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Abstract 

Scanning electrochemical microscopy (SECM) scans a biased ultramicroelectrode (≤ 25 µm) 

probe over a sample to characterize topography, physical properties and chemical reactivity. 

In this dissertation, SECM was used to investigate the metal-induced changes in membrane 

response of single live human bladder cancer cells (T24). SECM imaging was coupled to 3D 

finite element method (FEM) simulations which were the first of their kind, providing 

advanced quantification of sample traits under conditions not previously usable.  

The effects of Cd2+ on T24 cell membrane permeability were examined. Experimental depth-

scan imaging was coupled with full 3D FEM simulations, eliminating many limitations of 

previous 2D-axially symmetric models. Hundreds of probe approach curves (PACs) can now 

be extracted from depth-images and theoretically fit to quantify membrane permeability at 

any location across the cell surface (Chapter 2). 

SECM was utilized to examine the membrane response of T24 cells following exposure to 

toxic dichromate (Cr(VI)). Two electrochemical mediators were examined, the membrane 

permeable ferrocenemethanol (FcCH2OH) and impermeable ferrocenecarboxylate (FcCOO-). 

Cr(VI) induced permeability change was observed with both mediators and compared 

(Chapter 3). Chronic Cr(VI) induced cell stress, was then examined. Similar permeability 

curve shape was observed, with shifts in response time based on concentration of Cr(VI) 

stressor (Chapter 4). 

Trace essential metals such as Cr(III) are essential in low concentrations but toxic in high 

concentration. Membrane-response was investigated by SECM, using both FcCH2OH and 

FcCOO- redox mediators. Theoretical SECM depth-scans were produced using 3D FEM 

simulations, and used to quantify cell membrane permeability (Chapter 5). 

Complex close-proximity cell clusters were experimentally imaged by SECM 3D scanning 

mode. Tailored 3D model geometries were created, generating complimentary theoretical 

maps of the experimental cell clusters. The simulations were capable of providing a strong 
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theoretical fit to the experimental results. Limits of cell proximity for SECM characterization 

were determined based on the probe size (Chapter 6). 

Nanoscale SECM imaging of single live cells were performed using a laser-pulled 130 nm 

radius Pt disk electrode. A tailored 3D model was created, from which cell topography was 

accurately characterized using membrane-impermeable Ru(NH3)6
3+, and cell membrane 

permeability was quantified with FcCH2OH (Chapter 7). 
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Chapter 1  

1 Introduction  

Single live cell analysis methods provide information on the characteristics of idividual 

cells, yielding not only bulk population averages but also their heterogeneity. Scanning 

electrochemical microscopy (SECM) offers single live cell analysis through non-

invasive, high-resolution, mapping of electrochemical measurment in or around the cell 

sample of interest. Membrane permeability and rate of membrane species transport can 

be quantified by SECM. Cell response to external stressors can be monitored and 

modelled, and will be explored in greater detail for the metals Cd, Cr(VI) and Cr(III) in 

this thesis. Quantification of many traits of the sample under study are commonly 

performed through the use of Finite Element Method (FEM) simulations. However, 

typical FEM models are over-simplified and restricted to a 2D axially symmetric 

geometry. Advancements in FEM models for SECM analysis to single live cells will be 

discussed in greater detail in this thesis, including 3D modelling, sample mapping, 

complex sample geometries and dual mediator characterization. SECM is also able to 

offer nanoscale mapping and low concentration detection, providing a powerful 

bioanalytical tool for live cell studies. Nanoscale imaging of a single live cell with laser-

pulled electrodes and the subsequent quantification of topography and membrane 

permeability will be explored in this thesis as well. 

1.1  Background of Scanning Electrochemical Microscopy 

Numerous analytical tools have been developed for the analysis of live cells and their 

functions. However, the majority of these focus on analyzing the bulk cell population. 

While allowing for rapid characterization, these techniques are often incapable of 

(A version of this work has been published in Analyst 

Filice, F. P.; Ding, Z. Analysing Single Live Cells by Scanning Electrochemical 

Microscopy, 2018, DOI: 10.1039/C8AN01490F) 
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detecting the heterogeneity of the cells under study and giving chemical reactivity 

information. Single cell techniques facilitate to meet the research demands on an 

individual basis. Among those, scanning electrochemical microscopy (SECM) has shown 

great research interest in recent years. 

In fact, SECM is a powerful non-invasive analytical technique of the scanning probe 

microscopy family.1-3 This technique utilizes a small diameter (≤ 25 µm) electrochemical 

probe to image a region of space with extreme precision. Faradaic current is recorded 

with electrode position to reconstruct detailed maps of topography and sample reactivity. 

SECM utilizes an electrochemically active redox species, either introduced into the 

system or intrinsic to the sample under study. The electrochemical mediator is either 

oxidized or reduced at the electrode tip in a diffusion-controlled process yielding steady 

state current. 

The SECM concept was introduced in 1986 by Engstrom et al.,4 and showed great 

promise as a new electroanalytical technique. Early SECM development and 

experimentation was performed by Bard et al. beginning in 1989, which laid the 

groundwork for its application to a diverse range of research fields.5-6 SECM has since 

been employed in a vast number of applications,7 including but not limited to kinetic 

studies,8-9 surface and interface studies,10-12 and microstructure fabrication.13-14 SECM 

has also found applications as a bioanalytical tool for cellular imaging,15-24  membrane 

transport,16, 25-31 neurotransmitter release,32-33 multidrug resistance studies,17-18 reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) mapping,23, 34-39 and cellular 

redox processes.21, 31, 40-44 

SECM has been employed in combination with other complimentary bioanalytical tools. 

These include as SECM-AFM,45 SECM-NSOM,46-47 SECM-SICM,48 SECM-Raman 

imaging,49 SECM-Fluorescence microscopy,50 SECM-Microfluidic systems,51 and many 

more. SECM is also commonly used in compliment with finite element method (FEM) 

simulations to quantify physical characteristics of the sample under study.52-55 



3 

 

 

The focus of this chapter will be on biological applications of SECM for the study of 

single live cells. Cell-related SECM progresses such as instrumentation, reactive oxygen 

and nitrogen species, membrane transport, heavy metal stress, finite element simulations 

and nanoscale images will be highlighted. For a survey of the general applications of 

SECM, please see the 2016 review “Scanning Electrochemical Microscopy: A 

Comprehensive Review of Experimental Parameters from 1989 to 2015” by the 

Mauzeroll group at McGill University.7 

1.2 SECM Principles 

 

Figure 1.1 – (A) Hemispherical diffusion of a redox mediator Ru(NH3)6
3+ toward a 

UME tip that results in a steady-state CV in bulk solution. (B) Hindered diffusion 

by insulating substrate, when a biased UME approaches an insulator (negative 

feedback). (C) Electrochemical recycling at a conductive substrate, generating a 

positive feedback probe approach curve.  

SECM resolution relies on the precise positioning of UMEs (≤ 25 µm) or even smaller 

nanoelectrode probes. Electrodes of UME size or smaller are capable of providing a 

diffusion limited steady state redox current.3, 56 The resistive  drops in potential are 

negligible as the current is commonly very small (nA to fA range).2, 7 Figure 1.1A shows 

a cyclic voltammogram (CV) of 10 mM Ru(NH3)6
3+ collected with a 320 nm diameter Pt 
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electrode. When a sufficient potential is applied, a 1 electron transfer reaction occurs at 

the electrode tip at a constant rate, dictated by the rate of diffusion in the system. Figure 

1.1B shows a normalized electrode probe approach to an insulating substrate. The 

adjacent insulating substrate hinders the diffusion toward the electrode tip, causing a 

decrease in current (negative feedback). However, if a PAC to a conductive substrate is 

performed (Figure 1.1C), the electrochemical regeneration of the mediating species can 

occur at the conductor surface. This causes recycling of the mediator between the two 

surfaces, which increases with closer proximity causing an increase in current (positive 

feedback).   

1.3 Analytical and Instrumental Methodology 

 

Figure 1.2 - Typical setup for a bio-SECM: The sample is mounted on a stage below 

the ultramicroelectrode probe. The UME tip to sample position is controlled by an 

XYZ positioning system. The electrochemical cell can consist of a 2 or 3 electrode 

system (WE, CE/RE or WE, CE, RE respectively). An inverted objective microscope 

is often used for electrode positioning and optical imaging. Data output from the 

potentiostat, positioning system, and camera are logged simultaneously by a 

computer. 
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A typical SECM is composed of a low current electrochemical potentiostat, a high-

resolution positioning system, and a small diameter SECM probe (Figure 1.2). SECMs 

now often include an optical imaging system to aid in cell and electrode positioning and 

relocation.19 The electrochemical system is normally a low current potentiostat. Current 

response is dependant on probe size and the concentration of species being monitored. As 

a result, the requirements for the selected potentiostat can range from low nanoamps 

(nA), down to femtoamps (fA). Lower current systems are also susceptible to electrical 

noise from external sources. It is important to consider instrument grounding and 

isolation, instrument shielding (faraday cage), the quality of shielded analog cabling, and 

physical isolation for vibration. 

Accurate movement of the electrode tip relative to the cell is essential. These positioning 

systems are commonly piezoelectric positioners, or high accuracy stepper motors. Many 

early designs of SECM positioning systems utilized open loop positioning systems, 

which rely on logging the number of steps and a known step size to determine electrode 

position. These systems, while incredibly accurate, are susceptible to minor drift in 

electrode position dependant on the tolerance specification for each step. Over the course 

of long duration scans, the accumulation of drift from each individual step can cause 

significant deviation. Closed loop positioning systems are now utilized as common 

practice, providing a solution to this problem, by using active monitoring of the 

positioning.34, 57 This active sensing of position is coupled to a feedback loop, where 

compensation for probe drift is applied. 

The SECM probe is arguably the most important part of the instrument. SECM resolution 

is directly dependant on the size of the electrochemical probe. Various methods of SECM 

electrode fabrication have been developed including encasing a metal or other conductor 

in glass,58 laser pulling both metal and glass,59-60 chemical vapor deposition (CVD), 

pyrolytic carbon deporition,61 and many more specialized electrodes.54, 62 Electrodes can 

also be modified in a molecule-specific coating to create specialized sensors.63  

A close relative to the SECM imaging method, is the Scanning Ion Conductance 

Microscope (SICM).64 SICM imaging utilizes an electrolyte filled nanopipette in place of 
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an SECM disk electrode. Where the resolution of an SECM comes from the critical 

radius of the UME disk, SICM yields a similar result through the radius of the 

nanopipette tip. SICM probes are often gravity-pulled or laser-pulled from glass 

capillaries and filled with electrolyte when performing the experiment. 

1.4 SECM Scanning Methods 

 

Figure 1.3 - (A) Horizontal 1D scanning methods for SECM imaging of a sample (B) 

1D electrode tip movement in z direction to yield probe approach curve (C) 

Common 2D scanning methods across a cell (D) Full 3D scanning method over a cell 

Various imaging modes for SECM probe movement exist. Simple 1D line scans such as 

the constant height scan in Figure 1.3A fix the height of the electrode and scan 

horizontally across the sample. Constant distance imaging, however, moves the probe up 

and down as it passes over the substrate, in an attempt to keep the tip-to-cell distance 

constant.23, 65 Various methods have been used to control SECM tip-to-cell distance 

including SECM-AFM systems,45, 66 shear force,67-68 impedance,23, 65 faradaic current,69 

and ion current.48, 70 Each of these methods provides its own advantages and 

disadvantages. Both the constant height and the many forms of constant distance scans 

provide excellent information of topography and variation in surface reactivity. Another 

simple 1D scan is the probe approach curve (PAC, Figure 1.3B), where the electrode is 

moved linearly toward the substrate providing detailed information about a specific point 

on the sample. PACs provide excellent tip-to-substrate information, and more detailed 
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reactivity information at a specific location. As a result, PACs are more commonly 

employed for the detection of membrane permeability, or surface emission/consumption 

of species. 

2D scanning modes such as depth scanning37 and surface mapping have the advantage of 

providing information on a much larger region over the cell (Figure 1.3C). They are 

commonly composed of hundreds of constant height, constant distance, or PACs at fixed 

distances from each-other. Depth scan mode operates in the x-z or y-z plane over a 

sample, where surface maps are generally taken as a x-y map over the cell. A full 3D map 

over a cell provides information on a volume of space, which is composed of numerous 

surface maps and depth scans with a fixed spacing (Figure 1.3D). This provides a 

significant amount of data, and the ability to extract any needed scan in post processing. 

This scanning method does, however, come at the expense of long experiment run times.  

SECM hopping mode can be performed as a 2D or 3D imaging method.71  When scanned 

in 2D, the electrode is moved in a similar plane to depth scanning mode. However, the 

order in which the two axes are scanned changes. Depth scanning performs a single 

horizontal line scan above the sample (x or y axis) before moving the electrode one step 

down (z axis) and repeating the line scan. In hopping mode, a single PAC is performed (z 

axis) to the sample until a predefined feedback is detected at the probe tip. The electrode 

is then repositioned horizontally (x or y axis) before the PAC scan is repeated. Similarly, 

when performed as a 3D scan, a 2D array of PACs is performed over a sample, imaging a 

volume of space over the sample surface. 

In 2010, the Schuhmann group reported the 4D shearforce-based constant distance 

mode.67 Using 4D shearforce, multiple constant distance surface images are obtained 

above the sample. The tip-to-sample distance is determined by the probe shearforce, and 

the tip is retracted to the desired distance.67 This generates a comprehensive 4D data set 

of electrode tip current and shearforce in a volume of space over the sample. 

High precision electrochemical characterization of live cells by SECM can often carry 

significant costs. However low-cost solutions to SECM imaging are viable for basic uses. 
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In 2017 it was shown that a SECM could be built from low-cost consumer-available parts 

and 3D printing for $100 (USD, UME probe not included).72 The low-cost SECM 

instrument utilized an Arduino UNO microcontroller for position control, signal 

generation for the potentiostat, and data logging. The potentiostat was custom built and 

included a summing amplifier, potential control circuitry, and a transimpedance amplifier 

(Figure 1.4). Off the shelf stepper controllers and NEMA 17 stepper motors were utilized 

with 500 μm per revolution threaded rods. This provides a 2.5 μm step size for the 

positioning system. The SECM body was assembled from custom fabricated 3D printed 

parts. The software was created in Sketch, and incorporated multiple scanning 

techniques, including line scans and hopping mode. The author has provided models for 

the 3D printable parts (.stl files), Arduino sketch, bill of materials, and detailed 

instructions, free of charge in their manuscript Support Information (SI). This provides an 

excellent low-cost option for individuals and schools interested in SECM based sample 

analysis. 
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Figure 1.4 - Diagram of electronic components of the EC-SPM setup showing the 

microcontroller board, custom built potentiostat, and “off-the-shelf” stepper 

controller boards. Highlighted in the potentiostat circuit diagram are (A) the 

summing amplifier, (B) potential control circuit and electrochemical cell and (C) 

transimpedance amplifier. Reprinted (adapted) with permission from (Meloni, G. 

N., 3D Printed and Microcontrolled: The One Hundred Dollars Scanning 

Electrochemical Microscope. Anal. Chem. 2017, 89 (17), 8643-8649.). Copyright 

(2017) American Chemical Society. 72 



10 

 

 

1.5 Applications of SECM 

 

Figure 1.5 – Illustrative SECM applications to live cells. (A) Membrane 

permeability. (B) Ion channel flux detection. (C) Mediator regeneration at 

embedded proteins. (D) Mediator regeneration by flux of species from the cell. (E) 

Extracellular ROS detection. (F) Intracellular ROS detection. 

SECM has shown numerous applications to live cells. This section serves as a survey of 

some of the recent advances in the field of live cell imaging by SECM, incorporating 

many different techniques and forms of detection. A graphical summary of many of the 

common applications of SECM is provided in Figure 1.5. This figure includes the 

detection of membrane permeability performed by monitoring the flux of mediator 

through the phospholipid membrane (Figure 1.5A). A similar technique involves the rate 

of flux of species from ion channels, which can be monitored by positioning the electrode 

over the ion channels (Figure 1.5B). If a sufficiently small electrode is used this can be 

done over individual ion channels showing hotspots of reactivity. Electrochemically 

active membrane-embedded proteins can participate in the reaction at the UME either by 

regenerating mediator species, or through direct reaction with the electrode (Figure 1.5C). 

The efflux or uptake of chemical species from the cell can also be detected indirectly 
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through the regeneration of an electrochemical mediating species (Figure 1.5D). A good 

example of this process is the regeneration of FcCH2OH from [FcCH2OH]+ caused by the 

antioxidant glutathione (GSH). Another common application of SECM is the detection 

and monitoring of ROS species, either extracellular (Figure 1.5E) or intracellular (Figure 

1.5F). Many of these methods of detection will be discussed further in the following 

chapter subsections. 

 Reactive Oxygen Species and Reactive Nitrogen Species 
Detection 

Oxidative stress is an area of significant interest,73 as it is an important marker for 

carcinogenic cell behavior,74 in cell signalling and inflammatory response,75 and has been 

linked to long-term genetic damage.76 Excessive concentrations of ROS or RNS can 

overwhelm a cell’s antioxidant defenses, triggering apoptosis.77 Due to the 

electrochemical reactivity of both ROS and RNS species, a label-free method of 

characterization of cell oxidative species production is possible with SECM. This 

technique provides a non-invasive, highly localized method for performing live cell 

analysis, allowing for species detection and mapping in the region of interest.78 

Significant success has been seen using this method to map inflammatory ROS 

production in the extracellular space over live cells.23, 37, 39 Combination SECM-

fluorescence microscopy techniques have also been developed to simultaneously monitor 

extracellular and intracellular ROS.50  

SECM has also shown promise for use directly monitoring intracellular ROS species. 

Examination of intracellular ROS can be performed utilizing small scale (<300 nm 

diameter) electrodes. Mirkin et al. showed the characterization of internal cell ROS and 

RNS species using 20, 150, and 300 nm Pt Black electrodes.79 Production rates of O2
•‑ 

and NO• were monitored in two metastatic breast cancer cell lines (MDA-MB-231, and 

MDA-MB-468) as well as control human breast epithelial cells (MCF-10A). Probe 

approach curves where tip insertion into the cell interior was examined with all studied 

electrode sizes. ROS and RNS production was also induced in healthy MCF-10A cells 

through the introduction of diacylglycerol-lactone (DAG-lactone), increasing the 
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activation of protein kinase C. Following cell treatment with DAG-lactone and DMSO, 

no measurable ROS/RNS oxidation was detected for the first 25 min of study (Figure 

1.6B). Following this initial period, multiple sharp bursts of oxidative stress were 

observed electrochemically in the cell interior. This observation is in agreement with 

previous studies that show DAG-lactone induced PKC activation of 25 min.80 
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Figure 1.6 - Oxidative stress detection in an MCF-10A cell treated with DAG-

lactone. (A) Optical images of two immobilized MCF-10A cells in PBS before (1,3) 

and 30 min after adding DAG-lactone dissolved in DMSO (2) or an equal volume of 

DMSO (0.1% v/v) (4). (B) Current recordings at the 40 nm platinized tip inside an 

MCF-10A cell treated with DAG-lactone (green curve) or with DMSO (black curve). 

ET = 850 mV. Reprinted (adapted) with permission from (Li, Y.; Hu, K.; Yu, Y.; 

Rotenberg, S. A.; Amatore, C.; Mirkin, M. V., Direct Electrochemical 
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Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and 

Metastatic Human Breast Cells. J. Am. Chem. Soc. 2017, 139 (37), 13055-13062.). 

Copyright (2017) American Chemical Society.79 

 Cell Membrane Transport 

SECM provides highly localized characterization of electrochemical processes. By 

positioning an electrode in close proximity to a cell membrane, the transport of 

electrochemically active biological molecules can be quantified.52, 81-82 External nontoxic 

electrochemical mediators can also be added to characterize physical properties of a cell 

if no intrinsic redox source is present. This can allow for the detection of cell emissions, 

uptake of resources, and general membrane permeability (Figure 1.7). Imaging can be 

performed over ion channels,29, 83 pores,34, 84 or even used to measure the flux of 

molecules across the cell membrane.52, 85  

 

Figure 1.7 - Simplistic representation of (A) control, (B) decreased, and (C) 

increased membrane permeability to FcCH2OH via passive diffusion.86 

Membrane permeability is often characterized on live cells by introducing an 

electrochemical mediator with partial permeability to the cell membrane.20, 52, 87 

Alternatively a mediator that is generally excluded from the cell can be used to determine 

severe damage to the live cell and operate as a good indicator for cell viability. In 2016, 

Li et al. showed the membrane permeability characterization of T24 live cells, stressed 

with Cd2+, with various redox mediators.88 Hydrophilic redox mediators such as 

ferrocene carboxylate (FcCOO−), 1,1’-ferrocene dicarboxylate (Fc(COO)2
2-) and 

hexaamineruthenium(III) (Ru(NH3)6
3+) were examined by SECM depth scanning mode 
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(Figure 1.8A-C). PACs were extracted from these depth scans and membrane 

permeability was quantified through the aid of membrane permeability FEA simulations 

(Figure 1.8D-F). The charged nature of these redox mediators normally makes them 

impermeable to the cell membrane. However, when exposed to sufficient Cd2+ (4.4 mM 

for 1 hr) permeability was induced in the cells exposed to FcCOO− and Fc(COO)2
2- 

(Figure 1.8G and H respectively). This concentration also corresponded to the beginning 

of a decrease in cell population viability, monitored by MTT assay. This indicates 

significant damage to the cell membrane or nonspecific diffusion channels permitting 

mediator flux. Ru(NH3)6
3+ was found to show an increase in membrane permeability 

much earlier, at concentrations as low as 2 mM Cd2+ (Figure 1.8I). A time-dependant 

examination of the hydrophobic mediator ferrocenemethanol (FcCH2OH) was also 

performed, which is partially permeable to the cell membrane. This mediator showed an 

initial decrease in membrane permeability between Cd2+ injection (25 μM) and 2 hr 

exposure. Membrane permeability reached a minimum at this time, where it was 1/5 the 

value observed before injection. Following this, the membrane was observed to increase 

to double the permeability (4 hr) observed before injection and plateaued at this value (6 

hr total study time). 

 

Figure 1.8 - SECM depth scan images of T24 cells treated with 4.4 mM Cd2+ for 1 h 

detecting using: (A) FcCOO−, (B) Fc(COO)2
2- and (C) Ru(NH3)6

3+. The scale bar in 

each image represents 10 μm. The arrows in (A)−(C) indicate where the cross 
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section was taken to extract the PACs (D)−(F), respectively. Experimental PACs 

were overlaid onto simulated curves to quantify membrane permeability. Trends of 

the average membrane permeability after acute Cd2+ concentrations (G)−(I). 

Reprinted (adapted) with permission from (Li, M. S. M.; Filice, F. P.; Henderson, J. 

D.; Ding, Z., Probing Cd2+-Stressed Live Cell Membrane Permeability with Various 

Redox Mediators in Scanning Electrochemical Microscopy. J. Phys. Chem. C 2016, 

120 (11), 6094-6103.). Copyright (2016) American Chemical Society. 88 

 

In 2016, Bondarenko et al. investigated the effects of fixation and induced 

permeabilization on cells (Figure 1.9A).89 Fixation is a process that halts biological 

activity in a cell, while preserving cell proteins, carbohydrates, and other structures by 

cross linking proteins inside the cell.89 Cell topography scans (using SECM and AFM) 

showed an increase in cell height following fixation. Constant height SECM scans with a 

25 μm UME were taken over a variety of different cell lines. Cells were patterned into 

clusters using a polyimide mask, and variation in cell concentration as well as UME scan 

speed were examined. Investigation of cell clusters using a FcCH2OH (hydrophobic) 

electrochemical mediator showed significant change in the current profile dependant on 

UME tip speed (Figure 1.9B). Scans taken over fixed cells (formaldehyde) showed less 

drastic change in current profile and a simplified electrochemical signal (Figure 1.9C). 

UME tip speed had a less significant effect on fixed cells as well. The SECM signal was 

not drastically affected by the permeabilization (Triton x-100) of the cells (Figure 1.9D). 

The use of the hydrophilic mediator FcCOOH, showed significant current decrease over 

both living and fixed cells, and was minimally affected by scan rate (Figure 1.9E and F). 

Permeabilized cells had a significant decrease in current feedback, similar to that seen 

with FcCH2OH (Figure 1.9G). The proteins bovine serum albumin (BSA) and the 

intracellular melanoma biomarker tyrosinase (TyR) both contain electrochemically active 

amino acids. These proteins were examined in several cell lines by SECM and 

immunoassay staining. 
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Figure 1.9 - Schematic representation of alive, fixed, and permeabilized cell (a). 

Influence of the UME translation speed on the SECM response (normalized 

current) provided by alive (b and e), fixed (c and f), and permeabilized (d and g) 

adherent WM-115 melanoma cells in the presence of noncharged (FcCH2OH, b−d) 

and charged (FcCOOH, e−g) redox mediators. Reprinted (adapted) with permission 

from (Bondarenko, A.; Lin, T. E.; Stupar, P.; Lesch, A.; Cortes-Salazar, F.; Girault, 

H. H.; Pick, H., Fixation and Permeabilization Approaches for Scanning 

Electrochemical Microscopy of Living Cells. Anal. Chem. 2016, 88 (23), 11436-

11443.). Copyright (2016) American Chemical Society. 89  

In 2017, Soldà et al. showed glucose uptake by single live cells using custom biosensor 

probes.90 Biosensor materials included the enzymes glucose oxidase (GOx) or lactate 

oxidase (LOx), which are sensitive to the presence of glucose and lactate, respectively. 

Various forms of application were investigated for the fabrication of biosensor electrodes, 

including cross-linking, electropolymerization, and adsorption by physical and 

electrostatic interactions. For all biosensors, sensitivity increased with coating thickness 

up to a maximum of 20 μm in thickness onto 10 μm Pt UMEs. It was also determined that 
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the electropolymerization methodology produced probes with ∼4 times the spatial 

resolution of the other techniques. This is due to the biosensor material being spatially 

confined on the Pt disk, while other methods spread across the glass sheathing of the 

UME in addition to the Pt. Once optimized, these biosensor electrodes were applied to 

the imaging of MCF10A human breast epithelial cells by SECM (Figure 1.10A). 2D 

images of these cells were acquired, showing current decrease over the surfaces of the 

live cells, corresponding to the metabolic consumption of glucose by the cell (Figure 

1.10B). SECM voltage switching91 was employed to compare the topographic and 

electrochemical response of the glucose to the topography only using Ru(NH3)6
3+ as an 

electrochemical mediator (Figure 1.10C). The average glucose uptake was determined to 

be 17 ± 3 μM using this method. 
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Figure 1.10 - (A) Optical image of the scanned MCF10A cells. Scale bar: 30 μm. (B) 

Representative SECM image of glucose uptake of several MCF10A cells. SECM 

experiments were carried out in constant height mode using an electropolymerized 

10 μm Pt GOx-UME biosensors in PBS buffer containing 0.1 mM glucose, 10 μM 

insulin, and 2.5% horse serum. Scan speed 15 μm/s. E = +0.65 V vs Ag/AgCl, 3 M 

KCl. Comparison between the two profiles: black line contains both functional and 

topographical contribution, while red line corresponds only to the topographical 

contribution. The currents were normalized by the respective steady-state bulk 

current values and subtracted by the normalized currents on the Petri dish. The 

measurements were performed with the same electropolymerized 10 μm Pt GOx-
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based UME biosensors in PBS buffer containing of glucose 0.1 mM, insulin 10 μM, 

and 500 μM of [Ru(NH3)6]3+.[Solda, A.; Valenti, G.; Marcaccio, M.; Giorgio, M.; 

Pelicci, P. G.; Paolucci, F.; Rapino, S., Glucose and Lactate Miniaturized Biosensors 

for SECM-Based High-Spatial Resolution Analysis: A Comparative Study. ACS 

Sens. 2017, 2 (9), 1310-1318.] - Published by The Royal Society of Chemistry.90 

In 2017 Polcari et al. showed the HeLa and HeLa-R MRP1 activity via SECM.92 Cells 

were cultured on custom-patterned Zeonor cell culture substrates. Oxygen plasma was 

used to treat the patterned spots. This promotes attachment, proliferation, and growth of 

HeLa cells. Optimization of oxygen plasma spot size was performed using 10, 12, 15, 30 

and 50 μm spots. Cells cultured with 10-15 μm spots had a globular morphology and 

unstable attachment. 30 μm spots allowed the cells to adhere with a more triangular 

shape. A spot size of 50 μm exhibited typical morphology of the HeLa cell line and no 

detected increase in stress. A dual redox mediator methodology was used, employing 

both FcCH2OH and Ruhex mediators. The FcCH2OH traveled into the cells, inducing an 

increase in glutathione (GSH) release from HeLa cells from the MRP1 pumps embedded 

in the membrane. RuHex, however, does not interact with expelled GSH, providing 

information on topography only. Using a combination of the FcCH2OH and Ruhex 

images, as well as an extracted map of normalized tip-to substrate distance, it was 

possible to deconvolute the heterogeneous rate constant profile (k). The k scan profile 

provides an indication of the MRP1 functional activity in the imaged cell. The anticancer 

drug doxorubicin was used to treat HeLa and HeLa-R cells, at 0.05 μM and 0.10 μM 

(1/10 and 1/5 of the LD50, respectively). Constant height SECM images of these cells 

were taken, and the k map was calculated (Figure 1.11). Cells were also characterized by 

western blotting and flow cytometry, allowing for the quantification of the MRP1 

expression factor in each of these studied cell populations. HeLa-R populations were 

observed to have 6.7× the expression of MRP1 relative to HeLa populations. However, a 

correlation between expression factor and activity was not found. 



21 

 

 

 

Figure 1.11 - MRP1 functional activity of six different cell populations obtained 

through a doxorubicin drug challenge. Top panel: Optical micrographs of the cell 

populations during SECM imaging. Bottom panel: Extracted apparent 

heterogeneous rate constant profile. A single scale is used for all populations to 

visualize differences in contrast. Values are presented as 10−3 cm s−1. (Imaging 

conditions: a = 3.5 μm; v =10 μm s−1). Reprinted (adapted) with permission from 

(Polcari, D.; Hernandez-Castro, J. A.; Li, K.; Geissler, M.; Mauzeroll, J., 

Determination of the Relationship between Expression and Functional Activity of 

Multidrug Resistance-Associated Protein 1 using Scanning Electrochemical 

Microscopy. Anal. Chem. 2017, 89 (17), 8988-8994.). Copyright (2017) American 

Chemical Society. 92 

 Heavy Metal Exposure  

Many heavy metals are common in nature or are readily used in industrial processes. 

Some heavy metals are necessary for humans in trace quantities but toxic at high 

concentration, while many are strictly toxic if consumed. Heavy metal toxicity has been 

shown to induce stress in live cells, and in high enough quantities activate apoptotic and 

necrotic pathways.93-94 They have been shown to affect membrane fluidity through 

oxidative damage and lipid peroxidation.95-96 Changes in membrane permeability induced 

by oxidative stress is detectable by SECM, making it an excellent tool for localized 
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analysis of membrane damage.20, 52 SECM provides a non-destructive, non-invasive 

method of cell analysis. When applied to the imaging and characterization of live cells, 

this technique provides a method of repeated rapid characterization of the cell sample. As 

a result, SECM can be used to image the same cell repeatedly and provide time-

dependant analysis of cell homeostasis.  

