of 60 genes were 

differentially up-regulated in Col-adapted compared to cyp-adapted spider mites, among 

which 13 genes were related to detoxification of xenobiotics (Table 3-3). 

Table 3-3 Genes that are differentially expressed between cyp- and Col-adapted 

Tetranychus urticae and are only upregulated in Col-adapted spider mites. 

Gene ID Log2 Fold changes Description 

tetur11g05200 

tetur07g03950 

tetur247g00010 

tetur09g00350 

tetur10g01570 

tetur20g02620 

tetur02g07220 

tetur05g05300 

tetur17g03650 

tetur02g00510 

tetur09g06716 

tetur07g06390 

tetur21g01400 

1.891085898 

2.571112051 

1.411177306 

1.472514057 

1.796227377 

3.455996648 

2.402170719 

1.486363729 

1.408868333 

2.919503242 

2.673928759 

2.045859474 

2.951028151 

ABC-transporter; class A 

acylamino-acid-releasing enzyme 

ATG4 autophagy related 4 homolog A 

Cathepsin L 

cysteine synthase A 

Galactose-binding domain-like 

Galactose-binding domain-like 

Glutathione S-transferase; class mu 

Major facilitator superfamily domain 

neprilysin 

Peptidase M12B, ADAM/reprolysin 

UDP-glycosyltransferase 

UDP-glycosyltransferase 
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 Spider mite metabolomics 

To determine the profile of IGs-related metabolites in adapted and non-adapted spider 

mites, the relative abundance of the four known IGs of Arabidopsis including indol-3-

ylmethyl (IMG), 4-Methoxyindol-3-ylmethyl (4mIMG), 1-Methoxyindol-3-ylmethyl 

(1mIMG) and 4-hydroxyindol-3-ylmethyl (4hIMG) glucosinlates were determined in 

London and Col-adapted spider mite strains that were fed on atr1-D, Col-0 or cyp79B2 

cyp79B3 genotypes of Arabidopsis using high performance liquid chromatography 

(HPLC) - time of flight mass spectrometer (TOF-MS).  

Among the four Arabidopsis intact IGs, three of them (IMG, 4mIMG and 1mIMG) were 

detected in both adapted and non-adapted spider mites feeding on atr-1D and Col-0 (Figure 

3-19 A and B). Higher concentration of intact IGs in spider mites on atr1-D compared to 

those on Col-0 is due to overaccumulation of IGs in this mutant of Col-0. In both adapted 

and non-adapted spider mites feeding on cyp79B2 cyp79B3, no IGs was detected (Figure 

19 C) which is consistent with the mutant lacking IGs. Comparing the concentration of 

intact IGs in adapted and non-adapted T. urticae, no significant difference was observed 

between London and Col-adapted spider mite strains feeding on atr1-D, although there is 

a trend for greater IGs accumulation in London strain. In spider mites feeding on Col-0, 

there was no significant differences between London and Col-adapted mites, although the 

difference between levels of 4mIMG approaches significance (p = 0.0568). 
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Figure 3-19 Level of indole glucosinolates (IGs; mean±SEM) in Col-adapted (Col-a) and 

non-adapted (London) Tetranychus urticae feeding on different host plants: A) atr1-D 

(over-accumulating IGs), B) Col-0 and C) cyp79B2 cyp79B3 (devoid of IGs). Error bars 

are ±SEM (n=3; t-test; no star means no significant difference at p<0.05); IMG = indol-3-

ylmethyl, 4mIMG = 4-Methoxyindol-3-ylmethyl, 1mIMG = 1-Methoxyindol-3-ylmethyl, 

4hIMG = 4-hydroxyindol-3-ylmethyl. 
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Figure 3-20 Level of the glutathione and the glutathione conjugate of indole-3-ylmethyl 

(mean±SE) in Col-adapted (Col-a) and non-adapted (London) Tetranychus urticae feeding 

on different host plants: A) atr1-D (over-accumulating IGs), B) Col-0 and C) cyp79B2 

cyp79B3 (devoid of IGs). Error bars are ±SEM (n=3; t-test; * p<0.05); GSH = glutathione, 

I3M-GSH = indole-3-ylmethyl glutathione. 
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To investigate modifications that occur to IGs in spider mites after ingestion and the 

potential differences in IG modifications in adapted and non-adapted spider mites, 

evidence for the seven identified IGs breakdown products were measured in spider mites 

including indole-3-carbinol (I3C), indole-3-acetonitrile, indole-3-carboxaldehyde, methyl 

indole-3-carboxylate, indole-3-ethanol, indole-3-carboxylic acid and 3,3’-

diindolylmethane, as well as their amino acid conjugates [indol-3-ylmethylglutathione 

(I3M-GSH), indol-3-ylmethylcysteine (I3M-Cys) and indol-3-ylmethyl ascorbate 

(ascorbigen)] in spider mites that were fed on Col-0, Atr1-D and cyp79B2 cyp79B3. Of all 

the breakdown products and synthesized conjugates, only I3M-GSH was detected in mite 

extracts (Figure 20 A and B). There was no I3M-GSH detected in mites feeding on cyp79B2 

cyp79B3 (Figure 20 C).  

No significant difference was observed in the level of IGs or known IG breakdown 

products between London strain and Col-adapted mites feeding on Atr1-D (Figure 20 A). 

