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ABSTRACT  

The pressure equalized rainscreen wall, considered as the most effective building 

envelope against wind induced rain penetration, requires continuous investigations to 

reach better performance. This research seeks the optimum pressure equalization process 

under external pressure conditions and wall parameters that have not previously been 

studied in detail. For this purpose, a single compartment full-scale wall model was built 

in a controlled facility at the University of Western Ontario. The cavity pressure response 

to external fluctuations was experimentally examined with respect to the rainscreen 

venting area ratio, under two types of real wind pressure distributions generated 

mechanically at zero degree incidence: 1) single pressure and, 2) pressure gradient caused 

by the application of three different signals varying horizontally across the rainscreen.    

As the rainscreen venting area ratio increases, the pressure equalization performance 

improves, irrespective of the nature of the applied pressure, implying an increase in the 

critical damping frequency. However, an applied pressure gradient leads to a lower 

degree of pressure equalization at a constant venting area. Moreover, the change of the 

vent openings layout has an impact on the wall performance, mainly at low venting areas. 

Locating the vent openings at the bottom of the rainscreen gives better pressure 

equalization rather than distributing them between top and bottom.   

Using a numerical model, the cavity pressure measurements were underestimated under a 

uniform pressure and overestimated when subject to a pressure gradient. The agreement 

in the frequency domain between experimental and predicted signals was satisfactory in 

the high frequency regions at high venting area ratios. However, transfer functions and 

phase angles were overpredicted at low venting rates. Based on numerical simulations, 

the cavity volume change does not significantly affect the performance of the model 

under an external pressure gradient. When a single pressure is applied, the pressure 

equalization is reduced at a larger cavity depth, which is only apparent at low venting 

areas.  

Keywords: rainscreen, wind pressure gradient, frequency domain 
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CHAPTER 1  

INTRODUCTION  

1.1 Principle of a Pressure-Equalized Rainscreen Wall System  

The Pressure Equalized Rainscreen wall (PER) also referred to as an open rainscreen wall 

has gained a reputation among buildings envelopes, for being a defence-line against 

rainwater penetration.  It is constituted of: 1) the outer wall layer known as the 

rainscreen, 2) the inner wall layer called the air barrier and, 3) the cavity that separates 

them and which is vented to the exterior through deliberate openings in the rainscreen. 

Figures 1.1 and 1.2 show the components of a PER wall system and different images of 

the PER walls actually built in the industry.  

 

Figure 1.1 Components of a pressure equalized rainscreen wall (PER)  
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a) Metal PER                                                                      b) Technical University of Eindhoven  

Figure 1.2 Examples of PER systems in the industry (a) and (b)  

In general, for the rain to penetrate a building envelope, there must be both an opening 

for the water and a force to move the water through this opening. Many driving forces 

contribute to this process like the kinetic energy of the raindrop, surface tension, gravity, 

capillary suction and air pressure difference between the building exterior and interior. 

The PER wall design intent is to equalize external pressure with internal cavity pressure 

via vent openings that form the venting area, in order to eliminate the differential 

pressure across the rainscreen. Wind-induced pressure difference is considered as the 

most critical air driving forces, as being responsible of the rain, moisture and mould 

penetration into a building, especially under severe wind storms. The air barrier 

assembly, supposed to be stiff and airtight, has the role of resisting sustained and peak 

wind loads in case they are transferred to the cavity. Further, it transmits the load induced 

by the pressure difference between the cavity and building interior to the wall s structural 

components.   
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In theory, pressure equalization (PE) means a zero air pressure differential at all times 

across the rainscreen. In practice, however, perfect pressure equalization is neither 

achievable nor necessary for adequate rain penetration control; engineers claim that the 

wall assembly must be designed to tolerate the entry of a small amount of water without 

damage. According to Rousseau et al. (1998), the adequate pressure equalization for rain 

penetration control may be defined as not more than 25 Pa differential pressure across the 

rainscreen.  

The pressure equalization technique was in fact early recognized in 1962 as O. Birkeland 

proposed in his Handbook Curtain Walls to design the exterior rain-proof finishing so 

open that no super-pressure can be created over the joints or seams in the finishing . He 

considered that such process is provided by having an air space behind the exterior 

finishing, but with connection to the outside air , so that air pressures due to wind gusts 

will be equalized on both sides of the exterior finishing. This principle was then enhanced 

in Garden s publication in 1963 Rain penetration and its control , who settled the 

preliminary basics of the PER wall construction in terms of cavity depth and vent 

openings size. Later, others like Ganguli and Dalgliesh (1988), Baskaran and Brown 

(1992), Kumar (1999) and Inculet and Davenport (1996) carried on several researches, 

laboratory and tests on site in order to establish specific design guidelines for the 

different parameters for an optimum performance of the PER walls systems, under 

different conditions; like when the system is experiencing a leakage problem, which is an 

unavoidable issue in buildings.   

Many recommendations have arisen based on their experiments, however this domain 

still need further investigation, especially in the absence of ready to use design guidelines 

for PER walls in codes and standards. The latter agree in general that a satisfactory 

differential pressure is available when the pressure load on the rainscreen is near zero.      
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1.2 Applications of Pressure Equalized Rainscreen Wall Concept  

The PER walls systems are used for existing buildings experiencing general performance 

problems such as rain penetration, insufficient insulation, and deterioration of 

components. A new application has been introduced recently, known as overcladding. In 

fact, tens of thousands of highrises built during the building boom of the mid-1980s 

suffered water damage as wind-driven rain entered the walls. Under severe wind storms, 

sections of exterior cladding have let go and plunged to the ground for some building 

façades. A few today, like low-rise buildings, just show the same symptoms as leaky 

construction, wet spots and mould on walls, with an exterior wall assembly unable to 

sustain wind-induced pressure. Moreover, Canadian insurance companies have claimed 

that well over half of insured losses from building outer envelopes are wind related.  In 

light of these problems, engineers decided to opt for PER wall as an outer building 

envelope that offers the most protection to the inner structural layer and requires less 

maintenance over its service life.   

When applied to cladding panels, the pressure equalization technique is considered to be 

very expensive. A major part of the cost is highly related to materials that are unique for 

façade applications such as exterior rainscreen panels like molten cast glass, precast 

concrete, marble, aluminium, glass fibre reinforced concrete (GFRC), water jet cut 

stainless steel, copper, etc. The choice of rainscreen material is surely based on aesthetic 

criterion as well as on cost restrictions.   

In Europe, the open rainscreen principle refers to back-ventilated rainscreen walls, 

instead of the pressure equalized rainscreen wall notion used mostly in the USA and 

Canada. In fact, it is a PER wall with incorporating additional large vents at the top of the 

rainscreen. Thus, the resulting airflow pattern in the cavity moves air in through the 

bottom vents (the original venting openings of the rainscreen) and out the top vents, 

helping to dry out any moisture that penetrates the wall. According to Inculet (1990), this 

design only strives to keep water from coming in contact with the air barrier; while the 
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PER wall system aims to eliminate any water penetration through the rainscreen, by 

addressing the wind s driving force with adequate vent openings.     

1.3 Focus of the Current Research   

The development of PER wall systems application is still slow, due to the comparative 

expense over a more conventional exterior wall system, according to leading designers of 

tall buildings in the United States. The motivation for the current research on pressure-

equalized rain screen wall cladding stems from this point. Actually, the goal is to look at 

the performance of a PER wall panel under new exterior pressures conditions; that were 

not taken into account before. Also, the effect of some design parameters is examined, 

and a numerical model is used for the experimental results validation.   

Previous works have investigated PER wall performance by measuring the differential 

pressure across the rainscreen as it is considered the key for optimum pressure 

equalization. Such tests were done either in the laboratories or in the field. However, in 

both cases, the researches were not able to take the self-control of the set-up conditions of 

the PER wall system or even the applied wind load. In the wind tunnel experiments, the 

modeling of PER wall system is subject to scaling problem; which gives incorrect 

representations of the PER features size and the characteristics, and would negatively 

influence conclusions made on the pressure equalization process.   

On the other hand, in the field tests previously done (i.e. Ganguli and Dalgliesh (1988) 

and Kumar (1999)) the full-scale model of the PER wall panel was always tested after 

being installed on the constructed building. Thus, the data measurements were probably 

affected by the leakage status, an unavoidable issue that is hard to quantify in buildings. 

Further in such tests, no one could control the external wind fluctuations at any time, it all 

depends on the climate conditions and the location of the PER panel itself. In case the 

cavity response pressure needs to be examined for other wind loads, or for pressures 

gradients (i.e. at the corner of the building façade), the panel needs to be moved or other 

wall panels are then added at various locations of the façade which imply higher cost and 
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a more time consuming work. Moreover, it is necessary to recall that the majority of 

previous studies have focused on the examination of rainscreen venting over air barrier 

leakage ratio effect on the PER performance; without taking into consideration the effects 

of the other parameters.   

In light of this discussion, it was decided to build a PER full-scale model in a controlled 

facility to vary the different parameters and applied wind conditions, and observe the way 

they affect the model performance, in a controlled environment and within a short time 

period. The roadmap of the research work is clarified through the chapters of this thesis.  

Chapter 2 mainly presents a literature review on the previous studies made about PER 

walls. Full-scale and wind tunnel experiments are discussed providing the key 

conclusions on the effect of design parameters on the PER performance; and the validity 

of applied numerical models.  At the beginning, a general overview was presented about 

the theoretical models with the involved equations, used for cavity pressure response 

prediction when an external load is applied to the wall.  

Chapter 3 describes the experimental model set-up. It provides a clear detailing of the 

three components of the PER wall, and the test configurations as well. The equipments 

used for both wind load application and cavity pressure data acquisition, are also 

depicted.   

Chapter 4 shows the experimental measurements of the cavity pressure with respect to 

rainscreen venting configurations and vent openings location, the cavity depth being 

constant. The data permit calculation of the differential pressure across the rainscreen, 

which leads to the evaluation of the PER model performance.  

Two types of external signals were normally applied to the panel: a) a single pressure 

and, b) a pressure gradient; which results from the application of three different pressure 

signals varying horizontally on the rainscreen. In this case, each group of venting 

openings was subject to a different pressure depending on its location. Such test was 
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never done before using a full-scale model. It allows examination of the effect of an 

exterior pressure gradient applied to the same PER panel. Moreover, the influence of a 

building façade on the pressure equalization process can be seen, since two different 

pressure gradients are used, each has been extracted in reality from on a different 

pressure model face in a wind tunnel experiment.   

Chapter 5 provides a comparison between experimental and numerical results. A 

theoretical model was programmed for cavity pressures predictions, using the actual 

exterior pressure signals applied on site as input. Numerical simulations are presented for 

all test configurations. In addition, the numerical model was used to predict the effect of 

the cavity depth variation on the wall s PE process; which has not been investigated yet, 

neither numerically, nor practically. In the current research, the cavity depth has been 

numerically varied within a practical range where the upper value is the maximum depth 

used in the industry.    

Finally Chapter 6 presents conclusions from the current project results. It also claims 

further investigations in some points that would be of a useful contribution for the 

development of PER wall systems.             
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents the results of a literature survey on the research work concerning 

the pressure-equalized rainscreen wall studies for the past decades. It tends to show the 

continuous effort of researches in examining the possibility of achieving an optimum 

performance for a PER system via laboratory experiments, field measurements, wind 

tunnel models and computer simulations. Finally, a summary is provided herein for 

general design guidelines recommended by the authors for a better pressure equalized 

rainscreen wall.   

2.1 Prediction of Cavity Response Pressure 

2.1.1 Background Theory from Low-rise Buildings 

The theory for the prediction of cavity response pressures for a PER wall originates from 

internal pressure predictions in low-rise buildings.  

The cavity pressure responding to the external wind-induced fluctuations entering 

through vents is analogous to the internal pressure behaviour within a building (enclosure 

with rigid walls and roofs) with single or multiple openings. In fact, internal pressures are 

introduced inside a building throughout leakage or openings. They depend on several 

factors including: external pressure distributions near the openings, geometry of the 

openings, vents, the fluid properties (density, viscosity), internal volume, wind direction, 

turbulence in the upstream boundary layer, flexibility of the building skin and structure 

(Vickery and Bloxham 1992); and the compartmentalization within the building (Sharma 

and Richard 1997). The internal pressure response can be determined using two methods: 

1) conservation of mass, 2) Helmholtz resonator model.  

For a low-rise building with a single windward opening, the internal pressure is 

established after a response time t

 

where t

 

is the time taken for the internal pressure to 

become equal to a sudden increase in pressure outside the opening, caused for example 

by a sudden window failure. In steady flow, Holmes (2001) confirms that the internal 
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pressure will quickly develop in order to reach the external pressure on the windward 

wall in proximity of the opening. In the case of a turbulent boundary-layer wind, the 

increase of the external pressure will allow an increase in the density of air within the 

internal volume 0V , thus the internal pressure increases.  

In the case of neglected inertial effects, the mass conservation concept is applied, so that 

the rate of mass flow through the opening aQ

 
must equal the rate of mass increase 

0ad dt V  inside the volume thus the time lag expression is given by 

0
0

0
pipe

a CC
KAp

UV
                                                             (2.1) 

by considering that for a turbulent flow through an orifice, the air flow is related to the 

pressure difference across the orifice e iP P

 

When inertial effects are considered, Holmes (1979) suggested that a Helmholtz 

resonator model can be used for the prediction of the response to turbulent external 

pressures. Holmes observed that a building with a single dominant opening behaves like a 

Helmholtz resonator and internal pressure fluctuations are due to compressibility effects 

of the fluid. Thus, he considered it as a special case of Helmholtz resonator , known in 

acoustics as describing the response of small volumes to fluctuating external pressures 

(Raylieh 1945, Malecki 1969). This can be applied to the case of external wind pressures 

driving the internal pressures within a building: a slug

 

of air of length el is assumed to 

move in a distance x in and out of the opening in response to the external pressure 

changes as in Fig 2.1. The motion of the slug of air is expressed with the differential 

equation 

2
0

2
0

( )
2

a
a e e

A p A
Al x x x x A p t

K V
                                              (2.2) 

known as the unsteady orifice discharge equation where the first term on the left hand 

side is an inertial term proportional to the acceleration x

 

of the air slug (whose mass is 

a eAl , the second term is the loss term associated with energy losses for flow through the 

orifice, and the third term represents the stiffness explained as the resistance of the air 

pressure that is already available in the internal volume 0V  to the air slug motion. 
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Holmes (1979) developed from this model the expression of the undamped natural 

frequency for the resonance of the movement of the air slug, and of the internal pressure 

fluctuations, known as Helmholtz frequency, in case of a single windward opening  

0

0 0

1 1

2 2
A

a e a e

Ap K A
f

l V l V
                                               (2.3)    

calculated given the opening area, internal volume and flexibility of roof and walls.  

Using the atmospheric pressure 5
0 10p Pa , 31.2 /Kg m , 1.4 , 1.0el A , and 

taking into consideration the flexibility of the building, the frequency becomes 

1/4

1/21/2
0

55
1 ( / )A B

A
f

V K K
                                                (2.4) 

Holmes claims that a significant resonant excitation of the internal pressure fluctuations 

by natural wind turbulence is unlikely to occur, in the case of small volumes as shown in 

Table 2.1, since Helmholtz frequencies are higher than 1Hz.  

Kumar (1999) adopted this viewpoint in case of PER systems. Using 1.2

 

and 

0.89el A , he checked the probability of resonance inside the cavity for the 

combination of smallest / 0.0025rs wA A and largest 0.2cd m that can be used, and 

could give the lowest system frequency ( )f . The expression 

1/41/4

1/2 1/2 1/4

/
52.8 52.8 rs wrs

c c w

A AA
f

V d A

 

provided 12f Hz

 

which is much higher than the 

frequencies of external pressures (0.1Hz-2Hz). Thus, it is unlikely that resonance will 

occur inside the cavity of a PER wall at any given amplitude of external pressure. 

Generally, cavity pressure frequencies lie in the range of 50 to 150 Hz.       

Table 2.1 Helmholtz resonance frequencies for some                  Figure 2.1 Helmholtz resonator  
Typical buildings after (Holmes 2001)                                           model of fluctuating internal          
                                                                                                         pressures with a single                                                                                                                                 
                                                                                                opening after (Holmes 2001)   
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2.2 Theoretical Models 

The cavity pressure response of a PER wall subject to fluctuating pressures can be 

predicted using two theoretical models: 

1) Model based on mass balance or first principle 

2) Model based on Helmholtz resonator theory 

For both analytical models, mathematical modelling of flow through the PER wall system 

is developed using the external pressure and wall characteristics as data input. The key 

for the cavity pressure simulation is the Bernoulli principle for incompressible fluids, 

which leads to flow rate expressions. The fluid here is air with 31.3 /a Kg m . In 

general, for airflow to occur, there must be 1) a pressure difference between two points 

and 2) a continuous flow path or opening connecting the points. Those two requirements 

are represented by the vent holes of the rainscreen, which ensure the passage of the 

airflow from the exterior to the cavity generating a cavity pressure response cP , and thus 

a differential pressure across the rainscreen.  

The governing equation of motion corresponding to the slug of air moving throughout 

the vent hole of the rainscreen is given as 

2

2
a

a e L e c

UdU
l C P P

dt
                                            (2.5)    

This is the discharge equation for unsteady flow through an orifice, where el is the 

effective length of the air slug, a el is the inertial effect, U is the fluid flow velocity, ep is 

the external applied pressure. This equation comes from the Bernoulli equation, where a 

loss term LC is introduced, since there is no absence of friction for the flow through an 

orifice.   

2.2.1 Model Based on Mass Balance or First Principle (Model 1) 

This category includes all models derived on the basis of mass continuity equation and 

equation of airflow through walls; without taking into consideration the inertial effect. 

The general form of the flow rate Q through vent hole was discussed first by Kimura 

(1977), where F is a function of Reynolds number and opening geometry: 
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0.5

( ,geometry of opening) 2e e aQ AF R dP                                     (2.6) 

He considered that for openings greater than about 10mm, the function F may be 

regarded as a constant, and it is usually referred to the discharge coefficient K . A

 
is the 

area of the orifice, and e e cdP p P P is the differential pressure across the rainscreen. 

The conventional form of this equation is 

                                                     
2

a

p
Q AK                                                            (2.7) 

originated from Eqn (2.5), with the assumption that the flow is steady 0dU dt . The 

discharge coefficient (also known as coefficient of discharge) allows the use of the ideal 

velocity and orifice area in calculating the flow for a jet through an orifice of a small wall 

thickness: It is negatively correlated with the loss coefficient 
2

1
LC

K

 

which is affected 

by the time, the wind direction due to the exterior pressure field and the orifice length to 

diameter ratio 0( / )l d (Chaplin et al. 2000). Its value is usually adjusted for the 

calculations, in order to get a match between the numerical model and the experiment as 

Table 2.2 shows.  

Equation (2.7) is transformed to a general form that can be applied to different flow 

characteristics of rainscreen and air barrier walls: 

  
2

( )n
e i

a

Q AK P P                                                          (2.8) 

Shaw (1981) considers that the flow exponent n

 

varies according to the flow and the 

opening details (Table 2.3).   