 

 Imaging Live Cells in the Nanoscale 

SECM resolution is directly dependant on the size of the electrochemical probe. As a 

result, there has been a push to fabricate smaller probes since the inception of the 

technique. A recent review by Bard et al. in Chemical Communications (2018) provides 

an excellent examination of general SECM techniques and applications at the nanometer 

scale.97 This section will focus more exclusively on SECM applications towards single 

live cell analysis. Note that nanoscale probes are commonly used to electrochemically 

analyze intracellular processes, due to the less invasive nature of their small size.31, 35  

Nanoscale imaging comes with many technical challenges. Smaller scale electrodes 

require positioning closer to the sample of interest to detect electrochemical feedback. As 

a result, variation in sample height, and sample tilt play a much larger role at smaller 

scale. Depth-based scanning techniques are a common way to avoid this limitation, 

however, do not guarantee that collision with the substrate can be avoided. Many 

combination methods such as 4D shearforce,67 hopping mode,71 SECM-SICM,48 and 

SECM-AFM45 show thier strengths when imaging nanoscale. Soft probes have also been 

fabricated which can be scanned across the sample surface without causing significant 

damage or stress to the sample or probe.98-99 Voltage switching methods have been 

explored for live cell study at the nano scale, allowing for the simultaneous aquisition of 

SECM data with multiple electrochemically active mediators.91 

In 2017 Takahashi et al. showed effective use of combination SECM-SICM electrode 

probes to image single 3T3-L1 fixed cells (Figure 1.12A).100 Dual conductor SECM-

SICM electrode probes were created in-house using a CO2 laser puller and pyrolytic 
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carbon deposition method.48 This fabrication method allows for nanoscale electrodes with 

small RGs (a=278 nm, RG= 1.1). The SECM probe is used with a FcCH2OH 

electrochemical mediator to determine the membrane flux of the 3T3-L1 cells (Figure 

1.12B). The simultaneous SICM scan is used to determine cell topography (Figure 

1.12C). Comparison of the SECM and SICM scans show sites of heterogeneous current 

response across the cell surface (labelled as white arrows on the images). The first 

derivative of the topography image was also calculated providing a 2D plot of slope to 

characterize surface roughness (Figure 1.12D). Regions with a steep vertical slope are 

observed at the positions of heterogeneous current feedback, indicating a difference in 

current-distance responses between SECM and SICM based on geometry. The SECM-

SICM method was also applied to imaging regions of the cell where intracellular lipid 

droplets were present. The presence of these lipid droplets yielded no significant 

difference in the faradaic current when comparing cells with and without the droplets. 

This indicates that the lipid droplets were not close to the membrane surface but were 

deeper inside the cell. 

 

Figure 1.12 - (a) Optical image and SECM–SICM, (b) faradaic current, (c) 

topography, and (d) slope images of adipocyte in 0.5 mM FcCH2OH + PBS. The 

SECM electrode radius is 117 nm with RG = 1.1. The SECM and SICM electrodes 

were held at 500 and 200 mV vs. Ag/AgCl, respectively. Hopping amplitude was 3.0 
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mm. The surface area of the captured images was 80 mm × 80 mm. [Takahashi, Y.; 

Ida, H.; Matsumae, Y.; Komaki, H.; Zhou, Y.; Kumatani, A.; Kanzaki, M.; Shiku, 

H.; Matsue, T., 3D electrochemical and ion current imaging using scanning 

electrochemical-scanning ion conductance microscopy. Phys. Chem. Chem. Phys. 

2017, 19 (39), 26728-26733.] - Published by the PCCP Owner Societies. 100 

In 2018, Shen et al. showed SECM imaging of neurotransmission at the synaptic cleft 

between living Aplysia neurons.101 Imaging within the synaptic cleft has been difficult in 

the past due to its extremely small size (300 nm × <100 nm). A 30 nm diameter 

nanoITES pipette electrode was used to selectively image acetylcholine release. The 

direct measurement of acetylcholine in the synaptic cleft reduces the dilution of the 

neurotransmitter, as it diffuses away from the site of release into the extracellular 

medium. This increases the performance of the low concentration electrochemical 

measurement. Synaptic neurotransmitter release was composed of singlet, doublet and 

multiplet profiles (Figure 1.13A-C). The singlet profile was observed 50% of the time 

with lower frequency, for doublet and multiplet. The frequency of synaptic acetylcholine 

release was consistent with measured norepinephrine release (measured by carbon 

nanofiber electrode). The average number of acetylcholine molecules released for the 

doublet was double that observed for the singlet. Quantitative analysis of the 

amperometric peak half widths and number of molecules suggests the release of multiple 

vesicles, or partial release of a single vesicle (Figure 1.13D and E). 
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Figure 1.13 - Single synaptic cholinergic neurotransmission measured in situ. (A−C) 

Current−time trace (amperometry) representing synaptic transmitter concentration 

and release dynamics simultaneously, where diverse cholinergic concentration 

dynamics were observed consisted of singlet (panel A), doublet (panel B) and 

multiplet (panel C). Single current (concentration) maxima occur during singlet 

release (50% occurrence frequency out of 16 events total); a second current 

maximum occurs before the first current peak decreases to the base value for the 

doublet events (∼30% occurrence frequency); multiple concentration peaks (more 

than two) were observed for multiplet with lower occurrence frequency (∼20%). (D) 

Proposed mechanism on variation in synaptic transmitter release dynamics. 

Neurotransmitter is released into the synaptic cleft from a single vesicle (Left). 

Neurotransmitter is released into the synaptic cleft from two vesicles, V1 and V2, 

simultaneously (Middle) or multiple vesicles simultaneously, which are going 

through either different stages of exocytosis as shown here, or similar stages of 

exocytosis (Right). (E) An alternative mechanism is possible for explaining doublets 

and multiplets based on the phenomenon of partial release. A vesicle goes through 

partial release twice, generating a doublet (Middle); the two individual peaks (Peak 

1 and Peak 2) correspond to each partial release event. Reprinted (adapted) with 
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permission from (Shen, M.; Qu, Z.; DesLaurier, J.; Welle, T. M.; Sweedler, J. V.; 

Chen, R., Single Synaptic Observation of Cholinergic Neurotransmission on Living 

Neurons: Concentration and Dynamics. J. Am. Chem. Soc. 2018, 140 (25), 7764-

7768.). Copyright (2018) American Chemical Society. 101 

In 2017, Page et al. characterized the uptake of [Ru(NH3)6]
3+ by live Zea mays root hair 

cells using SECM-SICM.70 SECM-SICM dual electrode probes were custom fabricated 

with a total probe diameter of 500 nm, composed of a SICM nanopipette and 

pyrolytically deposited carbon SECM electrode. The SICM nanopipette was filled with a 

10 mM [Ru(NH3)6]
3+ (RuHex) solution, with no RuHex in bulk solution. This provided a 

localized source of RuHex, which was electrochemically reduced at the carbon electrode 

tip. The concentration at the nanopipette orifice was 2 mM. The SICM electrode 

measures resistance between itself and an Ag/AgCl electrode in bulk solution providing 

topographic information and does not react with the RuHex. This imaging methodology 

was validated experimentally on root cells as well as simulated using the FEM method. A 

single Zea mays root hair cell was imaged at two locations, the cell tip and body (Figure 

A). Variation in cell height was observed at the two locations on the cell (Figure B). 

Monitoring the uptake of RuHex by the live cell shows faster uptake at the root hair tip, 

with uptake rates of 0.27 ± 0.05 cm s−1 for the cell tip and 0.22 ± 0.05 cm s−1 for the cell 

body being observed (Figure C and D). 
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Figure 1.14 - SICM-SECM topographical and [Ru(NH3)6]3+ uptake mapping of two 

regions of a single Zea mays root hair cell. (a) Optical image of the scanned root hair 

cell; scan area denoted by the dashed rectangle. (b) Substrate topography extracted 

from the z-position at the point of closest approach from the SICM channel. (c) 

Normalized SECM current map showing a clear difference in uptake between the 

root hair cell body (higher current, lower uptake) and the root hair cell tip (lower 

current, higher uptake). “Normalized current” is the ratio of the [Ru(NH3)6]3+ 

reduction current at the point of closest approach to the same reduction current in 

bulk. (d) Histograms of the normalized SECM current across the two different 

regions of the root hair cell, “tip” and “body” (see part b). Reprinted (adapted) with 

permission from (Page, A.; Kang, M.; Armitstead, A.; Perry, D.; Unwin, P. R., 

Quantitative Visualization of Molecular Delivery and Uptake at Living Cells with 

Self-Referencing Scanning Ion Conductance Microscopy-Scanning Electrochemical 

Microscopy. Anal. Chem. 2017, 89 (5), 3021-3028.). Copyright (2017) American 

Chemical Society.70 
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1.6 Scope of Dissertation 

The scope of this dissertation focuses on the investigation of cell membrane response to 

toxic heavy metals in T24 human bladder cancer cells. This investigation is performed 

using SECM coupled with FEM simulations. 

Chapter 2 focuses on the effects of Cd2+ on single live T24 cell membrane permeability. 

The experimental depth scan imaging of the single live cells was coupled with, full 3D 

finite element method (FEM) simulations for the first time. This allowed for the 

extraction and fitting of experimental PACs at any location across the cell surface to 

quantify cell membrane permeability. Previous 2D axially symmetric models were 

limited to symmetric samples and PAC generation directly over the cell center. As a 

result, these previous models failed to take advantage of the large data sets provided by 

the numerous multidimensional experimental scanning methods, such as depth scan. 

Creation and validation of a full 3D model for SECM analysis of single live cell 

membrane permeability was explored in this chapter. Cells were incubated with different 

concentrations of Cd2+, and the resulting membrane permeability change was determined.  

In Chapter 3, SECM and 3D FEM simulations were utilized to examine the membrane 

response of T24 cells following exposure to toxic dichromate (Cr (VI)). Two 

electrochemical mediators were examined in this chapter, the membrane permeable 

FcCH2OH and the membrane impermeable FcCOO-. With FcCH2OH as the SECM 

mediator, Cr (VI) exposure was observed to induce three distinct concentration dependant 

membrane permeability regions. Performing the same membrane permeability 

characterization with the impermeable FcCOO- mediator, incubation with high 

concentrations of Cr (VI) induced permeability for the charged FcCOO- to the cell 

membrane. The study in this chapter was also coupled with a MTT cell viability assay 

with a related trend to the membrane permeability response with FcCH2OH as the SECM 

mediator. Quantification of membrane permeability incorporated a simulation model 

geometry with a more accurate cell geometry. Optimizations were also made to the 

solution domain geometry and a symmetry plane was incorporated to reduce resource 

demand and compute times. 
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In Chapter 4, Cr (VI) induced cell stress with lower chronic concentrations was examined 

for longer durations. Three Cr (VI) concentrations (2, 5 and 10 µM) were examined, 

yielding similar response curve shapes over the study period. The time required to 

observe the membrane permeability response was shifted in a concentration-dependant 

fashion with higher concentrations of Cr (VI) exhibiting much faster response. The 2 and 

5 µM tests spanned 5 days of incubation, after which SECM analysis was no longer 

possible due to significant population decrease, where the 10 µM sample reached this 

state following only 3 days of incubation. MTT viability studies were performed, 

providing complimentary analysis of overall health and wellness of the cell populations 

under study. A resistance to the external K2Cr2O7 stressor was observed after 1 day of 

incubation. However, cells exhibited a strong drop in viability following 2-3 days 

incubation.  

In Chapter 5, the membrane response of single live cells to the trace essential heavy metal 

Cr (III) was successfully interrogated using both FcCH2OH and FcCOO- as SECM 

mediators. Full 3D FEM simulations were computed to allow for the quantification of 

cell membrane permeability by SECM. Using the 3D model of the cell system, full 

SECM depth scans were simulated. The simulated and experimentally acquired depth 

scan images allow for the extraction of electrode PACs at any location across the cell, for 

rapid membrane permeability quantification. With the membrane permeable FcCH2OH, 

incubation three distinct trends were observed in membrane response. The FcCOO- 

mediator was initially impermeable, but similarly exhibited strong increases in membrane 

permeability when subjected to 7500 μM CrCl3 for 1 hr. This study was also coupled 

with a MTT cell viability test, which showed a gradual decrease in cell viability once 500 

µM of Cd (III) was exceeded. 

In Chapter 6, the analysis of complex systems of cell clusters in close proximity was 

carried out by means of SECM image stack 3D scanning mode with 10 μm and 4.4 μm 

diameter UMEs. Tailored 3D model geometries were created to allow for the simulation 

of these cell maps. Full 3D mapping was performed using the simulation model to 

compliment the 3D dataset acquired experimentally. Experimental surface maps of pairs 
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of double cells were acquired with both 10 μm and 4.4 μm UMEs, and them modelled to 

generate complimentary theoretical maps. The simulations with tailored full 3D models 

were capable of providing a strong theoretical fit to the experimental results when the 

geometry of both adjacent cells was considered. Probe size-dependant limits of cell 

proximity for SECM characterization were theoretically determined using this model. 

Chapter 7 describes the nanoscale SECM imaging of a single live cell, with a laser-pulled 

quartz sheathed electrode having a 130 nm radius Pt disk. A single live cell was imaged 

using the membrane impermeable Ru(NH3)6
3+, and membrane permeable FcCH2OH 

mediators in rapid succession. Replicating accurate sample geometry in the theoretical 

model becomes much more important as electrode size decreases. Cell topography was 

accurately characterized, and a tailored 3D model of the single live cell was created. 

Using this model, membrane permeability quantification was performed.  

Finally, Chapter 8 provides a summary of the collective work, as well as discussing 

future works to be considered. 
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Chapter 2  

2 Mapping Cd2+-induced Membrane Permeability 
Changes of Single Live Cells by Means of Scanning 
Electrochemical Microscopy 

Scanning Electrochemical Microscopy (SECM) is a powerful, noninvasive, analytical 

methodology which can be used to investigate live cell membrane permeability. Depth 

scan SECM imaging allowed for the generation of 2D current maps of live cells relative 

to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan 

image can contain hundreds of probe approach curves (PACs). Individual PACs were 

obtained by simply extracting vertical cross-sections from the 2D image. These 

experimental PACs were overlain onto theoretically generated PACs simulated at specific 

geometry conditions. Simulations were generated using 3D models in COMSOL 

Multiphysics to determine the cell membrane permeability coefficients at different 

locations on the surface of the cells. Common in literature, theoretical PACs are 

generated using a 2D axially symmetric geometry. This saves on both compute time and 

memory utilization. However, due to symmetry limitations of the model, only one 

experimental PAC right above the cell can be matched with simulated PAC data. Full 3D 

models in this article were developed for the SECM system of live cells, allowing all 

experimental PACs over the entire cell to become usable. Cd2+-induced membrane 

permeability changes of single human bladder (T24) cells were investigated at several 

positions above the cell, displaced from the central axis. The experimental T24 cells 

under study were incubated with Cd2+ in varying concentrations. It is experimentally 

observed that 50 and 100 M Cd2+ caused a decrease in membrane permeability, which 

was uniform across all locations over the cell regardless of Cd2+ concentration. The Cd2+ 

was found to have detrimental effects on the cell, with cells shrinking in size and volume, 

(A version of this work has been published in Anal. Chim. Acta 

Filice, F. P.; Li, M. S.; Henderson, J. D.; Ding, Z. 2016, 908, 85-94.) 
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and the membrane permeability decreasing.  A mapping technique for the analysis of the 

cell membrane permeability under the Cd2+ stress is realized by the methodology 

presented. 

2.1 Introduction 

Scanning electrochemical microscopy (SECM) is a powerful non-invasive analytical 

method in the Scanning Probe Microscopy (SPM) family.1-3 SECM operates by moving a 

biased ultramicroelectrode (UME) (25 µm diameter electrode or smaller) over a substrate 

with extreme precision.1, 4-5 The UME tip and substrate are submerged in an electrolyte 

solution containing a redox agent. An electrochemical current is monitored with reference 

to the UME-substrate position, which is affected by topographical changes and 

electrochemical characteristics of the substrate as the electrode sweeps in the vicinity of 

the sample surface.1-2, 4-6 Receiving significant early development by Bard et al. since 

1989,4 SECM has since been employed for chemical kinetics studies, chemical imaging, 

potential distributions, and microfabrications.7-9 Recent developments towards biological 

applications have been pursued,10-16 such as electron transfer kinetics and molecular 

transport,17-19 neurotransmitter releases,20-22 reactive oxygen and nitrogen species 

release,23-30 and the assessment of drug resistance on biological cells.29, 31-32  SECM offers 

great opportunities to study physiological processes at the cell membrane in real-time, 

and to investigate cellular properties such as membrane permeability.33-35 As the probe 

makes no contact with the cells, these physiological processes remain unchanged, 

assuming that the selected redox mediator itself has no effect on the cell’s homeostasis.33 

This is advantageous over common methods of live cell monitoring, such as continuous 

time-lapse fluorescence experiments, which suffer from photo-bleaching that potentially 

alters cell homeostasis.36-38 

The UME is biased at a potential generating a steady state current in a redox active 

solution, as the electrochemically driven reaction progresses. Upon approach to a 

substrate, diffusion of unreacted mediator species from the bulk solution towards the 

electrode tip is hindered (Figure 2.1). This reduces the rate of reaction at the electrode tip, 

and consequently the reaction draws less current. In cases such as an approach to some 



40 

 

 

substrates (conductors, for instance) spent mediator can be regenerated, causing an 

increase in current.2 

 

Figure 2.1 - (A) Theoretically generated (finite element method) steady state 

concentration map of a 10 µm RG3 electrode in bulk solution. (B) Electrode on 

approach to ideal insulating ellipsoid cell substrate at 15 µm from cell surface. (C) 

Electrode on approach to ideal insulating ellipsoid cell substrate at 5 µm from cell 

surface. (D) Electrode on approach to ideal insulating ellipsoid cell substrate at 1 

µm from cell surface. 

Traditionally, acquiring SECM probe approach curves (PACs) involves a biased UME 

approaching the sample at a single point vertically.20, 33-34 To characterize a single sample 

at different locations, multiple approaches would be required, which is both time 

consuming and difficult. By completing multiple approaches, there is also an increased 

risk of crashing the electrode into the sample or substrate, due to the possible height 

variations of the substrate surface. An electrode crash can be damaging to the sample or 

the electrode itself. In the Ding research group, a different method of SECM analysis, 

called depth scan imaging, has been previously developed.29, 35, 39-40 The depth scan mode 
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passes the UME in x-axis or y-axis direction performing a horizontal line scan at that 

constant height. The electrode is then lowered in the z-axis by a preset depth distance and 

another line scan is carried out. This action is repeated until the desired depth is reached. 

The repeated horizontal sampling at various approaching heights to the sample produces 

a two-dimensional image of the current feedback in the x-z or y-z plane in real-time. The 

depth scan imaging method allows the distance to the sample to be more easily gauged 

during the scan, removing the limitation of conventional SECM approach methods. One 

depth image can also provide hundreds of PACs, limited by the user-defined image width 

and resolution. By simply selecting vertical cross-sections from the image, experimental 

PAC data can be extracted, producing a plot of current vs. the distance to the substrate. 

Note that the Schuhmann group developed a 4D shearforce-based constant-distance 

mode,41 where multiple constant-distance images can be obtained above the sample 

topography, a comprehensive 4D data set containing the SECM tip current response as a 

function of x-, y-, and z-position of the SECM tip. Different types of 3D plots such as 

depth scan images can be extracted from these 4D raw data, while the method employed 

by the Ding Lab generates a depth image experimentally. 

Extracted experimental PACs are then compared to simulated PACs to obtain 

quantitative analysis of sample traits, such as the reaction kinetic and physical 

properties.5-6, 18 Conventionally, simulations of this system are completed using a 2D 

axially symmetric model geometry in finite element analysis software, such as COMSOL 

Multiphysics. At the time of computation, the 2D model is duplicated in a radial fashion 

about the axis of symmetry creating a pseudo three-dimensional (3D) model for 

computation. This symmetric model design saves a great deal of computational time and 

system resources. However, the requirement that a model be symmetric is a severe 

limitation. The PACs to a substrate of non-uniform geometry produced in each SECM 

depth scan image are not all usable for comparison to the conventional theoretical PACs. 

Only the PAC directly above the center of the symmetric sample can be matched with 

simulated PAC data. By expanding to a 3D model, off-axis PAC analysis of single live 

cells becomes possible, as seen in my very recent development of a full 3D simulation 

model for SECM of an interdigitated array of gold electrodes.39 
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The use of 3D models for characterization of SECM data can allow for even broader use 

of SECM than what was possible before. The primary issue with performing 3D 

simulations previously has been the heavy demand on system resources. Long compute 

times, large amounts of memory, and heavy CPU utilization have previously required 

powerful computers to execute. The simulation geometry, meshing and physics have 

been optimized to allow for such simulations to be computed in reasonable time using 

consumer-grade hardware. 

With SECM, monitoring cell membrane permeability is commonly achieved by 

comparing experimental results to simulated PACs of known permeability coefficients.34 

The shape of a PAC is dependent on the ability of a mediator to pass through the 

membrane. At close proximity of the UME to the cell, diffusion is limited similar to an 

approach towards an ideal insulating substrate. As the UME approaches the membrane, 

the flux of the redox mediator across the membrane is detected as an additional faradaic 

current. The redox mediator used in this study is ferrocenemethanol, which is commonly 

employed for biological electrochemistry as it is non-toxic to many cells lines.25, 31, 35, 42 

Ferrocenemethanol is able to diffuse across the cell membrane to the cell interior, and 

back out. As the electrode approaches closer to the cell membrane, more rapid flux of 

ferrocenemethanol occurs through the cell membrane toward the electrode tip. The rate of 

flux across the membrane is dependent on the membrane permeability coefficient. This 

enables matching of experimental and simulated PACs for quantification of membrane 

permeability. Recently, the Ding Lab reported that membrane permeability of live human 

bladder cancer (T24) cells can be altered using the addition of Cd2+ into solution.35 It was 

observed that increasing Cd2+ concentrations lead to quicker changes in membrane 

permeability and morphological changes, such as spreading and flattening of the T24 

cells.   

Cd2+ cytotoxicity in humans can arise from contaminated drinking water and foods, 

cigarettes, and through occupational hazards.43 Once in the body, Cd2+ can accumulate 

within several organs, such as the kidneys and liver.44-46 The half-life of Cd2+ within the 

body has been reported to be between 10 and 30 years, allowing for bioaccumulation to 
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occur.43, 47 Once in the body, Cd2+ can cause a wide range of issues, from organ damage 

to bone diseases and carcinogenesis. Due to its cytotoxic nature, and the bioaccumulation 

which may occur within the body, research in both understanding the biological pathways 

affected by Cd2+ and treatment measures have been studied.47-49 Studies in multiple cell 

lines have shown that Cd2+ alters various biological pathways (ex. Mitogen-activated 

protein kinase) by disrupting the desired homeostatic protein levels.48-50 A common side 

effect in these Cd2+ cytotoxicity studies is the increased production of reactive oxygen 

species.48-51 Elevation of Cd2+ levels can lead to increased oxidative stress within the cell, 

which may lead to the overwhelming of the anti-oxidant defense system, and thus a link 

between diseases and carcinogenesis has been identified.43, 52 The presence of Cd2+ has 

also been linked to higher protein levels, such as nuclear transcription factors, NF-κβ, 

AP-1 and p53.49, 53 As well, Cd2+ has been shown to induce cellular death by either the 

apoptotic or necrotic mechanisms.43, 48, 54-55   

Herein, for the first time, the 3D modeling of an SECM approach to a single live cell 

membrane will be reported, which proves very useful in conjunction with SECM depth 

scan imaging. 3D simulations can generate multiple PACs at any location over the 

sample to match any experimental PACs, providing further insight into the mapping of 

membrane permeability across a single live cell. 

2.2 Experimental 

 Materials 

Ferrocenemethanol (FcCH2OH) (97%), potassium chloride (KCl) (99%), and cadmium 

chloride (anhydrous grade) (CdCl2) were purchased from Sigma-Aldrich (Mississauga, 

ON). A stock solution of 0.9 mM FcCH2OH with 0.1 M KCl as a supporting electrolyte, 

was prepared in deionized water (18.2 MΩ MilliQ water, Millipore, Etobicoke, ON). For 

the SECM depth scan study, the live cells were cultured in Petri dishes (P50-G-0-30-F, 

MatTek Corporation, Ashland, MA). The stock solution of 1 M CdCl2 was prepared in 

the deionized water. For incubation experiments, CdCl2 stock solutions were syringe-

filtered through sterile 0.2 µm Supor® Membrane (PALL Life Sciences, Mississauga, 
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ON) and added to the cell sample Petri dishes inside a laminar flow hood. For live cell 

SECM experiments, 2 mL of 0.9 mM stock solution was diluted to 0.45 mM with 

phosphate buffered saline (PBS, pH 7.4) and carried out at 37.0 ± 0.2 °C. 

 Electrode Fabrication 

Electrodes were fabricated as reported elsewhere.27, 35, 56-57 Briefly, borosilicate glass 

capillary tubes (o.d.: 2.00 mm, i.d.: 1.16 mm, length: 10.00 cm, Sutter Instruments, 

Novato, CA) were pulled and sealed with a micropipette puller (PP-83, Narishige, Japan). 

10 µm electrodes were created by inserting a 10 µm Pt wire (Goodfellow Metals, 

Cambridge, UK) into a heat-sealed and pulled borosilicate capillary. The capillary was 

placed under internal vacuum and heated to form tight glass sheathing around the Pt wire. 

The sealed glass tube was then manually polished on a custom made polishing wheel 

with alumina polishing pads (3.0, 0.3, and 0.05 µm, Buehler, Whitby, ON) to expose the 

Pt wire at the tip of the glass electrode. Electrodes are characterized by the ratio of 

insulating glass sheath radius to conductive Pt wire radius (RG) (Eq. 2.1). 

𝑅𝐺 =
𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

𝑟𝑎𝑑𝑖𝑢𝑠 𝑃𝑡 𝑊𝑖𝑟𝑒
  [2.1] 

The electrode RG was polished to approximately 3.56 Characterization of the electrode’s 

RG is important for generation of theoretical PACs to ensure close agreement with 

experimentally obtained PACs, as variation in electrode RG affects the curve shape 

obtained.56 An example of the RG effect on the PAC shape can be found in Figure 2.2. 

Electrode tips were examined during the polishing process using an optical microscope 

and tested for functionality using cyclic voltammetry (CV). 
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Figure 2.2 - Theoretically generated PACs with various RG values for approach to a 

flat ideal insulating substrate (left), and an ideal conducting substrate (right). 

 Instrumentation 

SECM experiments were conducted on a modified Alpha-SNOM (WITec, Ulm, 

Germany) with a home-made UME holder in place of a primary lens above the sample.25, 

35 Optical images of the samples were taken from the inverted objective lens (50× lens, 

N.A. 0.55, W.D. 10.1 mm, Nikon, Japan) and camera positioned below the sample. 

Positioning of the sample and electrode were performed by the Alpha-SNOM 

piezoelectric xy-stage and z-axis with 1 nm precision. All electrochemical 

experimentation was performed using an Electrochemical Analyzer (CHI 800B, CH 

Instruments, Austin, TX) with a CHI 200 Picoamp Booster to reduce noise. A Ag/AgCl 

wire suspended from the UME holder into solution was used as a combined reference and 

counter electrode. The signal was transported to a data acquisition channel of the Alpha-

SNOM microscope.  

 Cell Culture 

Human bladder carcinoma cells, T24 cells (ATCC® HTB-4TM) were purchased from 

American Type Culture Collection (ATCC, Manassas, VA). These cells were incubated 

in McCoy’s 5a medium with the addition of 10 % fetal bovine serum (FBS). T24 cells 

were cultured in uncoated T25 flasks (Becton Dickinson, Franklin Lakes, NJ). When 
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cells reached 80-100% confluency the media was decanted, and cells were washed with 

PBS solution. 0.05% trypsin with 0.006% EDTA was then used to release cells from the 

inner surface of the flask. T24 cells were incubated at 37 °C with 5 % CO2 (Sanyo, 

Japan). All live cell experiments were performed within a small passage window (P45 – 

P48). McCoy’s 5a medium (modified) was purchased from ATCC, while all other culture 

solutions and sera were purchased from Invitrogen (Burlington, ON). 

For SECM live cell experiments, cells were plated on glass bottom Petri dishes the day 

before use. Incubation of cells with CdCl2 was performed by adding the desired 

concentrations of CdCl2 to the samples and incubating them for 1 h prior to the SECM 

experiment. Cells were removed from the incubator and the medium drawn from the dish. 

The cells were then washed 3× or more with PBS prior to SECM analysis. Once ready for 

SECM, the PBS was exchanged with 0.45 mM FeMeOH with 0.05 M KCl in PBS.  

 SECM Experiments 

SECM of live T24 cells was performed by securing a Petri dish containing the cells on 

the heated 2D scanning stage (Bioscience Tools, San Diego, CA) of the microscope. The 

stage was set to a temperature of 37.0 ± 0.2 °C to mimic human body temperature. The 

electrochemical analyzer was set to produce a constant voltage corresponding to the 

oxidation plateau of the electrochemical mediator (0.300 V for [FcCH2OH]+ production, 

determined by CV). The electrode was then lowered into solution using the microscope z 

axis until it was in close proximity to the cells. The optical objective lens was calibrated 

to be centered on the position of the electrode tip. This allowed for visual tracking of both 

the electrode tip and the sample for analysis by SECM. The scan width and depth can be 

set in the WITec software, as well as the integration time and resolution of the scan 

image.   

For the live cell study, each scan had 128 × 128 pixels, with a scan scale of 60 µm 

(width) vs. 80 µm (depth) and an acquisition time of 0.01 s for each pixel.  To optimize 

the electrode distance, depth scans were performed above the sample. The electrode 

height was gradually lowered until feedback was seen. Care had to be taken to ensure 
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contact with the sample did not occur. Once the electrode height had been optimized the 

microscope was zeroed at this position. This makde it easy to return to this height if the 

electrode had to be raised at any point during the experiment. 

 The Simulation Workstation Computer 

COMSOL Multiphysics (version 4.4) software was used for all simulations. A custom-

built workstation computer for COMSOL simulations was assembled using an Intel Core 

I7 4930K (6-core, 12-thread), and 32 GB Kingston HyperX Fury Black memory on the 

LGA2011 platform. A Mushkin Chronos Sandforce 480 GB SSD was also added to 

increase swap speeds for large simulations and to reduce load and save times for 

commonly used models. All parts used in the construction of the workstation are 

consumer available, “gaming grade” hardware. Parts were selected, acquired and 

assembled in-house with optimization for COMSOL simulations prioritized. Ubuntu 

Linux 14.04.1 LTS was installed as a reliable platform for running simulations. 

2.3 Theory and Simulations  

 Simulation Methodology 

The experimental physical dimensions were reflected in simulation geometry (Figure 

2.3A). An ellipsoid with a height of 10 µm and a diameter of 30 µm was used as a cell on 

a flat glass Petri dish. The electrode was defined as a Pt disk with a diameter of 10 µm 

and an RG of 3 (Figure 2.3B). The electrode z and x positions were parameterized in the 

program code that allows for parametric movement of the electrode position, automating 

the approach to the substrate.  