However, I3M-GSH was significantly greater (p < 0.05) in Col-adapted mites relative to 

the London strain feeding on Col-0 (Figure 20 B). There was a trend for greater GSH levels 

in the Col-0 adapted mites relative to the London population on all three plant genotypes 

(Figure 20 A, B and C). 
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Chapter 4 

Discussion 

Control of two-spotted spider mites (Tetranychus urticae), a key pest on many agricultural 

crops, is problematic due to spider mites’ ability to develop resistance to a wide variety of 

xenobiotics including plant chemicals (Feyereisen, 2005; Després et al., 2007; Díaz-

Riquelme et al., 2016; Van Leeuwen and Dermauw, 2016). Indole glucosinolates (IGs) are 

secondary metabolites found in the Brassicaceae plants [including Arabidopsis thaliana 

(Arabidopsis); (Halkier and Gershenzon, 2006)] that are shown to be effective against T. 

urticae and could be potential candidates to control spider mites (Zhurov et al., 2013). 

However, a laboratory population selected on IGs-containing Arabidopsis was able to 

adapt to this plant (Ratlamwala, 2014 b). The overall objective of this thesis was to identify 

the mechanism of adaptation of two-spotted spider mites to Arabidopsis and IGs. To fulfil 

this objective, first the mode of action of IGs and stages of spider mites that are sensitive 

to IGs were identified. Life table experiments, larval development assays and fecundity 

assays showed that larval mortality and adult fecundity are the most sensitive T. urticae 

parameters to IGs. Between these two parameters, fecundity better showed the IGs-specific 

adaptation of spider mites to Arabidopsis. Therefore, fecundity was chosen as the readout 

and adults as the experimental material for the following experiments.  

Similar expression of marker genes and levels of plant defense-related metabolites after 

feeding of IG-adapted and non-adapted adult spider mites suggested that plant defense 

suppression is not the strategy used by spider mites to adapt to Arabidopsis IGs; whereas, 

higher activity of P450 monooxygenases in IG-adapted mites and the negative effect of 

inhibitors of these detoxification enzymes on spider mite fecundity suggests that spider 

mites use detoxification as a strategy to overcome glucosinolate-dependent Arabidopsis 

defenses. HPLC-mediated detection of conjugated forms of IGs breakdown products 

supports the involvement of detoxification in adaptation of T. urticae to IGs. RNA-seq 

analysis, showed induction of a large number of detoxification enzyme genes upon mite 

feeding on IGs. Genes that were differentially upregulated in adapted compared to non-
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adapted spider mites likely capture genes associated with the adaptation to IGs, suggesting 

that these genes can be further used in manipulation of the T. urticae regulatory system to 

avoid development of adaptation or to succumb it.  

 Effect of IGs on T. urticae biological parameters 

The negative effect of IGs on mortality and developmental time of T. urticae larvae was 

shown previously (Zhurov et al., 2013), however, the effect of IGs on other developmental 

stages and other biological parameters had not been studied. To determine the 

developmental stages of T. urticae that are sensitive to IGs, experiments were performed 

to estimate life history parameters (including developmental time of different premature 

stages and longevity of adults), fecundity and life table parameters of non-adapted spider 

mites (London strain) on bean and Arabidopsis genotypes, Col-0 and cyp79B2 cyp79B3.  

Life history parameters 

Incubation time of eggs and developmental time of protonymphs were not affected by 

different host plants. However, developmental time of larvae, deutonymphs and as a result, 

the total premature developmental time, were significantly shorter on bean compared to 

that on Col-0 and cyp79B2 cyp79B3, suggesting the negative effect of Arabidopsis defense 

on non-adapted T. urticae. Longer developmental time of larvae and deutonymphs as well 

as shorter longevity of adults on Col-0 compared to those on cyp79B2 cyp79B3 show that 

negative effect of Arabidopsis on T. urticae was due to the effect of IGs (or any other 

unknown metabolite that its biosynthesis is ceased or lowered in cyp79B2 cyp79B3 mutants 

of Col-0). Therefore, except for the egg and protonymph stages, other developmental stages 

of T. urticae are sensitive to IGs. Also, in a different assay that was performed only on 

larvae, significantly higher mortality and longer developmental time of London strain 

larvae was observed on Col-0 compared to that on cyp79B2 cyp79B3.  

Life table parameters and fecundity 

Besides survival, developmental time and longevity, fecundity plays a significant role in 

population growth of spider mites. Gross reproductive rate (GRR; the total number of eggs 

produced by all females), basic reproductive rate (R0; population’s rate of replacement) 
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and intrinsic growth rate (rm) are life table parameters that are representative of population 

growth rate. The highest GRR, R0 and rm of London strain spider mites was on bean and 

the lowest on Col-0 indicating suitability of bean in comparison with Arabidopsis as plant 

host. The calculated GRR, R0 and rm of the London strain on Col-0 were significantly lower 

than that on cyp79B2 cyp79B3 which shows the detrimental effect of IGs on reproduction 

rate and consequently population growth of spider mites. However, in a life table 

experiment, the observed fecundity might be indirectly influenced by feeding of premature 

stages from different host plants. To remove the effect of different feeding source of 

females during their development from eggs to adults, a fecundity assay was conducted 

using females that were raised on bean. After six days of transferring these bean-grown 

spider mite females to a different host plant (bean, cyp79B2 cyp79B3 and Col-0), a 

significantly lower fecundity of females was observed on Col-0 compared to that on 

cyp79B2 cyp79B3 plants. These results revealed the negative effect of IGs on fecundity of 

T. urticae females which confirms the results from the life table parameters.  

Consequently, negative effect of IGs can be observed in larva, deutonymph and adult T. 

urticae upon feeding on Col-0 plants. Biological characteristics of T. urticae including 

developmental time, mortality and fecundity are affected by IG which were used as 

readouts for further studies on IGs effect on T. urticae. 

