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Abstract 
For migratory songbirds, population dynamics are primarily influenced by juvenile or first 

year survival, but survival between fledging and fall migration is particularly important. 

Unfortunately, our knowledge of this post-fledging period is largely limited due to the 

difficulty of tracking juveniles outside the nest. For this thesis, I used automated radio 

telemetry to track the survival and post-fledging movements of 216 juvenile Barn Swallows 

(Hirundo rustica) from fledging up until departure for autumn migration in 2016-2017. 

Average apparent survival was 42% for both broods and nestlings in better body condition 

had higher survival. Nestlings from second broods migrated 21 days younger and moved less 

overall during the post-fledging period but had significantly higher daily post-fledging 

movements suggesting they might be trying to compensate for their shorter time near the 

breeding grounds. My results suggest that the post-fledging period is a critical period of 

survival and exploration for juvenile Barn Swallows. 

 

 

Keywords: post-fledging survival, post-fledging movement, Barn Swallow, automated radio 

telemetry 
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Chapter 1 

General Introduction 
 

Declines of many migratory songbird populations in North America during and since the 

latter half of the 20th century (Robbins et al. 1989) have prompted extensive study of 

songbird ecology and demography (Faaborg et al. 2010a). At the core of this research has 

been the important question of when and how migratory songbird populations are regulated 

throughout the annual cycle (Holmes 2007; Hostetler et al. 2015). Migratory songbird 

populations can be limited either on the breeding or wintering grounds or along migration 

routes and although all portions of the annual cycle cumulatively influence population 

growth, there has been some speculation as to which portion of the cycle is the most 

important in determining population dynamics (Holmes 2007). Some studies suggest the 

breeding period is the most limiting (e.g. Holmes et al. 1996; Rodenhouse et al. 2003; 

Schmidt 2003; Cox et al. 2014) while others suggest it is the non-breeding period (e.g. Sillett 

and Holmes 2002; Tarof et al. 2011). Another important factor in understanding migratory 

songbird demographics is age-specific survival (Reid et al. 2011). Population dynamics and 

persistence of many songbirds are primarily sensitive to juvenile survival, thus, 

understanding the factors that influence juvenile survival can be essential to population 

management (Bonnot et al. 2011; Streby and Andersen 2011; Cox et al. 2014).  

TRACKING MIGRATORY SONGBIRDS 

Our understanding of the year-round ecology of migratory songbirds remains largely 

incomplete (Faaborg et al. 2010b; Robinson et al. 2010). This is due to the immense 

difficulty of tracking migratory songbirds across multiple life history stages that span 100s-
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1000s of kilometers (Holmes 2007; Hobson and Wassenaar 2008; Bridge et al. 2011). The 

primary limitation being the size of tracking technology that can be used on small songbirds 

often weighing less than 30g (Bridge et al. 2011). Currently, Global Positioning Systems 

(GPS) and satellite technology are still too large for most migratory songbirds (Webster et al. 

2002; Thorup et al. 2014; Taylor et al. 2017). Small passive markers, such as leg bands, have 

historically been used to track migratory songbirds; however, recapture rates of banded birds 

are extremely low (<0.5%; Hobson and Wassenaar 2008). The use of light level geolocators 

has been an important advancement in understanding the ecology of some migratory 

songbirds (Bridge et al. 2011; McKinnon et al. 2013a). However, geolocators have relatively 

low accuracy (e.g. within 365 km of latitude and 66 km of longitude) and require tagged 

individuals to be recaptured, which is challenging (McKinnon et al. 2013a,b). Moreover, 

having to capture tagged individuals, introduces bias into results, as re-captured individuals 

may not represent a random sample, if for example, surviving and returning individuals are 

the most fit and differ in their ecology and life-histories in some important way. 

Alternatively, radio telemetry is another option for tracking small songbirds that largely 

overcomes some of the inherent biases mentioned above and has been used to determine 

stopover sites, travel decisions, and orientation and navigation abilities (Robinson et al. 

2010). Unfortunately, radio telemetry has historically required ground tracking of tagged 

individuals which are often moving at large spatial scales and are limited in battery life 

which means only a portion of the annual cycle can be investigated (Hobson and Wassenaar 

2008; Taylor et al. 2017).  

 The recent development of a large-scale terrestrial automated radio telemetry array, 

the Motus Wildlife Tracking System (hereafter ‘Motus’), is proving beneficial to our 

understanding of the ecology of small songbirds (Taylor et al. 2017). Motus is the largest 
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terrestrial automated telemetry array in the world and allows birds to be tracked at greater 

spatial and temporal scales when compared to traditional radio telemetry. Some examples 

include evaluation of stopover decisions of American Redstarts (Setophaga ruticilla) and 

Yellow-rumped Warblers (Setophaga coronata coronate) during spring migration (Dossman 

et al. 2015), differential post-fledging movements of Blackpoll Warblers (Setophaga striata; 

Brown and Taylor 2015), influence of fuel loads on the migratory speed of Grey-cheeked 

Thrush (Catharus minimus Gomez et al. 2017), and the differential migratory departure 

decisions of adult and juvenile Ipswich Sparrows (Passerculus sandwichensis princeps; 

Crysler et al. 2016).  

 Not only is tracking migratory birds essential to understanding their behaviour, but 

also their population demography. Capture-recapture methods are the primary tool used to 

obtain information on the population dynamics of wildlife and involves marking and/or 

tracking sample individuals from a population throughout time (Lebreton et al. 1992; Ergon 

and Gardner 2014). For migratory songbirds, recaptures of banded birds have often been 

used to obtain apparent survival estimates (i.e. the product of the probability of true survival 

and site fidelity; e.g. Bayne and Hobson 2002; García-Pérez et al. 2014; Marra et al. 2015; 

McKellar et al. 2015). True survival estimates are difficult to obtain because mortality can be 

confounded with emigration from the study site and, for many species of songbird, site 

fidelity for both adults and first year birds between years is unknown (Marshall et al. 2004; 

Cox et al. 2014). This method is also spatially limited to areas where researches choose to 

recapture banded birds such as major banding stations (Hobson and Wassenaar 2008). An 

alternative to tracking banded birds to study population demography is to track individuals 

using radio telemetry (e.g. Kershner et al. 2004; Yackel Adams et al. 2006; Dittmar et al. 

2016). Using radio telemetry can be advantageous as individuals can be relocated at much 



4 
 

finer temporal scales (e.g. days; Vitz and Rodewald 2011; Grüebler et al. 2014; Jones et al. 

2017). Furthermore, using an automated telemetry array offers the additional advantage of 

being able to track individuals at large spatial scales (e.g. Brown and Taylor 2015; Crysler et 

al. 2016). 

THE POST-FLEDGING PERIOD 

The first year of life for a songbird is composed of several key life history stages that can 

each vary in terms of survival; however, evidence suggests that one of these life history 

stages, the post-fledging period, should be the primary focus for the management of 

declining populations (Cox et al. 2014; Naef-Daenzer and Grüebler 2016). The post-fledging 

period represents the time between when a juvenile leaves the nest for the first time (i.e. 

fledges) up until their departure for migration (Vitz and Rodewald 2011; Jones et al. 2017). 

This period can last up to several months and is comprised of two parts; the parental care 

period between fledging and family breakup, and the independence period between family 

breakup and autumn migration (Suedkamp Wells et al. 2007; Vitz and Rodewald 2011; 

Dybala et al. 2013; Jones et al. 2017).  

  A limited number of studies to date suggest mortality rates for juvenile songbirds 

during the post-fledging period are high (e.g. Anders et al. 1997; Berkeley et al. 2007; Rush 

and Stutchbury 2008). Within the post-fledging period, the parental care period is arguably 

the most crucial in terms of survival for migratory songbirds (Vitz and Rodewald 2011; Cox 

et al. 2014; Dittmar et al. 2016; Naef-Daenzer and Grüebler 2016). Initially, fledglings are 

dependent on parental care and remain in family groups with limited mobility (Anders et al. 

1997; Berkeley et al. 2007; Vitz and Rodewald 2011). This period lasts up to several weeks, 

during which time young are vulnerable to predators because of conspicuous foraging and 
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begging behavior, but also to exposure to the elements because of limited energy reserves 

(Berkeley et al. 2007; Cox et al. 2014; Jones et al. 2017). Many studies have reported 

consistently high mortality during the first week of the post-parental care period (upwards of 

80%; Rush and Stutchbury 2008) that typically improves with age (e.g. Anders et al. 1997; 

Yackel Adams et al. 2006; Berkeley et al. 2007; Ausprey and Rodewald 2011). For studies 

that were able to document the causes of mortality, the major source was predation (Anders 

et al. 1997; Ausprey and Rodewald 2011). The majority of mortalities due to predation were 

from raptors and snakes (e.g. Anders et al. 1997; Kershner et al. 2004; Suedkamp Wells et al. 

2007; Ausprey and Rodewald 2011; Vitz and Rodewald 2011), but others include small 

rodents such as squirrels (Anders et al. 1997; Schmidt et al. 2008), and domestic cats 

(Ausprey and Rodewald 2011; Vitz and Rodewald 2011).  

 Once juveniles become independent they often leave their natal sites for up to three 

months prior to departure for autumn migration to engage in behaviours including 

prospecting and socializing (Betts et al. 2008; Dittmar et al. 2016). Again, mortality risk may 

be increased during this period because juveniles presumably lack experience navigating, 

acquiring resources, and evading predators (Cox et al. 2014; Naef-Daenzer and Grüebler 

2016). Of the few studies that have estimated survival to independence, only a few have 

documented a decrease in survival during the post-fledging independence period and 

typically this is at the onset of independence (Anders et al. 1997; Grüebler and Naef-Daenzer 

2010b). For some species, the post-fledging independence period is a time of great mobility, 

with some studies reporting large landscape and regional-level movements from 10s to 100s 

of kilometres (Morton 1991; Mitchell et al. 2010; Brown and Taylor 2015). Although the 

exact function of these movements are unknown, there are three leading hypotheses to 

explain such movements (Brown and Taylor 2015). The first is the habitat amelioration 
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hypothesis which explains post fledging movements as a means of acquiring resources 

(Rappole and Ballard 1987) or evading predators (Rodríguez et al. 2001). The second is the 

exploration hypothesis, which suggests that broad-scale movements serve to assess habitat 

and social cues for selection of future breeding sites (Betts et al. 2008) or for providing a 

mental map to aid in future navigation (Baker 1993; Mitchell et al. 2010). Lastly, the 

migration hypothesis explains post-fledging movements as initial displacement in the 

direction of migration without individuals entering a migratory physiological state (Cherry 

1985; Rappole and Ballard 1987).  

 Previous studies have investigated a wide variety of physiological through 

environmental factors that can influence post-fledging survival (e.g. Suedkamp Wells et al. 

2007; Vitz and Rodewald 2011; Haché et al. 2014; Jones et al. 2017). Although equivocal, 

intrinsic factors at the time of fledging such as body condition, mass, and size have all been 

demonstrated to be important in predicting post-fledging survival of many songbird species 

(Vitz and Rodewald 2011; Mitchell et al. 2011; Cox et al. 2014; Jones et al. 2016). Being in 

better condition is thought to provide fledglings with a buffer from inclement weather as well 

as provide energy reserves that reduce predation risk by minimizing risk-taking behavior 

associated with acquiring additional resources (Anders et al. 1997; Maness and Anderson 

2013; Jones et al. 2017). Other factors shown to influence post-fledging survival include 

environmental conditions (e.g. Yackel Adams et al. 2006; Ausprey and Rodewald 2011), 

habitat (e.g. Ausprey and Rodewald 2011; Vitz and Rodewald 2011), and the timing of 

breeding (e.g. Naef-Daenzer et al. 2001; Grüebler and Naef-Daenzer 2010a). Few studies 

have looked at factors that can influence post-fledging movements, however, there is some 

evidence that body condition is important for small scale post-fledging movements (Vitz and 

Rodewald 2010).  
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Despite the importance of the post-fledging period for the success and survival of 

juvenile songbirds, this period remains the least understood period of avian life history 

(Kershner et al. 2004; Mitchell et al. 2010). This is largely due to the cryptic and mobile 

nature of songbirds throughout the post-fledging period (Anders et al. 1997; Rush and 

Stutchbury 2008). As such, radio telemetry has become a useful tool for investigating both 

post-fledging survival and post-fledging movements (e.g. Kershner et al. 2004; Berkeley et 

al. 2007; Haché et al. 2014). However, given recent constraints of transmitter size and battery 

length (Bridge et al. 2011) many studies have been biased to the beginning of the post-

fledging period (Cox et al. 2014; Naef-Daenzer and Grüebler 2016). Furthermore, the mobile 

nature of songbirds once they become independent makes it extremely difficult to follow 

individuals resulting in a critical part of the post-fledging period being undocumented 

(Dittmar et al. 2016). As transmitter battery life improves (e.g. Lotek NTQB-2 transmitters 

with a 10 second burst interval are warrantied for 52 days) the major hurdle to documenting 

the post-fledging period is now tracking individuals as they move across the landscape. Like 

Brown and Taylor (2015), the use of automated radio telemetry provides an opportunity to 

explore the post-fledging period in its entirety, however, to date no studies have used this 

approach to look at survival. 

STUDY SPECIES 

The Barn Swallow (Hirundo rustica) is the most widespread and abundant swallow in 

the world breeding in North America, Europe, and Asia while wintering in Central/South 

America, Africa, India, and Australia (Brown and Brown 1999). In Canada, Barn Swallows 

can be found breeding in all provinces and territories, however, they are limited to the 

southern part of the Yukon and Northwest Territories, sporadic in Nunavut, and absent from 

the Boreal Shield Ecotone of Ontario (COSEWIC 2011). Barn Swallows have a close 



8 
 

association with human settlement where they often build their nests on man made structures 

(e.g. barns, garages, and sheds) that provide vertical surfaces for the construction of their 

mud nests (Zink et al. 2006). Breeding pairs can produce up to two broods per breeding 

season, however, this is less common in the northern parts of their range (COSEWIC 2011). 

In Canada, females lay 4-5 eggs per clutch and first clutches are often larger than second 

clutches (COSEWIC 2011). Incubation starts after the second to last egg is laid and lasts on 

average of 14 days before the eggs begin to hatch (Brown and Brown 1999). Nestling remain 

in the nest until they fledge at about 19-20 days old (Brown and Brown 1999; COSEWIC 

2011). Newly fledged young remain dependent on parental care for a period up to two week 

after which juveniles are thought to travel widely before migration (Brown and Brown 1999). 