A bulk solution concentration of FcCH2OH was set at 0.45 mM to match the solution 

used in the physical experiment. At the UME with a biased potential of 0.300 V, the 

oxidation of FcCH2OH to [FcCH2OH]+ is a one electron process, Eq. 2.2, and is 

controlled by diffusion.  Diffusion of FcCH2OH in bulk solution and the cell interior 

followed Fick’s second law as expressed by Eqs. 2.3 and 2.4, respectively: 

𝐹𝑐𝑀𝑒𝑂𝐻 ⟶ [𝐹𝑐𝑀𝑒𝑂𝐻]+ + 𝑒−    [2.2] 
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𝜕𝐶𝐵

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐵

𝜕𝑥2 +
𝜕2𝐶𝐵

𝜕𝑦2 +
𝜕2𝐶𝐵

𝜕𝑧2 ) [2.3] 

𝜕𝐶𝐶

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐶

𝜕𝑥2
+

𝜕2𝐶𝐶

𝜕𝑦2
+

𝜕2𝐶𝐶

𝜕𝑧2
)                [2.4] 

where cB and cC represent the FcCH2OH concentration in the two domains and D is the 

diffusion coefficient for FcCH2OH set at 7.6 × 10-10  m2/s.1, 33, 58 Please note that 

conventional 2D axially symmetric modeling follows diffusion equations described 

elsewhere,57 and is illustrated in Figure 2.3Error! Reference source not found.C and D. 
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Figure 2.3 - (A) Meshed 3D COMSOL model geometry of SECM approach to a T24 

Cell. (B) Zoomed-in meshed 3D SECM probe. (C)2D axially symmetric COMSOL 

model geometry of SECM approach to the T24 Cell with labelled boundary 

conditions. (D) Meshed 2D SECM model with axial  symmetry. (E) Comparison of 

SECM PACs to an 3D insulating membrane in 2D axial symetry and 3D models. (F) 

Comparison of SECM PACs to a conductor  membrane in 2D axial symetry and 3D 

models.   
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 Verification of 3D modeling  

The boundary at the cell membrane was temporarily configured to act as an ideal 

insulator (no flux boundary), or an ideal conductor (regenerating FcCH2OH in solution at 

initial concentration). In both cases, boundaries interfacing with bulk solution were set to 

generate a concentration matching the initial FcCH2OH bulk concentration. The bulk 

solution concentration simulates diffusion from bulk towards the system under study, 

where a theoretical infinite supply of new FcCH2OH exists. For the other boundaries, the 

glass dish and glass electrode sheathing were set as no-flux boundaries to simulate the 

insulating characteristics of these substrates. The Pt disk of the electrode tip was set to 

remove FcCH2OH from solution, generating an ideal concentration of 0 M at the 

electrode tip. The model geometry was finely meshed using a tetrahedral mesh with a 

maximum element size of 15 µm (Error! Reference source not found. A). To yield 

higher quality results, the meshing of the model was further refined at the electrode tip 

boundary and the cell membrane boundary to 0.1 µm (Error! Reference source not 

found. A and B). The element growth rate was defined at 1.4 ensuring a smooth gradual 

transition between element sizes, and the curvature factor was defined as 0.5 for meshing 

around rounded boundary surfaces. The meshing had an error of less than 5.0 × 10-3 with 

only 4 iterations (Figure 2.4A). The convergence plots for the segregated groups 

simulated (cell exterior and cell interior) can be found in Figure 2.4B. 
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Figure 2.4 - (A) Meshing convergence plot for single data point. (B) Convergence 

plot for the two segregated groups within the simulation model. Segregated group 1 

includes the concentration simulation within the bulk solution. Segregated group 2 

includes simulation within the cell. 

A post-processing surface integration was performed on the resulting simulation 

concentration map data to calculate the current over the circular electrode tip surface. For 

a PAC, the tip currents corresponding to more than 100 tip-to-substrate distances, d, were 

calculated following Eq. 2.5:39 

𝑖 = 𝑛𝐹𝐷 ∫ [
𝜕𝑐

𝜕𝑧
]

𝑧 
𝑑𝑎  

𝐴

0
 [2.5] 

In this formula, A is the surface area of the UME disk, n the number of electrons (1) 

transferred in the FcCH2OH oxidation half reaction, F the Faraday’s constant (96,485 

C/mol), and D the diffusion coefficient for FcCH2OH. The resulting tip current was 

normalized with respect to the limiting current at the disk electrode with a distance far 

away from the substrate, 𝑖∞ (taken at a normalized distance of 13 from the cell surface), 

yielding: 

𝐼𝑇 =
𝑖

𝑖∞
  [2.6] 

A PAC was obtained by plotting the normalized tip current (Eq 2.6) versus the 

normalized tip-to-substrate distance (d/r where r is the Pt electrode radius). The PACs to 

the insulator and conductor are plotted in Figure 2.3E and F (blue crosses), respectively. 
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Using the same electrode geometry, a CV was also simulated, which agreed very well 

with that obtained experimentally (Figure 2.5). 

 

Figure 2.5 - (A) Theoretically generated cyclic voltammogram (CV) for a 10 µm 

electrode with an RG of 3, and a FcCH2OH concentration of 0.43 mM. (B) 

Experimentally acquired CV in the FcCH2OH solution. The theoretical CV was 

found to have a steady-state current of 0.636 nA, while the experimental one to be 

0.630 nA. There is close agreement between the experimentally acquired and 

simulated current values. 

2D axially symmetric modeling (Error! Reference source not found. C and D) with the 

same geometry as the above 3D was used to generate PACs to the same insulator and 

conductor. The model is functionally rotated about the axis of symmetry to generate a 

pseudo-3D model of the system under study, Error! Reference source not found.C 59.  

The two PACs (red solid) obtained from this approach are then superposed to those 

generated using the above 3D model. The 3D PACs can be seen overlap very well with 

those created through the 2D axially symmetric method (Error! Reference source not 

found. E and F). Verification of PACs to a flat conductor or insulator substrate was 

carried out using 3D modeling with various RG values. Two sets of PACs to a flat 

conductor and insulator substrates with RG values of 10 and 1.5 are demonstrated in 

Figure 2.6. They overlap very well with the simulated curves by Shao and Mirkin using a 

2D model 60. Because of the great demand on the computer resource, meshing for 3D 
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simulations was not as fine as for 2D simulations. However, convergence plots were 

monitored to ensure meshing error was minimized. 

 

Figure 2.6 - Simulated PACs to a flat conductor and insulator substrates with RG 

values of 10 and 1.5, which overlap very well with the simulated curves by Mirkin et 

al 60 

Experimental PACs are similarly normalized to the bulk solution current value taken 

from the steady state region of a PAC. Experimental PACs are then overlaid on top of the 

simulated theoretical PACs. Theoretical curves are simulated with an absolute distance 

from the substrate designed into the model geometry. Experimental PACs are matched to 

these curves to determine the tip to substrate distance of the closest point in the approach. 

Experimental PACs in this report each represent an individual SECM experiment 

performed on one T24 cell. Each membrane permeability coefficient reported here 

represents an average ± standard deviation where the number of cells is between 6 

and 12 unless otherwise stated.   
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 Live Cell Membrane Permeability 

The geometry for the permeability simulations was configured the same as that of the 

insulator/conductor geometry detailed above. The interior of the ellipsoid cell represents 

its own domain separate from the solution domain, with its own physics and 

concentration settings (Eq. 2.4). Both the bulk and cell domains were also set to have the 

same diffusion coefficient for FcCH2OH. A flux boundary was set across the cell 

membrane separating these two domains. The flux across the membrane was controlled 

by the permeability, Eqs. 2.7 and 2.8: 

𝑖𝑛𝑓𝑙𝑢𝑥𝑐𝑒𝑙𝑙 = 𝑃 ∗ (𝑐𝐵 − 𝑐𝐶) [2.7] 

𝑖𝑛𝑓𝑙𝑢𝑥𝑏𝑢𝑙𝑘 = 𝑃 ∗ (𝑐𝐶 − 𝑐𝐵) [2.8] 

In addition to the above parametric electrode-to-substrate distance movement, membrane 

permeability can also be varied through the parameterization of the permeability 

coefficient (P). This allows for an automated parametric sweep of various permeability 

coefficients to yield a set of PACs.  

 

Figure 2.7 - Probe approach curves (PACs) to a live cell with a large range of 

simulated permeability coefficients, simulated with the electrode centered over the 

cell. 
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The two domains are both subjected to a two-step simulation process as elegantly 

demonstrated by Koley and Bard 34. The first study step is a time-dependent fixed 

geometry simulation. The cell was provided with a 600 s soak time to allow the exterior 

and interior FcCH2OH concentrations to equilibrate. The initial FcCH2OH concentration 

was set as 0.45 mM (bulk solution), and 0.0 mM inside the cell. The fixed geometry 

characteristic ensured the model geometry is not affected by the parametric sweep 

conditions keeping the electrode position fixed. During this step, the electrode was turned 

off by setting the Pt tip as a no flux boundary. The solution of this first step was stored by 

COMSOL to be used as an initial model for the second study step. 

The second study step used a stationary phase. The electrode tip was turned on by 

generating a concentration of 0 M at the Pt disk. The parameterized electrode z and x 

positions allowed for the automated movement of the electrode tip, while the 

parameterized permeability coefficient allowed for the automated configuration of 

membrane permeability. As a result, numerous PACs can be generated from a single 

simulation, limited only by PC workstation memory and compute power. All the other 

boundary conditions remain the same. 

A broad range of permeability coefficients between 0.0 and 1.0 m/s were explored and 

compared (Figure 2.7). The permeability coefficient of P=0.0 m/s overlapped with the 

curve of an ideal insulator, for further model verification. An effective range of 

permeability coefficients was found for experimental PAC permeability characterization 

between 2.5 × 10-5 and 1.0 × 10-3 m/s: these are the two detection limits. Above 1.0 × 10-3 

or below 2.5 × 10-5 m/s, the PACs became similar to each other and difficult to 

differentiate. As a result, it was far more difficult to match experimental PACs in these 

permeability ranges. 

It is important to note that the defined simulation model did not account for forced 

convection occurring at the electrode tip by the motion of the electrode 61. Each 

individual electrode position was simulated as an independent simulation. It is assumed 

that the influences of forced convection were minimal at the electrode scan rate used 

experimentally. 
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2.4 Results and Discussion 

 Mapping Cell Membrane Permeability 

Using the 3D model, I proceeded to demonstrate the potential for use in biological SECM 

studies. Specifically, a series of theoretical PACs were simulated using various 

membrane permeability coefficients at different positions above the elliptical cell. 

Morphology of single T24 cells was monitored using an inverted optical microscope 

(Figure 2.8A). SECM depth images were then taken (Figure 2.8B). PACs were extracted 

from the depth image at the cell center, ½ cell radius, and the edge of the cell for 

comparison to theoretical PACs by simply drawing the vertical cross-section lines in the 

WITec software suite (Figure 2.8C). A PAC was also extracted at 2× cell radius, adjacent 

to the cell (Figure 2.8C). This was performed to determine if there was a strong influence 

from an adjacent cell. 

 

Figure 2.8 - (A) Optical image of a T24 cell under study. (B) A typical SECM depth 

mode image of a Cell with cross sections labelled. (C) Graphical representation of 4 

cross section locations and normalized measurements of an average cell. 

 Membrane Permeability Quantification for Cells Incubated 
with Different Cd2+ Concentrations 

Three different Cd2+ concentrations of 0, 50 and 100 M were utilized for incubation 

with T24 cells for 1 hr. Single live cells after incubation were located optically and the 

SECM probe was positioned above the cells using the inverted microscope. Depth images 
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were obtained following the procedure as described in the experimental section. Figure 

2.9 demonstrates typical depth images of these single cells under study. Vertical cross-

sections of the SECM depth scan image were taken to yield multiple PACs to the cell 

center (green) which can be characterized through traditional 2D-axial simulation 

methods. The blue cross sections were taken at ½ cell radius, and the edge of the cell, as 

well as the point of 2× cell radius. These cross-sections cannot be characterized using a 

symmetrical model geometry, and therefore require the use of the new 3D simulation 

methods. The extracted experimental PACs were overlaid onto the set of theoretical 

PACs simulated at the same geometric position relative to the cell center, Figure 2.10. 

The shape of the experimental PAC changed with the location of each cross-section, 

becoming less pronounced the further the electrode moved from the cell’s highest point. 

It is evident that the simulated PACs follow the same tendency (Figure 2.10). The 

observed trend can be partially attributed to the greater distance from the substrate at 

asymmetric (off-axis) positions. Due to geometry restrictions, an experimental approach 

made to sites other than the highest point of the cell cannot be made to the same distance 

without crashing the electrode into those elevated parts of the cell. Another major 

contributor to the weaker signal is the steep angle of the substrate away from parallel to 

the electrode tip. This occurs more significantly at off-axis positions above the curved 

cell membrane further from the cell’s central axis. The angled sample provides less 

restricted access to the electrode tip, allowing for more FcCH2OH diffusion to the SECM 

probe and to be oxidized at this location.  

 



58 

 

 

 

Figure 2.9 - Typical SECM depth images of single T24 cells after incubation with 0, 

50 and 100 µM Cd2+, respectively. With labelled cross section PAC extractions. 

Green cross section represents cell highest point extraction which can be 

characterized using traditional 2D-Axial simulations, where blue represent cross 

sections requiring off axis 3D simulation. 

For control (no Cd2+ administered) T24 cells, at the cell’s highest point (x = 0) a 

permeability coefficient of 7.2 × 10-5 ± 2.5 × 10-5 m/s was present. At the half radius 

position (x = r/2) the cell membrane permeability coefficient was 7.1 × 10-5 ± 1.0 × 10-5 

m/s. The permeability coefficient at the cell edge (x = r) was found to be 7.9 × 10-5 ± 3.0 

× 10-5 m/s. All three locations over the cell have a relatively consistent permeability 

coefficient around 7.4 × 10-5 m/s, Figure 2.10A, B and C (light blue circles).  

The Cd2+ concentrations of 50 and 100 M in the incubation medium decreased the cell 

membrane permeability (blue and purple circles in Figure 2.10A, B and C). The higher 

the concentration of Cd2+ used, the lower the membrane permeability became within the 

same 1 h exposure duration.  The Cd2+ containing concentrations, 50 µM Cd2+, had 

caused a membrane permeability coefficient decrease to 5.0 × 10-5 ± 2.2 × 10-5 m/s at x = 

0, 4.6 × 10-5 ± 1.0 × 10-5 m/s at x = r/2, and 5.0 × 10-5 ± 1.6 × 10-5 m/s at x = r. All 3 

locations over the cell maintain a membrane permeability coefficient surrounding 4.9 × 

10-5 m/s. The cells incubated with 100 µM Cd2+ had further reduced membrane 

permeability coefficients of 2.5 × 10-5 ± 1.8 × 10-5 m/s at x=0, 2.8 × 10-5 ± 1.9 × 10-5 m/s 

at x = r/2, and 2.5 × 10-5 ± 1.1 × 10-5 m/s at x = r. The 3 observed locations maintained a 
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membrane permeability coefficient averaging 2.6 × 10-5 m/s. The lower permeability 

values seen at higher Cd2+ concentrations have high standard deviations relative to their 

averages. This is due to the permeability values of the PACs being low compared to the 

statistical variation. For example, the 100 µM Cd2+ permeability average taken at x = r, 

was calculated using 11 individual cell PACs fit between 5.0 × 10-5 and the 0.0 × 10-5 

m/s.  

Incubation with higher Cd2+ concentrations within the examined concentration range led 

to lower membrane permeability. This decrease in permeability suggests that the cell 

membrane is contracting, preventing the flux of FcCH2OH across the membrane. This 

results in the decrease in faradic current. A more partial negative feedback or PAC was 

observed with respect to the control T24 cell.  However, once a high enough 

concentration of Cd2+ is used (250 µM, data not shown), the cell membrane no longer 

contracts and begins to relax. This results in a higher flux of FcCH2OH to cross the cell 

membrane, suggesting that too much Cd2+ results in the relaxation of the cell 

membrane.62 Increasing the flux of FcCH2OH across the membrane, will allow for an 

increased in faradaic current to be detected. As a result, the PACs will become more 

partially positive in feedback.  This observation is consistent to a previously published 

study by the Ding Lab of high cadmium concentration injection studies using SECM.35 

While increasing concentrations of Cd2+ (50 and 100 µM) in the incubation medium 

induced changes in membrane permeability, similar to the control, a constant membrane 

permeability at all locations was determined for each cell incubated with the two Cd 

concentrations (Figure 2.10A, B and C). The cross-sections taken at each position over 

the cell, with each Cd2+ incubation concentration surveyed, maintained the same 

permeability coefficient uniformly over the cell surface.  

The observation of uniform membrane permeability across the entire surface of the cell 

was determined using an electrode with a 5 µm radius. This electrode size provides good 

cell definition and a strong current signal for SECM. However, the electrode size is large 

relative to the average cell diameter of 30 µm. This could be providing an average 

membrane permeability of smaller domains of varying permeability. Through the use of 
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SECM with smaller electrodes, coupled with 3D modeling, further analysis into the 

membrane permeability characteristics of single live cells is anticipated. 

 

Figure 2.10 - (A) Extracted experimental PACs along the symmetrical axis to single 

live cells incubated with 0, 50 and 100 µM Cd2+, overlayed with a set of simulated 

PACs.  (B) Simulated and extracted experimental PACs to single live cells at half 

cell radius, which were incubated with 0, 50 and 100 µM Cd2+, respectively. (C) 

Simulated and extracted experimental PACs to single live cells at full cell radius, 

which were incubated with 0, 50 or 100 µM Cd2+, respectively. (D) Simulated and 

Experimental PACs to Petri dish at 2× cell radius and the nearest cells were 

incubated with 0, 50 and 100 µM Cd2+, respectively. 

The experimental and simulated PACs sampled at the off-cell (2r) location were largely 

indistinguishable from each other, yielding the same cell membrane permeability. The 

contribution of the adjacent cell was too weak at the surveyed location to yield a 

sufficient response. All the simulated PACs with various membrane permeability 

coefficients were not distinguishable from one another (Figure 2.10D). The theoretical 
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PACs for the approach above the glass dish (insulator) with the cell adjacent to the site 

yielded curves that were overlapped well with experimental PACs (Figure 2.10D). As a 

result, all simulated curves overlap one another into a similar shape regardless of 

membrane permeability coefficient. 

 Cell Membrane Permeability Change Mechanism 

 

 

Figure 2.11 - Schematic for SECM probe approach experiments toward cell 

membranes with increased FcCH2OH flux (A), non-stimulated FcCH2OH flux (B) 

and decreased FcCH2OH flux (C).   

The injection of large Cd2+ concentrations into the cell-containing experimental solution 

in previous work performed in the Ding Lab35 is similar to acute and lethal exposures for 

live cells. Whereas the incubation of T24 cells with diluted Cd2+ concentrations in this 

research shows similarities to the low chronic exposure in our modern society, which is a 

real challenge for population health in the 21st century.  A prominent example is the 

occurrence of Itai-Itai disease for the people living in the Jinzu river area (Japan) in the 
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1950s, as a result of Cd2+ cytotoxicity due to the ore mining processes contaminating the 

river water.46 For humans, an increase in urinary excretion of Cd2+ is associated with an 

accumulation of Cd2+ in the renal cortex,46 making bladder cells an ideal organ to study 

Cd2+ cytotoxicity. Since we have previously correlated a trend between Cd2+-stressed T24 

cells and membrane permeability,35, 62 we are confident that Cd2+ treatment results in free 

Cd2+ entering the cells, possibly through ion channels and solute carriers.46 It is very 

likely that Cd2+ is disrupting homeostatic levels, resulting in oxidative damage and 

possibly cellular death pathways, such as apoptosis.43, 48, 63  

After Cd2+ stress, the cells were observed to be shrinking in size and volume. However, 

while extracting the PACs at the 3 locations over the cell, we found that the membrane 

permeability remained relatively constant. Membrane permeability can be used to assess 

the membrane integrity of cells, such as dye exclusion viability studies, where an 

impermeable dye can permeate into the cell only when membrane integrity is lost.43, 64-65  

Maintaining membrane permeability throughout the cell (x = 0r, r/2, r, 2r) indicates 

plasma membrane integrity remains constant. Increased FcCH2OH flux as illustrated by 

Figure 2.11A relative to the non-stimulated flux (Figure 2.11B) was not seen at the 

explored concentrations. In contrast, a decreased FcCH2OH flux was observed as 

demonstrated in Figure 2.11C and therefore a decrease in membrane permeability was 

shown. 

2.5 Conclusions 

The development of a 3D simulation model for SECM analysis along with the SECM 

depth imaging allows for mapping membrane permeability of single live cells. Here for 

the first time we were able to extract permeability coefficients at any positions over the 

cell. It is expected that adjacent cells with a distance more than 2× cell radius will not 

interfere the determination of cell membrane permeability coefficients. The Cd2+ that has 

entered a cell might activate cell apoptosis. Initial signs of this include cells shrinking in 

size and volume, and a decrease in the membrane permeability. While the membrane 

permeability of FcCH2OH with a 5 µm radius electrode was consistent across the T24 

cells, this scenario is not necessary the case for all cellular studies. Smaller SECM probes 
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will enhance the image resolution and reveal membrane characteristics above organelles 

or smaller cell structures. 3D simulation models presented here are robust and can 

become greatly advantageous in single live cell studies. 
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Chapter 3  

3 Tracking Live Cell Response to Hexavalent Chromium 
Toxicity by Scanning Electrochemical Microscopy 

This study explores the effects of Cr (VI) on live-cell response. Human bladder cancer 

(T24) cells are incubated with varying concentrations of Cr(VI) and cell membrane 

permeability is monitored by using membrane-permeable and -impermeable redox 

mediators, ferrocenemethanol and ferrocenecarboxylic acid, respectively (see picture). 

Change in membrane permeability correlates with changes in cell viability. 

The effects of exposure to toxic heavy metals, such as chromium, are of interest in 

scientific research, owing to the association with oxidative stress, cytotoxicity, and 

carcinogenicity. This study aims to explore the effects of Cr (VI) on live-cell responses. 

Herein, scanning electrochemical microscopy (SECM) is employed by using depth scan 

imaging and feedback mode to monitor the membrane permeability of single live human 

bladder cancer (T24) cells following 1 h incubations with Cr (VI) stimuli. By using 

membrane-permeable and -impermeable redox mediators, ferrocenemethanol and 

ferrocenecarboxylic acid, respectively, SECM depth scans yield both electrochemical and 

topographic information. This provides insights into the relative changes in membrane 

homeostasis with increased exposure to Cr (VI). Here, SECM has shown great power in 

determining membrane response to Cr (VI) exposure. Dependent on the level of 

exposure, transition between three distinct trends was observed. At low incubation 

concentrations of Cr (VI), the cell membrane permeability coefficients were relatively 

unaffected. With moderate increases in Cr (VI) concentrations, membrane permeability 

coefficients of the incubated cells were observed to decrease. Finally, with the higher 

incubation concentrations, membrane permeability coefficients were found to increase 

toward values similar to control cells. The Cr (VI) toxicity was further investigated by 

(A version of this work has been published in ChemElectroChem  

Henderson, J. D.; Filice, F. P.; Li, M. S. M.; Ding, Z. F. 2017, 4, 856-863.)  
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means of a MTT cell viability study, which exhibited a similar decreasing trend to the 

cell membrane permeability. These findings further demonstrate the strength of SECM as 

a bioanalytical technique for monitoring cellular homeostasis. 

3.1 Introduction 

Due to the increasing environmental concentrations of heavy metals,1-2 research efforts 

have focused on the biological effects of their exposure. In the case of chromium (Cr), 

the resulting oxidative stress, cytotoxicity, and carcinogenicity associated with many Cr-

containing complexes have been extensively studied.1, 3-7 Chromium is most commonly 

found in the stable hexavalent or trivalent oxidation states, Cr (VI) and Cr (III), 

respectively. Exposure to Cr (VI) occurs mainly through anthropogenic sources, due to its 

heavy use in chrome plating, welding, and leather tanning processes.1 The heavy use of 

Cr in industrial processes has resulted in the environmental contamination of 

groundwater and soil.1, 8 In addition, non-occupational sources of exposure commonly 

include housewares, automobile emissions and cigarette smoke.  

Regarded as the most toxic of the commonly occurring oxidation states, Cr (VI) has no 

essential biological role. Instead it leads to detrimental health effects caused by two main 

mechanisms: the introduction of genomic instability and the generation of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS).7, 9 Cr (VI) species readily 

enter cells through non-specific phosphate/sulfate transporters, later undergoing an 

intracellular reduction to Cr (III).3, 10 The reactive intermediates formed during this 

reduction process (Cr (V), Cr (IV), and Cr (III)) have been observed to react with DNA 

forming a variety of DNA-adducts.1 This process results in high genomic instability in 

cells following Cr (VI) exposure.1 In addition, exposure to Cr (VI) has been associated 

with increased ROS concentrations.9 ROS have an important role in cell signaling and 

other biological processes. Disruptions in homeostatic levels of ROS can affect many 

essential processes, such as cell proliferation, DNA damage and anti-inflammatory 

responses.9 Elevated levels of ROS have also been associated with oxidative damage to 

cellular structures by lipid peroxidation as well as oxidative DNA damage and strand 

breaks.9, 11-12 Defense mechanisms in place to combat oxidative stress, such as the 
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enzyme superoxide dismutase and the antioxidant molecule glutathione, may become 

overwhelmed with high levels of exposure.9  

Warranted by increases in environmental pollution largely focused on water 

contamination, a number of studies have examined the effects of Cr toxicity on marine 

life.2, 6, 13-14 In mammals exposed to Cr (VI), like with other heavy metals, accumulation 

and adverse health effects have been observed in the kidney, liver, and lungs.7, 15-16 

Monitoring levels of exposure, commonly done through urine content, has been reported 

to demonstrate a substantial half-life of ~10 years.16 Due to Cr (VI)’s ability to cause 

biological damage and its long half-life required to exit the body through the urinary 

tract, my current study has focused on the bladder as a model system. By using a human 

urinary bladder cancer (T24) cell line, I aim to investigate the effects of Cr toxicity on 

membrane homeostasis. 

Previous studies focusing on the effects of Cr toxicity on cellular processes have relied 

heavily on conventional fluorescence microscopy techniques. Fluorescent techniques 

used to monitor dynamic cellular processes are limited in that they require special 

precautions in order to avoid light-induced ROS production, possibly leading to cellular 

damage.17-18 This requires careful selection of dyes (or tags) whose excitation is of long, 

low energy wavelength light. However, these specialized fluorescent dyes are often 

expensive or may require a costly synthesis. In addition, these fluorescent techniques are 

often destructive, and samples must be discarded following measurement. Scanning 

electrochemical microscopy (SECM) has advantages in the study of live cells as cellular 

homeostasis remains unchanged given an appropriate non-toxic mediator is selected. The 

non-destructive, non-invasive nature of SECM as a method of monitoring dynamic 

cellular processes allows for the measurement of living unaltered biological samples. By 

operating SECM in depth scan mode, topographic information is provided in addition to 

electrochemical activity details collected characterizing cellular process. 

SECM is a powerful scanning probe microscopy technique which benefitted greatly from 

the seminal work accomplished by Bard et al. since 1989.19-20 This technique is used to 

monitor the electrochemical behavior of a sample based on the generation/regeneration of 
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the mediating species at a working electrode, commonly an ultramicroelectrode (UME) 

or nanoelectrode. In its applications to live cells, by operating in feedback mode, dynamic 

cellular processes can be observed by monitoring relative changes in faradaic current. As 

the UME approaches the cellular membrane, a current drop is commonly observed as the 

membrane hinders diffusion to the electrode tip (negative feedback). SECM can use this 

phenomenon in conjunction with a membrane permeable electrochemical mediator, to 

characterize and monitor membrane permeability of the cell. Approach to a more 

permeable membrane will exhibit a much smaller decrease in current, as the mediator is 

able to move through the cell interior and replenish mediator at the electrode tip. The 

UME tip current relative to distance from the membrane is commonly reported as a probe 

approach curve (PAC). Coupled with finite elemental analysis simulations of the 

electrochemical system, a quantitative cell membrane permeability can be obtained. Both 

electrochemical mediators used to determine membrane permeability in this study 

(ferrocenemethanol and ferrocenecarboxylic acid) have been shown to have no 

detrimental effects on the studied cell line over the experimental timeframe.21-22 

The practice of SECM is not limited to biological samples, as it has been employed in a 

vast number of applications23 including but not limited to kinetic studies,24 surface and 

interface studies,25-26 microstructure fabrication,27-28 as well as the mentioned biological 

applications such as cellular imaging,29-30  membrane transport,31-34 multidrug 

resistance,35-36 ROS and RNS mapping,30, 37-40 and cellular redox processes.41-47 

Herein, I examine the effects associated with exposure to potassium dichromate 

(K2Cr2O7) on cell membrane permeability and cellular viability. SECM can provide 

localized membrane permeability study of single live cells making it a powerful 

bioanalytical tool. 

3.2 Experimental Section 

 Materials 

FcCH2OH (97%), FcCOOH (97%), potassium chloride (KCl, 99%), and K2Cr2O7 (99%) 

were purchased from Sigma-Aldrich Canada and used without further purification. 
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SECM mediator solutions containing 0.9 mM FcCH2OH with 0.1 M KCl were prepared 

in deionized water (18.2 MΩ.cm, MilliQ water, Millipore, Etobicoke, ON), while 0.5 

mM FcCOO- stock solutions were prepared in 1× phosphate buffered saline (PBS, Life 

Technologies, Burlington, ON). Stock solutions of 0.25 M K2Cr2O7 were prepared using 

autoclaved deionized water (18.2 MΩ.cm, MilliQ water, Etobicoke, ON) and syringe-

filtered through sterile 0.2 μm Supor® Membrane (PALL Life Sciences, Mississauga, 

ON). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was acquired 

from R&D Systems Inc. (Minneapolis, MN) in the TACS® MTT Cell Proliferation 

Assay Kit.  Spectroscopic grade dimethyl sulfoxide (DMSO) was used to dissolve the 

formazan crystals (Caledon Laboratory Ltd, Georgetown, ON). 

 Cell Preparation 

Human bladder cancer cells (T24 cells (HTB-4™)) were acquired from American Type 

Culture Collection (ATCC, Manassas, VA, USA) and maintained according to ATCC 

protocol. These cells were incubated in McCoy’s 5a medium (ATCC, Manassas, VA, 

USA), modified with 10% fetal bovine serum (Invitrogen, Burlington, ON). For SECM 

live cell experiments, T24 cells were aliquoted directly onto glass bottom Petri dishes 

(P50G-0-30-F, MatTek Corporation, Ashland, MA, USA). An hour prior to SECM 

testing, K2Cr2O7 (stock solution) was injected into the growth medium in the desired 

concentrations for K2Cr2O7 testing. The growth medium was then decanted and the cells 

were washed twice with 1× PBS prior to replacement with the mediator solution for 

SECM experiments.   