The conservation of mass of air inside the cavity generally requires that the rate of net 

mass flow into or out of the cavity must equal the rate of change of the mass of air inside 

the cavity cm , as noted by Baskaran (1992). The general form of the continuity equation 

is  

                         1 2( ) ( )c c a
a a c a c

dm dV dd
Q Q V V

dt dt dt dt
                                (2.9)    
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where 1Q  and 2Q  are respectively the flow rates through the rainscreen and the air barrier 

for a  PER wall. 

Assuming the walls are not flexible ( 0cdV

dt
), and substituting to Eqn (2.9) the 

polytropic law relating pressure and density of air inside the cavity: 

                                                      
1 c a

c a

dP d

P dt dt
                                                        (2.10) 

The practical continuity equation will be  

                                                         1 2
c c

c

dP P
Q Q

dt V
                                            (2.11) 

with  is the polytropic exponent generally equal to 1.2 as an intermediate value as used 

by Holmes (1979) and Kumar (1999) ( 1 for isothermal condition, and 1.4  for 

adiabatic condition).  

2.2.2 Model Based on Helmholtz Resonator Theory (Model 2) 

This model takes into consideration the inertial effects of air within the cavity, the losses 

due to the vent orifice and friction; as suggested by Holmes (1979). Helmholtz resonance 

is the phenomenon of air resonance in a cavity: the air has the tendency to oscillate at its 

maximum amplitude associated with resonant frequencies. When air is forced into a 

cavity, the pressure inside increases. Once the external force that pushes the air into the 

cavity disappears, the higher-pressure air inside will flow out. However, this surge of air 

flowing out will tend to over-compensate, due to the air inertia in the neck, and the cavity 

will be left at a pressure slightly lower than the outside, causing air to be drawn back in. 

This process repeats with the magnitude of the pressure changes decreasing each time.   

Using the slug of air movement in a distance x in and out of the opening, Eqn (2.5) 

becomes 

2a e L e cl x C x x P P                                               (2.12) 

where the term eal is the inertial effect of the air slug proportional to the acceleration. 

The effective length el  changes with shape and length of the opening (Table 2.4).  
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xxCL 2

 
represents the damping effect referring to energy losses when the flow passes 

through the opening  

*Orifice-type loss: The pressure drop due to the Orifice-loss is then 

                      
1/21/

1/ 1

2

nn
n a

e cP P x
K

                                      (2.13)    

*Friction-type loss: For steady flow through an orifice-plate, it is essential to take into 

consideration the wall thickness, since the openings are very small. Thus, the solid wall 

shear stresses affect the pressure drop and the physical behaviour is more like a pipe flow 

than an orifice flow. The pressure drop due to friction loss as explained in Oh et al (2007) 

is  

32
0

2

l
p U

d
                                                      (2.14)    

is the dynamic viscosity of air, and U is the wind velocity  

Combining Eqns. (2.12), (2.13) and (2.14), the single discharge equation for unsteady 

flow (SDE) through an opening or leak is:  

1/21/
(1/ ) 1 0

2

321

2

nn
na

a e e c

l
l x x x x P P

K d
                            (2.15)     

For a number m of vent and leak openings, there will be m +1 unknowns 

( cP , 1 2, ,.... )mx x x giving   

1/ 1/2
(1/ ) 1 0

2

321

2

i i

i

n n
na i

a ei i i i i ei c
i i

l
l x x x x P P

K d
                        (2.16) 

    
known as Multiple discharge equations for unsteady flow through multiple openings or 

leaks (MDE) , (i=1 m ) and an additional Continuity Equation (CE)   

1 1 2 2
0

( ... ) a c
a m m c

V
a x a x a x P

p
                                    (2.17)    
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This system provides the solution for the cavity response pressure prediction (Vickery 

1986) for a PER wall system. eiP  is an external pressure at opening (i) ,  the ratio of 

specific heats of air, cV  the cavity volume, 0p  the static pressure and xaQ  is the flow 

rate through the vent .  

Substituting the cavity pressure cP  in Eqn (2.16), we would observe Eqn (2.2) established 

by Holmes (1979) for a single windward opening for a low-rise building, but without the 

friction term.  

Moreover, the damped Helmholtz resonator model theory has been a tool to calculate the 

undamped natural frequency (Irwin et al. (1984)) and the time lag of the cavity response 

Baskaran and Brown (1992).  

Equation (2.16) can be written in terms of the pressure coefficients (Holmes (2001))  

2

0

0 02
a e c a

pc Pc pc pc pe

l V V U
C C C C C

p A K Ap
                            (2.18)             

The generalized form is represented by ( ) ( ) ( ) ( )j j
pc Pc pc F

j j

m C
C t C t C t C t

K K
  where jm 

refers to the mass of the air slug, jK indicates the stiffness associated with the resistance 

of air, and jC is the equivalent  linear damping coefficient. 

)(tCF is the excitation pressure function. In the case of pressure equalized rainscreen 

wall, the excitation of the system is brought by wind turbulence represented by a time-

varying external signal, thus )()( tCtC peF  (Sharma and Richards (2003))  

The undamped natural Helmholtz frequency for the resonance of air slug movement, 

and of internal pressure fluctuations is 
/

2 2
j jK m

f  giving   

01

2 a e c

AP
f

l V
                                                      (2.19)                 
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Previous studies K

 
LC

 
Comments 

 
0.63 2.5 Under steady flow conditions 

Holmes (1979) 0.15 45 Under highly fluctuations and 
reversed flow conditions 

Vickery (1994) 0.61 2.68 For sharp-edged circular openings 

Inculet and 
Davenport (1994) 

0.19 27 To get a matching between the 
experimental and numerical at 
high rainscreen venting area 

Sharma and 1 1.5 For long opening 
Richards (1997) 0.6 1.2 For thin opening 
Ginger (1997) 0.633 2.5 To calculate Helmholtz frequency 

Hee et al. (2007) 0.633 2.5 For dominant opening 

 
0.375 4.06 For leakage 

Table 2.2 Previous values used for the discharge coefficient K and the loss coefficient LC

   

Previous studies n

 

Comments 

 

0.5 For laminar flow  
Shaw (1981) 0.5 to 1 When openings in the air barrier are small 

cracks, the flow through the orifice is a 
mixture of laminar and turbulent  

0.7 For leakage openings  

0.5 For openings in a rainscreen (and air barrier 
where orifices are not small cracks) 

Kumar (1999) 0.71 For leakage in air barrier as straw  
1 For leakage in air barrier as filter 

ASHRAE (2001) 0.65 For leakage openings 
Table 2.3 Previous values used for the flow coefficient n

   

Previous studies 
el

 

Comments 

  

Correct for circular openings 
Malecki (1969) 0.89 a

 

Good approximation for rectangular openings 
of low aspect ratio 

Holmes (1979) 0.89 a

 

For comparison with full-scale model 

Vickery (1986) 
0 0.89l a

    

1.0 a

 

For openings in thin walls 

Hee et al. (2007) 
0 0.89l a

 

For dominant opening and leakage 

Table 2.4 Previous values used for the effective length el
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0pK A  = 141999 (Pa) is the bulk modulus of air.  

This frequency depends on rsA A the area of vent openings in the rainscreen, cavity  

volume cV , effective length el of air slug at the opening, air density a , and the ratio of 

specific heats for air .      

According to the equations, the two theoretical models assume the pressure inside the 

cavity to be uniform. Furthermore, Model 1 combines the flow rates through all the 

openings of the rainscreen into one term 1Q , the same applies to the air barrier. Thus, the 

model uses the averaged external pressures as a single pressure input applied on the 

rainscreen. Models 2 instead represents the flow rate through each opening or leak 

separately and, includes the associated applied pressure and losses terms, which leads to a 

more realistic prediction of cavity pressure inside the air barrier.   

Davenport and Surry (1984) used the equations of Model 2 to develop an expression for a 

critical frequency d (in radians) above which attenuation of the exterior pressure 

fluctuations will occur. Thus, frequencies less than d will be fairly effectively 

transmitted to the cavity. Based on Eqn (2.15) and by including a forcing pressure as a 

function of the frequency, they got for only one opening in the rainscreen and no leakage 

through the air barrier, the expression 

2
0

1 1
pc pc pc pe

d

C C C C                                            (2.20)              

0  is the resonant radian frequency. For 0d , resonance may occur in the cavity.   

Taking into consideration the multiple venting holes in the rainscreen, the distribution of 

mean exterior pressures and spatial correlation of exterior pressure fluctuations as well as 

the leakage characteristics, Davenport and Surry elaborated a frequency response 

function ( )H

 

that describes the cavity pressure and pressure drops across the 

rainscreen 

( )ji ji eiP H P                                                     (2.21)  
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jiP : pressure drop across the rainscreen at location j due to forcing pressure eiP at i .  

Such a function refers to the level of resistance that the vent holes exhibit as opposed to 

the flow, which suppresses the fluctuations, that is called aerodynamic damping. The 

greater the damping, the greater the magnitude of the differential pressures sustained by 

the rainscreen will be.   

On the other hand, Baskaran and Brown (1992) used Helmholtz resonator model to 

establish an expression for the time lag of the cavity response pressure of a PER wall 

subject to sinusoidal pressure using   

0.5

1

57.48 rs

w c

A

A d

                                                    (2.22) 

indicating that the time lag is constant for given wall parameters, and it can be reduced  

through better pressure equalization. Clearly, this formula assumes that the frequency of 

the signal is constant, thus it cannot be applied to the random fluctuations pressures that 

cause variation of the cavity fluctuations in the frequency domain.    

Also, Baskaran carried out a numerical evaluation of the performance of pressure 

equalized rainscreen walls in (1994) being the first to use CFD. He applied sinusoidal 

external pressure variations only.  

2.3 Previous Pressure-Equalized Rainscreen Walls Experiments  

Previous experiments allowed estimation of the impact of various design parameters on 

the pressure equalization process. For this purpose, PER panels were subject to sets of 

configurations mainly in terms of rainscreen venting area, air barrier leakage areas and 

cavity compartmentalisation. The researchers were always seeking the ultimate 

combination of PER wall characteristics to get a full-pressure equalization, so that the 

wind-induced pressure is completely absorbed by the cavity.    
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2.3.1 Full-Scale Experiments  

Most of these experiments were performed using wall-clad panels mounted on building 

façades and interacting with the real wind fluctuations. In spite of differences in the 

panels set-up and wind conditions, they all agree that two main factors contribute to the 

performance of a PER: 1) the rainscreen venting to wall area and, 2) the rainscreen 

venting to air barrier leakage area. The two ratios are equally important in case of leaky 

characteristics of the air barrier wall.  In absence of leakage, increasing the venting area 

does not affect the transmission of external fluctuations into the cavity in the frequency 

domain. Furthermore, reasonable pressure equalization can be achieved by providing a 

relatively small venting area. The field experiments showed consistent results regarding 

the behaviour of the cavity pressure response under zero degree wind angle: with higher 

venting to wall area and venting to leakage ratios, the pressure equalization between 

external pressures fluctuations and cavity pressure improves. Ganguli and Guirouette 

(1987) were the first to evaluate the rainscreen venting area as a key controller for the 

rainscreen loading. They claimed that the peak pressure difference across glass cladding 

dropped when the ratio of cavity volume to venting area was decreased with a fixed 

volume.  

Later, Ganguli and Dalgliesh (1988) showed a satisfactory PE performance of a precast 

open rainscreen panel by virtue of its large venting to volume ratio and its small 

compartment size, in addition to a well-sealed air barrier.  It was suggested that the first 

parameter assists in equalizing the fluctuating pressures, the second limits both the mean 

and cross flows behind the rainscreen under mean external pressure gradients. The ratio 

of vent area to air barrier leakage was greater than 10 to 1, and that what caused the 

cavity pressure to equalize fully with the exterior pressure .  

On the contrary, poor pressure equalization was revealed with Brown et al. (1995) and 

Inculet and Davenport (1994) models due to a small venting rate and low ratio of 

rainscreen venting to air barrier leakage area (two to one in the first case and one in the 

second case). The differences in these ratios influence the load sharing between the 
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rainscreen and cavity. Brown et al. (1995) observed that only 70% of the pressure drop 

across the wall was transferred to the air barrier under static pressure. Also under positive 

pressure, the brick veneer was receiving about 64% of the instantaneous load across the 

wall, and was capturing 90% under negative wind loading, due to the rapid variation in 

the external pressure. On the other hand, Inculet and Davenport (1994) said that the                                                                                                                                                                        

rainscreen was carrying 58% of the total mean load.   

In 1998, Kumar showed that his experimental results are in agreement with the trends 

already observed. He claims that the pressure equalization improves as the leakage rate 

reduces, for the same amount of venting. Similarly, it gets better with a higher rainscreen 

venting area when the leakage is constant (Fig 2.2). He concluded that the highest 

rainscreen load is associated to smallest venting area and leaky air barrier, thus a low 

venting to leakage area ratio. 

 

      No leakage                   Leakage straw            Leakage filter 

Figure 2.2 Rainscreen load reduction as a function of venting and leakage area reproduced from 

Kumar et al. (2003)  

On the other hand, data measurements were also examined in the frequency domain in 

order to evaluate the PE process. Both Inculet and Davenport (1994) and Kumar, through 

several publications (Kumar et al. (1999), (2003) and (2008)), confirmed that low venting 

area which leads to poor pressure equalization, does not allow the complete transmission 

of low frequency pressure fluctuations to the cavity. In this case, there is a high damping 

of the differential pressure across the rainscreen of all frequencies. Low frequency 
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external fluctuations are attenuated and not completely transmitted to the cavity, while 

higher frequencies are completely transferred to the rainscreen.  

Furthermore, Kumar observed that the venting area variation significantly affects the 

PER wall performance at a constant air barrier leakage rate significantly. Higher-pressure 

equalization ratios at lower frequencies can be obtained by increasing the venting area.  

However, the high frequency wind pressure fluctuations are not influenced. They are 

transferred to the rainscreen almost at the same rate.   

Such behaviour in the high frequency region is still in the course of studies and 

investigations, especially that it is related to the critical damping frequency according to 

Ganguli and Dalgliesh (1988). At full-pressure equalization of PER wall model, the latter 

authors observed that only frequencies higher than 1 Hz are taken by the rainscreen. The 

suggested reason behind this performance was related to the spatial averaging of the gusts 

that may because of the high frequency pressures across the rainscreen.  

By mounting the PER panels on the building façades, field experiments can describe how 

the wind conditions affect the rainscreen pressures, in case all the data sets are available. 

However, Ganguli et al (1988) did not present the data measurements to all the 24 panels 

that he has used, and just gave general conclusions. They realized that the strongest winds 

did not necessarily give rise to the largest pressure differences across wall panels. In 

addition, the peak pressure differences across the rain screens were associated with 

storms having wind speeds in the range of 14-15.5m/s.  

For a PER panel located between the middle and the corner of the north wall and subject 

to full pressure equalization, they attributed the large sustained loads (lasting several 

seconds) of around 60 Pa by the rainscreen to exterior pressure gradients coming across, 

stating they decrease to 15 Pa when the external pressure becomes uniform. Transient 

loads (< 1 second) on the rainscreen of around 200 Pa were tracked under negative wind 

pressure. A combination of reasons was suggested referring to the limitation of the 

instrumentation, and the small and quick spatial variations of the external fluctuations: 
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the external pressure was varying rapidly, that the cavity could not respond immediately, 

and the equalization was not directly accomplished. At this case only, the cladding was 

receiving instantaneously 45% of the load.  

Kumar et al. (2003) claimed that the highest-pressure coefficients pC

 
occur when the 

wind blows normally to the PER wall panel.  Also, they realized that the influence of 

wind velocity on PE is predominant in case of leaky air barrier and can be reduced by 

providing larger venting area. In general, smaller percentage of long duration wind 

pressures is transferred to the rainscreen at lower wind velocities.   

Moreover, Baskaran and Brown (1992) and Fazio and Kontopidis (1988) examined the 

effect of rainscreen venting on the PER when subject to a sinusoidal signal. They found 

similar conclusions referring to a higher cavity response when increasing the rainscreen 

venting area ratio, or decreasing the air barrier leakage.  Note that details of the field 

experiments previously discussed are provided in Table 2.5.  

Apart from air barrier leakage and rainscreen venting area ratios, few researchers have 

discussed the effect of other parameters on PER wall performance. Canada Mortgage and 

Housing Corporation proved in 1999 that compartmentalization of the wall cavities 

especially at the corners of a pressure equalized rainscreen system transmits the pressure 

load to the air barrier system. In addition, they realized that compartment seals also 

withstand pressure loads from both inside and outside, especially in the case of full 

compartmentalization. Also, Choi and Wang (1998) also described the air barrier rigidity 

role in the PE, in comparison with the curtain walls that have flexible back-panel. He 

could demonstrate that for the same venting area and cavity volume, and at the same 

frequency of pressure fluctuation, the cavity pressure of curtain wall is lower than the one 

of PER wall with rigid back-panels. Therefore, the flexibility of the air barrier can slow 

down the increase of the cavity pressure, due to the largest aerodynamic damping.  

According to the rainscreen venting, it has the same effect on both assemblies.    
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2.3.2 Wind Tunnel Experiments  

Previous wind tunnel experiments showed a satisfactory agreement with the full-scale 

results and induced the same recommendations regarding the effectiveness of a high 

rainscreen venting to air barrier leakage area ratio for pressure equalization like (Irwin et 

al. 1984) and (Kumar et al. 2008). Both authors studied a wind tunnel model for the PER 

system already tested respectively in Place Air Canada and Eindhoven building 

University in full-scale. (Irwin et al. 1984) modified the overall building dimensions and 

the cavity depth (0.5mm instead of the actual 0.063mm based on a scale of 1:200) and 

reported the results as pressure coefficients. Kumar et al. (2008) showed the results in the 

same way. They agreed that a high venting to leakage ratio leads to a good pressure 

equalization. In general, measurements of mean, maximum and rms pressure coefficients 

for panel and rainscreen sections fall within the range of field data for all the 

configurations, except for the worst configuration, with leaky air barrier and smallest 

venting area.  

For configurations with sufficient leakage and poor venting, lowest reduction in 

rainscreen load was observed for both centre and edge taps on the building model (the 

centre tap is located where the panel is placed). Differences in rainscreen rms pressure 

coefficients showed up for the lowest vent to leakage ratio configuration: field values 

were underestimated by the wind tunnel data, due to internal pressure variations in the 

field and to the reduced oncoming turbulence in the tunnel. Besides, reductions of 

rainscreen loads seemed higher in the wind tunnel in comparison with the field results.   

Inculet and Davenport (1994) got similar conclusions with the wind tunnel testing shown 

in Table 2.6, in comparison with full-scale model results. The authors revealed the high 

importance of a large rainscreen venting area. In absence of air barrier leakage, a larger 

venting area leads to an increase in the critical damping frequency d , so the rainscreen 

is able to capture a lower load at each frequency in the region of the vent, with the same 

exterior forcing pressure and volume. The same concept is applicable for equal venting 

area but smaller volume; where the critical frequency is increased with a smaller volume.  
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In case of air barrier leakage, the transfer function of the differential pressure across the 

ranscreen is higher than zero at low frequencies. 