Barn Swallows, like most aerial insectivores, have been experiencing serious population 

declines in Canada (decrease of 76% between 1969 and 2009) yet causes of this decline 

remain largely unknown (Nebel et al. 2010; COSEWIC 2011). In Europe, Barn Swallows 

have also been experiencing some decline, although not as extreme as what is observed in 

North America (Evans and Robinson 2004; Grüebler et al. 2010). The post-fledging survival 

of Barn Swallows in Europe has also been studied extensively and evidence from Grüebler et 

al. (2014) suggests that the post-fledging period is the major population bottleneck. Other 

findings from Europe suggest that the duration of parental care and the timing of breeding are 

important predictors of juvenile survival (Grüebler and Naef-Daenzer 2008, 2010a; Naef-

Daenzer et al. 2011). However, much of the research done in Europe has been limited both 

temporally (three weeks) and spatially (100 km2).  

OBJECTIVES & HYPOTHESES  

The objectives of this thesis were to examine the post-fledging survival and movements of 

juvenile Barn Swallows in southern Ontario using automated radio telemetry. My thesis was 
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separated into two data chapters addressing post-fledging survival and movement separately. 

In my first chapter I set out to apply an analytical framework that, for the first time, could use 

automated radio telemetry detections from the Motus array to determine accurate estimates of 

post-fledging apparent survival as well as assess the extent intrinsic factors of age, brood, 

sex, and relative body condition could influence overall survival. For my second chapter, I 

set out to quantify the amount of movement juvenile Barn Swallows make prior to migration 

as well as to what extent extrinsic factors of age, brood, sex, and relative body condition can 

influence both total and daily movement. Specifically, I hypothesized: 

1) That daily apparent survival would be the lowest immediately following fledging 

due to high predation pressure and exposure to environmental conditions. 

2)  That daily apparent survival would decrease again a few weeks after fledging when 

juveniles become independent and more mobile due to their lack of knowledge 

navigation, foraging, and evading predators. 

3) That daily apparent survival would be lowest for juveniles from later broods due to 

time constraints and the reduction of resources at the end of the breeding season. 

4) That daily apparent survival would be similar between juveniles of opposite sexes 

based on unbiased sex ratios in the adult population. 

5) That daily apparent survival would be lower for individuals in poorer condition due 

to their lack of energy reserves needed to withstand inclement weather and limit 

exposure to predators 
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6) That juveniles from second broods would move less than first broods due to time 

constraints of having to migrate at a younger age. 

7) Daily post-fledging movements would be dependent on age where juveniles remain 

immobile during the beginning of the post-fledging period when they are dependent 

on parental care followed by increasing mobility once they become independent.  

8) Juveniles in better condition would move more during the post-fledging period 

because they have more resources to do so (i.e. fat). 

9) Females would move more than males because of female biased dispersal observed 

in Barn Swallows and many other species. 
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Chapter 2 

Post-fledging survival of juvenile Barn Swallows (Hirundo rustica): New 

insights from automated telemetry 
 

INTRODUCTION 

Survival is a vital demographic rate that directly influences population growth and decline 

(Baker et al. 2004; Bromaghin et al. 2015; Bakker et al. 2017). Obtaining reliable estimates 

of survival and understanding factors that influence survival are fundamental, then, for 

effective conservation and management of animal populations. Migratory species often move 

over large distances throughout their annual cycle and are exposed to numerous factors that 

might influence their survival. However, such factors remain poorly understood (Newton 

2004; Holmes 2007) due to the immense challenges of tracking animals across multiple life 

history stages (Hobson and Wassenaar 2008; Krauel et al. 2018; Torney et al. 2018). With 

the continual development of new electronic tagging technologies, a better understanding of 

the behavior and physiology of many free-living animals is now possible (Lennox et al. 

2016), yet, many knowledge gaps still exist for smaller migratory species such as songbirds 

(Bridge et al. 2011). This is concerning given recent and continuous declines observed in 

many migratory bird populations in North America (NABCI 2016; Sauer et al. 2017) and 

Europe (Bairlein 2016). 

For migratory songbirds, population dynamics and persistence are most sensitive to 

variation in juvenile survival (Bonnot et al. 2011; Streby and Andersen 2011). Several key 

life history stages occur within a juvenile songbird’s first year that can be limiting; however, 

the post-fledging period between fledging and autumn migration is likely the most important 

(Cox et al. 2014; Naef-Daenzer and Grüebler 2016). High post-fledging mortality typically 
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occurs in the first weeks following fledging when juveniles have limited mobility and remain 

dependent on parental care, making them conspicuous to predators and vulnerable to 

environmental conditions (hereafter the ‘dependence period’ (Anders et al. 1997; Kershner et 

al. 2004; Ausprey and Rodewald 2011; Vitz and Rodewald 2011)). Once juveniles become 

independent and increasingly mobile, they must still learn to navigate, acquire resources, and 

evade predators, which again can result in reduced survival (hereafter the ‘independence 

period’ (Anders et al. 1997; Kershner et al. 2004; Mitchell et al. 2010; Dittmar et al. 2016)).  

Despite the importance of the post-fledging period, it remains the least understood stage 

of avian life history (Kershner et al. 2004; Vitz and Rodewald 2011; Naef-Daenzer and 

Grüebler 2016) due to the furtiveness and mobility of juveniles after leaving the nest (Anders 

et al. 1997; Rush and Stutchbury 2008; Vitz and Rodewald 2011). To overcome this 

challenge, most studies have relied on following birds on foot using radio telemetry and 

documenting known fates (e.g. Kershner et al. 2004; Berkeley et al. 2007; Jones et al. 2017; 

Vernasco et al. 2017). However, given historical constraints in radio transmitter size and 

battery life, previous studies largely focused on the first three weeks of the post-fledging 

period and on relatively large songbird species (Cox et al. 2014; Naef-Daenzer and Grüebler 

2016). Such studies have also been limited spatially to when juveniles remain close to their 

natal area. Once juveniles become independent, they often leave their natal area (Dittmar et 

al. 2016) and become challenging to follow (e.g. Berkeley et al. 2007; Mitchell et al. 2010; 

Grüebler et al. 2014; Vernasco et al. 2017), and as a consequence, individuals are either 

censored in the analysis or are assumed to have survived until migration (Anders et al. 1997; 

Kershner et al. 2004; Suedkamp Wells et al. 2007). This is problematic given recent evidence 

that juvenile songbirds can move hundreds of kilometers prior to migration (Brown and 

Taylor 2015). An alternative is the use of a passive automated telemetry array, such as the 
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Motus Wildlife Tracking System (hereafter ‘Motus’), which allows small birds to be tracked 

at broad temporal and spatial scales (months and 100s to 1000s of km; Taylor et al. 2017), 

providing a new opportunity to measure survival at previously undocumented spatial and 

temporal extents.  

The Barn Swallow (Hirundo rustica erythrogaster) is a double-brooded aerial 

insectivore that has experienced precipitous population declines in Canada (decrease of 76% 

between 1969 and 2009) but causes of this decline remain largely unknown (COSEWIC 

2011). Post-fledging survival of the European Barn Swallow (Hirundo rustica rustica) has 

been studied extensively (Grüebler and Naef-Daenzer 2010b,a; Grüebler et al. 2014; Naef-

Daenzer and Grüebler 2016), but at relatively limited spatial and temporal scales. In contrast, 

virtually nothing is known about post-fledging survival of North American Barn Swallows. 

Here, we investigated post-fledging survival of juvenile Barn Swallows in North America 

using the Motus Wildlife Tracking System and provide the first apparent survival estimates 

of songbirds at a spatial extent of 1000s of km2 and an associated temporal extent of 

approximately two months. Our objectives were to apply an analytical framework that can 

easily incorporate automated telemetry detections to derive accurate estimates of post-

fledging apparent survival and to assess the extent to which intrinsic factors (e.g. age, brood, 

sex, and condition prior to fledging) influenced overall survival. We hypothesized that daily 

apparent survival will (1) be lowest following fledging as a result of high predation pressure 

and exposure to environmental conditions, (2) decrease again a few weeks following fledging 

when juveniles become independent and more mobile, (3) be lower for individuals from 

second broods due to decreased resources at the end of the season, (4) be similar between the 

sexes given an unbiased sex ratio in the adult breeding population, and (5) be lower in 

individuals in poorer condition.  
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METHODS 

(a) Study site and species 

We studied post-fledging survival of juvenile Barn Swallows from 33 nesting colonies in 

2016 and 15 nesting colonies in 2017 (Figure 2-1). In 2016, 19 of the nesting colonies were 

in Wellington County, Ontario, Canada (43.55° N, 80.25° W) and the remaining 14 nesting 

colonies were in Norfolk County, Ontario, Canada (42.58° N, 80.43° W). In 2017, we 

returned to 15 of the same nesting colonies from Wellington County. We excluded four sites 

for radio tagging in 2017 owing to logistical constraints. Each site was located on private 

property and all colonies were located within barns and one garage. Landcover around each 

of the nesting sites was dominated by agriculture (e.g. row crop, forage, and pasture; average 

65% within 1 km) with some small natural areas (e.g. ponds and treed areas; average 27% 

within 1 km). 

(b) Nest monitoring and radio tagging  

Data collection and nest monitoring for Wellington County in 2016 and 2017 involved 

weekly visits starting in late April/early May to determine the onset of laying. Timing of the 

penultimate egg was used to gauge the timing of hatch given a 14 d incubation period 

(Brown and Brown 1999). Prior to expected hatch we revisited each nest at least twice 

weekly to determine hatch day. Hatch day was recorded if there was evidence of hatch (e.g. 

eggshell present, only partial nest hatch, and nestlings still wet) otherwise nestlings were 

aged based on feather tract development. This process was repeated mid-July for second 

broods. Nestlings were revisited at 6-12 d old in 2016 or 8 d old in 2017 for ringing with 

uniquely numbered US Fish and Wildlife/ Canadian Wildlife Service aluminum rings and to 

record morphological measurements (wing length and mass in 2016/17 plus tarsus in 2017). 
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A subset of nests was visited again when nestlings could be fitted with a radio transmitter 

(ages 13-21 d old in 2016 and 15 d old in 2017). Morphological measurements were taken 

and one randomly selected nestling from each nest was fitted with a digitally coded 

transmitter (model NTQB-2, Lotek, Newmarket, Ontario) using Rappole and Tipton’s (1991) 

two loop leg harness method (n = 86 nestlings in 2016; n = 101 nestlings in 2017). Each 

harness was made of elastic thread, which allowed for growth, flexibility, and eventual 

breakdown. Together the harness and transmitter weighed 0.43g (0.08g and 0.35g 

respectively; approximately 2.3% of average body mass). Each transmitter was programmed 

with a unique identity which transmitted at a frequency of at 166.380 MHz every 9.7-10.1 

seconds resulting in an approximate battery life of 58 d (www.lotek.com). Because mortality 

can be confounded with tag loss, we examined tag retention of 38 pre-breeding adult Barn 

Swallows that were radio tagged and recaptured throughout the breeding season as a part of 

another study. Average minimum tag retention was 63.25 ± 4.70 (SE) days (see Appendix 

A). Therefore, we are confident that tag retention in our study is close to or at 100%.  

In 2017, we sampled blood from radio tagged nestlings for sexing (see Chapter 2: 

Molecular sexing). For each nest with a radio tagged nestling, we checked for the presence of 

nestlings during subsequent visits to colonies to determine if the nest had fledged. Dead radio 

tagged birds were never observed in the nest, however, three tagged individuals were found 

dead within their nesting barn. We assumed these birds had died after fledging and so were 

retained in the analysis. 

 Data collection and nest monitoring for Norfolk county in 2016 included visits to 16 

nesting colonies 1-4 times depending on the size of the colony (larger colonies were visited 

more frequently). Banding and radio tagging occurred at the same time at 36 nests following 

http://www.lotek.com/
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the same methods as above. Nests with nestlings old enough to be radio tagged were ringed 

and morphological measurements recorded. One nestling from each of these nests was fitted 

with a radio transmitter (n = 36 nestlings). Because of the infrequency of visits, we were 

unable to age these nestlings based on hatch date. Instead we used a linear model of age 

controlled by wing length (Age ~ Wing Length) from Wellington County in 2016 to predict 

the age of the nestlings from Norfolk County (see Appendix B; Figure B1 and Table B1) 

(c) Molecular sexing 

To extract DNA from dried blood on filter paper, a 6mm circle of blood (~ 10 uL) was cut 

from the paper and extracted using a modified Chelex protocol (Walsh et al. 1991; Burg and 

Croxall 2001). Samples were place in a 1.5 ml centrifuge tube with 300 uL extraction buffer 

(0.1 M Tris pH 8; 0.05 M EDTA; 0.2 M NaCl; 1% SDS) with 5% Chelex w/v, 2.5 uL RNase 

(10 mg/ml) and 3.0 uL Proteinase K (20 mg/ml) and incubated for 12 hours @ 50°C. From 

this, 200 uL of solution was transferred to a new 1.5 ml centrifuge tube with 300 uL 1x low 

TE (10 mM Tris pH 8; 0.1 mM EDTA) with 5% Chelex w/v. Nestling sex was then 

determined by using PCR and the P8/P2 primer set to amplify the chromo helicase DNA-

binding genes of the Z and W sex chromosomes (Griffiths et al. 1998). For Barn Swallows, 

this reaction produces a 355-base pair product from the Z chromosome (both males and 

females) and a 390-base pair product from the W chromosome (only in females). DNA 

extractions were diluted 1:20 for PCR amplification. PCR conditions (per 10 uL reaction) 

were 2.0 uL ClearFlexi Buffer 5x (Promega), 2.0 mM MgCl₂, 200 uM dNTP, 1.0 uM each 

primer, 0.5 units GoTaq (Promega) and 1 uL 1:20 dilution DNA template. The cycling 

conditions were as follows: 1 min 30 sec at 94°C, 35 cycles of 30 sec at 94°C, 45 sec at 

48°C, 45 sec at 72°C and a final extension of 5 min at 72°C followed by 5 sec at 4°C. PCR 

products were then run on a 3% agarose gel with a negative control and sex was manually 
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scored by an observer based on the presence (female) or absence (male) of the W 

chromosome (n = 54 females and n = 46 males).  