 Adaptation of T. urticae to IGs 

Survivorship curves of adapted (cyp- and Col-adapted) and non-adapted spider mites on 

different host plants revealed the effect of adaptation on population growth of spider mites 

regardless of their fecundity. On both Col-0 and cyp79B2 cyp79B3 plants, survivorship 

curves of adapted and non-adapted spider mites were significantly different indicating 

better survival of adapted mites on Arabidopsis compared to non-adapted mites.  

The comparison of life history parameters between London, cyp-adapted and Col-adapted 

T. urticae on Col-0 and cyp79B2 cyp79B3 plants showed no significant difference in 

developmental time of protonymphs and deutonymphs or incubation time of eggs between 

adapted and non-adapted spider mites. By contrast, on Col-0, Col-adapted and cyp-adapted 

larvae were significantly faster in developing to protonymph compared to London strain 
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larvae. However, developmental time and mortality of larvae did not show the IGs-specific 

adaptation of Col-0 spider mites, since on Col-0, mortality and developmental time of cyp- 

and Col-adapted spider mites were not significantly different. This might be due to the very 

short time mites spend as larvae. Thus, this developmental stage may not be responsive (at 

least resulting from the applied protocol, recording progression through developmental 

stages once a day) to host adaptation status. 

On Col-0 plants, life table parameters, including GRR, R0 and rm, were significantly higher 

in Col- and cyp-adapted spider mites compared to London strain which shows development 

of adaptation to Arabidopsis in Col-0 and cyp-adapted mites. This adaptation was not IGs-

specific since life table parameters of cyp- and Col-adapted mites was not significantly 

different. However, in the fecundity assay, in which the effect of preadult food source and 

survival is removed, Col- adapted spider mites produced significantly more eggs on Col-0 

compared to cyp-adapted mites indicating the IGs-specific adaptation of mites to IGs.  

Similar life history and life table parameters of the three strains of spider mites on bean 

demonstrates that there is no fitness cost of adaptation to IGs in adapted mites. It is 

previously shown that spider mites are able to adapt to a less favorable host plant without 

presenting an associated fitness cost (Agrawal, 2000). These results do not agree with those 

reported by Ratlamwala (2014) which suggest a small fitness cost related to adaptation of 

Col-adapted spider mites on Arabidopsis. This might be due to the difference in time when 

adaptation-related fitness parameters were measured. While Ratlamwala (2014) checked 

these parameters after 20 to 25 generations of selection on host plant, mite population used 

in experiments reported here were maintained on their corresponding hosts for over 50 

generations. 

 Role of myrosinases in effect of IGs on spider mites 

Negative effect of glucosinolates on chewing insects depends on myrosinases-mediated 

hydrolysis of glucosinolates. In these interactions, the mixing of IGs and myrosinases 

results from the ingestion of chunks of plant tissue upon feeding of these herbivores. In 

piercing-sucking insects, despite the minimal damage they impose to the plant tissue during 

feeding, a myrosinase-independent effect of IGs is expected and has been reported in 
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aphids. Similarly, IGs negatively affect T. urticae, although spider mites feeding damages 

only a few cells in the feeding area which is less likely to release myrosinases. Life table 

experiments, larval development assay and fecundity assay were performed to clarify 

whether myrosinases-depended hydrolysis of IGs is necessary for the effect of IGs on 

spider mites. No difference was observed in larval mortality, fecundity, longevity or life 

table parameters of T. urticae feeding on Col-0 or tgg1 tgg2 (the myrosinase-devoid mutant 

of Col-0). The only parameter of T. urticae that was affected by myrosinases was 

developmental time of larvae which was significantly longer on Col-0 compared to that on 

tgg1 tgg2. These results suggest that myrosinases are involved in, but not required for the 

negative effect of IGs on spider mites. 

 The adaptation strategy: to suppress or to resist plant 

defense? 

 Plant defense suppression 

Although IGs are present constitutively in plant tissues, over 90% of previous studies 

showed that herbivore attack to glucosinolate-containing plants induces their greater 

accumulation (up to 20-fold) of indolic glucosinolates (reviewed in Textor and 

Gershenzon, 2009). It is indicated that jasmonates increase the expression of genes 

associated with glucosinolate biosynthesis, including CYP79B2 and CYP79B3 that catalyze 

the oxidation of tryptophan to indol-3-acetaldoxime (Brader, 2001; Mikkelsen et al., 2003; 

Sasaki-Sekimoto et al., 2005; Halkier and Gershenzon, 2006; Rehrig et al., 2014). In this 

study, expression of IGs-related genes, as well as induction of indole-3-ylmethyl 

glucosinolate (I3M), jasmonic acid (JA) and its bioactive form, jasmonic acid-isoleucin 

(JA-Ile) increased upon herbivory by T. urticae supporting a defensive role of IGs in 

Arabidopsis. Herbivory-induced biosynthesis of IGs was also shown in response to Myzus 

persicae feeding and plant hormone treatment (Kim and Jander, 2007; Agerbirk et al., 

2009).  