However, the first case presents some disagreement with Kumar s (1999) observation. 

Actually, Kumar considers that, in absence of leakage, increasing the rainscreen venting 

area does not affect the transfer function magnitudes of the cavity pressure.   

Author Scale

 
 Panel 

dimensions 

Rainscreen 
vent 

openings 

 
Rainscreen 
vent ratio 
(Ars/Aw) 

Air barrier 
porosity 

Cavity 
depth 

(m) 

Theoretical 
modeling 

Inculet & 
Davenport 
(1994) 

1:12 

rainscreen model 
mounted on a 
face of 0.6 m 
cube  

- between 
0.02% and 1%

 
between 
0.02% and 
0.125% 

0.0055   
0.0275   
(model 
scale) 

Helmholtz 
resonator 
model 

Kala, 
Stathopoulos 
& Kumar 
(2008) 

1:50 

*1 m x 1.3 m 
scaled panel        
*1mm thick 
rainscreen 

6 holes of 
1mm diameter                 
12 holes of 
0.7mm 
diameter 

0.15%                        
0.35%                      
0.75% 

No leakage 
&                        
0.13% 

0.15 (full 
scale) - 

Table 2.6 Previous wind tunnel experiments for pressure equalized rainscreen walls 

 

Other wind tunnel tests have also discussed the vent holes distribution and the 

compartmentalization of the pressure equalized rainscreen walls based on implications 

from buildings pressure models experiments, i.e. the experiments realized by Davenport, 

Surry and Inculet in the Boundary Layer Wind Tunnel Laboratory of the University of 

Western Ontario. It was shown that mean and unsteady pressure gradients have extremely 

large values at the edges of the building face, thus, it is difficult to achieve pressure 

equalization near building edges. In this situation, significant residual mean pressure 

differences result across the rainscreen. In addition, net mean rainscreen pressures 

decrease with decreasing compartment size and with decreasing the mean pressure 

gradient.  

Besides, as the pressures become progressively more positive further from the edges, 

Skerlj and Surry (1994) proposed to place the vents in the rainscreen at the compartment 

location that experiences the most positive pressures referring to the locations that are 

furthest from the building edge. By installing several rainscreen compartments at various 

locations on the face of a building model (1:64 length scale) of various full-scale widths 
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(1m, 2m, 4 m and 8m) where each compartment is vented by one hole placed at its 

maximum mean exterior pressure location, Skerlj and Surry realized that at zero degree 

wind angle, net negative or near zero pressures act on the rainscreen. Also, the values of 

)( pipe CC are around zero at the compartment edge, where the vent is located.  

Later, Inculet et al. (2001) observed that pressure gradients dictate the design of venting 

openings distribution and the cavity compartmentalization as well. Compartments need 

to be extremely small to reduce the pressure difference across a compartment to an 

acceptable level .  Also, placing of vents at the compartment edge furthest from the 

building edge would suppress the forces driving water into the cavity, because of the 

higher positive cavity pressure in comparison with the external pressures.  

2.3.3 Comparison with Theoretical Model  

By applying both Model 1 and Model 2 in the numerical simulations for cavity pressure 

prediction in the PER systems of previous tests, it was proven that matching with the 

experimental results is governed by the way the key input parameters are used, and the 

frequency domain of the external pressures in addition to the way of formulating the 

models equations. For instance, in spite of using two different theoretical models, both 

Inculet and Davenport (1994) and Kumar et al. (1999) reached the same conclusion: the 

theory underestimates the mean pressure drop across the rainscreen, especially under high 

frequencies. Also, the discharge coefficient K should be lowered in case of the low 

amplitude reversing flows in comparison with its value in the steady flow, for the theory 

to match with the experiment, an approach that was first suggested by Holmes (1979) 

who adjusted K to 0.15 under high fluctuations pressures, instead of 0.63.  

Inculet and Davenport (1994) used the Helmholtz resonator model to predict the PE 

performance of a wind tunnel model. Following the concept of adjusting K until the (rms) 

values of the pressure drop across the rainscreen equal those of the experiment, the 

discharge coefficient was lowered to 0.47 to get a match in the transfer function. It was 

noted also that when the rainscreen venting area becomes larger, K is adjusted to 0.19. 
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With the close matching between the experimental and simulated pressures, the low 

frequency fluctuation of pressure across the rainscreen were overestimated, while the 

high frequency fluctuations were underestimated. The authors attributed these 

discrepancies to the linearization of the damping term in the model equations.   

Kumar et al. (1999) observed similar results when comparing the simulated pressure time 

histories with the measurements of the full-scale model of the panel installed on the 

technical university of Eindhoven façade at different wind speeds and air barrier leakage 

conditions. In spite of the agreement between the two numerical models in the differential 

pressures predictions across the rainscreen, Model 1 was used for the prediction of cavity 

pressure; due to a less number of floating point operations 6101.1 x in comparison with 

Model 2 at 9107.2 x , thus it is much faster. In addition, Kumar considered that the inertial 

effect in Model 2 could be avoided, because the resonance is highly unlikely to occur 

when inspecting the undamped natural frequency expression. Therefore, with the general 

matching between the trends of numerical and experimental results, Kumar attributed the 

differences to the fact that the numerical model does not take into account the spatial 

non-uniformity of pressures acting on the panel, and the appropriate damping of flow (the 

input pressure was the average exterior pressure acting on the panel along with a damping 

through a single vent hole only). Regarding the pressure drop across the rainscreen, 

Kumar found that the simulated time histories ( )e cP P were smoother, and some real 

peaks were unpredicted. Also, the amplitudes of ( ) /S f ² were higher above 1 Hz in case 

of the measured rainscreen pressures. Note that, K was lowered to 0.49, but it was also 

noticed that in absence of air barrier leakage, a better agreement exists between numerical 

and experimental transfer functions when lowering K.  

Other authors launched numerical simulations by using sinusoidal input signals. Baskaran 

and Brown (1992) showed a match between pressure difference measurements across the 

raincreen and the computations based on mass balance model. However, sometimes the 

cavity pressure was overestimated and the phase shift underestimated by Model 1, which 

was explained by estimating the time lag as the inverse of undamped resonant frequency, 
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independently from the leakage area. In addition, the value of 0.5 was used for the air 

barrier flow exponent.  

Schijndel and Schols (1998) developed equations based on both the Helmholtz resonator 

model and Mass balance model, and found a satisfactory agreement between the 

predictions of both models. The authors explained this saying that the second-order 

inertial term 2 2
cd P dt used in Helmholtz equation is small with respect to the damping 

term, when the vent area is large enough compared with volume as Harris (1990) pointed 

out. A match was observed between experimental and numerical pressure drop across the 

rainscreen at frequencies less than 0.1 Hz, while the simulated pressure depicted more 

damping for the fluctuations at more than 0.1Hz.  

2.4 Design Guidelines for PER   

2.4.1 Rainscreen Venting Area 

The rainscreen implementation reduces the differential pressure resulting from the wind 

loading on buildings that causes rainwater penetration as revealed by Kumar (2000). Its 

venting process controls the rate of transferring the air volume necessary to equalize 

cavity pressure with external pressure. The percentage of the necessary venting area 

depends on the amount of leakage of the air barrier, as well as the volume of air within 

the compartment. The majority of researchers agree on a high venting to leakage area 

ratio.  Latta (1973) suggested a venting area of 10 times the leakage area under steady 

wind conditions. Killip and Cheetham (1984) found that it should be between 25 and 40 

times the leakage area, while the minimum ratio is 20 for NRC (1998). Morrison 

Hershfield Ltd (1998) explained that the effective venting area for a compartment should 

be the sum of 1) 5 times the estimated leakage area of the air barrier, 2) 10 times the 

estimated leakage area of any corner seals, and 3) 1 times the estimated leakage area of 

intermediate compartment seals. Inculet (1990) specified for most high-rise buildings, a 

ratio venting to total wall area not less than 2%, based on precast concrete or metal panel 

high-rise building façades. The criterion is that the differential pressure across the 

rainscreen is less than 1% of the mean pressure drop across the composite wall. 
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2.4.2 Venting Configuration (locations and dimensions) 

Since the deliberate vent openings ensure a rapid equalization of the cavity pressure with 

the external pressure, they should be distributed over the panel face, in order to reduce 

the average wind load acting on the external cladding.  Vents are usually located at the 

bottom of the wall, so they can also drain it; besides, all vents of a compartment should 

be placed at the same height to avoid airflow loops. Generally, they are symmetric with 

respect to the panel, while Morrison Hershfield Ltd (1998) proposed an asymmetrical 

vent holes distribution. Also, some studies suggest their placement on the side of the 

compartment closest to the centre of the façade. This helps raising the cavity pressure, 

since the vent is located where the pressure on the face is high, and pushes the water out 

of leakage paths. The minimum adopted diameter of venting holes is 10mm, based on 

Garden (1963) to eliminate capillary plugs.   

2.4.3 Cavity Volume  

2.4.3.1 Cavity Depth:  

In general, the smaller the cavity volume, the lesser is the airflow Q necessary to equalize 

the pressures, and the faster is the response time of the cavity pressure. The minimum 

allowed cavity depth is 25mm (Garden (1963)). In 1990, Inculet established the following 

relation 10 rs Wdc A A

 

indicating that more rainscreen venting is needed for a larger 

cavity.   

2.4.3.2 Compartment Size: 

As a rule of thumb, the compartment height should not exceed 6m (about two stories). 

Garden (1963) proposed the location of horizontal closures up to 9m on centres over the 

total wall area; and vertical enclosures should be provided at each outside corner of a 

building, and at 1.2m intervals for about 6m from the corners, while compartment width 

could be up to 6m in the central portion of the façade and about 1.2 m at building edges 

and parapets. The British Standards (8200) mentioned that the largest lateral dimension 

of air spaces within 25% of the corner or top of the enclosure should be about 1.5m, and 

elsewhere about 5m.  Cavity compartmentalization is made using separators or 
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delimiters; that connect the rainscreen to the air barrier system. According to Kumar 

(2000), they provide compartment seals at wall corners where the seals should be 

designed in order to withstand 2-3 times the wind load. Besides, they ensure an adequate 

number of ties to transfer the lateral loads from the rainscreen to the air barrier. Multiple 

wall components can act as delimiters, such as metal shelf angles, rigid sheet metal and 

foam plastic insulation strips, as long as they can be made relatively airtight and can be 

installed to sustain the lateral air pressure loads.  

2.4.4 Air Barrier Stiffness and Leakage  

The air barrier must be supported structurally to withstand both sustained and peak wind 

pressures and suctions with a resulting deflection that can be accommodated within the 

wall assembly. In fact, the excessive flexibility of the air barrier system will result in 

fluctuations in the volume of the air chamber compartment, which will adversely affect 

the potential for rapid pressure equalization across the rainscreen.The air barrier leakage 

is an unavoidable matter, even present in all nominally sealed buildings. For IRC s 

Canadian Construction Materials Centre (CCMC), the maximum air leakage rate 

allowable for the air barrier system in exterior walls of low-rise buildings is 20.2 / ( . )L s m

 

at 75 Pa pressure differential. Others recommended that air permeability values would be 

less than 6 3 21.3 10 / /x m m Pa  or 20.1 /Q Lps m
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 CHAPTER 3  

FULL-SCALE EXPERIMENT   

3.1 Test Methodology  

The current full-scale experiment aims at examining the rainscreen venting area effects 

on the PER wall performance a under random pressures signals associated to real wind 

fluctuations. The majority of experiments previously done in the field were applying 

wind pressures on PER panel after it is installed on the building, meaning that the tests 

results are significantly influenced by leakage, an unavoidable problem in the cladding 

industry. Here, I am trying to achieve a completely sealed full-scale model, by 

minimizing the leakage rate, in order to reach an optimum pressure equalization 

performance using the design parameters of the theory. The experiment has been carried 

out at the Insurance Research Laboratory for Better Homes (IRLBH), which is built by 

the University of Western Ontario in London Airport location, and known as the Three 

Little Pigs Project . The full-scale model dimensions were dictated by the general design 

guidelines for PER walls, as well as the in-situ conditions of the facility. I decided to 

build a PER wall panel with one compartment combining the good performance with the 

ability to sustain the maximum loads pressures.  

3.1.1 Model  

A 2.6 m length by 2 m height rectangular rig is built bounded by two steel I-section 

columns. The PER wall as shown in Fig 3.1 consists of three components: 1) 0.00635m 

aluminum rainscreen panel, 2) wooden air barrier wall, 3) air space (cavity) between 

them. The rainscreen is firmly bolted at edges on both columns, while the back of the rig 

(air barrier) is movable to allow for cavity depth variations in future tests. The rig 

dimensions were dominated by the principle basics of previous pressure equalization 

studies, and the size of tools and equipments available in the facility. In addition, the 

intent was to use a full-scale model panel that matches with the typical dimensions in 
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industry, and allows different test configurations in terms of vent area and location to be 

explored.  

3.1.1a) Rainscreen 

The rainscreen panel is constructed from aluminum due to its stiffness and affordable 

cost. It is chosen with a standard length of 2.6 m since it will be installed between two 

columns of 2.2m clear span. It has 6.35 mm thickness as most common cladding panels. 

According to the height, the value of 2m is chosen in order to have room for two 0.71m 

height pressure boxes, which will be mounted later at top and bottom of the rainscreen. 

Therefore, two aluminum rainscreen panels (2.6m length by 1m height) were sealed                      

Figure 3.1 Pressure equalized rainscreen panel model (side view)  

Air barrier 

Rainscreen

 

Venting holes 

Cavity 
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together using glue with an aluminum 5 cm wide plate to give the finalized rainscreen 

setup. Taking into account that the rainscreen plate is fixed at both edges, the working 

section of the rig is considered as 2.2m length by 2m height.  

The rainscreen is perforated showing deliberate vent openings for the venting 

requirement for pressure equalization; it includes 304 20mm diameter holes in total, 

divided symmetrically between top and bottom, and forming 1.99% of the total area of 

the panel. Actually, the plan in this project is to test the PE performance of the model for 

a range of rainscreen venting area ratios going up to 2%. This venting percentage is 

chosen based on recommendations proposed by Baskaran and Brown (1992) who said 

that the ratio ( wrs AA ) should lie in the range of 1 to 1.5%, and Inculet (1990) who  

   

Figure 3.2 Distribution of 20mm venting holes on the aluminum rainscreen 
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settled the minimum venting ratio of 0.1% for re-sealed high-rise buildings; and 2% for 

high-rise buildings.  

The bottom (top) of the rainscreen shows 152 holes distributed into 3 groups, which will 

allow the application of 3 different external pressure signals varying horizontally. The 

lower (upper row at the top) row at the bottom is 3cm distant from the lower (upper) edge 

of the panel. The holes are horizontally spaced by 3cm at the middle (14 holes per row), 

and by 3.5 cm at both sides (12 holes per row) as shown in Fig.3.2. The two pressure 

boxes made of wood and mounted respectively at top and bottom in front of the venting 

holes ensure the rainscreen rigidity.                    

a) 2.6 x 2 m aluminum rainscreen. The          b) Placement of foam seal underneath 
small black points indicate the screws used       each PLA box. The horizontal studs are  
later for fixing the foam seal and wood studs.    equally spaced by 20 cm.   

2.2 m 

 

2 m 

 

45 cm

 

Wood 
plate
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c) Filters connect the PLAs to the pressure boxes in order to apply wind load towards the 
vent openings.  

Figure 3.3 Rainscreen model  

They have a dual role of housing the PLA filters which form part of the Pressure Loading 

Actuator system, detailed in section 3.1.2; and stiffening the rainscreen, as they are glued 

and screwed to the aluminum, and strengthened at both edges by 3 x 5 cm² cross section 

steel beams. Also, four 3.5 x 18 cm spruce wood studs are placed vertically at 45 cm 

equal spacing between the two pressure boxes, screwed from top and bottom for 

deflection prohibition of the front panel; crossing with two horizontal studs spaced by 

20cm.  Figure 3.3 shows the model of the rainscreen as designed in Solid Works 2010.  

PLA filter

 

Pressure box

 

Steel beam
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3.1.1b) Air Barrier 

The goal of this experiment is to achieve a perfectly sealed model. The easiest way to 

reduce any leakage at the sides was to fix a wooden plate between the flanges of each 

column to close the PER wall at the edges, and support the air barrier assembly. The air 

barrier is a 2.2 x 2 m² spruce wooden wall, stiffened with six 3 by 18 cm studs, at 36cm 

distance. Figure 3.4 reveals that the top and bottom of the rig are sealed with 50 x18 cm 

rectangular section wooden boxes that are glued and screwed to the front aluminum 

panel. The air barrier is contoured by a rubber frame that allows its sliding for the change 

of the cavity depth.  It is also supported by two horizontal 12 x 14 cm steel I-beams 

connected to the columns at both sides, using threaded holes and small I-beams 

connectors as in Fig.3.6.                     

Figure 3.4 Air barrier assembly  

Top box

 

Bottom box
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The rubber frame just stands and seals itself to the plywood; and some screws are used in 

order to support the wood, so that it will not snap out of the rubber. The air space 

between rainscreen and air barrier is set at 25 mm as the minimum cavity depth as per 

Garden (1963).   

3.1.2 Equipment  

In order to apply realistic wind loads to the PER wall panel, we used PLAs; these 

machines are able to follow a pressure trace accurately and in a reliable way, thus, they 

generate the target exterior pressure signal. The number of PLAs associated with each 

configuration, is determined based on PLA performance curves of model R6PP3110M, as 

well as the required pressure amplitude. As a rule of thumb, a PLA unit blows air on a 

certain structure through an air bag (air box) installed on this structure, as mentioned by 

Kopp et al. (2010). The purpose of the current experiment is to apply three different 

pressure signals varying horizontally in addition to the unique pressure signal; for this 

reason, two wooden boxes 20 cm thickness x 71 cm height are mounted respectively at 

the bottom and top of the rainscreen, where every pressure box is divided by three 

adjacent air boxes built separate and covering 3 groups of venting holes. Each air box is 

connected to a PLA through a circular plastic filter (of 35 cm diameter) that connects to 

the PLA hose and diffuses the airflow inside the box. Also, four additional PLA tube 

filters (9 cm diameter) are included in case there is a need for extra PLAs. Note that these 

filters are closed with 0.0762m plastic caps when not required. The PLA filters are built 

within rectangular 60 x 60 cm removable Lexan window that covers the airbox, and 

allows an easy access to the venting holes to change the venting configuration. The 

Lexan windows are sealed to the pressure boxes with foam seal and screws.   

Experimental runs were launched using a graphical user interface (GUI) program that 

provides target pressures to the PLA system and allows visualizing the data acquired by 

the electronic devices of the Data Acquisition System (DAQ). The cavity pressure is 

measured by mounting 12 pressure transducers at the back of the air barrier wall. The 

pressure taps are distributed over the total area of the plywood wall to ensure a full 
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coverage of the cavity pressure, Figure 3.5.b. Measurements are recorded with the DAQ 

formed by a National Instrument NI PXI-1042 computer device and SCXI 1004 Modules 

chassis; these are connected to a Triple-output 30V, 3A Digital Display DC power 

supply. The whole system allows reading the voltage measured by eighteen HOSKIN 

pressure transducers, of a range of ( 1) (+1) PSI, connected to the SCXI Modules; and 

then voltage values are converted to pressure.   