(d) Automated radio telemetry array 

We tracked the activity of radio tagged juvenile Barn Swallows using the Motus automated 

telemetry array (Taylor et al. 2017; http://motus.org). The Motus array in southern Ontario is 

dense and consists of more than 80 radio receiving towers. We specifically added 4 towers in 

2016 and 5 towers in 2017 to the Motus array east of Guelph, Ontario to increase the 

detectability of our birds. Each of the Motus towers can have 1-4 antenna which are 

connected to a SensorGnome receiver which records continuously. With ideal conditions, 

each antenna can pick up a radio detection from a distance of 12 – 15 km (Taylor et al. 

2017). Every time a tag is detected, its identity is recorded along with the signal strength, 

GPS synchronized time, and which antenna the detection was on. Data from all towers are 

combined and filtered based on tags unique to a study project. This results in a final data file 

that consists of all the tower detections from every tag in a given study across the entire 

Motus array.  

 (e) Mark-recapture  

We modeled survival using a multistate closed robust-design (MSCRD) approach. Robust-

design models consist of multiple primary periods and multiple secondary periods within 

each primary period which allow for improved accuracy of parameter estimates (Pollock 

1982; White et al. 2006). Primary periods were represented by days, while secondary periods 

were represented by six 4-hour periods per day. We used a multistate approach to deal with 

emigrating juveniles upon departure for migration which can be confounded with mortality.  

http://motus.org/
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 To analyze our Motus data in a mark-recapture framework, detection data was 

annotated into encounter histories for each juvenile Barn Swallow. We did this on an 

individual and daily basis by visually inspecting daily detections across each of the six 

secondary sampling periods (see Appendix C). A given secondary sampling period was 

assigned either a ‘0’ when a bird was not detected, an ‘L’ when a bird was detected within 

the array, and ‘M’ when a bird was last detected along the southern edge of the Motus array 

and moving in a southerly migratory orientation. Preliminary data inspection suggested < 6 

tag detections within a sub-sampling period often resulted from random radio interference so 

we filtered our data to ensure there were a minimum of six tag detections when classifying a 

bird as being detected. All encounter histories were aligned by age starting at 15 d and 

continued until an age of 70 d which equates to 56 d (8 weeks) of monitoring (fledge age 

ranged between 15-24 d). We assigned the last time birds were observed alive in the nest as 

their first encounter, ‘L’, to increase our accuracy of estimating mortality for individuals 

radioed and presumed fledged, but never detected on the Motus array. We excluded 

individuals from the study that were radioed, not detected on the array, and for which we 

were not able to confirm fledging by revisiting the nest because we were not able to revisit 

the colony. This resulted in the exclusion of one individual from Wellington County and five 

individuals from Norfolk County in 2016. We also excluded one individual from 2017 

because we could not obtain a blood sample. This resulted in a total of 116 juveniles from 

2016 (n = 85 Wellington County; n = 31 Norfolk County; n = 74 Brood One; n = 42 Brood 

Two) and 100 juveniles from 2017 (n = 100; n = 51 Brood One; n = 49 Brood Two) for 

statistical analysis.  
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(f) Statistical analyses 

All statistical analyses were conducted using R 3.4.3 (R Core Team 2017). Survival models 

were fit using the RMark 2.2.4 package (Laake 2017). We used Huggins closed robust-

design multi-state models (HCRDMS) which is a type of MSCRD that does not include 

abundance as a model parameter (Requena et al. 2012). Parameters estimated from our model 

included apparent survival (denoted by Φ), the transition probability between states (denoted 

by ψ), and the probabilities of first capture (denoted by p) and recapture (denoted by c). For 

each model we fixed the probability of going from the migratory state (M) to the local state 

(L) to zero because once a juvenile departed for migration they did not return based on our 

tag detection data. This resulted in just the estimation of the probability of transitioning to the 

migratory state from the local state (ψLM) which is ultimately the probability of migrating and 

its inverse (ψLL=1- ψLM), the probability of not transitioning. We also fixed the probability of 

first capture and recapture to equal each other (p = c) which results in only one measure of 

recapture probability (hereafter ‘p’). We assumed that these probabilities are equal given that 

individuals were passively encountered (i.e. no trap response). Lastly, we fixed apparent 

survival in the migratory state to zero because once an individual enters the migratory state 

they leave the regional Motus array and are no longer detected. Each year (2016/2017) was 

modeled independently.  

 We used a three-stage modeling approach in which we modeled (1) recapture 

probability (p), (2) migration probability (ψLM), and (3) survival probability (Φ) separately. 

Each of these parameters are expected to be dependent on age so we constructed five 

different parameterizations in which each probability could vary linearly with age (A), non-

linearly with age to the second order (A + A2), non-linearly with age to the third order (A + 

A2 + A3), weekly based on age classes (15-21, 22-28, 23-35, 36-42, 43-49, 50-56, 57-63, 64-
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70 d: A1), and weekly for the first two weeks with the last four weeks grouped together (15-

21, 22-28, 23-70 d: A2). We grouped the last four weeks because survival can level off after 

the first two weeks in many species (Naef-Daenzer and Grüebler 2016). We first modeled 

recapture probability (p) while keeping migration probability and apparent survival constant. 

A set of candidate models were created and compared in which the top model was retained 

for step two and three (see Appendix D; Table D1-D2). For every candidate model, we 

allowed recapture probability to vary across secondary periods within primary periods 

(~Time) to account for the fact that our six secondary periods span an entire day and there are 

periods where juveniles are less active (e.g. roosting). In 2016, we also included the county 

nestlings were tagged in as a predictor of recapture probability because the density of Motus 

towers is higher in Norfolk county (Figure 2-1). Recapture candidate models were created to 

examine the relationship with each of the age parameterizations on its own and with the 

additive effects of brood and sex for 2017. Secondly, we modeled the probability of 

migrating with the top recapture model while keeping apparent survival constant. We again 

created a set of candidate models for comparison where the probability of migrating could 

vary with each of the age parameterizations on its own and with the additive effects of brood 

and sex (2017 only; see Appendix D; Table D3-D4). The top model was retained and used in 

the final step where we modeled apparent survival. In this last step, a set of candidate models 

were again created and compared for apparent survival following the same procedure 

outlined above, but also including body condition. This resulted in a total of 20 candidate 

models for 2016 and 40 candidate models for 2017 (see Appendix D; Table D5-D6). A body 

condition index was calculated as the residuals of mass controlling for structural size where 

wing length was used for structural size for 2016 and tarsus was used for structural size in 

2017 (Vitz and Rodewald 2011; Jones et al. 2016). We used tarsus instead of wing length to 
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obtain our condition measure for 2017 because it had more support, however, both measures 

of condition are highly correlated (see Appendix E). 

 Candidate models were ranked based on Akaike’s Information Criterion corrected for 

small sample size (AICc) and the relative likelihood of each model was also determined 

based on model weight (wi). Models were considered to have equal support when within two 

units of the top model (∆AICc < 2), except when they only differed by one parameter, the 

more parameterized model had a higher AICc, and that parameter’s 95% confidence interval 

included zero (Burnham and Anderson 2002; Arnold 2010), in which case, we considered the 

more parsimonious model to have more support. When there were two or more competitive 

models for recapture probability or migration probability we chose the top model with the 

lowest AICc to move forward with model selection. All results and inferences were made 

using the top model for 2016/17 and for only the local state ‘L’. The delta method was used 

to calculate standard errors for cumulative survival and migration probabilities (Powell 

2007).  

RESULTS 

(a) Fledglings  

We tracked 216 juvenile Barn Swallows during the post-fledging period in 2016 and 2017 

using the Motus automated telemetry system in southern Ontario (n = 116 in 2016 and n = 

100 in 2017). Of these, 125 were from first-brooded nests (n = 74 in 2016, n = 51 in 2017) 

and 91 were from second-brooded nests (n = 42 in 2016, n = 49 in 2017). DNA analysis 

revealed that there were 54 females and 46 males in 2017. A total of 88 juveniles were 

tracked until they departed for autumn migration (n = 46 for 2016, n = 42 for 2017). 

Departure locations were located an average of 119.08±10.47(SE) km in 2016 and 
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116.63±7.39(SE) km in 2017 away from natal colonies. Thirty-eight birds were never 

detected by the Motus array but were assumed to have fledged based on nest checks (n = 20 

in 2016, n = 18 in 2017). Average fledging age was 19.5±0.1 d(SE). 

(b) Survival probability 

The top survival model was consistent across both years where survival varied with body 

condition and non-linearly with age (see Appendix D; Table D5-D6). Greatest support was 

found for the third-order polynomial model relating daily survival to age (∑wi = 0.93 in 2016 

and ∑wi = 0.83 in 2017). Specifically, daily survival was lowest during the first week when 

juveniles were between 15 and 21 d old (Figure 2-2). This resulted in a cumulative survival 

of 78.6±4.1(SE)% in 2016 and 72.8±5.9(SE)% in 2017 (Figure 2-3). After that, daily survival 

continued to increase until juveniles were 25-30 d old, where daily survival plateaued before 

decreasing again between the ages of 30 and 45-50 d (Figure 2-2). During the last three 

weeks of tracking, daily survival increased to 100% by 66 d in 2016 and 60 d in 2017. 

Cumulative survival across 8 wks of the post-fledging period was 39.9±6.2(SE)% in 2016 

and 44.2±6.2(SE)% in 2017 (Figure 2-3).  

 We found considerable support for body condition influencing daily apparent survival 

in both years (∑wi = 0.87 in 2016 and ∑wi = 0.90 in 2017). Our body condition index ranged 

from -4.29 to 3.18 in 2016 and from -6.38 to 4.90 in 2017. Body condition had a positive 

effect on daily survival probability with individuals in better condition at the time of radio 

tagging experiencing higher daily apparent survival (Figure 2-4). We found no evidence that 

survival differed between broods in 2016 (model 2 Table D5: βBrood Two = -0.19; 95% CI -

0.78–0.40) or 2017 (model 3 Table D6: βBrood Two = -0.09; 95% CI -0.79–0.61). We also 
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found no evidence that survival differed between sexes in 2017 (model 2 Table D6: βMale = -

0.17; 95% CI -0.80–0.47). 

(c) Migration probability 

The top migration model was the same in both years where the probability of migrating 

depended on brood and curvilinearly on age (see Appendix D; Table D3-D4), although there 

was equal support for a linear relationship with age (∆AICc < 2). We found considerable 

support for differences in migration probability across broods (∑wi = 1.00 in 2016 and 2017; 

Table D3-D4). Individuals from second broods migrated earlier than first brooded individuals 

relative to their age (Figure 2-3; Table D7). Specifically, individuals from second broods 

started migrating around 30 d of age compared to individuals from first broods whom started 

migrating around 50 d of age (Figure 2-3). 

(d) Recapture probability  

Top models for recapture probability in 2016 and 2017 both had considerable support (wi = 

1.00; see Appendix D; Table D1-D2). In 2016/2017, recapture probability was lowest in the 

first week of tracking and increased until the third week when juveniles were about 30-35 d 

old (Appendix F; Figure F1). After this peak, recapture probability decreased slightly before 

increasing during the final weeks of tracking. In both years, recapture probability varied 

depending on time of day (secondary period) where it was lowest during the first and last 

four h of the day and the highest in the middle of the day (Figure F1). Recapture probability 

differed with brood in each year with second-brooded juveniles having higher recapture 

probability in 2016 but lower recapture probability in 2017 when compared to first broods 

(Table D7). Recapture probability was higher for individuals tagged in Norfolk county in 
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2016 where the Motus array was denser (Table D7). Lastly, in 2017, males had higher 

recapture probability than females (Table D7).  

DISCUSSION 

Using a novel automated telemetry array that covers about 60,000 km2 in southern Ontario, 

we provide the first measurement of apparent survival for juvenile songbirds monitored 

continuously from fledging until autumn migration (approximately 2 months). Our results 

show that less than half (mean 42%; 39.9±6.2[SE]% in 2016 and 44.2±6.2[SE]%) of 

fledgling Barn Swallows survive to migrate, providing definitive evidence that survival 

during this period is critical to population limitation. To put this in context, we can use 

empirical estimates of non-breeding (i.e. migration and wintering) survival of the adult 

Black-throated Blue Warbler (Dendroica caerulescensfrom) from Sillett and Holmes (~46%; 

Sillett and Holmes 2002) and multiply it by our average post-fledging survival (42%) to get 

an estimated first year survival of approximately 19%. We believe this is conservative given 

juvenile non-breeding survival is expected to be lower than adults (Faaborg et al. 2010). 

Given a reproductive output of 2.1 female fledglings (average 4.2 fledglings per pair from 

our study population assuming 50:50 sex ratio; Kusack et al., unpub. ms.), only 0.41 recruits 

would be produced per adult female per year. This suggests females would need to survive at 

least 3 years to replace themselves which is not supported in our study population given a 

mean annual apparent survival of only 48.7% (García-Pérez et al. 2014).  

 Our cumulative survival estimates are higher than those of post-fledging Barn 

Swallows in Europe (32.2% after 21 d; Grüebler et al. 2014). They also represent the lower 

end of estimates from other migratory passerines that were tracked for comparable periods 

(e.g. 56% after 58 d for Dickcissels Spiza americana, 57% after 72 d for Eastern 
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Meadowlarks Sturnella magna; Suedkamp Wells et al. 2007; 42% after 56 d for Wood 

Thrush Hylocichla mustelina; Anders et al. 1997). However, given the spatial limitations of 

these studies we believe these estimates may be biased depending on how dispersing 

individuals were dealt with. For example, the study by Grüebler et al. (2014) on European 

Barn Swallows had a spatial scale of 100 km2 and assumed no individuals left this area 

during the first three weeks (even though independent juveniles were highly mobile and 

could not be detected for several days; Grüebler and Naef-Daenzer 2008). This could result 

in lower survival estimates where mortality is confounded with dispersal. The study of 

juvenile Dickcissel and Eastern Meadowlark (Suedkamp Wells et al. 2007) censored 

individuals believed to have dispersed from study sites which may have resulted in 

overestimates in survival. Furthermore, this study and others lack estimates up until 

migration meaning that survival during a critical part of the post-fledging period, when 

juveniles make potentially costly exploratory movements, was not quantified (Brown and 

Taylor 2015). Our expanded spatial and temporal scale of tracking avoids these limitations 

and provides the first complete and most robust account of apparent survival across the entire 

post-fledging period.  