Herbivores can manipulate plant defensive responses and block or reduce the level of the 

response (Ferry et al., 2004; Alba et al., 2011; Blaazer et al., 2018). Regardless of the step 

of the defensive pathway that this manipulation occurs, suppression of plant defense is 
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characterized by reduction of biosynthesis of the defensive compound (Kant et al., 2015). 

Reduction of aliphatic glucosinolates (AGs) and benzenic glucosinolates (BGs) levels 

mostly in response to specialist rather than generalist herbivores is shown in previous 

studies (Birch et al., 1992; Hopkins et al., 1998; Van Dam and Raaijmakers, 2006). 

Therefore, to investigate whether suppression of plant defense is the mechanism of T. 

urticae adaptation to Arabidopsis IGs, level of the main IG in Arabidosis, indole-3-

ylmethyl glucosinolate (I3M), as well as jasmonic acid (JA) and its bioactive form, 

jasmonic acid-isoleucin (JA-Ile) were measured in spider mite-infested plants. No change 

in level of the mentioned defensive products upon feeding of adapted and non-adapted 

spider mites indicates that adaptation in T. urticae is obtained through another mechanism 

rather than plant defense suppression. Also, no change in expression of genes associated 

with biosynthesis of IGs confirms the metabolomic results, suggesting that Col-adapted 

spider mites do not suppress the plant defensive response. This strategy is usually effective 

against AGs and BGs more than IGs (Blaazer et al., 2018). For example, feeding of Delia 

floralis and D. radicum decreased level of AGs or BGs of up to 60%, while the level of 

IGs increased (Birch et al., 1992; Hopkins et al., 1998; Van Dam and Raaijmakers, 2006). 

Moreover, attack of two specialist herbivores, caused a 50–70% reduction in leaf 

glucosinolate content (Soler et al., 2005). 

 Detoxification of IGs-related metabolites 

Many arthropods can detoxify plant defensive compounds, using detoxification enzymes 

including cytochrome P450 monoxygenases (P450s), esterases and glutathione S-

transferases (GSTs) (Després et al., 2007; Li et al., 2007). These enzymes are usually 

induced in the herbivore in response to plant-derived xenobiotics (Després et al., 2007). 

Among these three detoxification enzyme classes, previous studies have mostly shown 

involvement of GSTs in detoxification of glucosinolates in insects (Wadleigh and Yu, 

1988; Hemming and Lindroth, 2000; Francis et al., 2005; Schramm et al., 2012). In the 

current study, the three strains of spider mites, London strain, cyp- and Col-adapted, 

showed similar levels of GSTs activity in the absence of IGs challenge. Activity of GSTs 

did not increase in non-adapted mites upon switching host plant from bean to glucosinolate-

containing plants while small but insignificant increase in GST activity was observed in 
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adapted mites in response to glucosinolates. On Arabidopsis, GSTs activity of adapted 

spider mites was not statistically different from non-adapted mites which suggests that 

GSTs are less likely to be involved in adaptation of spider mites to Arabidopsis. This was 

confirmed when inhibition of GSTs was tested: it did not affect fecundity of non- or Col-

adapted spider mites on Arabidopsis reflecting that the GST enzymes that are inhibited by 

diethyl maleate (DEM) are not involved in adaptation of Col-adapted spider mites to 

Arabidopsis defense. These results were in contrast with the previous studies indicating the 

role of GSTs in adaptation of insects to other classes of glucosinolates. For example, GST-

mediated conjugation of isothiocyanates (the breakdown product of glucosinolates) with 

glutathione was shown in generalist caterpillars cabbage moth, Mamestra brassicae and 

cotton bollworm, Helicoverpa armigera upon feeding on Arabidopsis (Schramm et al., 

2012). Also, GST activity was induced in green peach aphid, Myzus persicae in response 

to increasing glucosinolate concentrations (Francis et al., 2005).  

Esterase activity was induced in non-adapted T. urticae upon switching host plant from 

bean to Arabidopsis. However, induction of esterase activity was not significantly different 

upon feeding on cyp79B2 cyp79B3 and Col-0, showing that induction of esterase activity 

is not specific to IGs. Induction of esterases can be due to other defensive metabolites of 

Arabidopsis which are present in both cyp79B2 cyp79B3 and Col-0 plants. Similar esterase 

activity of adapted and non-adapted spider mites on Arabidopsis suggests that esterases are 

not involved in adaptation of spider mites to IGs. These results were supported as fecundity 

of adapted spider mites did not change after treatment of Arabidopsis leaves with the 

esterases inhibitor, tributyl phosphorotrithioat (DEF). 