The pressure signal achieved by the PLAs is read using six pressure transducers of the 

same type, that are placed on the six air boxes at top and bottom of the rainscreen, and 

each is linked to its corresponding PLA. In some cases, where the air box does not allow 

enough room for the placement of the pressure tap on one side, the pressure transducer is 

installed on the other side closely to another pressure transducer associated to an adjacent 

air bag, as shown in Fig.3.5a.  

 

a) Pressure transducers distribution on the pressure boxes 
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The data are examined using Matlab 7.1 software that shows the instantaneous values of 

the demand and achieved external pressures, in addition to the cavity pressure time series. 

Note that, a small time lag (in order of few seconds) exists between the PLA system and 

the DAQ. Therefore, measurements acquired by the front pressure transducers (related to 

the PLA systems) and those reading the cavity pressures (related to the DAQ) sometimes 

give a misleading interpretation on the real time lag between the applied pressure and the 

cavity, by not having the same time duration signal. For this reason, some pressure 

transducers were sometimes removed from the back of the panel and installed on the 

working pressure boxes in order to read the applied external and cavity pressures with the 

same system. 

  

b) Pressure transducers distributions on the air barrier   

Figure 3.5 Pressure transducer locations 
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Below, Figure 3.6 shows the rig as built in the facility after the installing all components.                               

a) Front view   

Pressure

 
transducer 

cable 

Tube filter 

PLA hose 
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b) Back view  
Figure 3.6 PER wall panel 
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3.2 Testing Configurations   

3.2.1 Exterior Pressure Signals   

In order to examine the wind pressure drop across pressure equalized rainscreen walls 

built around a structure, it has been deemed substantial to use real wind pressure traces. 

The exterior pressure signals applied to the rainscreen panel in this test are associated 

with random pressures fluctuations measured on a pressure model building in the wind 

tunnel at the University of Western Ontario and discussed by Inculet (2001). The basic 

pressure model represents a rectangular building of 60m full-scale height, 40 m width and 

20 m depth; of a 1:200 length scale; exposed to a zero degree wind angle and located in 

an open country exposure. The data are sampled at 500 Hz during two minutes, the 

velocity scale is 0.28, and the full-scale velocity at 10m is 10mV =20m/s. All pressure 

coefficients pC are collected as referenced to refz =1.52 m and then re-referenced to the 

building roof height for conversion to full-scale data.            

Figure 3.7 Pressure model of a high building in the wind tunnel (Inculet 2001)   

Each of the two building faces (wide and narrow) was tested separately in the wind 

tunnel, exposed a normal wind flow and pressures coefficients were acquired at all taps.  
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For the present full-scale experiment, the external pressure signals applied to the PER 

panel correspond to pressures acquired at specific taps for both the wide and narrow faces 

(each being windward face). For each face, four pressure traces of five minutes 

equivalent full-scale duration are extracted from the data: 1) one random signal P

 
associated to a middle tap; that will be applied simultaneously to all pressure boxes of the 

panel; and 2) three pressure signals 1P , 2P , 3P  corresponding to three edge taps located at 

the left of the face. These will be applied simultaneously at the three adjacent pressure 

boxes at the bottom of the panel in order to examine the differential pressure across the 

rainscreen under an external pressure gradient.   

The four pressure taps used are located at the same position of 0.76m my H

 

(where 

my designates the vertical coordinate from the bottom of the building model). This height 

is chosen as being proximate to the location of the maximum pressure distribution in the 

middle of the face; also the corresponding edge taps pressure values are not extremely 

small.   

In fact, the middle pressure tap is located at 1.45 cm vertical distance (model scale) above 

the maximum mean pressure coefficient tap in the wind tunnel model, where pC max is 

equal to 0.368 at 0.75m my H

 

equivalent to 0.75 value in full-scale. Figure 3.8 shows 

the mean pressure coefficient distribution data for the wide face at 0.76m my H , 

representing the taps used in the experiment. Also, it indicates the equivalent full-scale 

horizontal distance in meters originating from the left side of the PER model, i.e. the tap 

corresponding to the external pressure ( 1P ) is associated with the first air box (0.73m 

length) mounted on the rainscreen from the left; the second tap ( 2P ) refers to the second 

airbox (0.73m < rx

 

< 1.46m), and the third tap (P3) is assumed to be located within the 

third pressure box.  

At the testing stage, the signals were converted to full-scale and given to the PLAs as 

pressure values instead of pressure coefficients. However, the pressure transducers were 
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not able to read accurately the signals because the pressure values were within the range 

of 0.6 kPa , which corresponds to the margin of sensitivity of the transducers. Also, the 

pressures were too small for the PLAs to reproduce the signals.  

For this reason, the data were converted again and pressure values were raised by 

doubling the wind speed at the height of the building, which gives a full-scale velocity of 

53.6m/s, velocity scale of 0.14 and a frequency scale of 28. Thus, for a five minutes trace 

signal, the full-scale frequency becomes 18 Hz. Finally the signals are filtered at 7 Hz as 

being the frequency limit of the PLA.  

 

Figure 3.8 Mean pressure distribution for the windward wide face at 

0.76m my H under zero degree wind angle   
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The PLAs generate the signals with a sampling frequency of 100 Hz; thus the data 

acquired with the DAQ system are also acquired at 100 Hz. The matching between 

demand pressure and achieved pressure (performed by the PLA) usually showed a high 

correlation factor of around 0.93 for all the demand traces as in Fig. 3.9.    

  

Figure 3.9 PLA pressure trace for the middle tap of the wide face   

The test configurations are performed using traces associated to both wide  (40 x 60 m² 

 

full-scale) and narrow face 20 x 60 m² 

 

full-scale size) of the building model. The 

fluctuations of the middle tap vary in the range of  + 0.3 +2.8kPa for the wide face, and 

+0.37 +2.69 kPa for the narrow face; while the edge taps traces reveal suction and are 

in general in the range of  -0.08 +2.24kPa for the wide, and 0.27 +2.38kPa for the 

narrow face.      
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3.2.2 Panel Setup Configurations   

The differential pressure across the rainscreen due to the applied pressure traces is 

examined by varying two parameters: 1) the rainscreen venting area ratio VA

 
and 2) the 

location of vent holes. This is done by redistributing the deliberate openings at a certain 

venting area between top and bottom of the rainscreen.  

The cavity depth was set constant at 25mm as the minimum required space in a pressure 

equalized rainscreen system. 0.0207m pliable vinyl plugs diameter were used to provide 

changes in the aluminum rainscreen venting area: each time the movable Lexan windows 

were pulled out in order to plug or unplug the 20mm holes under the pressure boxes, and 

then moved back to their location by fastening with set screws. For venting cases, the aim 

was to perform tests within a wide range of venting to wall area ratios starting from the 

lowest (equivalent to one hole in the rainnscreen) to the maximum limit obtained with 

304 vent holes. However, pressure equalization between the exterior and the cavity at 

cd =25mm was reached for 15 vent holes where 0.11%VA ; and it stabilized for 36 vent 

holes ( 0.27%VA ), thus it was decided to stop the tests configurations at this stage. 

Table 3.1 shows the different test configurations based on the ratio of rainscreen venting 

area ( rsA ) to the total wall area ( wA ). Each run was performed twice; by applying the 

pressure signals associated to both wide and narrow faces.  

Also, Appendix A (section A.1) shows the drawings of the different test cases and the 

distribution of plugged and unplugged vent holes at top and bottom of the rainscreen.             
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Configuration Number of holes

 
Venting 

percentage  
(%)V rs wA A A

Holes 
Layout Face Tap 

Signal 

Cavity 
depth 

dc 
(mm)

 
w middle 25 

a 1 0.007 bottom  
n middle 25 

middle 25 
w 

edge 25 

middle 25 
b 3 0.022 bottom  

n 
edge 25 

middle 25 
w 

edge 25 

middle 25 
c 4 0.03 bottom  

n 
edge 25 

middle 25 
w 

edge 25 

middle 25 
d 15 0.11 bottom  

n 
edge 25 

middle 25 
w 

edge 25 

middle 25 
e 36 0.27 bottom  

n 
edge 25 

w middle 25 
f 4 0.03 

top and 
bottom n middle 25 

middle 25 
w 

edge 25 

middle 25 
g 15 0.11 

top and 
bottom 

n 
edge 25 

 

Bottom: the holes are located at bottom of the rainscreen 

Top and bottom: the holes are distributed between top and bottom of the rainscreen 

w: wide face    n: narrow face    middle: middle tap    edge: 3 edge taps  

Table 3.1 Test configurations 
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CHAPTER 4  

FULL-SCALE EXPERIMENTAL RESULTS  

4.1 Introduction  

Experimental results of the test configurations, described in Table 3.1, are discussed 

in this chapter, and the cavity pressure measurements for both the applied single and 

three pressure signals are examined. For each case, the data are represented in the 

frequency domain, which helps to assess the pressure equalization process. Also, a 

comparison is established between the results based on the applied external pressures 

originally referring to the wide and narrow faces of the wind tunnel model.  

4.2 Basic Statistics of Measured Cavity Pressures for a Single Applied Pressure   

4.2.1 Pressure Gradient inside the Cavity 

A sample of the measured exterior pressure and cavity pressure time series running 

for five minutes duration is presented in Figs. 4.1 and 4.2; corresponding to a single 

applied pressure signal of 53.6 m/s full-scale velocity. The data refer to two different 

venting configurations, revealing the pressure equalization process in each case as a 

function of the differential pressure across the rainscreen ( e cP P ). Figure 4.1 

referring to 0.022%VA

 

shows that the pressure inside the cavity is following the 

external signal without reaching the peaks. The largest loads sustained by the 

rainscreen are in the range of 150 to 200 Pa on average, lasting sometimes up to 20 

seconds. Also, shorter duration peaks of 250 Pa in suction and 300 Pa in pressure are 

identified for periods of five seconds. Thus, for both wide and narrow faces, the load 

is not completely transmitted to the cavity. The full-pressure equalization between 

cavity and external pressures occurs when the PER has 0.11%VA as shown in Fig. 

4.2. In this case, the differential load across the rainscreen is around zero, the peaks of 

the cavity pressure response coincide with those of the applied signal.  
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a) 

 

b) 

Figure 4.1 Time series pressures for configuration b for a) wide face and b) narrow 
face 
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a) 

 

b) 

Figure 4.2 Time series pressures for configuration d for a) wide face and b) narrow 
face    
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a) Wide face                                                         b) Narrow face 

Table 4.1 Mean normalized pressure values inside the cavity for the single signal pressure for 

configuration b, 0.022%VA

   
Very small residual net pressures are observed through the signal e cP P , that reach 

10Pa at maximum when comparing to the value recorded by Ganguli and Dalglieh 

(1988) of 15Pa at full-pressure equalization. Actually, these are attributed to 

experimental errors. Also, the instantaneous spikes available correspond to those 

produced by the PLAs when generating the signal.  

In terms of the cavity pressure variation inside the PER panel, a first glance at the 

pressure transducers measurements placed at the back of air barrier reveals that there 

is neither a horizontal nor vertical pressure gradient inside the cavity in all of the test 

configurations, at 25mm cavity depth setup for both the wide and narrow face. As an 

example, Table 4.1 shows the mean instantaneous normalized pressures represented 

by the ratio P Pt

 

for every pressure transducer location; where P

 

presents the 

instantaneous pressure, and Pt

 

is the instantaneous pressure measured at the bottom 

pressure transducer located at x W = 0.5 and y H =0.375. The reader can refer to 

Fig 3.5 for coordinates system for the air barrier pressure transducers.  

The data clearly demonstrate that the pressure at each location is almost constant with 

respect to the reference pressure transducer reading. Furthermore, there is no 

significant difference when comparing the results corresponding to both the wide and 

narrow face external pressures. In fact, the latter random signals show the same 

statistical values after conversion to full-scale. 
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Wide face external signal: ( 1.32; 2.8; 0.43 )e e eP P P Kpa

 
Narrow face external signal: ( 1.30; 2.7; 0.45 )e e eP P P Kpa . 

This is due to the fact that both signals are recorded each at a middle pressure tap 

located at / 0.5m mx W

 
and 0.76m my H , when applying separately a normal wind 

pressure on the wide and narrow faces of the building pressure model discussed in 

Inculet (2001). Also, the analysis of wind tunnel measurements indicates similar 

pressure coefficient distributions at this position for both faces, which explains the 

analogy between the full-scale pressure signals.  

4.2.2 Measurements of Cavity to Exterior Pressure Ratio c eP P

 

To get a closer view of the pressure statistics Figure 4.3 represents the mean ( c eP P ); 

peak ( c eP P ) and rms ( c eP P ) cavity to exterior pressures ratios for both the wide and 

narrow face cases, as a function of the rainscreen area venting ratios. The curves 

describe the cavity pressure behavior for the five basic cases (configurations a, b, c, d 

and e in chapter 3) when the venting holes are located at the bottom of the rainscreen; 

while the extra points refer to configurations (f and g) where the holes are distributed 

between top and bottom. The cavity pressure ratios show a similar behaviour with 

only slight differences, when comparing the wide and narrow face cases, since the 

two corresponding external signals are applied to the same PER wall panel area.  The 

three curves present the same rising trend with the rainscreen venting area ratio VA ; 

but the mean pressure ratio seems slightly higher: this is probably due to the fact that 

steady pressure is effectively transferred to the cavity, while unsteady fluctuations are 

resisted by the aerodynamic damping of the vent openings; especially at low venting 

rates ( 0.11%VA ).  

The experimental measurements show that, generally, the equalization between cavity 

and external pressures improves as the rainscreen venting area gets bigger at a 

constant cavity depth ( cd =25mm); as proved by previous full-scale and wind tunnel 

experiments (i.e. Inculet and Davenport (1994) and Kumar et al. (2003)).  
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Figure 4.3 Basic statistics for a single applied pressure signal for a) wide face, and b) narrow 
face 

a)

 

b)
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More precisely, the shape of the curves reminds of Fig 2.2 showing the rainscreen 

load reduction as a function of venting and leakage area and observed in Kumar et al. 

(2003). By using a wider range of venting area ratio ( 0.15% 0.75%VA ), Kumar 

confirmed that the wind load absorbed by the rainscreen gets smaller with a larger 

venting area, thus the pressure inside the cavity increases; which is perfectly seen in 

the current experiment.   

Since the present PER wall panel is assumed built perfectly sealed, the air barrier 

should be impermeable without exhibiting paths for flow losses. Therefore, in the 

case of venting (i.e. a single opening) the cavity pressure will develop and increase 

trying to reach the external pressure fluctuations in the vicinity of the opening, based 

on the concept of Holmes (1979) for the internal pressure behaviour in the case of a 

single windward opening wall of a low-rise building without leakage. Thus, in this 

case, we can say that the panel requires only a small venting area to have good 

pressure equalization, a thought that was already proven by Kumar (1999). However, 

the massive mean pressure drop across the rainscreen revealed in Fig 4.3(a and b) at 

the lowest venting area; where only 55% of the mean external pressure is transmitted 

to the cavity is an indication of a presence of a certain mean flow that is increasing 

the damping associated with the flow through the venting opening and, hence, 

negatively influence the cavity dynamic response. This mean pressure drop is reduced 

significantly at higher rainscreen venting area ratios: 0.97c eP P  at VA =0.022% and 

0.99c eP P

 

at VA =0.03%. Also, the rig assembly was untouched during all 

configurations; only Lexan windows were removed each time from the front pressure 

boxes, to change the vent holes area. In addition, the test associated with VA =0.007% 

was not performed at the beginning of the experiment; it is ranked middle with 

respect to other configurations. Therefore, it is unlikely for leakage, if it does exist, to 

be the main cause for the observed mean pressure drop, although it may be a 

contributor. Certainly, there is a kind of process that is happening in the way the 

external pressure is transmitted through a single opening in the rainscreen, and that 

may be causing pressure losses in the air box. A possible explanation might be that 
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the air flow volume first blown into a single 71cm height by 73cm wide air box is not 

fully transmitted to the cavity. The PER model performance gets better as the 

rainscreen venting area ratio increases until reaching the full pressure equalization 

( 1)c e c e c eP P P P P P at VA =0.11%; which explains the flatness of the curves 

from 0.11% to 0.27% rainscreen venting ratio, for both the wide and narrow face 

cases.  

The effect of vent openings location on the pressure equalization process of the panel 

is also examined for some configurations. At 0.03%VA , the data show a drop in the 

mean, peak and rms ratios referring to a reduction in the cavity pressure in the order 

of 3%; when the four vent holes are symmetrically redistributed as two holes under 

the bottom and top middle airboxes (configuration (f) in chapter 3). This change can 

be either attributed to the physical behaviour of the air inside the cavity, mainly 

triggered by the vent hole location, or to the PLA performance.   

In contrary to the experimental results, an increase in the cavity pressure was 

expected when the holes were at the top and bottom, since the external pressure will 

travel just half the distance within the box.  However, it seems that the pressure 

equalization is better when the vent openings are distributed along the width of the 

PER panel. On the other hand, since the 2 PLAs placed at the top and bottom are 

generating the same signal with high correlation, the cavity pressure response 

variation cannot be due to a technical process or cross flow between the PLAs. Also, 

the two venting configurations did not show any pressure gradient inside the cavity. 

So at low rainscreen venting area ratios, the cavity response behaviour is only 

affected by the layout of the vent openings, and it is higher when they are placed at 

the bottom of the rainscreen, as if they are forming a discontinuous slot.   

At 0.11%VA , the change in the location of the 15 holes does not seem to have as 

much effect. Although the number of PLAs gets doubled (six instead of three), the 

mean cavity response pressure seems slightly higher with respect to the external 
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pressure in comparison with the bottom venting holes location for both wide and 

narrow face cases. This is probably due to the fact that full-pressure equalization is 

reached in the basic configuration, so varying in the vent openings location would not 

affect the cavity response pressure.  

When comparing wide and narrow face results, slight differences are observed mainly 

due to the performance of the PLAs. The reasonable increase in the peak cavity to 

external pressure ratio, highlighted in the narrow face at 0.11%VA (15 holes top 

and bottom), is not shown in the wide face case. The reason behind such behaviour is 

that the achieved external peak pressure value is slightly higher than the real peak 

value, so the peak ratio value c eP P

 

referring to a higher peak cavity pressure 

collapses with that of the vent areas basic location (15 holes at bottom). Similarly, in 

the narrow face case, c eP P

 

appears above c eP P

 

at four holes top and bottom 

configuration because the achieved eP is 0.9% less than the peak demand pressure.  

The change in the vent holes locations within one compartment and for a constant 

venting area ratio has not been examined before. Previous experiments used different 

layout configurations: venting slot at the bottom of the rainscreen in Ganguli and 

Dalgliesh (1988), and holes spread all along the rainscreen in Kumar et al. (2003). 

Inculet (1990) placed two holes at top and two holes at bottom, but the poor pressure 

equalization performance observed in the model was attributed to the low venting 

rainscreen to air barrier leakage area ratio, not to the distribution of the vent holes.   