Juvenile birds are particularly limited at two points during the post-fledging period; at 

the start of the parental care stage when juveniles have limited mobility and remain 

dependent on care (Anders et al. 1997; Kershner et al. 2004; Ausprey and Rodewald 2011; 

Vitz and Rodewald 2011) and at the onset of independence when juveniles lack experience 

and fend for themselves (Kershner et al. 2004; Grüebler and Naef-Daenzer 2010b; Dittmar et 

al. 2016). We found that apparent survival was the lowest between 15 and 21 d suggesting 

that the beginning of the parental care period is a costly time for juvenile Barn Swallows. 

Specifically, 21.4-27.2% of mortality occurred during this first week. The parental care stage 
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of post-fledging lasts on average 10 d in Barn Swallows (Grüebler and Naef-Daenzer 2010b). 

With an average fledge age of 19.5 d, the average bird would become independent at about 

30 d which coincides with a decrease in daily apparent survival (Figure 2-2). Contrary to 

previous investigations (e.g. Anders et al. 1997; Grüebler and Naef-Daenzer 2010b), daily 

apparent survival in our study system was not lowest at the beginning of independence. 

Instead, apparent survival slowly decreased from about 30 d until about 48 d in 2016 and 43 

d in 2017 suggesting the costs of being independent can last well into the independence 

period. We hypothesize that this could be the result from an increased exposure to threats that 

results from increased mobility and exploration (Brown and Taylor 2015). Our results also 

highlight the importance of expanding the temporal and spatial scale of post-fledging 

survival studies. If our study was limited to just the parental care stage (until approximately 

30 d), we would have missed 20-30% of the mortality incurred during the remainder of the 

post-fledging period.  

Nestlings in better condition are thought to be raised with a ‘silver spoon’ because of 

the subsequent benefits experienced throughout their lifetime (Stamps 2006; van de Pol et al. 

2006). For juvenile Barn Swallows, daily apparent survival was positively related to body 

condition just prior to fledging. This is consistent with some (Vitz and Rodewald 2011; 

Dybala et al. 2013; Jones et al. 2016), but not all literature (Anders et al. 1997; Berkeley et 

al. 2007; Jackson et al. 2011) suggesting the importance of body condition might depend on 

species and post-fledging ecology. Timing of measurements and indices of body condition 

used are also other potential confounding factors. There are multiple mechanisms influencing 

the effect of pre-fledging body condition on post-fledging survival. During the parental care 

stage, individuals in better condition may be better suited to withstand inclement 

environmental conditions (Jones et al. 2016) or evade predators (Naef-Daenzer et al. 2001). 
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During the independence stage, the mechanisms working during the parental care stage 

would remain the same with the added cost of foraging independently. Another factor that 

could be working across both the parental care and independence stages is the impact of 

disease where individuals in poorer condition are more prone to disease (Saino et al. 1997) 

and this in turn impacts post-fledging survival (López-Rull et al. 2011).  

Due to logistical constraints of sexing juveniles, sex is often an important, yet 

understudied variable in juvenile survival studies (Maness and Anderson 2013). We found no 

evidence that apparent survival differed between male and female juvenile Barn Swallows. 

However, we found evidence that males were much more likely to be encountered within the 

Motus array which provides some evidence of that the sexes might differ in post-fledging 

behaviours, but perhaps without any survival costs. For example, this could be due to sex 

specific movements More investigation into sex specific post-fledging behaviour of juvenile 

Barn Swallows is needed.  In addition, we found no differences in survival between broods 

despite evidence of reduced survival for later brooded Barn Swallows in Europe (Grüebler 

and Naef-Daenzer 2010a). One possible explanation for this observation is that second-

brooded individuals could have received better post-fledging parental care providing them 

with a buffer needed to survive and migrate at a younger age. However, this is likely at a cost 

during migration as second brooded individuals generally experience lower return rates 

(Raja-Aho et al. 2017). 

One challenge of using automated telemetry to estimate post-fledging survival is that 

determining the timing of mortality is difficult during the parental care stage when juveniles 

are largely immobile and have lower probability of being detected by towers. We arranged 

receiving towers to optimize detection, but an ideal situation would be to have a receiving 
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tower at each natal site for full spatial coverage. Some individuals assumed to have died early 

in the post-fledging period were never detected on the Motus array and because their last 

encounter was within the nest, this could negatively bias survival earlier in the post-fledging 

period. Another challenge of using automated radio telemetry is that mortality can often be 

confounded with tag loss or tag death, but we found such losses were negligible (Appendix 

A). In terms of premature radio failure, our tags had a rated battery life of approximately 58 d 

which is close to the duration of tracking in our study (56 d). Daily apparent survival reached 

100% by the end of tracking in both years, suggesting that radio tags did not prematurely fail 

in our study, and this is when we would expect tags to start dying early. 

CONCLUSION 

This research adds to the growing evidence that the post-fledging period is a critical time in 

the annual cycle of songbirds. Nearly 60% of juvenile Barn Swallows fail to survive until 

autumn migration which is important given mortality during the post-fledging period is 

additive to mortality incurred during the rest of the annual cycle (Naef-Daenzer and Grüebler 

2016). A critical next step in understanding population declines of North American Barn 

Swallows is to examine survival across other parts of the annual cycle in order to build full-

annual-cycle population models (Hostetler et al. 2015). Ultimately, our results show the 

value of using automated telemetry, such as Motus, to obtain unbiased survival estimates at 

unprecedented spatial scales. On average, juvenile Barn Swallows were last detected 

departing for migration over 100 km away from their natal colony and tracking individuals at 

this distance would be impossible without automated telemetry. We believe this approach 

can be can be readily adapted to new and existing data on other species and periods of the 

annual cycle.  
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FIGURES 

 

Figure 2-1. The location of study sites (black/white dots) and Motus automated radio 

receiving towers (red dots) within (a) southern Ontario, (b) Norfolk County, and (c) 

Wellington County in 2016 and 2017. Towers labeled with a specific year in Wellington 

County were only active that year and unlabeled towers were active both years. 
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Figure 2-2. Predicted daily apparent survival probability for juvenile Barn Swallows in 

average condition during the post-fledging period in southern Ontario for (a) 2016 and (b) 

2017. Daily apparent survival estimates are from the top model and grey areas represent the 

standard error. Dashed vertical line shows the average transition from parental care to 

independence as calculated with average fledge age plus the estimated length of parental care 

from Grüebler and Naef-Daenzer (2010b). 
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Figure 2-3. Predicted cumulative survival (solid red line) and cumulative migration from 

first brooded (dashed green line) and second brooded (dashed blue line) juvenile Barn 

Swallows in southern Ontario during the post-fledging period of (a) 2016 and (b) 2017. 

Cumulative survival and cumulative migrated were calculated with the top model and 

cumulative survival is based off of individuals in average condition. Grey areas represent 

standard error of the cumulative estimate. Dashed vertical line shows the average transition 

from parental care to independence as calculated with average fledge age plus the estimated 

length of parental care from Grüebler and Naef-Daenzer (2010b). 
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Figure 2-4. Predicted average daily apparent survival probability for juvenile Barn Swallows 

with different body condition in southern Ontario for (a) 2016 and (b) 2017. Range of body 

condition values represent the true range of radio tagged individuals in our study and the grey 

areas represent the standard error. 
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Chapter 3 

The post-fledging movements of juvenile Barn Swallows (Hirundo rustica) 
 

INTRODUCTION 

The vertebrate annual cycle is comprised of multiple life-history stages that are 

behaviorally, morphologically, and physiologically distinct in order to increase individual 

success and survival in response to changing environmental conditions (Wingfield 2008). 

Migratory songbirds for example, enter a migratory state allowing them to travel great 

distances in order to exploit seasonal peaks of resource abundances on the breeding and 

wintering grounds while also avoiding adverse environmental conditions (Alerstam et al. 

2003; Ramenofsky and Wingfield 2007). However, compared to resident birds, migratory 

songbirds have more complex annual cycles which can result in time constraints and the 

implementation of potentially costly time-saving strategies such as overlapping, shortening 

the duration, or changing the timing of life-history stages (Wingfield 2008; Tomotani et al. 

2016). Ultimately, these decisions can have consequences that carry over and impact the 

entire annual cycle (Harrison et al. 2011).  

The post-fledging period is a critical life history stage for many migratory songbirds 

(i.e. the time between fledging and migration; Cox et al. 2014; Naef-Daenzer and Grüebler 

2016). At first, newly fledged juveniles face high mortality due to their limited mobility and 

dependence on parental care (Anders et al. 1997; Kershner et al. 2004; Ausprey and 

Rodewald 2011; Vitz and Rodewald 2011). Once independent, juveniles again face increased 

mortality as they become more mobile and must learn to locate and acquire resources, avoid 

predators, and navigate on their own (Anders et al. 1997; Rush and Stutchbury 2008; 

Mitchell et al. 2010; Grüebler et al. 2014; Dittmar et al. 2016). Several studies have 
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documented large regional and landscape-level movements during the post-fledging period 

that cannot be accounted for by finer scale foraging movements (Morton 1991; Brown and 

Taylor 2015). These movements may serve to gather information on habitat and social cues 

for the selection of future breeding sites and/or to build a mental map to help navigate the 

breeding grounds upon return the subsequent spring (hereafter ‘exploration hypothesis;’ 

Baker 1993; Betts et al. 2008; Mitchell et al. 2010; Brown and Taylor 2015). Alternatively, 

post-fledging movements may represent an initial displacement in the direction of migration 

without entering a migratory physiological state (hereafter ‘migration hypothesis;’ Cherry 

1985; Rappole and Ballard 1987; Mitchell et al. 2010; Brown and Taylor 2015).  

Current knowledge of the post-fledging period is limited despite being arguably the 

most important life history stage for juvenile songbirds (Kershner et al. 2004; Vitz and 

Rodewald 2011). Our understanding of post-fledging movement is therefore also very limited 

and the few existing studies that have focused on movements during this period have mostly 

addressed fine scale movements that occur just after fledging (e.g. Kershner et al. 2004; 

Berkeley et al. 2007; Haché et al. 2014). The cryptic behavior and mobility of songbirds after 

fledging (Anders et al. 1997; Rush and Stutchbury 2008) along with technological constraints 

of tracking the movements of small songbirds in general (Bridge et al. 2011) has likely 

limited this field of investigation. Brown and Taylor (2015) were the first to investigate post-

fledging movements at a broad spatial scale (100s of km) using automated radio telemetry 

showing juvenile songbirds can travel widely before migration. The Motus Wildlife Tracking 

System (hereafter ‘Motus’) is currently a well-established automated radio telemetry system 

in eastern North America that allows small birds to be tracked at large spatial and temporal 

extents using small lightweight radio tags (Taylor et al. 2017).  



52 
 

Despite recent evidence that juvenile songbirds can move extensively prior to autumn 

migration, there is still little understanding of the factors driving variability in movement 

distances during the post-fledging period.  There is also little understanding to what extent 

late fledging birds in double brooded species face time constraints prior to autumn migration, 

relative to first-brood or earlier fledging birds.  Here we investigate the movements of 

juvenile Barn Swallows (Hirundo rustica) during the post-fledging period in southern 

Ontario using Motus. We sought to quantify the amount of movement juveniles make prior to 

migration and to what extent intrinsic factors such as brood, age, body condition, and sex can 

influence such movements. Barn Swallows produce up to two broods per breeding season 

providing us an opportunity to explore differences in movement patterns between early and 

late broods. In double brooded species, later broods often migrate at a younger age than their 

predecessors and this comes at a cost of valuable time on the breeding grounds to gain 

experience and prepare for autumn migration (Tarof et al. 2011; Meller et al. 2013; Raja-Aho 

et al. 2017). We expected that second broods would move less than first broods due to the 

time constraints of having a shorter post-fledging period prior to migration. We further 

hypothesized that there will be an age-specific pattern of mobility where juveniles will 

remain immobile for the first 10 days of the post-fledging period while they are dependent on 

parental care and increase their mobility thereafter. We also expected that individuals in 

better condition will move more because they have larger energy reserves and can afford to 

put more time and energy into movement.  Last we predicted that juvenile females would 

move more extensively than males because of female biased juvenile dispersal observed in 

European Barn Swallows (Balbontín et al. 2009).   
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METHODS 

(a) Study Site and Species 

Barn Swallows are a small (17–20 g) aerial insectivore that breed in Canada and are 

primarily associated with manmade structures (e.g. barns, garages, and sheds) that provide 

vertical surfaces for the construction of their mud nests (Brown and Brown 1999). Barn 

Swallows are commonly found breeding semi-colonially and can produce up to two broods 

per breeding season. We studied the post-fledging movements of juvenile Barn Swallows 

from 19 nesting colonies in 2016 and 15 colonies in 2017 near Guelph, Ontario, Canada 

(43.55° N, 80.25° W). Four of the study sites were dropped in 2017 due to logistical 

constraints. Each nesting colony was located within barns on private property with the 

exception of one garage. Landcover near each nesting colony was primarily agriculture (e.g. 

row crop, forage, and pasture; average 65% within 1 km) and some small natural areas (e.g. 

ponds and treed areas; average 27% within 1 km). 

(b) Nest monitoring and radio tagging 

Nest monitoring and data collection varied by year. Nesting colonies were first visited in late 

April or early May of each year followed by weekly visits to determine the onset of laying. 

Once laying had commenced, we increased our site visits to at least twice a week to 

determine the timing of the penultimate egg which was used to determine the approximate 

timing of hatch using a 14 d incubation period (Brown and Brown 1999). We then visited 

each site just prior to hatch and continued to visit at least twice a week in 2016 or every other 

day in 2017 to determine hatch day. Hatch day was recorded if there was evidence of hatch 

on (e.g. eggshell present, only partial nest hatch, and nestlings still wet) and if hatch day 
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could not be recorded in this way, nestlings were aged based on feather tract development. 

This process was repeated again in mid-July for second nests. 