IGs-specific induction of P450s was shown in spider mites upon host plant change to 

Arabidopsis. Also, higher activity of P450s in Col-adapted compared to cyp- and non-

adapted spider mites could be demonstrative of P450s’ role in adaptation of Col-adapted 

mites to Arabidopsis IGs. Furthermore, application of P450s inhibitors, piperonyl butoxide 

(PBO) and trichlorophenylpropynyl ether (TCPPE) lead to a decrease in fecundity of Col-

adapted spider mites on Arabidopsis. It suggested contribution of P450s in adaptation of T. 

urticae to Arabidopsis defense. However, this adaptation did not appear to be IG-s specific, 
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since reduction of spider mite performance caused by P450s inhibitors occurred on both 

Col-0 and cyp79b2 cyp79b3 plants. 

The critical role of P450s in metabolism of plant defensive compounds and as a result 

determination of herbivores’ food source is studied in a few cases (Oppenoorth and Van 

Asperen, 1960; Andersen et al., 1997; Baudry et al., 2003). Involvement of P450s is 

implicated in the biotransformation of several plant secondary metabolites including 

furanocoumarins (in swallowtails, Papilio spp., corn earworm, Helicoverpa zea, and novel 

orange worm, Amyelois transitella), furanochromones (in Anopheles gambiae), terpenoids 

(in Musca domestica), sesquiterpenoids (in Diploptera punctate) and flavonoid (in A. 

mellifera)(Lindroth, 1989; Seifert and Scott, 2002; Ortelli et al., 2003; Scott and Zhang, 

2003; Pan et al., 2004; Després et al., 2007). RNAi silencing of CYP6AE14 transcripts in 

Helicoverpa armigera reduced larval tolerance to the gossypol (Mao et al., 2007). Also, 

CYP4D and CYP28A subfamily transcripts were induced in cactophilic Drosophila species 

upon feeding on toxic isoquinoline alkaloids suggesting involvement of P450s in 

metabolism of these alkaloids (Tijet et al., 2001). The only evidence of involvement of 

P450s in detoxification of IGs breakdown products is metabolism of indole-3-carbinol in 

the generalist H. zea mediated by CYP6B8 which also metabolizes xanthotoxin, flavone, 

α-naphthoflavone (α-NF), chlorogenic acid, quercetin and rutin (Li et al., 2004; 

Rupasinghe et al., 2007). 

 Determination of genes associated with the adaptation to 

IGs  

An RNA-sequencing analysis was performed to determine differences in gene expression 

of adapted and non-adapted spider mites upon feeding on the wild-type Arabidopsis and 

the IGs-devoid genotype, cyp79B2 cyp79B3, as well as that on bean plants. Comparing the 

effect of host plant on T. urticae gene expression, the number of differentially expressed 

genes (DEGs) when spider mites were shifted from bean to Col-0 was twice more than that 

when they were shifted from bean to cyp79B2 cyp79B3. These results coupled with those 

reflecting that more than three times the number of DEGs were upregulated (compared to 

downregulated DEGs), suggest induction of a defensive response to Arabidopsis IGs in 
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spider mites. A considerable number of genes expressed in spider mites on Arabidopsis are 

detoxification genes, supporting the defensive role of IGs in Arabidopsis against T. urticae. 

Major detoxification gene families including cytochrome P450 monooxygenases (P450s), 

glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxylesterases 

and ABC transporters (ABCs) have a broad range of substrate specificity and are generally 

important for generalist herbivores that are exposed to a wide variety of plant defensive 

compounds (Li et al., 2007; Heidel-Fischer and Vogel, 2015; Stahl et al., 2018). The first 

indication of glucosinolate-induced expression of detoxification genes was in the generalist 

Trichoplusia ni feeding on Arabidopsis (Herde and Howe, 2014). Similarly, significant 

changes in gene expression was observed when the generalist herbivore, Helicoverpa 

virescens fed on wild type Arabidopsis compared to that on the glucosinolate-devoid 

quadruple mutant (quadGS) (Schweizer et al., 2017).  

The total number of DEGs between the London strain and Col-adapted spider mites was 

over double that between the London strain and cyp-adapted mites. These results coupled 

with those indicating better performance of Col-adapted spider mites on Arabidopsis 

compared to London strain and cyp-adapted mites reflect adaptation of Col-adapted spider 

mites to IGs. In a similar study of T. urticae on tomato, spider mites that were transferred 

from bean to tomato and were selected on tomato for more than 30 generations showed 

considerably more expression of detoxification genes compared to non-adapted spider 

mites (Wybouw et al., 2015). The mechanism of T. urticae adaptation to IGs appears to be 

due to the upregulation of detoxification genes. Induction of detoxification genes, which is 

common in generalist arthropods, is shown to be often absent in specialist pests (Schweizer 

et al., 2017). The reason is that specialists usually quickly disarm the two-component 

defensive system of glucosinolates which prevents production of toxic breakdown 

compounds. This in turn, avoids induction of general stress signals such as detoxifications 

enzymes in specialists. Secondly, implication of detoxification enzymes to overcome plant 

defense is a general mechanism of adaptations usually used by generalist arthropods 

(Després et al., 2007; Stahl et al., 2018). Thirdly, genes associated with the two most 

known mechanisms of adaptation to glucosinolates (sulfatases and specifier proteins) were 

not differentially expressed between adapted and non-adapted spider mites or upon host 

plant switch from bean to any of Arabidopsis genotypes. Expression of sulfatases and 
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specifier genes is exhibited in specialist insects or those that are adapted to glucosinolates 

(Ratzka et al., 2002; Schweizer et al., 2017). 