 Cellular Viability  

Cellular viability following 1 hr exposure to K2Cr2O7 was tracked using the MTT assay.48 

The MTT tetrazolium dye (yellow) is capable of moving into cells and is reduced in 

healthy cells to produce formazan crystals (purple). These crystals can be dissolved and 

detected using a spectrophotometer.  

Briefly, 2 × 104 T24 cells were plated onto Corning Scientific Costar™ 96-well polystrol 

flat bottom plates and grown for 24 hr. The medium was then replaced with fresh 
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medium containing varying concentrations of K2Cr2O7. Sodium dodecyl sulfate was used 

as a positive control for the assay at 0.05, 0.10, 0.15, and 0.20 mg/mL. Wells containing 

no cells (blank wells) were also prepared to allow for the removal of background medium 

effects and treated following the full MTT protocol. 

Following K2Cr2O7 treatment (1 hr), the growth medium was replaced with 100 µL of 

fresh medium (absent of phenol red) and 10 µL of the MTT reagent. Following 

incubation for 6 hr, the MTT solution was removed and replaced with 50 µL of 

spectroscopic grade DMSO to dissolve the formazan crystals.  The absorbance (Abs) at 

540 nm was read by a M1000 PRO plate reader (Tecan, Switzerland) following 1 s of 

shaking at 2 mm amp and 654 rpm.  The effects of FcCOOH and FcCH2OH have been 

investigated elsewhere and determined to be non-toxic during these experimental 

conditions.22 

 SECM Instrumentation and Experimental Procedure 

A detailed description of the SECM instrumentation and experimental procedures can be 

found in Chapter 2 section 2.2.5.49 Briefly, SECM experiments were carried out using an 

Alpha-SNOM (WITec, Ulm, Germany) outfitted with a specially fabricated UME and a 

micro-incubator Petri dish mount (Bioscience Tools, San Diego, California, USA). The 

inverted objective lens (50×, N.A. 0.55, W.D. 10.1 mm, Nikon, Japan) located below the 

cells, assisted in the positioning and optical imaging of both the UME and cells. High 

resolution UME manipulation was achieved through the WITec piezoelectric servo 

controller. Electrochemical instrumentation consisted of a CH Instruments 

Electrochemical Analyzer (CHI800B, Austin, TX) and CHI200 Picoamp Booster to 

reduce signal noise. A simple two-electrode set-up was used with the working electrode 

defined as the UME and the reference/counter couple as a Ag/AgCl electrode. All 

potentials reported in this report are vs. Ag/AgCl. 

Before each experiment, cyclic voltammetry (CV) was used to test for steady-state 

performance of the UME probe. The Petri dish containing the K2Cr2O7-treated cells (30-

40% confluency) was then secured to the heating stage mount maintained at 37.0 ± 0.2 
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˚C. Each Petri dish was analyzed for a maximum duration of 60 min. Identified through 

CV, a biased UME tip potential of 0.3 V for FcCH2OH and 0.4 V for FcCOO- was used 

to obtain their steady state current. SECM analysis of all samples was performed at a 

maximum UME tip speed of 21.4 µm/s, to limit the effects of forced convection and 

maintain steady state current.50 SECM was performed on the desired cells using the depth 

scan imaging.  Depth scan analyzes a 2D region of space by moving the electrode in the 

x-z plane and produces real time probe-to-cell distance information. This allows the 

prevention of collisions and the acquisition of hundreds of PACs per single scan. 

Manipulation of depth scan parameters, such as x and z movement distance, and image 

resolution, was made possible through the WITec software. 

 Simulation 

 

Figure 3.1 - (A) 3D model of the SECM approach to an isolated cell with key 

features, boundaries, and domains labeled. (B) Meshed 3D model. (C) Surface 

concentration map of the bulk solution domain following computation. (D) Zoomed 

in and labelled view of the surface concentration map displayed in C, focusing on 

the electrode tip in close proximity to the cell membrane. 
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Theoretical PACs were obtained using COMSOL Multiphysics (v5.2). A 3D model of the 

experimental SECM setup was generated, with a symmetry plane through the center of 

the UME and cell (Figure 3.1A). Dimensions of the electrode were specified to recreate 

the physical model of the UME (10 µm Pt diameter, RG3). Cells were surveyed optically 

to determine the average T24 cell size (86 cells). The long axis of the cell has an average 

diameter of 26.33 ± 0.62 µm, while the shorter axis was determined to be 18.23 ± 0.39 

µm. The average cell height was determined previously to be 8.7 ± 3.3 µm.22 Therefore, 

the model cell was represented as a quarter 3-dimensional ellipsoid with radii y = 13.5 

µm, x = 9.0 µm, and z = 8.0 µm. 

The COMSOL model geometry was then meshed using a free tetrahedral mesh. The size 

of the mesh is directly related to the accuracy of the finite element analysis simulation 

(Figure 3.1B). Therefore, areas where the concentration change is the most significant 

(i.e. the UME Pt surface and the cell membrane) were meshed much finer than bulk 

solution. 

Two independent domains were identified for the bulk solution (CB) and the cell’s 

interior (CC), which were provided concentrations matching the initial conditions (CB = 

0.45 mM FcCH2OH or CB = 0.50 mM FcCOOH; CC = 0 M FcCH2OH or FcCOOH).  

For the mediators, FcCH2OH and FcCOOH, a one-electron oxidation reaction will occur 

under adequate potential bias. This is recreated in the simulation by defining a mediator 

concentration of zero at the biased Pt surface. Since the oxidation of the mediator is a 

diffusion-controlled process, its concentration at the UME tip can be described by Fick’s 

second law of diffusion (Eqs. 3.1 and 3.2). 

𝜕𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑥2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑦2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑧2 ) [3.1] 

𝜕𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑥2
+

𝜕2𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑦2
+

𝜕2𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑧2
) [3.2] 

Defining the cell membrane as a flux boundary (Eqs. 3.3 and 3.4) allowed for the two 

domain concentrations to approach equilibrium during the time study step (discussed 
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later) while a constant supply of mediator was provided by the bulk solution boundaries 

(see Figure 3.1). The flux across the membrane boundary is dependent on a permeability 

coefficient (P) and the concentration difference. 

𝑓𝑖𝑛 = 𝑃(𝐶𝐵 − 𝐶𝐶) [3.3] 

𝑓𝑜𝑢𝑡 = 𝑃(𝐶𝐶 − 𝐶𝐵) [3.4] 

Each cell membrane permeability simulation consists of two individual study steps 

carried out in sequence: a time-dependent study step and a stationary phase study step. 

The time-dependent study step was conducted over a 10 min simulated timeframe. 

During this study step, the Pt electrode surface was defined as a no-flux boundary, 

simulating the unbiased or ‘turned off’ state. This allows the mediator concentrations in 

CB and CC to approach equilibrium (Eqs. 3.3 and 3.4). The concentration profile 

generated by the time-dependent study step was saved by COMSOL and carried forward 

as an initial condition in the stationary phase simulation. In this step the UME was biased 

or ‘turned on’ and approached toward the cell membrane. While lowering the 

parameterized electrode toward the cell, COMSOL generated concentration maps for 

each defined electrode height (Figure 3.1 C and D). 

Parameterizing the model definitions, electrode height (z-axis) and permeability 

coefficient, allows for the automated simulation of a single SECM depth scan 

experiment.  These nested parameters allowed for the simulated depth scans, each with a 

different permeability coefficient, generating a complete set of PACs within a single 

simulation run.  

Concentration information at the electrode tip was obtained by integrating the flux to the 

Pt surface at each simulated electrode position. As displayed in Eq. 3.5, the current (i) 

measured depends on the concentration gradient (𝜕𝐶𝐵 𝜕𝑧⁄ ), the number of electrons 

transferred (n) and the disk radius (a). 

𝑖 = 2𝜋𝑛𝐷𝐹 ∫ 𝑟 [
𝜕𝐶𝐵(𝑟,𝑧,𝑡)

𝜕𝑧
]

𝑎

0
𝑑𝑟 [3.5] 
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The other constants considered are the Faraday constant (F = 96,485 C/mol) and the 

diffusion coefficient of the species (D). The diffusion coefficient for FcCH2OH in both 

domains was set to 7.6 × 10
-10 m

2
/s and 5.7 × 10

-10 m
2
/s for FcCOOH.21, 51-52 

Theoretical and experimental PACs were normalized and plotted together to allow 

quantification of membrane permeability coefficients. By convention, current is 

normalized to the current observed at a theoretically infinite distance (normalized 

distance to sample ≥ 10). The distance is normalized to the UME critical radius used 

experimentally (5 μm). 

3.3 Results and Discussion 

 Quantification of Membrane Permeability 

By examining SECM depth scan images of K2Cr2O7-treated T24 cells (Figure 3.2), 

changes in cellular topography can be monitored.  In these SECM images, it can be seen 

that when the UME was far from the cell (several tip radii away), the detected tip current 

remained typical of the steady state, diffusion-controlled current (black). However, as the 

UME approached the cell, the cell’s topography began to influence the electrochemical 

current (yellow, Figure 3.2). The cell effectively limited the diffusion of the redox species 

to the UME tip.  

For cells incubated with 0 (control) and 1000 μM K2Cr2O7 (Figure 3.2 A and C), cells 

displayed relatively flat topography. While for cells treated with 100 μM K2Cr2O7, the 

topographic coverage decreased relative to control cells (became more rounded). This can 

be best visualized by extracting the horizontal line scan above the cell and the dish 

(Figure 3.2). These observations were consistent with their respective optical images (see 

Optical Observations Section 3.3.5). 

Vertical cross-section lines extracted from the depth scan images (black arrows, Figure 

3.2A-C) provided the unnormalized experimental PACs. Once normalized, these PACs 

can be quantified through successful overlay against the theoretical set of permeability 

curves. Experimental PACs were extracted to the tallest (or largest) point of the cell’s 
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electrochemical feedback to provide higher accuracy in its quantification (smaller tip-to-

sample distance). Additionally, since the membrane permeability of cells was previously 

demonstrated to be consistent across the entire cell using a 10 µm Pt UME (RG3),49 

PACs extracted with slight deviations from the cell center exhibit negligible deviation in 

PAC shape due to geometry.  

 

Figure 3.2 - Typical depth scan images of T24 cells incubated with 0, 100, and 1000 

μM K2Cr2O7 (A–C), respectively for 1 hr.  The blue scale bar in the SECM images 

represents 10 µm. The black arrows overlaying depth scan images display vertical 

cross-sections used to extract permeability information. The inset current scale bars 

display the normalized current of extracted PAC. A horizontal cross section of each 

cell is provided at a normalized distance of 0.7 from the cell surface. These SECM 

images were collected using a 10 µm Pt UME with an RG of 3. 

 Ferrocenemethanol (FcCH2OH) Serving as the Mediator 

FcCH2OH is partially permeable to the cell membrane under normal control conditions 

(81 ± 17 µm/s, Figure 3.3). FcCH2OH strikes a delicate balance between hydrophobicity 

and hydrophilicity. It is hydrophobic enough to enter the interior of the cell membrane 

without being repelled, but hydrophilic enough to not be trapped in the hydrophobic 
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interior of the membrane. Overall, the membrane response of K2Cr2O7-treated T24 cells 

was minimal when incubated with low concentrations of K2Cr2O7 (< 50 µM, Figure 

3.3A). It is suspected that the membrane stability within this concentration range 

indicates that the cellular defense mechanisms are able to sufficiently manage the toxic 

effects of K2Cr2O7 within the 1 hr treatment period. These cells also displayed no obvious 

morphological changes when compared to the control cells.  

As the concentrations of the administered K2Cr2O7 increased (50-500 µM), the 

membrane permeability decreased in two distinct steps (Figure 3.3B). The initial decrease 

(50-100 µM) lowered the average permeability coefficient to 50 μm/s. The second 

decrease (250-500 µM) matched an average permeability coefficient of 25 μm/s. These 

changes in membrane permeability (lowering) suggest that the cellular defense systems 

are working to counteract the K2Cr2O7-treatment.  

Another explanation is that a decrease in the cell’s surface area is causing a decrease in 

phospholipid spacing. With a closely packed phospholipid bilayer, passive diffusion of 

FcCH2OH will become increasingly difficult. Membranes with closely packed 

hydrophilic heads will prevent the flux of the relatively hydrophobic mediator, 

FcCH2OH. Together, the morphological observations (Figure 3.2) and the membrane 

permeability response findings (Figure 3.3) support this possible explanation. However, 

the decrease in permeability is likely caused by some complexity of mechanisms.  
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Figure 3.3 - Overlap of experimental PACs with the theoretical ones with definite 

permeability coefficients, displaying regions of (A) stable, (B) decreasing, and (C) 

increasing membrane permeability following 1 hr of K2Cr2O7 incubation. 

At the highest examined concentrations (500-1000 μM K2Cr2O7), the membrane 

permeability increased in two increments (Figure 3.3C). The first increase occurred at 

750 μM treatment and matched the simulated permeability coefficient of 50 μm/s. This 

was followed by a second increase found at the 1000 μM K2Cr2O7-treatment, which 

matched the control cell’s permeability coefficient of 75 μm/s.  
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It is possible that the increase in membrane permeability is due to the overwhelming of 

the antioxidant defense systems of the cells, since it is well known that the intracellular 

reduction of Cr (VI) to Cr (III) leads to increased ROS generation.7, 9  Increased ROS can 

lead to changes in cellular structure by the disruption of cell signaling pathways, lipid 

peroxidation, and DNA damage.1, 3, 9 In particular, lipid peroxidation has been 

demonstrated to drastically change membrane characteristics by increasing the number 

polar functional group within the internal membrane region.11-12 Increased internal 

membrane polarity will result in decreased membrane fluidity with respect to 

hydrophobic species, such as FcCH2OH, due to increasing difference in polarity. 

Another possible contributing factor to increased membrane permeability is that the 

increased oxidative stress and DNA damage may lead to cell death via apoptosis or 

necrosis. Apoptosis has been reported to occur in a number of mammalian cell lines 

following exposure to Cr (VI).3, 7 It may also be possible that excessive membrane 

damage via lipid peroxidation is resulting in a loss of membrane integrity and perhaps 

cellular death by necrosis. However, as part of the experimental design, the Petri dishes 

were thoroughly rinsed following metal exposure, likely detaching and removing dying 

or dead cells. As a result, my current study focuses on the membrane trend of remaining 

living cells. It is possible that the cellular anti-oxidant systems, such as superoxide 

dismutase, catalase, and glutathione peroxidase, inadequately deal with the resulting 

elevated levels of ROS, likely impacting cellular function. 

 Ferrocenecarboxylic Acid (FcCOO-) Serving as the Mediator 

Since FcCOO- is more hydrophilic than FcCH2OH, and is charged in nature, it is unable 

to cross the cell membrane. Therefore, using FcCOO- as the redox mediator in bio-SECM 

allows for a more detailed imaging of the cell’s topography under control conditions, as it 

is largely independent of the effects of membrane permeability. It can also serve as an 

indicator for significant disruptions in cell membrane performance. Figure 3.3 displays 

representative PAC curves, for exposure to various K2Cr2O7 concentrations in the 

presence of FcCOO-. 
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Following 1 hr K2Cr2O7 treatment of concentrations less than 500 μM (0, 10, 50, and 250 

μM), no detectable changes in permeability were observed (0 m/s, Figure 3.4A). In such 

cases, the mediator was impermeable to the phospholipid bilayer. At the higher 

concentrations of this range (50 and 250 μM), a decrease in permeability coefficient was 

found while using FcCH2OH; however, the detection of such a change is not possible 

with FcCOO- (since P = 0 m/s). It is for this reason FcCOO- is suitable only for detection 

of significant damage to membrane integrity, and cell topography studies. Membrane 

stability, as discussed previously, is a result of the cellular defense systems remaining 

capable of compensating for any increases in ROS from Cr (VI) exposure. 

At higher concentrations of treatment (500–1000 μM), an increasing trend in 

permeability was observed (Figure 3.4B). This trend was similar to that of the FcCH2OH 

study. When incubated with 500 μM K2Cr2O7, the membrane permeability coefficient 

increased to 25 μm/s. Treatment of the T24 cells with 750 μM K2Cr2O7 increased the 

membrane permeability coefficient to 200 μm/s. The highest concentration sample 

(incubated at 1000 μM K2Cr2O7) had a membrane permeability coefficient of 500 μm/s. 

This shows a trend of membrane permeability gradually increasing with increased Cr 

(VI) concentration. The cause of the permeability increase is attributed to the 

overwhelming of anti-oxidant defense systems, a rise in levels of ROS and subsequent 

lipid peroxidation.  



83 

 

 

 

Figure 3.4 - Overlap of experimental PACs with the theoretical ones with definite 

permeability coefficients, displaying regions of (A) stable and (B) increasing 

membrane permeability following 1 hr of K2Cr2O7 incubation. 

 Trends in Permeability Coefficient Change 

A complete set of membrane permeability data was obtained for each incubation 

concentration to provide an average membrane permeability coefficient (N > 4 cells). The 

calculated average permeability coefficients for K2Cr2O7 using both the partially 

permeable FcCH2OH and impermeable FcCOO- mediators were plotted against their 

respective incubation concentrations (Figure 3.5). To clearly visualize the membrane 

response trend, a logarithmic scale was used to sufficiently space the incubation 

concentrations along the x-axis. 

The trend in permeability coefficient change determined for incubations with K2Cr2O7 

was found to agree with those discussed previously (Figure 3.3 and Figure 3.4). Figure 

3.5A displays the three distinct regions of membrane response using FcCH2OH as the 
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redox mediator. A relatively stable region (~75 µm/s) was observed for incubations 

below 50 µΜ incubations with K2Cr2O7 (region a). Incubations of 50–500 μM K2Cr2O7 

resulted in the loss of membrane stability and a region of decreasing permeability 

coefficient was observed (region b). Beyond 500 μM incubations (750, 1000 μM) the 

permeability coefficient returned to a permeability coefficient similar to control status 

(region c). 

Similarly, when the membrane permeability of K2Cr2O7-treated T24 cells were 

investigated using FcCOO- as the redox mediator (Figure 3.5B). Stability was observed 

(0 m/s, region a) across all concentrations occupied by regions a and b in the FcCH2OH 

trend. This trend was expected, as the FcCOO- is both charged and hydrophilic, making it 

impermeable to a healthy cell membrane. While FcCH2OH may exhibit a decrease in 

permeability, the membrane permeability to FcCOO- cannot succeed lower than 0 m/s.  

The 500 μM K2Cr2O7 concentration appears to be a turning point for 1 hr incubations of 

T24 cells with K2Cr2O7. The permeability of the FcCOO- increased following this 

concentration (up to 400 µm/s, region c), similar to that observed with FcCH2OH.  
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Figure 3.5 - Graphical representation of the membrane permeability change vs 

K2Cr2O7 incubation concentration, acquired with (A) FcCH2OH and (B) FcCOOH 

mediators. Three regions of (a) stable, (b) decreasing, and (c) increasing 

permeability coefficients are labeled and separated by the grey dashed lines. 

 Optical Observations 

Using the inverted optical microscope integrated into the SECM set-up, single cells were 

located and imaged at different incubation concentrations of K2Cr2O7, while in the 

presence of FcCH2OH and FcCOO-. The two mediators showed no visible effect on the 

cells and therefore further discussion focuses on the impact of Cr (VI) exposure. Optical 

observations made on typical control cells revealed distinct cellular features (Figure 

3.6A). The morphology of the control T24 cells provided a benchmark for comparison to 

the K2Cr2O7-treated cell samples. On average, as incubation concentrations reached 100 

μM K2Cr2O7 (Figure 3.6B), the visible features on the cells receded in comparison to the 

control cells. Cells were observed to become more rounded with exposure. As incubation 

concentrations continued to increase, the features seen in control cells were found to 

return. This is clearly demonstrated in the optical image of average cells incubated with 
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1000 μM K2Cr2O7 (Figure 3.6C). The incubation of T24 cells with higher concentrations 

of K2Cr2O7 yielded decreased populations (confluency) of healthy cells. Since viability 

was affected, it is assumed that a greater number of unhealthy cells that were loosely 

bound to the Petri dish were removed during the washing process (see Chapter 3.2.4 

SECM Instrumentation and Experimental Procedure). 

On average, control cells were found to exhibit several features and were spread over a 

large area of the Petri dish. Following incubations at intermediate concentrations, the 

average cell shape was observed to become more rounded by both optical and depth scan 

observations. The featureless optical images and a decrease in membrane coverage 

suggest the contraction of cellular membrane morphology. Exceeding intermediate 

concentrations caused the average T24 cell to return to a status similar to that of the 

control cells.53  

 

Figure 3.6 - Typical (A-C) optical images of T24 cells incubated with 0, 100, and 

1000 µM K2Cr2O7, respectively. The scale bar in the images represent 40 µm. These 

were taken from the same SECM scans shown in Figure 3.2. 

 MTT Cell Viability Study of T24 Cells Incubated with K2Cr2O7 
for 1hr 

Since membrane permeability was affected by the additions of K2Cr2O7 stressor, it was 

important to assess the viability of the cells. The use of a well-established method of cell 

viability analysis, such as the MTT cell viability assay,54 provided a large scale 

determination of overall health and wellness of the T24 samples (Figure 3.7). The healthy 
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population of cells exposed to various concentrations of heavy metal stressor for 1 hr, 

were compared to the healthy population of an untreated sample from the same culture 

over the same timeframe (Eq. 3.6). 

𝑐𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  (
𝐴𝑠𝑎𝑚𝑝𝑙𝑒−𝐴𝑏𝑙𝑎𝑛𝑘

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐴𝑏𝑙𝑎𝑛𝑘
)  100% [3.6] 

Low concentrations of K2Cr2O7 were observed to have little effect on cell viability. 

Concentrations below 10 µM were found to be within the error bars of the untreated 

control and each other, over the course of the 1 hr incubation. As K2Cr2O7 concentration 

increased past 10 µM, a gradual decrease in cell viability was observed. This confirms 

that a relationship between K2Cr2O7-treatment and cellular death exists in the T24 cell 

line. Similar to this cellular viability trend, the SECM-determined membrane 

permeability to FcCH2OH indicated significant change following treatment with 25 µM 

K2Cr2O7 (Figure 3.5A). The effects of the Cr (VI) stressor can be observed using both 

experimental methods at the same concentration range. This indicates that the disruptions 

in membrane permeability may be related to the internal disruption in cell homeostasis, as 

observed by MTT cell viability assay.  If internal processes are influenced by the 

presence of the Cr (VI), whether by ROS production or some other means, the effects of 

this stressor are apparent on the membrane integrity of the cells. 
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Figure 3.7 - Cell viability of T24 cells treated with a wide range of concentrations of 

K2Cr2O7 for 1 hr, between 0 µM and 3000 µM. Cell viability measured by MTT cell 

assay. Represented as Mean ± Standard Error of 4 separate experiments (4-8 

replications per experiment). 

3.4 Conclusions 

By use of SECM, a powerful non-invasive technique for monitoring live cells, the 

membrane response of T24 cells following exposure to Cr (VI) was successfully reported 

here. Through comparison of experimental data with theoretical PACs, relative changes 

in membrane permeability coefficients were determined.  

Using FcCH2OH as the SECM mediator, Cr (VI) exposure lead to the discovery of three 

distinct concentration-induced membrane permeability regions. With low Cr (VI) dosages 

(0-50 µM), membrane permeability coefficients were found to be relatively stable, 

displaying little change compared to control cells. Exceeding low level exposure (50-500 

µM), the permeability coefficients decreased. Ultimately with higher (acute) exposure 

(500-1000 µM), the permeability coefficients increased and returned to values similar to 

that of control cells. These results agree well with another study in which the T24 cells 
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were treated with Cd (II) as the toxic metal.49 However, the response triggered by both Cr 

(VI) and Cd (II) was found to differ in the concentrations required to initiate each 

permeability region. These results confirmed that Cr (VI) is less toxic than Cd (II). 

The occurrence of significant membrane damage was confirmed using FcCOO- as the 

SECM mediator.  FcCOO- is initially impermeable to the cell membrane and becomes 

permeable only with significant membrane integrity loss.  The MTT cell viability assay 

confirmed a relationship between cellular death and Cr (VI) exposure. This current study 

indicates SECM may prove useful in exploring the membrane response in cells to various 

stimuli. This bioanalytical method is by no means limited to T24 cells and can be applied 

to other biological systems, such as other cell lines or tissues.   
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Chapter 4  

4 The Effects of Chronic Exposure to Hexavalent 
Chromium on Single Live Cells Interrogated by 
Scanning Electrochemical Microscopy  

Chromium is a useful heavy metal which has been employed in numerous industrial and 

home applications. However, there are several known health risks associated with its 

uses. Cr (VI) is a toxic heavy metal which serves no essential biological role in humans. 

It has been associated with oxidative stress, cytotoxicity, and carcinogenicity. 

Contamination of groundwater or soil due to improper handling lead to long term 

environmental damage. This study explores the effects of long duration chronic exposure 

to Cr (VI) on live human cells. Herein, scanning electrochemical microscopy (SECM) 

depth scan imaging was employed to monitor the membrane permeability of single live 

human bladder cancer (T24) cells following incubation with various Cr (VI) 

concentration stimuli. SECM was used to provide insights into the long duration effects 

on membrane homeostasis of individual cells exposed to constant levels of Cr (VI). 

Further investigation of total population viability was performed by MTT assay. 

Dependent on the exposure time, transition between three distinct trends was observed. 

At short incubation times (≤1-3 hr) with low concentrations of Cr (VI) (0-10 µM), 

membrane permeability was largely unaffected. As time increased a decrease in 

membrane permeability coefficient was observed, reaching a minimum at 3-6 hr. 

Following this a dramatic increase in membrane permeability was observed as cell 

viability decreased. Higher concentrations were also found to accelerate the timeframe at 

which these trends occurred.  These findings further demonstrate the strength of SECM 

as a bioanalytical technique for monitoring cellular homeostasis. 

(A version of this work has been published in the Journal of Bioinorganic Chemistry 

Filice, F. P.; Li, M. S. M.; Wong, J. M.; Ding, Z.. 2018, 182, 222-229.) 
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4.1 Introduction 

Chromium is an important industrial element, used in leather tanning, chrome plating, 

steel manufacture, welding, production of pigments and dyes, as well as ore and 

petroleum refining processes.1 Chromium is most commonly found in its stable metallic, 

hexavalent or trivalent oxidation states, Cr(0), Cr (VI) and Cr (III), respectively. The 

heavy use of Cr in industry processes has resulted in the environmental contamination of 

groundwater and soil in many locations, with a long environmental half-life.1-2 Non-

industrial sources also exist for Cr exposure, including housewares, automobile emissions 

and cigarette smoke. Increased environmental concentrations of heavy metals, including 

Cr,1, 3 have led to research efforts focusing on the biological effects of their exposure. In 

the case of Cr, the resulting oxidative stress, cytotoxicity, and carcinogenicity associated 

with many Cr-containing complexes have been extensively studied.1, 4-8  

Cr (VI) serves no essential biological role in humans. Cr (VI) is classified as a known 

group I carcinogen by the International Agency for Research on Cancer (IARC).9-10 

Cr(VI) also has numerous short-term detrimental effects, such as the generation of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS).8, 11 It is also capable 

of inhibiting antioxidant enzymes, and binding antioxidant defense systems such as 

glutathione (GSH), leading to greater oxidative stress.11-12 Cr (VI) can readily enter cells 

through non-specific phosphate/sulfate transporters, where it may undergo reduction to 

Cr (III), with reactive intermediates formed during this reduction process (Cr (V), and Cr 

(IV)).4, 13 High genomic instability in cells is generally observed following Cr (VI) 

exposure, due to heavy metal induced protein, and DNA damage.1   

ROS play an important role in cell signaling, as well as other biological processes. 

Disruptions in homeostatic levels of ROS can affect many essential cell processes, such 

as cell proliferation and anti-inflammatory responses.11 Elevated levels of ROS have also 

been associated with oxidative damage to cellular and nuclear membranes, as well as 

damage to the endoplasmic reticulum and other key structures by lipid peroxidation as 

well as oxidative DNA damage and strand breaks.11-12, 14-15  
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Cr (VI) commonly bioaccumulates in the kidney, liver, and lungs of mammals, leading to 

adverse health effects in these tissues, as well as related tissues.8, 16-17 Monitoring of 

exposure to Cr is commonly done through urine content, for which a substantial half-life 

of 10 years in the body has been reported.17 Due to Cr (VI)’s ability to cause various 

forms of biological damage, as well as its long half-life in the body, my current study has 

focused on the long duration exposure of bladder cells as a model system. By using a 

human urinary bladder cancer (T24) cell line, I aim to investigate the effects of Cr 

toxicity on membrane homeostasis. T24 cells have a doubling time of 18-19 h, allowing 

the study of chronic potassium dichromate (K2Cr2O7) over multiple generations of cell 

division. 

Analysis of cell membrane transport can be performed through a number of possible 

methods but scanning electrochemical microscopy (SECM) provides some unique 

advantages for study of individual live cells. SECM allows for the non-destructive, non-

invasive study of single live cells, given an appropriate, non-toxic mediator is selected. 

SECM makes no direct contact with the cell, and can be performed under homeostatic 

conditions. This permits the continuous monitoring of dynamic cellular processes of 

living unaltered biological samples.  

SECM is a powerful scanning probe microscopy (SPM) technique. SECM benefitted 

greatly from the seminal work accomplished by Bard et al. since 1989.18-19 SECM has 

been employed in a vast number of applications20 including but not limited to kinetic 

studies,21 surface and interface studies,22-23 microstructure fabrication,24-25 as well as the 

mentioned biological applications such as cellular imaging,26-27  membrane transport,28-31 

multidrug resistance,32-33 ROS and RNS mapping,27, 34-37 and cellular redox processes.38-44 

SECM commonly utilizes an ultramicroelectrode (UME) or nanoelectrode as the working 

electrode. This technique is used to monitor the electrochemical generation/regeneration 

of the mediating species, which can either be added or native to the sample under study. 

By operating SECM in depth scan mode, topographic information is provided in addition 

to electrochemical activity. In its applications to live cells, the SECM is operated in 

feedback mode, allowing dynamic cellular processes to be observed through relative 
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changes in faradaic current at the UME probe. As the UME approaches the cellular 

membrane, a current drop is commonly observed as the membrane hinders diffusion to 

the electrode tip (negative feedback). SECM utilizes this phenomenon to determine 

surface topography. However, with the use of a membrane-permeable electrochemical 

mediator, membrane permeability of the cell can be characterized. Finite element analysis 

simulations of the electrochemical system can be used in conjunction with this 

experimental technique, to provide quantitative analysis of cell membrane permeability. 

Approach to a more permeable membrane exhibits a much smaller decrease in current, as 

the mediator is able to move through the cell interior and replenish unreacted mediator at 

the electrode tip. The UME tip current relative to distance from the membrane is 

commonly reported as a probe approach curve (PAC). The electrochemical mediator used 

to determine membrane permeability in this study, ferrocenemethanol, has been shown to 

have no detrimental effects on the studied cell line over the experimental timeframe.36, 39, 

45-46 

I previously reported on the K2Cr2O7 induced membrane permeability change in T24 

cells when incubated with a wide concentration range.47 Exposure to the K2Cr2O7 stressor 

was carried out over a 1 h incubation period. This study provided insight into the 

immediate effects of acute exposure to K2Cr2O7. Low concentrations ≤25 µM for 1 h 

incubation had no appreciable effect on membrane permeability. Exceeding these 

concentrations, a decrease in membrane permeability was observed, as well as a decrease 

in cellular viability. At concentrations exceeding 500 µM, membrane permeability 

sharply increased. This increase also included normally impermeable charged mediators 

(ferrocenecarboxylic acid).  