 Each nest was revisited for a second time when nestlings were 6-12 d old in 2016 or 8 

days old in 2017 for banding and measurements. All nestlings were fitted with a uniquely 

numbered US Fish and Wildlife/ Canadian Wildlife Service aluminum band and mass, wing 

length, and tarsus (2017 only) were recorded. A subset of nests (n = 86 in 2016 and n = 101 

in 2017) were visited again when nestlings were more mature and able to be fitted with a 

radio transmitter (ages 13-21 d old in 2016 and 15 d old in 2017). All nestlings were 

measured as before and one randomly selected nestling from each nest was fitted with a 

digitally coded transmitter (model NTQB-2, Lotek, Newmarket, Ontario) using Rappole and 

Tipton’s (1991) two loop leg harness method. Each harness was made using elastic thread 

which allowed for growth, maneuverability, and eventual breakdown. Together the radio tag 

and harness weighed 0.43g which represents only 2.3% of the body mass of an average Barn 

Swallow which is below the recommended 5% cut-off (Caccamise and Hedin 1985). Each 

transmitter was programed with a unique identity which was transmitted every 9.7-10.1 

seconds at a frequency of 166.380 MHz. This resulted in a battery life of approximately 58 

days.  

In 2017 only, we took blood samples from radio tagged nestlings for determination of 

sex. We obtained blood samples by piercing the brachial vein with a 26 gauge needle and 

drawing 10-20ul of blood into a micro-capillary tube. We then dried the blood on filter paper 

for storage at approximately -20°C for molecular analysis. Following radio tagging, on any 

subsequent visits to that nesting colony we made the point of checking for radio tagged 

nestlings in the nest to determine if fledging had occurred. Because we frequented sites more 
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in 2017 we were able to estimate time of fledging as the mean age between the last visit a 

nestling was present in the nest and the subsequent visit they were no longer present. 

(c) Molecular sexing 

See Chapter 2 Methods section (c). 

 (d) Automated radio telemetry array 

See Chapter 2 Methods section (d). 

 (e) Data analysis 

Data was analyzed using R 3.4.3 (R Core Team 2017). Detections were sorted and examined 

on a per bird basis. Out of the total 187 radio tagged birds, 37 were never detected on the 

Motus array (n = 19 in 2016 and n = 18 in 2017) and were excluded from further analysis. 

We also excluded one juvenile in 2017 due to the inability to obtain a blood sample for sex 

determination. This resulted in a total of 149 juveniles for analysis (n = 67 in 2016 and n = 82 

in 2017). To get a measure of movement, we looked at all movements made by juvenile Barn 

Swallows from fledging up until the bird was no longer detected or had departed for autumn 

migration. Specifically, we calculated two measures of movement. First, we calculated 

cumulative daily movement distances by summing the distance between subsequent tower 

detections on any day an individual was detected. To avoid over estimation, we rounded 

detections to the nearest hour and excluded any distances < 15 km where an individual could 

theoretically be detected by two towers, but not have moved between them. Secondly, we 

calculated cumulative distance traveled during the entire post-fledging period as the sum of 

cumulative daily movement. It is important to note that both of these measures are not exact 

distances moved because each detection only indicates a bird was within 12-15 km radius of 

a tower. Daily movement was likely an underestimate given individuals are not always 
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detected. We also recorded when individuals departed for autumn migration which marked 

the end of the post-fledging period. We assumed a juvenile Barn Swallow had departed for 

migration if it was observed to make a southerly movement and last detected on the southern 

edge of the Motus array (e.g. along Lake Erie). For all departures we recorded the date and 

location. To get a measure of body condition we used data from all nestlings that were 

measured at the same time as the radio tagged nestlings separated by year due to the 

differences in ages of measurement in 2016 (day 13-21) vs 2017 (day 15 only). A body 

condition index was calculated from the residuals of a simple linear model of body weight 

controlled for structural size where we used wing length in both years. 

 (f) Statistical analysis 

All statistical analyses were conducted using R 3.4.3 (R Core Team 2017). To test whether 

intrinsic factors such as brood, age, condition, and sex influence movement we first looked at 

cumulative daily movement using generalized additive mixed effects models (GAMMs; 

mgcv package; Wood 2017). We chose to use GAMMs to look at daily distance moved so 

that we could account for the non-liner relationship with age that we expected, and the 

mixed-effects allowed for us to account for similar movements between individuals from the 

same colony and individual variance in the number of days detected. We started by modeling 

each year separately because we only had sex data from 2017 and our measure of condition 

in each year was not comparable given the different ages that nestlings were radio tagged in 

2016. We fit an initial saturated (or global) model with all of our predictor variables. All 

predictor variables were treated as linear effects with the exception of age in which we 

allowed for a nonlinear relationship. We also included an interaction between age and brood 

in each year because of the different timelines for each brood (i.e. second broods having a 

shorter post-fledging period). Therefore, our global 2016 model consisted of: cumulative 
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daily movement as the response variable; brood and condition as linear predictor variables; 

an age by brood non-linear predictor variable; and colony and individual as a random effect. 

Our 2017 model consisted of cumulative daily movement as the response variable, brood, 

condition, and sex as linear predator variables, an age by brood non-linear predictor variable 

or interaction, as well as colony and individual as a random effect. 

 We conducted model selection using stepwise deletion of predictor variables with 

little support starting from our global model. Support for the dropped term was assessed 

using Akaike’s Information Criterion corrected for small sample size (AICc) and likelihood 

ratio tests. If removal of the predictor decreased the AICc and removal of that term was not 

significant we continued with model selection (Table 3-1). If ∆AICc < 2 we chose the most 

parsimonious model. This resulted in the deletion of condition in both years and sex in 2017. 

Because the resulting models were identical in both years we chose to combine the data from 

each year to model the effects of brood on cumulative distance traveled. We also included 

year as an additional fixed effect to account for yearly variation. This resulted in a final 

model of: cumulative daily distance as the response variable; brood and year as linear 

predictors; an age by brood non-linear predictor variable; and individual and colony as 

random effects (Table 3-2).  

 Next, we tested whether intrinsic factors of brood, condition and sex influenced 

cumulative distance traveled using mixed effects linear models fitted with maximum 

likelihood methods (package nlme; Pinheiro et al. 2017). Again, we started by modeling each 

year separately for the same reasons as described above. We included colony as a random 

factor to account for possible similarities in movement patterns among individuals from the 

same colony. We also included whether that individual migrated as a fixed effect in each year 
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to account for the fact that individuals who made it to migration would have moved more to 

reach their departure location. We started with a saturated global model with all predictor 

variables and proceeded with model selection using stepwise deletion of model terms with 

little support as described above. Our global model for 2016 consisted of cumulative distance 

traveled as the response variable, condition, brood, and migrated as fixed effects, and colony 

as a random effect. Our global model for 2017 consisted of cumulative distance traveled as 

the response variable, condition, brood, sex, and migrated as fixed effects and colony as a 

random effect. Following model selection, we again removed condition from both years and 

sex from 2017 (Table 3-3). This allowed us to combine both years for one final model. We 

again included year as an additional fixed effect. This resulted in a final model consisting of 

cumulative distance traveled as the response variable, brood, migrated or not, and year as 

linear predictors, and site as a random effect (Table 3-4). Lastly, to validate our assumption 

that second broods are more time constrained than first broods, we used a simple mixed 

effects linear model with departure age from both years as the response variable, brood and 

year as fixed effects, and colony as a random effect (n = 66).   

RESULTS 

We successfully tracked a total of 149 juvenile barn swallows during the post-fledging period 

in 2016 and 2017. Of these, 24 were tracked up until migration in 2016 (n = 14 first brood 

and n = 10 second brood) and 42 up until migration in 2017 (n = 16 first brood and n = 26 

second brood).  Departures for migration averaged 117.5±6.0 (SE) km from nesting colonies. 

Second brooded juveniles migrated at an average age of 42.6±0.9 (SE) d which was 

significantly younger than first broods who migrated at an average age of 64.1±1.2(SE) d 

(Estimate = -20.7±1.4(SE); t-value = -14.33; p-value = < 0.0001; Figure 3-1). Juveniles from 

2017 also migrated on average 4.17±1.5(SE) days younger than juveniles from 2016 (t-value 
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= -2.77; p-value = < 0.008). The average departure date for first broods was August 

19±1.8(SE) d compared to September 8±0.6(SE) d for second broods.  

Juvenile Barn Swallows were highly mobile during the post-fledging traveling on 

average 16.7±1.7(SE) km per day. We found a significant non-linear relationship between 

age and cumulative daily movement where juvenile swallows from both broods were 

relatively immobile until approximately 28-32 d old, after which time, movement increased 

steadily, before levelling off for second broods only, around 45 days of age (Table 3-2; 

Figure 3-2). After accounting for age, second broods moved significantly more than first 

broods traveling on average 17.9±5.7(SE) km more per day (Table 3-2; Figure 3-2). We did 

not find any support that body condition, sex, or year influenced cumulative daily distance 

moved (Table 3-1 – 3-2). Although second broods traveled more per day, they traveled on 

average 202.5±45.8(SE) km less in terms of cumulative total distance moved when compared 

to first broods (Table 3-4; Figure 3-3). First broods moved on average 403.4±37.8 (SE) km 

cumulatively and second broods moved an average of 243.8±28.0(SE) km cumulatively 

during the post fledging period. Furthermore, juveniles from either brood that made it to 

autumn migration traveled on average 254.0±45.8(SE) km more than juveniles that did not 

make it to migration (Table 3-4). Therefore, migrating juveniles from first broods traveled on 

average of 582.8±56.9(SE) km compared to 345.6±33.9(SE) km for second broods. We did 

not find any support that body condition, sex, or year influenced cumulative distance moved 

(Table 3-3 – 3-4).  

DISCUSSION 

Using a novel tracking system, we provide the first evidence for differences in 

regional large-scale post-fledging movements between juveniles from first and second broods 
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for a migratory songbird prior to autumn migration. We found that juvenile Barn Swallows 

moved considerable distances prior to migration. Juvenile Barn Swallows moved on average 

a minimum of 403.4±37.8 (SE) km if they were from first broods and 243.8±28.0(SE) km if 

they were from second broods (582.8±56.9[SE] km and 345.6±33.9[SE] km for migrating 

individuals, respectively). This is considerably more movement than expected under the 

migration hypothesis given migratory departure locations were on average only 117.5±6.0 

(SE) km away. Our results therefore support the finding from Brown and Taylor (2015) that 

juveniles songbirds make indirect movements likely for the purpose of exploration prior to 

migration. Although, we cannot directly test the purpose of these movements, banded 

juvenile Barn Swallows have been re-caught at non-natal colonies 5-8km away (Bell 1962) 

and one of our radio tagged juveniles was detected inside a non-natal barn 3 km away (DRE 

pers. obs.). Furthermore, natal dispersal in Barn Swallows is often less than 30 km from their 

natal colony (Brown and Brown 1999). Based on this evidence it is possible that these 

movements are in part for the purpose of prospecting and gathering information on habitat 

and social cues for the selection of future breeding sites. However, given the scale of 

movements we observed verses the scale of dispersal we believe the post-fledging 

movements observed here are more likely for creating a mental map to help navigate the 

breeding grounds upon return the subsequent spring.  

Life history theory suggests that when faced with time constraints, individuals must 

adopt costly time saving measures such as shortening or overlapping life history stages or 

delaying entry into the subsequent stage (Wingfield 2008; Mitchell et al. 2012). Here, we 

show that juvenile Barn Swallows from second broods migrate nearly 22 days younger than 

first broods resulting in considerably less time being spent on the breeding grounds. This 

time constraint ultimately results in second broods being less able to move as extensively 



61 
 

during the post-fledging period. If these movements are for the purpose of exploration, this 

may impact their future survival, dispersal, and breeding success due to their inability to 

gather information on potential future breeding areas or if navigational abilities are under-

developed (Raja-Aho et al. 2017). However, second broods moved more per day at a younger 

age than first broods. This suggests second broods may be at least partially compensating for 

their short time on the breeding grounds by trying to move as much as they can in what short 

time they have. There is evidence that later brooded migratory birds experience accelerated 

development to speed up the timing of migration (Berthold 1996; Gwinner 1996; Styrsky et 

al. 2004). However, this is the first study to document accelerated post-fledging movements 

suggesting post-fledging movements might be an essential component of songbird ecology 

and life-histories.  

As expected, post-fledging movements were strongly related to age with juveniles 

from both broods remaining relatively immobile until they were approximately 30 days old. 

This transition corresponds closely to the expected timing of independence in our study 

population (Evans et al. unpub. manuscript). Many studies have documented high mortality 

during the relatively immobile parental care stage, likely a result of their conspicuousness 

and vulnerability to predators (Anders et al. 1997; Berkeley et al. 2007; Ausprey and 

Rodewald 2011; Vitz and Rodewald 2011). However, few studies have been able to estimate 

survival after juveniles become highly mobile and leave their natal areas during the 

independent period. Recently we showed a decrease in apparent survival of juvenile Barn 

Swallows during the post-fledging independence period (Evans et al. unpub. manuscript). 

Although we were unable to determine the cause of mortality, our results here show that 

juveniles are move extensively during independence which has the potential to increase 

mortality because of possible greater exposure to predators or anthropogenic threats, such as 
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wind turbine, communication tower, or building collisions (e.g. Machtans et al. 2013; Rioux 

et al. 2013; Zimmerling et al. 2013). 

Many studies have documented lower annual apparent survival for later brooded 

juveniles in many species including Barn Swallows (Visser and Verboven 1999; Verhulst 

and Nilsson 2008; Raja-Aho et al. 2017). This could be potentially because of the costs of 

having less time to prepare for migration and gain experiences foraging, navigating, and 

evading predators (Tarof et al. 2011; Raja-Aho et al. 2017). We recently showed that there 

was no difference in post-fledging survival of first or second brooded Barn Swallows from 

our study population (Evans et al. unpub. manuscript). This would suggest that if there are 

costs to being second brooded they would occur during migration. Our results also have 

important implications for survival studies of double brooded passerines. If other species 

have similar post-fledging behaviours where second broods migrate younger and move more 

sooner than this needs to be taken into account when modeling post-fledging survival. For 

example, Grüebler and Naef-Daenzer (2008, 2010) looked at the post-fledging apparent 

survival of juvenile Barn Swallows in Europe during the first three weeks of the post-

fledging period. They found a seasonal decline in apparent survival of late broods; however, 

this decline could be explained by emigration of later broods at a younger age compared to 

early broods.   