Constitutive expression of genes in Col-adapted mites is more comparable to that in cyp- 

rather than non-adapted mites which is representative of similar transcriptional alterations 

of cyp- and Col-adapted spider mites caused by their long-term exposure to Arabidopsis 

(Figure 3-14). Similarly, upon host plant challenge, the transcriptomic response of Col-

adapted and cyp-adapted spider mites to Arabidopsis defense are more similar compared 

to London strain. It reflects different expression of genes in cyp- and Col-adapted 

compared to non-adapted spider mites in absence of response to a host plant shift challenge 

(Figures 3-16, 3-17, 3-18). DEGs between adapted and non-adapted mites show that 

irrespective of mite strain, gene expression of spider mites on Col-0 and cyp79B2 cyp79B3 

plants was more similar in comparison with that on bean. This is not surprising as Col-0 

and cyp79B2 cyp79B3 are two genotypes of one species, both more distant from bean, 

belonging to a different plant family. However, cyp- and Col-adapted spider mites showed 

more similarity in gene expression on bean and cyp79B2 cyp79B3 compared to that on  

Col-0 plants.   

A large proportion of genes differentially upregulated between Col- and non-adapted spider 

mites are associated with detoxification enzymes including P450s (subfamilies 392A13 

and CYP392E2; 8 genes), GSTs (from beta and mu classes; 10 genes), carboxylesterases 

(6 genes), ABC transformers (6 genes), MFSs (5 genes) and UGTs (12 genes). Among 

these genes no genes related to P450s and carboxylesterases, only two UGTs, as well as 

one of each ABC transporters, GSTs and MFSs were differentially upregulated in Col-

adapted compared to cyp-adapted spider mites (Table 3-3). These results support those 

from inhibitor assay suggesting that P450s are involved in spider mite response to 

Arabidopsis defenses, but this response is not specific to IGs. Also, upregulation of other 

detoxification genes in Col- compared to cyp-adapted mites represents contribution of 

detoxification in IGs-adaptation of Col-adapted spider mites. 

A recently suggested mode of action of glucosinolates against insects is impairment of the 

insect growth and development through inhibition of cathepsin B and L (Agnihotri et al., 
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2018). A differentially upregulation of cathepsin L gene (Table 3-3) might be reflective of 

Col-adapted mite strategy to compensate the depleted cathepsin L in spider mite body and 

recover its normal development. The other gene that is differentially upregulated in Col-

adapted T. urticae is associated with neprilysin, a protein that regulates sexual activity and 

fecundity in insects and mammals (Head et al., 1993; Pinto et al., 1999; Carpentier et al., 

2004; Sitnik et al., 2014). Upregulation of this gene might be an adaptation strategy of 

spider mites to compensate the IGs-mediated decrease in fitness by increasing fecundity. 

This might be the explanation for the observed significantly higher reproduction of Col-

adapted compared to cyp-adapted spider mites on cyp79B2 cyp79B3 plants (Figure 3-4). 

The two galactose-binding domain-like (GBD) genes, differentially upregulated in Col-

adapted spider mites, are carbohydrate-binding proteins that have a high affinity for binding to 

glycan residues (Kawsar et al., 2009). Presence of an N-glycan structure in myrosinases 

(Liebminger et al., 2012) leads to the hypothesis that these proteins might be involved in 

inhibition of myrosinases, preventing the enzymatic breakdown of glucosinolates within the 

gut. 

 Modifications of IG-related metabolites in spider mites 

The levels of the four known IGs of Arabidopsis including indol-3-ylmethyl (IMG), 4-

methoxyindol-3-ylmethyl (4mIMG), 1-methoxyindol-3-ylmethyl (1mIMG) and 4-

hydroxyindol-3-ylmethyl (4hIMG) glucosinolates were measured in adapted and non-

adapted spider mites fed on IGs-containing genotypes of Arabidopsis to determine the 

profile of IGs-related metabolites in spider mites. The level of the three Arabidopsis intact 

IGs detected in spider mites (IMG, 4mIMG and 1mIMG) was not significantly different 

between adapted and non-adapted spider mites. As the level of IGs is not higher in adapted 

compared to non-adapted spider mites, sequestration of intact IGs does not appear to be 

the adaptation mechanism used by adapted T. urticae to overcome Arabidopsis defense. 

Sequestration of glucosinolates after feeding is an adaptation mechanism employed by 

insects of different orders, mostly specialist feeders on cabbage family including turnip 

sawfly, A. rosae [Hymenoptera; (Müller et al., 2001)], harlequin cabbage bug, Murgantia 

histrionica [Hemiptera; (Aliabadi et al., 2002)] and the cabbage aphid, Brevicoryne 

brassicae [Hemiptera; (Francis et al., 2001)]. Arthropods that sequester glucosinolates 
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should have efficient machineries for fast uptake of glucosinolates and inhibition of 

myrosinases to avoid breakdown of glucosinolates (Müller, 2009). However, it does not 

appear to be an efficient strategy for IGs, which can undergo spontaneous breakdown even 

before being ingested (Kim et al., 2008). In various insects, sequestration of AGs and BGs 

but not IGs is indicated (Müller et al., 2001; Müller and Wittstock, 2005 b; Opitz et al., 

2010; Abdalsamee and Müller, 2012).  