This short (1 h) incubation time, however, does not provide information on the long-term 

effects of K2Cr2O7. By examining lower concentrations (0-10 µM), where negligible 

effect was previously observed, and extending the incubation time, the effects of K2Cr2O7 

will be further illustrated, on single live cells. Herein, the effects associated with long 

duration chronic exposure to low concentrations of K2Cr2O7 on cell membrane 

permeability and cellular viability by SECM will be examined. SECM as a powerful 
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bioanalytical tool will be shown to provide localized membrane permeability study of 

single live cells. 

4.2 Experimental Section 

 Materials 

FcCH2OH (97%), potassium chloride (KCl, 99%), and K2Cr2O7 (99%) were purchased 

from Sigma-Aldrich Canada and used without further purification. Stock SECM mediator 

solution was prepared using 0.9 mM FcCH2OH, dissolved in 1× phosphate buffered 

saline (PBS, Life Technologies, Burlington, ON). Stock solutions of 0.25 M K2Cr2O7 

were prepared using autoclaved deionized water (18.2 MΩ.cm, MilliQ water, Etobicoke, 

ON) and syringe-filtered through sterile 0.2 μm Supor® Membrane (PALL Life Sciences, 

Mississauga, ON). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

was acquired from R&D Systems Inc. (Minneapolis, MN) as part of the TACS® MTT 

Cell Proliferation Assay Kit. Spectroscopic grade dimethyl sulfoxide (DMSO) was used 

to dissolve the formazan crystals (Caledon Laboratory Ltd., Georgetown, ON). 

 Cell Preparation 

Human bladder cancer cells (T24 cells (HTB-4™)) were acquired from American Type 

Culture Collection (ATCC, Manassas, VA, USA) and maintained according to ATCC 

protocol. Cells were cultured in McCoy’s 5a medium (ATCC, Manassas, VA, USA), 

modified with 10% fetal bovine serum (Invitrogen, Burlington, ON). T24 cells were 

grown in a humidified incubator at 37 °C and 5 % CO2 (Sanyo, Japan). Care was taken to 

ensure all experimentation occurred within a small passage number range (P47-P55). For 

SECM live cell experiments, T24 cells were aliquoted directly onto glass-bottom Petri 

dishes (P50G-0-30-F, MatTek Corporation, Ashland, MA, USA). K2Cr2O7 (stock 

solution) was injected into the growth medium, simulating the presence of the external 

stressor in the cells immediate environment, in the desired concentrations for K2Cr2O7 

testing. The cells were then incubated for the desired timeframe. Prior to analysis via 

SECM, the growth medium was decanted, and the cells were washed twice with 1× PBS. 
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The medium was then replaced with the FcCH2OH mediator solution for SECM 

experiments.  

 Cell Viability  

MTT tetrazolium dye (yellow) is capable of moving into cells and is reduced in healthy 

cells to produce formazan crystals (purple). These crystals can be dissolved and detected 

using a spectrophotometer. Cellular viability tests were performed using the MTT assay 

procedure following 1, 2, 3, and 5 days exposure to K2Cr2O7.
48 Briefly, about 20,000 T24 

cells (Determined with a haemocytometer) were plated onto Corning Scientific Costar™ 

96-well polystyrol flat bottom plates and allowed to incubate for 24 h. K2Cr2O7 was then 

administered to the cell sample along with fresh medium. Sodium dodecyl sulfate (SDS) 

was used as a positive control for the assay at 0.05, 0.10, 0.15, and 0.20 mg/mL. Wells 

containing no cells (blank wells) were also prepared to allow for the removal of 

background medium effects and treated by the full MTT protocol. 

Following incubation with K2Cr2O7 for the desired duration, the growth medium was 

replaced with 100 µL of fresh medium (absent of phenol red) and 10 µL of the MTT 

reagent. The sample was incubated for an additional 6 hr allowing the formazan crystals 

to form. The MTT solution was then removed and the formazan crystals were dissolved 

with 50 µL of spectroscopic grade DMSO. The absorbance (Abs) at 540 nm was read by 

a M1000 PRO plate reader (Tecan, Switzerland) following 1 s of shaking at 2 mm 

amplitude and 654 rpm. The effects FcCH2OH have been investigated elsewhere and 

determined to be non-toxic during these experimental conditions.46 

 SECM Instrumentation and Experimental Procedure 

A detailed description of the SECM instrumentation and experimental procedures can be 

found in Chapter 2 section 2.2.5.49 Briefly, SECM experiments were carried out using a 

modified Alpha-SNOM (WITec, Ulm, Germany). The SNOM has been outfitted with a 

custom fabricated UME mount in place of a conventional upright objective lens, and a 

micro-incubator Petri dish mount (Bioscience Tools, San Diego, California, USA). The 

inverted objective lens (50×, N.A. 0.55, W.D. 10.1 mm, Nikon, Japan) was used to assist 
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in the positioning of the UME over live cells of interest, as well as provide optical 

imaging of the cells under study. High resolution UME positioning was achieved through 

the WITec piezoelectric positioning system. Electrochemical instrumentation consisted of 

a CH Instruments Electrochemical Analyzer (CHI800B, Austin, TX) and CHI200 

Picoamp Booster to enhance the low current signal observed with small electrodes and 

dilute solutions while limiting signal noise. A simple two-electrode set-up was used with 

the UME as the working electrode, and a Ag/AgCl wire as the reference/counter 

electrode. All potentials reported in this report are vs Ag/AgCl. Before each experiment, 

cyclic voltammetry (CV) was used to test for steady-state performance of the UME probe 

and solution. The Petri dish containing the K2Cr2O7-treated cells (30-40% confluency) 

was then secured to the heating stage mount maintained at 37.0 ± 0.2 ˚C. Each Petri dish 

was analyzed for a maximum duration of 60 min. A biased UME tip potential of 0.3 V 

(identified through CV) was applied to obtain steady state current with the FcCH2OH 

electrochemical mediator. SECM analysis of all samples was performed at a maximum 

UME tip speed of 21.5 µm/s, to limit the effects of forced convection and maintain steady 

state current.50 The SECM depth scan imaging method was utilized on the desired cells. 

Depth scan analyzes a 2D region of space above the sample, imaging in the x-z plane. 

Depth scan imaging produces real time probe-to-cell distance information and assists in 

preventing an electrode collision with the sample. Depth scan also allows for the 

acquisition of hundreds of PACs per single scan. Manipulation of depth scan parameters, 

such as x and z movement distance, and image resolution, was made possible through the 

WITec software. 
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 Simulation 

 

Figure 4.1 - (A) 3D model of the SECM approach to an isolated cell with key 

features, boundaries, and domains labeled. (B) Zoomed in and labelled view of the 

Meshed 3D model, focusing on the electrode tip in close proximity to the cell 

membrane. 

Theoretical PACs were generated using COMSOL Multiphysics software (v5.2). A 3D 

model with a symmetry plane was created to simulate the same physical geometry as the 

SECM experiments. The symmetry plane bisected the UME and cell, along both of their 

centers (Figure 4.1A). The electrode geometry was defined to recreate the physical 

characteristics of the UME utilized for the experimental analysis (10 µm Pt diameter, 

RG3). Cells were surveyed optically and measured to determine the average T24 cell size 

(94 cells). The long axis of the cell has an average diameter of 27.9 ± 0.6 µm, while the 
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shorter axis was determined to be 17.6 ± 0.3 µm. The average cell height was determined 

previously to be 8.7 ± 3.3 µm.46 Therefore, a quarter 3D ellipsoid was used to represent 

the cell geometry with radii y = 14.0 µm, x = 9.0 µm, and z = 8.0 µm. The model is 

defined as two separate domains, each with their own geometry and physics. The cell 

interior and solution domains each maintain their own concentration of mediator (CC, and 

CB respectively). The initial states of these domain concentrations were specified as CB = 

0.9 mM FcCH2OH and CC = 0 M FcCH2OH. In the solution domain, the bulk solution 

boundaries were defined as being 150× the Pt UME radius away from the cell (750 µm 

away). These boundaries were defined to regenerate the same concentration as the initial 

solution (0.9 mM), simulating a theoretical infinite volume of solution extending beyond 

the model. The rate of solution transport is governed by the diffusion coefficient for the 

model (D), and Fick’s second law of diffusion (Eqs. 4.1 and 4.2). The diffusion 

coefficient for FcCH2OH in both domains was set to 7.6 × 10
-10 m

2
/s.45, 51-52 

𝜕𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑥2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑦2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑧2 ) [4.1] 

𝜕𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑥2 +
𝜕2𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑦2 +
𝜕2𝐶𝐶(𝑥,𝑦,𝑧)

𝜕𝑧2 ) [4.2] 

For the FcCH2OH mediator, a diffusion limited one-electron oxidation reaction will occur 

under adequate potential bias. This is recreated in the simulation by defining a mediator 

concentration of zero at the biased Pt surface. The cell membrane is defined as a flux 

boundary (Eqs. 4.3 and 4.4), allowing for the transport across the membrane boundary, 

between the two defined domains (cell and solution). The flux across the membrane 

boundary is dependent on a permeability coefficient (P) and the simulated concentration 

difference across the membrane boundary. 

𝑓𝑖𝑛 = 𝑃(𝐶𝐵 − 𝐶𝐶) [4.3] 

𝑓𝑜𝑢𝑡 = 𝑃(𝐶𝐶 − 𝐶𝐵) [4.4] 

The COMSOL model geometry was then meshed using a free tetrahedral mesh. The 

meshing element size is directly related to the accuracy of the finite element analysis 



103 

 

 

simulation (Figure 4.1B). Therefore, in regions of the model where the concentration 

change is the most significant (ex. the UME Pt surface and the cell membrane), the 

meshing element size was further reduced. 

Each cell membrane permeability simulation consisted of two individual study steps 

carried out in sequence. First a time-dependent study step was performed over a 

simulated 10 min equilibration period, where the electrode boundary was turned off (no 

flux boundary setting). The mass transport of the FcCH2OH species was calculated over 

time, governed by the physics conditions specified above. The final concentration profile 

generated during this equilibration was saved and used as the initial concentration 

distribution for the second study step. The second step was a stationary phase study step 

(steady state). In this step, the UME is biased or ‘turned on,’ and the SECM probe was 

approached toward the cell membrane. Each electrode position was simulated as a 

separate simulation, parameterized using the parametric sweep function of COMSOL. 

Membrane permeability coefficient was also parameterized, with both parametric 

instruction sets nested, allowing for the simulation of multiple physical conditions within 

the same model. Each individual simulation maintains a full concentration map for the 

defined electrode position and physics conditions. 

Concentration information at the electrode tip was obtained by integrating the flux to the 

Pt surface at each simulated electrode position (Eq. 4.5).  

𝑖 = 2𝜋𝑛𝐷𝐹 ∫ 𝑟 [
𝜕𝐶𝐵(𝑟,𝑧,𝑡)

𝜕𝑧
]

𝑎

0
𝑑𝑟 [4.5] 

The current (i) measured depends on the concentration gradient (𝜕𝐶𝐵 𝜕𝑧⁄ ), the number of 

electrons transferred (n) and the UME disk radius (a). The other constants considered are 

the Faraday constant (F = 96,485 C/mol) and the diffusion coefficient of the species (D).  

Theoretical and experimental PACs were normalized and plotted together to allow 

quantification of membrane permeability coefficients. The distance was normalized to the 

UME critical radius used experimentally (5 μm). Current was normalized to that observed 

in bulk solution (theoretically infinite distance from substrate, ≥ 10). Theoretical PACs 
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were simulated with an absolute distance to substrate, and maintain the same curve shape 

as the experimentally acquired PACs with the same physical geometry. As a result, fitting 

of theoretical and experimental PACs can be used to accurately characterize UME tip to 

sample distance and substrate topography. 

4.3 Results and Discussion 

 Quantification of Trends in Membrane Permeability 
Coefficient Changes by SECM 

 The SECM depth scan moves the UME probe over the cell under study (Figure 4.2A) 

and generates a 2D current map of this solution region. SECM depth scan imaging was 

used to study the T24 cells treated with various concentrations of K2Cr2O7 over time. 

Vertical cross-sections can be utilized to extract probe approach curves (PACs) from the 

depth scan images (Figure 4.2B). Once normalized, these PACs can be overlaid against a 

set of theoretically generated PAC curves, allowing for quantification of membrane 

permeability and distance to substrate (Figure 4.2C). Experimental PACs to the middle of 

the cell’s central mass were extracted. PACs at this location yield the smallest tip-to-

sample distance, as they are extracted above the tallest point on the cell’s surface. The 

membrane permeability of cells was previously demonstrated to be consistent across the 

entire cell using a 10 µm Pt UME with a RG value of 3.49 It was also shown that minor 

deviations from cell center have minimal effect on the characterization of cell membrane 

permeability. PACs extracted with slight deviations from the center of the cell did not 

affect its membrane permeability coefficient. However, PAC extraction at significant 

deviation from cell center requires dedicated location-specific simulations to quantify.  
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Figure 4.2 - (A) Optical image of T24 cell sample following 12 hr incubation with 2 

µM K2Cr2O7. UME path and direction of travelling are labelled in red. (B) 2D depth 

scan image with PAC cross section labelled in teal. (C) Extracted PAC fit to 

theoretical curves. 

The electrochemical mediator FcCH2OH is partially permeable to the cell membrane 

under normal control conditions. FcCH2OH is hydrophilic enough to be used in the 

aqueous cell interior and exterior, but lyophilic enough to exist in the hydrophobic 

interior of the phospholipid membrane, although not to the degree where it would remain 

trapped inside. This allows it to pass through the cell membrane without being repelled. 

Analysis of control cell membrane permeability, with no K2Cr2O7 added, over a range of 

incubation times yielded a membrane permeability of 81 ± 17 µm/s (Figure 4.3A), which 

is consistent with values previously reported.47, 49 
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Figure 4.3 - Overlap of experimental PACs with theoretical PACs simulated at 

known distance to substrate, and permeability coefficient. Time-lapse PACs after 

incubations with 2 µM K2Cr2O7 are displayed for (A) Control untreated conditions, 

(B) 1 hr incubation, (C) 3 hr, (D) 6 hr, (E) 12 hr, (F) 24 hr, (G) 2 day, (H) 3 day, and 

(I) 5 day. 

By subjecting the T24 cell samples to low doses of K2Cr2O7 for various time periods, the 

membrane permeability was observed to change. Incubation with 2 µM of K2Cr2O7 for 1 

hr showed nearly no change in the average membrane permeability at 81 ± 34 µm/s 

(Figure 4.3B), but a definite increase in the overall variation in permeability was 

observed. This minimal change in membrane permeability at this concentration is 

consistent with a previous study performed using short duration exposure.47 However, 

once the incubation time was increased to 3 hr, the membrane permeability was observed 

to drop to 45 ± 20 µm/s (Figure 4.3C). This trend continued as the incubation time was 

further increased to 6 hr, where a significant drop to 5 ± 3 µm/s (Figure 4.3D) was 

observed. Extending the incubation time to 12 hr, however, the opposite effect is seen 

with a relaxation in the cell membrane permeability to 50 ± 16 µm/s (Figure 4.3E).  

Incubation of T24 cells for a full day with 2 µM K2Cr2O7 yielded a rapid increase in 

membrane permeability, up to 358 ± 70 µm/s (Figure 4.3F). Two days incubation at the 
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same concentration further increased the membrane permeability to 840 ± 143 µm/s 

(Figure 4.3G). By the third day, membrane permeability had increased to 916 ± 76 µm/s 

(Figure 4.3H). And extending the study to 5 days showed a membrane permeability, of 

889 ± 69 µm/s (Figure 4.3I). It should be noted that after 5 days of incubation with 2 µM 

K2Cr2O7, significant die off of the viable population for SECM analysis was observed. 

 

Figure 4.4 - Optical images of T24 live cell samples following exposure to 2 µM 

K2Cr2O7 for 6 hr, 12 hr, 24 hr, 2 days, 3 days and 5 days. 

The overall trend produced through the incubation of the T24 cells with 2 µM K2Cr2O7 is 

displayed in Figure 4.5A. Individual data points in Figure 4.5 were calculated as the 

average of 5-16 individual cell membrane permeability values (average 7.5) ± standard 

error. This figure illustrates the initial decrease in membrane permeability between 1 and 

6 h, and then the rapid rise in membrane permeability as the incubation time exceeded 6 

h. This rapid rise in membrane permeability is a likely indicator that the cells internal 

antioxidant defense systems can no longer cope with the presence of the K2Cr2O7. It is 

well known that the intracellular reduction of Cr (VI) to Cr (III) leads to increased ROS 

generation.8, 11 Both Cr (III) and Cr (VI) are capable of generating ROS, although the 

increased permeability of Cr (VI) to the cell membrane makes it more environmentally 
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hazardous.4, 13 Increased oxidative stress is known to disrupt cell signaling pathways, as 

well as induce lipid peroxidation, protein and DNA damage, as well initiate cell 

apoptosis.1, 4, 11-12 In particular, lipid peroxidation drastically changes membrane 

characteristics, increasing the number polar functional group within the internal 

membrane region or affecting the packing efficiency of the phospholipids.14-15 Increased 

internal membrane polarity will result in decreased membrane permeability with respect 

to hydrophobic species, such as FcCH2OH, due to increasing difference in polarity, while 

less efficient packing can increase the membrane fluidity. 

 

Figure 4.5 - Graphical representation of the time-lapse membrane permeability 

change vs K2Cr2O7 incubation concentration, acquired following incubations with 

K2Cr2O7 at concentrations of (A) 2 µM, (B) 5 µM, and (C) 10 µM. 

Another possible contributing factor to increased membrane permeability is the initiation 

of apoptotic cell death pathway, or necrosis, due to increased oxidative stress and DNA 
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damage. K2Cr2O7 has been reported to initiate cell apoptosis in a number of mammalian 

cell lines.4, 8 Necrosis is also a method of cellular death, which includes unregulated 

digestion of cell components, including the loss of membrane integrity. Necrosis can be 

initiated by oxidative stress or lipid peroxidation, among other sources. The SECM 

experimental design incorporated low velocity, but thorough rinsing of the Petri dishes 

under study following metal exposure, in preparation for SECM analysis. Poorly adhered 

cells and cell debris were commonly removed from the cell sample by the rinsing 

process. This process might remove dying or dead cells and debris, incapable of 

remaining adhered to the Petri dish surface. As a result, my current SECM study likely 

focuses on the membrane permeability trend of remaining living cells.  

For this study, low doses of K2Cr2O7 were selected for long duration incubation of the 

T24 cells. All three dosages selected (2, 5, and 10 µM), were observed to yield minimal 

membrane permeability change in a previous study performed on short duration 

exposure, performed over a 1 h incubation period.47 Cells incubated with 2 µM of 

K2Cr2O7 discussed above, had an average membrane permeability of 81 ± 34 µm/s 

(Figure 4.5A). 5 µM had a slightly lower membrane permeability than observed earlier, 

at 54 ± 15 µm/s (Figure 4.5B). And finally 10 µM was found to conform strongly to the 

previous study with 83 ± 8 µm/s (Figure 4.5C). This minimal change in membrane 

permeability at these lower concentrations is consistent with the previous study. 

Extending the incubation time past 1 h, the 5 and 10 µM dosage of K2Cr2O7 were found 

to induce a similar trend to that observed in the 2 µM incubation but occurred at an 

earlier time (Figure 4.5). These two concentrations reached their permeability minimum 

at 3 h with 14 ± 7 µm/s for 5 µM and 15 ± 13 µm/s for 10 µM. The two concentrations 

maintain similar membrane permeability up to 12 h with the 5 µM dosage cells 

displaying 200 ± 0 µm/s and 10 µM showing 167 ± 19 µm/s. Following this timeframe, 

the induced membrane permeability of the two concentrations began to deviate from each 

other. The 5 µM continued its gradual rise to its maximum observed permeability at 5 

days, where it exceeded 1000 µm/s, while the 10 µM reaches its maximum after 24 h by 

also exceeding 1000 µm/s. The 10 µM, however, over the following 2 days exhibited a 



110 

 

 

gradual decrease in permeability, with 700 ± 110 µm/s on day 2 and 260 ± 53 µm/s on 

day 3. Similar to that observed with the 2 µM incubation, significant die-off of the cell 

population was observed in the sample at 5 days for 5 µM K2Cr2O7 sample, and at 3 days 

for 10 µM.  

 MTT Cell Viability Study of T24 Cells Incubated with K2Cr2O7  

The addition of small doses of toxic K2Cr2O7 to T24 cells caused dramatic time-lapse 

change in the live cell membrane permeability. Cellular viability studies can provide 

insight into the bulk health and wellness of the cell population when exposed to the 

external stressor, K2Cr2O7. MTT is a well-established method of cell viability analysis 

which can be used to indicate the total viable population of the cell sample 53. A healthy 

cell sample was split into multiple smaller samples, which were in turn exposed to 

various concentrations of heavy metal stressor. The samples which received the dosages 

of K2Cr2O7 were compared to the healthy population of an untreated sample from the 

same culture over the same timeframe (Eq. 4.6). 

𝑐𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  (
𝐴𝑠𝑎𝑚𝑝𝑙𝑒−𝐴𝑏𝑙𝑎𝑛𝑘

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐴𝑏𝑙𝑎𝑛𝑘
)  100% [4.6] 
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Figure 4.6 - MTT assay results on the viability of T24 cells treated with a range of 

concentrations of K2Cr2O7 between 0 and 100 µM, for (A) 1 day, (B) 2 day, (C) 3 

day, and (D) 5 day, which is represented as Mean ± Standard deviation. 
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MTT analysis was performed on the sample at 1, 2, 3 and 5 day incubation times. Sample 

averages were computed based on 6-9 replications per experiment, and compared to 18 

replications of control cells. Following 1 day of incubation (Figure 4.6A), samples 2, 5, 

10, and 25 µM showed a strong population viability, with minimal change from the 

control sample. The 50 µM sample, however, showed <15 ± 1% viability, while 100 µM 

exhibited near 0% surviving population. 

Following two days of incubation (Figure 4.6B), the 2 µM sample population density 

dropped to 87 ± 3%. The 5, 10 and 25 µM sample population density, however, dropped 

substantially to 20 ± 0.6%, 23 ± 4% and 35 ± 20%, respectively. After 3 days incubation 

with K2Cr2O7 (Figure 4.6C), 2 µM had dropped to 72 ± 3%, while 5, 10 and 25 µM had 

dropped to 3 ± 0.3%, 25 ± 14% and 17 ± 10%, respectively. By day 5, nearly all cells 

were dead in all studied concentrations, with viabilities below 10% (Figure 4.6D).  

Strong cell viability was observed after 1 day of incubation, illustrating that the initial 

decrease in membrane permeability observed by SECM as well as the following increase 

did not hinder the health of the cell population. Between 1 and 2 days, a massive cell die-

off was observed in all while the 2 µM sample underwent a minor decrease in viability. 

This transition corresponded to all three studied concentrations entering the high 

permeability range exceeding 200 µm/s, and maintaining a high permeability. These low 

dosages of K2Cr2O7 did not immediately cause a decrease in population density, though 

effects of their toxicity can be observed in their membrane permeability. The membrane 

permeability measured with SECM demonstrated the effects on cell physiology, in these 

concentration and incubation time conditions. Once enough cumulative damage occurred 

over the duration of exposure, cellular death was finally triggered in the T24 cell. Unlike 

the SECM experimentation, MTT viability includes all cells within the population. This 

results in a much more drastic response to the K2Cr2O7 stressor, while subpopulations of 

the sample that remain viable are still capable of being analyzed via SECM. As a result, a 

small surviving culture was able to be maintained up to 3 days for 10 µM, and 5 days for 

2 and 5 µM.  
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4.4 Conclusions 

Through the use of SECM analysis, the membrane response of T24 cells incubated with 

low doses of K2Cr2O7 over an extended duration of study was successfully carried out. 

SECM provided a powerful non-invasive technique for monitoring single live cells 

without disrupting the homeostatic conditions of these cells. The changes in membrane 

permeability response were quantified through the comparison of experimental PACs 

with theoretically generated ones through finite element analysis simulations.  

All three Cr (VI) concentrations (2, 5 and 10 M) yielded a similar response curve shape 

over the study period. The response time of the resulting curve, however, was displaced 

to different times according to the concentration used to perform the incubation. Initially 

cells treated with all concentrations after 1 h of study showed little deviation from control 

(untreated) cells, which had a membrane permeability of 81 ± 17 µm/s. Following this a 

decrease in membrane permeability was observed in all concentrations, with the 2 µM 

treated cells taking 6 h of incubation to reach their minimum observed membrane 

permeability. The 5 and 10 µM treated cells reached their minimum observed 

permeability following 3 h of incubation. All samples had a steady rise in membrane 

permeability following this. The 2 µM and 5 µM cell samples reached their maximum 

cell permeability (~1000 µm/s) and plateaued around this value after 2 days of 

incubation. This trend continued for 5 days of incubation, after which SECM analysis 

was no longer possible for this sample due to significant population decrease. The higher 

concentration 10 µM treated sample however, reached a similar maximum after 24 h of 

incubation, and proceeded to slowly drop to a final value of 260 ± 53 µm/s after 3 days of 

incubation. 

MTT studies were performed, providing complimentary analysis of overall viability of 

the cell populations under study. All three concentrations analyzed by SECM (2, 5 and 10 

µM), as well as a higher concentration sample at 25 µM showed strong resistance to the 

external K2Cr2O7 stressor after 1 day of incubation. Higher concentration studies 

performed at 50 and 100 µM, however, showed significant decrease in cell viability at 

≤15%. Following 2 days of incubation, the higher concentrations which showed strong 
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viability in day 1 (5, 10, 25 µM) showed a significant decrease in viability down to 

≤35%. The 2 µM sample showed a small drop in viability to 87 ± 3%. An overall 

decrease in cell viability was observed after 3 days of incubation. By the 5 day incubation 

time, all samples exhibited a cell viability ≤10%. 

The MTT cell viability assay confirmed a relationship between cellular death and long 

duration K2Cr2O7 exposure. This current study indicates SECM to be useful in exploring 

the cell membrane response to various stimuli such as concentrations and exposure times. 

This bioanalytical method is by no means limited to T24 cells and can be applied to other 

biological systems, such as cells or tissues.   
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Chapter 5  

5 Trivalent Chromium-Induced Live Cell Membrane 
Permeability Disruption Revealed by Scanning 
Electrochemical Microscopy  

Cr(III) is often regarded as a trace essential micronutrient that can be found in many 

dietary supplements due to its participation in blood glucose regulation. However, 

increased levels of exposure have been linked to adverse health effects in living 

organisms. Herein, scanning electrochemical microscopy (SECM) was used to detect 

variation in membrane permeability of single cells (T24) resulting from exposure to a 

trivalent Cr-salt, CrCl3. By employing the electrochemical mediators, ferrocenemethanol 

(FcMeOH) and ferrocenecarboxylic acid (FcCOO-), initially semi-permeable and 

impermeable respectively, complementary information was obtained. 3D COMSOL finite 

element analysis simulations were successfully used to quantify permeability coefficients 

of each mediator by matching experimental and simulated results. Dependent on the 

concentration of Cr(III) administered, three regions of membrane response were detected. 

Following exposure to low concentrations (up to 500 µM Cr(III)), permeability 

coefficients were comparable to that of control cells 80 μm/s for FcMeOH and 0 μm/s for 

FcCOO-. This was confirmed for both mediators. As incubation concentrations were 

increased, the ability of FcMeOH to permeate the membrane decreased to a minimum of 

17 μm/s at 7,500 μM Cr(III), while FcCOO- remained impermeable. At the highest 

examined concentrations, both mediators were found to demonstrate increased membrane 

permeability. MTT cell viability studies were also conducted on Cr(III)-treated T24 cells 

(Part of this work has been prepared for publication 
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to correlate the SECM findings to the toxicity effects of the metal.  The viability 

experiments revealed a similar concentration-dependent trend as the SECM cell 

membrane permeability study. 

5.1 Introduction 

Many heavy metals, such as cadmium and chromium (VI), have toxic properties that can 

lead to detrimental effects in living cells and organisms.1 By contrast, other metals such 

as zinc, iron and calcium, have been incorporated into biological systems and are 

required for healthy growth and development of an organism.  These trace essential 

heavy metals are necessary in small (trace) quantities but can be toxic at higher 

concentrations.2 The role of the metal in the body can also be dependent on its oxidation 

state.  For example, chromium (III) is regarded as a trace essential micronutrient that is 

often found in many dietary supplements to promote cellular homeostasis.3-4 However, 

high concentration Cr (III) exposure can lead to toxicity effects.5-7 Chromium (VI), the 

other common oxidation state of chromium, is known to induce oxidative stress, 

cytotoxicity, and carcinogenicity regardless of its concentration.5-6, 8-14 

The primary sources of trace essential elements to living organisms are through dietary 

consumption.  In the case of Cr (III), it is commonly added as a supplement to animal 

feed and water.15 Studies have shown Cr (III) participates in blood glucose regulation and 

insulin signaling in the body. Specifically, the role of low-molecular-weight chromium-

binding-substance (LMWCr) is required to maintain the active conformation of the 

insulin receptor.3-4   

Elevated levels of Cr(III) have been associated with heightened production of reactive 

oxygen species (ROS).1, 12, 15-19 In some cases Cr(III) has been shown to yield higher ROS 

levels than the toxic Cr(VI) oxidation state.10  The mechanism of Cr(III) toxicity is 

believed to involve not only elevated levels of ROS, but also the direct interaction of 

Cr(III) with DNA. The resultant DNA-adducts lead to genomic instability.5  However, Cr 

(III) does not easily cross the cell membrane and is commonly brought into the cell by 

active means such as pinocytosis, reducing its toxic effects.20-21 
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Cr bioaccumulates primarily in the kidneys, liver and lungs of mammals, potentially 

leading to adverse health effects in these tissues as concentrations increase.12, 22-24 

Monitoring the levels of Cr exposure, commonly through urine content, has determined a 

substantial half-life of ~10 years in the body.22, 24 Due to its ability to cause genetic 

damage and its ability to bioaccumulate in the urinary tract, my current study focuses on 

human bladder cancer (T24) cells as a model system to investigate the effects of Cr 

toxicity on membrane homeostasis. 

Previous studies focusing on the effects of Cr toxicity in cellular processes have relied 

heavily on conventional fluorescence microscopy techniques, where special precautions 

are required in order to avoid light-induced ROS production, which can lead to cellular 

damage.25-26 In addition, these fluorescent techniques are often destructive and samples 

are discarded following measurement.  