We did not find any evidence that either body condition or sex influenced the post-

fledging movements of juvenile Barn Swallows. Body condition has been shown to influence 

the post-fledging movements of Ovenbirds (Seiurus aurocapilla) and Worm-eating Warblers 

(Helmitheros vermivorum), however, this was only 2 days after fledging and at a scale of less 

than 200 m (Vitz and Rodewald 2010). Many studies have documented fine scale movements 
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(100s of m) during the beginning of the post-fledging period, however, using automated 

telemetry does not allow for tracking at that scale (Kershner et al. 2004; Suedkamp Wells et 

al. 2008; Haché et al. 2014). Therefore, condition may only be important for small-scale 

movements during the post-fledging parental care period. Despite female biased dispersal in 

Barn Swallows we did not observe any differences in movement between sexes during the 

post-fledging period in this study. This could be due to the scale of natal dispersal observed 

in Barn Swallows which is often within 30 km of their natal colony (Brown and Brown 

1999). If this is the case it might be difficult to do detect any differences between sexes using 

Motus at this scale.  The lack of difference in movement parameters between sexes also 

suggests the function of post-breeding movements is for developing some sort of mental map 

or navigational target, as opposed to prospecting for future breeding sites, in which females 

should likely be moving more.  

CONCLUSION 

This research adds to the growing evidence that juvenile songbirds make large scale 

movements prior to migration suggesting that this period is a critical time of learning for 

juvenile songbirds. We show that birds from later broods are considerably more time 

constrained than those from first broods and as a result must compensate by becoming more 

mobile at a younger age. An essential next step would be to determine if there are any costs 

associated with these types of movements given evidence that survival during the post-

fledging period remains the same across early and late broods. Furthermore, future research 

needs to definitively determine the reason for these types of movements. Our study also 

highlights the value of using automated radio telemetry to expand the spatial scale of post-

fledging research. Previous research on the post-fledging ecology of migratory songbirds 

have been extremely limited to when juveniles remain close to their natal colony. We suggest 
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that future studies using Motus will be invaluable for understanding the ecology of songbirds 

during critical periods of mobility that were once extremely difficult to investigate.  
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TABLES 

Table 3-1. Model selection results showing stepwise deletion of non-significant terms to 

determine the best general additive mixed effect model explaining cumulative daily distance 

moved in 2016 and 2017. Smoothed terms are represented in brackets with an ‘s.’ P-value 

refers to the significance of the deleted term. 

2016 
Model df AICc ∆AICc p-value 

Cumulative Daily Distance Travelled ~ s(Age, by= Brood) + Brood 
+ Condition 

9 9154.286 3.14 - 

Cumulative Daily Distance Travelled ~ s(Age, by= Brood) + Brood 8 9151.146 0 0.6239 
2017 

Model df AICc ∆AICc p-value 
Cumulative Daily Distance Travelled ~ s(Age, by= Brood) + Brood 
+ Condition + Sex 

10 14391.73 3.85 - 

Cumulative Daily Distance Travelled ~ s(Age, by= Brood) + Brood 
+ Sex 

9 14389.71 1.83 0.943 

Cumulative Daily Distance Travelled ~ s(Age, by= Brood) + Brood 8 14387.88 0 0.6541 
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Table 3-2. Summary of the generalized additive mixed model predicting cumulative daily 

distance moved of juvenile Barn Swallows during the post-fledging period in southern 

Ontario for 2016 and 2017.   

Linear Predictors 
Variable Estimate Standard Error t-value p-value 
Intercept 16.698 1.737 9.611 < 0.0001 

Brood Two 17.863 5.705 3.131 0.0018 
2017 3.087 2.588 1.193 0.23305 

Smoothed Terms 
Variable edf Ref.df F-value p-value 

Brood One 3.954 3.954 85.03 < 0.0001 
Brood Two 4.599 4.599 70.06 < 0.0001 
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Table 3-3. Model selection results showing stepwise deletion of non-significant terms to 

determine the best linear mixed effect model explaining cumulative distance moved in 2016 

and 2017. 

2016 
Model df AICc ∆AICc p-value 

Cumulative Distance Traveled ~ Brood + Migrated + Condition 6 952.412 2.28 - 
Cumulative Distance Traveled ~ Brood + Migrated  5 950.124 0 0.720 

2017 
Model df AICc ∆AICc p-value 
Cumulative Distance Traveled ~ Brood + Migrated + Condition + 

 

7 1156.878 2.52 - 
Cumulative Distance Traveled ~ Brood + Migrated + Condition  6 1155.442 1.08 0.3278 
Cumulative Distance Traveled ~ Brood + Migrated  5 1154.362 0 0.2636 
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Table 3-4. Summary of the linear mixed model predicting cumulative distance traveled of 

juvenile Barn Swallows during the post-fledging period in southern Ontario for 2016 and 

2017.    

Variable Estimate Standard Error t-value p-value 
Intercept 312.138 39.447 7.913 < 0.0001 

Brood Two -202.490 45.821 -4.419 < 0.0001 
Migrated Individuals 253.980 45.800 5.546 < 0.0001 

2017 -3.546 45.687 -0.078 0.938 
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FIGURES 

 

Figure 3-1. Box plots of the age of juvenile Barn Swallows at migratory departure across 

first and second broods in southern Ontario, Canada. 
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Figure 3-2. Predicted cumulative daily movement of first (solid line) and second (dashed 

line) brooded Barn Swallows as they age during the post-fledging period in southern Ontario, 

Canada. 
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Figure 3-3. Box plots of cumulative distance travel during the post-fledging period of (a) all 

and (b) migrating juvenile Barn Swallows from first and second broods in southern Ontario, 

Canada. 
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Chapter 4 

General Discussion 
 

The post-fledging period is a critical life-history stage for juvenile migratory songbirds (Cox 

et al. 2014; Naef-Daenzer and Grüebler 2016). Existing research suggests that this period is 

perhaps the most important in terms of regulating population growth because of the high 

amount of juvenile mortality that occurs (Rush and Stutchbury 2008; Ausprey and Rodewald 

2011; Vitz and Rodewald 2011). Furthermore, limited evidence to date also suggests that this 

period can be a time of great juvenile mobility (Morton 1991; Mitchell et al. 2010; Brown 

and Taylor 2015). Unfortunately, our knowledge of this life-history stage is largely 

incomplete due to the challenges of tracking individuals at large spatial scales (Anders et al. 

1997; Rush and Stutchbury 2008). This means that previous research is missing survival 

estimates when juvenile songbirds are making potentially costly post-fledging movements. 

The goal of this thesis was to use a regional scale automated radio telemetry array (The 

Motus Wildlife Tracking System) to overcome previous spatial and temporal tracking 

limitations and, for the first time, provide insight into the post-fledging survival and 

movements of a juvenile songbird from fledging up until departure for fall migration. 

Specifically, I looked at how intrinsic factors such as brood, age, body condition, and sex can 

affect post-fledging survival and movement. 

KEY FINDINGS 

 (a) Post-fledging survival and movements between broods 

Later fledging broods (i.e. second broods) are much more time constrained on the breeding 

grounds and have less time to prepare for migration at a time when resources are potentially 
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depleted or diminishing (Grüebler and Naef-Daenzer 2010; Raja-Aho et al. 2017). My results 

show that there are no apparent survival costs during the post-fledging period associated with 

being a juvenile from a second brood that fledge later in the season and migrate 

approximately 21 days younger. Furthermore, I show that although juveniles from second 

broods move less overall, they move considerably more per day compared to first broods. 

Taken together these results suggest that post-fledging movements are an important 

behaviour for juvenile Barn Swallows where birds from second broods attempt to 

compensate for their shorter post-fledging period by increasing their daily movements 

without any apparent survival costs prior to autumn migration. This is contrary to research on 

the post-fledging survival of Barn Swallows in Europe where there is a seasonal decline in 

apparent survival for second broods (Grüebler and Naef-Daenzer 2008a, 2010). However, 

given the spatial scale of these studies and my finding that second brooded juveniles are 

moving more per day, it is possible that the seasonal decline apparent survival of second 

broods is due to emigration rather than mortality. Furthermore, juvenile Barn Swallows from 

second broods have been shown to receive more parental care than individuals from first 

broods (Grüebler and Naef-Daenzer 2008b) and are in better condition after leaving the nest 

(Raja-Aho et al. 2017). Therefore, it is possible that greater parental care provides juveniles 

from later broods with the resources needed to increase their energy expenditure for post-

fledging movements without incurring any additional survival costs. However, this possibly 

comes at a cost during other parts of the annual cycle because juvenile Barn Swallows from 

late broods still have lower rates of recruitment (Raja-Aho et al. 2017).  

 (b) Age effects on post-fledging survival and movement 

For many species, newly fledged young are often flightless and have yet to reach full juvenile 

physical condition (Naef-Daenzer and Grüebler 2016). Therefore, as fledglings age they 
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continue to grow and develop key traits needed for locomotion (i.e. wing length and muscle 

growth; Jones et al. 2018). This makes juveniles extremely vulnerable during the beginning 

of the post-fledging period (Anders et al. 1997; Kershner et al. 2004; Ausprey and Rodewald 

2011; Vitz and Rodewald 2011). Consistent with existing literature, apparent survival of 

juvenile Barn Swallows in this study was the lowest at the beginning of the post-fledging 

period and increased until they were approximately 30 days old. This also corresponded 

closely with cumulative daily movements where juveniles from first and second broods 

remained relatively immobile until about 30 days old. Although I was not able to track the 

termination of parental care in this study, empirical evidence suggests the parental care 

period of Barn Swallows lasts on average 10 days (Grüebler and Naef-Daenzer 2008b). 

Therefore, based on an average fledging age of 19.5 days old from my study population, the 

termination of parental care is expected to occur around 30 days old. Furthermore, the post-

fledging independence period is often associated with juveniles leaving their natal areas and 

traveling widely (Grüebler et al. 2014; Brown and Taylor 2015; Dittmar et al. 2016). Juvenile 

Barn Swallows became highly mobile after reaching an age of 30 days old and daily 

cumulative movements continued to increase throughout the remainder of the post-fledging 

period, until about 45 days of age for second broods. At the same time when juveniles are 

becoming mobile, daily apparent survival decreased until about half way through the 

independence period. This decrease in daily survival could be associated with the costs of 

post-fledging movements such as high energy expenditure (Klaassen et al. 2000), increased 

exposure to predators (Cohen et al. 2012), and increased exposure to potential anthropogenic 

threats, such as collisions with buildings or towers (Machtans et al. 2013; Zimmerling et al. 

2013). Ultimately, my results show the value of studying the post-fledging period in its 

entirety and that behaviour of juvenile Barn Swallows varies with age potentially exposing 
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juveniles to different factors that may influence their survival at different points during the 

post-fledging period.  

(c) The importance of body condition for post-fledging survival and movement 

Poor conditions experienced in the nest can have long lasting consequences that impact 

individual survival and performance throughout the annual cycle (Metcalfe and Monaghan 

2001; Monaghan 2008; Mitchell et al. 2011). In this study I show that body condition in the 

nest is positively related to daily post-fledging apparent survival. However, body condition 

did not appear to influence either cumulative daily movement or cumulative movement. This 

might suggest that large scale post-fledging movements are independent of body condition, 

however, for individuals in worse condition this could come at a cost of lower survival as 

observed here. Individuals in poorer condition maybe less able to deal with adverse 

environmental conditions, may have to forage more and as a result experience greater 

exposure to predators, and possibly have lower immune function (Saino et al. 1997; Vitz and 

Rodewald 2011; Jones et al. 2017). This taken with the added costs of post-fledging 

movements could all be contributing to lower post-fledging survival for individuals in lower 

relative condition. This research adds to the growing literature that suggests that factors in 

the nest carry over to influence subsequent stages of the annual cycle (Naef-Daenzer et al. 

2001; Vitz and Rodewald 2011).  

(d) Sex effects on post-fledging survival and movement 

Despite its importance, sex is often an ignored variable in studies of juvenile ecology due to 

the difficulties of sexing juvenile birds (Maness and Anderson 2013). In this study I found 

that there were no differences in survival and movement between male and female Barn 

Swallows. These results go hand in hand because if males and females had vastly different 
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behaviours during the post-fledging period we might also expect differences in survival. This 

is not to say that there are not different behaviours between sexes, however, these differences 

might not be able to be measured through movement at the scale of this study. Female Barn 

Swallows in Europe have greater natal dispersal than males (Balbontín et al. 2009) and 

therefore, if this behaviour is the same for North American populations we would expect 

females to move more during the post-fledging period if these movements are in part for the 

purpose of prospecting for future breeding sites. The absence of any differences could mean 

that perhaps there are no differences in male and female dispersal in North America, that 

post-fledging movements of juvenile Barn Swallows are not for the purpose of prospecting 

for future breeding sites, and/or that we could not detect any differences in movement 

between males and females at this scale.  

CONSERVATION IMPLICATIONS 

Barn Swallows were recently listed as threatened in Canada and are now protected under the 

Species at Risk Act (SC 2002, c 29). Thus, any research that provides insight into population 

regulation of this species in Canada should be invaluable to their conservation. This research 

shows that the post-fledging period is a critical period for Barn Swallows in Ontario and that 

high mortality (approximately 58%) during this period could be especially limiting to the 

population. Therefore, future conservation initiatives should focus on improving survival 

prospects of juveniles during this period. My research also suggests that factors in the nest 

that influence body condition could have important implications on the survival of juveniles 

during the post-fledging period. This means that future management plans could also focus 

on factors that influence body condition in the nest to improve overall survival prospects of 

juveniles during this critical life stage (Cox et al. 2014). Outside of species specific 

conservation implications, these results also show how invaluable Motus could be for 
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determining the survival of other threatened or at-risk species in Canada. In addition, Motus 

is not limited to just tracking birds, but other small flying species such as bats and insects 

(Taylor et al. 2017).  

STUDY ASSUMPTIONS AND LIMITATIONS 

The use of automated radio telemetry comes with some limitations. In the context of 

post-fledging survival, determining the timing of mortality is difficult during the parental 

care stage. Juveniles are often largely immobile during the parental care period and are often 

not detected until they become more mobile such as during independence. Although I 

purposely arranged receiving towers in such a way to optimize detection, an ideal situation 

would be to have a receiving tower at each natal site and full spatial coverage. Another 

limitation of using automated radio telemetry is that mortality can often be confounded with 

tag loss or tag death. As a part of another ongoing project, I observed no tag loss prior to 

radio death from radio tagged adult Barn Swallows that were recaptured on a weekly basis 

for a duration of three months in 2017 (Appendix A). I used the same methods for attaching 

transmitters to juveniles and adults, therefore I believe tag loss would be extremely low for 

juveniles as well. In terms of radio death, radio tags I used had a rated battery life of 

approximately 58 days which is close to the duration of tracking in my study (56 days). It is 

possible some tags died prematurely, however, daily apparent survival reached 100% by the 

end of tracking in both years and this is when I would expect tags to start dying early. 