Furthermore, potential IGs modifications in adapted and non-adapted spider mites body 

were investigated. Among the identified IGs breakdown products and their synthesized 

conjugates, only glutathione-conjugated form of I3C (I3M-GSH) was significantly higher 

in concentration in Col-adapted relative to the non-adapted spider mites feeding on Col-0. 

It suggests detoxification through glutathione (GSH) conjugation as an adaptation strategy 

used by Col-adapted spider. However, previous results from enzymatic activity and 

inhibitor assays in this study did not show involvement of GSTs in T. urticae adaptation to 

IGs. In insects, the midgut cells conditions (pH 7-10 and high concentration of GSH) 

facilitate spontaneous and non-enzymatic conjugation of GSH with isothiocyanates (Herde 

and Howe, 2014).  The observed trend of greater GSH levels in the Col-0 adapted relative 

to non-adapted mites might be a strategy used by adapted mites to enhance the non-

enzymatic conjugation of GSH with I3C. However, differentially expression of ten GST 

genes in Col- compared to non-adapted spider mites and one GST gene in Col- compared 

to cyp-adapted mites reflect the involvement of GSTs together with non-enzymatic 

conjugation of GSH in detoxification of IGs. In that case, the reason that effect of GST 

activity contribution in spider mite adaptation was not supported in inhibitor assays might 

be that the type of GST involved in IGs adaptation of spider mites could not be inhibited 

by diethyl maleate or detected by the substrate used in enzymatic activity assay. 

Although involvement of GSTs in detoxification of glucosinolate breakdown products was 

first reported about 30 years ago (Yu, 1989), demonstration of product formation and their 

function in vivo have occurred recently (Schramm et al., 2012; Zou et al., 2016). Feeding 

on glucosinolates resulted in general induction of genes encoding detoxification enzymes, 

including GSTs, UGTs and cytochrome P450s. Analysis of cDNA sequences of the midgut 

tissue of the common cutworm, Spodoptera lituralis (Lepidoptera) led to the identification 
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of eight GSTs (Deng et al., 2009; Huang et al., 2011). One GST gene, encoding cytosolic 

GST epsilon 1 (SlGSTE1), was upregulated when larvae fed on a glucosinolate-containing 

host plant or artificial diets containing I3C and isothiocyantes (Zou et al., 2016). RNAi-

mediated silencing of SlGSTE1 lead to decreased larval consumption of host plant which 

in turn caused body weight reduction in these larvae compared to a control group, 

suggesting involvement of the encoded enzyme in detoxification of glucosinolate 

breakdown products (Zou et al., 2016). Also, in M. persicae, amino acid and GSH 

conjugates of IGs breakdown products was detected in the honeydew, suggesting 

detoxification of the products by M. persicae. An analysis of the cDNA of M. persicae 

identified between 14 and 21 GST-like genes, of which eight belonged to the delta class 

(Ramsey et al., 2010).  

In summary, this study suggests that Col-adapted T. urticae employs a combination of 

general adaptation strategies to overcome the IGs-mediated Arabidopsis defense: 1) 

detoxification of IGs breakdown products through GSH conjugation; 2) detoxification of 

glucosinolates (more likely AGs and BGs) and/or other secondary metabolites common to 

Col-0and cyp79B2 cyp79B3 plants by P450s; 3) increasing fecundity of adapted mites 

through upregulation of neprilysins to compensate the negative effect of IGs on spider mite 

fecundity; 4) decreasing IGs-induced developmental abnormalities through upregulation 

of cathepsin in spider mites, an essential protein for growth and development that might be 

inhibited as a result of glucosinolate activity; and 5) inhibition of myrosinases through 

GBDs binding to the N-glycan residue of myrosinases. Further studies are necessary to 

assess the integrity of each of these proposed strategies. 
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Chapter 5 

Conclusion  

The objective of this thesis was to identify the mode of action of indole glucosinolaes (IGs) 

on Tetranychus urticae, as well as the mechanism of adaptation of two-spotted spider mites 

to Arabidopsis and IGs. Based on my results, enzymatic hydrolysis of IGs is not required 

for the detrimental effect of IGs on spider mites, however, the IG effects are enhanced in 

the presence of the glucosinolate-degrading myrosinases. Also, data suggest that spider 

mites develop adaptation through detoxification of IGs rather than the suppression of plant 

defense.  

Life table experiments, larval development assays and fecundity assays showed that 

fecundity is a better indicative of the IG-specific adaptation of spider mites to Arabidopsis 

compared to the other life history parameters, including developmental time and mortality. 

Therefore, fecundity was chosen as the readout for experiments. The only parameter of T. 

urticae that was affected by myrosinases was the developmental time of larvae while other 

biological parameters of spider mites were not affected. These results suggested that 

myrosinases are involved in, but not required for the negative effect of IGs on spider mites. 

The only known breakdown product of IGs that I was able to detect in spider mites upon 

feeding on Arabidopsis was indole-3-ylmethyl carbinol (I3C). Thus, I3C may be the IG 

breakdown product responsible for the effect of IGs on spider mites. 