Figure 4.4 shows the peak factor g of the cavity pressure measurements given by 

c c cP P gP . The computed values are observed in the range of 2.7 to 3.2, and as the 

rainscreen venting area gets larger, the peak factor increases.  

The narrow face case does not show a straight increase from 0.007% to 0.03% area 

venting ratio as the wide face signal curve does: this is due to the lower peak factor at 

0.03%VA  (g=2.8 in the narrow face) in comparison with (g=2.9 in the wide face).  
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Figure 4.4 Peak factor for a single applied pressure signal for a) wide face, and b) narrow 
face 

a)

 

b)
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At 0.27%VA , the difference c cP P

 
between the peak and mean cavity pressure is 

similar to that of 0.11%VA , but the rms value is larger, which explains a smaller 

peak factor value, that leads to a decreasing behaviour after 0.11%VA . 

The extra points referring to the vent holes redistribution are also marked on the 

graph. Since the mean cavity pressure increases at a venting area ratio of 0.11%

 
as 

shown in Fig. 4.3, the peak factor value decreases in comparison with the initial 

venting location at the bottom.  According to the lower venting area, the 

redistribution does not have any significant effect on the peak factor, since the drop in 

the mean and peak cavity pressures are compensated by the increase of the rms cavity 

pressures.  

4.2.3 Analysis of the Experimental Results in the Frequency Domain  

The effect of rainscreen venting to panel area ratio %VA on the pressure equalization 

process can be practically verified by the spectral analysis through the transfer 

functions and phase angles between the external and cavity pressures signals. Figure 

4.5 depicts the external and cavity pressures of the basic venting configurations, with 

respect to the rainscreen area-venting ratio, in the frequency domain for both the wide 

and narrow faces. The ordinates represent the normalized product of frequency and 

spectral density function with respect to the corresponding variances 2( ) , while the 

horizontal axis shows the frequencies. The spike existing at 2.14f Hz  is equivalent 

to 60Hz

 

electrical noise frequency in the wind tunnel data. Also, meaningless 

harmonics are shown for frequencies higher than 7 Hz in all spectral plots, since the 

PLA cannot generate frequencies above 7 Hz, so this makes the data beyond this 

value unreadable. The measurements show in general that as the rainscreen venting 

area gets larger, the pressure cavity spectra becomes closer to the external pressure, 

which is clearly seen in terms of the transfer functions shown in Figs 4.6a and 4.7a. 

As the venting area increases, higher frequency fluctuations are increasingly 

equalized with the applied fluctuations. The same behaviour can be seen in the phase 

angle in Figs 4.6b and 4.7b.   
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Figure 4.5 Spectral density functions for cavity pressures varying with area venting 

ratio % for a) wide face, and b) narrow face 

a)

 

b)
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Furthermore, it is remarkable that for each venting rate, there is a certain frequency 

above which the attenuation of the external pressure fluctuations occurs, and this 

frequency gets higher as the venting area ratio increases.   

Inculet and Davenport (1994) referred to such frequency as the critical damping 

frequency d

 
which allows lower frequencies to pass fairly effectively into the 

cavity. Also, they confirmed that an increase in venting area for constant volume 

results in, a higher critical damping frequency, which is perfectly observed in the 

present transfer functions. To illustrate, Figure 4.6a shows that the transfer function 

starts rolling off at 0.6 Hz at 0.022%VA , while the damping frequency seems 

around 6Hz

 

for the highest venting ratio. In this case, only frequencies higher than 

6Hz are taken by the rainscreen. In addition, this value is close enough from the 

frequency limit of the PLA ( 7Hz ), which means that the majority of external 

fluctuations are transmitted to the cavity and full pressure equalization occurs.   

Moreover, we may say that the influence of the venting area increase is found to be 

more pronounced in the low frequency regions, at low venting areas when 

0.11%VA : As the rainscreen venting area ratio gets higher, the critical damping 

frequency increases meaning that a wide range of lower external frequencies 

fluctuations get transferred to the cavity, but the attenuation of high frequencies still 

available. This behaviour agrees with Kumar s observation, who claimed in 1998 that 

the pressure equalization process seems to be indifferent in the high frequency region, 

irrespective of the different wall characteristics.  

The transfer function associated to the lowest venting area ratio of 0.007%VA

 

reflects again the pressure drop already revealed in the statistical results. Clearly, the 

damping has a huge impact on the low and high external pressure frequencies as well. 

Even the curve is much more smoother with respect to the other venting area ratios. 
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a)                

b) 

Figure 4.6 Transfer function (a) and phase angle (b) variation with venting area ratios % 
(wide face) 
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a)               

b) 

Figure 4.7 Transfer function (a) and phase angle (b) variation with venting area ratios % 
(narrow face) 
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In terms of phase angle, the effect of the rainscreen venting area is well identified as 

shown in Figs 4.6b and 4.7b. As the rainscreen venting rate increases, which will 

allow the external signal to spread more through the vent openings and makes the 

cavity response pressure prompt to develop faster. The pressure inside the cavity then 

rises more rapidly to reach the external pressure within a smaller time lag , which is 

proved by the reduction of the phase angle between the external and the cavity 

pressures. The data clearly show that both signals are out of phase at low rainscreen 

venting area ratios. As VA gets higher, the magnitude of the phase angle gets smaller; 

the associated curves seem straight linear at low frequencies. At higher frequencies, 

there is a rapid change in the shift that gets faster as the frequencies increase, 

corresponding to the dropping fluctuations in the transfer function.  

No significant difference is recorded when comparing the normalized spectral 

densities, transfer functions and phase angles for the wide and narrow faces, which 

reflects the similarity of the cavity to external pressures ratios previously seen. It is 

only noted that the phase angle curve associated to 0.11% venting area ratio is closer 

to that of 0.27% at high frequencies in the wide face case.  

Figure 4.8 describes the differences in the external fluctuations transmission into the 

cavity when the vent openings location is changed for the same venting area ratio. 

The measurements demonstrate that the vent openings distribution at the bottom of 

the rainscreen has an advantage to their layout between top and bottom; especially at 

low venting area ratio. At 0.03%VA , higher external frequencies fluctuations are 

transmitted to the cavity, which causes a reduction in the phase angle. At 

0.11%VA , the transfer functions have almost similar magnitudes, which is 

influenced in the statistical pressure ratios, but the phase lag is significantly smaller 

especially at high frequencies, when the holes are located at bottom.     
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Figure 4.8 Transfer function (a) and phase angle (b) variation with venting location 

(wide face) 

b) 

a)
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Finally, all the figures showing the spectral analysis do not indicate any resonance 

inside the cavity; which Holmes (2001) and Kumar (1999) previously confirmed for 

the case of small volumes. Table 4.2 represents the values of undamped natural 

frequencies calculated by the formulae provided by both authors.   

Venting Area ratio

 
Number of holes

 
Holmes (1979)

 
Kumar (1999)

 
0.007 %

 
1

 
19.0

 
21.2

 
0.022 % 3 33.7 27.8 
0.03 % 4 38.9 30.0 
0.11 % 15 75.0 41.0 
0.27 % 36 116.7 51.0 

Table 4.2 Undamped natural frequencies ( )f Hz  at cd =25mm  

As Inculet and Davenport (1994) proved, the natural frequency gets higher as the 

rainscreen-venting ratio increases at constant cavity depths. Also, the smaller value of 

19 Hz associated to the lowest venting area in the current experiment, does not even 

show in the tail of the spectral density function. Therefore, the cavity frequency is not 

excited by the external pressures fluctuations, and signal resonance will never occur.  

4.3 Basic Statistics of Measured Cavity Pressures for Three Different Applied 

Signals  

4.3.1 Pressure Gradient inside the Cavity  

Table 4.3 presents the statistical values of the three edge taps pressure signals, which 

are extracted from the wide and narrow faces external pressure measurements of the 

pressure model in the wind tunnel. These signals are applied simultaneously to the 

three pressure air boxes at the bottom of the rainscreen. The thought in this part of the 

project is to examine the cavity pressure responding to the pressure gradient applied 

across the rainscreen, rather than comparing it to each of the three signals. For this 

reason, it was chosen to estimate the area averaged pressure aP

 

calculated over the 

three equal area pressure air boxes, to check its impact on the cavity pressure, in 

comparison with the single applied pressure case. 1P , 2P

 

and 3P

 

refer respectively to 



66 

the edge, middle and third air box exterior signal applied to the rainscreen from the 

left.   

Wide face Narrow face 

 
1P

 
2P

 
3P

 
aP

 
1P

 
2P

 
3P

 
aP

 
mean 0.06 0.47 0.73 0.42 0.16 0.65 0.928 0.58 
peak 1.74 2.15 2.24 2.04 1.38 2 2.38 1.92 
rms 0.28 0.33 0.36 0.32 0.28 0.32 0.35 0.31 

Table 4.3 Statistical values for the three applied pressure signals   

Obviously, 1P

 
reveals the lowest statistics since it corresponds to the pressure 

measured at the tap located at the edge of the building face in the pressure model of 

the wind tunnel test (Section 3.2.1), followed by the two adjacent taps signals 2P

 

and 

3P . In fact, for a windward face subject to zero wind incidence angle, the pressure 

increases as going further from the edge to the centre of the face.   

Despite the exterior pressure gradient applied on the PER panel due to three different 

applied signals, the pressure response inside the cavity does not exceed 2% variation 

in x

 

and y

 

directions for both the wide and narrow faces, similarly to the single 

applied signal case, as proved in Table 4.1.  

 

a) Wide face                                                          b) Narrow face  

Table 4.4 Mean instantaneous normalized pressures inside the cavity for the three 
applied signals (Configuration b) 0.022%VA

  

Table 4.4 shows the mean instantaneous normalized pressure values of the cavity for 

the lowest rainscreen venting area ratio, with respect to a pressure transducer 

reference located at / 0.5x W

 

and / 0.375y H

 

at the back of the air barrier. For 

other venting configurations, the cavity shows the same behaviour.  
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Figures 4.9 and 4.10 reveal a snapshot of 15 seconds for the time series of the applied 

and cavity pressures signals for two rainscreen venting configurations. The data show 

the averaged exterior pressure signal e aP P

 
as well as the pressure difference 

( e cP P ) across the rainscreen.   

 

a)  

  

b) 
Figure 4.9 Time series pressures for configuration b for a) wide face and b) narrow 
face 
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a)  

 

b) 
Figure 4.10 Time series pressures for configuration d for a) wide face and b) narrow 
face 
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As the measurements indicate, the area-averaged pressure eP

 
is practically following 

the middle tap signal 2P

 
since the external pressure gradually increases from 1P

 
to 

3P , for both the wide and narrow faces; the three signals being applied to a similar 

box area. The lowest rainscreen venting area 0.022%VA indicates poor pressure 

equalization between the cavity and area-averaged exterior pressures, in comparison 

with 0.11%VA . The cavity pressure signal cP

 
is visibly smoother than the external 

pressure as shown in Fig 4.9, signifying that the external high frequency fluctuations 

are indeed transmitted to the rainscreen. Moreover, cP

 
is following eP

 
with a small 

phase shift without reaching the positive peak fluctuations, while sometimes it shows 

slightly higher magnitudes under negative pressure   

The wide face cavity response pressure performance seems slightly better:  the largest 

differential pressure peaks sustained by the rainscreen are 650 Pa in pressure and 170 

Pa in suction, in comparison with 780 Pa and 270 Pa for the narrow face, as recorded 

data indicate. These values are indeed higher than those previously observed under a 

uniform pressure signal in section 4.2.1, due to the existing gradient pressure, as 

proved Ganguli and Dalgliesh (1988). The peaks last for no longer than 2 seconds and 

they are correlated with those of the three pressures signals. The differential pressure 

signal e cP P

 

identifies this difference since it has larger amplitude in Fig 4.9b with 

400 Pa peak value.  

When the rainscreen venting area becomes 0.11%

 

the majority of external pressure 

fluctuations are transmitted to the cavity as shown in Fig 4.10. cP

 

tends in general to 

collapse with eP , and the differential pressure across the rainscreen is reduced to 

around zero, which indicates satisfactory pressure equalization for both the wide and 

narrow faces. However, a look at the time series especially in Fig 4.10a demonstrates 

that at certain moments the cavity response pressure is not capturing the minimum 

peaks of the exterior area-averaged pressure signal eP , although both signals are 

generally in phase. 
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4.3.2 Measurements of Cavity to Exterior Pressure Ratio c eP P

  
Figure 4.11 describes the pressure equalization process with respect to the rainscreen 

venting area, in terms of the cavity to area-averaged exterior pressures ratio. For both 

the wide and narrow faces cases, the pressure equalization between the cavity and the 

exterior improves as the rainscreen venting becomes larger. Note that the curves refer 

to the basic venting holes where three, four, 15 and 36 are respectively distributed 

under the three bottom pressure boxes of the rainscreen; while the marked points 

show the pressure behaviour when the 15 holes are redistributed between top and 

bottom. The data in both Figs 4.11a and b reflect the fact that the most satisfactory 

pressure equalization performance occurs in terms of mean pressure since the mean 

pressure ratio curve is the highest. When comparing the two faces cases, the mean 

ratio c eP P presents similar values: only 75% of the mean external load is transmitted 

into the cavity at the lowest venting area, and the percentage increases until reaching 

the full-pressure equalization between the mean external area-averaged and cavity 

flows at 0.11%VA , where the curve keeps flat until 0.27%VA . The rms ratio 

values c eP P

 

also collapse with the mean ratios at 0.022%VA

 

presenting an 

ascendant trend when the venting gets higher for both faces. However, the cavity 

response pressure equalizes faster with the area-averaged pressure in terms of peaks 

when the three signals refer to the wide face. This trend can be seen with the higher 

values of the peak ratio c eP P observed in Fig 4.11a for all rainscreen venting 

configurations. Note that the cavity response was able to catch up with the external 

pressure peak leading to a peak ratio equal to unity at 0.11%VA

 

in the wide face 

case.   

When comparing these statistical values to those of the cases referring to a single 

applied pressure signal (Figs 4.3a and b), the reader can make several observations: 

When the PER wall panel is subject to a single pressure signal applied through 

pressure boxes, the three statistical (mean, rms and peak) pressure ratios collapse 

similarly for both faces.  
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Figure 4.11 Basic statistics for three applied pressure signals for a) wide face, and b) 
narrow face 

a) 

b)
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Thus, the cavity response is able to reproduce all external pressure statistics in the 

same way, for all venting configurations.  

In case three different pressure signals are simultaneously applied to the model 

through three equal area pressure air boxes, the pressure equalization process is 

slower (i.e. for three vent holes in the rainscreen  c eP P =0.75 in Figs 4.11.a and b, 

while it is equal to 0.95 when a single pressure is applied in Figs.4.3.a and b). This is 

due to the existence of pressure gradient across the three boxes, which will practically 

lead to a smaller time lag between the area-averaged external pressure and the 

pressure cavity response, causing a lower degree of pressure equalization.   

On the other hand, similarly to the single signal case, the redistribution of the 15 vent 

holes between top and bottom of the rainscreen slightly improves the cavity pressure 

response, under a pressure gradient. In case the external signals refer to the narrow 

face, the mean cavity to external averaged pressure ratio is raised in conjunction with 

the peak and rms values; while the wide face case has only the mean ratio increased. 

These differences are due to the way the six PLAs are generating the three different 

signals in each case and to the repeatability and accuracy errors already observed.   

Figure 4.12 shows the peak factor when three different signals are applied to the 

rainscreen. The curves provide an interpretation of the statistical values shown in Figs 

4.11a and b; indicating an increasing behaviour as the rainscreen vent area gets larger,  

The peak factors present higher values when compared to the single applied pressure 

signal case, which is result of the pressure gradient as Inculet (2001) stated. For 

example, at 0.11%VA

 

g=3.88 instead of 3.2 in Figs 4.4a and b. The main 

explanation is that the mean of the area-averaged pressure issued from the three edge 

signals is much lower that the windward signal mean pressure value. Regarding the 

vent holes location effect, there is an agreement between both cases: the redistribution 

of the vent holes between top and bottom causes a drop of the peak factor.   
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Figure 4.12 Peak factor for three applied pressure signals for a) wide face, and b) 
narrow face 

a)

 

b)
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4.3.3 Analysis of the Experimental Results in the Frequency Domain  

Figure 4.13 shows the normalized spectral density functions of the cavity pressure 

when three different signals are applied to the PER panel. Spikes at 60 Hz equivalent 

wind tunnel electronic noise frequency are always identified. The behaviour of the 

cavity with respect to the exterior pressure varies consistently in the frequency 

domain with respect to the venting area as shown in Figs 4.14 and 4.15. The transfer 

functions display the area-averaged pressure amount transmitted to the cavity, that 

obviously increases, as the rainscreen venting area ratio gets higher. Similarly to the 

single signal case, the critical damping frequency increases as VA

 
gets larger 

allowing a wider range of low external frequencies to get transferred behind the 

rainscreen. The full equalization between the cavity pressure and e aP P

 

appears at 

0.27%VA , while it is reached at a lower venting area of 0.11%VA

 

under a single 

pressure signal. In fact, the transfer functions and phase angles corresponding to these 

two venting configurations almost collapse in the case of a uniform pressure, while in 

this case they both show more attenuation.    

In addition, when a single pressure is applied to the rainscreen, the transfer functions 

corresponding to low venting configurations, apart from the one hole case, originate 

from a value close to one; in contrast with the current plots; that indicate a pressure 

drop and start to roll off at lower frequencies i.e. 4Hz

 

instead of 6Hz

 

at 

0.27%VA . Therefore, when the PER panel is subject to a pressure gradient, the 

cavity pressure equalizes with the external pressure at a smaller degree for the same 

rainscreen venting area ratio. On the other hand, it is noticed that slower pressure 

equalization is established when the three external pressure signals are extracted from 

the narrow face.    
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a)                        

b)  
Figure 4.13 spectral density functions for cavity pressures for a) wide, and b) narrow face 
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a)                     

b) 
Figure 4.14 Transfer function (a) and phase angle (b) variation with venting area ratios (wide 
face) 
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a)                

a)               

b) 

Figure 4.15 Transfer function (a) and phase angle (b) variation with venting area ratios 
(narrow face) 
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Figure 4.16 Transfer function (a) phase angle (b) variation with venting location (wide face) 
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The phase angle plots are presented in Figs 4.14b and 4.15b. As pressure equalization 

improves, the phase angle is reduced. However at high raincsreen vent area ratios, the 

phase angle does not keep the value of zero all the time: the cavity and area-averaged 

pressures are out of phase in the high frequencies regions, which proves again that, 

under a pressure gradient, the cavity has less ability in responding to the external 

pressures.  

The effect of vent openings location is described in Fig 4.16. The redistribution of 15 

vent holes between top and bottom on the rainscreen does not have a significant 

impact on the pressure equalization process. The transfer function magnitudes are 

slightly increased but the damping occurs at the same frequency. Also, the phase 

angle is slightly reduced at high frequencies  

4.3.4 Comparison of Wide and Narrow Face Results  

Measurements previously revealed in the statistical values and transfer functions have 

shown some differences in the cavity pressure behaviour between the wide and 

narrow face cases. Apparently, façade characteristics and wind flow behaviour do 

have an effect on the degree of pressure equalization, especially at lower frequencies. 