Furthermore, as with any radio telemetry study, there is the chance that radio tagged 

individuals may incur lower survival. However, my radio tags only weighed 0.43g which is 

lighter than the radio tags used by (Naef-Daenzer and Grüebler 2014) which found no 

adverse effects of their radio tags on juvenile Barn Swallows in Europe. Lastly, mortality is 

often confounded with emigration which results in negatively biased apparent survival 
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estimates (Lebreton et al. 1992). Here I accounted for a large portion of emigration by taking 

into account migratory individuals. It is possible that some individuals made it out of Ontario 

without getting detected but with the high number of towers within the Motus array in 

southern Ontario (>80 towers) I believe this would be rare.  

In the context of post-fledging movements, the use of automated telemetry is also 

limited in some ways. Locational accuracy is a limitation as radio tagged birds can be 

detected at a distance up to 15 km away (Taylor et al. 2017). This means that the exact 

location of an individual cannot be ascertained with automated radio telemetry at this point in 

time. Therefore, calculating daily cumulative movements and total cumulative movement is 

just as estimate or index for how much juvenile Barn Swallows are moving. Furthermore, 

based on this scale of detection, fine scale movements such as foraging are likely not 

detected and thus estimated movements represent a minimum amount of movement or are 

better characterized as cumulative amount of landscape level movements. Lastly, based on 

the unequal density and spatial extent of the Motus array there are areas in southern Ontario 

in which juveniles would be less likely to be detected and this could reduce the amount of 

estimated movement, however, there is no reason to expect that birds with different life-

history characteristics (e.g., sex, brood, etc.) are more or less likely to move to these areas in 

the array. 

FUTURE DIRECTIONS 

There are numerous directions future research should consider in order to get a full picture of 

Barn Swallow post-fledging survival. Firstly, understanding the major causes of mortality for 

juveniles during the post-fledging period would be an important next step and provide 

valuable information for Barn Swallow conservation. Additionally, identifying key habitat 
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used by juveniles throughout the post-fledging period would be another valuable next step. 

Many studies to date have looked at habitat associations of songbirds at the beginning of the 

post-fledging period (Anders et al. 1998; Berkeley et al. 2007; Ausprey and Rodewald 2011), 

however, there is little to no information on habitat use after juveniles become independent 

and travel widely. Lastly, other parts of the annual cycle need to be investigated to 

successfully pinpoint the timing of population limitation in Barn Swallows. Although the 

high mortality of juveniles observed in this study provides evidence that the post-fledging 

period is likely the most important bottleneck, without estimates from the other parts of the 

annual cycle one cannot say for certain.  

CONCLUSIONS 

In conclusion, this research represents an important advance in the understanding of the post-

fledging ecology of migratory songbirds. A key post-fledging review by Cox et al. (2014) 

argues that only the first three weeks of the post-fledging period should be examined for 

species management, however, my results might suggest otherwise. Approximately one third 

to one half of the estimated post-fledging mortality of juvenile Barn Swallows observed in 

our study occurred outside of this three-week window suggesting the post-fledging 

independence period is also important in terms of survival. This is also when all of the post-

fledging movements occur as juveniles are rather immobile during the parental car stage. 

Taken together, I believe the entire post-fledging period should be investigated when 

logistically possible. Ultimately, this research shows the value of automated radio telemetry 

and hopefully it will prove invaluable for future investigations of not only post-fledging 

survival, but other life-history stages across other bird species and taxa. 
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Appendices 
 

APPENDIX A: TAG RETENTION IN ADULT BARN SWALLOWS 

As a part of another study on the same population of Barn Swallows we radio tagged 37 

adults at four different colonies prior to the breeding season. To determine if tags are lost 

prior to expected batter failure (~58 days) we made repeated visits throughout the breeding 

season in attempt to recapture tagged individuals and determine the length of tag retention. 

All individuals were banded using eight digit aluminum bands so if a tag was lost we could 

still identify individuals. Out of these 37 adults 20 were recaptured at least once again (Table 

A1). The average minimum tag retention was 63.25±4.70(SE) days which is higher than the 

expected battery length. Only one tag (319) was recorded to be lost, however, this was after 

being retained 78 days. 

Table A1. Tag retention results for each radio tagged adult Barn Swallow (tag) showing the 

minimum number of days a radio tag was retained, the number of times a bird was re-caught, 

and if a tag was ever recorded to be lost.  

Tag Minimum Tag 
  

Times Re-caught Tag Lost 
282 0 0 N 
283 34 2 N 
284 0 0 N 
285 72 2 N 
286 72 2 N 
287 0 0 N 
288 0 0 N 
289 0 0 N 
290 27 1 N 
291 0 0 N 
292 0 0 N 
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293 0 0 N 
294 64 4 N 
295 0 0 N 
296 0 0 N 
297 78 6 N 
298 0 0 N 
299 0 0 N 
300 0 0 N 
302 78 4 N 
303 71 2 N 
305 83 2 N 
306 110 3 N 
307 0 0 N 
309 56 2 N 
311 71 1 N 
312 48 1 N 
313 33 2 N 
314 0 0 N 
315 0 0 N 
317 64 1 N 
318 56 1 N 
319 78 1 Y 
321 28 3 N 
322 0 0 N 
323 78 3 N 
324 64 5 N 
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APPENDIX B: PREDICTING THE AGE OF NORFOLK COUNTY NESTLINGS 

To estimate the age of nestlings banded in Norfolk County in 2016 we used a regression of 

the known ages and wing lengths (Age ~ Wing Length) from nestlings banding in Wellington 

county in 2016 to predict the age of Norfolk County birds. The results of this regression are 

provided here (R2 = 0.2529; Table B1 and figure B1).  

Table B1. Linear model results from the linear model of Age ~ Wing Length used to predict 

the age of Norfolk County nestlings in 2016. 

coefficient estimate standard error t-value p-value 
Intercept 10.736 0.331 32.44 < 2x10-16 

Wing 0.056 0.004 12.66 < 2x10-16 

 

Figure B1. Relationship between nestling age and wing length used to predict the age of 

Norfolk County birds.  
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APPENDIX C: CREATING ENCOUNTER HISTORIES FROM MOTUS DATA 

An encounter history is a record of whether an individual was ‘captured’ or not during a 

given sampling period and in more complex cases such as ours what state that individual was 

captured in. We used two states for our analysis: a local state ‘L’ for individuals encountered 

within the Motus array and a migratory state ‘M’ for individuals encountered at the southern 

edge of the array and assumed to subsequently migrate out of the Motus array. When an 

individual was not captured it is recorded as a ‘0.’ Our sampling design for a robust design 

multistate model consisted of daily primary periods, in which apparent survival and 

migration probability was estimated, and six secondary periods within each primary period, 

in which recapture probability was estimated. We constrained our study length to 56 d which 

equates to a total 336 total secondary sampling periods per individual. Encounter histories 

were done on a per bird and per day basis by visualizing daily Motus data (figure C1). All 

data was stored within an excel document which could then be analyzed and manipulated in 

R for analysis with RMark. 
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Figure C1. Visualization and creation of encounter history from Motus data. This 

visualization represents a single day (July 20, 2016) for a single bird (Tag 111) where it was 

encountered in the third and fourth secondary periods. Colors represent which antenna the 

bird was detected on for that given tower. 
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APPENDIX D: MODEL SELECTION TABLE RESULTS 

Table D1. Summary of model selection results for recapture probability of juvenile post-

fledging Barn Swallows in southern Ontario in 2016. Model covariates include five different 

relationships with age: a linear trend (A), a second order polynomial trend (A + A2), a third 

order polynomial trend (A + A2 + A3), a weekly age class trend (A1), and a weekly age class 

trend for the first two weeks and the last four weeks together (A2). Each age relationship was 

examined on its own and with the additive effect of Brood. Migration probability and 

apparent survival were held constant across all models. Every model also included Time and 

Location allowing recapture to vary across secondary periods and across the two different 

study areas with different tower densities. 

Model ∆AICc AICc k wi deviance 
Φ(.) ψ(.) p(A+A2+A3+Time+Location+Brood) 0.00 19487.64 13 1.00 19461.55 

Φ(.) ψ(.) p(A1+Time+Location+Brood) 29.69 19517.32 17 0.00 19483.18 
Φ(.) ψ(.) p(A2+Time+Location+Brood) 37.88 19525.52 12 0.00 19501.44 
Φ(.) ψ(.) p(A+A2+A3+Time+Location) 55.15 19542.79 12 0.00 19518.71 

Φ(.) ψ(.) p(A1+Time+Location) 88.13 19575.77 16 0.00 19543.64 
Φ(.) ψ(.) p(A+A2+Time+Location+Brood) 104.19 19591.83 12 0.00 19567.75 

Φ(.) ψ(.) p(A2+Time+Location) 105.96 19593.60 11 0.00 19571.54 
Φ(.) ψ(.) p(A+A2+Time+Location) 166.70 19654.34 11 0.00 19632.27 

Φ(.) ψ(.) p(A+Time+Location+Brood) 213.39 19701.02 11 0.00 19678.96 
Φ(.) ψ(.) p(A+Time+Location) 297.00 19784.64 10 0.00 19764.58 

 

 

 

 

 

 



97 
 

 

 

 

Table D2. Summary of model selection results for recapture probability of juvenile post-

fledging Barn Swallows in southern Ontario in 2017. Model covariates include five different 

relationships with age: a linear trend (A), a second order polynomial trend (A + A2), a third 

order polynomial trend (A + A2 + A3), a weekly age class trend (A1), and a weekly age class 

trend for the first two weeks and the last four weeks together (A2). Each age relationship was 

examined on its own and with the additive effect of covariates brood and sex, individually 

and together. Migration probability and apparent survival were held constant across all 

models. 

Model ∆AICc AICc k wi deviance 
Φ(.) ψ(.) p(A1+Time+Brood+Sex) 0.00 17325.22 17 1.00 17291.08 

Φ(.) ψ(.) p(A1+Time+Sex) 25.86 17351.08 16 0.00 17318.95 
Φ(.) ψ(.) p(A+A2+A3+Time+Brood+Sex) 34.92 17360.14 13 0.00 17334.06 

Φ(.) ψ(.) p(A+A2+A3+Time+Sex) 61.49 17386.71 12 0.00 17362.64 
Φ(.) ψ(.) p(A1+Time+Brood) 71.19 17396.41 16 0.00 17364.28 

Φ(.) ψ(.) p(A1+Time) 99.88 17425.11 15 0.00 17394.99 
Φ(.) ψ(.) p(A+A2+A3+Time + Brood) 105.11 17430.34 12 0.00 17406.26 

Φ(.) ψ(.) p(A+A2+A3+Time) 134.93 17460.15 11 0.00 17438.09 
Φ(.) ψ(.) p(A2+Time+Sex) 223.56 17548.78 11 0.00 17526.72 

Φ(.) ψ(.) p(A2+Time+Brood+Sex) 224.54 17549.77 12 0.00 17525.69 
Φ(.) ψ(.) p(A2+Time+Brood) 287.21 17612.43 11 0.00 17590.37 

Φ(.) ψ(.) p(A2+Time) 287.30 17612.52 10 0.00 17592.47 
Φ(.) ψ(.) p(A+A2+Time+Brood+Sex) 289.21 17614.43 12 0.00 17590.36 

Φ(.) ψ(.) p(A+A2+Time+Sex) 297.64 17622.86 11 0.00 17600.80 
Φ(.) ψ(.) p(A+A2+Time+Brood) 356.57 17681.79 11 0.00 17659.73 

Φ(.) ψ(.) p(A+A2+Time) 366.88 17692.10 10 0.00 17672.05 
Φ(.) ψ(.) p(A+Time +Brood+Sex) 391.04 17716.26 11 0.00 17694.20 

Φ(.) ψ(.) p(A+Time+Sex) 395.50 17720.72 10 0.00 17700.67 
Φ(.) ψ(.) p(A+Time+Brood) 450.16 17775.39 10 0.00 17755.33 

Φ(.) ψ(.) p(A+Time) 456.03 17781.25 9 0.00 17763.21 
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Table D3. Summary of model selection results for migration probability of juvenile post-

fledging Barn Swallows in southern Ontario in 2016. Model covariates include five different 

relationships with age: a linear trend (A), a second order polynomial trend (A + A2), a third 

order polynomial trend (A + A2 + A3), a weekly age class trend (A1), and a weekly age class 

trend for the first two weeks and the last four weeks together (A2). Each age relationship was 

examined on its own and with the additive effect of brood. Apparent survival was held 

constant across all models. 

Model ∆AICc AICc k wi deviance 
Φ(.) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 0.00 19347.60 16 0.36 19315.47 

Φ(.) ψ(A+Brood) p(A+A2+A3+Time+Location+Brood) 0.14 19347.73 15 0.34 19317.62 
Φ(.) ψ(A+A2+A3+Brood) p(A+A2+A3+Time+Location+Brood) 0.40 19348.00 17 0.30 19313.85 

Φ(.) ψ(A1+Brood) p(A+A2+A3+Time+Location+Brood) 16.94 19364.54 21 0.00 19322.32 
Φ(.) ψ(A+A2+A3) p(A+A2+A3+Time+Location+Brood) 50.74 19398.34 16 0.00 19366.21 

Φ(.) ψ(A+A2) p(A+A2+A3+Time+Location+Brood) 59.03 19406.62 15 0.00 19376.51 
Φ(.) ψ(A) p(A+A2+A3+Time+Location+Brood) 59.23 19406.83 14 0.00 19378.73 
Φ(.) ψ(A1) p(A+A2+A3+Time+Location+Brood) 66.00 19413.59 20 0.00 19373.40 

Φ(.) ψ(A2+Brood) p(A+A2+A3+Time+Location+Brood) 110.46 19458.05 16 0.00 19425.92 
Φ(.) ψ(A2) p(A+A2+A3+Time+Location+Brood) 117.16 19464.75 15 0.00 19434.64 

 

 

 

 

 

 

 

 

 

 

 

 



99 
 

Table D4. Summary of model selection results for migration probability of juvenile post-

fledging Barn Swallows in southern Ontario in 2017. Model covariates include five different 

relationships with age: a linear trend (A), a second order polynomial trend (A + A2), a third 

order polynomial trend (A + A2 + A3), a weekly age class trend (A1), and a weekly age class 

trend for the first two weeks and the last four weeks together (A2). Each age relationship was 

examined on its own and with the additive effect of brood. Apparent survival was held 

constant across all models. 