Similar expression of marker genes and levels of plant defense-related metabolites after 

feeding of spider mites indicated that plant suppression is not the strategy used by spider 

mites to overcome IG-dependent Arabidopsis defense. Consistently, enzymatic activity 

and inhibitor assays suggested the involvement of P450 detoxification enzymes in the 

adaptation of spider mites to Arabidopsis defense. The detection of I3C glutathione 

conjugates in the spider mite body extract further supported the involvement of 

detoxification in the adaptation of T. urticae to IGs. The detoxification-dependent 

adaptation of spider mites to IGs was also supported by RNA-seq analysis which identified 

the induction of a large number of detoxification enzyme genes upon mite feeding on IGs. 
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These enzymes include cytochrome P450 monooxygenases (P450s), glutathione-S-

transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxylesterases and ABC 

transporters (ABCs). RNA-seq analysis exhibited that expression of P450 genes in adapted 

mites in response to Arabidopsis metabolites is not specific to IGs. These results support 

those from the inhibitor assay suggesting that P450s are involved in T. urticae response to 

Arabidopsis defense, but this response is not specific to IGs.  

In spite of similar GST activity of adapted and non-adapted spider mites, higher 

concentrations of IGs glutathione (GSH) conjugates coupled with the differentially 

upregulation of GST genes in IG-adapted spider mites suggested the contribution of GST 

enzymes and/or GSH conjugation in IGs detoxification as an adaptation strategy used by 

spider mites. Spontaneous and non-enzymatic conjugation of GSH in the spider mite body 

might be the underlying reason for detection of higher GSH conjugates of IGs despite the 

similar GST activity in adapted compared to non-adapted spider mites. The observed trend 

of greater GSH levels in the Col-0 adapted- relative to non-adapted mites might be a 

strategy used by adapted mites to enhance the non-enzymatic conjugation of GSH with 

I3C.  

The differentially upregulated genes in IG-adapted compared to non-adapted spider mites 

are likely to contribute in adaptation of these mites to IGs.  The observed differential 

upregulation of cathepsin L gene in IG-adapted spider mites might be a strategy for IG-

adapted mites to compensate the IG-mediated depletion of cathepsin L activity (which has 

a critical role in mites’ growth and development) in the spider mite body and consequently 

recover the normal development of mites. The other mechanism of IGs adaptation could 

be through an upregulation of neprisylin that is suggested to enhance mite fecundity. Also, 

spider mites might adapt to IGs through upregulation of galactose-binding domain-like 

(GBD) genes that may be involved in the inhibition of myrosinase-mediated hydrolysis of 

glucosinolates. Follow up studies should test the involvement of each of these genes in 

spider mite adaptation to IGs by assessing the effect of RNAi-mediated silencing of these 

genes on performance of adapted spider mites. 
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It is suggested that the non-enzymatic hydrolysis of IGs in spider mites, enhanced by 

myrosinase activity, lead to negative effect of IGs on spider mites. Further studies are 

required to investigate the potential presence of myrosinase-like enzymes in spider mite 

bodies. I3C was the only known breakdown product of IGs detected in spider mites upon 

feeding on Arabidopsis. Nevertheless, non-targeted analysis of modifications of 

Arabidopsis metabolites in spider mites should be performed followed by the assessment 

of the effect of these metabolites on the spider mite performance using artificial diet.  

This study suggests that IG-adapted T. urticae employs a combination of several strategies 

to overcome the IGs-mediated Arabidopsis defense: 1) the detoxification of IGs breakdown 

products through GSH conjugation; 2) the detoxification of other classes of glucosinolates 

and/or other Arabidopsis secondary metabolites through enhancement of P450s activity; 3) 

fitness improvement through increased  fecundity of adapted mites mediated by the 

upregulation of neprilysins; 4) the prevention of developmental abnormalities mediated by 

cathepsin-inhibitory action of glucosinolates through upregulation of cathepsin L in 

adapted mites; and 5) the inhibition of myrosinases through GBDs binding to the N-glycan 

residue of myrosinases.  

Genes that were differentially upregulated in adapted compared to non-adapted spider 

mites should be assessed for their involvement in adaptation of spider mites to IGs. This 

could be conducted by investigating the effect of silencing of those genes on performance 

of IG-adapted mites. Resulting candidate genes can be further used in manipulation of T. 

urticae to prevent its adaptation to IGs or to succumb it. Several detoxification genes were 

differentially upregulated in adapted compared to non-adapted spider mites (e.g. UGTs). 

However, the activity of enzymes related to these genes in adapted and non-adapted spider 

mites was investigated only for CYPs, GSTs and esterases in this study . Further enzymatic 

activity and enzyme inhibition studies are needed to assess involvement of these enzymes 

in detoxification of IGs in spider mites. 

The ability to become adapted to a new host plant in a short time, determines the pest status 

of spider mites on plants that were previously tolerant to spider mites. Understanding the 

mode of action and mechanism of spider mite adaptation to IGs is necessary for successful 
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prevention or interference with mite adaptation to IGs. On the other hand, rapid 

development of resistance to several classes of pesticides in T. urticae necessitates 

introduction of alternative management strategies to control this pest. The negative effect 

of IGs against T. urticae candidates them as a potential strategy to control spider mites. 

Knowing the mechanism of adaptation/resistance of spider mites to IGs, development of 

IGs resistance to spider mites could be prevented. Application of detoxification enzymes 

inhibitors and/or RNAi interfering with genes involved in IGs detoxification in parallel 

with IGs could be used as pesticide resistance management strategies to prevent or 

postpone development of IGs resistance in spider mites 
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