One alternative technique that can be used is scanning electrochemical microscopy 

(SECM) since it is a non-destructive, non-invasive technique. SECM has been greatly 

developed by the Bard lab since 1989.27-29  SECM can be used to monitor the 

electrochemical behavior of a sample, based on the generation/regeneration of the 

mediating species at a working electrode, commonly an ultramicroelectrode (UME). This 

technique has been utilized for a vast number of applications including but not limited to 

kinetic studies,30 surface and interface studies,31-32 microstructure fabrication,33-34 as well 

as the mentioned biological applications such as cellular imaging,35-36  membrane 

transport,37-41 multidrug resistance,42-43 cellular ROS and reactive nitrogen species (RNS), 

36, 44-48 metabolic interactions18 and cellular redox processes.49-55 In its applications to live 

cell studies, the non-invasive nature of SECM allows monitoring of dynamic cellular 

processes, leaving biological samples unaltered provided the appropriate non-toxic 

mediator is selected. SECM can be used for the rapid quantification of single live cell 

topography and surface reactivity, as well as intracellular examination of biological 

processes. 

These dynamic cellular processes can be monitored through the changes in faradic 

current as a UME approaches the cell from above. At small probe–to-cell distances, the 
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membrane permeability can affect the tip current. As the electrode is approached to the 

cell membrane, the availability of mediator from bulk electrolyte solution becomes 

hindered. This hindered diffusion causes a decrease in current termed as negative 

feedback. However, if the mediator is permeable to the cellular membrane it may cross 

the membrane and reach the UME tip. This has an effect of weakening the negative 

feedback that would be observed when compared to an impermeable membrane of the 

same geometry. The resultant feedback is commonly report as probe approach curves 

(PAC) which plot the normalized current (y-axis) against the normalized probe-to-cell 

distance (x-axis). 

Here, the SECM depth scan imaging mode was used to investigate the membrane 

responses of Cr (III)-treated T24 cells.  This mode moves the UME in a 2D x-z plane 

above the cell, generating a 2D current map that allows the acquisition of hundreds of 

PACs from a single scan. 3D COMSOL finite element analysis simulations were utilized 

to generate theoretical depth scan images and to allow quantification of membrane 

permeability coefficients to the redox mediators.  

5.2 Experimental 

 Materials 

Ferrocenemethanol (FcCH2OH, 97%), ferrocenecarboxylic acid (FcCOOH, 97%), 

potassium chloride (KCl, 99%), and chromium chloride hexahydrate (CrCl3·6H2O, 99%) 

were purchased from Sigma-Aldrich (Mississauga, ON). Mediator solutions containing 

0.9 mM FcCH2OH with 0.1 M KCl were regularly prepared in deionized water (18.2 

MΩ•cm MilliQ water, Millipore, Etobicoke, ON). The FcCH2OH solution was diluted to 

half concentration with 1× phosphate buffered saline (PBS) when used experimentally. 

FcCOOH stock solution of 0.5 mM was prepared in PBS. At pH 7.4, FcCOOH 

dissociates to FcCOO- in solution. Stock solutions of 0.5 M CrCl3 were prepared in 

autoclaved deionized water and syringe-filtered through sterile 0.2 μm Supor® 

Membranes (PALL Life Sciences, Mississauga, ON). 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) was acquired from R&D Systems Inc. (Minneapolis, 
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MN) in the TACS® MTT Cell Proliferation Assay Kit.  Spectroscopic grade dimethyl 

sulfoxide (DMSO) was used to dissolve the formazan crystals (Caledon Laboratory Ltd, 

Georgetown, ON). 

 Cell Culture 

Human urinary bladder cancer cells (T24 cells (HTB-4™)) (ATCC, Manassas, VA, 

USA) were grown and maintained in McCoy’s 5a medium (ATCC) containing 10% Fetal 

Bovine Serum at 37°C with 5% CO2. Experimental data was acquired using cells within a 

narrow passage window (45-48) to provide consistency among data sets. 

Cell samples used for SECM experimentation were grown on uncoated 50 mm glass 

bottom Petri dishes (P50G-0-30-F, MatTek Corporation, Ashland, MA, USA). An hour 

prior to analysis, CrCl3 was injected directly into the growth medium at the desired 

concentrations and incubated for 1 hr. Immediately before examination, the medium was 

removed and Cr (III)-treated T24 cells were washed thoroughly with sterile 1× PBS, 

before the addition of the mediator solution used for SECM analysis (FcCH2OH or 

FcCOO-). 

 Cell Viability  

The effects of CrCl3 on cellular viability were assessed using the MTT cell proliferation 

assay.56-57  Briefly, 2 × 104 cells/well were seeded onto Corning Scientific CostarTM 96-

well polystyrol flat bottom plates.  After 24 hr, the growth medium was aspirated and 

replaced with new growth medium containing CrCl3. Sodium dodecyl sulfate (0.05, 0.10, 

0.15, or 0.20 mg/mL) was used as a positive control for the assay.   

After incubation for 1 hr, the growth medium was carefully aspirated and replaced with 

100 µL of fresh growth medium (absent of phenol red) and 10 µL of the MTT reagent.  

After 6 hrs, the MTT solution was carefully aspirated and the formazan crystals were 

dissolved with 50 µL of spectroscopic grade DMSO.  The absorbance (Abs) at 540 nm 

was read by a M1000 PRO plate reader (Tecan Switzerland) following 1 s of shaking at 2 
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mm amp and 654 rpm.  To remove the background medium effects, empty (blank) wells 

were also treated according to the MTT protocol.   

 SECM Instrumentation and Procedure 

Detailed description of the SECM instrumentation and experimental procedures can be 

found in Chapter 2 section 2.2.5.58 Briefly, SECM experiments were carried out using a 

modified Alpha-SNOM (WITec, Ulm, Germany). The Alpha-SNOM set-up included a 

custom UME mount and a variable temperature Petri dish mount (Bioscience Tools, San 

Diego, California, USA). The inverted objective lens (50×, N.A. 0.55, W.D. 10.1 mm, 

Nikon, Japan) located below the sample was used in the positioning and optical imaging 

of both the UME and cell samples. The UMEs were fabricated in-house following a 

previously developed methodology.37, 46, 59 Throughout this study, the UME consisted of 

a 10 μm Pt wire which was sheathed in insulating glass, with the ratio of glass to Pt 

diameter (RG) of approximately 3. Electrochemical instrumentation consisted of a CH 

Instruments Electrochemical Analyzer (CHI800B, CH Instruments, Austin, TX) with a 

CHI200 Picoamp Booster. A Ag/AgCl electrode was used as a combined counter and 

reference electrode. The CHI800B output channel was connected to the WITec Alpha-

SNOM data acquisition channel providing position specific electrochemical information. 

Before each experiment, cyclic voltammetry (CV) was used to test for steady-state 

performance of the UME probe and electrochemical mediator. Identified through CV, the 

UME was biased at a probe potential of 0.3 V for FcCH2OH and 0.4 V for FcCOO- for 

their respective steady state oxidative currents (while in bulk solution). SECM analysis of 

all cell samples were performed at a maximum UME tip speed of 21.4 µm/s to limit the 

effects of forced convection and maintain steady state current.60 

Following incubation, a Petri dish containing the CrCl3-treated cells was secured to the 

heated stage of the Alpha-SNOM. The samples were maintained at 37.0 ± 0.2 ˚C to 

mimic physiological conditions for the cell line. Analysis of live cell samples was 

conducted over a maximum duration of 60 min. After location of a cell, the UME was 

then positioned near the cell of interest, followed by imaging of the cell using the depth 
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scan imaging mode. This allowed for real time probe-to-cell distance information, 

reducing the probability of collisions. Manipulation of depth scan parameters, such as 

scan width, depth, image resolution, and integration time, was performed through the 

WITec software. 

 SECM Model Simulation 

Theoretical PAC data was obtained using a COMSOL Multiphysics (v5.2) model as 

published elsewhere.37, 58, 61-63 A full 3D model with a symmetry plane through the center 

of the UME and cell was constructed to mimic the experimental set-up (Figure 5.1). 

Dimensions of electrode (platinum radius of 5 μm and an RG of 3) were used to create 

the model of the UME. Cell dimensions were surveyed optically (86 cells) to determine 

the average T24 cell size (semi-ellipsoidal). The cell long axis has a diameter of 

26.33±0.62 µm and the shorter axis diameter was determined to be 18.23±0.39 µm. The 

cell height was determined previously using SECM to be 8.7±3.3 µm.63 A semi-ellipsoid 

with radii y=13.5 µm, x=9.0 µm, and z=8.0 µm was defined as a cell analogue in the 

simulation model. Two independent domains were identified for the bulk solution (CB) 

and the cell’s interior (CC). The concentrations of these domains were specified to match 

the initial conditions (CB = 0.45 mM FcCH2OH or CB = 0.50 mM FcCOO-; CC = 0 M 

FcCH2OH or FcCOO-). The flux across the membrane boundary is dependent on a 

permeability coefficient (P) and the concentration gradient, as indicated by equations 5.1 

and 5.2. 

𝑓𝑖𝑛 = 𝑃(𝐶𝐵 − 𝐶𝐶) [5.1] 

𝑓𝑜𝑢𝑡 = 𝑃(𝐶𝐶 − 𝐶𝐵) [5.2] 

The diffusion coefficients for FcCH2OH and FcCOO- in both domains were set to 7.6 × 

10
-10 m

2
/s and 5.7 × 10

-10 m
2
/s, respectively.61, 64-65 The simulation was performed in 2 

stages. The first stage allowed the two domains to reach equilibrium (over 10 min), which 

provided an initial concentration distribution for the UME approach. In the second stage, 

the electrode position was parameterized over its full experimental range of motion 

towards the cell.  
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Figure 5.1 - (A) 3D model of the SECM approach to an isolated cell with key 

features, boundaries, and domains labeled. (B) Zoomed in and labelled view of the 

model geometry displayed in A, focusing on the electrode tip in close proximity to 

the cell membrane. 

In this study, the electrode position was moved in both the x and z axes, as a set of nested 

parametric sweeps. This allowed the full simulation of depth scans over the cell. The 

theoretical depth scans can be treated as a 2D matrix of electrochemical current values 

with UME tip position. 1D PACs and horizontal sweeps can be extracted from the 2D 

matrix.  This allowed fitting of the experimental PACs or horizontal sweeps. The 

membrane permeability coefficients were parametrically simulated, ranging between 0 – 

1000 µm/s. Nesting the UME position inside of the permeability parameterization 

generated a set of depth scans at these desired permeability coefficients (Figure 5.2). 

Please note, the permeability was assumed to be homogeneous across the entire cell 

membrane as previously found with T24 cells challenged by Cd (II).58 This point will be 

further verified in section 5.3.1. A membrane permeability coefficient of 0 µm/s produces 

the same depth scan profile as an ideally insulating surface (no flux) of the same 

geometry (Figure 5.2A). Low permeability coefficients restrict the transport of the 

electrochemical mediator, causing reduced current in close proximity to the cell surface 

(Figure 5.2B). With an increase in the permeability coefficient, less negative feedback is 

observed which leads to a higher electrochemical current profile (Figure 5.2C-G). A 

highly permeable cell membrane (Figure 5.2H) shows little electrochemical response 

from the cell as the mediator is able to move freely in and out of the cell towards the 

UME tip. 
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Figure 5.2 - Simulated depth scans over a single cell with membrane permeability 

coefficients defined as (A) 0 µm/s, (B) 25 µm/s, (C) 50 µm/s, (D) 75 µm/s, (E) 100 

µm/s, (F) 200 µm/s (G) 500 µm/s and (H) 1000 µm/s. 
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5.3 Results and Discussion 

 Off-Axis Characterization of Cell Membrane Permeability 

SECM depth scanning moves the UME in the x-z plane of solution over a single live cell. 

This generates a 2D electrochemical map of the region of space over the cell. Cross 

sections can be taken of theoretical (Figure 5.2) and experimental (Figure 5.3A) depth 

scans to produce more conventional PACs. Depth scan images are comprised of hundreds 

of PACs at different locations over the cell surface. To analyze experimental PACs taken 

at positions displaced from the cell center requires full 3D simulations, as the symmetry 

axis required for the more common 2D axially symmetric method cannot be 

maintained.58, 63 The experimental PACs extracted at these locations can be overlaid on 

the theoretical ones to obtain quantitative characterization of membrane permeability 

(Figure 5.3B-D). Figure 5.3A illustrates the membrane permeability map of a T24 cell 

after 1 hr incubation with 250 µM Cr (III). PACs over the cell surface were extracted 

from the depth scan images at 3 locations represented by the red, green and blue planes. 

These curves were overlaid onto theoretical PACs simulated at the same physical UME 

positions. With a 10 µm diameter Pt UME, the membrane permeability to FcCH2OH 

across the whole cell surface was determined to be uniform at 75 µm/s. 
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Figure 5.3 - (A) Experimental depth scan with PAC cross sections extracted along 

colored planes. Depth scan was acquired after 1 hr incubation of cell sample with 

250 µM of CrCl3. Overlap of experimental and theoretical PACs corresponding to 

extraction planes seen in A, at (B) the cell center, (C) ½ the cell radius from the 

center, and (D) the cell edge. 

 Quantification of Change in Permeability to FcCH2OH 
Electrochemical Mediator  

The electrochemical mediator FcCH2OH is partially permeable to T24 cell membranes 

under untreated (control) conditions. The changes in membrane permeability can provide 

insights into the biological effects induced by exposure to external stressors.40, 43, 65 

Experimental PACs to the untreated T24 cells had an average membrane permeability 

coefficient (P) of 80 ± 6 μm/s. 



130 

 

 

 

Figure 5.4 - Overlap of experimental and theoretical PACs for quantification of cell 

membrane permeability coefficients with FcCH2OH electrochemical mediator. 

Incubation with various concentrations CrCl3 displays regions of (A) stable, (B) 

decreasing, and (C) increasing membrane permeability. A graphical representation 

of the statistical membrane permeability change illustrating the three regions of (a) 

stable, (b) decreasing, and (c) increasing permeability. 

After 1 hr of Cr (III) treatment between 0-500 µM, the membrane permeability and 

morphology of the T24 cells remained unaffected relative to the control sample 

(approximately 80 μm/s) (Figure 5.4A). This membrane stability region is a result of the 

essential role of intracellular Cr (III). At these concentrations, it appears T24 cells are 

capable of utilizing the additional Cr (III) for internal chemical processes, or coping with 

these levels of Cr(III).  

After exposure to 750–7,500 μM Cr (III), a decreasing trend in permeability becomes 

evident (Figure 5.4B). The initial decrease observed in the 750 μM samples corresponded 
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to a permeability coefficient of 60 ± 13 μm/s. This was followed by a decrease in P 

values to 58 ± 8 μm/s and 50 ± 9 μm/s after exposure to 1,000, and 2,500 μM Cr (III), 

respectively.  Even more significant P decreases occurred with incubation concentrations 

of 5,000 and 7,500 μM, showing average P values of 31 ± 6 μm/s and 17 ± 8 μm/s, 

respectively. This decrease may be attributed to the overwhelming of anti-oxidant 

defense systems since Cr (III) toxicity can lead to increased ROS generation, followed by  

lipid peroxidation.5 Lipid peroxidation is known to affect changes in the bilayer thickness 

and membrane fluidity66 and is a likely mechanism by which membrane characteristics 

are altered. 

After exposure to 10,000 μM Cr (III), relaxation in P occured, returning to 83 ± 8 μm/s 

(Figure 5.4C). This relaxation resulted in the membrane permeability coefficient that is 

similar to the control samples (80 ± 6 µm/s). At this concentration, Cr (III) likely 

surpassed the trace essential requirements and becomes toxic. The resulting ROS 

production overwhelms the cellular defense systems, such as superoxide dismutase, 

catalase, and glutathione peroxidase, leading to oxidative damage and increased cell 

membrane damage.  

Note that a data set of N>4 cells was obtained for each Cr (III) incubation concentration 

(example curves are shown in Figure 5.4A-C) and was used to determine the average ± 

standard error membrane permeability coefficients, which is summarized in Figure 5.4D. 

Three distinct regions of membrane response were observed when FcCH2OH served as 

the SECM mediator. First, a relatively stable region was observed for incubation 

concentrations below 50 μM (region a). Incubations of 50–500 μM Cr (III) resulted in the 

loss of membrane stability and a region of decreasing permeability coefficient was 

observed (region b). Beyond 500 μM incubation concentrations (750, 1000 μM) caused 

the permeability coefficient to return to a permeability coefficient similar to control status 

(region c). 
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 Cell Membrane Permeability to FcCOO- Electrochemical 
Mediator 

 

Figure 5.5 - Overlap of experimental and theoretical PACs with FcCOOH as a 

mediator, displaying regions of (A) stable, and (B) increasing membrane 

permeability following CrCl3 incubation. A graphical representation of the 

membrane permeability change is also provided, showing the (a) stable, and (c) 

increasing permeability. 

Under control conditions, SECM revealed the membrane permeability coefficient to 

FcCOO- was 0 µm/s (membrane impermeable). This was expected due to the charged 

nature of the mediator at pH 7.4. The membrane permeability remained relatively stable 

around 0 µm/s after Cr (III) treatments less than 7,500 μM (50-5000 μM, Figure 5.5A). 

Minor increases were observed after 100, 750 and 1000 μM treatments, showing average 

± standard error membrane permeability coefficients of 29 ± 17 μm/s, 25 ± 21 μm/s and 

37 ± 18 μm/s, respectively. Due to the more hydrophilic and charged nature of the 
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FcCOO- mediator, it is unable to cross the hydrophobic interior of the phospholipid 

bilayer (cell membrane). As a result, FcCOO- is largely impermeable to the cell 

membrane under normal (control) conditions.65 These results were in agreement with the 

SECM results previously described, as FcCH2OH is partially permeable in nature, the 

decrease in membrane permeability trend was observable using FcCH2OH but not 

observable using FcCOO-. FcCOO-
, however, allows for more accurate imaging of cell 

topography since it is largely independent of membrane permeability under control 

conditions. The use of impermeable redox mediators when performing SECM on 

biological samples can indicate significant disruption in normal cell membrane 

performance.62, 65 Therefore, the use of FcCOO- as the SECM mediator can provide good 

indication of when Cr (III) no longer behaves as a trace essential metal, but rather as a 

toxin.  

After T24 cells were treated with 7,500–10,000 μM Cr (III), an increasing trend in 

permeability to FcCOO- was observed (Figure 5.5B), which was similar to the trend 

determined with FcCH2OH (Figure 5.4D). When incubated with 7,500 μM Cr (III), the 

membrane permeability coefficient increased to 19 ± 16 μm/s. The highest concentration 

sample (10,000 μM Cr (III)) was found to have a membrane permeability coefficient of 

260 ± 53 μm/s. This confirms a concentration-dependent effect of Cr (III) on membrane 

permeability in T24 cells. Over longer exposure to Cr (III), this may result in the 

selection of T24 cells with genetic mutations that offer greater resistance to Cr (III) 

poisoning. This permeability increase is likely attributed to the overwhelming of anti-

oxidant defense systems as previously discussed. The effects of high Cr (III) 

concentration on the cell membrane were similar to that seen with FcCH2OH mediator.  

This confirms significant oxidative cell membrane damage, such that polar compounds 

(FcCOO-) are capable of entering the cell. In particular, lipid peroxidation is known to 

drastically change the membrane characteristics by increasing the number of polar 

functional group within the internal membrane region.66-67  

The membrane permeability trend for FcCOO- agreed with the previously discussed trend 

for FcCH2OH. Figure 5.5C shows the initial permeability coefficient to be 0 µm/s for 
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FcCOO-. A trend of stability is observed (region a) at all concentrations occupied by 

regions a and b in the FcCH2OH trend (Figure 4D). 7,500 μM Cr (III) appears to be the 

onset concentration at which T24 cells become permeable to FcCOO-. The permeability 

to FcCOO- significantly increased following this concentration (region c), similar to that 

observed with FcCH2OH.  

Direct comparison of Figure 5.4D with Figure 5.5C also shows the apparent similarities 

in membrane responses following excessive CrCl3 exposure. Examination of the Cr (III) 

concentrations at which membrane response is triggered in SECM can be used to judge 

relative toxicities.  

 MTT Cell Viability Study of T24 Cells Incubated with CrCl3 
for 1 hr 

Since the membrane permeability trends were concentration-dependent, the overall health 

of the Cr(III)-treated T24 cells was also considered. This is important in understanding 

the effects of the heavy metal on cellular homeostasis. Here, cellular health was 

investigated by employing the MTT assay, routinely used to measure cellular viability of 

a bulk population of live cells (Figure 5.6). Cell viability is represented as mean ± 

standard error of 4 separate experiments (4-8 replications per experiment). Similar to the 

SECM studies, the T24 cells were exposed to various Cr (III) concentrations for 1 hr. 

These samples were compared to the healthy untreated cells from the same culture (Eq. 

5.3). 
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𝑐𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  (
𝐴𝑠𝑎𝑚𝑝𝑙𝑒−𝐴𝑏𝑙𝑎𝑛𝑘

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐴𝑏𝑙𝑎𝑛𝑘
)  100% [5.3] 

 

Figure 5.6 - Cell viability of T24 cells treated with a wide range of concentrations of 

Cr (III) for 1 hr, between 0 µM and 10,000 µM.  

Cells exposed to concentrations below 500 µM showed viability with minimal deviation 

from the control group, approximately 100%. Exposure concentrations exceeding 500 

µM, resulted in gradual decreased viability. The decrease in cell viability was found to 

continue with increasing exposure concentrations. This shows an increase in Cr (III) 

induced cellular death in T24 cells with higher Cr (III) concentrations. This observation 

followed the SECM studies well, as exposure to Cr (III) concentrations greater than 500 

µM induced significant membrane permeability changes. The internal disruptions in cell 

homeostasis which lead to cell death likely contributes to the changes in the membrane 

that increase the membrane permeability coefficients in SECM.  

5.4 Conclusion 

Through the use of SECM, the membrane responses of single live Cr (III)-treated T24 

cells were successfully interrogated using both FcCH2OH and FcCOO- as 

electrochemical mediators. Full 3D simulations were computed using nested parametric 

programing in COMSOL Multiphysics, a finite element analysis software. These 

simulations were successfully carried out, generating theoretical depth scan images 

previously limited in 2D axial symmetry models. The simulated and experimentally 

acquired depth scan images allow for the extraction of electrode PACs for rapid 
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membrane permeability quantification. Through the comparison of experimentally and 

theoretically acquired PACs, changes in membrane permeability coefficients were 

determined. With the membrane-permeable FcCH2OH, SECM revealed T24 cells exhibit 

a Cr (III) concentration-dependent effect on their membrane response. Incubation with 

low Cr concentrations showed little effect on the membrane permeability coefficients, 

which were similar to that of control cells. Increasing the exposure level resulted in 

decreased permeability coefficients. Ultimately with higher (more acute) Cr (III) 

exposure, the membrane permeability increased, returning to and exceeding the 

permeability coefficient value seen in control cells. The electrochemical mediator 

FcCOO-, in contrast to FcCH2OH, is impermeable to cell membranes. FcCOO- revealed 

only two concentration-dependent trends. Initially, the membrane permeability was found 

to remain unchanged until treated with high concentrations (more acute dosage) of Cr 

(III). Both FcCH2OH and FcCOO- mediators exhibited strong increases in membrane 

permeability coefficients when subjected to similar concentrations (7500 μM CrCl3 for 1 

hr).  These experiments show theeffectiveness of SECM in providing insights into cell 

membrane integrity.  
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Chapter 6  

6 SECM Imaging and Full 3D Modelling of Asymmetric 
Clusters of Live Cells 

Scanning Electrochemical Microscopy (SECM) has shown great strength as a 

bioanalytical technique for the characterization of single live cell topography, membrane 

permeability and extracellular reactive oxygen species. However, care must be taken to 

avoid the presence of adjacent cells in close proximity. Herein, we describe how these 

clusters of two or more cells may contribute to a combined signal. SECM is commonly 

coupled with simulated theoretical probe approach curves, allowing surface geometry or 

electrochemical reactivity to be quantified. Our novel experimental and simulation 

methodologies including tailored 3D SECM imaging of the live cells are reported here. 

These 3D modelling techniques allow the generation of 3D x-y-z cell profiles, cell 

surface maps at an electrode-cell separation, depth scan maps, probe approach curves to 

any cell spots of interest, and surface topography. The experimental quantification of cell 

height and topography was performed on cell clusters with an impermeable hydrophilic 

redox agent, ferrocenecarboxylate, for the deconvolution of these adjacent cell signals. 

As a proof of concept, experimental and theoretical results were compared to established 

model outputs. The characterization limits of commonly employed electrode sizes were 

assessed. Higher complex cell geometries were explored for the first time, leading to the 

characterization of these cell clusters with any electrode size. The above developments 

are versatile, and further demonstrate the strength of SECM as a bioanalytical technique 

for monitoring cellular homeostasis. 

(Part of this work has been prepared for publication 

Filice, F. P.; Li, M. S. M.; Wong, J.; Ding, Z. F. SECM Imaging and Full 3D 

Modelling of Asymmetric Clusters of Live Cells, 2018 

Submitted) 
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6.1 Introduction 

Scanning electrochemical microscopy (SECM) is a powerful non-invasive analytical 

technique in the scanning probe microscopy family. 1-3 This technique utilizes 

electrochemistry at a biased ultramicroelectrode (UME, ≤25 µm in diameter) to image a 

region of space over a sample (or substrate) with extreme precision. Faradaic current is 

monitored and recorded alongside UME position, creating comprehensive maps of 

sample topography and surface reactivity. SECM relies on the presence of a redox 

species, either intrinsic to the system or added for the purposes of imaging, which is 

oxidized or reduced in a diffusion-controlled process yielding steady state current. 

Early SECM experimentation and development accomplished by Bard et al. since 1989 

laid the groundwork for it’s application to a diverse range of fields. 4-5 SECM has been 

employed in a vast number of applications 6 including but not limited to kinetic studies, 7-

8 surface and interface studies, 9-12 microstructure fabrication. 13-15 SECM has also found 

applications as a bioanalytical tool for cellular imaging, 16-24  membrane transport, 17, 25-33 

neurotransmitter release, 34-36 multidrug resistance, 18-19, 37 ROS and RNS mapping, 24, 38-

43 and cellular redox processes. 22, 44-49 

Various methods of sample imaging by SECM exist, providing one or more dimensions 

of probe movement. 1D analysis provides the simplest scanning method, commonly 

performed as probe approach curves (PACs) with the UME moving on the z-axis toward 

the sample, or as a horizontal line scan across the substrate at a fixed distance or current 

feedback (x or y axis). 2D systems of analysis can provide imaging across planes of space 

above a sample. The most common of these is the surface map, imaging a plane of space 

in the x and y direction. 

In the Ding Group, a different mode of SECM has been developed, known as SECM 

depth scan mode.41  Depth scanning operates in the x-z plane or y-z plane, with multiple 

horizontal line scans nested inside the z approach to a sample. This produces a 2D image 

of the current as a function of UME (x, z) or (y, z) coordinates. This imaging technique 

allows for the tip-to-sample distance to be more easily gauged as the experiment is being 
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performed, which was a limitation of conventional SECM approach methods. 2D 

imaging obtained in the depth scan mode have the added benefit of being composed of 

numerous 1D approaches at different positions. Hundreds of useable 1D PACs can be 

extracted from a single scan. 

Imaging in 3 dimensions provides analysis of a cube of space over the sample. 3D 

scanning provides a map that is composed of hundreds of 2D images such as depth scans, 

which are in turn composed of hundreds of PACs. This yields tens of thousands of PACs 

in a grid over a sample of interest. A 3D map could alternatively be used to extract 2D 

surface maps or 1D line scans, providing numerous options for data processing in post 

processing. Also, similar to depth scanning, both the x and y movement is nested inside 

of the z directional approach with real time data reporting. This provides accurate 

gauging of tip-to-sample distance on approach to the sample. 

Other methods of multidimensional scanning for SECM include 4D shearforce-based 

constant distance mode developed by Schuhmann’s group. In this scanning mode, 

multiple constant distance images are obtained above the sample. 50  The tip-to-sample 

distance is controlled by the retractions of the tip based on the shearforce of the SECM 

probe. 50  A comprehensive 4D data set including the current feedback and shearforce of 

the current-tip coordinates is generated. 

SECM hopping mode is another scanning method that is often performed as a 3D scan.51 

Hopping mode images the same region of space as a 3D (image stack) scan. The primary 

difference in these two scanning modes, is the order in which the 3 axes are scanned. In 

hopping mode, the electrode is positioned at the (x,y) start coordinates and a PAC is 

performed scanning in the z axis. The electrode approaches the sample until a predefined 

feedback is detected at the probe tip. The electrode is then repositioned in the xy plane 

and another PAC is performed. This produces a 2D grid of PACs over the sample of 

interest. 

Quantification of physiological processes, such as membrane permeability 17, 52-53 and 

molecular transport of species 27 by SECM are typically assessed by overlaying 
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experimental PACs onto simulated theoretical curves.  Simulation results can vary 

significantly based on the replication of experimental geometry and physical parameters 

in the model. As a result, the successful overlay of experimental and theoretical curves 

allows for the quantification of these properties. The generation of these theoretical PACs 

were traditionally generated as a 2D-axially symmetric simulation, using finite elemental 

analysis software, such as COMSOL Multiphysics or MATLAB. This simulation 

methodology provides simplicity of design, and fast compute times. However, the central 

axis of symmetry is in fact a significant limitation, restricting the characterization to only 

one experimental PAC (to the direct center of the sample). This limits the primary 

advantage of any 2D or 3D scanning method. I have developed more complex 

simulations to allow for the simulation of PACs at positions deviating from a cell central 

axis,54 and the simulation of full 2D depth scans.55 Modelling the experimental system in 

full 3D allows for the complete control of the electrode’s position and model geometry 

with no imposed symmetry restrictions.56-57  

The ability to model complex geometries in 3D becomes extremely useful for the 

analysis of live cell samples. Cell simulations regularly simplify cell geometry to single 

spherical domains.17, 21 This simplification can often be made at larger electrode sizes, but 

complications can arise with more refined electrode tips. Care is also generally taken 

experimentally to avoid clusters of cells due to the possible effects of adjacent cells on tip 

current. This is generally done as simulating complex clusters of live cells adds additional 

complexity to the model. However, live cell samples rarely behave in an idealized 

fashion, and creating a subculture of over confluent samples for ideal cell spacing is not 

always possible. Herein for the first time, I will demonstrate 3D modelling of complex 

clusters of live cells with common UME sizes (10 μm and 4.4 μm) for SECM analysis. 

Simulation of single cell topography is compared to the complex model geometry to 

confirm the extended model design. The effects of adjacent cell proximity, when 

performing horizontal line scans is also explored. The limits of detection for the adjacent 

cell when performing a PAC approach to a cell center are emphasized with these 

common UME sizes, as this directly affects common methods of cell membrane 

permeability quantification. An experimental worst-case scenario is also explored with 



146 

 

 

extreme proximity and larger electrode size, where the simulation model is capable of 

providing a strong theoretical fit to the experimental results. This methodology for the 

theoretical quantification of samples further strengthens the SECM as a powerful 

bioanalytical tool for the study of single live cells. 

6.2 Experimental Section 

 Materials 

Ferrocenecarboxyllic acid (FcCOOH, 97%), and potassium chloride (KCl, 99%), were 

purchased from Sigma-Aldrich Canada (Mississauga, ON) and used without further 

purification. A stock solution of SECM mediator was prepared using 0.5 mM FcCOOH, 

dissolved in 1× phosphate buffered saline (PBS, Life Technologies, Burlington, ON).  