Model ∆AICc AICc k wi deviance 
Φ(.) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 0.00 17198.25 20 0.34 17158.05 

Φ(.) ψ(A+A2+A3+Brood) p(A1+Time+Brood+Sex) 0.76 17199.01 21 0.23 17156.79 
Φ(.) ψ(A+Brood) p(A1+Time+Brood+Sex) 1.73 17199.98 19 0.14 17161.79 

Φ(.) ψ(A+A2+Brood+Sex) p(A1+Time+Brood+Sex) 1.85 17200.10 21 0.13 17157.88 
Φ(.) ψ(A+A2+A3+Brood+Sex) p(A1+Time+Brood+Sex) 2.61 17200.86 22 0.09 17156.62 

Φ(.) ψ(A+Brood+Sex) p(A1+Time+Brood+Sex) 3.50 17201.75 20 0.06 17161.55 
Φ(.) ψ(A1+Brood) p(A1+Time+Brood+Sex) 20.31 17218.56 25 0.00 17168.25 

Φ(.) ψ(A1+Brood+Sex) p(A1+Time+Brood+Sex) 22.20 17220.45 26 0.00 17168.11 
Φ(.) ψ(A2+Brood) p(A1+Time+Brood+Sex) 68.81 17267.06 20 0.00 17226.85 

Φ(.) ψ(A2+Brood+Sex) p(A1+Time+Brood+Sex) 70.82 17269.07 21 0.00 17226.84 
Φ(.) ψ(A+A2+A3) p(A1+Time+Brood+Sex) 75.08 17273.33 20 0.00 17233.13 

Φ(.) ψ(A+A2+A3 +Sex) p(A1+Time+Brood+Sex) 76.07 17274.32 21 0.00 17232.10 
Φ(.) ψ(A1) p(A1+Time+Brood+Sex) 83.43 17281.68 24 0.00 17233.39 

Φ(.) ψ(A1+Sex) p(A1+Time+Brood+Sex) 84.58 17282.83 25 0.00 17232.51 
Φ(.) ψ(A2) p(A1+Time+Brood+Sex) 96.53 17294.78 19 0.00 17256.60 

Φ(.) ψ(A2+Sex) p(A1+Time+Brood+Sex) 97.78 17296.03 19 0.00 17257.85 
Φ(.) ψ(A+A2) p(A1+Time+Brood+Sex) 98.17 17296.42 20 0.00 17256.21 

Φ(.) ψ(A+A2 +Sex) p(A1+Time+Brood+Sex) 99.06 17297.31 20 0.00 17257.11 
Φ(.) ψ(A) p(A1+Time+Brood+Sex) 102.12 17300.37 18 0.00 17264.20 

Φ(.) ψ(A+Sex) p(A1+Time+Brood+Sex) 103.26 17301.51 19 0.00 17263.33 
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Table D5. Summary of model selection results for apparent survival of juvenile post-

fledging Barn Swallows in southern Ontario in 2016. Model covariates include five different 

relationships with age: a linear trend (A), a second order polynomial trend (A + A2), a third 

order polynomial trend (A + A2 + A3), a weekly age class trend (A1), and a weekly age class 

trend for the first two weeks and the last four weeks together (A2). Each age relationship was 

examined on its own and with the additive effect of covariates brood and condition. 

Model ∆AICc AICc k wi deviance 
Φ(A+A2+A3+Condition) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 0.00 19333.37 20 0.56 19293.17 

Φ(A+A2+A3+Condition+Brood) ψ(A+A2+Brood) 

p(A+A2+A3+Time+Location+Brood) 1.62 19335.00 21 0.25 19292.78 
Φ(A+A2+A3) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 3.80 19337.17 19 0.08 19298.99 

Φ(A+A2+A3+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 5.26 19338.63 20 0.04 19298.43 
Φ(A+A2+Condition) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 6.94 19340.32 19 0.02 19302.14 

Φ(A+Condition) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 7.45 19340.82 18 0.01 19304.66 
Φ(A2+Condition) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 7.51 19340.88 20 0.01 19300.68 

Φ(A+A2+Condition+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 8.68 19342.05 20 0.01 19301.85 
Φ(A2+Condition+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 9.21 19342.59 21 0.01 19300.37 

Φ(A1+Condition) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 10.17 19343.54 25 0.00 19293.23 
Φ(A+A2) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 10.75 19344.12 18 0.00 19307.96 

Φ(A) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 11.03 19344.40 17 0.00 19310.26 
Φ(A+Condition+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 11.27 19344.64 20 0.00 19304.44 

Φ(A2) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 11.40 19344.77 19 0.00 19306.60 
Φ(A1+Condition+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 11.73 19345.10 26 0.00 19292.77 

Φ(A+A2 +Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 12.39 19345.76 19 0.00 19307.58 
Φ(A+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 12.76 19346.13 18 0.00 19309.97 
Φ(A2+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 12.97 19346.34 20 0.00 19306.14 

Φ(A1) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 13.65 19347.03 24 0.00 19298.74 
Φ(A1+Brood) ψ(A+A2+Brood) p(A+A2+A3+Time+Location+Brood) 15.08 19348.45 25 0.00 19298.14 
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Table D6. Summary of model selection results for apparent survival of juvenile post-

fledging Barn Swallows in southern Ontario in 2017. Model covariates include five different 

relationships with age: a linear trend (A), a second order polynomial trend (A + A2), a third 

order polynomial trend (A + A2 + A3), a weekly age class trend (A1), and a weekly age class 

trend for the first two weeks and the last four weeks together (A2). Each age relationship was 

examined on its own and with the additive effect of covariates brood, sex, and condition. 

Model ∆AICc AICc k wi deviance 

Φ(A+A2+A3+Condition) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 0.00 17178.86 24 0.39 17130.57 

Φ(A+A2+A3+Condition+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 1.76 17180.62 25 0.16 17130.31 

Φ(A+A2+A3+Condition+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 1.96 17180.83 25 0.15 17130.51 

Φ(A+A2+A3+Condition+Brood+Sex) ψ(A+A2+Brood) 
p(A1+Time+Brood+Sex) 3.73 17182.59 26 0.06 17130.25 

Φ(A+A2+Condition) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 4.49 17183.35 23 0.04 17137.08 

Φ(A+A2+A3) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 4.66 17183.52 23 0.04 17137.26 
Φ(A2+Condition) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 5.65 17184.51 24 0.02 17136.22 
Φ(A+Condition) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 5.92 17184.78 22 0.02 17140.54 

Φ(A+A2+Condition+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 6.12 17184.99 24 0.02 17136.70 

Φ(A+A2+Condition+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 6.51 17185.37 24 0.01 17137.08 

Φ(A+A2+A3+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 6.51 17185.38 24 0.01 17137.09 

Φ(A+A2+A3+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 6.53 17185.39 24 0.01 17137.10 
Φ(A2+Condition+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 7.33 17186.19 25 0.01 17135.88 

Φ(A2+Condition+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 7.50 17186.36 25 0.01 17136.04 

Φ(A+A2+Condition+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 8.15 17187.01 25 0.01 17136.69 

Φ(A+A2+A3+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 8.37 17187.24 25 0.01 17136.92 
Φ(A2+Condition+Brood+Sex ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 9.17 17188.03 26 0.00 17135.70 

Φ(A+A2) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 9.35 17188.21 22 0.00 17143.97 
Φ(A+Condition+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 9.41 17188.28 24 0.00 17139.99 

Φ(A+Condition+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 9.42 17188.28 24 0.00 17139.99 
Φ(A+Condition+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 9.96 17188.82 24 0.00 17140.53 

Φ(A2) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 10.56 17189.42 23 0.00 17143.15 

Φ(A+A2+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 11.07 17189.93 23 0.00 17143.66 
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Φ(A+A2+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 11.19 17190.05 23 0.00 17143.79 
Φ(A) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 11.21 17190.07 21 0.00 17147.85 

Φ(A1+Condition) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 11.54 17190.41 29 0.00 17131.99 
Φ(A2+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 12.41 17191.27 24 0.00 17142.98 

Φ(A2+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 12.54 17191.41 24 0.00 17143.12 
Φ(A+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 12.77 17191.64 22 0.00 17147.39 

Φ(A+A2+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 12.90 17191.76 24 0.00 17143.47 
Φ(A+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 12.93 17191.79 22 0.00 17147.55 

Φ(A1+Condition+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 13.34 17192.20 30 0.00 17131.76 
Φ(A1+Condition+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 13.48 17192.35 30 0.00 17131.90 

Φ(A2+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 14.40 17193.26 25 0.00 17142.95 
Φ(A+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 14.48 17193.35 23 0.00 17147.08 

Φ(A1+Condition+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 15.28 17194.14 31 0.00 17131.66 
Φ(A1) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 16.66 17195.52 28 0.00 17139.13 

Φ(A1+Brood) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 18.57 17197.44 29 0.00 17139.02 
Φ(A1+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 18.60 17197.46 29 0.00 17139.04 

Φ(A1+Brood+Sex) ψ(A+A2+Brood) p(A1+Time+Brood+Sex) 20.51 17199.37 30 0.00 17138.92 
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Table D7. Results from the top Huggins closed robust design multi-state model for 2016 and 

2017 post-fledging juvenile Barn Swallows for survival (Φ), migration (Ψ), and recapture 

probabilities (p). Beta estimates (β), standard error (SE), and 95% confidence intervals (95% 

CI) are on the logit scale. 

 2016 2017 
parameter β SE 95% CI β SE 95% CI 

Φ Intercept 2.6432 0.3048 2.0457, 3.2407 2.2272 0.3685 1.5049, 2.9495 
Φ Age 0.3035 0.0867 0.1336, 0.4734 0.3989 0.1102 0.1829, 0.6149 
Φ Age2 -0.0152 0.0053 -0.0255, -0.0049 -0.0222 0.0075 -0.0370, -0.0074 
Φ Age3 0.0002 0.0001 0.0000, 0.0004 0.0004 0.0001 0.0001, 0.0006 
Φ Condition 0.2115 0.0865 0.0419, 0.3810 0.2501 0.0941 0.0657, 0.4344 
Ψ Intercept 15.4577 2.7323 10.102, 20.813 16.0817 1.9263 12.306, 19.857 
Ψ Age -0.3876 0.1379 -0.6579, -0.1173 -0.4007 0.0990 -0.5947, -0.2067 
Ψ Age2 0.0023 0.0018 -0.0012, 0.0058 0.0025 0.0014 -0.0003, 0.0053 
Ψ Brood Two -3.8076 0.5631 -4.9112, -2.7040 -6.0433 0.8363 -7.6826, -4.4041 
p Intercept -3.5518 0.1069 -3.7614, -3.3423 -3.0539 0.0952 -3.2405, -2.8672 
p Secondary Period 2 1.6543 0.0813 1.4949, 1.8137 1.8376 0.0826 1.6757, 1.9996 
p Secondary Period 3 1.8166 0.0807 1.6584, 1.9747 1.9916 0.0823 1.8303, 2.1529 
p Secondary Period 4 1.8105 0.0807 1.6523, 1.9686 1.9778 0.0823 1.8165, 2.1392 
p Secondary Period 5 1.7673 0.0809 1.6088, 1.9258 1.6171 0.0833 1.4538, 1.7804 
p Secondary Period 6 0.3915 0.0926 0.2100, 0.5731 -0.6935 0.1186 -0.9260, -0.4611 
p Brood Two 0.3180 0.0422 0.2353, 0.4007 -0.2494 0.0459 -0.3394, -0.1593 
p Age 0.1756 0.0124 0.1513, 0.1998 - - - 
p Age2 -0.0064 0.0006 -0.0075, -0.0053 - - - 
p Age3 0.0001 0.0000 0.0001, 0.0001 - - - 
p Wellington County -0.7660 0.0378 -0.8400, -0.6919 - - - 
p Age 21-28 - - - 0.6238 0.9016 0.6238, 0.9016 
p Age 28-36 - - - 1.0796 1.3575 1.0796, 1.3575 
p Age 35-42 - - - 0.3899 0.6921 0.3899, 0.6921 
p Age 42-49 - - - 0.0260 0.3850 0.0260, 0.3850 
p Age 49-56 - - - 0.1371 0.5235 0.1371, 0.5235 
p Age 56-63 - - - 0.1616 0.5599 0.1616, 0.5599 
p Age 63-70 - - - 0.3058 0.7701 0.3058, 0.7701 
p Males - - - 0.3472 0.0405 0.2678, 0.4267 
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APPENDIX E: WING LENGTH VS. TARSUS LENGTH FOR CONDITION INDEX IN 2017 

I used mass controlled by structural size from all juveniles ringed and measured at the same 

time as radioed birds to obtain an index of condition (n = 503 in 2016 and n = 420 in 2017). 

In 2017, I added tarsus measurements to my field protocols for radio tagging nestling Barn 

Swallows. To determine the better measure of condition to use for 2017 models, I compared 

two multistate closed robust design models with each condition measure. The condition 

measure obtained by using tarsus had more support then the condition measure obtained by 

wing length (∆AICc = 3.89). Both condition measures were highly correlated (R2 = 0.84; p < 

1.0x10-16; Figure E1). 

 

Figure E1. Correlation between body condition indices using wing length as the structural 

component vs using tarsus as the structural component.  
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APPENDIX F: RECAPTURE PROBABILITY PLOTS  

Figure F1. The relationship between: (a) age and average daily recapture probability in 2016 

(black line) and 2017 (grey bars); and (b) time of day (secondary period) and average 

recapture probability for 2016 (dark grey) and 2017 (light grey). Average daily recapture 

probability represents the daily effective recapture probability (1-(1-p1)*(1-p2)* (1-p3)*(1-

p4)*(1-p5)*(1-p6); where p1-p6 represent the average recapture probability for each secondary 

period). Recapture probability was averaged across groups for each year (e.g brood). 
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APPENDIX G: ANIMAL USE PROTOCOL APPROVAL  
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APPENDIX H: BANDING PERMIT  
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