When the three applied signals were extracted from the three edge taps of the 

windward wide face, the pressure equalization for our PER model was faster and 

there was better transmission of low frequencies fluctuations at all venting 

configurations. For example when comparing Figs 4.14a and 4.15a, the transfer 

functions show that at the lowest venting area where 0.022%VA , 75% of external 

pressure fluctuations are transmitted to the cavity at frequencies lower than 0.5Hz in 

the case of the wide face, while at higher frequencies this percentage start to decrease. 

However, when the three applied signals correspond to a part of the three edge taps 

exterior pressures of the windward narrow face, only frequencies below 0.4Hz are 

75% transferred to the cavity. Similarly, at high rainscreen venting area ratios, the 

transfer functions show a faster decay in the case of the narrow face. This is probably 

attributed to the actual difference in the three signals of the two faces that results in 

different pressure gradient although the full-scale applied signals represent only a part 
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over five minutes equivalent time period from the original data duration. Moreover, 

the differential pressures e cP P

 
observed across the rainscreen are higher when it 

comes to the narrow face external signals. To illustrate, the corresponding mean 

values associated to 0.022%VA

 
are respectively 100 Pa in Fig 4.9a and 120 Pa in 

Fig 4.9b.   

In light of the above, it was necessary to quantify numerically the resultant horizontal 

gradient pressure available on the PER panel, which is caused by the applied pressure 

signals issued from each face, in order to justify correctly the cavity pressure 

behaviour.  Inculet (2001) suggested an instantaneous horizontal component pressure 

gradient coefficient 
( / )

p
g

m m

C
H

x W

 

where mx  is the horizontal coordinate measured 

from the left edge of the building, aiming to examine the pressure gradients mostly 

observed at the edges of the facades between the different taps locations on a pressure 

model in the wind tunnel. In this case, a positive value of gH

 

indicates that the 

pressure is increasing from left to right across the face.  

By applying this expression on the current PER model compartment, the mean 

horizontal pressure gradient gH

 

is calculated between the three adjacent pressure air 

boxes locations, that are subject to three different external signals, where mW refers in 

this case to the width W of the rainscreen. The results prove that applied pressure 

signals associated with the narrow face, result in higher-pressure gradient across the 

rainscreen: gH = 0.32 with respect to gH = 0.26 for the wide face case. These values 

refer to the pressure gradient established between the edge and the second adjacent 

pressure air box, from the left of the rainscreen. They are, respectively, equivalent in 

full-scale using a mean velocity of 53.6 m/s to 585Pa pressure change per metre and 

700Pa per metre, meaning a difference of about 18% between the wide and narrow 

faces. The pressure gradients between the second and third pressure boxes exhibit the 

same behaviour, but with smaller magnitudes, since the pressure gradient is reduced 

as we go further from the edge of the building façade.  
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Therefore, this should explain the higher-pressure loads sustained by the rainscreen in 

case of the narrow face. It is also in agreement with Skerlj and Surry (1994) who 

observed through a wind tunnel experiment that, higher mean pressure gradients 

applied to a PER compartment, produces higher mean residual net pressures on the 

rainscreen.  

4.4 Summary 

Cavity pressure measurements using a PER compartment model have been examined 

under both a uniform pressure and a horizontal pressure gradient. The results indicate 

the major role of the rainscreen venting to wall area ratio in the improvement of 

equalization process between the external and cavity pressures. The transfer functions 

revealed an increase in the critical damping frequency, and the phase angle between 

external and cavity pressures was reduced, as the rainscreen venting area was 

increasing.   

In the case of a uniform applied pressure, the lowest rainscreen venting area ratio 

0.007%VA

 

resulted in the poorest pressure equalization between the external and 

cavity pressures. A great pressure loss occurred across the rainscreen: a mean 

pressure drop of 55% of the external pressure was observed.  

The application of a horizontal pressure gradient leads to a lower degree of pressure 

equalization according to the experimental results. The best performance was 

obtained for 0.27%VA when the PER model was subject to three different signals, 

while a full pressure equalization occurred for 0.11%VA

 

under a uniform pressure. 

Moreover, when applying three different signals extracted from the narrow face wind 

tunnel pressure model, the rainscreen panel experienced higher net pressures because 

the mean horizontal gradient pressure coefficient was 18% higher that the value 

associated with the wide face.  

In terms of the venting area location, placing the vent holes at the bottom of the 

rainscreen seems to enhance the pressure equalization, in comparison with their 



82 

distribution between top and bottom. Such effect was clearly identified for low 

rainscreen venting area ratios. However, the vent openings layout did not have a 

significant effect on the performance of the PER model for high rainscreen venting 

area ratios.  

The next chapter will present the numerical predictions of the PER model s cavity 

pressure response. This will allow checking whether the theoretical model is able to 

reproduce exactly the effect of the considered wall parameters on the model 

performance, under both uniform and gradient external pressures.                 
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CHAPTER 5  

NUMERICAL RESULTS   

5.1 Introduction  

This chapter establishes a comparison of the measurements and numerical predictions 

of the cavity pressure measurements in order to check the efficiency of the theory in 

predicting full-scale results in the future. In addition, the impact of cavity volume 

change on the pressure equalization is observed by predicting numerically the cavity 

pressure for a range of depths varying between 25 and 300mm under an external 

single pressure signal and pressure gradient.     

5.2 Numerical Model   

The numerical predictions of cavity pressures are computed based on Helmholtz 

resonator theory model. This model (known as Model 2 in chapter 2) has been chosen 

since the related equations involve damping and inertial terms for all openings, which 

is assumed to predict more realistically the cavity response pressure. Moreover, it is 

able to consider: 1) the external pressure fluctuations across each opening, 2) any 

number of venting holes and, 3) the leakage characteristics of the air barrier.  For this 

reason, a Matlab program that was originally developed for internal pressure 

computations in low-rise buildings by Oh et al (2007) is transformed and used in 

order to estimate the cavity pressures in this project. The algorithm of the computer 

program is clarified in Appendix B Section B1.  In addition to constant coefficients, 

the program is fed with the external pressure data matrix issued from the full-scale 

experiment, where each column represents the applied signal across an opening, as 

measured by the pressure transducers. In case of leakage, the leakage holes have a 

smaller diameter than the vents, and they are added to the external pressure data 

matrix input, as having zero pressure values.  
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Values chosen for the equations coefficients and parameters that are used in the 

computational program are defined below for the vent and leakage holes as well.   

a) Flow Exponent n

 
The value of the flow coefficient n

 
usually varies from 0.5 to 1 according to Table 

2.3. Whenever n

 
became higher than 0.5 in the numerical simulations, no significant 

variation was noticed in the cavity response pressure at a certain venting 

configuration by keeping the other parameters constant, and the basic statistics (mean, 

max, min and rms) were the same. For this reason, it was decided to use n =0.5 for 

the rainscreen which has openings with little depth.  

When leakage exists, leakage holes are assumed to come out from the air barrier, 

which will have then its own flow exponent. In this case, n =0.7 according to Shaw 

(1981). With the numerical trials, it was noticed that if n  becomes larger than 0.7, the 

mean of the predicted cavity pressure increases, and the peak decreases which makes 

the matching between experimental and numerical results harder, so n  was kept 0.7. 

Moreover, based on wind tunnel tests conducted on PER models, Inculet and 

Davenport (1994) found that the venting in a rainscreen results in orifice flow giving 

n =0.5; while the leakage path through the air barrier is likely to exhibit more viscous 

type flow with n =0.7.  

     b) Effective Length el

 

The effective length used in the numerical simulations is chosen to be 0 0.89el l a

 

as proposed by Holmes (1979) in Table 2.4. This expression involves the effect of the  

orifice length 0l  which varies in the reality with the nature of the flow. 

0l

 

for the leakage hole is assumed to be long and wide enough to let the flow come 

back and forth, however it is smaller for the vent opening. For this reason, the value 

of 0l

 

for the vent opening is set equal to the thickness of the rainscreen that is 

0.00635m, while it is slightly bigger for the leakage hole present in the air barrier 
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suggested to be 0.0075m close to the air barrier assembly thickness, a

 
refers to the 

area of the opening. 

      

     c) Discharge Coefficient K

  
It is always difficult to assess the exact value of the discharge coefficient for a flow 

through the vent opening in the rainscreen. In fact, this flow may be affected by a 

mean flow stemming from unavoidable leakage of the air barrier, or cross flows 

behind the rainscreen with venting holes exposed to different exterior pressures. 

Furthermore, pressure losses might come from the way the flow rate is transmitted 

through the opening. Holmes (1979) specified the earliest values; he found that a 

value in the range of 0.6 to 0.65 corresponds to a steady flow, while 0.15 refers to 

highly fluctuating and reversing flow conditions. The presence of any leakage in the 

air barrier introduces also a second unknown into the theory. The leakage coefficient 

for the air barrier, like the discharge coefficient for the rainscreen, could take on a 

different value in fluctuating flows than in steady flows. However to simplify the 

problem, it was decided to use the steady flow value 0.6K

 

for the air barrier, since 

mean velocities will be high through the small leakage path, as described by Inculet 

(1996). Simulations have not shown any difference when using K

 

as 0.5 or 0.6, 

however when it became smaller, the predicted mean, peak and rms of the cavity 

pressure were raised, which yielded a poor matching with the experimental values.  

In light of this discussion, the rainscreen may have a different value of discharge 

coefficient for each configuration depending on the flow behaviour; setting constant 

the flow exponent n

 

and the effective length el

 

for both the rainscreen and air 

barriers. The concept is to adjust the value of K

 

until the theoretical rms of the 

pressure drop across the rainscreen matches the experimental value.  

In the present case, the numerical value of K

 

is first determined based on the single 

applied external pressure signal and then applied for the three different external 

pressure signals case. It was necessary, though, to quantify any existing leakage in the 

air barrier assembly, to include leakage holes in the numerical model for better 

matching with the experimental results.  



86 

Leakage openings were assumed to be small enough in the order of 2mm circular 

hole, where one leak represents 1% of one 20mm vent hole area. The estimation of 

the expected area of leakage holes in the air barrier abA

 
is made by numerical trials. 

The first approximation is given as   

1

2

.

.

n
ab rainscreen rainscreen

n
rs airbarrier airbarrier

A K p

A K p
                                  (4.1) 

using the experimental pressure drop values across the rainscreen corresponding to 

each case, and considering that the flow entering into the cavity through the vent 

holes is equal to the flow coming out of the air barrier from the leaks. When applied 

to the lowest venting area configuration of 0.007%VA , abA

 
is equivalent to 24 

leakage holes; and becomes 6 leakage holes at 0.022%VA . The expected amount of 

leakage decreases, as the venting area becomes higher, since the differential pressure 

across the rainscreen decreases while keeping constant the coefficients used in this 

formula as n =0.5; K =0.15 for the rainscreen and n =0.7; K =0.6 for the air barrier.  

By including 24 leakage holes in the numerical computer model, and using the same 

coefficients values, the predicted cavity pressure did not match the experimental 

signal for 0.007%VA . For this reason, the number of leaks had to be increased in 

order to obtain the actual cavity pressure.   

Figure 5.1 shows the time series of the external pressure, experimental and numerical 

cavity signals, over a short period, in the case of a wide face. The experimental cavity 

pressure seems much smoother than the applied pressure meaning that high frequency 

external fluctuations are indeed transmitted to the rainscreen. On the other hand, the 

most reasonable predicted cavity pressure signal corresponds to 37 leakage holes of 

2mm diameter, instead of 24. Clearly, it is following the external pressure in 

reproducing the majority of fluctuations, which are not present in the real signal 

signifying that the matching in the spectral analysis will not be satisfactory.  
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Figure 5.1 Cavity pressure prediction with respect to leakage holes for the single applied 
signal for wide face ( 0.007%VA )  

  

Figure 5.2 Cavity prediction pressure with respect to the Discharge coefficient 
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Figure 5.3 Power spectral density function for the cavity pressure for the single applied 
signal for wide face ( 0.007%VA )  

By trying a lower number of leaks (six leakage holes) and adjusting the value of K

 

until obtaining similar ratio pressure statistics; the numerical model was able to give 

better prediction in the frequency domain as seen in Figs 5.2 and 5.3. In this case, K

 

is lowered to 0.02, which induces a greater value of loss coefficient 21LC K . In 

fact, according to the MDE equations, as the value of the discharge coefficient 

decreases, the damping term increases, which implies a lower cavity pressure.  Also, 

it can be inferred that the mean pressure drop encountered in this case is not mainly 

due to leakage in the air barrier. As assumed in chapter 4 section 4.2.2, the flow rate 

is subject to significant losses while it is transferred through the vent hole of the 

rainscreen.   

Inculet and Davenport (1994) have reached such an extremely low value for the 

discharge coefficient: they have obtained values for K

 

ranging from 0.01 to 0.56 to 

get good agreement with experimental transfer functions, in the absence of leakage in 
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the air barrier, for a wind tunnel PER model of a venting to wall area ratio 

0.02% 0.125%rs wA A . The cavity depth was varied from 0.0055 to 0.0275 m in 

model scale (length scale is 1:12).   

Table 5.1 presents the numerical values for the discharge coefficient K

 
for the 

rainscreen for all venting configurations when a single pressure signal is applied to 

the PER model referring to a wide face signal. The numerical simulations show that 

at low venting areas ( 0.022%VA

 
and 0.03%VA ), the agreement between 

statistical values of experimental and predicted cavity pressures can be attained by 

two combinations: either a high number of air barrier leakage holes (37) in 

conjunction with a relatively high value of discharge coefficient  ( K =0.15) which 

normally applies to the fluctuating reversing flows and unidirectional oscillating flow 

conditions; or a lower number of leakage holes (6) with a lower value of K = 0.03. 

These two combinations lead to similar results in the frequency domain, as we will 

see later, in contrast with the lowest venting area ratio case 0.007%VA .  

Trial numerical simulations that were performed to obtain the optimum matching are 

also shown in terms of numerical to experimental statistical ratios. For high 

rainscreen venting area ratios ( 0.11%VA ), the inclusion of leakage holes in the 

model does not affect the predicted cavity pressure. Thus, similar agreement is 

obtained with or without taking into consideration the air barrier leakage area. 

Statistical ratios of the numerical to experimental results indeed show a satisfactory 

matching at K =0.65; a value associated with steady flow conditions. Moreover, the 

numerical model always provides less matching with the experimental minimum 

values of the cavity pressure among the other statistical values for all venting area 

ratios.  

Although the two leakage amounts lead to the same numerical prediction, it was 

assumed that the PER assembly has a constant amount of six leakage holes, since it 
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provided the best match at 0.007%VA . Thus, Table 5.1 the optimum values for flow 

exponent and discharge coefficient taken marked in bold for each configuration.  

Rainscreen 
Numerical / Experimental 

cavity pressure 
Air 

barrier 
Number of holes

 
Venting 

Area 
ratio (%)

 
n

 
K

 
mean max min rms 

Leakage 
holes 

(2mm) n

 
K

 
0.5

 
0.65 1.81 1.93 1.39 1.83 None - - 

0.5

 
0.15 1.81 1.94 1.47 1.83 None - - 

0.5

 
0.15 1.01 0.93 1.13 1.00 37 0.7

 
0.6

 
0.5

 
0.15 1.77 1.87 1.42 1.79 6 0.7

 
0.6

 
1 0.007 

0.5

 
0.02 1.00 0.90 1.02 0.98 6 0.7

 
0.6

 
0.5

 

0.65 1.02 1.04 9.26 1.03 None - - 

0.5

 

0.15 1.02 1.05 9.26 1.03 None - - 

0.5

 

0.65 1.07 1.05 0.73 1.06 37 0.7

 

0.6

 

0.5

 

0.45 1.06 1.05 0.73 1.06 37 0.7

 

0.6

 

0.5

 

0.30 1.04 1.03 0.73 1.03 37 0.7

 

0.6

 

0.5

 

0.15 0.98 0.95 0.66 0.97 37 0.7

 

0.6

 

0.5

 

0.12 0.94 0.89 0.66 0.29 37 0.7

 

0.6

 

0.5

 

0.1 0.89 0.82 0.63 0.25 37 0.7

 

0.6

 

0.5

 

0.15 1.07 1.08 0.83 1.08 6 0.7

 

0.6

 

0.5

 

0.10 1.06 1.07 0.77 1.06 6 0.7

 

0.6

 

0.5

 

0.06 1.05 1.04 0.70 1.03 6 0.7

 

0.6

 

0.5

 

0.03 0.99 0.97 0.60 0.98 6 0.7

 

0.6

 

3 0.022 

0.5

 

0.02 0.95 0.89 0.56 0.90 6 0.7

 

0.6

 

0.5

 

0.15 0.99 0.97 0.84 1.01 37 0.7

 

0.6

 

4 (at bottom) 0.03 
0.5

 

0.03 1.00 0.98 1.05 0.95 6 0.7

 

0.6

 

4 (top & bottom) 0.03 0.5

 

0.15 1.02 1.00 1.60 0.97 37 0.7

 

0.6

 

0.5

 

0.15 1.01 1.00 1.61 1.01 37 or 6 0.7

 

0.6

 

15 at bottom 0.11 
0.5

 

0.65 1.01 1.00 1.61 1.01 None - - 

0.5

 

0.65 1.18 1.01 1.71 1.09 None - - 
15 (top & bottom)

 

0.11 
0.5

 

0.15 1.18 1.00 1.70 1.08 37 or 6 0.7

 

0.6

 

0.5

 

0.15 1.00 1.00 1.10 1.10 37or 6 0.7

 

0.6

 

36 0.27 
0.5

 

0.65 1.00 1.00 1.10 1.00 None - - 

 

Table 5.1 Ratio of numerical and experimental cavity pressure for the single signal, wide 
face 
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Figure 5.4 Cavity pressure for a single applied pressure signal for a wide face 

( 0.022%VA )  

Figure 5.4 depicts the cavity time series signal with respect to the discharge 

coefficient at a 37-leakage holes amount for the configuration 0.022%VA .  

However, at K

 

= 0.15 supposed to be the optimum value, the measured cavity 

pressure does not perfectly collapse with the simulated signal. It is either 

underestimated or overestimated; this will certainly lead to discrepancies in the 

transfer functions plots.  

The narrow face case, being subject to the same single external pressure has similar 

values for discharge coefficient in the simulations in all configurations.   

The numerical values for the other parameters used in the computations are listed 

below: 

31.227 /a kg m                                                                : air density 

5 21.5*10 .sec/N m                                                       : kinetic viscosity of the air 

1.4                                                                                : ratio of specific heat of air 
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5
0 10p Pa                                                                         : atmospheric static pressure 

0 141999AK P Pa                                                        : bulk of modulus  

d = 20mm for vent opening, 2mm for leakage hole          :diameter of orifice   

5.3 Results and Discussion  

5.3.1 Single Applied Pressure Signal  

Figure 5.5 presents a comparison between measured and simulated statistics, 

corresponding to the cavity to external pressure ratio for the basic venting 

configurations for the wide face case.  