 Cell Preparation 

Human bladder cancer cells (T24 cells (HTB-4™)) were ordered from American Type 

Culture Collection (ATCC, Manassas, VA, USA) and maintained according to the ATCC 

specified protocol. Cells were cultured in McCoy’s 5a medium (ATCC) containing 10% 

Fetal Bovine Serum at 37°C with 5% CO2. When preparing cells for SECM experiments, 

T24 cells were aliquoted directly onto sterilized glass-bottom Petri dishes (P35G-0-20-C, 

MatTek Corporation, Ashland, MA, USA). The cells were then incubated for a minimum 

of 24 hr to ensure cell adherence to the glass surface of the Petri dish. Growth medium 

was decanted prior to analysis via SECM, and replaced with the FcCOOH mediator 

solution, following thorough washing with 1× PBS.  

 SECM Instrumentation 

A detailed description of the SECM instrumentation and experimental procedures can be 

found in Chapter 2 section 2.2.5.54 Briefly, SECM experiments were carried out using a 

modified Alpha-SNOM (WITec, Ulm, Germany). The SNOM has been outfitted with a 

custom-fabricated UME mount in place of the upper objective lens, and a micro-

incubator Petri dish mount (Bioscience Tools, San Diego, California, USA). The inverted 

objective lens (50×, N.A. 0.55, W.D. 10.1 mm, Nikon, Japan) was used to assist in the 
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positioning of the UME over live cells of interest, as well as provide optical imaging of 

the cells under study. High resolution UME positioning was achieved through the WITec 

piezoelectric positioning system. Electrochemical instrumentation consisted of a CH 

Instruments Electrochemical Analyzer (CHI800B, Austin, TX) and CHI200 Picoamp 

Booster to enhance the low current signal observed with small electrodes and dilute 

solutions while limiting signal noise. A simple two-electrode set-up was used with the 

UME as the working electrode, and a Ag/AgCl electrode as the reference/counter 

electrode. All potentials reported in this report are vs Ag/AgCl. 

 SECM Experimental Procedure 

Before each experiment, cyclic voltammetry (CV) was used to test for steady-state 

performance of the UME probe and solution. The Petri dish containing the cells (30-40% 

confluency) was then secured to the heating stage mount maintained at 37.0 ± 0.2 ˚C. 

Each Petri dish was analyzed for a maximum duration of 60 min. A biased UME tip 

potential of 0.3 V (identified through CV) was applied to obtain steady state current with 

the FcCOOH electrochemical mediator. SECM analysis of all samples was performed at 

a maximum UME tip speed of 21.5 µm/s, to limit the effects of forced solution 

convection and maintain steady state current.58 The SECM 3D imaging method was 

utilized on the desired cells located via the inverted microscope on the Alpha-SNOM.  

The 3D (image stack) method performs a constant height 2D scan of a x-y plane at the 

highest specified z coordinate. Following this scan, the electrode is moved down by a 

specified distance in the z direction and another x-y scan is performed. This is repeated 

until a target electrode z position is met, or the scan is manually stopped (Figure 6.1A). 

This allows the analysis of a 3D region of space above the sample. The 3D scanning 

method produces real time probe-to-cell distance information and minimizes electrode 

collision with the cells. Manipulation of scan parameters, such as x, y and z movement 

distance, scan speeds, and image resolution, was made possible through the WITec 

software. The resulting 3D data set is treated as a 3D matrix in MATLAB. Extractions of 

any 2D plane from the data set can be easily performed, producing surface maps and 

depth scans at any desired position over the sample (Figure 6.1B). 
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Figure 6.1 - (A) Representation of the multiple 2D surface maps that compose a 

single 3D SECM scan. (B) Example of multiple extractions of 2D surface maps and 

depth scans from 3D data set. 
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6.3 Simulation 

 

Figure 6.2 - (A) 3D model of the SECM approach to an isolated cluster of cells with 

key features, boundaries, and domains labeled. (B) Zoomed-in and labelled view of 

the electrode tip geometry. (C) Optical image of an experimental double cell with 

labelled UME path. (D) Meshed 3D model, focusing on the electrode tip in close 

proximity to the two cells imaged in C. 

Theoretical SECM mapping, and all derivative scan methods (depth scan images, surface 

maps, PACs, etc.) were generated using COMSOL Multiphysics (v5.3, COMSOL Inc., 

Burlington, Massachusetts). A Full 3D model was created to simulate the same physical 

geometry as the SECM experiments. The electrode geometry was defined to recreate the 

physical characteristics of the UME utilized for the experimental analysis (10 µm or 4.4 

µm Pt diameter, with a RG value of 3). The cell geometry for this 3D model was 

customized for each experimental sample, with dimensions derived from experimental 

optical and SECM depth scan images (Figure 6.2A and B). Cells were surveyed optically 

and measured via pixel counting. The long and short axes diameters of the cell were 

independently measured, as well as the distance between the cell centers, relative 

position, and angle of the cell long axis relative to the path of the UME as it scans (Figure 

6.2C). Cells measured in included cell positions and orientation relative to each other. 

Cell height was measured by SECM relative to the glass Petri dish using a method 

described previously.55 
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The model was defined as a single solution domain, considering only the extracellular 

solution. This is possible owing to the selection of electrochemical mediator, FcCOOH, 

which is impermeable to the cell membrane under normal homeostatic conditions. The 

initial solution concentration at all locations in the domain was specified as CB = 0.5 mM 

FcCOOH. The exterior solution boundaries of the model maintained this initial 

concentration of mediator, simulating the presence of a much larger (theoretically 

infinite) solution domain extending beyond the model. These bulk solution boundaries 

were defined as being 100× the Pt UME radius away from the cell center (500 µm away 

for 10 µm UME and 220 µm for 4.4 µm). The rate of the mediator transport is governed 

by the diffusion coefficient for the model (D), and Ficks’s second law of diffusion (Eq 

6.1). The diffusion coefficient for FcCOOH in the domain was set to 5.7 × 10
-10 m

2
/s.59-60  

𝜕𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑥2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑦2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑧2 ) [6.1] 

A diffusion-limited one-electron oxidation reaction occurs for FcCOOH when adequate 

potential bias is applied to the system (0.35V vs Ag/AgCl). This was recreated in the 

simulation by defining a mediator concentration of zero at the biased Pt surface. The cell 

membrane was defined as an insulating boundary with no flux since the FcCOOH 

electrochemical mediator is impermeable to the cell membrane. 

The COMSOL model domain was then meshed using a free tetrahedral mesh (Figure 

6.2D). The meshing element size defines the simulation resolution and can influence the 

accuracy of the model. A minimum element size of 0.05 μm was defined, with a 

maximum element growth rate of 1.2, up to a maximum of 50 μm at the bulk solution 

boundary. The mesh was further refined at the cell membrane boundaries (0.3×) and the 

Pt disk of the UME (0.1×), where the concentration change was the most significant.  

To simulate cell topography, a stationary phase (steady state) simulation method was 

utilized. The UME position relative to the cells was defined and the solution flux was 

simulated. The resulting concentration profile for the specified UME coordinates was 

saved. The UME was then repositioned, and the process was repeated. Each electrode 

position was simulated separately, using the parametric sweep function of COMSOL. 
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Parametric sweeps sequentially simulate a range of values to be investigated defined by a 

starting value, step size and stop condition. Multiple parametric instruction loops can be 

nested inside each other, allowing for the simulation of full cartesian positioning with 

three parameters (x, y, z). Each individual simulation maintained a full concentration map 

for the defined electrode position and physics conditions. The flux to the electrode 

surface was integrated across the Pt disk in post processing and converted to UME tip 

current for comparison to experimental scans.  

Theoretical and experimental PACs were normalized and plotted together to allow 

quantification of experimental tip to sample distance. The distance was normalized to the 

UME critical radius used experimentally (5 μm or 2.2 μm radius). Current was 

normalized to bulk solution current (i∞).  
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6.4 Results and Discussion 

 Double Cell Imaging with a 4.4 μm UME 
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Figure 6.3 - (A) Optical image of an experimental double cell imaged with a 4.4 μm 

diameter UME. UME imaging area labelled in blue. (B) Meshed 3D model, of 

experimental double cell. (C) Experimental and (D) simulated surface maps of the 

double cell at tip to sample distance of 1.3 μm from the top of the cells. (E) 

Experimental and Simulated (F) surface maps at a tip to sample distance of 0.9 μm. 

(G) Experimental and (H) simulated surface maps at a tip to cell distance of 0.5 μm. 

A pair of cells in close proximity to each other (41.3 μm center to center) (Figure 6.3A) 

was imaged using a 4.4 μm UME and modeled in 3D using COMSOL (Figure 6.3B). Cell 

heights were characterized by SECM and determined to vary by only 0.11 μm for the two 

cells. Experimental scans imaged an area of 60 µm × 60 µm yielding current maps of 256 

pixel × 256 pixel. 20 different tip-to-cell distances were performed as part of the 

experimental scan with a 0.4 µm step distance in the z axis. Planes were extracted from 

this 3D image to provide 2D depth scan profiles, or surface maps of the cell samples by 

specifying a plane through the 3D data set in MATLAB (Figure 6.1B). Line scans were 

also be extracted from the 3D map, providing 1D probe approach curves (PACs) or single 

line scans over the samples. All of these common methods of characterization are 

available as part of the one 3D scan. This allows for multiple forms of characterization to 

be performed on the same cell sample, which can be exported in post processing. Full 3D 

experimental (Figure 6.3C, E, and G) and simulation (Figure 6.3D, F, and H) surface 

maps are displayed, providing electrochemical characterization of a region of space 

above the cells of interest. These represent the 3 closest experimental surface maps 

performed in this 3D scan. This tip to sample distance was determined to be 1.3 μm 

(Figure 6.3C and D), 0.9 μm (Figure 6.3E and F), and 0.5 μm (Figure 6.3G and H). This 

mirrors the experimental step size of 0.4 μm in the z direction. Peak size, position height 

and shape were found to strongly agree with the theoretically generated surface maps at 

multiple distances from substrate. 

The complexity of the single cell being studied may necessitate additional considerations 

for geometry and physics. This work aims to characterize the restrictions on cell 

proximity that must be considered when performing simulations of this type.  
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Figure 6.4 - (A) Theoretical double cell compared to individually simulated single 

cells of the same geometry at a tip to sample distance of 0.5 μm. (B) Difference in 

surface maps generated with both geometries. (C) Experimental PAC extracted 

from 3D image of double cell for cell 1, fitted to theoretical PAC. (D) Experimental 

PAC extracted from 3D image for cell 2. 

The double cell system imaged in this study incorporated two cells in relative close 

proximity to each other, where two cells were present in the same scan. This is normally 

avoided experimentally due to the risk of receiving a cumulative signal from the adjacent 

cells. However, in this case the distance between the cells (41.3 μm center to center), and 

the relatively small UME tip size of 4.4 μm, allowed for negligible contribution from the 

adjacent cell. The theoretical map from Figure 6.3H, was re-simulated with both double 

cell and single cell geometry, for both cells (Figure 6.4A). This is the same theoretical 

system that was explored above. The difference in the surface map profile between the 

single cell and double cell models was calculated for all positions, with a maximum 

deviation of 0.01 in the normalized current of the two maps (Figure 6.4B). Deviation of 
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this magnitude occurs only in the region between the two cells where minor contribution 

from the adjacent cell is present. The majority of regions simulated had a difference of 

less than 0.001, including the peaks of the cell surface map. This indicates that PAC 

extractions were largely unaffected by the presence of the adjacent cell at this electrode 

size and distance. As a result, each of these cells could be simulated individually at this 

electrode size and cell spacing, without the need for incorporating the added complexity 

of the second cell. This would greatly reduce compute time without negatively affecting 

the resulting theoretical map or PAC. 

Experimental PAC extractions were taken from the 3D scan of the double cell over each 

of the two cells. PACs were also extracted from the simulated 3D map for both cells and 

used to characterize the tip to substrate distance. The closest approach position of the 

UME to cell 1 had a normalized current of 0.48, which corresponds to a tip to substrate 

distance of 0.51 μm (Figure 6.4C). The UME had closer approach to Cell 2, yielding a 

normalized current of 0.45 and a tip to substrate distance of 0.40 μm (Figure 6.4D). These 

distances are very similar to the 0.5 μm characterization done by surface mapping 

observed in Figure 6.3GH. In this figure, peak intensity was very close between 

experimental and theoretical surface maps, with minor deviation. The individual 

characterization by PAC provides a more accurate measurement of this geometry. This 

method also allows for the characterization of the relatively minor 0.11 μm difference in 

cell height between the two cells. By performing the full 3D characterization, both 

experimentally and theoretically, the benefits of all these more targeted scans can be 

achieved in post processing. 
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 Close Proximity Cells Imaged with a 10 μm Electrode 

 

Figure 6.5 - (A) Optical micrograph of a pair of cells (14.7 μm center to center 

distance) to be imaged with a 10 μm UME, with scan area labelled in blue. (B) 

Meshed 3D model of the experimental double cells. (C) Experimental and (D) 

Simulated surface maps represented as a 2D xy surface map. (E) Experimental and 

(F) Simulated surface maps extracted from a 3D image of the double cells at a tip-

to-cell distance of 1.0 μm (from the tallest cell). 

The analysis of a sample utilizing a larger electrode or with cells at an extremely close 

proximity (14.7 μm center to center distance) is expected to have additional complexity. 

In many cases the cells can no longer be treated as individual cells for analysis, and more 

sophisticated models must be created, tailored to the specific geometry of the entire 

multi-cell system. This necessitates a dedicated simulation for each experimental sample, 

greatly increasing the computational time required. However, through the use of this 
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multi-cell simulation methodology, samples which were previously unusable for 

characterization can now be studied.  

An experimental map of a pair of cells was performed incorporating both of these non-

ideal conditions, with two cells in direct contact imaged by a 10 μm UME (Figure 6.5A). 

Experimental scans imaged an area of 40 µm × 40 µm yielding 256 pixel × 256 pixel 

current maps. 10 images were taken at various tip-to-cell distances. The imaging of a 

system that exhibits feedback overlap of adjacent cells to this degree has been previously 

regarded as detrimental to SECM analysis and is avoided when performing experimental 

analysis. The full geometry of both of these cells were measured for size and orientation, 

using the pixel counting methodology detailed in 6.3. The complex geometry of this 

experimental system was used to generate a theoretical model for the simulation of this 

3D map (Figure 6.5B). A difference in cell height was observed between the two cells, 

with the shorter cell having a 6.75 µm height (cell 1), while the taller cell had an 8.00 µm 

height (cell 2). This difference in cell height was also incorporated into the model 

geometry.  

The double cell system was imaged in 3D by SECM, and a surface map was extracted at 

1.0 μm from the top of the tallest cell (cell 2). This SECM surface map was replicated 

theoretically and compared to the experimental map. The theoretically generated and 

experimentally acquired surface maps show close agreement in peak position and shape 

(Figure 6.5C and D). The strong feedback response of the taller cell 2, as well as the 

weaker feedback from the shorter cell 1, are both visible in the experimental and 

theoretical maps. A similar gradient of influence was observed as the UME moved away 

from these cells and was positioned over the glass dish adjacent to the cells. The 

combined profiles of the two adjacent cells matched one another in positional accuracy. 

Peak intensity was also observed to show strong agreement between the experimental and 

theoretically acquired surface maps (Figure 6.5E and F). Through the use of this tailored 

theoretical model to simulate the experimental system, the complex 3D overlap in 

substrate influence on current feedback was simulated. This provided a method for 

characterizing a system which cannot be considered as separate individual cells and 



158 

 

 

analyzed using traditional practices. This provides a method of imaging and analysis for 

highly confluent samples, which are incapable of being re-cultured. This limitation can be 

imposed by the time dependence of the study, poor dispersibility of the cell line, limited 

quantity of the sample available, etc. Avoiding close proximity cell samples provides the 

ideal conditions where possible. Reducing the UME size can also provide better 

resolution of cell samples of this type. However, smaller UMEs require smaller tip to 

sample distances to resolve features and surface chemistry of the sample and can hinder 

the imaging of samples with significant variability in sample height. In cases where 

neither of these precautions can be taken, performing full 3D simulations on the 

experimental system tailored to the sample geometry can allow for improved sample 

analysis.  

 Effects of Cell Distance on Imaging 

The characterization of a two cell system (41.3 μm cell spacing) with a 4.4 µm UME, 

where both cells are present in the same 60 × 60 µm scan area, detected negligible effect 

from the adjacent cell. The use of a larger scale electrode, and closer proximity cells (10 

μm UME, 14.7 μm cell spacing), contributed to the more significant influence of an 

adjacent cell. This introduces increased complexity in the characterization of the cell 

sample. The determination of the limitations of traditional single cell modelling methods 

for characterization is one of the aims of this work. 

Using the simulation models explored in sections 6.4.1 and 6.4.2, the cell geometry was 

altered to determine the limits of detection of the commonly used 4.4 µm and 10 µm 

electrode sizes for live cell imaging. The cell sizes were altered to reflect the statistical 

average of the T24 cells (96 cell samples), previously determined optically to be 18 µm × 

27 µm.32 Cell heights were set to 8 µm, as previously determined by SECM depth scan 

(22 cell samples).55 The cells were oriented at the same angle and y axis position, with 

their short axis oriented along the x axis (Figure 6.6A). Horizonal line scans were 

performed at multiple tip to sample distances as cell spacing was varied. Figure 6.6 B and 

C show the line scans for a 4.4 µm UME at 0.5 µm, and a 10 µm UME at 1.0 µm, 

respectively. These distances were selected for these respective electrode sizes as they 
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have a similar relative tip to sample distance (normalized distance of ~0.2). At 50 µm cell 

spacing, neither electrode size showed significant deviation in the double cell line scan 

from simulations of an individual cell geometry. The curve peak heights were similarly 

unaffected, which is a good indicator that no deviation is expected in the PAC extraction 

from this data set.  
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Figure 6.6 - Horizontal line scans over a set of two cells to determine SECM UME 

probe resolution at 0.5 µm from cell surface with a 4.4 µm UME (B,E,H,K), and 1.0 

µm from the cell with a 10 µm UME (C,F,I,L; ND = ~0.2). Characterization 

illustrated with 50, 20, 10 and 4 µm cell spacing.   
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As the cells are moved within 20 µm of each other (Figure 6.6D), effects of the adjacent 

cell can be observed. The 4.4 µm electrode shows largely no difference in curve shape, 

with the exception of the region directly between the cells (Figure 6.6E). This would have 

an effect on surface mapping and depth scan profiles that scan across this region. 

However, the lack of deviation of the peak height along the bulk of the cell profiles 

allows for accurate PAC extraction, without the need for dedicated sample-specific 

modelling. The 10 µm electrode, however, shows significant deviation in curve shape at 

this distance, including deviation in the peak height (Figure 6.6F). At distances greater 

than 20 µm (simulated ≥25 µm), the peak height remained usable for PAC extraction. 

Therefore, for imaging with a 10 µm electrode, care should be taken to ensure the 

minimum spacing between cells exceeds 20 µm center to center, or the geometry and 

physical conditions of the full multicellular system must be considered. 

A similar trend to the 10 µm electrode at 20 µm, was observed with the 4.4 µm electrode 

at 10 µm cell spacing. At this distance, the model geometries of the two cells were 

overlapping as the cell distance is less than the average cell diameter (Figure 6.6G). This 

geometry could be observed experimentally in cells that are adhered to each other, having 

recently undergone cell division. The 4.4 µm electrode feedback showed significant 

deviation in curve shape, and deviation in peak height at this distance (Figure 6.6H). 

Therefore, for imaging with a 4.4 µm electrode a minimum distance exceeding 10 µm 

center to center should be maintained. At this 10 µm cell spacing, the 10 µm UME is 

unable to distinguish the two cells from one another, providing a single combined curve 

(Figure 6.6I). 

The simulation was continued to a cell spacing of 4 µm, where the geometry of the two 

cells is almost completely overlapping (Figure 6.6J). At this distance, it was no longer 

possible to resolve the two cells with either electrode tested (Figure 6.6KL). This cell 

spacing is closer than would be observed with any experimental system where two 

distinct cells are present. This geometry could, however, be possible with a single cell 

undergoing division. This illustrates the strength of 4.4 µm electrodes for imaging highly 

confluent live cell samples of this size.  
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By reducing the UME tip size further, even greater resolution of the live cell spacing 

would be possible. However, this also necessitates a smaller tip to substrate distance, 

which limits the ability to image the entire cell surface. As a result, the electrode size 

should be optimized for the sample size under study if obtaining surface mapping, 

multiple PACs, or full 3D imaging. 

The full set of examined horizontal line scans at various cell spacings and tip to sample 

distances is visible is Figure 6.7.  

 

Figure 6.7 - Collection of horizontal line scans over a double cell at multiple 

distances to substrate using a 10 µm UME (A, C, E), and a 4.4 µm UME (B, D, F). A 

2D plot of the horizontal line scans relative to cell sample spacing is provided at 0.5 
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µm tip to sample distance for (A) 10 µm UME and (B) 4.4 µm UME. A 3D 

perspective of these plots is provided for a range 10 tip to sample distances per 

electrode tip size (C=10 µm; D=4.4 µm). A side on image of these plots is provided, 

with labelling for the cell spacing distance at which major deviation from normal 

peak current is observed (E=10 µm; F=4.4 µm). 

6.5 Conclusions 

Analysis of complex systems of cells in close proximity by SECM can lead to a number 

of issues using traditional methods. Through the use of tailored 3D model geometries for 

these cell systems, experimental characterization can be performed. Cell cluster samples 

were modelled using two common electrode sizes for SECM imaging (10 μm and 4.4 

μm). Surface maps of an experimental double cell (41.3 μm cell spacing) imaged by a 4.4 

μm UME were compared to simulated maps utilizing a tailored geometry with a strong 

agreement in curve shape. Following this, a higher complexity experimental system was 

explored, incorporating two extreme proximity cells (14.7 μm cell distance) and a larger 

10 μm UME. In this situation it is absolutely necessary to employ a tailored full 3D 

model for simulation. The simulation model was capable of providing a strong theoretical 

fit to the experimental results when the geometry of both cells was considered. The 

effects of an adjacent cell were characterized for both common UME sizes with variable 

cell proximity. Horizontal line scans across the two cell centers were explored to 

illustrate the effect on surface mapping. Limits of detection for the adjacent cell when 

performing a PAC approach to a cell center were also explored. It was determined that 

deviation from normal PAC current was observed at 20 μm spacing for 10 μm UMEs and 

10 μm for 4.4 μm UMEs. This defines the limitations of traditional simulation 

methodology for characterizing cell samples. Cells with 20 μm or less to an adjacent cell 

necessitate tailored simulation geometry for 10 μm UMEs. Imaging with a 4.4 μm 

electrode should be performed with a cell spacing greater than 10 μm, or geometry must 

be tailored as well. The developed methodology for theoretical quantification of complex 

samples provides increased versatility in theoretical modelling of cell systems and 

reinforces the strength of SECM as a powerful bioanalytical tool. 
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Chapter 7  

7 Simulation-Assisted Nanoscale Imaging of Single Live 
Cells with Scanning Electrochemical Microscopy 

Nanoelectrodes have become an area of significant interest in recent years, which provide 

a number of advantages for imaging with scanning electrochemical microscopy (SECM). 

Since the resolution of SECM imaging is directly dependent on the size of the electrode 

probe, the reduced surface area of nanoelectrodes allows for the imaging of smaller 

sample features, or more localized electrochemical reactivity. Nanoelectrodes with a 

radius of 130 nm were employed to image the surface of single live cells. The use of 

nanoscale imaging, however, introduced additional complexity into the simulation 

modeling of the cell surface geometry and electrochemical reactivity. The creation of 

tailored simulation models accounting for these specific physical conditions was utilized 

to overcome the additional challenges to the characterization of the electrochemical 

system. Methodologies for the experimental mapping and creation of 3D simulation 

models of single live cells have been well developed, which are presented herein. These 

developments include characterization of cell surface topography, tip-to-cell distance, as 

well as cell membrane permeability quantification. The advanced quantification of the 

complex nanoscale imaging of single live cells assisted by theoretical simulations 

provides increased versatility to SECM as an already powerful bioanalytical tool. 

7.1 Introduction 

Nanoelectrodes provide a number of advantages in scanning electrochemical microscopy 

(SECM). The resolution of an SECM image is directly dependent on the size of the 

electrode probe surface. The reduced surface area of a nanoelectrode allows for the 

(A version of this work has been published in Adv. Theory Simulations 

Filice, F. P.; Li, M. S. M.; Ding, Z. F. Simulation Assisted Nanoscale Imaging of 

Single Live Cells with Scanning Electrochemical Microscopy, 2018, DOI: 

10.1002/adts.201800124) 
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imaging of smaller sample features, or more localized electrochemical surface reactivity. 

As a result, nanoelectrode imaging has become an area of significant interest in recent 

years.1-2 

The small size of nanoelectrodes introduces more difficulties in fabrication than the 

larger, more common ultramicroelectrode (UMEs, µm scale) probes. However various 

fabrication methods have been developed including laser pulling 3-6, chemical vapour 

deposition,7-8 pyrolytic deposition of carbon inside of nanopipettes,9 and focus-ion-beam 

milling10-11 techniques. These different methods hold their own advantages and 

disadvantages. In this report, laser-pulled electrodes were utilized, with 130 nm tip 

radius, to image single live cells.  

SECM is a member of the scanning probe microscopy family.12-14 SECM provides 

precise positioning of an ultramicroelectrode (UME, ≤25 µm diameter electrode disk) or 

nanoelectrode probe (nm scale). Faradaic current from an electrochemical redox reaction 

is monitored relative to electrode position. This allows for the mapping of surface 

topography and electrochemical reactivity of the sample under study. SECM scans are 

often coupled with finite element method (FEM) simulations to provide additional 

quantification of sample features.15  

SECM imaging methods have been in development since 1989,16-17 promoting a diverse 

range of applications for the techniques to be examined.18 SECM has since been applied 

to kinetic studies,19-20 surface and interface studies,21-23 microstructure fabrication.24-26 

SECM has also found applications as a bioanalytical tool for cellular imaging,27-36  

membrane transport,28, 37-44 neurotransmitter release,45-46 multidrug resistance,29-30, 47 ROS 

and RNS mapping,35, 48-54 and cellular redox processes.33, 55-60 

SECM imaging with smaller probes provides insight into more fine detail of the sample 

surface, including both topographical information and electrochemical reactivity.61 This, 

however, introduces additional complexity into the modelling of these systems for further 

characterization by finite element analysis simulation. Tailored simulation models often 

need to be created to account for the specific geometry or reactivity of the sample when 
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imaged with nanoscale probes. Herein a methodology for the creation of advanced 3D 

simulation models for imaging single live cells will be presented. This methodology 

includes characterization of surface topography, tip-to-sample distance, as well as cell 

membrane permeability quantification in nanoscale. 

7.2 Experimental Section 

 Materials 

Ferrocenemethanol (FcCH2OH, 97%) and hexaamineruthenium(III) chloride 

(Ru(NH3)6·Cl3, 98%) were acquired from Sigma-Aldrich (Mississauga, ON). A Stock 

solution of SECM mediator was prepared using 0.9 mM FcCH2OH and 10 mM 

Ru(NH3)6
3+ dissolved in 1× phosphate buffered saline (PBS, Life Technologies, 

Burlington, ON). 

 Cell Preparation 

Human bladder cancer cells (T24 cells (HTB-4™)) were purchased from American Type 

Culture Collection (ATCC, Manassas, VA, USA) and maintained according to the ATCC 

specified protocol. Cells were cultured in McCoy’s 5a medium (ATCC) containing 10% 

Fetal Bovine Serum and incubated at 37°C with 5% CO2. When preparing cell samples 

for SECM experiments, T24 cells were cultured in sterile (γ-irradiated) glass bottom Petri 

dishes (P35G-0-20-C, MatTek Corporation, Ashland, MA, USA). Cells were incubated 

for a minimum of 24 hr, ensuring cell adherence to the glass surface of the Petri dish. The 

growth medium was decanted prior to analysis via SECM, and thoroughly washed with 

1× PBS. Medium was replaced with the electrochemical mediator solution.  

 Electrode Fabrication   

A Sutter Instruments P-2000 laser micropipette puller (Sutter Instrument, Novato, CA) 

was used to manufacture SECM nanoelectrodes in-house. The electrode fabrication 

procedure follows a modified version of the Mauzeroll group’s .3, 6, 62-63 Briefly, a 25 µm 

Pt wire (Goodfellow Metals, Cambridge, UK) was inserted into the center of a quartz 

glass capillary tube (o.d.: 1.00 mm, i.d.: 0.50 mm, length: 10.00 cm, Sutter Instrument).  
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The capillary and Pt wire are sealed and pulled in the center, yielding two electrodes. 

Two stages of heating were performed using different single line heat settings. For both 

of these steps the linear carriages were locked in place to ensure no movement. The 

interior of the quartz capillary was evacuated of air for these steps as well, using a 

custom-designed vacuum line which affixes to both ends of the capillary. First, a partial 

quartz seal is performed using a line setting of Heat: 580, Filament: 003, Velocity: 140, 

Delay: 060, Pull: 000. Following this, the complete seal of the quartz around the Pt wire 

was performed using the settings Heat: 580, Filament: 002, Velocity: 140, Delay: 060, 

Pull: 000.5, 11 

  Following the successful heat sealing of the quartz around the 25 µm Pt wire, the linear 

carriages were unlocked, and a final pull step was performed with setting of Heat: 780, 

Filament: 002, Velocity: 060, Delay: 140, Pull: 200. Pt NEs were checked optically for 

obvious Pt wire breakages inside the glass and tested by cyclic voltammetry (CV). 

Internal connections were extended and reinforced using conductive silver epoxy (Epo-

Tek H20E, Billerica, MA). The Pt tips were wet polished to a flat surface using a 

homemade polishing wheel, with alumina-coated polishing pads (0.05 µm, Buehler, 

Whitby, ON).  

 SECM Instrumentation 

A detailed description of the SECM instrumentation and experimental procedures can be 

found in Chapter 2 section 2.2.5.64 Briefly, SECM experiments were carried out using the 

piezoelectric positioning system of a modified Alpha-SNOM (WITec, Ulm, Germany). A 

custom-milled UME mount allows for the mounting of electrodes in place of an upper 

objective lens. A micro-incubator Petri dish mount (Bioscience Tools, San Diego, 

California, USA) was secured onto the scanning stage to maintain homeostatic 

temperatures for cell samples. An inverted objective lens (50×, N.A. 0.55, W.D. 10.1 

mm, Nikon, Japan) was used to acquire optical images and position the UME relative to 

the live cells of interest. 
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Electrochemical analysis was performed using a CH Instruments Electrochemical 

Analyzer (CHI800B, Austin, TX) with a CHI200 Picoamp Booster for low current high 

sensitivity analysis. Low current operation is common in SECM experimentation due to 

the use of small electrodes and dilute solutions. A simple two-electrode system was used, 

with an UME working electrode and a Ag/AgCl reference/counter electrode. All 

potentials are reported relative to the Ag/AgCl reference. 