  

Figure 5.5 Basic statistics for the basic venting configurations for the wide face    
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Statistics of the simulated cavity pressure are clearly lower than those of the full-scale 

data at low area venting ratios, which is in agreement with the findings of Inculet 

(1990) and Kumar (1999).  The mean values are slightly different, while peaks and 

rms are significantly underestimated. The matching between simulations and 

measurements improves at higher venting area ratios. At 0.11%VA , a good match 

is shown, and reflected in the power spectral density functions collapse observed in 

Fig 5.6b. Similarly, Kumar found that the simulated spectral density function slightly 

under predicted when he tested a PER model panel was tested at 0.11%VA . 

However, in his case the differences were bigger due to the large cavity depth 

(0.15m) and different leakage characteristics. At 0.022%VA

 
Fig 5.6 indicates that 

the magnitudes of the spectral density for the cavity pressure are higher in case of 

simulations.  

Discrepancies between simulated and measured data are also described in terms of 

transfer functions for the cavity over the external pressure with respect to the venting 

area ratio. Solid line curves refer to the experimental results while numerical 

simulations are presented by dashed-line. At first, Figure 5.7 shows for low 

rainscreen venting area ratios the predicted transfer functions based on the two input 

data combinations already included in the numerical model. The matching of 

experimental with measured transfer functions in the frequency domain appears 

almost similar in both cases, which means that airflow losses due to high leakage 

through the air barrier (37 leakage holes with 0.15K ) are theoretically balanced 

with high damping losses through the rainscreen (6 leakage holes with K=0.03).     

Figure 4.8 describes the matching between measured and simulated transfer functions 

for all rainscreen-venting configurations. At low-venting ratios, the numerical model 

overpredicts the measurements with a fairly good match at low frequencies; the 

transfer functions corresponding to the simulated cavity pressures have in general a 

similar trend to those of the experimental signals. However, they start to roll-off at 

higher frequencies; in comparison with the actual experiments transfer functions that 

roll-off much earlier. 
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Figure 5.6 Spectral density functions for the cavity pressure for the wide face case a) 
0.022%VA

 

b) 0.11%VA

 

a)

 

b)
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Figure 5.7 Effect of discharge coefficient and leakage holes on transfer functions   

 

Figure 5.8 Comparison of measured and simulated cavity to external pressure ratios 
using transfer functions (wide face)   
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Therefore, in the case of simulations, higher frequencies of external pressure 

fluctuations are transmitted to the cavity, which was not expected from the 

comparison previously established between measured and simulated basic statistics. 

At high venting area ratios, the numerical model has the same qualitative behaviour 

of the experiment, but tends to slightly overpredict it.  

In light of these results, we can admit that the model used for numerical simulations 

shows difficulties in predicting the cavity pressure at low rainscreen venting to wall 

area ratios; where the aerodynamic damping seems not to be fully captured, 

irrespective of the air barrier leakage area taken into account. Such performance 

might be explained by the possibility of other phenomena that are controlling the 

most the air movement at high frequencies (i.e. the three dimensionality of the flow) 

and which are not numerically simulated. In addition, another interpretation can be 

related to the numerical equations. In fact, when the number of vent holes becomes 

larger, the associated number of MDE equations is increased as per section 2.3.2; thus 

the number of damping associated terms increase and frequency fluctuations are 

predicted well. Therefore, the differences between measured and simulated data can 

be attributed to the way the damping term is linearized in terms of the air slug 

velocity x . Moreover, there is maybe a certain damping term missing in the 

equations or it is not quite right and it depends on the area-venting ratio rs wA A .  

Inculet and Davenport (1994) with Kumar et al. (1998) found similar differences in 

transfer functions. Inculet and Davenport (1994) developed a numerical function 

based on Helmholz resonator model and they claimed that the discrepancy between 

experimental and computer model as a result of linearization of the damping term. 

The used range of rainscreen venting to wall area ratio was from to 0.02 % to 1%.  

On the other hand, Kumar used a different method, which is the first principle model, 

and attributed the differences to the incorrect assumptions made in the model. Kumar 

combined all the rainscreen venting openings into one opening, and he applied the 

same concept to the air barrier leakage paths. He used then, as a single exterior 
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pressure input, the averaged exterior pressure as acting on a single opening rather 

than applying the exterior pressure data to each vent opening separately, as done in 

the current numerical simulations. Therefore, the proposed model did not use the 

appropriate damping flow term for each vent hole, instead, it considered the damping 

of flow through a single vent hole and the spatial non-uniformity of pressures acting 

on the panel were not taken into account; which is not the case here.   

As the damping term seems to be the key parameter in the numerical simulations, the 

rainscreen discharge coefficient K

 
was modified in order to see its effect on the 

predicted transfer function, based on an air barrier leakage to rainscreen venting area 

ratio 0.125ab rsA A  referring to 37 leakage holes. Figure 5.9 refers to the case of the 

wide face where 0.022%VA . The plots show that the best match with the measured 

cavity to external pressure transfer function at low frequencies is associated with 

K =0.15 as already revealed in Table 5.1. As K

 

decreases, the underestimation of 

low frequencies fluctuations becomes more significant, while the gap between 

simulated and measured transfer functions is reduced, at first impression. However, 

all the simulated transfer functions, being parallel, start to roll-off at 2 Hz tending to 

collapse at higher frequencies, while the transfer function corresponding to the actual 

experiment rolls off at 0.7Hz. This behaviour proves, again, that there is a damping-

related issue in the numerical model. The general behaviour of the simulated transfer 

functions is right, but the rolling is occurring at higher frequencies. Apparently, the 

equations are not exactly evaluating the critical damping frequency above which 

attenuations occur.  

Such trend has been clearly described by Kumar et al. (1998), as Fig 5.10 shows. 

However the transfer functions curves appear as reversed, since the ordinates 

represent measures of the ratio of the differential pressure acting on the rainscreen, 

instead of the cavity pressure. In his test he had to lower the value of the discharge 

coefficient to 0.49 from the steady flow value of 0.61 to obtain the measured mean 

differential pressure across the rainscreen. Similarly, the slight overprediction at low 

frequencies gets wider in conjunction with a better match at higher frequencies. 
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Figure 5.9 The effect of K on transfer function 0.022%VA , cd =25mm (wide face)    

  

Figure 5.10 The effect of discharge coefficients on rainscreen pressures, reproduced 
from Kumar et al. (1999) 0.15%VA

 

cd =150mm 
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Inculet and Davenport (1994) had also to adjust K to 0.19 in order to have satisfactory 

agreement in terms of transfer functions, when having a leakage ratio 

of 0.23ab rsA A .  

Figure 5.11 presents a comparison between simulated and measured cavity response 

pressures in terms of the phase angle established between the external applied and 

cavity pressures for each configuration. In this case, the match between numerical and 

experimental results is poor at low venting areas: the phase angle is much smaller in 

the case of simulations; it shows zero value at 0.022%VA

 
and 0.03%VA , thus 

the real trend disappears. This says, again, that the numerical model is highly 

underestimating the damping process. At high venting ratios, the phase angle presents 

a good agreement with a slight overprediction similarly to the transfer function 

numerical simulation.  

According to the variation of the discharge coefficient K, it provides minor variations 

to the phase angle when it becomes lower, by taking into account the same amount of 

leakage holes (37 holes), which means that the value of the discharge coefficient is 

not the real obstacle for a good prediction (Figure 5.12). It does not affect 

significantly the phase shift established between applied and cavity pressure based on 

the numerical model. The problem is, rather, related to a whole term that depends on 

the rainscreen venting area ratio.     
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Figure 5.11 Comparison of measurements and simulations with phase angles (wide)  

 

Figure 5.12 The effect of K on the phase angle 0.022%VA (wide face)  
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Figure 5.13 Comparison of measured and simulated cavity pressures using transfer 
functions (narrow face)   

The narrow face case exhibits similar results to the wide face when comparing the 

simulated and measured transfer functions and phase angles, since it is subject to the 

same applied single signal. Figure 5.13 presents the transfer function plots for the five 

basic rainscreen venting configurations, solid lines refer to full-scale data while the 

numerical predictions are represented by the dashed line. The predicted transfer 

functions show a similar trend when comparing to the wide face case producing 

similar phase angle plots.  

On the other hand, the predicted cavity pressure signal represents similar matching 

behaviour with the external pressure when the rainscreen venting openings are 

redistributed between top and bottom. At high venting areas, the agreement is 

satisfactory, while the damping process is not fully captured at low venting areas.  

Actually, the numerical model used in this project does not take into account the 

spatial distribution of the venting openings; it only uses the number of vents and the 

corresponding external pressures. Therefore, it does not distinguish between the vent 

location whether they are all at the bottom or not. 
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5.3.2 Three Different Pressure Signals  

Numerical simulations are performed using the same computer program as in the 

previous case, with one difference in that the input pressures vary between the 

venting holes based on their locations under the three or six pressure boxes, as they 

refer to three applied different signals. Also, they are fed into the model as read in the 

experiment by the pressure transducers.  

Rainscreen Numerical / Experimental 
cavity pressure 

Air 
barrier 

Number of holes

 
Venting 

Area 
ratio (%)

 
n

 
K mean max min rms 

Leakage 
holes 

(2mm) n

 
K 

3 0.022 0.5

 

0.15 1.08 1.00 1.00 1.06 37 0.7

 

0.6

 

4 (at bottom) 0.03 0.5

 

0.15 1.06 1.03 1.07 1.05 37 0.7

 

0.6

 

0.5

 

0.15 1.06 0.98 1.00 1.04 37 0.7

 

0.6

 

15 at bottom 0.11 
0.5

 

0.65 1.06 0.98 1.00 1.04 None - - 

0.5

 

0.65 1.21 1.03 1.02 1.04 None - - 
15 (top & bottom)

 

0.11 
0.5

 

0.15 1.20 1.03 1.02 1.03  37 0.7

 

0.6

 

0.5

 

0.15 1.04 1.00 0.97 1.01 37 0.7

 

0.6

 

36 0.27 
0.5

 

0.65 1.04 1.00 0.97 1.01 None - - 

Table 5.2 Ratio of numerical and experimental cavity pressure for the three applied signals, 
wide face  

Table 5.2 presents the numerical values for the equation coefficients as used in the 

numerical model for the wide face, taking into consideration the air barrier leakage 

characteristics as being constant for all configurations. These values apply also to the 

narrow face case, and they result in the best matching in terms of cavity pressure time 

series signals and transfer functions. Moreover, the inclusion of leakage holes does 

not affect anymore the cavity response pressure when the venting area becomes equal 

to 0.11% , despite the existence of an external pressure gradient. This is attributed to 

the high rainscreen venting to air barrier leakage area ratio 40 10rs abA A ; which 

leads to a full pressure equalization according to Ganguli and Dalgliesh (1988).  
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Figure 5.14 Effect of discharge coefficient and leakage holes on transfer functions  

Unlike the single pressure signal, lowering the discharge coefficient to the extreme 

value of 0.03 and the leakage air barrier area to 6 leakage holes does not produce the 

same matching of the predicted signal with the experimental cavity pressure. As 

Figure 5.14 shows, the predicted frequencies get worse in low and high frequency 

regions when the leakage area is decreased. This means that a pressure gradient 

applied to the PER wall compartment might induce additional flow losses behind the 

rainscreen, which may be interpreted by a higher amount of air barrier leakage for the 

numerical model. However, such explanation may not be valid in the absence of 

proof for a pressure gradient inside the cavity.  

On the other hand, the simulated statistics of the cavity response pressure with respect 

to the area-averaged pressure of the three applied signals are higher than the 

experimental values, when three different signals are applied to the PER wall model.  



104 

   

Figure 5.15 Basic statistics for the basic venting configurations for a) the wide face  
and b) narrow face  

a)

 

b)
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Figure 5.16 Cavity pressure for a single applied pressure signal for a wide face 

( 0.022%VA )  

The mean ratios are significantly overestimated in case of the simulations at all 

venting area for both the wide and narrow faces as seen in Fig 5.15. Also, the 

numerical values of peaks and rms ratios are higher than the full-scale data at low 

frequencies, while the agreement becomes much better at high venting ratios, which 

indicates that the model is able to capture the majority of external fluctuations. As a 

sample of time series prediction, Figure 5.16 shows the predicted cavity pressure 

response in case of the lowest venting area where 0.022%VA

 

for the wide face. 

Clearly, the signal is overestimated with respect to the experimental cavity that is 

much smoother especially at high amplitudes. This is illustrated in Fig 5.17a where 

the magnitudes of the power spectral density function of the simulated cavity pressure 

are higher than the experimental results. 
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Figure 5.17 Spectral density function for the cavity pressure for the wide face  
a) 0.022%VA

 

b) 0.11%VA

 

a)

 

b)

 

b)
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When the venting area ratio is increased, there is a fairly good agreement between the 

measured and simulated spectral function as shown in Fig 5.17b for 0.11%VA . The 

transmission of external high frequencies seems, however, better in the actual 

experiment since the measured peak cavity to area-averaged pressure peak ratio is 

higher than the predicted value.  

In terms of transfer functions, the agreement between measured and simulated 

transfer function of the cavity over the area-averaged pressure generally improves as 

the rainscreen venting area ratio increases, as previously shown for single applied 

pressure signal. However, slight differences are detected in the predicted transfer 

function when an external gradient pressure occurs. As Fig 5.18a shows, the transfer 

function for the simulated cavity pressure for the wide face case has in general a trend 

close to that of the measured signal at all venting configurations, with a slight over 

prediction at low frequencies. More specifically, at low venting area ratios where 

0.03%VA , the numerical model overpredicts the measurements, the simulated 

curves start rolling off at high frequencies, until they collapse with the measured 

transfer functions at around 5Hz; while the measured curves roll-off much earlier. 

This behaviour proves that the theoretical model has an issue with the damping 

prediction.  

At higher venting areas ratios ( 0.03%)VA , the model is able to predict the critical 

damping frequency above which attenuations of the external fluctuations occur. 

However, the decay of the simulated transfer function seems too great in comparison 

with the measurements. In fact, the transfer functions are underpredicted in high 

frequency regions. The resultant gap between measured and simulated curves 

reduces, as the venting area gets higher. 

When the three applied pressure signals refer to the narrow face case, the predicted 

transfer functions exhibit similar behaviour with respect to the venting area ratio and 

frequency regions, as shown in Fig 5.19. 
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Figure 5.18 Measurements and simulations for the wide face a) transfer function b) phase  

a)

 

b)
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Figure 5.19 Comparison of measured and simulated cavity pressures for the narrow 
face transfer function     

Figure 5.18b shows the predictions of the phase angle in the case of wide face. At low 

venting area ratios, the real phase lag between cavity and area-averaged external 

pressure is not captured at all by the numerical model; instead it is considered zero. 

At high venting ratios, the agreement between measured and numerical phase angle is 

not perfect as in the case of a single applied external pressure, which probably reflects 

the transfer function behaviour. The phase angles are overpredicted. At 0.11%VA , 

the phase angle becomes underpredicted after 5 Hz.  

Based on the results above, the numerical model presents better performance in the 

frequency domain at high venting area ratios when a single applied pressure is 

applied to the PER model. In case of an external pressure gradient, the 

underpredictions occurring in the simulations at high frequencies may be explained 

by the fact that the proposed model is not able to estimate the actual transmitted 
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frequencies associated with the different external pressure fluctuations that are 

simultaneously applied. At low venting configurations, the discrepancies are due, as 

before, to underprediction of the damping.  

5.4 Numerical Prediction of Cavity Pressure at Various Depths  

The same external pressure signals that are used in the previous simulations are 

provided again to the numerical model in order to predict the cavity response pressure 

at different cavity depths. The rainscreen and air barrier flow exponents are 

unchanged, as well as discharge coefficients.   

Figure 5.20 presents the statistical peak cavity to external pressure ratios as predicted 

for a range of cavity depths varying from 50 to 300 mm for both single and three 

different applied signals for the wide face case; the value of 300 mm is usually the 

maximum cavity depth for PER wall used in the industry. As the continuity equation 

(Eqn (2.17)) from the Helmholtz resonator theoretical model infers, the cavity 

pressure is inversely proportional to the cavity volume. Therefore, at a constant 

rainscreen venting area, the cavity pressure is supposed to decrease as the cavity 

depth increases. Such a phenomenon is observed in Fig 5.20a at low venting area 

ratios, however it disappears as the rainscreen venting area increases. In addition, in 

the case of a pressure gradient, the cavity response pressure does not seem to be 

affected for any of the venting configurations, when increasing the cavity depth from 

25 to 300mm. Predicted transfer functions can provide a better idea about the 

behaviour of the cavity pressure, especially in the frequency domain.      
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Figure 5.20 Peak ratio of cavity to external pressure for a) single and b) three different 
signals 

a) 

b)
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Figure 5.21 Transfer functions for single signal a) 0.007%VA b) 0.11%VA (wide face) 

a)

 

b)
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Figure 5.22 Transfer functions for three different applied signals 0.11%VA (wide face)   

According to the applied single pressure, Figure 5.21 shows that for the low 

rainscreen venting area ratio the external load taken by the cavity decreases, as the 

cavity depth gets higher. At higher venting area, a similar amount of external 

fluctuations is transferred to the cavity in regardless of the cavity depth.    

Figure 5.22 presents on the same plot the simulated transfer function at 25cd mm

 

and 300cd mm

 

at low venting area when three different pressures are applied to the 

PER wall model. There is no significant difference between the two cases. At a large 

cavity depth, the simulated transfer function has qualitatively the same trend, 

however, it starts to roll off at higher frequencies, allowing higher frequencies 

fluctuations to be transferred to the cavity.  Since this would not practically be the 

case, we may deduce that the model could have also overpredicted the cavity pressure 

response as happened earlier for the smaller cavity.  
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Previous work has not tested the cavity depth variation effect on the pressure 

equalization process. The focus was more towards the rainscreen venting to air barrier 

leakage role in the PER walls performance. Apart from Garden (1963) who settled the 

minimum value at 25mm, only a few recommendations were mentioned in terms of 

determining a suitable cavity depth. The concept is that the cavity depth depends on 

both the rainscreen venting area and the total area of the panel. Inculet (1990) 

established the following relationship where 10c rs wd A A . Later, Kumar (2000) 

claims that an increase in venting for constant volume, or a decrease in volume for 

constant venting area, can improve the pressure equalization. This is proved in the 

numerical tests that have been done for the current project when a single pressure 

signal is applied. However, note that the external pressure signals used for all cavity 

depths were the same as for the lowest depth (25mm), which in practice could not be 

correct, taking into account the PLA errors at each configuration, and or the varying 

amount of leakage that may arise from the cavity volume change. Therefore, further 

full-scale experiments should be done, by varying the cavity depth to validate the 

theory.  

5.5 Summary  

This chapter has presented a comparison between the experimental and predicted 

cavity pressure measurements based on Helmholtz resonator model theory. The 

concept was to match the measured rms cavity pressure with the numerical value by 

adjusting the rainscreen discharge coefficient and including leakage holes in the air 

barrier simultaneously. When a uniform pressure was applied, the numerical model 

showed the same cavity response prediction at 0.022%VA and 0.03%VA

 

under 

two different combinations: 1) six leakage holes at rainscreen discharge coefficient 

equal to 0.03 and, 2) 37 leakage holes with 0.15K . While with a pressure gradient, 

only the second combination gave the best matching.   
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On the other hand, the predicted cavity pressure did not seem to be affected by the 

addition of leakage holes to the numerical model at venting area ratios higher than 

0.11%.  

In general, the results showed, for low venting area ratios, a satisfactory agreement in 

the low frequency regions between transfer functions of cavity to external pressures. 

At higher frequencies, the simulated transfer functions were overpredicted. At high 

venting area ratios, a good agreement was provided in terms of both transfer functions 

and phase angles.  

Discrepancies were noticed when comparing the matching with respect to the applied 

external pressure. Basic statistical ratios of cavity to external pressures were 

underestimated under a pressure gradient and overestimated under a uniform pressure 

for low venting area ratios. Also, the simulated transfer functions were slightly 

underpredicted at high venting area ratios in the case of the application of a horizontal 

pressure gradient.   

The numerical model was used to predict the impact of cavity depth variation on the 

pressure equalization process, using the external pressure values as applied to the 

model on site. The simulations showed that for low venting area ratios, increasing the 

cavity depth reduces the equalization process between external and cavity pressures 

under a uniform pressure. Under a gradient pressure, there was no effect of the cavity 

depth variation. Under a pressure gradient, the cavity pressure response did not 

change at both low and high venting area ratios.  

The following chapter will explore the conclusions based on both the experimental 

and numerical findings of the current research. Also, it will present some 

recommendations for future experimental work. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS   

A completely sealed full-scale model of a PER wall panel compartment measuring 2.2 m 

wide by 2m high was built in the IRLBH facility at the University of Western Ontario, to 

investigate the effect of various parameters on the pressure equalization process under 

normal wind pressure. PLAs were used to generate wind pressure time series signals 

based on wind tunnel experiments. Two types of external pressures were applied: 1) a 

single pressure signal and, 2) three different signals that create a pressure gradient across 

the rainscreen. The signals correspond respectively to a middle tap and edge taps signals 

of a windward façade associated to a pressure model already investigated. In each test 

configuration, the external data pressure signals of both wide and narrow faces were 

used. These faces are being tested each separately under a normal wind flow.  

The configurations differed in the rainscreen venting area ratios, while the volume of the 

PER was kept constant at the cavity depth of 25mm. Also, in some cases, the layout of 

vent holes was changed for the same venting area. Data measurements provided the 

cavity pressure for each configuration which enables to evaluate the PER performance 

with cavity response to external pressure ratios.  The experimental results were compared 

to a numerical model s predictions based on Helmholtz resonator theory. Furthermore, 

the effect of the compartment volume variation on PE was examined numerically by 

predicting the cavity pressure for a wide range of cavity depths, with respect to the 

rainscreen venting area ratio.   

Contributions of the Current Research  

Previous pressure equalized rainscreen wall system experiments were focusing most on 

the effect of rainscreen venting and air barrier leakage area ratios on the pressure 

equalization process. There was an agreement that a satisfactory PE process could be 
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attained by using an adequate rainscreen venting to air barrier leakage area ratio, all other 

factors remaining constant. However, other PER wall parameters or external flow 

conditions that might have an effective impact on the system performance, have not been 

extensively addressed before.   

The current research has tested a PER compartment under a pressure gradient by the 

application of three different signals varying horizontally over the rainscreen panel. This 

experiment is considered to be unique in terms of setup and application. In fact, for the 

first time, such a test was performed in a controlled facility where the model is built as 

perfectly sealed. In addition, real wind traces were used corresponding to edge pressure 

signals, that were extracted from both a wide and narrow windward faces under a normal 

flow. Thus, the effect of two types of pressure gradients was examined. This test has 

provided a clear idea about the impact of a pressure gradient on the PER system 

performance, under a range of rainscreen venting area ratios and configurations.  

Moreover, this project has examined the differential pressure differential across the 

rainscreen under a very low rainscreen to wall venting area ratio, which is 0.007%, a 

value that was never encountered before. Therefore, it was interesting to investigate the 

effect of such configuration on the model performance at the smallest cavity depth 

usually used, which is 25mm.  

Finally, the vent openings layout impact on the PE process was experimentally 

investigated for the same rainscreen venting area ratio and cavity depth, under both the 

external uniform and gradient pressures. Previous studies have not separately examined 

this parameter.   

Based on the experimental and numerical cavity pressure measurements, the data analysis 

have led to the following:     
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Conclusions  

The rainscreen venting to wall area ratio has a significant impact on the PER wall 

panel performance at constant volume.  As the venting area increases, pressure 

equalization between external and cavity pressures improve, irrespective of the 

type of external applied pressure signals.   

Under both applied single pressure and pressure gradients, the cavity pressure is 

uniform at all rainscreen venting areas ratios.  

The change in the vent openings layout affects the process of pressure 

equalization. At high venting area ratios, the transfer functions magnitudes 

referring to the cavity to exterior pressures ratio are almost the same in case the 

vents are placed at bottom or distributed between top and bottom of the 

rainscreen.  The difference is more pronounced at low venting area ratios, where 

the bottom location provides better pressure equalization.  

As the rainscreen venting area ratio gets larger, the critical damping frequency 

increases. Thus, the transfer functions of the cavity to external pressure ratio show 

less attenuation at low frequencies, with a reduction of the phase angle. In 

addition, better transmission of higher frequencies is observed.  

A full-pressure equalization results in a phase angle between the cavity and 

external pressure equal to zero, in conjunction with a complete transmission of 

low and high external frequency fluctuations in terms of transfer functions. 

The pressure gradient, caused by the application of three different signals, leads to 

a lower degree of pressure equalization with higher peak factors, in terms of 

differential pressure and frequencies. In the current research, the maximum PE is 

attained at 0.27%VA , external area-averaged pressure frequencies higher than 3 

Hz are not fully transmitted to the cavity. Under a uniform pressure, full PE was 

observed for 0.11%VA

  

A higher applied horizontal pressure gradient leads to higher residual loads on the 

raincsreen, which results in a slower pressure equalization process shown by the 

model. 
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The numerical model based on Helmholtz resonator theory provides good 

matching with the experimental results at high rainscreen venting area ratios in 

terms of high frequencies external fluctuations. At low venting areas, the 

numerical model is not able to capture the real critical damping frequency, which 

shows an overprediction of the transfer functions and great reduction in phase 

angles. Such trend indicates that the model presents an issue in terms of the 

damping term, which is highly related to the area-venting ratio. A possible reason 

might be the linearization of the damping term in the equations. 

Under both a uniform and gradient pressures, the inclusion of leakage holes in the 

numerical model does not influence the predicted cavity response at 0.11%VA

 

Certain differences exist in the numerical predictions of cavity pressure response 

in the frequency domain depending on the applied external pressures. Under a 

uniform pressure, statistical values of the cavity to external pressure ratios are 

underestimated at low venting areas ratios by numerical simulations, and the 

experimental transfer function is in fairly good match at high venting are ratios. 

Under a pressure gradient, there is overestimation of the statistical ratios; also, the 

transfer function becomes underpredicted at higher frequencies for larger venting.  

Based on the numerical model prediction, the cavity depth variation shows that 

the effect of the volume change is more significant at low venting areas. At a 

constant rainscreen venting area, the pressure equalization is reduced as the cavity 

depth increases when a uniform pressure is applied.  However, no significant 

change is observed when the PER is subject to a pressure gradient.   

Recommendations for Future Experimental Work  

It would be very useful to conduct more tests at various depths in order to see the 

effect of cavity volume change on the PE performance of the current model, 

especially under a pressure gradient. Such experiment may either validate the 

current project s results, or settle new recommendations for an optimum cavity 

depth. 
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More test configurations are recommended involving the inclusion of intentional 

leakage openings in the air barrier, which will help to check the impact of the 

rainscreen venting to air barrier leakage areas ratios on the model performance 

under a uniform pressure and pressure gradient. 

Various other experiments may be performed at different wind angles, 

compartment size and vent openings layout to collect the volume of data required 

for design guidelines settling. 

The numerical model as used in this project needs further investigation for better 

predictions at low venting areas. A possible solution is to find a certain method in 

doing the computations without the linearization of the equations and damping 

terms.  

The wind-driven rain impact may be also investigated using the current PER wall 

model. By applying simultaneously wind pressure and rain droplets, we would 

experimentally observe the process of the water penetration into the cavity 

through the various vent openings. Such test would require improvement in the 

way of wind application to avoid losses, especially at low venting areas. 

A rainscreen venting area ratio less than 0.11% is not recommended for a PER 

system at a compartment cavity depth of 25mm      
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APPENDIX A  

A-1 Rainscreen Sketches for Different Venting to Wall Area Ratio Configurations  

A-2 Verification of the Air Barrier and Rainscreen Stiffness  

A.3 - Uncertainties in Measurements                            
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A.1- Rainscreen Sketches for Different Venting to Wall Area Ratio Configurations.                               

Configuration a) VA = 0.007 %

 

Configuration b) VA =0.022%  
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Configuration c) VA = 0.03% 

Configuration d) VA = 0.11% 
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Configuration e) VA = 0.27% 

Configuration f) VA = 0.03% 
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  : Plugged hole      : unplugged hole 

Figure A1 Rainscreen venting area configurations   

A.2 - Verification of the Air Barrier and Rainscreen Stiffness 

It is absolutely important to keep the air volume inside the cavity constant during the tests 

configurations. For this reason, the PER wall panel is built with installing studs from the 

front and the back to eliminate any probability for deflection.    

A.2.1 Aluminium deflection 

Since the 2 wood pressure boxes (20 x 71 x 2200 cm³) ensure the rigidity of the 

aluminium rainscreen at top and bottom, we have to check the deflection of the remaining 

section (60 x 2200 cm²). The panel is assumed to be exposed to a (1.5 kPa) normally 

distributed load, thus the maximum deflection  is calculated based on Roark's Formulas 

for Stress & Strain (6th edition) for a rectangular plate under uniform pressure where 

4
0 0

3

C p b

Eh

 

Configuration g) VA = 0.11% 
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0p = 1.5 Kpa 

b is the longest dimension 

E = 97.13 10x  Kg/m²    is the elastic modulus of the aluminium 

h= 0.00635 m is the rainscreen thickness 

0C  depends on the end supports and the aspect ratio of the plate.  

In case 4 vertical studs are installed at 45 cm, and 2 are placed horizontally at 20 cm, then 

the aspect ratio 2.25
b

a

 
and 0C =0.12; the deflection for each section (20 x 45 cm²) is 

around 1 mm.  

A.2.2 Wood deflection  

The deflection limit of the plywood wall of the air barrier at the back of the (PER) wall is 

equal or less to 
240

l
; 3

lim 9 10it x m  for 2.2l m

  

The deflection of the wooden studs is calculated with the formula: 
45

384

wl

EI

 

w is the uniformly distributed load supported by the stud, l  is the stud span 

E = 91.04 10x  Kg/m²    is the elastic modulus of the wood, I is the inertia moment 

Taking into consideration a uniform load of 0.54 Kg/m, each of the 6 (3 x 18 cm²) cross 

section studs at 36cm having a span 1.5l m (crossing 2 horizontal wood plates at top 

and bottom) has deflection around 0.1 mm. Such value theoretically gives a volume 

increase inside the cavity of 0.044%.  

A.3 - Uncertainties in Measurements   

A.3.1 Errors from Pressure loading Actuators (PLAs)   

These errors are issued from the performance of the PLAs that are supposed to generate 

the same pressure signal in each configuration of the test. However, slight changes are 

observed in the achieved pressures due to the change in the fan performance of the PLAs, 

function of the ambient temperature and the number of holes in the rainscreen. For this 
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reason, the pressure equalization is examined in function of the cavity to the exterior 

pressure ratio, instead of the cavity pressure evaluation itself.   

The error computed here refers to the Accuracy in percentage, which is the ratio of the 

deviation  value to the target pressure value     

Configuration Mean pressure (kPa) Peak pressure (kPa) 

 
Achieved Deviation Accuracy Achieved Deviation Accuracy 

a 1.3068 0.0132 1.0% 2.697 0.1175 4.0% 
b 1.3222 -0.0022 -0.1% 2.829 -0.0145 -0.5% 
c 1.3231 -0.0031 -0.2% 2.715 0.0995 3.5% 
d 1.3182 0.0018 0.1% 2.765 0.0495 1.7% 
e 1.3185 0.0015 0.1% 2.774 0.0405 1.4% 
f 1.3018 0.0182 1.3% 2.767 0.0475 1.6% 
g 1.3154 0.0046 0.3% 2.839 -0.0245 -0.8% 

 

Table A.1 Achieved single exterior pressure signal for the wide face  

Table A.1 shows the mean and peak pressure values achieved by the PLAs in each 

configuration, with the associated deviation; corresponding to the wide face when one 

single exterior pressure signal is applied to the rainscreen. The deviation 

 

is the 

difference between the actual (demand) and measured value for each case; knowing that 

the accurate value 

 

refers to the target pressure (given to the PLA) where the mean and 

peak are respectively 1.32eP Kpa  and 2.8eP Kpa .   

In case several PLAs are functioning within the same setup, the measured (achieved) 

value taken into account is the one read by the PLA controller, which is related to the 

second airbox at the bottom of the rainscreen. This PLA is fed with the demand signal 

and all others must follow it reproducing the same signal simultaneously. Such process is 

supposed to reduce the errors that might come in case the PLAs are working 

independently; based on preliminary tests we ve done before. 

Setting this apart, the data clearly demonstrates that the PLA controller never reproduces 

the same pressure signal with the exact statistical values, which gives us a deviation 

range of the achieved pressure with respect to the demand.  
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As an example, the first Accuracy error values are calculated as follows:  

For the mean pressure: 

0.0132
: 0.01 1.3%

1.32
Accuracy        

For the peak pressure:  

0.1175
: 0.041 4%

2.8
Accuracy

   
Single applied signal Three applied signals 

Mean pressure Wide face Narrow face Wide face Narrow face 
Accuracy -0.2% to +1.3% -0.7% to +1.4%

 
-1.3% to +1.2% -1% to +5% 

Peak pressure     
Accuracy -0.8% to +4% -1.8% to +1% +1% to +13% -7% to +10% 

Table A.2 Summary of accuracy errors ranges for PLAs performance  

Table A.2 shows a summary of the errors ranges of the PLAs for both the wide and 

narrow faces cases. In case three different pressures are applied, the errors seem higher 

especially with respect to the peak pressures values. The accurate pressure here is 

assumed to be the area-averaged pressure on the pressure boxes, and the PLAs are 

working separately without following any controller. So as each PLA related to each 

pressure box is generating a different signal, the errors would be accumulated from all the 

machines, since the demand pressures are different and the PLAs are working without 

assured synchronization. Therefore, the production of demand peak pressures is 

inconsistent from one test to another.   

A.3.2 Errors from pressures transducers readings in the same pressure box   

Errors also occur between the different pressure transducers that are supposed to read the 

same achieved pressure within the same test configuration. However, they record 

different values because they have different positions on the outer pressure boxes, so each 

tackles the signal generated by a certain PLA; and since each PLA has its own 

performance, the pressure transducers present different readings, even if the PLAs are 

generating the same signal. 
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Configuration Wide face Narrow face 
Horizontal error   

b +0.4% -0.4% 
c -2% to 2.2%  -3% 
d -0.2% to 2% -1.5% to 0% 
g -0.4% -0.3% to 1% 
e 0.5%

 
+0.03% to +0.6% 

Vertical error   
f -0.4% -0.2% 
g -0.9% to 0.4% -0.3% to 0.1% 

 
Table A.3 Accuracy errors between pressure transducers of the same test configuration  

Table A.3 shows the Accuracy errors for all configurations for both the wide and narrow 

face when one single pressure signal is applied. The errors calculated in this case are the 

differences (in percent) between the mean pressures values measured by the pressure 

transducer of the PLA contoller airbox;  and those located on the adjacent pressures 

boxes (Horizontal error) and the top and bottom boxes (Vertical error).   

It is obvious that the higher range of Accuracy errors belongs to configuration c, where 

four holes are distributed as two under the second air box and one under each edge box. 

Since the pressure transducer located on the middle airbox, that covers the two holes, 

reads the accurate pressure value, there is certainly a discrepancy between this value and 

the others located at the edge boxes. In general, the airflow blown by the PLA is function 

of vent holes area, thus the PLA controller will perform the signal differently from the 

others, and the errors are higher because there is no equal distribution of the vent holes 

between the three boxes.     
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Appendix B  

B.1 Numerical Method                                           
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B.1 Numerical Method  

The numerical code written in Matlab 7.1 is supposed to provide the solution for the 

Helmholtz resonator theory system equations, which include the Multiple discharge 

equations for unsteady flow through multiple openings or leaks (MDE) ,  

1/ 1/2
(1/ ) 1 0

2

321

2

i i

i

n n
na i

a ei i i i i ei c
i i

l
l x x x x p p

K d
                    (B.1) 

and an additional Continuity Equation (CE) 

0
1 1 2 2

0

( ... )m m c

V
a x a x a x p

p
                                       (B.2) 

showing m+1 unknowns for a number (m) of vent openings: the cavity pressure and the 

air slug distance for each opening ( cp , 1 2, ,.... )mx x x , (i=1,2 m)  

Since the non linear (MDE) equations with first and second order differential terms do 

not have a general analytical solution; they are transformed into a set of linear equations 

using a backward differencing approximation (a concept that is issued from the expansion 

of Taylor series about a single variable) in addition to iterations. Therefore, the first order 

and second order derivatives of the air slug movement distance are respectively expressed 

with respect to the time interval  as:  

1j j
j x x

x

  

1 2

2

2j j j
j x x x

x

 

where j designates a step of time.  

Using the bulk of modulus 0AK P , the continuity equation (CE) is rewritten as  

10

m
j jA

c k k
k

K
p a x

V
                                                       (B.3) 

Substituting the derivatives of the distance x, and the cavity pressure cp with the 

numerical approximate expressions, the (MDE) system equations become  
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Once the initial approximations of the values of jx

 

are recognized, these equations can 

be solved simultaneously with (m) unknowns 1 2,( , ... )mx x x . The row vector of the slug 

movements x

 

is found from the multiplication of two matrices ( 1mat ) and ( 2mat ) 

issued the reorganization of the terms in the (MDE) equations. 

Figure B1 shows the flow chart for the computational programming of the (MDE) and 

(CE) equations in order to predict the cavity pressure cP .        
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Start                                     

0

0

limend

end

x x

x

       

Figure B1 Flow chart for computational programming for (MDE) equations in Matlab 7.1  
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Define coefficients of the (MDE) equations 
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The program shows that the computation starts with a for Loop, that is based on the 

time step between each measurement during the sampling period. Also, there are 

iterations, and each time the value of x  is computed, it gives new approximation 

0 00.5 0.5newx x x , that is supposed to get closer to the final solution. The solution is 

determined when the convergence limit is reached so 60

0

10end

end

x x

x
; meaning that the 

provided distances get close enough to the true values. This convergence criterion is 

chosen by trial, the values of x  seemed constant at this limit. 

Finally, the pressure is generated by multiplying the two vectors [ ]C  and [ ]X , based on 

the Continuity Equation as rewritten in Eqn (B.3).                         
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