 SECM Experimental Procedure 

Steady-state performance of the UME probe and solution were verified by cyclic 

voltammograms (CVs) at the beginning of each experiment. Cells were cultured to a 

confluency of 30-40% in glass bottom Petri dishes. The Petri dish was secured to the 

temperature-controlled stage mount, and maintained at 37.0 ± 0.2 ˚C. Each Petri dish was 

analyzed for a maximum duration of 60 min. A biased UME tip potential of 0.3 V 

(identified through CVs) was applied to obtain steady state oxidation of FcCH2OH, or a 

potential of -0.35V was applied to induce the steady state reduction of Ru(NH3)6
3+. A cell 

was selected optically using the inverted objective lens, and the nanoelectrode was 

brought in close proximity to it using the Alpha-SNOM positioning system. SECM 

analysis of all samples was performed at a maximum UME tip speed of 21.5 µm/s, to 

limit the effects of forced solution convection and maintain steady state current.65 The 

nanoelectrode was slowly approached toward the cell using the SECM depth scanning 

method, and was carefully monitored to avoid an electrode crash. Once feedback from 

the cell surface could be observed, the scan was then stopped and the nanoelectrode 

manually positioned to the closest z position achievable within the limits of the 

positioning system and electrode glass sheath. Experimental surface maps were then 

acquired using both FcCH2OH and Ru(NH3)6
3+ electrochemical mediators in rapid 

succession. Care was taken to ensure that less than 10 min passes between the two 

experimental scans. 
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7.3 Simulation 

 

Figure 7.1 - (A) Labelled optical image of single live cell, with nanoelectrode shadow 

visible. (B) 3D model of the SECM approach to single live cell with key features, 

boundaries, and domains labeled. (C) 2D work plane of cell base geometry based on 

optical pixel measurements and SECM feedback. (D) Optimized 3D cell geometry 

for SECM imaging simulation. (E) Meshed cell geometry. (F) Labelled mesh of 

nanoelectrode tip. 

Theoretical SECM surface mapping was generated using COMSOL Multiphysics (v5.3, 

COMSOL Inc., Burlington, Massachusetts). A full 3D model was constructed based on 

the physical dimensions of the SECM system under study (Figure 7.1B). Optical 

transmission images were taken of the single live cells experimentally imaged by SECM 

(Figure 7.1A). Pixel counting was utilized on the optical images to accurately measure 

the dimensions of the cell base, as well as the position, orientation and size of the nuclear 

bulge. The cell base was replicated using simple shapes on a 2D work plane in COMSOL 

(Figure 7.1C). A binary union was performed to merge all objects on the workplane, and 

internal boundaries were removed. The work plane was extruded up to a height of 7 µm, 
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and an ellipsoid was positioned in place of the nucleus with a height of 1 µm. This set the 

total cell height at the average cell height for T24 cells, previously characterized to be 8 

µm.66 This ratio of cell base height to nuclear bulge height was parametrized and 

optimized based on experimental SECM scans (section 4.1). The edges of the cell base 

were filleted to create a more tapered profile for the cell at its edges. The cell base and 

nuclear bulge were merged, and all interior boundaries were removed (Figure 7.1D). 

The electrode geometry was defined as a flat Pt disk with a radius of 130 nm, and an RG 

of 10. This recreated the physical characteristics of the UME utilized for the experimental 

analysis. The bulk solution boundaries at the edges of the model were well defined as 

being 200 µm away from the cell center. 

The model was defined as a two-domain system, composed of the solution domain and 

the cell interior. The solution domain initially contained 0.9 mM FcCH2OH and 10 mM 

Ru(NH3)6
3+, mirroring the experimental solution concentrations. The exterior bulk 

solution boundaries of the model were defined to regenerate this initial concentration of 

both mediators, simulating the presence of a theoretically infinite solution domain 

extending beyond the model. The cell interior has an initial concentration of 0 mM for 

both mediators. The transport of this mediator in both domains is governed by Ficks’s 

second law of diffusion (Eq. 7.1).  

𝜕𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷 (

𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑥2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑦2 +
𝜕2𝐶𝐵(𝑥,𝑦,𝑧)

𝜕𝑧2 ) [7.1] 

where the diffusion coefficient (D) for Ru(NH3)6
3+ is 6.7 × 10

-10 m
2
/s, and the diffusion 

coefficient for FcCH2OH is 7.6 × 10
-10 m

2
/s.67-71 The UME Pt tip was set to generate a 

concentration of 0 mM for both Ru(NH3)6
3+ and FcCH2OH. The inclusion of both 

electrochemical mediators, and their physical parameters allowed for the simultaneous 

simulation of both SECM scans with identical geometry and electrode positions. 

Including both scans into the same model eliminated the need to maintain two versions of 

the same model, or constantly change parameters and rerun simulations with the different 

mediator conditions in the same model. 
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The cell membrane boundaries are defined as flux boundaries, allowing for species 

transport across the membrane (Eqs. 7.2 and 7.3).  

𝑓𝑖𝑛 = 𝑃(𝐶𝐵 − 𝐶𝐶) [7.2] 

𝑓𝑜𝑢𝑡 = 𝑃(𝐶𝐶 − 𝐶𝐵) [7.3] 

The flux across the membrane boundary is dependent on a permeability coefficient (P) 

and the concentration gradient across the membrane boundary. In the case of the two 

electrochemical mediators, only the FcCH2OH is normally permeable to the membrane 

while Ru(NH3)6
3+ is impermeable. As a result there was no need to simulate the transport 

of Ru(NH3)6
3+ across the membrane. This eliminated the need to maintain intracellular 

concentrations of Ru(NH3)6
3+ and the accompanying flux boundary conditions. 

Optimizations such as this reduced model complexity, which lead to a corresponding 

reduction in memory utilization and compute time. 

The COMSOL model contained a significant variation in object scale, with 4 full orders 

of magnitude difference in element size between the nanoelectrode tip and the bulk 

solution boundary. The solution domain has a diameter of 400 µm, while the electrode tip 

has a radius of 130 nm, causing a difference in scale of over three orders of magnitude.  

This necessitated significant fluctuation in meshing element size, with an extremely fine 

mesh at the electrode tip and a coarser mesh nearer the bulk solution boundaries. A free 

tetrahedral mesh was used to accomplish this. A minimum element size of 0.05 μm was 

defined, with a maximum element growth rate of 1.2, up to a maximum of 50 μm at the 

bulk solution boundary. Mesh scaling factors were manually applied to specific 

boundaries of interest, where significant variation in concentration commonly occurs. At 

these boundaries, the mesh was further refined from the free tetrahedral profile. The cell 

membrane was defined to have a mesh 0.3× the mesh defined by the free mesh element 

parameters (Figure 7.1E). While the nanoelectrode tip was refined even finer to 0.1× the 

free mesh parameters, yielding an element size as small as 5 nm (Figure 7.1F). 

Electrode positioning was defined as a set of parametric values in this model. As well, the 

membrane permeability coefficient for FcCH2OH was also parameterized. Parametric 
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sweeps allowed for the sequential analysis of hundreds of individual simulations with 

varying parameters. The electrode x and y positioning were defined as a set of nested 

parametric sweeps, facilitating the mapping of a 2D surface over the cell. The electrode z 

position and membrane permeability can also be added as additional nested sweeps. 

However, these parameters were often specified manually in separate save files and 

distributed among multiple PC workstations for faster compute.  

Following computation of the concentration maps, the mediator flux was integrated 

across the nanoelectrode surface, and converted to UME tip current for comparison to 

experimental scans. Theoretical and experimental current feedback was normalized to 

bulk solution current (i∞).  



178 

 

 

7.4 Results and Discussion 

 Nanoscale Scanning Electrochemical Microscopy 

 

Figure 7.2 - (A) Experimental surface map of a single live cell imaged with a 130 nm 

radius UME and Ru(NH3)6
3+ as the mediator. (B) Simulated surface map of the cell 

(C) Experimental surface map viewed as 3D relief from the side. (D) Simulated 

surface map viewed from side. (E) Extracted experimental line scan across center of 

cell overlaid onto various tip to cell distances. 
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A surface map of a single live cell was imaged using a 130 nm radius laser-pulled 

electrode, and the membrane impermeable mediator Ru(NH3)6
3+ (Figure 7.2A). This 

mediator was selected for its impermeability, as it ensures that the resulting feedback is 

exclusively due to sample topography with no membrane permeability to consider. The 

surface map was performed at constant height above the cell. Comparing the resulting 

signal to the optical image of the cell (Figure 7.1A), it becomes evident that at the tip-to-

cell distance of the surface map, only the nuclear bulge showed strong electrochemical 

feedback. 

A full 3D simulation model was constructed based on the optical image of the cell and 

the electrochemical surface map. Using the geometry of the cell base, the nuclear 

dimensions, and their relative positions and angles, a 3D analogue of the cell surface was 

created. Using this model to simulate the surface map showed strong positional accuracy 

and size of the electrochemical response (Figure 7.2B). Observing the same experimental 

scan as a 3D relief, illustrates the surface shape, and peak intensity of the response 

generated by the proximity to the adjacent cell (Figure 7.2C). Viewing the theoretical 

map in the same fashion illustrates a strong agreement between the experimental and 

theoretical map (Figure 7.2D).  

To perform this fitting, the relative heights of the nuclear bulge to cell base had to be 

parameterized. The cell height was fixed at 8 µm, as was previously characterized to be 

the average for a T24 cell.66 The extrusion height from the base and the height of the half 

ellipsoid used as the nuclear bulge were specified in the model to sum to 8 µm. Fitting of 

an experimental horizontal sweep was performed with primary consideration for peak 

height of the current response and peak width. It was determined that a base height of 7 

µm and a nuclear bulge height of 1 µm, yielded the strongest agreement for curve shape 

(Figure 7.3).  



180 

 

 

 

Figure 7.3– (A) Example geometry of a cell model with 7.5 μm base and 0.5 μm 

nuclear bulge. (B) Example geometry of a cell model with 6.0 μm base and 2.0 μm 

nuclear bulge. (C) Overlay of experimental horizontal sweep with Ru(NH3)6
3+  

mediator onto theoretically generated horizontal sweeps simulated with various 

base/nuclear bulge heights. 

Characterization of the tip to substrate distance was performed by parameterizing the 

electrode z axis. Multiple horizontal sweeps were performed across the center of the 

nuclear bulge at varying electrode heights. The resulting theoretical plots were overlaid 

onto a horizontal sweep extraction from the surface map across the center of the 

electrochemical response (Figure 7.2E). The resulting peak intensity from the 

experimental data shows a strong agreement with a tip-to-cell distance of 850 nm.  

Nanoelectrodes provide a number of advantages for SECM imaging, but they also 

significantly increase the experimental difficulty. SECM image resolution is directly 

dependent on the size of the scanning probe. Smaller probes allow for the imaging of 

smaller surfaces features or clear delineation of regions with varying electrochemical 

reactivity. Electrodes produce a cumulative signal of all reactions occurring across their 

entire surface area at a given time. The extremely small surface of a nanoelectrode allows 
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for a much smaller spot size for imaging. However, the smaller probe size of a 

nanoelectrode necessitates closer positioning to the sample. This makes it difficult to 

avoid an electrode crash when imaging samples of varying height, sample tilt, or with 

moving surfaces. The lower surface area also yields smaller current response, making the 

signal more susceptible to electrical noise.  
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 Cell Membrane Permeability Characterization 

 

Figure 7.4 - (A) Experimental surface map of single live cell with 260 nm UME with 

FcCH2OH mediator. (B) Simulated surface map of the cell (C) Experimental surface 

map viewed as 3D relief from the side. (D) Simulated surface map viewed from side. 

(E) Extracted experimental line scan across center of cell overlaid onto various tip 

to cell distances. 
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The use of the Ru(NH3)6
3+ mediator made it possible to accurately measure the cell 

surface topography, as well as provide an accurate tip-to-cell distance (section 7.4.1). 

This allowed the optimization of a detailed cell analogue for theoretical simulation. This 

optimized model geometry can be applied to more complex systems, utilizing the same 

cell and electrode system. 

The electrochemical mediator FcCH2OH is partially permeable to the cell membrane. It is 

hydrophilic enough that it dissolves in the water-based systems of the cell interior and 

extracellular fluid. FcCH2OH is also oleophilic enough to cross the hydrophobic interior 

of the cell phospholipid membrane. However, it is not so oleophilic that it will 

accumulate between the lipid layers of the membrane. A surface map was taken of the 

same single live cell discussed in 7.4.1 using FcCH2OH as an electrochemical mediator 

(Figure 7.4A). Less than 10 min had elapsed between the start of the Ru(NH3)6
3+ imaging 

and the FcCH2OH scan, ensuring no drastic change in cell membrane shape. A lower 

signal to noise was observed for the FcCH2OH scans due to the greatly reduced current 

feedback (10-12 A) from the lower dissolved concentration of the FcCH2OH mediator. A 

curve smoothing algorithm was applied in MATLAB to reduce the more extreme signal 

noise for the FcCH2OH scan. 

The optimized geometry and tip-to-cell distance from the Ru(NH3)6
3+ scan was utilized to 

model this system. However, the cell interior domain and flux across the cell membrane 

were also considered for the FcCH2OH simulation. A simulated surface map, matching 

the experimental scan was generated (Figure 7.4B). This surface map showed strong 

agreement in the degree of the electrochemical response, as well as the positional 

accuracy of the response. 

The experimental surface map was also viewed as a 3D relief map (Figure 7.4C). This 

allows the peak intensity of the curve, as well as the curve shape to be more easily 

compared. The theoretical surface map was also plotted in this fashion (Figure 7.4D). 

Comparing the peak width shows strong agreement between the experimental and 

theoretical scan; however, the peak height becomes difficult to characterize due to the 

increased signal noise. Multiple horizontal line scans were simulated across the center of 
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the nucleus with varying membrane permeability coefficients (Figure 7.4E). An 

experimental horizontal sweep extraction was taken from the surface map and overlaid 

onto of these curves. The experimental membrane permeability agreed most strongly with 

the simulations for extremely low membrane permeability. Significant fitting error exists 

for all permeabilities below 10 μm/s. The strongest agreement between theoretical and 

experimental curves was found with the theoretical simulation of P = 0 μm/s (insulating 

conditions). However, due to the potential fitting error associated with this permeability 

range, the experimental fit corresponds more accurately to ≤10 μm/s. 

7.5 Conclusions 

Laser-pulled quartz sheathed electrodes were applied to the imaging of single live cells. 

The electrode utilized was a 130 nm radius Pt disk electrode, which was manually 

polished flat for SECM imaging. A cell was imaged using the membrane impermeable 

Ru(NH3)6
3+ mediator to accurately characterize cell topography. This SECM scan was 

used in correspondence with optical imaging to optimize cell geometry for simulation of 

this experimental system. The electrode tip-to-cell distance was also characterized using 

this electrochemical scan. This optimized simulation geometry was then carried forward 

to simulate the greater complexity of the cell membrane permeability. Using FcCH2OH 

as an electrochemical mediator, the same cell was imaged by the same electrode at the 

same probe distance (<10 mins between scans). Simulations of this system incorporating 

membrane permeability were performed with various membrane permeability 

coefficients. It was determined that the cell imaged agreed most strongly with a 

membrane permeability coefficient of ≤10 μm/s, indicating little to no flux across the 

membrane at the time of imaging. The development of this simulation methodology 

allows for tailored simulations of single live cells. These tailored models provide 

characterization for cell topography, as well as electrochemical characteristics such as 

membrane permeability. The developed methodology for theoretical quantification of 

complex samples provides increased versatility in theoretical modelling of cell systems 

and reinforces the strength of SECM as a powerful bioanalytical tool. 
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8 Concluding Remarks and Future Work 

8.1 Concluding Remarks  

As described in this dissertation, scanning electrochemical microscopy (SECM) is a 

powerful electroanalytical tool for the analysis of single live cell samples. This research 

has focused on the non-invasive quantification of single live T24 human bladder cancer 

cell membrane permeability. Various SECM mapping techniques (depth scan, surface 

mapping, 3D image stacks, etc.) were employed to image the live cells throughout this 

dissertation. However, previously developed simulation models restricted the usable data 

for membrane quantification to a single PAC over the center of a symmetric cell. To 

counter this restriction, SECM imaging was coupled to 3D FEM simulations which were 

the first of their kind. These more advanced 3D models allowed for features such as full 

sample mapping to match the different SECM scanning modes employed. They also 

allowed the replication of complex sample geometries, and the simulation of multiple 

mediators simultaneously, for the quantification of sample traits not previously possible. 

This investigation has been performed under stimuli of toxic (Cd and Cr(VI)) and trace 

essential (Cr(III)) metals at various concentrations and incubation times. These results 

were compared to cell viability to examine the possible relationship between induced cell 

membrane permeability and a reduction in population density. Examination of semi-

permeable and impermeable electrochemical mediators, along with these viability studies 

showed trends in cell response to the external stressor. SECM membrane permeability 

characterization of single live cells was also examined using nanoscale electrodes. This 

nanoscale imaging necessitated a complex tailored model geometry with significant 

variation in meshing element size to appropriately quantify cell topography and 

(A version of this work has been published in Analyst 

Filice, F. P.; Ding, Z. Analysing Single Live Cells by Scanning Electrochemical 

Microscopy, 2018, DOI: 10.1039/C8AN01490F) 
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membrane permeability. The development of these tailored models will allow for highly 

localized examination of membrane permeability of single live cells. 

Chapters 2, 3, and 4 examined the effects of metal toxicity (Cd and Cr(VI)) on cell 

membrane permeability, and compared the resulting trend to cell viability experiments. 

Chapter 5 examined the trace essential metal Cr (III) in low to excess concentrations. 

Toxic metals serve no essential biological role, but many can displace essential metals in 

metalloproteins and key cellular processes. This can cause a deformation of the protein 

structure or a change in reaction rates for the highly balanced systems that exist in living 

organisms. Toxic metals can also be a source of excessive reactive oxygen and reactive 

nitrogen species, leading to oxidative damage in cells. Their introduction into the 

environment of living organisms can lead to lifelong health complications, such as 

disease, cancers and death. If present in high enough concentrations the heavy metals can 

lead to the overwhelming of the antioxidant defense systems, which can induce lipid 

peroxidation of the cell membrane. Lipid peroxidation can affect membrane fluidity 

followed by membrane integrity loss, resulting the increased permeation of chemical 

agents. SECM provides an excellent method of characterizing the location specific 

membrane permeability of single live cell membranes. As a result, it is employed in the 

investigation in the biological response of single live cells to heavy metal toxicity. 

Firstly, the effects of Cd2+ on single live T24 cell membrane permeability were 

investigated in Chapter 2 by means of SECM. The membrane permeability of FcMeOH 

was determined to be uniform across the T24 cell surface with the 5 µm radius electrode 

used. Increasing Cd2+ concentration, however, decreased the cell membrane permeability 

for the concentration range examined. Permeability dropped from 75 µm/s to 50 µm/s for 

the 50 µM incubation and drop as low as 25 µm/s for 100 µM.  

In Chapter 3, SECM was utilized to examine the membrane response of T24 cells 

following exposure to toxic dichromate (Cr (VI)). Two electrochemical mediators were 

examined: the membrane permeable FcCH2OH and the membrane impermeable FcCOO-. 

With FcCH2OH as the SECM mediator, Cr (VI) exposure induced three distinct 

concentration dependant membrane permeability regions. Low concentrations of Cr (VI) 
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(0-50 µM) produced relatively stable membrane permeability coefficients, remaining 

consistent with untreated control T24 cells. Exceeding low level exposure (50-500 µM), a 

decrease in membrane permeability was observed. A minimum of 25 μm/s was observed 

upon incubation with 500 μM of Cr (VI). Higher exposure (500-1000 µM), yielded an 

increase in permeability coefficient. Performing the same membrane permeability 

characterization with the impermeable FcCOO- mediator, SECM yielded some interesting 

but different results. FcCOO- is initially impermeable to the cell membrane. However, it 

became permeable to the cell membrane following the same incubation concentrations 

(>500 μM Cr (VI)) that induced an increase in cell membrane permeability for 

FcCH2OH. This indicates significant membrane integrity loss, as the charged 

FcCOO- species is able to permeate the hydrophobic cell membrane. The study in this 

chapter was also coupled with a MTT cell viability assay. The cell viability was affected 

by the various concentrations of Cr (VI) in a similar trend to that of the membrane 

permeability response with FcCH2OH as the SECM mediator. 

Cr (VI) induced cell stress with lower concentrations was examined for longer durations 

in Chapter 4. Chapter 3 focused on more acute exposure to Cr (VI), whereas Chapter 4 

payed more attention to chronic exposure. Three Cr (VI) concentrations (2, 5 and 10 µM) 

were examined, which yielded similar response curve shapes over the study period. The 

concentration-dependant variation in response time was observed with more rapid 

response at higher concentrations. Initial low incubation times showed little deviation 

from control (untreated) cells. Extending the incubation times, however, yielded a 

decrease in membrane permeability for all concentrations. All cell samples reached their 

minimum observed membrane permeability within 3 to 6 hr of incubation, with minima 

as low as 14 µm/s. All samples had a steady rise in membrane permeability following 

this. The 2 µM and 5 µM cell samples reached their maximum cell permeability (~1000 

µm/s) and plateaued after 2 days of incubation. SECM analysis was no longer possible 

for this sample after 5 days of incubation due to significant population decrease. The 

higher concentration 10 µM sample, however, reached a similar maximum after 24 hr of 

incubation, and proceeded to slowly drop over time. Significant population decrease for 

this sample was observed after 3 days. MTT viability studies were performed, providing 
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complimentary analysis of overall health and wellness of the cell populations under 

study. Strong resistance to the external K2Cr2O7 stressor for the studied concentrations 

was observed after 1 day of incubation. Following 2 days of incubation, the 2 µM sample 

showed a small drop in viability, with all higher concentrations dropping strongly to 

≤35%. By 3 days an overall decrease in cell viability was observed.  

In Chapter 5, the membrane response of single live cells to the trace essential heavy metal 

Cr (III) was successfully interrogated using both FcCH2OH and FcCOO- as SECM 

mediators. Full 3D FEM simulations were computed to allow for the quantification of 

cell membrane permeability by SECM. Using the 3D model of the cell system, full 

SECM depth scans were simulated. The simulated and experimentally acquired depth 

scan images allow for the extraction of electrode PACs at any location across the cell, for 

rapid membrane permeability quantification. With the membrane permeable FcCH2OH, 

incubation with low Cr (III) concentrations (≤500 µM) showed little effect on the 

membrane permeability coefficients in comparison to untreated control cells. Increasing 

the exposure level resulted in decreased permeability coefficients, with a minimum of 17 

± 8 μm/s observed at 7500 μM CrCl3. With higher Cr (III) exposure, the membrane 

permeability increased. The FcCOO- mediator was initially impermeable, but similarly 

exhibited strong increases in membrane permeability when subjected to 7500 μM CrCl3 

for 1 hr. This study was also coupled with a MTT cell viability test, which showed a 

gradual decrease in cell viability when cells were incubated with 500 µM or greater. 

The simulation model created for Chapter 2 was designed to quantify the effects of Cd2+ 

on single live T24 cell membrane permeability using a SECM probe. This model was the 

first of its kind, coupling membrane permeability simulation with a full 3D FEM 

geometry. This allowed for the simulation of an SECM probe approach curve (PAC) at 

any location desired over the cell surface. This was a significant improvement over the 

previous 2D axially symmetric models which were the standard in the field. The 2D axial 

geometry limited the model design to symmetric samples, with PAC generation directly 

over the cell center. While PACs could be extracted from experimentally acquired depth 

scans at numerous locations over the cell, the existing models were incapable of using the 
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vast majority of that sample data for quantification of membrane permeability and other 

traits. The improved 3D model allowed for location specific simulations to quantify 

membrane permeability coefficients across the cell surface. Cells were incubated with 

different concentrations of Cd2+, and the resulting membrane permeability change was 

quantified. The membrane permeability of FcCH2OH was determined to be uniform 

across the T24 cell surface with the 5 µm radius electrode used. Increasing Cd2+ 

concentration however was found to decrease the cell membrane permeability for the 

concentration range examined. Permeability was observed to drop from 75 µm/s to 50 

µm/s for the 50 µM incubation and drop as low as 25 µm/s for 100 µM. In Chapters 3, 4 

and 5, this model design was improved upon to include more accurate cell geometry, as 

well as numerous optimizations for reducing resource requirements and compute time. 

These improvements to the system resource demand allowed for the simulation not just 

of line scans, but full depth scans or surface maps in Chapter 5. 

In Chapter 6, the analysis of complex systems of cell clusters in close proximity was 

carried out by means of SECM image stack 3D scanning mode with 10 μm and 4.4 μm 

diameter UMEs. Tailored 3D model geometries were created to allow for the simulation 

of these cell maps. Experimental surface maps of a pair of double cells with a cell 

spacing of 41.3 μm were obtained using a 4.4 μm UME and compared to simulated 

images. A strong agreement in curve shapes was reached. Following this, a higher 

complexity experimental system incorporating two extreme proximity cells (14.7 μm cell 

distance) was explored with a 10 μm UME. The simulation with a tailored full 3D model 

was capable of providing a strong theoretical fit to the experimental results when the 

geometry of both cells was considered. The effects of a pair of adjacent cells with 

variable cell proximity were further characterized for both common UME sizes. It was 

determined that deviation from normal PAC current was observed at <20 μm spacing for 

10 μm UMEs and <10 μm for 4.4 μm UMEs. This defines the probe size dependant limits 

of cell proximity for SECM characterization, where the effects of the adjacent cell can be 

ignored. 
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Lastly, Chapter 7 describes the nanoscale SECM imaging of a single live cell, with a 

laser pulled quartz sheathed electrode having a 130 nm radius Pt disk. A single live cell 

was imaged using the membrane impermeable Ru(NH3)6
3+ mediator to accurately 

characterize cell topography, and electrode tip-to-cell distance. A tailored 3D model of 

the single live cell was created to replicate topographical scans experimentally. Using 

FcCH2OH as an electrochemical mediator, the same cell was imaged with <10 mins 

between two surface map scans. Simulations of this system incorporating membrane 

permeability were performed with various membrane permeability coefficients. It was 

determined that the cell imaged agreed most strongly with a membrane permeability 

coefficient ≤10 μm/s, indicating little to no flux across the membrane at the time of 

imaging. The development of this simulation methodology in this study allows for 

tailored simulations of single live cells. These tailored models are able to provide rich 

information on cell topography, as well as membrane permeability, and be easily 

expanded to include additional functionality such as extracellular ROS concentrations. 

The developed methodology for experimental and theoretical quantification of complex 

cells is versatile and reinforces the strength of SECM as a powerful bioanalytical tool. 

8.2 Future Work   

Recent advances in single live cell analysis using SECM has shown great promise for 

characterization of cellular physiology and pathology. The trend toward coupling SECM 

with other strong bioanalytical tools provides intersting options for the simultaneous 

aquisition of data from multiple techniques on the same cell. Well-documented electrode 

fabrication techniques allow for greater availability of specialized probes. SECM has 

demonstrated strength in its ability to detect extracellular and intracellular ROS and RNS 

as a label free analytical technique, leading to the quantification of these compunds and 

their correlation to oxidative damage. SECM is versatile analytical tool for the detection 

of localized membrane transport. Bulk transport across a large region of the cell 

membrane can be performed, or mapping of variation in membrane transport can be 

carried out with small scale electrodes. Analysis can also be performed over specific cell 

features such as ion channels to quantify the rate of species flux in and out of the cell. 
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This has provided an exceptional tool for the analysis of membrane permeability change 

induced by heavy metal stress. FEM simulations of the SECM analysis of single live cells 

have also become more advanced as computing power has become more available and 

lower cost. Highly demanding full 3D simulation models are now capable of running on 

consumer available gaming or workstation grade PC hardware. Increased CPU core count 

provides faster computation, and the availability of memory and storage space make 

larger more complex models viable. These allow for the creation of tailored geometry, 

simultaneous simulation of multiple electrochemical species, and the incorperation of 

additional physical calulations into the simulation. In recent years, there has been an 

increased prevalence of SECM studies involving nanoscale imaging. This small scale 

technique shall provide exellent bioanalytical tools for the electrochemical imaging of 

intracellular processes, localized membrane permeability, membrane embedded protiens, 

and small scale cellular structures.  

The Pt core laser-pulled nanoelectrodes examined in this dissertation provided excellent 

response in the location-specific characterization of a single cell membrane. The RG of 

the electrode utilized for this study was, however, quite high. Higher RG values make an 

electrode more suceptable to smaple tilt, and variation in surface height of the sample. 

Optimization of the laser-pulled method has been explored in the Ding Lab, yielding 

extremely small nanoelectrodes (25 nm diameter Pt disk); however, the large RG 

remains. Optimization for smaller RG electrodes is an area of ongoing study in the Ding 

lab. The fabrication of nanoelectrodes with other conductive materials (Au, Ag, C, PtIr, 

etc.) may allow for smaller tip diameters and smaller RG. The most notable alternative 

conductor is pyrolytically deposited carbon nanoelectrodes,which have been developed 

and well documented by other labs.1-2 These electrodes favor the fabrication of extremely 

small nanoelectrodes with tiny RG values, without necessitating FIB milling of the glass 

sheath. This fabrication methodology will be pursued and optimized for use with the 

Ding Lab‘s experimental apparatus. Improved spatial resolution of smaller electrode 

disks and RG values allow for the highly localized study of electrochemical change in 

cells when exposed to heavy metal stress. Nanoscale imaging of membranes may provide 

insight into regions of more pronounced change, surrounding ion channels, membrane 
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embedded proteins, or detect structurals deformations and pore formation. The small tip 

geometry from the reduced RG of these nanoelectrodes has also been shown to provide 

exceptional characterization of intracellular electrochemistry, while causing minimal 

damage to the cell under study.3 This will allow for the characterization of intracellular 

ROS, as well as the probing of the nuclear envelope permeability. Combination SECM 

probes are also an area of significant interest. Optimization of a Pt and Ir combination 

probe would allow for the simultaneous aquisition of SECM surface topography and 

reactivity (Pt) and the location specific quantification of solution pH (Ir).  

Simulations of SECM imaging of single live cells have been an area of active 

development in the Ding lab. Asymmetric tailored geometry simulations developed were 

in this dissertation. The modelling of cell clusters as well as complex surface geometry 

was pursued, and shown to provide strong theoretical agreement to experimental 

imaging. This simulation methodology will be further developed to include additional 

features for the modelling of the cell system. Through the inclusion of surface reaction 

kinetics into the physics tree of the FEM model, both steady state and time dependant 

models will be generated. These reaction boundaries can be applied to entire surfaces, or 

localized hot spots on the model geometry. This method of characterization will be 

employed in quantifying the kinetics of biological processes at specific points of interest 

on the cell membrane. Nanoscale detection of cell ROS and RNS will be added to the 

simulation model allowing for the quantification of hot spots across the cell membrane.  

In addition, the integration of SECM into other analytical techniques such as fluorescence 

microscopy and Raman microspectroscopy can provide numerous advantages.4-5 This 

provides strong complementary techniques for the simultaneous aquisition 

electrochemical and spctroscopic data. Through the fabrication of optical fiber SNOM 

probes, with a CVD ring electrode (SECM-SNOM), the localized imaging using both 

techniques can be performed.6-7 Using this methodology the mapping of the distribution 

of specific proteins or receptors across the membrane may be possible. SECM is a highly 

versatile bioanalytical technique, offering a noninvasive characterization method with 

high spatial and temporal resolution. 
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